Move the device lock into the backend function table
[openal-soft.git] / Alc / ALu.c
blobd79661d16c2e9068081cf0406e6cfbd8684cc1c2
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alListener.h"
35 #include "alAuxEffectSlot.h"
36 #include "alu.h"
37 #include "bs2b.h"
40 struct ChanMap {
41 enum Channel channel;
42 ALfloat angle;
45 /* Cone scalar */
46 ALfloat ConeScale = 1.0f;
48 /* Localized Z scalar for mono sources */
49 ALfloat ZScale = 1.0f;
52 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
54 ALfloat temp[4] = {
55 vector[0], vector[1], vector[2], w
58 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
59 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
60 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
64 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
66 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
67 static const struct ChanMap StereoMap[2] = {
68 { FrontLeft, -30.0f * F_PI/180.0f },
69 { FrontRight, 30.0f * F_PI/180.0f }
71 static const struct ChanMap StereoWideMap[2] = {
72 { FrontLeft, -90.0f * F_PI/180.0f },
73 { FrontRight, 90.0f * F_PI/180.0f }
75 static const struct ChanMap RearMap[2] = {
76 { BackLeft, -150.0f * F_PI/180.0f },
77 { BackRight, 150.0f * F_PI/180.0f }
79 static const struct ChanMap QuadMap[4] = {
80 { FrontLeft, -45.0f * F_PI/180.0f },
81 { FrontRight, 45.0f * F_PI/180.0f },
82 { BackLeft, -135.0f * F_PI/180.0f },
83 { BackRight, 135.0f * F_PI/180.0f }
85 static const struct ChanMap X51Map[6] = {
86 { FrontLeft, -30.0f * F_PI/180.0f },
87 { FrontRight, 30.0f * F_PI/180.0f },
88 { FrontCenter, 0.0f * F_PI/180.0f },
89 { LFE, 0.0f },
90 { BackLeft, -110.0f * F_PI/180.0f },
91 { BackRight, 110.0f * F_PI/180.0f }
93 static const struct ChanMap X61Map[7] = {
94 { FrontLeft, -30.0f * F_PI/180.0f },
95 { FrontRight, 30.0f * F_PI/180.0f },
96 { FrontCenter, 0.0f * F_PI/180.0f },
97 { LFE, 0.0f },
98 { BackCenter, 180.0f * F_PI/180.0f },
99 { SideLeft, -90.0f * F_PI/180.0f },
100 { SideRight, 90.0f * F_PI/180.0f }
102 static const struct ChanMap X71Map[8] = {
103 { FrontLeft, -30.0f * F_PI/180.0f },
104 { FrontRight, 30.0f * F_PI/180.0f },
105 { FrontCenter, 0.0f * F_PI/180.0f },
106 { LFE, 0.0f },
107 { BackLeft, -150.0f * F_PI/180.0f },
108 { BackRight, 150.0f * F_PI/180.0f },
109 { SideLeft, -90.0f * F_PI/180.0f },
110 { SideRight, 90.0f * F_PI/180.0f }
113 ALCdevice *Device = ALContext->Device;
114 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
115 ALbufferlistitem *BufferListItem;
116 enum FmtChannels Channels;
117 ALfloat (*SrcMatrix)[MaxChannels];
118 ALfloat DryGain, DryGainHF;
119 ALfloat WetGain[MAX_SENDS];
120 ALfloat WetGainHF[MAX_SENDS];
121 ALint NumSends, Frequency;
122 const struct ChanMap *chans = NULL;
123 enum Resampler Resampler;
124 ALint num_channels = 0;
125 ALboolean DirectChannels;
126 ALfloat hwidth = 0.0f;
127 ALfloat Pitch;
128 ALfloat cw;
129 ALint i, c;
131 /* Get device properties */
132 NumSends = Device->NumAuxSends;
133 Frequency = Device->Frequency;
135 /* Get listener properties */
136 ListenerGain = ALContext->Listener.Gain;
138 /* Get source properties */
139 SourceVolume = ALSource->Gain;
140 MinVolume = ALSource->MinGain;
141 MaxVolume = ALSource->MaxGain;
142 Pitch = ALSource->Pitch;
143 Resampler = ALSource->Resampler;
144 DirectChannels = ALSource->DirectChannels;
146 /* Calculate the stepping value */
147 Channels = FmtMono;
148 BufferListItem = ALSource->queue;
149 while(BufferListItem != NULL)
151 ALbuffer *ALBuffer;
152 if((ALBuffer=BufferListItem->buffer) != NULL)
154 ALsizei maxstep = STACK_DATA_SIZE/sizeof(ALfloat) /
155 ALSource->NumChannels;
156 maxstep -= ResamplerPadding[Resampler] +
157 ResamplerPrePadding[Resampler] + 1;
