afs: Reintroduce and use DFlushDCache()
[openafs.git] / src / afs / afs_dcache.c
blob8a941d6af0446e920889ae7dc113db0bd43df434
1 /*
2 * Copyright 2000, International Business Machines Corporation and others.
3 * All Rights Reserved.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
8 */
11 * Implements:
13 #include <afsconfig.h>
14 #include "afs/param.h"
17 #include "afs/sysincludes.h" /*Standard vendor system headers */
18 #include "afsincludes.h" /*AFS-based standard headers */
19 #include "afs/afs_stats.h" /* statistics */
20 #include "afs/afs_cbqueue.h"
21 #include "afs/afs_osidnlc.h"
23 #include <opr/ffs.h>
25 /* Forward declarations. */
26 static void afs_GetDownD(int anumber, int *aneedSpace, afs_int32 buckethint);
27 static int afs_FreeDiscardedDCache(void);
28 static void afs_DiscardDCache(struct dcache *);
29 static void afs_FreeDCache(struct dcache *);
30 /* For split cache */
31 static afs_int32 afs_DCGetBucket(struct vcache *);
32 static void afs_DCAdjustSize(struct dcache *, afs_int32, afs_int32);
33 static void afs_DCMoveBucket(struct dcache *, afs_int32, afs_int32);
34 static void afs_DCSizeInit(void);
35 static afs_int32 afs_DCWhichBucket(afs_int32, afs_int32);
38 * --------------------- Exported definitions ---------------------
40 /* For split cache */
41 afs_int32 afs_blocksUsed_0; /*!< 1K blocks in cache - in theory is zero */
42 afs_int32 afs_blocksUsed_1; /*!< 1K blocks in cache */
43 afs_int32 afs_blocksUsed_2; /*!< 1K blocks in cache */
44 afs_int32 afs_pct1 = -1;
45 afs_int32 afs_pct2 = -1;
46 afs_uint32 afs_tpct1 = 0;
47 afs_uint32 afs_tpct2 = 0;
48 afs_uint32 splitdcache = 0;
50 afs_lock_t afs_xdcache; /*!< Lock: alloc new disk cache entries */
51 afs_int32 afs_freeDCList; /*!< Free list for disk cache entries */
52 afs_int32 afs_freeDCCount; /*!< Count of elts in freeDCList */
53 afs_int32 afs_discardDCList; /*!< Discarded disk cache entries */
54 afs_int32 afs_discardDCCount; /*!< Count of elts in discardDCList */
55 struct dcache *afs_freeDSList; /*!< Free list for disk slots */
56 struct dcache *afs_Initial_freeDSList; /*!< Initial list for above */
57 afs_dcache_id_t cacheInode; /*!< Inode for CacheItems file */
58 struct osi_file *afs_cacheInodep = 0; /*!< file for CacheItems inode */
59 struct afs_q afs_DLRU; /*!< dcache LRU */
60 afs_int32 afs_dhashsize = 1024;
61 afs_int32 *afs_dvhashTbl; /*!< Data cache hash table: hashed by FID + chunk number. */
62 afs_int32 *afs_dchashTbl; /*!< Data cache hash table: hashed by FID. */
63 afs_int32 *afs_dvnextTbl; /*!< Dcache hash table links */
64 afs_int32 *afs_dcnextTbl; /*!< Dcache hash table links */
65 struct dcache **afs_indexTable; /*!< Pointers to dcache entries */
66 afs_hyper_t *afs_indexTimes; /*!< Dcache entry Access times */
67 afs_int32 *afs_indexUnique; /*!< dcache entry Fid.Unique */
68 unsigned char *afs_indexFlags; /*!< (only one) Is there data there? */
69 afs_hyper_t afs_indexCounter; /*!< Fake time for marking index
70 * entries */
71 afs_int32 afs_cacheFiles = 0; /*!< Size of afs_indexTable */
72 afs_int32 afs_cacheBlocks; /*!< 1K blocks in cache */
73 afs_int32 afs_cacheStats; /*!< Stat entries in cache */
74 afs_int32 afs_blocksUsed; /*!< Number of blocks in use */
75 afs_int32 afs_blocksDiscarded; /*!<Blocks freed but not truncated */
76 afs_int32 afs_fsfragsize = AFS_MIN_FRAGSIZE; /*!< Underlying Filesystem minimum unit
77 *of disk allocation usually 1K
78 *this value is (truefrag -1 ) to
79 *save a bunch of subtracts... */
80 #ifdef AFS_64BIT_CLIENT
81 #ifdef AFS_VM_RDWR_ENV
82 afs_size_t afs_vmMappingEnd; /* !< For large files (>= 2GB) the VM
83 * mapping an 32bit addressing machines
84 * can only be used below the 2 GB
85 * line. From this point upwards we
86 * must do direct I/O into the cache
87 * files. The value should be on a
88 * chunk boundary. */
89 #endif /* AFS_VM_RDWR_ENV */
90 #endif /* AFS_64BIT_CLIENT */
92 /* The following is used to ensure that new dcache's aren't obtained when
93 * the cache is nearly full.
95 int afs_WaitForCacheDrain = 0;
96 int afs_TruncateDaemonRunning = 0;
97 int afs_CacheTooFull = 0;
98 afs_uint32 afs_CacheTooFullCount = 0;
99 afs_uint32 afs_WaitForCacheDrainCount = 0;
101 afs_int32 afs_dcentries; /*!< In-memory dcache entries */
104 int dcacheDisabled = 0;
106 struct afs_cacheOps afs_UfsCacheOps = {
107 #ifndef HAVE_STRUCT_LABEL_SUPPORT
108 osi_UFSOpen,
109 osi_UFSTruncate,
110 afs_osi_Read,
111 afs_osi_Write,
112 osi_UFSClose,
113 afs_UFSReadUIO,
114 afs_UFSWriteUIO,
115 afs_UFSGetDSlot,
116 afs_UFSGetVolSlot,
117 afs_UFSHandleLink,
118 #else
119 .open = osi_UFSOpen,
120 .truncate = osi_UFSTruncate,
121 .fread = afs_osi_Read,
122 .fwrite = afs_osi_Write,
123 .close = osi_UFSClose,
124 .vreadUIO = afs_UFSReadUIO,
125 .vwriteUIO = afs_UFSWriteUIO,
126 .GetDSlot = afs_UFSGetDSlot,
127 .GetVolSlot = afs_UFSGetVolSlot,
128 .HandleLink = afs_UFSHandleLink,
129 #endif
132 struct afs_cacheOps afs_MemCacheOps = {
133 #ifndef HAVE_STRUCT_LABEL_SUPPORT
134 afs_MemCacheOpen,
135 afs_MemCacheTruncate,
136 afs_MemReadBlk,
137 afs_MemWriteBlk,
138 afs_MemCacheClose,
139 afs_MemReadUIO,
140 afs_MemWriteUIO,
141 afs_MemGetDSlot,
142 afs_MemGetVolSlot,
143 afs_MemHandleLink,
144 #else
145 .open = afs_MemCacheOpen,
146 .truncate = afs_MemCacheTruncate,
147 .fread = afs_MemReadBlk,
148 .fwrite = afs_MemWriteBlk,
149 .close = afs_MemCacheClose,
150 .vreadUIO = afs_MemReadUIO,
151 .vwriteUIO = afs_MemWriteUIO,
152 .GetDSlot = afs_MemGetDSlot,
153 .GetVolSlot = afs_MemGetVolSlot,
154 .HandleLink = afs_MemHandleLink,
155 #endif
158 int cacheDiskType; /*Type of backing disk for cache */
159 struct afs_cacheOps *afs_cacheType;
161 /* calculate number of 1k blocks needed, rounded up to nearest afs_fsfragsize */
162 static_inline afs_int32
163 afs_round_to_fsfragsize(afs_int32 bytes)
165 return (((bytes + afs_fsfragsize) ^ afs_fsfragsize) >> 10);
169 * The PFlush algorithm makes use of the fact that Fid.Unique is not used in
170 * below hash algorithms. Change it if need be so that flushing algorithm
171 * doesn't move things from one hash chain to another.
173 /*Vnode, Chunk -> Hash table index */
174 int DCHash(struct VenusFid *fid, afs_int32 chunk)
176 afs_uint32 buf[3];
178 buf[0] = fid->Fid.Volume;
179 buf[1] = fid->Fid.Vnode;
180 buf[2] = chunk;
181 return opr_jhash(buf, 3, 0) & (afs_dhashsize - 1);
183 /*Vnode -> Other hash table index */
184 int DVHash(struct VenusFid *fid)
186 return opr_jhash_int2(fid->Fid.Volume, fid->Fid.Vnode, 0) &
187 (afs_dhashsize - 1);
191 * Where is this vcache's entry associated dcache located/
192 * \param avc The vcache entry.
193 * \return Bucket index:
194 * 1 : main
195 * 2 : RO
197 static afs_int32
198 afs_DCGetBucket(struct vcache *avc)
200 if (!splitdcache)
201 return 1;
203 /* This should be replaced with some sort of user configurable function */
204 if (avc->f.states & CRO) {
205 return 2;
206 } else if (avc->f.states & CBackup) {
207 return 1;
208 } else {
209 /* RW */
211 /* main bucket */
212 return 1;
216 * Readjust a dcache's size.
218 * \param adc The dcache to be adjusted.
219 * \param oldSize Old size for the dcache.
220 * \param newSize The new size to be adjusted to.
223 static void
224 afs_DCAdjustSize(struct dcache *adc, afs_int32 oldSize, afs_int32 newSize)
226 afs_int32 adjustSize = newSize - oldSize;
228 if (!splitdcache)
229 return;
231 switch (adc->bucket)
233 case 0:
234 afs_blocksUsed_0 += adjustSize;
235 afs_stats_cmperf.cacheBucket0_Discarded += oldSize;
236 break;
237 case 1:
238 afs_blocksUsed_1 += adjustSize;
239 afs_stats_cmperf.cacheBucket1_Discarded += oldSize;
240 break;
241 case 2:
242 afs_blocksUsed_2 += adjustSize;
243 afs_stats_cmperf.cacheBucket2_Discarded += oldSize;
244 break;
247 return;
251 * Move a dcache from one bucket to another.
253 * \param adc Operate on this dcache.
254 * \param size Size in bucket (?).
255 * \param newBucket Destination bucket.
258 static void
259 afs_DCMoveBucket(struct dcache *adc, afs_int32 size, afs_int32 newBucket)
261 if (!splitdcache)
262 return;
264 /* Substract size from old bucket. */
265 switch (adc->bucket)
267 case 0:
268 afs_blocksUsed_0 -= size;
269 break;
270 case 1:
271 afs_blocksUsed_1 -= size;
272 break;
273 case 2:
274 afs_blocksUsed_2 -= size;
275 break;
278 /* Set new bucket and increase destination bucket size. */
279 adc->bucket = newBucket;
281 switch (adc->bucket)
283 case 0:
284 afs_blocksUsed_0 += size;
285 break;
286 case 1:
287 afs_blocksUsed_1 += size;
288 break;
289 case 2:
290 afs_blocksUsed_2 += size;
291 break;
294 return;
298 * Init split caches size.
300 static void
301 afs_DCSizeInit(void)
303 afs_blocksUsed_0 = afs_blocksUsed_1 = afs_blocksUsed_2 = 0;
308 * \param phase
309 * \param bucket
311 static afs_int32
312 afs_DCWhichBucket(afs_int32 phase, afs_int32 bucket)
314 if (!splitdcache)
315 return 0;
317 afs_pct1 = afs_blocksUsed_1 / (afs_cacheBlocks / 100);
318 afs_pct2 = afs_blocksUsed_2 / (afs_cacheBlocks / 100);
320 /* Short cut: if we don't know about it, try to kill it */
321 if (phase < 2 && afs_blocksUsed_0)
322 return 0;
324 if (afs_pct1 > afs_tpct1)
325 return 1;
326 if (afs_pct2 > afs_tpct2)
327 return 2;
328 return 0; /* unlikely */
333 * Warn about failing to store a file.
335 * \param acode Associated error code.
336 * \param avolume Volume involved.
337 * \param aflags How to handle the output:
338 * aflags & 1: Print out on console
339 * aflags & 2: Print out on controlling tty
341 * \note Environment: Call this from close call when vnodeops is RCS unlocked.
344 void
345 afs_StoreWarn(afs_int32 acode, afs_int32 avolume,
346 afs_int32 aflags)
348 static char problem_fmt[] =
349 "afs: failed to store file in volume %d (%s)\n";
350 static char problem_fmt_w_error[] =
351 "afs: failed to store file in volume %d (error %d)\n";
352 static char netproblems[] = "network problems";
353 static char partfull[] = "partition full";
354 static char overquota[] = "over quota";
356 AFS_STATCNT(afs_StoreWarn);
357 if (acode < 0) {
359 * Network problems
361 if (aflags & 1)
362 afs_warn(problem_fmt, avolume, netproblems);
363 if (aflags & 2)
364 afs_warnuser(problem_fmt, avolume, netproblems);
365 } else if (acode == ENOSPC) {
367 * Partition full
369 if (aflags & 1)
370 afs_warn(problem_fmt, avolume, partfull);
371 if (aflags & 2)
372 afs_warnuser(problem_fmt, avolume, partfull);
373 } else
374 #ifdef EDQUOT
375 /* EDQUOT doesn't exist on solaris and won't be sent by the server.
376 * Instead ENOSPC will be sent...
378 if (acode == EDQUOT) {
380 * Quota exceeded
382 if (aflags & 1)
383 afs_warn(problem_fmt, avolume, overquota);
384 if (aflags & 2)
385 afs_warnuser(problem_fmt, avolume, overquota);
386 } else
387 #endif
390 * Unknown error
392 if (aflags & 1)
393 afs_warn(problem_fmt_w_error, avolume, acode);
394 if (aflags & 2)
395 afs_warnuser(problem_fmt_w_error, avolume, acode);
397 } /*afs_StoreWarn */
400 * Try waking up truncation daemon, if it's worth it.
402 void
403 afs_MaybeWakeupTruncateDaemon(void)
405 if (!afs_CacheTooFull && afs_CacheIsTooFull()) {
406 afs_CacheTooFullCount++;
407 afs_CacheTooFull = 1;
408 if (!afs_TruncateDaemonRunning)
409 afs_osi_Wakeup((int *)afs_CacheTruncateDaemon);
410 } else if (!afs_TruncateDaemonRunning
411 && afs_blocksDiscarded > CM_MAXDISCARDEDCHUNKS) {
412 afs_osi_Wakeup((int *)afs_CacheTruncateDaemon);
417 * Wait for cache drain if conditions warrant.
418 * */
419 void
420 afs_MaybeWaitForCacheDrain(void)
422 if (afs_blocksUsed - afs_blocksDiscarded >
423 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
424 if (afs_WaitForCacheDrain == 0)
425 afs_WaitForCacheDrainCount++;
426 afs_WaitForCacheDrain = 1;
427 afs_osi_Sleep(&afs_WaitForCacheDrain);
432 * Keep statistics on run time for afs_CacheTruncateDaemon.
434 struct afs_CTD_stats CTD_stats;
436 u_int afs_min_cache = 0;
439 * If there are waiters for the cache to drain, wake them if
440 * the number of free or discarded cache blocks reaches the
441 * CM_CACHESIZEDDRAINEDPCT limit.
443 * \note Environment:
444 * This routine must be called with the afs_xdcache lock held
445 * (in write mode).
447 static void
448 afs_WakeCacheWaitersIfDrained(void)
450 if (afs_WaitForCacheDrain) {
451 if ((afs_blocksUsed - afs_blocksDiscarded) <=
452 PERCENT(CM_CACHESIZEDRAINEDPCT, afs_cacheBlocks)) {
453 afs_WaitForCacheDrain = 0;
454 afs_osi_Wakeup(&afs_WaitForCacheDrain);
460 * Keeps the cache clean and free by truncating uneeded files, when used.
461 * \param
462 * \return
464 void
465 afs_CacheTruncateDaemon(void)
467 osi_timeval32_t CTD_tmpTime;
468 struct afs_CTD_stats *ctd_stats = &CTD_stats;
469 u_int counter;
470 u_int cb_lowat;
471 u_int dc_hiwat =
472 PERCENT((100 - CM_DCACHECOUNTFREEPCT + CM_DCACHEEXTRAPCT), afs_cacheFiles);
474 afs_min_cache =
475 (((10 * AFS_CHUNKSIZE(0)) + afs_fsfragsize) & ~afs_fsfragsize) >> 10;
477 osi_GetTime(&ctd_stats->CTD_afterSleep);
478 afs_TruncateDaemonRunning = 1;
479 while (1) {
480 cb_lowat = PERCENT((CM_DCACHESPACEFREEPCT - CM_DCACHEEXTRAPCT), afs_cacheBlocks);
481 ObtainWriteLock(&afs_xdcache, 266);
482 if (afs_CacheTooFull || afs_WaitForCacheDrain) {
483 int space_needed, slots_needed;
484 /* if we get woken up, we should try to clean something out */
485 for (counter = 0; counter < 10; counter++) {
486 space_needed =
487 afs_blocksUsed - afs_blocksDiscarded - cb_lowat;
488 if (space_needed < 0)
489 space_needed = 0;
490 slots_needed =
491 dc_hiwat - afs_freeDCCount - afs_discardDCCount;
492 if (slots_needed < 0)
493 slots_needed = 0;
494 if (slots_needed || space_needed)
495 afs_GetDownD(slots_needed, &space_needed, 0);
496 if ((space_needed <= 0) && (slots_needed <= 0)) {
497 break;
499 if (afs_termState == AFSOP_STOP_TRUNCDAEMON)
500 break;
502 if (!afs_CacheIsTooFull()) {
503 afs_CacheTooFull = 0;
504 afs_WakeCacheWaitersIfDrained();
506 } /* end of cache cleanup */
507 ReleaseWriteLock(&afs_xdcache);
510 * This is a defensive check to try to avoid starving threads
511 * that may need the global lock so thay can help free some
512 * cache space. If this thread won't be sleeping or truncating
513 * any cache files then give up the global lock so other
514 * threads get a chance to run.