158 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
160 Pitch = Pitch * ALBuffer->Frequency / Frequency;
161 if(Pitch > (ALfloat)maxstep)
162 ALSource->Params.Step = maxstep<<FRACTIONBITS;
163 else
165 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
166 if(ALSource->Params.Step == 0)
167 ALSource->Params.Step = 1;
169 if(ALSource->Params.Step == FRACTIONONE)
170 Resampler = PointResampler;
172 Channels = ALBuffer->FmtChannels;
173 break;
175 BufferListItem = BufferListItem->next;
177 if(!DirectChannels && Device->Hrtf)
178 ALSource->Params.DryMix = SelectHrtfMixer(Resampler);
179 else
180 ALSource->Params.DryMix = SelectDirectMixer(Resampler);
181 ALSource->Params.WetMix = SelectSendMixer(Resampler);
183 /* Calculate gains */
184 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
185 DryGain *= ALSource->DirectGain * ListenerGain;
186 DryGainHF = ALSource->DirectGainHF;
187 for(i = 0;i < NumSends;i++)
189 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
190 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
191 WetGainHF[i] = ALSource->Send[i].GainHF;
194 SrcMatrix = ALSource->Params.Direct.Gains;
195 for(i = 0;i < MaxChannels;i++)
197 for(c = 0;c < MaxChannels;c++)
198 SrcMatrix[i][c] = 0.0f;
200 switch(Channels)
202 case FmtMono:
203 chans = MonoMap;
204 num_channels = 1;
205 break;
207 case FmtStereo:
208 if(!(Device->Flags&DEVICE_WIDE_STEREO))
209 chans = StereoMap;
210 else
212 chans = StereoWideMap;
213 hwidth = 60.0f * F_PI/180.0f;
215 num_channels = 2;
216 break;
218 case FmtRear:
219 chans = RearMap;
220 num_channels = 2;
221 break;
223 case FmtQuad:
224 chans = QuadMap;
225 num_channels = 4;
226 break;
228 case FmtX51:
229 chans = X51Map;
230 num_channels = 6;
231 break;
233 case FmtX61:
234 chans = X61Map;
235 num_channels = 7;
236 break;
238 case FmtX71:
239 chans = X71Map;
240 num_channels = 8;
241 break;
244 if(DirectChannels != AL_FALSE)
246 for(c = 0;c < num_channels;c++)
248 for(i = 0;i < (ALint)Device->NumChan;i++)
250 enum Channel chan = Device->Speaker2Chan[i];
251 if(chan == chans[c].channel)
253 SrcMatrix[c][chan] += DryGain;
254 break;
259 else if(Device->Hrtf)
261 for(c = 0;c < num_channels;c++)
263 if(chans[c].channel == LFE)
265 /* Skip LFE */
266 ALSource->Params.Direct.Hrtf.Delay[c][0] = 0;
267 ALSource->Params.Direct.Hrtf.Delay[c][1] = 0;
268 for(i = 0;i < HRIR_LENGTH;i++)
270 ALSource->Params.Direct.Hrtf.Coeffs[c][i][0] = 0.0f;
271 ALSource->Params.Direct.Hrtf.Coeffs[c][i][1] = 0.0f;
274 else
276 /* Get the static HRIR coefficients and delays for this
277 * channel. */
278 GetLerpedHrtfCoeffs(Device->Hrtf,
279 0.0f, chans[c].angle, DryGain,
280 ALSource->Params.Direct.Hrtf.Coeffs[c],
281 ALSource->Params.Direct.Hrtf.Delay[c]);
284 ALSource->Hrtf.Counter = 0;
286 else
288 DryGain *= lerp(1.0f, 1.0f/sqrtf(Device->NumChan), hwidth/(F_PI*2.0f));
289 for(c = 0;c < num_channels;c++)
291 /* Special-case LFE */
292 if(chans[c].channel == LFE)
294 SrcMatrix[c][chans[c].channel] = DryGain;
295 continue;
297 ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain,
298 SrcMatrix[c]);
301 for(i = 0;i < NumSends;i++)
303 ALeffectslot *Slot = ALSource->Send[i].Slot;
305 if(!Slot && i == 0)
306 Slot = Device->DefaultSlot;
307 if(Slot && Slot->effect.type == AL_EFFECT_NULL)
308 Slot = NULL;
309 ALSource->Params.Slot[i] = Slot;
310 ALSource->Params.Send[i].Gain = WetGain[i];
313 /* Update filter coefficients. Calculations based on the I3DL2
314 * spec. */
315 cw = cosf(F_PI*2.0f * LOWPASSFREQREF / Frequency);
317 /* We use two chained one-pole filters, so we need to take the
318 * square root of the squared gain, which is the same as the base
319 * gain. */
320 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
321 for(i = 0;i < NumSends;i++)
323 ALfloat a = lpCoeffCalc(WetGainHF[i], cw);
324 ALSource->Params.Send[i].iirFilter.coeff = a;
328 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
330 const ALCdevice *Device = ALContext->Device;
331 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
332 ALfloat Direction[3],Position[3],SourceToListener[3];
333 ALfloat Velocity[3],ListenerVel[3];
334 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
335 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
336 ALfloat DopplerFactor, SpeedOfSound;
337 ALfloat AirAbsorptionFactor;
338 ALfloat RoomAirAbsorption[MAX_SENDS];
339 ALbufferlistitem *BufferListItem;
340 ALfloat Attenuation;
341 ALfloat RoomAttenuation[MAX_SENDS];
342 ALfloat MetersPerUnit;
343 ALfloat RoomRolloffBase;
344 ALfloat RoomRolloff[MAX_SENDS];
345 ALfloat DecayDistance[MAX_SENDS];
346 ALfloat DryGain;
347 ALfloat DryGainHF;
348 ALboolean DryGainHFAuto;
349 ALfloat WetGain[MAX_SENDS];
350 ALfloat WetGainHF[MAX_SENDS];
351 ALboolean WetGainAuto;
352 ALboolean WetGainHFAuto;
353 enum Resampler Resampler;
354 ALfloat Matrix[4][4];
355 ALfloat Pitch;
356 ALuint Frequency;
357 ALint NumSends;
358 ALfloat cw;
359 ALint i, j;
361 DryGainHF = 1.0f;
362 for(i = 0;i < MAX_SENDS;i++)
363 WetGainHF[i] = 1.0f;
365 /* Get context/device properties */
366 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
367 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
368 NumSends = Device->NumAuxSends;
369 Frequency = Device->Frequency;
371 /* Get listener properties */
372 ListenerGain = ALContext->Listener.Gain;
373 MetersPerUnit = ALContext->Listener.MetersPerUnit;
374 ListenerVel[0] = ALContext->Listener.Velocity[0];
375 ListenerVel[1] = ALContext->Listener.Velocity[1];
376 ListenerVel[2] = ALContext->Listener.Velocity[2];
377 for(i = 0;i < 4;i++)
379 for(j = 0;j < 4;j++)
380 Matrix[i][j] = ALContext->Listener.Matrix[i][j];
383 /* Get source properties */
384 SourceVolume = ALSource->Gain;
385 MinVolume = ALSource->MinGain;
386 MaxVolume = ALSource->MaxGain;
387 Pitch = ALSource->Pitch;
388 Resampler = ALSource->Resampler;
389 Position[0] = ALSource->Position[0];
390 Position[1] = ALSource->Position[1];
391 Position[2] = ALSource->Position[2];
392 Direction[0] = ALSource->Orientation[0];
393 Direction[1] = ALSource->Orientation[1];
394 Direction[2] = ALSource->Orientation[2];
395 Velocity[0] = ALSource->Velocity[0];
396 Velocity[1] = ALSource->Velocity[1];
397 Velocity[2] = ALSource->Velocity[2];
398 MinDist = ALSource->RefDistance;
399 MaxDist = ALSource->MaxDistance;
400 Rolloff = ALSource->RollOffFactor;
401 InnerAngle = ALSource->InnerAngle;
402 OuterAngle = ALSource->OuterAngle;
403 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
404 DryGainHFAuto = ALSource->DryGainHFAuto;
405 WetGainAuto = ALSource->WetGainAuto;
406 WetGainHFAuto = ALSource->WetGainHFAuto;
407 RoomRolloffBase = ALSource->RoomRolloffFactor;
408 for(i = 0;i < NumSends;i++)
410 ALeffectslot *Slot = ALSource->Send[i].Slot;
412 if(!Slot && i == 0)
413 Slot = Device->DefaultSlot;
414 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
416 Slot = NULL;
417 RoomRolloff[i] = 0.0f;
418 DecayDistance[i] = 0.0f;
419 RoomAirAbsorption[i] = 1.0f;
421 else if(Slot->AuxSendAuto)
423 RoomRolloff[i] = RoomRolloffBase;
424 if(IsReverbEffect(Slot->effect.type))
426 RoomRolloff[i] += Slot->effect.Reverb.RoomRolloffFactor;
427 DecayDistance[i] = Slot->effect.Reverb.DecayTime *
428 SPEEDOFSOUNDMETRESPERSEC;
429 RoomAirAbsorption[i] = Slot->effect.Reverb.AirAbsorptionGainHF;
431 else
433 DecayDistance[i] = 0.0f;
434 RoomAirAbsorption[i] = 1.0f;
437 else
439 /* If the slot's auxiliary send auto is off, the data sent to the
440 * effect slot is the same as the dry path, sans filter effects */