516 if ((afs_termState != AFSOP_STOP_TRUNCDAEMON) && afs_CacheTooFull
517 && (!afs_blocksDiscarded || afs_WaitForCacheDrain)) {
518 afs_osi_Wait(100, 0, 0); /* 100 milliseconds */
522 * This is where we free the discarded cache elements.
524 while (afs_blocksDiscarded && !afs_WaitForCacheDrain
525 && (afs_termState != AFSOP_STOP_TRUNCDAEMON)) {
526 int code = afs_FreeDiscardedDCache();
527 if (code) {
528 /* If we can't free any discarded dcache entries, that's okay.
529 * We're just doing this in the background; if someone needs
530 * discarded entries freed, they will try it themselves and/or
531 * signal us that the cache is too full. In any case, we'll
532 * try doing this again the next time we run through the loop.
534 break;
538 /* See if we need to continue to run. Someone may have
539 * signalled us while we were executing.
541 if (!afs_WaitForCacheDrain && !afs_CacheTooFull
542 && (afs_termState != AFSOP_STOP_TRUNCDAEMON)) {
543 /* Collect statistics on truncate daemon. */
544 ctd_stats->CTD_nSleeps++;
545 osi_GetTime(&ctd_stats->CTD_beforeSleep);
546 afs_stats_GetDiff(CTD_tmpTime, ctd_stats->CTD_afterSleep,
547 ctd_stats->CTD_beforeSleep);
548 afs_stats_AddTo(ctd_stats->CTD_runTime, CTD_tmpTime);
550 afs_TruncateDaemonRunning = 0;
551 afs_osi_Sleep((int *)afs_CacheTruncateDaemon);
552 afs_TruncateDaemonRunning = 1;
554 osi_GetTime(&ctd_stats->CTD_afterSleep);
555 afs_stats_GetDiff(CTD_tmpTime, ctd_stats->CTD_beforeSleep,
556 ctd_stats->CTD_afterSleep);
557 afs_stats_AddTo(ctd_stats->CTD_sleepTime, CTD_tmpTime);
559 if (afs_termState == AFSOP_STOP_TRUNCDAEMON) {
560 afs_termState = AFSOP_STOP_AFSDB;
561 afs_osi_Wakeup(&afs_termState);
562 break;
569 * Make adjustment for the new size in the disk cache entry
571 * \note Major Assumptions Here:
572 * Assumes that frag size is an integral power of two, less one,
573 * and that this is a two's complement machine. I don't
574 * know of any filesystems which violate this assumption...
576 * \param adc Ptr to dcache entry.
577 * \param anewsize New size desired.
581 void
582 afs_AdjustSize(struct dcache *adc, afs_int32 newSize)
584 afs_int32 oldSize;
586 AFS_STATCNT(afs_AdjustSize);
588 if (newSize > afs_OtherCSize && !(adc->f.fid.Fid.Vnode & 1)) {
589 /* No non-dir cache files should be larger than the chunk size.
590 * (Directory blobs are fetched in a single chunk file, so directories
591 * can be larger.) If someone is requesting that a chunk is larger than
592 * the chunk size, something strange is happening. Log a message about
593 * it, to give a hint to subsequent strange behavior, if any occurs. */
594 static int warned;
595 if (!warned) {
596 warned = 1;
597 afs_warn("afs: Warning: dcache %d is very large (%d > %d). This "
598 "should not happen, but trying to continue regardless. If "
599 "AFS starts hanging or behaving strangely, this might be "
600 "why.\n",
601 adc->index, newSize, afs_OtherCSize);
605 adc->dflags |= DFEntryMod;
606 oldSize = afs_round_to_fsfragsize(adc->f.chunkBytes);
607 adc->f.chunkBytes = newSize;
608 if (!newSize)
609 adc->validPos = 0;
610 newSize = afs_round_to_fsfragsize(newSize);
611 afs_DCAdjustSize(adc, oldSize, newSize);
612 if ((newSize > oldSize) && !AFS_IS_DISCONNECTED) {
614 /* We're growing the file, wakeup the daemon */
615 afs_MaybeWakeupTruncateDaemon();
617 afs_blocksUsed += (newSize - oldSize);
618 afs_stats_cmperf.cacheBlocksInUse = afs_blocksUsed; /* XXX */
623 * This routine is responsible for moving at least one entry (but up
624 * to some number of them) from the LRU queue to the free queue.
626 * \param anumber Number of entries that should ideally be moved.
627 * \param aneedSpace How much space we need (1K blocks);
629 * \note Environment:
630 * The anumber parameter is just a hint; at least one entry MUST be
631 * moved, or we'll panic. We must be called with afs_xdcache
632 * write-locked. We should try to satisfy both anumber and aneedspace,
633 * whichever is more demanding - need to do several things:
634 * 1. only grab up to anumber victims if aneedSpace <= 0, not
635 * the whole set of MAXATONCE.
636 * 2. dynamically choose MAXATONCE to reflect severity of
637 * demand: something like (*aneedSpace >> (logChunk - 9))
639 * \note N.B. if we're called with aneedSpace <= 0 and anumber > 0, that
640 * indicates that the cache is not properly configured/tuned or
641 * something. We should be able to automatically correct that problem.
644 #define MAXATONCE 16 /* max we can obtain at once */
645 static void
646 afs_GetDownD(int anumber, int *aneedSpace, afs_int32 buckethint)
649 struct dcache *tdc;
650 struct VenusFid *afid;
651 afs_int32 i, j;
652 afs_hyper_t vtime;
653 int skip, phase;
654 struct vcache *tvc;
655 afs_uint32 victims[MAXATONCE];
656 struct dcache *victimDCs[MAXATONCE];
657 afs_hyper_t victimTimes[MAXATONCE]; /* youngest (largest LRU time) first */
658 afs_uint32 victimPtr; /* next free item in victim arrays */
659 afs_hyper_t maxVictimTime; /* youngest (largest LRU time) victim */
660 afs_uint32 maxVictimPtr; /* where it is */
661 int discard;
662 int curbucket;
664 AFS_STATCNT(afs_GetDownD);
666 if (CheckLock(&afs_xdcache) != -1)
667 osi_Panic("getdownd nolock");
668 /* decrement anumber first for all dudes in free list */
669 /* SHOULD always decrement anumber first, even if aneedSpace >0,
670 * because we should try to free space even if anumber <=0 */
671 if (!aneedSpace || *aneedSpace <= 0) {
672 anumber -= afs_freeDCCount;
673 if (anumber <= 0) {
674 return; /* enough already free */
678 /* bounds check parameter */
679 if (anumber > MAXATONCE)
680 anumber = MAXATONCE; /* all we can do */
682 /* rewrite so phases include a better eligiblity for gc test*/
684 * The phase variable manages reclaims. Set to 0, the first pass,
685 * we don't reclaim active entries, or other than target bucket.
686 * Set to 1, we reclaim even active ones in target bucket.
687 * Set to 2, we reclaim any inactive one.
688 * Set to 3, we reclaim even active ones. On Solaris, we also reclaim
689 * entries whose corresponding vcache has a nonempty multiPage list, when
690 * possible.
692 if (splitdcache) {
693 phase = 0;
694 } else {
695 phase = 4;
698 for (i = 0; i < afs_cacheFiles; i++)
699 /* turn off all flags */
700 afs_indexFlags[i] &= ~IFFlag;
702 while (anumber > 0 || (aneedSpace && *aneedSpace > 0)) {
703 /* find oldest entries for reclamation */
704 maxVictimPtr = victimPtr = 0;
705 hzero(maxVictimTime);
706 curbucket = afs_DCWhichBucket(phase, buckethint);
707 /* select victims from access time array */
708 for (i = 0; i < afs_cacheFiles; i++) {
709 if (afs_indexFlags[i] & (IFDataMod | IFFree | IFDiscarded)) {
710 /* skip if dirty or already free */
711 continue;
713 tdc = afs_indexTable[i];
714 if (tdc && (curbucket != tdc->bucket) && (phase < 4))
716 /* Wrong bucket; can't use it! */
717 continue;
719 if (tdc && (tdc->refCount != 0)) {
720 /* Referenced; can't use it! */
721 continue;
723 hset(vtime, afs_indexTimes[i]);
725 /* if we've already looked at this one, skip it */
726 if (afs_indexFlags[i] & IFFlag)
727 continue;
729 if (victimPtr < MAXATONCE) {
730 /* if there's at least one free victim slot left */
731 victims[victimPtr] = i;
732 hset(victimTimes[victimPtr], vtime);
733 if (hcmp(vtime, maxVictimTime) > 0) {
734 hset(maxVictimTime, vtime);
735 maxVictimPtr = victimPtr;
737 victimPtr++;
738 } else if (hcmp(vtime, maxVictimTime) < 0) {
740 * We're older than youngest victim, so we replace at
741 * least one victim
743 /* find youngest (largest LRU) victim */
744 j = maxVictimPtr;
745 if (j == victimPtr)
746 osi_Panic("getdownd local");
747 victims[j] = i;
748 hset(victimTimes[j], vtime);
749 /* recompute maxVictimTime */
750 hset(maxVictimTime, vtime);
751 for (j = 0; j < victimPtr; j++)
752 if (hcmp(maxVictimTime, victimTimes[j]) < 0) {
753 hset(maxVictimTime, victimTimes[j]);
754 maxVictimPtr = j;
757 } /* big for loop */
759 /* now really reclaim the victims */
760 j = 0; /* flag to track if we actually got any of the victims */
761 /* first, hold all the victims, since we're going to release the lock
762 * during the truncate operation.
764 for (i = 0; i < victimPtr; i++) {
765 tdc = afs_GetValidDSlot(victims[i]);
766 /* We got tdc->tlock(R) here */
767 if (tdc && tdc->refCount == 1)
768 victimDCs[i] = tdc;
769 else
770 victimDCs[i] = 0;
771 if (tdc) {
772 ReleaseReadLock(&tdc->tlock);
773 if (!victimDCs[i])
774 afs_PutDCache(tdc);
777 for (i = 0; i < victimPtr; i++) {
778 /* q is first elt in dcache entry */
779 tdc = victimDCs[i];
780 /* now, since we're dropping the afs_xdcache lock below, we
781 * have to verify, before proceeding, that there are no other
782 * references to this dcache entry, even now. Note that we
783 * compare with 1, since we bumped it above when we called
784 * afs_GetValidDSlot to preserve the entry's identity.
786 if (tdc && tdc->refCount == 1) {
787 unsigned char chunkFlags;
788 afs_size_t tchunkoffset = 0;
789 afid = &tdc->f.fid;
790 /* xdcache is lower than the xvcache lock */
791 ReleaseWriteLock(&afs_xdcache);
792 ObtainReadLock(&afs_xvcache);
793 tvc = afs_FindVCache(afid, 0 /* no stats, no vlru */ );
794 ReleaseReadLock(&afs_xvcache);
795 ObtainWriteLock(&afs_xdcache, 527);
796 skip = 0;
797 if (tdc->refCount > 1)
798 skip = 1;
799 if (tvc) {
800 tchunkoffset = AFS_CHUNKTOBASE(tdc->f.chunk);
801 chunkFlags = afs_indexFlags[tdc->index];
802 if (((phase & 1) == 0) && osi_Active(tvc))
803 skip = 1;
804 if (((phase & 1) == 1) && osi_Active(tvc)
805 && (tvc->f.states & CDCLock)
806 && (chunkFlags & IFAnyPages))
807 skip = 1;
808 if (chunkFlags & IFDataMod)
809 skip = 1;
810 afs_Trace4(afs_iclSetp, CM_TRACE_GETDOWND,
811 ICL_TYPE_POINTER, tvc, ICL_TYPE_INT32, skip,
812 ICL_TYPE_INT32, tdc->index, ICL_TYPE_OFFSET,
813 ICL_HANDLE_OFFSET(tchunkoffset));
815 #if defined(AFS_SUN5_ENV)
817 * Now we try to invalidate pages. We do this only for
818 * Solaris. For other platforms, it's OK to recycle a
819 * dcache entry out from under a page, because the strategy
820 * function can call afs_GetDCache().
822 if (!skip && (chunkFlags & IFAnyPages)) {
823 int code;
825 ReleaseWriteLock(&afs_xdcache);
826 ObtainWriteLock(&tvc->vlock, 543);
827 if (!QEmpty(&tvc->multiPage)) {
828 if (phase < 3 || osi_VM_MultiPageConflict(tvc, tdc)) {
829 skip = 1;
830 goto endmultipage;
833 /* block locking pages */
834 tvc->vstates |= VPageCleaning;
835 /* block getting new pages */
836 tvc->activeV++;
837 ReleaseWriteLock(&tvc->vlock);
838 /* One last recheck */
839 ObtainWriteLock(&afs_xdcache, 333);
840 chunkFlags = afs_indexFlags[tdc->index];
841 if (tdc->refCount > 1 || (chunkFlags & IFDataMod)
842 || (osi_Active(tvc) && (tvc->f.states & CDCLock)
843 && (chunkFlags & IFAnyPages))) {
844 skip = 1;
845 ReleaseWriteLock(&afs_xdcache);
846 goto endputpage;
848 ReleaseWriteLock(&afs_xdcache);
850 code = osi_VM_GetDownD(tvc, tdc);
852 ObtainWriteLock(&afs_xdcache, 269);
853 /* we actually removed all pages, clean and dirty */
854 if (code == 0) {
855 afs_indexFlags[tdc->index] &=
856 ~(IFDirtyPages | IFAnyPages);
857 } else
858 skip = 1;
859 ReleaseWriteLock(&afs_xdcache);
860 endputpage:
861 ObtainWriteLock(&tvc->vlock, 544);
862 if (--tvc->activeV == 0
863 && (tvc->vstates & VRevokeWait)) {
864 tvc->vstates &= ~VRevokeWait;
865 afs_osi_Wakeup((char *)&tvc->vstates);
868 if (tvc->vstates & VPageCleaning) {
869 tvc->vstates &= ~VPageCleaning;
870 afs_osi_Wakeup((char *)&tvc->vstates);
872 endmultipage:
873 ReleaseWriteLock(&tvc->vlock);
874 } else
875 #endif /* AFS_SUN5_ENV */
877 ReleaseWriteLock(&afs_xdcache);
880 afs_PutVCache(tvc); /*XXX was AFS_FAST_RELE?*/
881 ObtainWriteLock(&afs_xdcache, 528);
882 if (afs_indexFlags[tdc->index] &
883 (IFDataMod | IFDirtyPages | IFAnyPages))
884 skip = 1;
885 if (tdc->refCount > 1)
886 skip = 1;
888 #if defined(AFS_SUN5_ENV)
889 else {
890 /* no vnode, so IFDirtyPages is spurious (we don't
891 * sweep dcaches on vnode recycling, so we can have
892 * DIRTYPAGES set even when all pages are gone). Just
893 * clear the flag.
894 * Hold vcache lock to prevent vnode from being
895 * created while we're clearing IFDirtyPages.
897 afs_indexFlags[tdc->index] &=
898 ~(IFDirtyPages | IFAnyPages);
900 #endif
901 if (skip) {
902 /* skip this guy and mark him as recently used */
903 afs_indexFlags[tdc->index] |= IFFlag;
904 afs_Trace4(afs_iclSetp, CM_TRACE_GETDOWND,
905 ICL_TYPE_POINTER, tvc, ICL_TYPE_INT32, 2,
906 ICL_TYPE_INT32, tdc->index, ICL_TYPE_OFFSET,
907 ICL_HANDLE_OFFSET(tchunkoffset));
908 } else {
909 /* flush this dude from the data cache and reclaim;
910 * first, make sure no one will care that we damage
911 * it, by removing it from all hash tables. Then,
912 * melt it down for parts. Note that any concurrent
913 * (new possibility!) calls to GetDownD won't touch
914 * this guy because his reference count is > 0. */
915 afs_Trace4(afs_iclSetp, CM_TRACE_GETDOWND,
916 ICL_TYPE_POINTER, tvc, ICL_TYPE_INT32, 3,
917 ICL_TYPE_INT32, tdc->index, ICL_TYPE_OFFSET,
918 ICL_HANDLE_OFFSET(tchunkoffset));
919 AFS_STATCNT(afs_gget);
920 afs_HashOutDCache(tdc, 1);
921 if (tdc->f.chunkBytes != 0) {
922 discard = 1;
923 if (aneedSpace)
924 *aneedSpace -=
925 (tdc->f.chunkBytes + afs_fsfragsize) >> 10;
926 } else {
927 discard = 0;
929 if (discard) {
930 afs_DiscardDCache(tdc);
931 } else {
932 afs_FreeDCache(tdc);
934 anumber--;
935 j = 1; /* we reclaimed at least one victim */
938 if (tdc)
939 afs_PutDCache(tdc);
940 } /* end of for victims loop */
942 if (phase < 5) {
943 /* Phase is 0 and no one was found, so try phase 1 (ignore
944 * osi_Active flag) */
945 if (j == 0) {
946 phase++;
947 for (i = 0; i < afs_cacheFiles; i++)
948 /* turn off all flags */
949 afs_indexFlags[i] &= ~IFFlag;
951 } else {
952 /* found no one in phases 0-5, we're hosed */
953 if (victimPtr == 0)
954 break;
956 } /* big while loop */
958 return;
960 } /*afs_GetDownD */
964 * Remove adc from any hash tables that would allow it to be located
965 * again by afs_FindDCache or afs_GetDCache.