441 RoomRolloff[i] = Rolloff;
442 DecayDistance[i] = 0.0f;
443 RoomAirAbsorption[i] = AIRABSORBGAINHF;
446 ALSource->Params.Slot[i] = Slot;
449 /* Transform source to listener space (convert to head relative) */
450 if(ALSource->HeadRelative == AL_FALSE)
452 /* Translate position */
453 Position[0] -= ALContext->Listener.Position[0];
454 Position[1] -= ALContext->Listener.Position[1];
455 Position[2] -= ALContext->Listener.Position[2];
457 /* Transform source vectors */
458 aluMatrixVector(Position, 1.0f, Matrix);
459 aluMatrixVector(Direction, 0.0f, Matrix);
460 aluMatrixVector(Velocity, 0.0f, Matrix);
461 /* Transform listener velocity */
462 aluMatrixVector(ListenerVel, 0.0f, Matrix);
464 else
466 /* Transform listener velocity from world space to listener space */
467 aluMatrixVector(ListenerVel, 0.0f, Matrix);
468 /* Offset the source velocity to be relative of the listener velocity */
469 Velocity[0] += ListenerVel[0];
470 Velocity[1] += ListenerVel[1];
471 Velocity[2] += ListenerVel[2];
474 SourceToListener[0] = -Position[0];
475 SourceToListener[1] = -Position[1];
476 SourceToListener[2] = -Position[2];
477 aluNormalize(SourceToListener);
478 aluNormalize(Direction);
480 /* Calculate distance attenuation */
481 Distance = sqrtf(aluDotproduct(Position, Position));
482 ClampedDist = Distance;
484 Attenuation = 1.0f;
485 for(i = 0;i < NumSends;i++)
486 RoomAttenuation[i] = 1.0f;
487 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
488 ALContext->DistanceModel)
490 case InverseDistanceClamped:
491 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
492 if(MaxDist < MinDist)
493 break;
494 /*fall-through*/
495 case InverseDistance:
496 if(MinDist > 0.0f)
498 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
499 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
500 for(i = 0;i < NumSends;i++)
502 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
503 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
506 break;
508 case LinearDistanceClamped:
509 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
510 if(MaxDist < MinDist)
511 break;
512 /*fall-through*/
513 case LinearDistance:
514 if(MaxDist != MinDist)
516 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
517 Attenuation = maxf(Attenuation, 0.0f);
518 for(i = 0;i < NumSends;i++)
520 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
521 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
524 break;
526 case ExponentDistanceClamped:
527 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
528 if(MaxDist < MinDist)
529 break;
530 /*fall-through*/
531 case ExponentDistance:
532 if(ClampedDist > 0.0f && MinDist > 0.0f)
534 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
535 for(i = 0;i < NumSends;i++)
536 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
538 break;
540 case DisableDistance:
541 ClampedDist = MinDist;
542 break;
545 /* Source Gain + Attenuation */
546 DryGain = SourceVolume * Attenuation;
547 for(i = 0;i < NumSends;i++)
548 WetGain[i] = SourceVolume * RoomAttenuation[i];
550 /* Distance-based air absorption */
551 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
553 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
554 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
555 for(i = 0;i < NumSends;i++)
556 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
559 if(WetGainAuto)
561 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
563 /* Apply a decay-time transformation to the wet path, based on the
564 * attenuation of the dry path.
566 * Using the apparent distance, based on the distance attenuation, the
567 * initial decay of the reverb effect is calculated and applied to the
568 * wet path.