967 * \param adc Pointer to dcache entry to remove from hash tables.
969 * \note Locks: Must have the afs_xdcache lock write-locked to call this function.
973 afs_HashOutDCache(struct dcache *adc, int zap)
975 int i, us;
977 AFS_STATCNT(afs_glink);
978 if (zap)
979 /* we know this guy's in the LRUQ. We'll move dude into DCQ below */
980 DZap(adc);
981 /* if this guy is in the hash table, pull him out */
982 if (adc->f.fid.Fid.Volume != 0) {
983 /* remove entry from first hash chains */
984 i = DCHash(&adc->f.fid, adc->f.chunk);
985 us = afs_dchashTbl[i];
986 if (us == adc->index) {
987 /* first dude in the list */
988 afs_dchashTbl[i] = afs_dcnextTbl[adc->index];
989 } else {
990 /* somewhere on the chain */
991 while (us != NULLIDX) {
992 if (afs_dcnextTbl[us] == adc->index) {
993 /* found item pointing at the one to delete */
994 afs_dcnextTbl[us] = afs_dcnextTbl[adc->index];
995 break;
997 us = afs_dcnextTbl[us];
999 if (us == NULLIDX)
1000 osi_Panic("dcache hc");
1002 /* remove entry from *other* hash chain */
1003 i = DVHash(&adc->f.fid);
1004 us = afs_dvhashTbl[i];
1005 if (us == adc->index) {
1006 /* first dude in the list */
1007 afs_dvhashTbl[i] = afs_dvnextTbl[adc->index];
1008 } else {
1009 /* somewhere on the chain */
1010 while (us != NULLIDX) {
1011 if (afs_dvnextTbl[us] == adc->index) {
1012 /* found item pointing at the one to delete */
1013 afs_dvnextTbl[us] = afs_dvnextTbl[adc->index];
1014 break;
1016 us = afs_dvnextTbl[us];
1018 if (us == NULLIDX)
1019 osi_Panic("dcache hv");
1023 if (zap) {
1024 /* prevent entry from being found on a reboot (it is already out of
1025 * the hash table, but after a crash, we just look at fid fields of
1026 * stable (old) entries).
1028 adc->f.fid.Fid.Volume = 0; /* invalid */
1030 /* mark entry as modified */
1031 adc->dflags |= DFEntryMod;
1034 /* all done */
1035 return 0;
1036 } /*afs_HashOutDCache */
1039 * Flush the given dcache entry, pulling it from hash chains
1040 * and truncating the associated cache file.
1042 * \param adc Ptr to dcache entry to flush.
1044 * \note Environment:
1045 * This routine must be called with the afs_xdcache lock held
1046 * (in write mode).
1048 void
1049 afs_FlushDCache(struct dcache *adc)
1051 AFS_STATCNT(afs_FlushDCache);
1053 * Bump the number of cache files flushed.
1055 afs_stats_cmperf.cacheFlushes++;
1057 /* remove from all hash tables */
1058 afs_HashOutDCache(adc, 1);
1060 /* Free its space; special case null operation, since truncate operation
1061 * in UFS is slow even in this case, and this allows us to pre-truncate
1062 * these files at more convenient times with fewer locks set
1063 * (see afs_GetDownD).
1065 if (adc->f.chunkBytes != 0) {
1066 afs_DiscardDCache(adc);
1067 afs_MaybeWakeupTruncateDaemon();
1068 } else {
1069 afs_FreeDCache(adc);
1071 } /*afs_FlushDCache */
1075 * Put a dcache entry on the free dcache entry list.
1077 * \param adc dcache entry to free.
1079 * \note Environment: called with afs_xdcache lock write-locked.
1081 static void
1082 afs_FreeDCache(struct dcache *adc)
1084 /* Thread on free list, update free list count and mark entry as
1085 * freed in its indexFlags element. Also, ensure DCache entry gets
1086 * written out (set DFEntryMod).
1089 afs_dvnextTbl[adc->index] = afs_freeDCList;
1090 afs_freeDCList = adc->index;
1091 afs_freeDCCount++;
1092 afs_indexFlags[adc->index] |= IFFree;
1093 adc->dflags |= DFEntryMod;
1095 afs_WakeCacheWaitersIfDrained();
1096 } /* afs_FreeDCache */
1099 * Discard the cache element by moving it to the discardDCList.
1100 * This puts the cache element into a quasi-freed state, where
1101 * the space may be reused, but the file has not been truncated.
1103 * \note Major Assumptions Here:
1104 * Assumes that frag size is an integral power of two, less one,
1105 * and that this is a two's complement machine. I don't
1106 * know of any filesystems which violate this assumption...
1108 * \param adr Ptr to dcache entry.
1110 * \note Environment:
1111 * Must be called with afs_xdcache write-locked.
1114 static void
1115 afs_DiscardDCache(struct dcache *adc)
1117 afs_int32 size;
1119 AFS_STATCNT(afs_DiscardDCache);
1121 osi_Assert(adc->refCount == 1);
1123 size = afs_round_to_fsfragsize(adc->f.chunkBytes);
1124 afs_blocksDiscarded += size;
1125 afs_stats_cmperf.cacheBlocksDiscarded = afs_blocksDiscarded;
1127 afs_dvnextTbl[adc->index] = afs_discardDCList;
1128 afs_discardDCList = adc->index;
1129 afs_discardDCCount++;
1131 adc->f.fid.Fid.Volume = 0;
1132 adc->dflags |= DFEntryMod;
1133 afs_indexFlags[adc->index] |= IFDiscarded;
1135 afs_WakeCacheWaitersIfDrained();
1136 } /*afs_DiscardDCache */
1139 * Get a dcache entry from the discard or free list
1141 * @param[out] adc On success, a dcache from the given list. Otherwise, NULL.
1142 * @param[in] indexp A pointer to the head of the dcache free list or discard
1143 * list (afs_freeDCList, or afs_discardDCList)
1145 * @return 0 on success. If there are no dcache slots available, return ENOSPC.
1146 * If we encountered an error in disk i/o while trying to find a
1147 * dcache, return EIO.
1149 * @pre afs_xdcache is write-locked
1151 static int
1152 afs_GetDSlotFromList(struct dcache **adc, afs_int32 *indexp)
1154 struct dcache *tdc;
1156 *adc = NULL;
1158 if (*indexp == NULLIDX) {
1159 return ENOSPC;
1162 tdc = afs_GetUnusedDSlot(*indexp);
1163 if (tdc == NULL) {
1164 return EIO;
1167 osi_Assert(tdc->refCount == 1);
1168 ReleaseReadLock(&tdc->tlock);
1169 *indexp = afs_dvnextTbl[tdc->index];
1170 afs_dvnextTbl[tdc->index] = NULLIDX;
1172 *adc = tdc;
1173 return 0;
1177 * Free the next element on the list of discarded cache elements.
1179 * Returns -1 if we encountered an error preventing us from freeing a
1180 * discarded dcache, or 0 on success.
1182 static int
1183 afs_FreeDiscardedDCache(void)
1185 struct dcache *tdc;
1186 struct osi_file *tfile;
1187 afs_int32 size;
1189 AFS_STATCNT(afs_FreeDiscardedDCache);
1191 ObtainWriteLock(&afs_xdcache, 510);
1192 if (!afs_blocksDiscarded) {
1193 ReleaseWriteLock(&afs_xdcache);
1194 return 0;
1198 * Get an entry from the list of discarded cache elements
1200 (void)afs_GetDSlotFromList(&tdc, &afs_discardDCList);
1201 if (!tdc) {
1202 ReleaseWriteLock(&afs_xdcache);
1203 return -1;
1206 afs_discardDCCount--;
1207 size = afs_round_to_fsfragsize(tdc->f.chunkBytes);
1208 afs_blocksDiscarded -= size;
1209 afs_stats_cmperf.cacheBlocksDiscarded = afs_blocksDiscarded;
1210 /* We can lock because we just took it off the free list */
1211 ObtainWriteLock(&tdc->lock, 626);
1212 ReleaseWriteLock(&afs_xdcache);
1215 * Truncate the element to reclaim its space
1217 tfile = afs_CFileOpen(&tdc->f.inode);
1218 osi_Assert(tfile);
1219 afs_CFileTruncate(tfile, 0);
1220 afs_CFileClose(tfile);
1221 afs_AdjustSize(tdc, 0);
1222 afs_DCMoveBucket(tdc, 0, 0);
1225 * Free the element we just truncated
1227 ObtainWriteLock(&afs_xdcache, 511);
1228 afs_indexFlags[tdc->index] &= ~IFDiscarded;
1229 afs_FreeDCache(tdc);
1230 tdc->f.states &= ~(DRO|DBackup|DRW);
1231 ReleaseWriteLock(&tdc->lock);
1232 afs_PutDCache(tdc);
1233 ReleaseWriteLock(&afs_xdcache);
1235 return 0;
1239 * Free as many entries from the list of discarded cache elements
1240 * as we need to get the free space down below CM_WAITFORDRAINPCT (98%).
1242 * \return 0
1245 afs_MaybeFreeDiscardedDCache(void)
1248 AFS_STATCNT(afs_MaybeFreeDiscardedDCache);
1250 while (afs_blocksDiscarded
1251 && (afs_blocksUsed >
1252 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks))) {
1253 int code = afs_FreeDiscardedDCache();
1254 if (code) {
1255 /* Callers depend on us to get the afs_blocksDiscarded count down.
1256 * If we cannot do that, the callers can spin by calling us over
1257 * and over. Panic for now until we can figure out something
1258 * better. */
1259 osi_Panic("Error freeing discarded dcache");
1262 return 0;
1266 * Try to free up a certain number of disk slots.
1268 * \param anumber Targeted number of disk slots to free up.
1270 * \note Environment:
1271 * Must be called with afs_xdcache write-locked.
1274 static void
1275 afs_GetDownDSlot(int anumber)
1277 struct afs_q *tq, *nq;
1278 struct dcache *tdc;
1279 int ix;
1280 unsigned int cnt;
1282 AFS_STATCNT(afs_GetDownDSlot);
1283 if (cacheDiskType == AFS_FCACHE_TYPE_MEM)
1284 osi_Panic("diskless getdowndslot");
1286 if (CheckLock(&afs_xdcache) != -1)
1287 osi_Panic("getdowndslot nolock");
1289 /* decrement anumber first for all dudes in free list */
1290 for (tdc = afs_freeDSList; tdc; tdc = (struct dcache *)tdc->lruq.next)
1291 anumber--;
1292 if (anumber <= 0)
1293 return; /* enough already free */
1295 for (cnt = 0, tq = afs_DLRU.prev; tq != &afs_DLRU && anumber > 0;
1296 tq = nq, cnt++) {
1297 tdc = (struct dcache *)tq; /* q is first elt in dcache entry */
1298 nq = QPrev(tq); /* in case we remove it */
1299 if (tdc->refCount == 0) {
1300 if ((ix = tdc->index) == NULLIDX)
1301 osi_Panic("getdowndslot");
1303 /* write-through if modified */
1304 if (tdc->dflags & DFEntryMod) {
1305 #if defined(AFS_SGI_ENV) && defined(AFS_SGI_SHORTSTACK)
1307 * ask proxy to do this for us - we don't have the stack space
1309 while (tdc->dflags & DFEntryMod) {
1310 int s;
1311 AFS_GUNLOCK();
1312 s = SPLOCK(afs_sgibklock);
1313 if (afs_sgibklist == NULL) {
1314 /* if slot is free, grab it. */
1315 afs_sgibklist = tdc;
1316 SV_SIGNAL(&afs_sgibksync);
1318 /* wait for daemon to (start, then) finish. */
1319 SP_WAIT(afs_sgibklock, s, &afs_sgibkwait, PINOD);
1320 AFS_GLOCK();
1322 #else
1323 int code;
1325 code = afs_WriteDCache(tdc, 1);
1326 if (code) {
1328 * We couldn't flush it at this time; return early because
1329 * if afs_WriteDCache() failed once it is likely to
1330 * continue failing for subsequent dcaches.
1332 return;
1334 tdc->dflags &= ~DFEntryMod;
1335 #endif
1338 /* pull the entry out of the lruq and put it on the free list */
1339 QRemove(&tdc->lruq);
1340 afs_indexTable[ix] = NULL;
1341 afs_indexFlags[ix] &= ~IFEverUsed;
1342 tdc->index = NULLIDX;
1343 tdc->lruq.next = (struct afs_q *)afs_freeDSList;
1344 afs_freeDSList = tdc;
1345 anumber--;
1348 } /*afs_GetDownDSlot */
1352 * afs_RefDCache
1354 * Description:
1355 * Increment the reference count on a disk cache entry,
1356 * which already has a non-zero refcount. In order to
1357 * increment the refcount of a zero-reference entry, you
1358 * have to hold afs_xdcache.
1360 * Parameters:
1361 * adc : Pointer to the dcache entry to increment.
1363 * Environment:
1364 * Nothing interesting.
1367 afs_RefDCache(struct dcache *adc)
1369 ObtainWriteLock(&adc->tlock, 627);
1370 if (adc->refCount < 0)
1371 osi_Panic("RefDCache: negative refcount");
1372 adc->refCount++;
1373 ReleaseWriteLock(&adc->tlock);
1374 return 0;
1379 * afs_PutDCache
1381 * Description:
1382 * Decrement the reference count on a disk cache entry.
1384 * Parameters:
1385 * ad : Ptr to the dcache entry to decrement.
1387 * Environment:
1388 * Nothing interesting.
1391 afs_PutDCache(struct dcache *adc)
1393 AFS_STATCNT(afs_PutDCache);
1394 ObtainWriteLock(&adc->tlock, 276);
1395 if (adc->refCount <= 0)
1396 osi_Panic("putdcache");
1397 --adc->refCount;
1398 ReleaseWriteLock(&adc->tlock);
1399 return 0;
1404 * afs_TryToSmush
1406 * Description:
1407 * Try to discard all data associated with this file from the
1408 * cache.
1410 * Parameters:
1411 * avc : Pointer to the cache info for the file.
1413 * Environment:
1414 * Both pvnLock and lock are write held.
1416 void
1417 afs_TryToSmush(struct vcache *avc, afs_ucred_t *acred, int sync)
1419 struct dcache *tdc;
1420 int index;
1421 int i;
1422 AFS_STATCNT(afs_TryToSmush);
1423 afs_Trace2(afs_iclSetp, CM_TRACE_TRYTOSMUSH, ICL_TYPE_POINTER, avc,
1424 ICL_TYPE_OFFSET, ICL_HANDLE_OFFSET(avc->f.m.Length));
1425 sync = 1; /* XX Temp testing XX */
1427 #if defined(AFS_SUN5_ENV)
1428 ObtainWriteLock(&avc->vlock, 573);
1429 avc->activeV++; /* block new getpages */
1430 ReleaseWriteLock(&avc->vlock);
1431 #endif
1433 /* Flush VM pages */
1434 osi_VM_TryToSmush(avc, acred, sync);
1437 * Get the hash chain containing all dce's for this fid
1439 i = DVHash(&avc->f.fid);
1440 ObtainWriteLock(&afs_xdcache, 277);
1441 for (index = afs_dvhashTbl[i]; index != NULLIDX; index = i) {
1442 i = afs_dvnextTbl[index]; /* next pointer this hash table */
1443 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1444 int releaseTlock = 1;
1445 tdc = afs_GetValidDSlot(index);
1446 if (!tdc) {
1447 /* afs_TryToSmush is best-effort; we may not actually discard
1448 * everything, so failure to discard dcaches due to an i/o
1449 * error is okay. */
1450 break;
1452 if (!FidCmp(&tdc->f.fid, &avc->f.fid)) {
1453 if (sync) {
1454 if ((afs_indexFlags[index] & IFDataMod) == 0
1455 && tdc->refCount == 1) {
1456 ReleaseReadLock(&tdc->tlock);
1457 releaseTlock = 0;
1458 afs_FlushDCache(tdc);
1460 } else
1461 afs_indexTable[index] = 0;
1463 if (releaseTlock)
1464 ReleaseReadLock(&tdc->tlock);
1465 afs_PutDCache(tdc);
1468 #if defined(AFS_SUN5_ENV)
1469 ObtainWriteLock(&avc->vlock, 545);
1470 if (--avc->activeV == 0 && (avc->vstates & VRevokeWait)) {
1471 avc->vstates &= ~VRevokeWait;
1472 afs_osi_Wakeup((char *)&avc->vstates);
1474 ReleaseWriteLock(&avc->vlock);
1475 #endif
1476 ReleaseWriteLock(&afs_xdcache);
1478 * It's treated like a callback so that when we do lookups we'll
1479 * invalidate the unique bit if any
1480 * trytoSmush occured during the lookup call
1482 afs_allCBs++;
1486 * afs_DCacheMissingChunks
1488 * Description
1489 * Given the cached info for a file, return the number of chunks that
1490 * are not available from the dcache.
1492 * Parameters:
1493 * avc: Pointer to the (held) vcache entry to look in.
1495 * Returns:
1496 * The number of chunks which are not currently cached.
1498 * Environment:
1499 * The vcache entry is held upon entry.
1503 afs_DCacheMissingChunks(struct vcache *avc)
1505 int i, index;
1506 afs_size_t totalLength = 0;
1507 afs_uint32 totalChunks = 0;
1508 struct dcache *tdc;
1510 totalLength = avc->f.m.Length;
1511 if (avc->f.truncPos < totalLength)
1512 totalLength = avc->f.truncPos;
1514 /* Length is 0, no chunk missing. */
1515 if (totalLength == 0)
1516 return 0;
1518 /* If totalLength is a multiple of chunksize, the last byte appears
1519 * as being part of the next chunk, which does not exist.