570 for(i = 0;i < NumSends;i++)
572 if(DecayDistance[i] > 0.0f)
573 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
577 /* Calculate directional soundcones */
578 Angle = acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale * (360.0f/F_PI);
579 if(Angle > InnerAngle && Angle <= OuterAngle)
581 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
582 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
583 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
585 else if(Angle > OuterAngle)
587 ConeVolume = ALSource->OuterGain;
588 ConeHF = ALSource->OuterGainHF;
590 else
592 ConeVolume = 1.0f;
593 ConeHF = 1.0f;
596 DryGain *= ConeVolume;
597 if(WetGainAuto)
599 for(i = 0;i < NumSends;i++)
600 WetGain[i] *= ConeVolume;
602 if(DryGainHFAuto)
603 DryGainHF *= ConeHF;
604 if(WetGainHFAuto)
606 for(i = 0;i < NumSends;i++)
607 WetGainHF[i] *= ConeHF;
610 /* Clamp to Min/Max Gain */
611 DryGain = clampf(DryGain, MinVolume, MaxVolume);
612 for(i = 0;i < NumSends;i++)
613 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
615 /* Apply gain and frequency filters */
616 DryGain *= ALSource->DirectGain * ListenerGain;
617 DryGainHF *= ALSource->DirectGainHF;
618 for(i = 0;i < NumSends;i++)
620 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
621 WetGainHF[i] *= ALSource->Send[i].GainHF;
624 /* Calculate velocity-based doppler effect */
625 if(DopplerFactor > 0.0f)
627 ALfloat VSS, VLS;
629 if(SpeedOfSound < 1.0f)
631 DopplerFactor *= 1.0f/SpeedOfSound;
632 SpeedOfSound = 1.0f;
635 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
636 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
638 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
639 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
642 BufferListItem = ALSource->queue;
643 while(BufferListItem != NULL)
645 ALbuffer *ALBuffer;
646 if((ALBuffer=BufferListItem->buffer) != NULL)
648 /* Calculate fixed-point stepping value, based on the pitch, buffer
649 * frequency, and output frequency. */
650 ALsizei maxstep = STACK_DATA_SIZE/sizeof(ALfloat) /
651 ALSource->NumChannels;
652 maxstep -= ResamplerPadding[Resampler] +
653 ResamplerPrePadding[Resampler] + 1;
654 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
656 Pitch = Pitch * ALBuffer->Frequency / Frequency;
657 if(Pitch > (ALfloat)maxstep)
658 ALSource->Params.Step = maxstep<<FRACTIONBITS;
659 else
661 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
662 if(ALSource->Params.Step == 0)
663 ALSource->Params.Step = 1;
665 if(ALSource->Params.Step == FRACTIONONE)
666 Resampler = PointResampler;
668 break;
670 BufferListItem = BufferListItem->next;
672 if(Device->Hrtf)
673 ALSource->Params.DryMix = SelectHrtfMixer(Resampler);
674 else
675 ALSource->Params.DryMix = SelectDirectMixer(Resampler);
676 ALSource->Params.WetMix = SelectSendMixer(Resampler);
678 if(Device->Hrtf)
680 /* Use a binaural HRTF algorithm for stereo headphone playback */
681 ALfloat delta, ev = 0.0f, az = 0.0f;
683 if(Distance > 0.0f)
685 ALfloat invlen = 1.0f/Distance;
686 Position[0] *= invlen;
687 Position[1] *= invlen;
688 Position[2] *= invlen;
690 /* Calculate elevation and azimuth only when the source is not at
691 * the listener. This prevents +0 and -0 Z from producing
692 * inconsistent panning. Also, clamp Y in case FP precision errors
693 * cause it to land outside of -1..+1. */
694 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
695 az = atan2f(Position[0], -Position[2]*ZScale);
698 /* Check to see if the HRIR is already moving. */
699 if(ALSource->Hrtf.Moving)
701 /* Calculate the normalized HRTF transition factor (delta). */
702 delta = CalcHrtfDelta(ALSource->Params.Direct.Hrtf.Gain, DryGain,
703 ALSource->Params.Direct.Hrtf.Dir, Position);