1520 * Decrementing totalLength by one fixes that.
1522 totalLength--;
1523 totalChunks = (AFS_CHUNK(totalLength) + 1);
1525 /* If we're a directory, we only ever have one chunk, regardless of
1526 * the size of the dir.
1528 if (avc->f.fid.Fid.Vnode & 1 || vType(avc) == VDIR)
1529 totalChunks = 1;
1532 printf("Should have %d chunks for %u bytes\n",
1533 totalChunks, (totalLength + 1));
1535 i = DVHash(&avc->f.fid);
1536 ObtainWriteLock(&afs_xdcache, 1001);
1537 for (index = afs_dvhashTbl[i]; index != NULLIDX; index = i) {
1538 i = afs_dvnextTbl[index];
1539 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1540 tdc = afs_GetValidDSlot(index);
1541 if (!tdc) {
1542 break;
1544 if (!FidCmp(&tdc->f.fid, &avc->f.fid)) {
1545 totalChunks--;
1547 ReleaseReadLock(&tdc->tlock);
1548 afs_PutDCache(tdc);
1551 ReleaseWriteLock(&afs_xdcache);
1553 /*printf("Missing %d chunks\n", totalChunks);*/
1555 return (totalChunks);
1559 * afs_FindDCache
1561 * Description:
1562 * Given the cached info for a file and a byte offset into the
1563 * file, make sure the dcache entry for that file and containing
1564 * the given byte is available, returning it to our caller.
1566 * Parameters:
1567 * avc : Pointer to the (held) vcache entry to look in.
1568 * abyte : Which byte we want to get to.
1570 * Returns:
1571 * Pointer to the dcache entry covering the file & desired byte,
1572 * or NULL if not found.
1574 * Environment:
1575 * The vcache entry is held upon entry.
1578 struct dcache *
1579 afs_FindDCache(struct vcache *avc, afs_size_t abyte)
1581 afs_int32 chunk;
1582 afs_int32 i, index;
1583 struct dcache *tdc = NULL;
1585 AFS_STATCNT(afs_FindDCache);
1586 chunk = AFS_CHUNK(abyte);
1589 * Hash on the [fid, chunk] and get the corresponding dcache index
1590 * after write-locking the dcache.
1592 i = DCHash(&avc->f.fid, chunk);
1593 ObtainWriteLock(&afs_xdcache, 278);
1594 for (index = afs_dchashTbl[i]; index != NULLIDX; index = afs_dcnextTbl[index]) {
1595 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1596 tdc = afs_GetValidDSlot(index);
1597 if (!tdc) {
1598 /* afs_FindDCache is best-effort; we may not find the given
1599 * file/offset, so if we cannot find the given dcache due to
1600 * i/o errors, that is okay. */
1601 index = NULLIDX;
1602 break;
1604 ReleaseReadLock(&tdc->tlock);
1605 if (!FidCmp(&tdc->f.fid, &avc->f.fid) && chunk == tdc->f.chunk) {
1606 break; /* leaving refCount high for caller */
1608 afs_PutDCache(tdc);
1611 if (index != NULLIDX) {
1612 hset(afs_indexTimes[tdc->index], afs_indexCounter);
1613 hadd32(afs_indexCounter, 1);
1614 ReleaseWriteLock(&afs_xdcache);
1615 return tdc;
1617 ReleaseWriteLock(&afs_xdcache);
1618 return NULL;
1619 } /*afs_FindDCache */
1621 /* only call these from afs_AllocDCache() */
1622 static int
1623 afs_AllocFreeDSlot(struct dcache **adc)
1625 int code;
1626 struct dcache *tdc;
1628 code = afs_GetDSlotFromList(&tdc, &afs_freeDCList);
1629 if (code) {
1630 return code;
1632 afs_indexFlags[tdc->index] &= ~IFFree;
1633 ObtainWriteLock(&tdc->lock, 604);
1634 afs_freeDCCount--;
1636 *adc = tdc;
1637 return 0;
1639 static int
1640 afs_AllocDiscardDSlot(struct dcache **adc, afs_int32 lock)
1642 int code;
1643 struct dcache *tdc;
1644 afs_uint32 size = 0;
1645 struct osi_file *file;
1647 code = afs_GetDSlotFromList(&tdc, &afs_discardDCList);
1648 if (code) {
1649 return code;
1651 afs_indexFlags[tdc->index] &= ~IFDiscarded;
1652 ObtainWriteLock(&tdc->lock, 605);
1653 afs_discardDCCount--;
1654 size = afs_round_to_fsfragsize(tdc->f.chunkBytes);
1655 tdc->f.states &= ~(DRO|DBackup|DRW);
1656 afs_DCMoveBucket(tdc, size, 0);
1657 afs_blocksDiscarded -= size;
1658 afs_stats_cmperf.cacheBlocksDiscarded = afs_blocksDiscarded;
1659 if ((lock & 2)) {
1660 /* Truncate the chunk so zeroes get filled properly */
1661 file = afs_CFileOpen(&tdc->f.inode);
1662 osi_Assert(file);
1663 afs_CFileTruncate(file, 0);
1664 afs_CFileClose(file);
1665 afs_AdjustSize(tdc, 0);
1668 *adc = tdc;
1669 return 0;
1673 * Get a fresh dcache from the free or discarded list.
1675 * \param adc Set to the new dcache on success, and NULL on error.
1676 * \param avc Who's dcache is this going to be?
1677 * \param chunk The position where it will be placed in.
1678 * \param lock How are locks held.
1679 * \param ashFid If this dcache going to be used for a shadow dir,
1680 * this is it's fid.
1682 * \note Required locks:
1683 * - afs_xdcache (W)
1684 * - avc (R if (lock & 1) set and W otherwise)
1685 * \note It write locks the new dcache. The caller must unlock it.
1687 * \return If we're out of dslots, ENOSPC. If we encountered disk errors, EIO.
1688 * On success, return 0.
1690 static int
1691 afs_AllocDCache(struct dcache **adc, struct vcache *avc, afs_int32 chunk,
1692 afs_int32 lock, struct VenusFid *ashFid)
1694 int code;
1695 struct dcache *tdc = NULL;
1697 *adc = NULL;
1699 /* if (lock & 2), prefer 'free' dcaches; otherwise, prefer 'discard'
1700 * dcaches. In either case, try both if our first choice doesn't work due
1701 * to ENOSPC. */
1702 if ((lock & 2)) {
1703 code = afs_AllocFreeDSlot(&tdc);
1704 if (code == ENOSPC) {
1705 code = afs_AllocDiscardDSlot(&tdc, lock);
1707 } else {
1708 code = afs_AllocDiscardDSlot(&tdc, lock);
1709 if (code == ENOSPC) {
1710 code = afs_AllocFreeDSlot(&tdc);
1713 if (code) {
1714 return code;
1718 * Locks held:
1719 * avc->lock(R) if setLocks
1720 * avc->lock(W) if !setLocks
1721 * tdc->lock(W)
1722 * afs_xdcache(W)
1726 * Fill in the newly-allocated dcache record.
1728 afs_indexFlags[tdc->index] &= ~(IFDirtyPages | IFAnyPages);
1729 if (ashFid)
1730 /* Use shadow fid if provided. */
1731 tdc->f.fid = *ashFid;
1732 else
1733 /* Use normal vcache's fid otherwise. */
1734 tdc->f.fid = avc->f.fid;
1735 if (avc->f.states & CRO)
1736 tdc->f.states = DRO;
1737 else if (avc->f.states & CBackup)
1738 tdc->f.states = DBackup;
1739 else
1740 tdc->f.states = DRW;
1741 afs_DCMoveBucket(tdc, 0, afs_DCGetBucket(avc));
1742 afs_indexUnique[tdc->index] = tdc->f.fid.Fid.Unique;
1743 if (!ashFid)
1744 hones(tdc->f.versionNo); /* invalid value */
1745 tdc->f.chunk = chunk;
1746 tdc->validPos = AFS_CHUNKTOBASE(chunk);
1747 /* XXX */
1748 if (tdc->lruq.prev == &tdc->lruq)
1749 osi_Panic("lruq 1");
1751 *adc = tdc;
1752 return 0;
1755 static int
1756 IsDCacheSizeOK(struct dcache *adc, struct vcache *avc, afs_int32 chunk_bytes,
1757 afs_size_t file_length, afs_uint32 versionNo, int from_net)
1759 afs_size_t expected_bytes;
1760 afs_size_t chunk_start = AFS_CHUNKTOBASE(adc->f.chunk);
1762 if (vType(avc) == VDIR) {
1764 * Directory blobs may be constructed locally (see afs_LocalHero), and
1765 * the size of the blob may differ slightly compared to what's on the
1766 * fileserver. So, skip size checks for directories.
1768 return 1;
1771 if ((avc->f.states & CDirty)) {
1773 * Our vcache may have writes that are local to our cache, but not yet
1774 * written to the fileserver. In such a situation, we may have dcaches
1775 * for that file that are "short". For example:
1777 * Say we have a file that is 0 bytes long. A process opens that file,
1778 * and writes some data to offset 5M (keeping the file open). Another
1779 * process comes along and reads data from offset 1M. We'll try to
1780 * fetch data at offset 1M, and the fileserver will respond with 0
1781 * bytes, since our locally-written data hasn't been written to the
1782 * fileserver yet (on the fileserver, the file is still 0-bytes long).
1783 * So our dcache at offset 1M will have 0 bytes.
1785 * So if CDirty is set, don't do any size/length checks at all, since
1786 * we have no idea if the avc length is valid.
1788 return 1;
1791 if (!from_net && (adc->f.states & DRW)) {
1793 * The dcache data we're looking at is from our local cache (not from a
1794 * fileserver), and it's for data in an RW volume. For cached RW data,
1795 * there are some edge cases that can cause the below length checks to
1796 * trigger false positives.
1798 * For example: if the local client writes 4 bytes to a new file at
1799 * offset 0, and then 4 bytes at offset 0x400000, the file will be
1800 * 0x400004 bytes long, but the first dcache chunk will only contain 4
1801 * bytes. If such a file is fetched from a fileserver, the first chunk
1802 * will have a full chunk of data (most of it zeroes), but on the
1803 * client that did the write, the sparse data will not appear in the
1804 * dcache.
1806 * Such false positives should only be possible with RW data, since
1807 * non-RW data is never generated locally. So to avoid the false
1808 * positives, assume the dcache length is OK for RW data if the dcache
1809 * came from our local cache (and not directly from a fileserver).
1811 return 1;
1814 if (file_length < chunk_start) {
1815 expected_bytes = 0;
1817 } else {
1818 expected_bytes = file_length - chunk_start;
1820 if (vType(avc) != VDIR && expected_bytes > AFS_CHUNKTOSIZE(adc->f.chunk)) {
1821 /* A non-dir chunk cannot have more bytes than the chunksize. */
1822 expected_bytes = AFS_CHUNKTOSIZE(adc->f.chunk);
1826 if (chunk_bytes != expected_bytes) {
1827 static const afs_uint32 one_hour = 60 * 60;
1828 static afs_uint32 last_warn;
1829 afs_uint32 now = osi_Time();
1831 if (now < last_warn) {
1832 /* clock went backwards */
1833 last_warn = now;
1836 if (now - last_warn > one_hour) {
1837 unsigned int mtime = adc->f.modTime;
1839 last_warn = now;
1841 if (from_net) {
1843 * The dcache we're looking at didn't come from the cache, but is
1844 * being populated from the net. Don't print out its mtime in that
1845 * case; that would be misleading since that's the mtime from the
1846 * last time this dcache slot was written to.
1848 mtime = 0;
1851 afs_warn("afs: Detected corrupt dcache for file %d.%u.%u.%u: chunk %d "
1852 "(offset %lu) has %d bytes, but it should have %lu bytes\n",
1853 adc->f.fid.Cell,
1854 adc->f.fid.Fid.Volume,
1855 adc->f.fid.Fid.Vnode,
1856 adc->f.fid.Fid.Unique,
1857 adc->f.chunk,
1858 (unsigned long)chunk_start,
1859 chunk_bytes,
1860 (unsigned long)expected_bytes);
1861 afs_warn("afs: (dcache %p, file length %lu, DV %u, dcache mtime %u, "
1862 "index %d, dflags 0x%x, mflags 0x%x, states 0x%x, vcache "
1863 "states 0x%x)\n",
1864 adc,
1865 (unsigned long)file_length,
1866 versionNo,
1867 mtime,
1868 adc->index,
1869 (unsigned)adc->dflags,
1870 (unsigned)adc->mflags,
1871 (unsigned)adc->f.states,
1872 avc->f.states);
1873 afs_warn("afs: Ignoring the dcache for now, but this may indicate "
1874 "corruption in the AFS cache, or a bug.\n");
1876 return 0;
1878 return 1;
1882 * Check if a dcache is "fresh". That is, if the dcache's DV matches the DV of
1883 * the vcache for that file, and the dcache looks "sane" (its length makes
1884 * sense, when considering the length of the given avc).
1886 * \param adc The dcache to check
1887 * \param avc The vcache for adc
1889 * \return 1 if the dcache is "fresh". 0 otherwise.
1892 afs_IsDCacheFresh(struct dcache *adc, struct vcache *avc)
1894 if (!hsame(adc->f.versionNo, avc->f.m.DataVersion)) {
1895 return 0;
1899 * If we've reached here, the DV in adc matches the DV of our avc. Check if
1900 * the number of bytes in adc agrees with the avc file length, as a sanity
1901 * check. If they don't match, we'll pretend the DVs don't match, so the
1902 * bad dcache data will not be used, and we'll probably re-fetch the chunk
1903 * data, replacing the bad chunk.
1906 if (!IsDCacheSizeOK(adc, avc, adc->f.chunkBytes, avc->f.m.Length,
1907 hgetlo(adc->f.versionNo), 0)) {
1908 return 0;
1911 return 1;
1915 * afs_GetDCache
1917 * Description:
1918 * This function is called to obtain a reference to data stored in
1919 * the disk cache, locating a chunk of data containing the desired
1920 * byte and returning a reference to the disk cache entry, with its
1921 * reference count incremented.
1923 * Parameters:
1924 * IN:
1925 * avc : Ptr to a vcache entry (unlocked)
1926 * abyte : Byte position in the file desired
1927 * areq : Request structure identifying the requesting user.
1928 * aflags : Settings as follows:
1929 * 1 : Set locks
1930 * 2 : Return after creating entry.
1931 * 4 : called from afs_vnop_write.c
1932 * *alen contains length of data to be written.
1933 * OUT:
1934 * aoffset : Set to the offset within the chunk where the resident
1935 * byte is located.
1936 * alen : Set to the number of bytes of data after the desired
1937 * byte (including the byte itself) which can be read
1938 * from this chunk.
1940 * Environment:
1941 * The vcache entry pointed to by avc is unlocked upon entry.
1945 * Update the vnode-to-dcache hint if we can get the vnode lock
1946 * right away. Assumes dcache entry is at least read-locked.
1948 void
1949 updateV2DC(int lockVc, struct vcache *v, struct dcache *d, int src)
1951 if (!lockVc || 0 == NBObtainWriteLock(&v->lock, src)) {
1952 if (afs_IsDCacheFresh(d, v) && v->callback)
1953 v->dchint = d;
1954 if (lockVc)
1955 ReleaseWriteLock(&v->lock);
1959 /* avc - Write-locked unless aflags & 1 */
1960 struct dcache *
1961 afs_GetDCache(struct vcache *avc, afs_size_t abyte,
1962 struct vrequest *areq, afs_size_t * aoffset,
1963 afs_size_t * alen, int aflags)
1965 afs_int32 i, code, shortcut;
1966 #if defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV)
1967 afs_int32 adjustsize = 0;
1968 #endif
1969 int setLocks;
1970 afs_int32 index;
1971 afs_int32 us;
1972 afs_int32 chunk;
1973 afs_size_t Position = 0;
1974 afs_int32 size, tlen; /* size of segment to transfer */
1975 struct afs_FetchOutput *tsmall = 0;
1976 struct dcache *tdc;
1977 struct osi_file *file;
1978 struct afs_conn *tc;
1979 int downDCount = 0;
1980 struct server *newCallback = NULL;
1981 char setNewCallback;
1982 char setVcacheStatus;
1983 char doVcacheUpdate;
1984 char slowPass = 0;
1985 int doAdjustSize = 0;
1986 int doReallyAdjustSize = 0;
1987 int overWriteWholeChunk = 0;
1988 struct rx_connection *rxconn;
1990 #ifndef AFS_NOSTATS
1991 struct afs_stats_AccessInfo *accP; /*Ptr to access record in stats */
1992 int fromReplica; /*Are we reading from a replica? */
1993 int numFetchLoops; /*# times around the fetch/analyze loop */
1994 #endif /* AFS_NOSTATS */
1996 AFS_STATCNT(afs_GetDCache);
1997 if (dcacheDisabled)
1998 return NULL;
2000 setLocks = aflags & 1;
2003 * Determine the chunk number and offset within the chunk corresponding
2004 * to the desired byte.
2006 if (avc->f.fid.Fid.Vnode & 1) { /* if (vType(avc) == VDIR) */
2007 chunk = 0;
2008 } else {
2009 chunk = AFS_CHUNK(abyte);
2012 /* come back to here if we waited for the cache to drain. */
2013 RetryGetDCache:
2015 setNewCallback = setVcacheStatus = 0;
2017 if (setLocks) {
2018 if (slowPass)
2019 ObtainWriteLock(&avc->lock, 616);
2020 else
2021 ObtainReadLock(&avc->lock);
2025 * Locks held:
2026 * avc->lock(R) if setLocks && !slowPass
2027 * avc->lock(W) if !setLocks || slowPass
2030 shortcut = 0;
2032 /* check hints first! (might could use bcmp or some such...) */
2033 if ((tdc = avc->dchint)) {
2034 int dcLocked;
2037 * The locking order between afs_xdcache and dcache lock matters.
2038 * The hint dcache entry could be anywhere, even on the free list.
2039 * Locking afs_xdcache ensures that noone is trying to pull dcache
2040 * entries from the free list, and thereby assuming them to be not
2041 * referenced and not locked.
2043 ObtainReadLock(&afs_xdcache);
2044 dcLocked = (0 == NBObtainSharedLock(&tdc->lock, 601));
2046 if (dcLocked && (tdc->index != NULLIDX)
2047 && !FidCmp(&tdc->f.fid, &avc->f.fid) && chunk == tdc->f.chunk
2048 && !(afs_indexFlags[tdc->index] & (IFFree | IFDiscarded))) {
2049 /* got the right one. It might not be the right version, and it
2050 * might be fetching, but it's the right dcache entry.
2052 /* All this code should be integrated better with what follows:
2053 * I can save a good bit more time under a write lock if I do..
2055 ObtainWriteLock(&tdc->tlock, 603);
2056 tdc->refCount++;
2057 ReleaseWriteLock(&tdc->tlock);
2059 ReleaseReadLock(&afs_xdcache);
2060 shortcut = 1;
2062 if (afs_IsDCacheFresh(tdc, avc)
2063 && !(tdc->dflags & DFFetching)) {
2065 afs_stats_cmperf.dcacheHits++;
2066 ObtainWriteLock(&afs_xdcache, 559);
2067 QRemove(&tdc->lruq);
2068 QAdd(&afs_DLRU, &tdc->lruq);
2069 ReleaseWriteLock(&afs_xdcache);
2071 /* Locks held:
2072 * avc->lock(R) if setLocks && !slowPass
2073 * avc->lock(W) if !setLocks || slowPass
2074 * tdc->lock(S)
2076 goto done;
2078 } else {
2079 if (dcLocked)
2080 ReleaseSharedLock(&tdc->lock);
2081 ReleaseReadLock(&afs_xdcache);
2084 if (!shortcut)
2085 tdc = 0;
2088 /* Locks held:
2089 * avc->lock(R) if setLocks && !slowPass
2090 * avc->lock(W) if !setLocks || slowPass
2091 * tdc->lock(S) if tdc
2094 if (!tdc) { /* If the hint wasn't the right dcache entry */
2095 int dslot_error = 0;
2097 * Hash on the [fid, chunk] and get the corresponding dcache index
2098 * after write-locking the dcache.
2100 RetryLookup:
2102 /* Locks held:
2103 * avc->lock(R) if setLocks && !slowPass
2104 * avc->lock(W) if !setLocks || slowPass
2107 i = DCHash(&avc->f.fid, chunk);
2108 /* check to make sure our space is fine */
2109 afs_MaybeWakeupTruncateDaemon();
2111 ObtainWriteLock(&afs_xdcache, 280);
2112 us = NULLIDX;
2113 for (index = afs_dchashTbl[i]; index != NULLIDX; us = index, index = afs_dcnextTbl[index]) {
2114 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
2115 tdc = afs_GetValidDSlot(index);
2116 if (!tdc) {
2117 /* we got an i/o error when trying to get the given dslot.
2118 * it's possible the dslot we're looking for is elsewhere,
2119 * but most likely the disk cache is currently unusable, so
2120 * all afs_GetValidDSlot calls will fail, so just bail out. */
2121 dslot_error = 1;
2122 index = NULLIDX;
2123 break;
2125 ReleaseReadLock(&tdc->tlock);
2127 * Locks held:
2128 * avc->lock(R) if setLocks && !slowPass
2129 * avc->lock(W) if !setLocks || slowPass
2130 * afs_xdcache(W)
2132 if (!FidCmp(&tdc->f.fid, &avc->f.fid) && chunk == tdc->f.chunk) {
2133 /* Move it up in the beginning of the list */
2134 if (afs_dchashTbl[i] != index) {
2135 afs_dcnextTbl[us] = afs_dcnextTbl[index];
2136 afs_dcnextTbl[index] = afs_dchashTbl[i];
2137 afs_dchashTbl[i] = index;
2139 ReleaseWriteLock(&afs_xdcache);
2140 ObtainSharedLock(&tdc->lock, 606);
2141 break; /* leaving refCount high for caller */
2143 afs_PutDCache(tdc);
2144 tdc = 0;
2149 * If we didn't find the entry, we'll create one.
2151 if (index == NULLIDX) {
2153 * Locks held:
2154 * avc->lock(R) if setLocks
2155 * avc->lock(W) if !setLocks
2156 * afs_xdcache(W)
2158 afs_Trace2(afs_iclSetp, CM_TRACE_GETDCACHE1, ICL_TYPE_POINTER,
2159 avc, ICL_TYPE_INT32, chunk);
2161 if (dslot_error) {
2162 /* We couldn't find the dcache we want, but we hit some i/o
2163 * errors when trying to find it, so we're not sure if the
2164 * dcache we want is in the cache or not. Error out, so we
2165 * don't try to possibly create 2 separate dcaches for the
2166 * same exact data. */
2167 ReleaseWriteLock(&afs_xdcache);
2168 goto done;
2171 if (afs_discardDCList == NULLIDX && afs_freeDCList == NULLIDX) {
2172 if (!setLocks)
2173 avc->f.states |= CDCLock;
2174 /* just need slots */
2175 afs_GetDownD(5, (int *)0, afs_DCGetBucket(avc));
2176 if (!setLocks)
2177 avc->f.states &= ~CDCLock;
2179 code = afs_AllocDCache(&tdc, avc, chunk, aflags, NULL);
2180 if (code) {
2181 ReleaseWriteLock(&afs_xdcache);
2182 if (code == ENOSPC) {
2183 /* It looks like afs_AllocDCache failed because we don't
2184 * have any free dslots to use. Maybe if we wait a little
2185 * while, we'll be able to free up some slots, so try for 5
2186 * minutes, then bail out. */
2187 if (++downDCount > 300) {
2188 afs_warn("afs: Unable to get free cache space for file "
2189 "%u:%u.%u.%u for 5 minutes; failing with an i/o error\n",
2190 avc->f.fid.Cell,
2191 avc->f.fid.Fid.Volume,
2192 avc->f.fid.Fid.Vnode,
2193 avc->f.fid.Fid.Unique);
2194 goto done;
2196 afs_osi_Wait(1000, 0, 0);
2197 goto RetryLookup;
2200 /* afs_AllocDCache failed, but not because we're out of free
2201 * dslots. Something must be screwy with the cache, so bail out
2202 * immediately without waiting. */
2203 afs_warn("afs: Error while alloc'ing cache slot for file "
2204 "%u:%u.%u.%u; failing with an i/o error\n",
2205 avc->f.fid.Cell,
2206 avc->f.fid.Fid.Volume,
2207 avc->f.fid.Fid.Vnode,
2208 avc->f.fid.Fid.Unique);
2209 goto done;
2213 * Locks held:
2214 * avc->lock(R) if setLocks
2215 * avc->lock(W) if !setLocks
2216 * tdc->lock(W)
2217 * afs_xdcache(W)
2221 * Now add to the two hash chains - note that i is still set
2222 * from the above DCHash call.
2224 afs_dcnextTbl[tdc->index] = afs_dchashTbl[i];
2225 afs_dchashTbl[i] = tdc->index;
2226 i = DVHash(&avc->f.fid);
2227 afs_dvnextTbl[tdc->index] = afs_dvhashTbl[i];
2228 afs_dvhashTbl[i] = tdc->index;
2229 tdc->dflags = DFEntryMod;
2230 tdc->mflags = 0;
2231 afs_MaybeWakeupTruncateDaemon();
2232 ReleaseWriteLock(&afs_xdcache);
2233 ConvertWToSLock(&tdc->lock);
2238 /* vcache->dcache hint failed */
2240 * Locks held:
2241 * avc->lock(R) if setLocks && !slowPass
2242 * avc->lock(W) if !setLocks || slowPass
2243 * tdc->lock(S)
2245 afs_Trace4(afs_iclSetp, CM_TRACE_GETDCACHE2, ICL_TYPE_POINTER, avc,
2246 ICL_TYPE_POINTER, tdc, ICL_TYPE_INT32,
2247 hgetlo(tdc->f.versionNo), ICL_TYPE_INT32,
2248 hgetlo(avc->f.m.DataVersion));
2250 * Here we have the entry in tdc, with its refCount incremented.
2251 * Note: we don't use the S-lock on avc; it costs concurrency when
2252 * storing a file back to the server.
2256 * Not a newly created file so we need to check the file's length and
2257 * compare data versions since someone could have changed the data or we're
2258 * reading a file written elsewhere. We only want to bypass doing no-op
2259 * read rpcs on newly created files (dv of 0) since only then we guarantee
2260 * that this chunk's data hasn't been filled by another client.
2262 size = AFS_CHUNKSIZE(abyte);
2263 if (aflags & 4) /* called from write */
2264 tlen = *alen;
2265 else /* called from read */
2266 tlen = tdc->validPos - abyte;
2267 Position = AFS_CHUNKTOBASE(chunk);
2268 afs_Trace4(afs_iclSetp, CM_TRACE_GETDCACHE3, ICL_TYPE_INT32, tlen,
2269 ICL_TYPE_INT32, aflags, ICL_TYPE_OFFSET,
2270 ICL_HANDLE_OFFSET(abyte), ICL_TYPE_OFFSET,
2271 ICL_HANDLE_OFFSET(Position));
2272 if ((aflags & 4) && (hiszero(avc->f.m.DataVersion)))
2273 doAdjustSize = 1;
2274 if ((AFS_CHUNKTOBASE(chunk) >= avc->f.m.Length) ||
2275 ((aflags & 4) && (abyte == Position) && (tlen >= size)))
2276 overWriteWholeChunk = 1;
2277 if (doAdjustSize || overWriteWholeChunk) {
2278 #if defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV)
2279 #ifdef AFS_SGI_ENV
2280 if (doAdjustSize)
2281 adjustsize = NBPP;
2282 #else /* AFS_SGI_ENV */
2283 if (doAdjustSize)
2284 adjustsize = 4096;
2285 #endif /* AFS_SGI_ENV */
2286 if (AFS_CHUNKTOBASE(chunk) + adjustsize >= avc->f.m.Length &&
2287 #else /* defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV) */
2288 #if defined(AFS_SUN5_ENV)
2289 if ((doAdjustSize || (AFS_CHUNKTOBASE(chunk) >= avc->f.m.Length)) &&
2290 #else
2291 if (AFS_CHUNKTOBASE(chunk) >= avc->f.m.Length &&
2292 #endif
2293 #endif /* defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV) */
2294 !afs_IsDCacheFresh(tdc, avc))
2295 doReallyAdjustSize = 1;
2297 if (doReallyAdjustSize || overWriteWholeChunk) {
2298 /* no data in file to read at this position */
2299 UpgradeSToWLock(&tdc->lock, 607);
2300 file = afs_CFileOpen(&tdc->f.inode);
2301 osi_Assert(file);
2302 afs_CFileTruncate(file, 0);
2303 afs_CFileClose(file);
2304 afs_AdjustSize(tdc, 0);
2305 hset(tdc->f.versionNo, avc->f.m.DataVersion);
2306 tdc->dflags |= DFEntryMod;
2308 ConvertWToSLock(&tdc->lock);
2313 * We must read in the whole chunk if the version number doesn't
2314 * match.
2316 if (aflags & 2) {
2317 /* don't need data, just a unique dcache entry */
2318 ObtainWriteLock(&afs_xdcache, 608);
2319 hset(afs_indexTimes[tdc->index], afs_indexCounter);
2320 hadd32(afs_indexCounter, 1);
2321 ReleaseWriteLock(&afs_xdcache);
2323 updateV2DC(setLocks, avc, tdc, 553);
2324 if (vType(avc) == VDIR)
2325 *aoffset = abyte;
2326 else
2327 *aoffset = AFS_CHUNKOFFSET(abyte);
2328 if (tdc->validPos < abyte)
2329 *alen = (afs_size_t) 0;
2330 else
2331 *alen = tdc->validPos - abyte;
2332 ReleaseSharedLock(&tdc->lock);
2333 if (setLocks) {
2334 if (slowPass)
2335 ReleaseWriteLock(&avc->lock);
2336 else
2337 ReleaseReadLock(&avc->lock);
2339 return tdc; /* check if we're done */
2343 * Locks held:
2344 * avc->lock(R) if setLocks && !slowPass
2345 * avc->lock(W) if !setLocks || slowPass
2346 * tdc->lock(S)
2348 osi_Assert((setLocks && !slowPass) || WriteLocked(&avc->lock));
2350 setNewCallback = setVcacheStatus = 0;
2353 * Locks held:
2354 * avc->lock(R) if setLocks && !slowPass
2355 * avc->lock(W) if !setLocks || slowPass
2356 * tdc->lock(S)
2358 if (!afs_IsDCacheFresh(tdc, avc) && !overWriteWholeChunk) {
2360 * Version number mismatch.
2363 * If we are disconnected, then we can't do much of anything
2364 * because the data doesn't match the file.
2366 if (AFS_IS_DISCONNECTED) {
2367 ReleaseSharedLock(&tdc->lock);
2368 if (setLocks) {
2369 if (slowPass)
2370 ReleaseWriteLock(&avc->lock);
2371 else
2372 ReleaseReadLock(&avc->lock);
2374 /* Flush the Dcache */
2375 afs_PutDCache(tdc);
2377 return NULL;
2379 UpgradeSToWLock(&tdc->lock, 609);
2382 * If data ever existed for this vnode, and this is a text object,
2383 * do some clearing. Now, you'd think you need only do the flush
2384 * when VTEXT is on, but VTEXT is turned off when the text object
2385 * is freed, while pages are left lying around in memory marked
2386 * with this vnode. If we would reactivate (create a new text
2387 * object from) this vnode, we could easily stumble upon some of
2388 * these old pages in pagein. So, we always flush these guys.
2389 * Sun has a wonderful lack of useful invariants in this system.
2391 * avc->flushDV is the data version # of the file at the last text
2392 * flush. Clearly, at least, we don't have to flush the file more
2393 * often than it changes
2395 if (hcmp(avc->flushDV, avc->f.m.DataVersion) < 0) {
2397 * By here, the cache entry is always write-locked. We can
2398 * deadlock if we call osi_Flush with the cache entry locked...
2399 * Unlock the dcache too.
2401 ReleaseWriteLock(&tdc->lock);
2402 if (setLocks && !slowPass)
2403 ReleaseReadLock(&avc->lock);
2404 else
2405 ReleaseWriteLock(&avc->lock);
2407 osi_FlushText(avc);
2409 * Call osi_FlushPages in open, read/write, and map, since it
2410 * is too hard here to figure out if we should lock the
2411 * pvnLock.
2413 if (setLocks && !slowPass)
2414 ObtainReadLock(&avc->lock);
2415 else
2416 ObtainWriteLock(&avc->lock, 66);
2417 ObtainWriteLock(&tdc->lock, 610);
2421 * Locks held:
2422 * avc->lock(R) if setLocks && !slowPass
2423 * avc->lock(W) if !setLocks || slowPass
2424 * tdc->lock(W)
2427 /* Watch for standard race condition around osi_FlushText */
2428 if (afs_IsDCacheFresh(tdc, avc)) {
2429 updateV2DC(setLocks, avc, tdc, 569); /* set hint */
2430 afs_stats_cmperf.dcacheHits++;
2431 ConvertWToSLock(&tdc->lock);
2432 goto done;
2435 /* Sleep here when cache needs to be drained. */
2436 if (setLocks && !slowPass
2437 && (afs_blocksUsed >
2438 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks))) {
2439 /* Make sure truncate daemon is running */
2440 afs_MaybeWakeupTruncateDaemon();
2441 ObtainWriteLock(&tdc->tlock, 614);
2442 tdc->refCount--; /* we'll re-obtain the dcache when we re-try. */
2443 ReleaseWriteLock(&tdc->tlock);
2444 ReleaseWriteLock(&tdc->lock);
2445 ReleaseReadLock(&avc->lock);
2446 while ((afs_blocksUsed - afs_blocksDiscarded) >
2447 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
2448 afs_MaybeWaitForCacheDrain();
2450 afs_MaybeFreeDiscardedDCache();
2451 /* need to check if someone else got the chunk first. */
2452 goto RetryGetDCache;
2455 Position = AFS_CHUNKBASE(abyte);
2456 if (vType(avc) == VDIR) {
2457 size = avc->f.m.Length;
2458 if (size > tdc->f.chunkBytes) {
2459 /* pre-reserve space for file */
2460 afs_AdjustSize(tdc, size);
2462 size = 999999999; /* max size for transfer */
2463 } else {
2464 afs_size_t maxGoodLength;
2466 /* estimate how much data we're expecting back from the server,
2467 * and reserve space in the dcache entry for it */
2469 maxGoodLength = avc->f.m.Length;
2470 if (avc->f.truncPos < maxGoodLength)
2471 maxGoodLength = avc->f.truncPos;
2473 size = AFS_CHUNKSIZE(abyte); /* expected max size */
2474 if (Position > maxGoodLength) { /* If we're beyond EOF */
2475 size = 0;
2476 } else if (Position + size > maxGoodLength) {
2477 size = maxGoodLength - Position;
2479 osi_Assert(size >= 0);
2481 if (size > tdc->f.chunkBytes) {
2482 /* pre-reserve estimated space for file */
2483 afs_AdjustSize(tdc, size); /* changes chunkBytes */
2486 if (size) {
2487 /* For the actual fetch, do not limit the request to the
2488 * length of the file. If this results in a read past EOF on
2489 * the server, the server will just reply with less data than
2490 * requested. If we limit ourselves to only requesting data up
2491 * to the avc file length, we open ourselves up to races if the
2492 * file is extended on the server at about the same time.