704 /* If the delta is large enough, get the moving HRIR target
705 * coefficients, target delays, steppping values, and counter. */
706 if(delta > 0.001f)
708 ALSource->Hrtf.Counter = GetMovingHrtfCoeffs(Device->Hrtf,
709 ev, az, DryGain, delta,
710 ALSource->Hrtf.Counter,
711 ALSource->Params.Direct.Hrtf.Coeffs[0],
712 ALSource->Params.Direct.Hrtf.Delay[0],
713 ALSource->Params.Direct.Hrtf.CoeffStep,
714 ALSource->Params.Direct.Hrtf.DelayStep);
715 ALSource->Params.Direct.Hrtf.Gain = DryGain;
716 ALSource->Params.Direct.Hrtf.Dir[0] = Position[0];
717 ALSource->Params.Direct.Hrtf.Dir[1] = Position[1];
718 ALSource->Params.Direct.Hrtf.Dir[2] = Position[2];
721 else
723 /* Get the initial (static) HRIR coefficients and delays. */
724 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
725 ALSource->Params.Direct.Hrtf.Coeffs[0],
726 ALSource->Params.Direct.Hrtf.Delay[0]);
727 ALSource->Hrtf.Counter = 0;
728 ALSource->Params.Direct.Hrtf.Gain = DryGain;
729 ALSource->Params.Direct.Hrtf.Dir[0] = Position[0];
730 ALSource->Params.Direct.Hrtf.Dir[1] = Position[1];
731 ALSource->Params.Direct.Hrtf.Dir[2] = Position[2];
734 else
736 ALfloat (*Matrix)[MaxChannels] = ALSource->Params.Direct.Gains;
737 ALfloat DirGain = 0.0f;
738 ALfloat AmbientGain;
740 for(i = 0;i < MaxChannels;i++)
742 for(j = 0;j < MaxChannels;j++)
743 Matrix[i][j] = 0.0f;
746 /* Normalize the length, and compute panned gains. */
747 if(Distance > 0.0f)
749 ALfloat invlen = 1.0f/Distance;
750 Position[0] *= invlen;
751 Position[1] *= invlen;
752 Position[2] *= invlen;
754 DirGain = sqrtf(Position[0]*Position[0] + Position[2]*Position[2]);
755 ComputeAngleGains(Device, atan2f(Position[0], -Position[2]*ZScale), 0.0f,
756 DryGain*DirGain, Matrix[0]);
759 /* Adjustment for vertical offsets. Not the greatest, but simple
760 * enough. */
761 AmbientGain = DryGain * sqrtf(1.0f/Device->NumChan) * (1.0f-DirGain);
762 for(i = 0;i < (ALint)Device->NumChan;i++)
764 enum Channel chan = Device->Speaker2Chan[i];
765 Matrix[0][chan] = maxf(Matrix[0][chan], AmbientGain);
768 for(i = 0;i < NumSends;i++)
769 ALSource->Params.Send[i].Gain = WetGain[i];
771 /* Update filter coefficients. */
772 cw = cosf(F_PI*2.0f * LOWPASSFREQREF / Frequency);
774 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
775 for(i = 0;i < NumSends;i++)
777 ALfloat a = lpCoeffCalc(WetGainHF[i], cw);
778 ALSource->Params.Send[i].iirFilter.coeff = a;
783 static __inline ALfloat aluF2F(ALfloat val)
784 { return val; }
785 static __inline ALint aluF2I(ALfloat val)
787 if(val > 1.0f) return 2147483647;
788 if(val < -1.0f) return -2147483647-1;
789 return fastf2i((ALfloat)(val*2147483647.0));
791 static __inline ALuint aluF2UI(ALfloat val)
792 { return aluF2I(val)+2147483648u; }
793 static __inline ALshort aluF2S(ALfloat val)
794 { return aluF2I(val)>>16; }
795 static __inline ALushort aluF2US(ALfloat val)
796 { return aluF2S(val)+32768; }
797 static __inline ALbyte aluF2B(ALfloat val)
798 { return aluF2I(val)>>24; }
799 static __inline ALubyte aluF2UB(ALfloat val)
800 { return aluF2B(val)+128; }
802 #define DECL_TEMPLATE(T, N, func) \
803 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \
804 ALuint SamplesToDo) \
806 ALfloat (*RESTRICT DryBuffer)[MaxChannels] = device->DryBuffer; \
807 const enum Channel *ChanMap = device->DevChannels; \
808 ALuint i, j; \
810 for(j = 0;j < N;j++) \
812 T *RESTRICT out = buffer + j; \
813 enum Channel chan = ChanMap[j]; \
815 for(i = 0;i < SamplesToDo;i++) \
816 out[i*N] = func(DryBuffer[i][chan]); \
820 DECL_TEMPLATE(ALfloat, 1, aluF2F)
821 DECL_TEMPLATE(ALfloat, 2, aluF2F)
822 DECL_TEMPLATE(ALfloat, 4, aluF2F)
823 DECL_TEMPLATE(ALfloat, 6, aluF2F)
824 DECL_TEMPLATE(ALfloat, 7, aluF2F)