2494 * However, we must restrict ourselves to the avc->f.truncPos
2495 * length, since this represents an outstanding local
2496 * truncation of the file that will be committed to the
2497 * fileserver when we actually write the fileserver contents.
2498 * If we do not restrict the fetch length based on
2499 * avc->f.truncPos, a different truncate operation extending
2500 * the file length could cause the old data after
2501 * avc->f.truncPos to reappear, instead of extending the file
2502 * with NUL bytes. */
2503 size = AFS_CHUNKSIZE(abyte);
2504 if (Position > avc->f.truncPos) {
2505 size = 0;
2506 } else if (Position + size > avc->f.truncPos) {
2507 size = avc->f.truncPos - Position;
2509 osi_Assert(size >= 0);
2512 if (afs_mariner && !tdc->f.chunk)
2513 afs_MarinerLog("fetch$Fetching", avc); /* , Position, size, afs_indexCounter ); */
2515 * Right now, we only have one tool, and it's a hammer. So, we
2516 * fetch the whole file.
2518 DZap(tdc); /* pages in cache may be old */
2519 file = afs_CFileOpen(&tdc->f.inode);
2520 if (!file) {
2521 /* We can't access the file in the disk cache backing this dcache;
2522 * bail out. */
2523 ReleaseWriteLock(&tdc->lock);
2524 afs_PutDCache(tdc);
2525 tdc = NULL;
2526 goto done;
2528 afs_RemoveVCB(&avc->f.fid);
2529 tdc->f.states |= DWriting;
2530 tdc->dflags |= DFFetching;
2531 tdc->validPos = Position; /* which is AFS_CHUNKBASE(abyte) */
2532 if (tdc->mflags & DFFetchReq) {
2533 tdc->mflags &= ~DFFetchReq;
2534 if (afs_osi_Wakeup(&tdc->validPos) == 0)
2535 afs_Trace4(afs_iclSetp, CM_TRACE_DCACHEWAKE, ICL_TYPE_STRING,
2536 __FILE__, ICL_TYPE_INT32, __LINE__,
2537 ICL_TYPE_POINTER, tdc, ICL_TYPE_INT32,
2538 tdc->dflags);
2540 tsmall = osi_AllocLargeSpace(sizeof(struct afs_FetchOutput));
2541 setVcacheStatus = 0;
2542 #ifndef AFS_NOSTATS
2544 * Remember if we are doing the reading from a replicated volume,
2545 * and how many times we've zipped around the fetch/analyze loop.
2547 fromReplica = (avc->f.states & CRO) ? 1 : 0;
2548 numFetchLoops = 0;
2549 accP = &(afs_stats_cmfullperf.accessinf);
2550 if (fromReplica)
2551 (accP->replicatedRefs)++;
2552 else
2553 (accP->unreplicatedRefs)++;
2554 #endif /* AFS_NOSTATS */
2555 /* this is a cache miss */
2556 afs_Trace4(afs_iclSetp, CM_TRACE_FETCHPROC, ICL_TYPE_POINTER, avc,
2557 ICL_TYPE_FID, &(avc->f.fid), ICL_TYPE_OFFSET,
2558 ICL_HANDLE_OFFSET(Position), ICL_TYPE_INT32, size);
2560 if (size)
2561 afs_stats_cmperf.dcacheMisses++;
2563 * Dynamic root support: fetch data from local memory.
2565 if (afs_IsDynroot(avc)) {
2566 char *dynrootDir;
2567 int dynrootLen;
2569 afs_GetDynroot(&dynrootDir, &dynrootLen, &tsmall->OutStatus);
2571 dynrootDir += Position;
2572 dynrootLen -= Position;
2573 if (size > dynrootLen)
2574 size = dynrootLen;
2575 if (size < 0)
2576 size = 0;
2577 code = afs_CFileWrite(file, 0, dynrootDir, size);
2578 afs_PutDynroot();
2580 if (code == size)
2581 code = 0;
2582 else
2583 code = -1;
2585 tdc->validPos = Position + size;
2586 afs_CFileTruncate(file, size); /* prune it */
2587 } else if (afs_IsDynrootMount(avc)) {
2588 char *dynrootDir;
2589 int dynrootLen;
2591 afs_GetDynrootMount(&dynrootDir, &dynrootLen, &tsmall->OutStatus);
2593 dynrootDir += Position;
2594 dynrootLen -= Position;
2595 if (size > dynrootLen)
2596 size = dynrootLen;
2597 if (size < 0)
2598 size = 0;
2599 code = afs_CFileWrite(file, 0, dynrootDir, size);
2600 afs_PutDynroot();
2602 if (code == size)
2603 code = 0;
2604 else
2605 code = -1;
2607 tdc->validPos = Position + size;
2608 afs_CFileTruncate(file, size); /* prune it */
2609 } else
2611 * Not a dynamic vnode: do the real fetch.
2613 do {
2615 * Locks held:
2616 * avc->lock(R) if setLocks && !slowPass
2617 * avc->lock(W) if !setLocks || slowPass
2618 * tdc->lock(W)
2621 tc = afs_Conn(&avc->f.fid, areq, SHARED_LOCK, &rxconn);
2622 if (tc) {
2623 #ifndef AFS_NOSTATS
2624 numFetchLoops++;
2625 if (fromReplica)
2626 (accP->numReplicasAccessed)++;
2628 #endif /* AFS_NOSTATS */
2629 if (!setLocks || slowPass) {
2630 avc->callback = tc->parent->srvr->server;
2631 } else {
2632 newCallback = tc->parent->srvr->server;
2633 setNewCallback = 1;
2635 code = afs_CacheFetchProc(tc, rxconn, file, Position, tdc,
2636 avc, size, tsmall);
2637 } else
2638 code = -1;
2640 if (code == 0) {
2641 /* callback could have been broken (or expired) in a race here,
2642 * but we return the data anyway. It's as good as we knew about
2643 * when we started. */
2645 * validPos is updated by CacheFetchProc, and can only be
2646 * modifed under a dcache write lock, which we've blocked out
2648 afs_size_t length;
2650 size = tdc->validPos - Position; /* actual segment size */
2651 if (size < 0)
2652 size = 0;
2653 afs_CFileTruncate(file, size); /* prune it */
2655 /* Check that the amount of data that we fetched for the
2656 * dcache makes sense. */
2657 FillInt64(length, tsmall->OutStatus.Length_hi, tsmall->OutStatus.Length);
2658 if (!IsDCacheSizeOK(tdc, avc, size,
2659 length,
2660 tsmall->OutStatus.DataVersion, 1)) {
2661 code = EIO;
2664 if (code) {
2665 if (!setLocks || slowPass) {
2666 afs_StaleVCacheFlags(avc, AFS_STALEVC_CLEARCB, CUnique);
2667 } else {
2668 /* Something lost. Forget about performance, and go
2669 * back with a vcache write lock.
2671 afs_CFileTruncate(file, 0);
2672 afs_AdjustSize(tdc, 0);
2673 afs_CFileClose(file);
2674 osi_FreeLargeSpace(tsmall);
2675 tsmall = 0;
2676 ReleaseWriteLock(&tdc->lock);
2677 afs_PutDCache(tdc);
2678 tdc = 0;
2681 * Call afs_Analyze to manage the connection references
2682 * and handle the error code (possibly mark servers
2683 * down, etc). We are going to retry getting the
2684 * dcache regardless, so we just ignore the retry hint
2685 * returned by afs_Analyze on this call.
2687 (void)afs_Analyze(tc, rxconn, code, &avc->f.fid, areq,
2688 AFS_STATS_FS_RPCIDX_FETCHDATA, SHARED_LOCK, NULL);
2690 ReleaseReadLock(&avc->lock);
2692 slowPass = 1;
2693 goto RetryGetDCache;
2697 } while (afs_Analyze
2698 (tc, rxconn, code, &avc->f.fid, areq,
2699 AFS_STATS_FS_RPCIDX_FETCHDATA, SHARED_LOCK, NULL));
2702 * Locks held:
2703 * avc->lock(R) if setLocks && !slowPass
2704 * avc->lock(W) if !setLocks || slowPass
2705 * tdc->lock(W)
2708 #ifndef AFS_NOSTATS
2710 * In the case of replicated access, jot down info on the number of
2711 * attempts it took before we got through or gave up.
2713 if (fromReplica) {
2714 if (numFetchLoops <= 1)
2715 (accP->refFirstReplicaOK)++;
2716 if (numFetchLoops > accP->maxReplicasPerRef)
2717 accP->maxReplicasPerRef = numFetchLoops;
2719 #endif /* AFS_NOSTATS */
2721 tdc->dflags &= ~DFFetching;
2722 if (afs_osi_Wakeup(&tdc->validPos) == 0)
2723 afs_Trace4(afs_iclSetp, CM_TRACE_DCACHEWAKE, ICL_TYPE_STRING,
2724 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2725 tdc, ICL_TYPE_INT32, tdc->dflags);
2726 if (avc->execsOrWriters == 0)
2727 tdc->f.states &= ~DWriting;
2729 /* now, if code != 0, we have an error and should punt.
2730 * note that we have the vcache write lock, either because
2731 * !setLocks or slowPass.
2733 if (code) {
2734 afs_CFileTruncate(file, 0);
2735 afs_AdjustSize(tdc, 0);
2736 afs_CFileClose(file);
2737 ZapDCE(tdc); /* sets DFEntryMod */
2738 if (vType(avc) == VDIR) {
2739 DZap(tdc);
2741 tdc->f.states &= ~(DRO|DBackup|DRW);
2742 afs_DCMoveBucket(tdc, 0, 0);
2743 ReleaseWriteLock(&tdc->lock);
2744 afs_PutDCache(tdc);
2745 if (!afs_IsDynroot(avc)) {
2746 afs_StaleVCacheFlags(avc, 0, CUnique);
2748 * Locks held:
2749 * avc->lock(W); assert(!setLocks || slowPass)
2751 osi_Assert(!setLocks || slowPass);
2753 tdc = NULL;
2754 goto done;
2757 /* otherwise we copy in the just-fetched info */
2758 afs_CFileClose(file);
2759 afs_AdjustSize(tdc, size); /* new size */
2761 * Copy appropriate fields into vcache. Status is
2762 * copied later where we selectively acquire the
2763 * vcache write lock.
2765 if (slowPass)
2766 afs_ProcessFS(avc, &tsmall->OutStatus, areq);
2767 else
2768 setVcacheStatus = 1;
2769 hset64(tdc->f.versionNo, tsmall->OutStatus.dataVersionHigh,
2770 tsmall->OutStatus.DataVersion);
2771 tdc->dflags |= DFEntryMod;
2772 afs_indexFlags[tdc->index] |= IFEverUsed;
2773 ConvertWToSLock(&tdc->lock);
2774 } /*Data version numbers don't match */
2775 else {
2777 * Data version numbers match.
2779 afs_stats_cmperf.dcacheHits++;
2780 } /*Data version numbers match */
2782 updateV2DC(setLocks, avc, tdc, 335); /* set hint */
2783 done:
2785 * Locks held:
2786 * avc->lock(R) if setLocks && !slowPass
2787 * avc->lock(W) if !setLocks || slowPass
2788 * tdc->lock(S) if tdc
2792 * See if this was a reference to a file in the local cell.
2794 if (afs_IsPrimaryCellNum(avc->f.fid.Cell))
2795 afs_stats_cmperf.dlocalAccesses++;
2796 else
2797 afs_stats_cmperf.dremoteAccesses++;
2799 /* Fix up LRU info */
2801 if (tdc) {
2802 ObtainWriteLock(&afs_xdcache, 602);
2803 hset(afs_indexTimes[tdc->index], afs_indexCounter);
2804 hadd32(afs_indexCounter, 1);
2805 ReleaseWriteLock(&afs_xdcache);
2807 /* return the data */
2808 if (vType(avc) == VDIR)
2809 *aoffset = abyte;
2810 else
2811 *aoffset = AFS_CHUNKOFFSET(abyte);
2812 *alen = (tdc->f.chunkBytes - *aoffset);
2813 ReleaseSharedLock(&tdc->lock);
2817 * Locks held:
2818 * avc->lock(R) if setLocks && !slowPass
2819 * avc->lock(W) if !setLocks || slowPass
2822 /* Fix up the callback and status values in the vcache */
2823 doVcacheUpdate = 0;
2824 if (setLocks && !slowPass) {
2825 /* DCLOCKXXX
2827 * This is our dirty little secret to parallel fetches.
2828 * We don't write-lock the vcache while doing the fetch,
2829 * but potentially we'll need to update the vcache after
2830 * the fetch is done.
2832 * Drop the read lock and try to re-obtain the write
2833 * lock. If the vcache still has the same DV, it's
2834 * ok to go ahead and install the new data.
2836 afs_hyper_t currentDV, statusDV;
2838 hset(currentDV, avc->f.m.DataVersion);
2840 if (setNewCallback && avc->callback != newCallback)
2841 doVcacheUpdate = 1;
2843 if (tsmall) {
2844 hset64(statusDV, tsmall->OutStatus.dataVersionHigh,
2845 tsmall->OutStatus.DataVersion);
2847 if (setVcacheStatus && avc->f.m.Length != tsmall->OutStatus.Length)
2848 doVcacheUpdate = 1;
2849 if (setVcacheStatus && !hsame(currentDV, statusDV))
2850 doVcacheUpdate = 1;
2853 ReleaseReadLock(&avc->lock);
2855 if (doVcacheUpdate) {
2856 ObtainWriteLock(&avc->lock, 615);
2857 if (!hsame(avc->f.m.DataVersion, currentDV)) {
2858 /* We lose. Someone will beat us to it. */
2859 doVcacheUpdate = 0;
2860 ReleaseWriteLock(&avc->lock);
2865 /* With slow pass, we've already done all the updates */
2866 if (slowPass) {
2867 ReleaseWriteLock(&avc->lock);
2870 /* Check if we need to perform any last-minute fixes with a write-lock */
2871 if (!setLocks || doVcacheUpdate) {
2872 if (setNewCallback)
2873 avc->callback = newCallback;
2874 if (tsmall && setVcacheStatus)
2875 afs_ProcessFS(avc, &tsmall->OutStatus, areq);
2876 if (setLocks)
2877 ReleaseWriteLock(&avc->lock);
2880 if (tsmall)
2881 osi_FreeLargeSpace(tsmall);
2883 return tdc;
2884 } /*afs_GetDCache */
2888 * afs_WriteThroughDSlots
2890 * Description:
2891 * Sweep through the dcache slots and write out any modified
2892 * in-memory data back on to our caching store.
2894 * Parameters:
2895 * None.
2897 * Environment:
2898 * The afs_xdcache is write-locked through this whole affair.
2901 afs_WriteThroughDSlots(void)
2903 struct dcache *tdc;
2904 afs_int32 i, touchedit = 0;
2905 int code = 0;
2907 struct afs_q DirtyQ, *tq;
2909 AFS_STATCNT(afs_WriteThroughDSlots);
2912 * Because of lock ordering, we can't grab dcache locks while
2913 * holding afs_xdcache. So we enter xdcache, get a reference
2914 * for every dcache entry, and exit xdcache.
2916 ObtainWriteLock(&afs_xdcache, 283);
2917 QInit(&DirtyQ);
2918 for (i = 0; i < afs_cacheFiles; i++) {
2919 tdc = afs_indexTable[i];
2921 /* Grab tlock in case the existing refcount isn't zero */
2922 if (tdc && !(afs_indexFlags[i] & (IFFree | IFDiscarded))) {
2923 ObtainWriteLock(&tdc->tlock, 623);
2924 tdc->refCount++;
2925 ReleaseWriteLock(&tdc->tlock);
2927 QAdd(&DirtyQ, &tdc->dirty);
2930 ReleaseWriteLock(&afs_xdcache);
2933 * Now, for each dcache entry we found, check if it's dirty.
2934 * If so, get write-lock, get afs_xdcache, which protects
2935 * afs_cacheInodep, and flush it. Don't forget to put back
2936 * the refcounts.
2939 #define DQTODC(q) ((struct dcache *)(((char *) (q)) - sizeof(struct afs_q)))
2941 for (tq = DirtyQ.prev; tq != &DirtyQ && code == 0; tq = QPrev(tq)) {
2942 tdc = DQTODC(tq);
2943 if (tdc->dflags & DFEntryMod) {
2944 int wrLock;
2946 wrLock = (0 == NBObtainWriteLock(&tdc->lock, 619));
2948 /* Now that we have the write lock, double-check */
2949 if (wrLock && (tdc->dflags & DFEntryMod)) {
2950 tdc->dflags &= ~DFEntryMod;
2951 ObtainWriteLock(&afs_xdcache, 620);
2952 code = afs_WriteDCache(tdc, 1);
2953 ReleaseWriteLock(&afs_xdcache);
2954 if (code) {
2955 /* We didn't successfully write out the dslot; make sure we
2956 * try again later */
2957 tdc->dflags |= DFEntryMod;
2958 } else {
2959 touchedit = 1;
2962 if (wrLock)
2963 ReleaseWriteLock(&tdc->lock);
2966 afs_PutDCache(tdc);
2969 if (code) {
2970 return code;
2973 ObtainWriteLock(&afs_xdcache, 617);
2974 if (!touchedit && (cacheDiskType != AFS_FCACHE_TYPE_MEM)) {
2975 /* Touch the file to make sure that the mtime on the file is kept
2976 * up-to-date to avoid losing cached files on cold starts because
2977 * their mtime seems old...