825 DECL_TEMPLATE(ALfloat, 8, aluF2F)
827 DECL_TEMPLATE(ALuint, 1, aluF2UI)
828 DECL_TEMPLATE(ALuint, 2, aluF2UI)
829 DECL_TEMPLATE(ALuint, 4, aluF2UI)
830 DECL_TEMPLATE(ALuint, 6, aluF2UI)
831 DECL_TEMPLATE(ALuint, 7, aluF2UI)
832 DECL_TEMPLATE(ALuint, 8, aluF2UI)
834 DECL_TEMPLATE(ALint, 1, aluF2I)
835 DECL_TEMPLATE(ALint, 2, aluF2I)
836 DECL_TEMPLATE(ALint, 4, aluF2I)
837 DECL_TEMPLATE(ALint, 6, aluF2I)
838 DECL_TEMPLATE(ALint, 7, aluF2I)
839 DECL_TEMPLATE(ALint, 8, aluF2I)
841 DECL_TEMPLATE(ALushort, 1, aluF2US)
842 DECL_TEMPLATE(ALushort, 2, aluF2US)
843 DECL_TEMPLATE(ALushort, 4, aluF2US)
844 DECL_TEMPLATE(ALushort, 6, aluF2US)
845 DECL_TEMPLATE(ALushort, 7, aluF2US)
846 DECL_TEMPLATE(ALushort, 8, aluF2US)
848 DECL_TEMPLATE(ALshort, 1, aluF2S)
849 DECL_TEMPLATE(ALshort, 2, aluF2S)
850 DECL_TEMPLATE(ALshort, 4, aluF2S)
851 DECL_TEMPLATE(ALshort, 6, aluF2S)
852 DECL_TEMPLATE(ALshort, 7, aluF2S)
853 DECL_TEMPLATE(ALshort, 8, aluF2S)
855 DECL_TEMPLATE(ALubyte, 1, aluF2UB)
856 DECL_TEMPLATE(ALubyte, 2, aluF2UB)
857 DECL_TEMPLATE(ALubyte, 4, aluF2UB)
858 DECL_TEMPLATE(ALubyte, 6, aluF2UB)
859 DECL_TEMPLATE(ALubyte, 7, aluF2UB)
860 DECL_TEMPLATE(ALubyte, 8, aluF2UB)
862 DECL_TEMPLATE(ALbyte, 1, aluF2B)
863 DECL_TEMPLATE(ALbyte, 2, aluF2B)
864 DECL_TEMPLATE(ALbyte, 4, aluF2B)
865 DECL_TEMPLATE(ALbyte, 6, aluF2B)
866 DECL_TEMPLATE(ALbyte, 7, aluF2B)
867 DECL_TEMPLATE(ALbyte, 8, aluF2B)
869 #undef DECL_TEMPLATE
871 #define DECL_TEMPLATE(T) \
872 static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \
874 switch(device->FmtChans) \
876 case DevFmtMono: \
877 Write_##T##_1(device, buffer, SamplesToDo); \
878 break; \
879 case DevFmtStereo: \
880 Write_##T##_2(device, buffer, SamplesToDo); \
881 break; \
882 case DevFmtQuad: \
883 Write_##T##_4(device, buffer, SamplesToDo); \
884 break; \
885 case DevFmtX51: \
886 case DevFmtX51Side: \
887 Write_##T##_6(device, buffer, SamplesToDo); \
888 break; \
889 case DevFmtX61: \
890 Write_##T##_7(device, buffer, SamplesToDo); \
891 break; \
892 case DevFmtX71: \
893 Write_##T##_8(device, buffer, SamplesToDo); \
894 break; \
898 DECL_TEMPLATE(ALfloat)
899 DECL_TEMPLATE(ALuint)
900 DECL_TEMPLATE(ALint)
901 DECL_TEMPLATE(ALushort)
902 DECL_TEMPLATE(ALshort)
903 DECL_TEMPLATE(ALubyte)
904 DECL_TEMPLATE(ALbyte)
906 #undef DECL_TEMPLATE
908 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
910 ALuint SamplesToDo;
911 ALeffectslot **slot, **slot_end;
912 ALsource **src, **src_end;
913 ALCcontext *ctx;
914 int fpuState;
915 ALuint i, c;
917 fpuState = SetMixerFPUMode();
919 while(size > 0)
921 SamplesToDo = minu(size, BUFFERSIZE);
922 memset(device->DryBuffer, 0, SamplesToDo*MaxChannels*sizeof(ALfloat));
924 ALCdevice_Lock(device);
925 ctx = device->ContextList;
926 while(ctx)
928 ALenum DeferUpdates = ctx->DeferUpdates;
929 ALenum UpdateSources = AL_FALSE;
931 if(!DeferUpdates)
932 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
934 /* source processing */
935 src = ctx->ActiveSources;
936 src_end = src + ctx->ActiveSourceCount;
937 while(src != src_end)
939 if((*src)->state != AL_PLAYING)
941 --(ctx->ActiveSourceCount);
942 *src = *(--src_end);
943 continue;
946 if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
947 UpdateSources))
948 ALsource_Update(*src, ctx);
950 MixSource(*src, device, SamplesToDo);
951 src++;
954 /* effect slot processing */
955 slot = ctx->ActiveEffectSlots;
956 slot_end = slot + ctx->ActiveEffectSlotCount;
957 while(slot != slot_end)
959 for(c = 0;c < SamplesToDo;c++)
961 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
962 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
964 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
965 (*slot)->PendingClicks[0] = 0.0f;
967 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
968 ALeffectState_Update((*slot)->EffectState, device, *slot);
970 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
971 (*slot)->WetBuffer, device->DryBuffer);
973 for(i = 0;i < SamplesToDo;i++)
974 (*slot)->WetBuffer[i] = 0.0f;
976 slot++;
979 ctx = ctx->next;
982 slot = &device->DefaultSlot;
983 if(*slot != NULL)
985 for(c = 0;c < SamplesToDo;c++)
987 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
988 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
990 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
991 (*slot)->PendingClicks[0] = 0.0f;
993 if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
994 ALeffectState_Update((*slot)->EffectState, device, *slot);
996 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
997 (*slot)->WetBuffer, device->DryBuffer);
999 for(i = 0;i < SamplesToDo;i++)
1000 (*slot)->WetBuffer[i] = 0.0f;
1002 ALCdevice_Unlock(device);
1004 /* Click-removal. Could do better; this only really handles immediate
1005 * changes between updates where a predictive sample could be
1006 * generated. Delays caused by effects and HRTF aren't caught. */
1007 if(device->FmtChans == DevFmtMono)
1009 for(i = 0;i < SamplesToDo;i++)
1011 device->DryBuffer[i][FrontCenter] += device->ClickRemoval[FrontCenter];
1012 device->ClickRemoval[FrontCenter] -= device->ClickRemoval[FrontCenter] * (1.0f/256.0f);
1014 device->ClickRemoval[FrontCenter] += device->PendingClicks[FrontCenter];
1015 device->PendingClicks[FrontCenter] = 0.0f;
1017 else if(device->FmtChans == DevFmtStereo)
1019 /* Assumes the first two channels are FrontLeft and FrontRight */
1020 for(i = 0;i < SamplesToDo;i++)
1022 for(c = 0;c < 2;c++)
1024 device->DryBuffer[i][c] += device->ClickRemoval[c];
1025 device->ClickRemoval[c] -= device->ClickRemoval[c] * (1.0f/256.0f);
1028 for(c = 0;c < 2;c++)
1030 device->ClickRemoval[c] += device->PendingClicks[c];
1031 device->PendingClicks[c] = 0.0f;
1033 if(device->Bs2b)
1035 for(i = 0;i < SamplesToDo;i++)
1036 bs2b_cross_feed(device->Bs2b, &device->DryBuffer[i][0]);
1039 else
1041 for(i = 0;i < SamplesToDo;i++)
1043 for(c = 0;c < MaxChannels;c++)
1045 device->DryBuffer[i][c] += device->ClickRemoval[c];
1046 device->ClickRemoval[c] -= device->ClickRemoval[c] * (1.0f/256.0f);
1049 for(c = 0;c < MaxChannels;c++)
1051 device->ClickRemoval[c] += device->PendingClicks[c];
1052 device->PendingClicks[c] = 0.0f;
1056 if(buffer)
1058 switch(device->FmtType)
1060 case DevFmtByte:
1061 Write_ALbyte(device, buffer, SamplesToDo);
1062 break;
1063 case DevFmtUByte:
1064 Write_ALubyte(device, buffer, SamplesToDo);
1065 break;
1066 case DevFmtShort:
1067 Write_ALshort(device, buffer, SamplesToDo);
1068 break;
1069 case DevFmtUShort:
1070 Write_ALushort(device, buffer, SamplesToDo);
1071 break;
1072 case DevFmtInt:
1073 Write_ALint(device, buffer, SamplesToDo);
1074 break;
1075 case DevFmtUInt:
1076 Write_ALuint(device, buffer, SamplesToDo);
1077 break;
1078 case DevFmtFloat:
1079 Write_ALfloat(device, buffer, SamplesToDo);
1080 break;
1084 size -= SamplesToDo;
1087 RestoreFPUMode(fpuState);
1091 ALvoid aluHandleDisconnect(ALCdevice *device)
1093 ALCcontext *Context;
1095 ALCdevice_Lock(device);
1096 device->Connected = ALC_FALSE;
1098 Context = device->ContextList;
1099 while(Context)
1101 ALsource **src, **src_end;
1103 src = Context->ActiveSources;
1104 src_end = src + Context->ActiveSourceCount;
1105 while(src != src_end)
1107 if((*src)->state == AL_PLAYING)
1109 (*src)->state = AL_STOPPED;
1110 (*src)->BuffersPlayed = (*src)->BuffersInQueue;
1111 (*src)->position = 0;
1112 (*src)->position_fraction = 0;
1114 src++;
1116 Context->ActiveSourceCount = 0;
1118 Context = Context->next;
1120 ALCdevice_Unlock(device);