2979 struct afs_fheader theader;
2981 afs_InitFHeader(&theader);
2982 afs_osi_Write(afs_cacheInodep, 0, &theader, sizeof(theader));
2984 ReleaseWriteLock(&afs_xdcache);
2985 return 0;
2989 * afs_MemGetDSlot
2991 * Description:
2992 * Return a pointer to an freshly initialized dcache entry using
2993 * a memory-based cache. The tlock will be read-locked.
2995 * Parameters:
2996 * aslot : Dcache slot to look at.
2997 * type : What 'type' of dslot to get; see the dslot_state enum
2999 * Environment:
3000 * Must be called with afs_xdcache write-locked.
3003 struct dcache *
3004 afs_MemGetDSlot(afs_int32 aslot, dslot_state type)
3006 struct dcache *tdc;
3007 int existing = 0;
3009 AFS_STATCNT(afs_MemGetDSlot);
3010 if (CheckLock(&afs_xdcache) != -1)
3011 osi_Panic("getdslot nolock");
3012 if (aslot < 0 || aslot >= afs_cacheFiles)
3013 osi_Panic("getdslot slot %d (of %d)", aslot, afs_cacheFiles);
3014 tdc = afs_indexTable[aslot];
3015 if (tdc) {
3016 QRemove(&tdc->lruq); /* move to queue head */
3017 QAdd(&afs_DLRU, &tdc->lruq);
3018 /* We're holding afs_xdcache, but get tlock in case refCount != 0 */
3019 ObtainWriteLock(&tdc->tlock, 624);
3020 tdc->refCount++;
3021 ConvertWToRLock(&tdc->tlock);
3022 return tdc;
3025 /* if we got here, the given slot is not in memory in our list of known
3026 * slots. for memcache, the only place a dslot can exist is in memory, so
3027 * if the caller is expecting to get back a known dslot, and we've reached
3028 * here, something is very wrong. DSLOT_NEW is the only type of dslot that
3029 * may not exist; for all others, the caller assumes the given dslot
3030 * already exists. so, 'type' had better be DSLOT_NEW here, or something is
3031 * very wrong. */
3032 osi_Assert(type == DSLOT_NEW);
3034 if (!afs_freeDSList)
3035 afs_GetDownDSlot(4);
3036 if (!afs_freeDSList) {
3037 /* none free, making one is better than a panic */
3038 afs_stats_cmperf.dcacheXAllocs++; /* count in case we have a leak */
3039 tdc = afs_osi_Alloc(sizeof(struct dcache));
3040 osi_Assert(tdc != NULL);
3041 #ifdef KERNEL_HAVE_PIN
3042 pin((char *)tdc, sizeof(struct dcache)); /* XXX */
3043 #endif
3044 } else {
3045 tdc = afs_freeDSList;
3046 afs_freeDSList = (struct dcache *)tdc->lruq.next;
3047 existing = 1;
3049 tdc->dflags = 0; /* up-to-date, not in free q */
3050 tdc->mflags = 0;
3051 QAdd(&afs_DLRU, &tdc->lruq);
3052 if (tdc->lruq.prev == &tdc->lruq)
3053 osi_Panic("lruq 3");
3055 /* initialize entry */
3056 tdc->f.fid.Cell = 0;
3057 tdc->f.fid.Fid.Volume = 0;
3058 tdc->f.chunk = -1;
3059 hones(tdc->f.versionNo);
3060 tdc->f.inode.mem = aslot;
3061 tdc->dflags |= DFEntryMod;
3062 tdc->refCount = 1;
3063 tdc->index = aslot;
3064 afs_indexUnique[aslot] = tdc->f.fid.Fid.Unique;
3066 if (existing) {
3067 osi_Assert(0 == NBObtainWriteLock(&tdc->lock, 674));
3068 osi_Assert(0 == NBObtainWriteLock(&tdc->mflock, 675));
3069 osi_Assert(0 == NBObtainWriteLock(&tdc->tlock, 676));
3072 AFS_RWLOCK_INIT(&tdc->lock, "dcache lock");
3073 AFS_RWLOCK_INIT(&tdc->tlock, "dcache tlock");
3074 AFS_RWLOCK_INIT(&tdc->mflock, "dcache flock");
3075 ObtainReadLock(&tdc->tlock);
3077 afs_indexTable[aslot] = tdc;
3078 return tdc;
3080 } /*afs_MemGetDSlot */
3082 static void
3083 LogCacheError(int aslot, int off, int code, int target_size)
3085 struct osi_stat tstat;
3086 char *procname;
3088 if (afs_osi_Stat(afs_cacheInodep, &tstat)) {
3089 tstat.size = -1;
3092 procname = osi_AllocSmallSpace(AFS_SMALLOCSIZ);
3093 if (procname != NULL) {
3094 osi_procname(procname, AFS_SMALLOCSIZ);
3095 procname[AFS_SMALLOCSIZ-1] = '\0';
3098 afs_warn("afs: disk cache read error in CacheItems slot %d "
3099 "off %d/%d code %d/%d pid %d (%s)\n",
3100 aslot, off, (int)tstat.size, code, target_size,
3101 (int)MyPidxx2Pid(MyPidxx),
3102 procname ? procname : "");
3104 if (procname != NULL) {
3105 osi_FreeSmallSpace(procname);
3106 procname = NULL;
3110 unsigned int last_error = 0, lasterrtime = 0;
3113 * afs_UFSGetDSlot
3115 * Description:
3116 * Return a pointer to an freshly initialized dcache entry using
3117 * a UFS-based disk cache. The dcache tlock will be read-locked.
3119 * Parameters:
3120 * aslot : Dcache slot to look at.
3121 * type : What 'type' of dslot to get; see the dslot_state enum
3123 * Environment:
3124 * afs_xdcache lock write-locked.
3126 struct dcache *
3127 afs_UFSGetDSlot(afs_int32 aslot, dslot_state type)
3129 afs_int32 code;
3130 struct dcache *tdc;
3131 int existing = 0;
3132 int entryok;
3133 int off;
3135 AFS_STATCNT(afs_UFSGetDSlot);
3136 if (CheckLock(&afs_xdcache) != -1)
3137 osi_Panic("getdslot nolock");
3138 if (aslot < 0 || aslot >= afs_cacheFiles)
3139 osi_Panic("getdslot slot %d (of %d)", aslot, afs_cacheFiles);
3140 tdc = afs_indexTable[aslot];
3141 if (tdc) {
3142 QRemove(&tdc->lruq); /* move to queue head */
3143 QAdd(&afs_DLRU, &tdc->lruq);
3144 /* Grab tlock in case refCount != 0 */
3145 ObtainWriteLock(&tdc->tlock, 625);
3146 tdc->refCount++;
3147 ConvertWToRLock(&tdc->tlock);
3148 return tdc;
3151 /* otherwise we should read it in from the cache file */
3152 if (!afs_freeDSList)
3153 afs_GetDownDSlot(4);
3154 if (!afs_freeDSList) {
3155 /* none free, making one is better than a panic */
3156 afs_stats_cmperf.dcacheXAllocs++; /* count in case we have a leak */
3157 tdc = afs_osi_Alloc(sizeof(struct dcache));
3158 osi_Assert(tdc != NULL);
3159 #ifdef KERNEL_HAVE_PIN
3160 pin((char *)tdc, sizeof(struct dcache)); /* XXX */
3161 #endif
3162 } else {
3163 tdc = afs_freeDSList;
3164 afs_freeDSList = (struct dcache *)tdc->lruq.next;
3165 existing = 1;
3167 tdc->dflags = 0; /* up-to-date, not in free q */
3168 tdc->mflags = 0;
3169 QAdd(&afs_DLRU, &tdc->lruq);
3170 if (tdc->lruq.prev == &tdc->lruq)
3171 osi_Panic("lruq 3");
3174 * Seek to the aslot'th entry and read it in.
3176 off = sizeof(struct fcache)*aslot + sizeof(struct afs_fheader);
3177 code =
3178 afs_osi_Read(afs_cacheInodep,
3179 off, (char *)(&tdc->f),
3180 sizeof(struct fcache));
3181 entryok = 1;
3182 if (code != sizeof(struct fcache)) {
3183 entryok = 0;
3184 #if defined(KERNEL_HAVE_UERROR)
3185 last_error = getuerror();
3186 #else
3187 last_error = code;
3188 #endif
3189 lasterrtime = osi_Time();
3190 if (type != DSLOT_NEW) {
3191 /* If we are requesting a non-DSLOT_NEW slot, this is an error.
3192 * non-DSLOT_NEW slots are supposed to already exist, so if we
3193 * failed to read in the slot, something is wrong. */
3194 LogCacheError(aslot, off, code, sizeof(struct fcache));
3196 /* put tdc back on the free dslot list */
3197 QRemove(&tdc->lruq);
3198 tdc->index = NULLIDX;
3199 tdc->lruq.next = (struct afs_q *)afs_freeDSList;
3200 afs_freeDSList = tdc;
3201 return NULL;
3204 if (!afs_CellNumValid(tdc->f.fid.Cell)) {
3205 entryok = 0;
3206 if (type == DSLOT_VALID) {
3207 osi_Panic("afs: needed valid dcache but index %d off %d has "
3208 "invalid cell num %d\n",
3209 (int)aslot, off, (int)tdc->f.fid.Cell);
3213 if (type == DSLOT_VALID && tdc->f.fid.Fid.Volume == 0) {
3214 osi_Panic("afs: invalid zero-volume dcache entry at slot %d off %d",
3215 (int)aslot, off);
3218 if (type == DSLOT_UNUSED) {
3219 /* the requested dslot is known to exist, but contain invalid data
3220 * (this happens when we're using a dslot from the free or discard
3221 * list). be sure not to re-use the data in it, so force invalidation.
3223 entryok = 0;
3226 if (!entryok) {
3227 tdc->f.fid.Cell = 0;
3228 tdc->f.fid.Fid.Volume = 0;
3229 tdc->f.chunk = -1;
3230 hones(tdc->f.versionNo);
3231 tdc->dflags |= DFEntryMod;
3232 afs_indexUnique[aslot] = tdc->f.fid.Fid.Unique;
3233 tdc->f.states &= ~(DRO|DBackup|DRW);
3234 afs_DCMoveBucket(tdc, 0, 0);
3235 } else {
3236 if (tdc->f.states & DRO) {
3237 afs_DCMoveBucket(tdc, 0, 2);
3238 } else if (tdc->f.states & DBackup) {
3239 afs_DCMoveBucket(tdc, 0, 1);
3240 } else {
3241 afs_DCMoveBucket(tdc, 0, 1);
3244 tdc->refCount = 1;
3245 tdc->index = aslot;
3246 if (tdc->f.chunk >= 0)
3247 tdc->validPos = AFS_CHUNKTOBASE(tdc->f.chunk) + tdc->f.chunkBytes;
3248 else
3249 tdc->validPos = 0;
3251 if (existing) {
3252 osi_Assert(0 == NBObtainWriteLock(&tdc->lock, 674));
3253 osi_Assert(0 == NBObtainWriteLock(&tdc->mflock, 675));
3254 osi_Assert(0 == NBObtainWriteLock(&tdc->tlock, 676));
3257 AFS_RWLOCK_INIT(&tdc->lock, "dcache lock");
3258 AFS_RWLOCK_INIT(&tdc->tlock, "dcache tlock");
3259 AFS_RWLOCK_INIT(&tdc->mflock, "dcache flock");
3260 ObtainReadLock(&tdc->tlock);
3263 * If we didn't read into a temporary dcache region, update the
3264 * slot pointer table.
3266 afs_indexTable[aslot] = tdc;
3267 return tdc;
3269 } /*afs_UFSGetDSlot */
3274 * Write a particular dcache entry back to its home in the
3275 * CacheInfo file.
3277 * \param adc Pointer to the dcache entry to write.
3278 * \param atime If true, set the modtime on the file to the current time.
3280 * \note Environment:
3281 * Must be called with the afs_xdcache lock at least read-locked,
3282 * and dcache entry at least read-locked.
3283 * The reference count is not changed.
3287 afs_WriteDCache(struct dcache *adc, int atime)
3289 afs_int32 code;
3291 if (cacheDiskType == AFS_FCACHE_TYPE_MEM)
3292 return 0;
3293 AFS_STATCNT(afs_WriteDCache);
3294 osi_Assert(WriteLocked(&afs_xdcache));
3295 if (atime)
3296 adc->f.modTime = osi_Time();
3298 if ((afs_indexFlags[adc->index] & (IFFree | IFDiscarded)) == 0 &&
3299 adc->f.fid.Fid.Volume == 0) {
3300 /* If a dcache slot is not on the free or discard list, it must be
3301 * in the hash table. Thus, the volume must be non-zero, since that
3302 * is how we determine whether or not to unhash the entry when kicking
3303 * it out of the cache. Do this check now, since otherwise this can
3304 * cause hash table corruption and a panic later on after we read the
3305 * entry back in. */
3306 osi_Panic("afs_WriteDCache zero volume index %d flags 0x%x\n",
3307 adc->index, (unsigned)afs_indexFlags[adc->index]);
3311 * Seek to the right dcache slot and write the in-memory image out to disk.
3313 afs_cellname_write();
3314 code =
3315 afs_osi_Write(afs_cacheInodep,
3316 sizeof(struct fcache) * adc->index +
3317 sizeof(struct afs_fheader), (char *)(&adc->f),
3318 sizeof(struct fcache));
3319 if (code != sizeof(struct fcache)) {
3320 afs_warn("afs: failed to write to CacheItems off %ld code %d/%d\n",
3321 (long)(sizeof(struct fcache) * adc->index + sizeof(struct afs_fheader)),
3322 (int)code, (int)sizeof(struct fcache));
3323 return EIO;
3325 return 0;
3331 * Wake up users of a particular file waiting for stores to take
3332 * place.
3334 * \param avc Ptr to related vcache entry.
3336 * \note Environment:
3337 * Nothing interesting.
3340 afs_wakeup(struct vcache *avc)
3342 int i;
3343 struct brequest *tb;
3344 tb = afs_brs;
3345 AFS_STATCNT(afs_wakeup);
3346 for (i = 0; i < NBRS; i++, tb++) {
3347 /* if request is valid and for this file, we've found it */
3348 if (tb->refCount > 0 && avc == tb->vc) {
3351 * If CSafeStore is on, then we don't awaken the guy
3352 * waiting for the store until the whole store has finished.
3353 * Otherwise, we do it now. Note that if CSafeStore is on,
3354 * the BStore routine actually wakes up the user, instead
3355 * of us.
3356 * I think this is redundant now because this sort of thing
3357 * is already being handled by the higher-level code.
3359 if ((avc->f.states & CSafeStore) == 0) {
3360 tb->code_raw = tb->code_checkcode = 0;
3361 tb->flags |= BUVALID;
3362 if (tb->flags & BUWAIT) {
3363 tb->flags &= ~BUWAIT;
3364 afs_osi_Wakeup(tb);
3367 break;
3370 return 0;
3374 * Given a file name and inode, set up that file to be an
3375 * active member in the AFS cache. This also involves checking
3376 * the usability of its data.
3378 * \param afile Name of the cache file to initialize.
3379 * \param ainode Inode of the file.
3381 * \note Environment:
3382 * This function is called only during initialization.
3385 afs_InitCacheFile(char *afile, ino_t ainode)
3387 afs_int32 code;
3388 afs_int32 index;
3389 int fileIsBad;
3390 struct osi_file *tfile;
3391 struct osi_stat tstat;
3392 struct dcache *tdc;
3394 AFS_STATCNT(afs_InitCacheFile);
3395 index = afs_stats_cmperf.cacheNumEntries;
3396 if (index >= afs_cacheFiles)
3397 return EINVAL;
3399 ObtainWriteLock(&afs_xdcache, 282);
3400 tdc = afs_GetNewDSlot(index);
3401 ReleaseReadLock(&tdc->tlock);
3402 ReleaseWriteLock(&afs_xdcache);
3404 ObtainWriteLock(&tdc->lock, 621);
3405 ObtainWriteLock(&afs_xdcache, 622);
3406 if (!afile && !ainode) {
3407 tfile = NULL;
3408 fileIsBad = 1;
3409 } else {
3410 if (afile) {
3411 code = afs_LookupInodeByPath(afile, &tdc->f.inode.ufs, NULL);
3412 if (code) {
3413 ReleaseWriteLock(&afs_xdcache);
3414 ReleaseWriteLock(&tdc->lock);
3415 afs_PutDCache(tdc);
3416 return code;
3418 } else {
3419 /* Add any other 'complex' inode types here ... */
3420 #if !defined(AFS_LINUX_ENV) && !defined(AFS_CACHE_VNODE_PATH)
3421 tdc->f.inode.ufs = ainode;
3422 #else
3423 osi_Panic("Can't init cache with inode numbers when complex inodes are "
3424 "in use\n");
3425 #endif
3427 fileIsBad = 0;
3428 if ((tdc->f.states & DWriting) || tdc->f.fid.Fid.Volume == 0)
3429 fileIsBad = 1;
3430 tfile = osi_UFSOpen(&tdc->f.inode);
3431 if (!tfile) {
3432 ReleaseWriteLock(&afs_xdcache);
3433 ReleaseWriteLock(&tdc->lock);
3434 afs_PutDCache(tdc);
3435 return ENOENT;
3438 code = afs_osi_Stat(tfile, &tstat);
3439 if (code)
3440 osi_Panic("initcachefile stat");
3443 * If file size doesn't match the cache info file, it's probably bad.
3445 if (tdc->f.chunkBytes != tstat.size)
3446 fileIsBad = 1;
3448 * If file changed within T (120?) seconds of cache info file, it's
3449 * probably bad. In addition, if slot changed within last T seconds,
3450 * the cache info file may be incorrectly identified, and so slot
3451 * may be bad.
3453 if (cacheInfoModTime < tstat.mtime + 120)
3454 fileIsBad = 1;
3455 if (cacheInfoModTime < tdc->f.modTime + 120)
3456 fileIsBad = 1;
3457 /* In case write through is behind, make sure cache items entry is
3458 * at least as new as the chunk.
3460 if (tdc->f.modTime < tstat.mtime)
3461 fileIsBad = 1;
3463 tdc->f.chunkBytes = 0;
3465 if (fileIsBad) {
3466 tdc->f.fid.Fid.Volume = 0; /* not in the hash table */
3467 if (tfile && tstat.size != 0)
3468 osi_UFSTruncate(tfile, 0);
3469 tdc->f.states &= ~(DRO|DBackup|DRW);
3470 afs_DCMoveBucket(tdc, 0, 0);
3471 /* put entry in free cache slot list */
3472 afs_dvnextTbl[tdc->index] = afs_freeDCList;
3473 afs_freeDCList = index;
3474 afs_freeDCCount++;
3475 afs_indexFlags[index] |= IFFree;
3476 afs_indexUnique[index] = 0;
3477 } else {
3479 * We must put this entry in the appropriate hash tables.
3480 * Note that i is still set from the above DCHash call
3482 code = DCHash(&tdc->f.fid, tdc->f.chunk);
3483 afs_dcnextTbl[tdc->index] = afs_dchashTbl[code];
3484 afs_dchashTbl[code] = tdc->index;
3485 code = DVHash(&tdc->f.fid);
3486 afs_dvnextTbl[tdc->index] = afs_dvhashTbl[code];
3487 afs_dvhashTbl[code] = tdc->index;
3488 afs_AdjustSize(tdc, tstat.size); /* adjust to new size */
3489 if (tstat.size > 0)
3490 /* has nontrivial amt of data */
3491 afs_indexFlags[index] |= IFEverUsed;
3492 afs_stats_cmperf.cacheFilesReused++;
3494 * Initialize index times to file's mod times; init indexCounter
3495 * to max thereof
3497 hset32(afs_indexTimes[index], tstat.atime);
3498 if (hgetlo(afs_indexCounter) < tstat.atime) {
3499 hset32(afs_indexCounter, tstat.atime);
3501 afs_indexUnique[index] = tdc->f.fid.Fid.Unique;
3502 } /*File is not bad */
3504 if (tfile)
3505 osi_UFSClose(tfile);
3506 tdc->f.states &= ~DWriting;
3507 tdc->dflags &= ~DFEntryMod;
3508 /* don't set f.modTime; we're just cleaning up */
3509 osi_Assert(afs_WriteDCache(tdc, 0) == 0);
3510 ReleaseWriteLock(&afs_xdcache);
3511 ReleaseWriteLock(&tdc->lock);
3512 afs_PutDCache(tdc);
3513 afs_stats_cmperf.cacheNumEntries++;
3514 return 0;
3518 /*Max # of struct dcache's resident at any time*/
3520 * If 'dchint' is enabled then in-memory dcache min is increased because of
3521 * crashes...
3523 #define DDSIZE 200
3526 * Initialize dcache related variables.
3528 * \param afiles
3529 * \param ablocks
3530 * \param aDentries
3531 * \param achunk
3532 * \param aflags
3536 afs_dcacheInit(int afiles, int ablocks, int aDentries, int achunk, int aflags)
3538 struct dcache *tdp;
3539 int i;
3540 int code;
3541 int afs_dhashbits;
3543 afs_freeDCList = NULLIDX;
3544 afs_discardDCList = NULLIDX;
3545 afs_freeDCCount = 0;
3546 afs_freeDSList = NULL;
3547 hzero(afs_indexCounter);
3549 LOCK_INIT(&afs_xdcache, "afs_xdcache");
3552 * Set chunk size
3554 if (achunk) {
3555 if (achunk < 0 || achunk > 30)
3556 achunk = 13; /* Use default */
3557 AFS_SETCHUNKSIZE(achunk);
3560 if (!aDentries)
3561 aDentries = DDSIZE;
3563 /* afs_dhashsize defaults to 1024 */
3564 if (aDentries > 512)
3565 afs_dhashsize = 2048;
3566 /* Try to keep the average chain length around two unless the table
3567 * would be ridiculously big. */
3568 if (aDentries > 4096) {
3569 afs_dhashbits = opr_fls(aDentries) - 3;
3570 /* Cap the hash tables to 32k entries. */
3571 if (afs_dhashbits > 15)
3572 afs_dhashbits = 15;
3573 afs_dhashsize = opr_jhash_size(afs_dhashbits);
3575 /* initialize hash tables */
3576 afs_dvhashTbl = afs_osi_Alloc(afs_dhashsize * sizeof(afs_int32));
3577 osi_Assert(afs_dvhashTbl != NULL);
3578 afs_dchashTbl = afs_osi_Alloc(afs_dhashsize * sizeof(afs_int32));
3579 osi_Assert(afs_dchashTbl != NULL);
3580 for (i = 0; i < afs_dhashsize; i++) {
3581 afs_dvhashTbl[i] = NULLIDX;
3582 afs_dchashTbl[i] = NULLIDX;
3584 afs_dvnextTbl = afs_osi_Alloc(afiles * sizeof(afs_int32));
3585 osi_Assert(afs_dvnextTbl != NULL);
3586 afs_dcnextTbl = afs_osi_Alloc(afiles * sizeof(afs_int32));
3587 osi_Assert(afs_dcnextTbl != NULL);
3588 for (i = 0; i < afiles; i++) {
3589 afs_dvnextTbl[i] = NULLIDX;
3590 afs_dcnextTbl[i] = NULLIDX;
3593 /* Allocate and zero the pointer array to the dcache entries */
3594 afs_indexTable = afs_osi_Alloc(sizeof(struct dcache *) * afiles);
3595 osi_Assert(afs_indexTable != NULL);
3596 memset(afs_indexTable, 0, sizeof(struct dcache *) * afiles);
3597 afs_indexTimes = afs_osi_Alloc(afiles * sizeof(afs_hyper_t));
3598 osi_Assert(afs_indexTimes != NULL);
3599 memset(afs_indexTimes, 0, afiles * sizeof(afs_hyper_t));
3600 afs_indexUnique = afs_osi_Alloc(afiles * sizeof(afs_uint32));
3601 osi_Assert(afs_indexUnique != NULL);
3602 memset(afs_indexUnique, 0, afiles * sizeof(afs_uint32));
3603 afs_indexFlags = afs_osi_Alloc(afiles * sizeof(u_char));
3604 osi_Assert(afs_indexFlags != NULL);
3605 memset(afs_indexFlags, 0, afiles * sizeof(char));
3607 /* Allocate and thread the struct dcache entries themselves */
3608 tdp = afs_Initial_freeDSList =
3609 afs_osi_Alloc(aDentries * sizeof(struct dcache));
3610 osi_Assert(tdp != NULL);
3611 memset(tdp, 0, aDentries * sizeof(struct dcache));
3612 #ifdef KERNEL_HAVE_PIN
3613 pin((char *)afs_indexTable, sizeof(struct dcache *) * afiles); /* XXX */
3614 pin((char *)afs_indexTimes, sizeof(afs_hyper_t) * afiles); /* XXX */
3615 pin((char *)afs_indexFlags, sizeof(char) * afiles); /* XXX */
3616 pin((char *)afs_indexUnique, sizeof(afs_int32) * afiles); /* XXX */
3617 pin((char *)tdp, aDentries * sizeof(struct dcache)); /* XXX */
3618 pin((char *)afs_dvhashTbl, sizeof(afs_int32) * afs_dhashsize); /* XXX */
3619 pin((char *)afs_dchashTbl, sizeof(afs_int32) * afs_dhashsize); /* XXX */
3620 pin((char *)afs_dcnextTbl, sizeof(afs_int32) * afiles); /* XXX */
3621 pin((char *)afs_dvnextTbl, sizeof(afs_int32) * afiles); /* XXX */
3622 #endif
3624 afs_freeDSList = &tdp[0];
3625 for (i = 0; i < aDentries - 1; i++) {
3626 tdp[i].lruq.next = (struct afs_q *)(&tdp[i + 1]);
3627 AFS_RWLOCK_INIT(&tdp[i].lock, "dcache lock");
3628 AFS_RWLOCK_INIT(&tdp[i].tlock, "dcache tlock");
3629 AFS_RWLOCK_INIT(&tdp[i].mflock, "dcache flock");
3631 tdp[aDentries - 1].lruq.next = (struct afs_q *)0;
3632 AFS_RWLOCK_INIT(&tdp[aDentries - 1].lock, "dcache lock");
3633 AFS_RWLOCK_INIT(&tdp[aDentries - 1].tlock, "dcache tlock");
3634 AFS_RWLOCK_INIT(&tdp[aDentries - 1].mflock, "dcache flock");
3636 afs_stats_cmperf.cacheBlocksOrig = afs_stats_cmperf.cacheBlocksTotal =
3637 afs_cacheBlocks = ablocks;
3638 afs_ComputeCacheParms(); /* compute parms based on cache size */
3640 afs_dcentries = aDentries;
3641 afs_blocksUsed = 0;
3642 afs_stats_cmperf.cacheBucket0_Discarded =
3643 afs_stats_cmperf.cacheBucket1_Discarded =
3644 afs_stats_cmperf.cacheBucket2_Discarded = 0;
3645 afs_DCSizeInit();
3646 QInit(&afs_DLRU);
3648 if (aflags & AFSCALL_INIT_MEMCACHE) {
3650 * Use a memory cache instead of a disk cache
3652 cacheDiskType = AFS_FCACHE_TYPE_MEM;
3653 afs_cacheType = &afs_MemCacheOps;
3654 afiles = (afiles < aDentries) ? afiles : aDentries; /* min */
3655 code = afs_InitMemCache(afiles, AFS_FIRSTCSIZE, aflags);
3656 if (code != 0) {
3657 afs_warn("afsd: memory cache too large for available memory.\n");
3658 afs_warn("afsd: AFS files cannot be accessed.\n\n");
3659 dcacheDisabled = 1;
3660 return code;
3661 } else
3662 afs_warn("Memory cache: Allocating %d dcache entries...",
3663 aDentries);
3664 } else {
3665 cacheDiskType = AFS_FCACHE_TYPE_UFS;
3666 afs_cacheType = &afs_UfsCacheOps;
3668 return 0;
3672 * Shuts down the cache.
3675 void
3676 shutdown_dcache(void)
3678 int i;
3680 #ifdef AFS_CACHE_VNODE_PATH
3681 if (cacheDiskType != AFS_FCACHE_TYPE_MEM) {
3682 struct dcache *tdc;
3683 for (i = 0; i < afs_cacheFiles; i++) {
3684 tdc = afs_indexTable[i];
3685 if (tdc) {
3686 afs_osi_FreeStr(tdc->f.inode.ufs);
3690 #endif
3692 afs_osi_Free(afs_dvnextTbl, afs_cacheFiles * sizeof(afs_int32));
3693 afs_osi_Free(afs_dcnextTbl, afs_cacheFiles * sizeof(afs_int32));
3694 afs_osi_Free(afs_indexTable, afs_cacheFiles * sizeof(struct dcache *));
3695 afs_osi_Free(afs_indexTimes, afs_cacheFiles * sizeof(afs_hyper_t));
3696 afs_osi_Free(afs_indexUnique, afs_cacheFiles * sizeof(afs_uint32));
3697 afs_osi_Free(afs_indexFlags, afs_cacheFiles * sizeof(u_char));
3698 afs_osi_Free(afs_Initial_freeDSList,
3699 afs_dcentries * sizeof(struct dcache));
3700 #ifdef KERNEL_HAVE_PIN
3701 unpin((char *)afs_dcnextTbl, afs_cacheFiles * sizeof(afs_int32));
3702 unpin((char *)afs_dvnextTbl, afs_cacheFiles * sizeof(afs_int32));
3703 unpin((char *)afs_indexTable, afs_cacheFiles * sizeof(struct dcache *));
3704 unpin((char *)afs_indexTimes, afs_cacheFiles * sizeof(afs_hyper_t));
3705 unpin((char *)afs_indexUnique, afs_cacheFiles * sizeof(afs_uint32));
3706 unpin((u_char *) afs_indexFlags, afs_cacheFiles * sizeof(u_char));
3707 unpin(afs_Initial_freeDSList, afs_dcentries * sizeof(struct dcache));
3708 #endif
3711 for (i = 0; i < afs_dhashsize; i++) {
3712 afs_dvhashTbl[i] = NULLIDX;
3713 afs_dchashTbl[i] = NULLIDX;
3716 afs_osi_Free(afs_dvhashTbl, afs_dhashsize * sizeof(afs_int32));
3717 afs_osi_Free(afs_dchashTbl, afs_dhashsize * sizeof(afs_int32));
3719 afs_blocksUsed = afs_dcentries = 0;
3720 afs_stats_cmperf.cacheBucket0_Discarded =
3721 afs_stats_cmperf.cacheBucket1_Discarded =
3722 afs_stats_cmperf.cacheBucket2_Discarded = 0;
3723 hzero(afs_indexCounter);
3725 afs_freeDCCount = 0;
3726 afs_freeDCList = NULLIDX;
3727 afs_discardDCList = NULLIDX;
3728 afs_freeDSList = afs_Initial_freeDSList = 0;
3730 LOCK_INIT(&afs_xdcache, "afs_xdcache");
3731 QInit(&afs_DLRU);
3736 * Get a dcache ready for writing, respecting the current cache size limits
3738 * len is required because afs_GetDCache with flag == 4 expects the length
3739 * field to be filled. It decides from this whether it's necessary to fetch
3740 * data into the chunk before writing or not (when the whole chunk is
3741 * overwritten!).
3743 * \param avc The vcache to fetch a dcache for
3744 * \param filePos The start of the section to be written
3745 * \param len The length of the section to be written
3746 * \param areq
3747 * \param noLock
3749 * \return If successful, a reference counted dcache with tdc->lock held. Lock
3750 * must be released and afs_PutDCache() called to free dcache.
3751 * NULL on failure
3753 * \note avc->lock must be held on entry. Function may release and reobtain
3754 * avc->lock and GLOCK.
3757 struct dcache *
3758 afs_ObtainDCacheForWriting(struct vcache *avc, afs_size_t filePos,
3759 afs_size_t len, struct vrequest *areq,
3760 int noLock)
3762 struct dcache *tdc = NULL;
3763 afs_size_t offset;
3765 /* read the cached info */
3766 if (noLock) {
3767 tdc = afs_FindDCache(avc, filePos);
3768 if (tdc)
3769 ObtainWriteLock(&tdc->lock, 657);
3770 } else if (afs_blocksUsed >
3771 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
3772 tdc = afs_FindDCache(avc, filePos);
3773 if (tdc) {
3774 ObtainWriteLock(&tdc->lock, 658);
3775 if (!afs_IsDCacheFresh(tdc, avc)
3776 || (tdc->dflags & DFFetching)) {
3777 ReleaseWriteLock(&tdc->lock);
3778 afs_PutDCache(tdc);
3779 tdc = NULL;
3782 if (!tdc) {
3783 afs_MaybeWakeupTruncateDaemon();
3784 while (afs_blocksUsed >
3785 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
3786 ReleaseWriteLock(&avc->lock);
3787 afs_MaybeWaitForCacheDrain();
3788 afs_MaybeFreeDiscardedDCache();
3789 afs_MaybeWakeupTruncateDaemon();
3790 ObtainWriteLock(&avc->lock, 509);
3792 avc->f.states |= CDirty;
3793 tdc = afs_GetDCache(avc, filePos, areq, &offset, &len, 4);
3794 if (tdc)
3795 ObtainWriteLock(&tdc->lock, 659);
3797 } else {
3798 tdc = afs_GetDCache(avc, filePos, areq, &offset, &len, 4);
3799 if (tdc)
3800 ObtainWriteLock(&tdc->lock, 660);
3802 if (tdc) {
3803 if (!(afs_indexFlags[tdc->index] & IFDataMod)) {
3804 afs_stats_cmperf.cacheCurrDirtyChunks++;
3805 afs_indexFlags[tdc->index] |= IFDataMod; /* so it doesn't disappear */
3807 if (!(tdc->f.states & DWriting)) {
3808 /* don't mark entry as mod if we don't have to */
3809 tdc->f.states |= DWriting;
3810 tdc->dflags |= DFEntryMod;
3813 return tdc;
3817 * Make a shadow copy of a dir's dcache. It's used for disconnected
3818 * operations like remove/create/rename to keep the original directory data.
3819 * On reconnection, we can diff the original data with the server and get the
3820 * server changes and with the local data to get the local changes.
3822 * \param avc The dir vnode.
3823 * \param adc The dir dcache.
3825 * \return 0 for success.
3827 * \note The vcache entry must be write locked.
3828 * \note The dcache entry must be read locked.
3831 afs_MakeShadowDir(struct vcache *avc, struct dcache *adc)
3833 int i, code, ret_code = 0, written, trans_size;
3834 struct dcache *new_dc = NULL;
3835 struct osi_file *tfile_src = NULL, *tfile_dst = NULL;
3836 struct VenusFid shadow_fid;
3837 char *data = NULL;
3839 /* Is this a dir? */
3840 if (vType(avc) != VDIR)
3841 return ENOTDIR;
3843 if (avc->f.shadow.vnode || avc->f.shadow.unique)
3844 return EEXIST;
3846 /* Generate a fid for the shadow dir. */
3847 shadow_fid.Cell = avc->f.fid.Cell;
3848 shadow_fid.Fid.Volume = avc->f.fid.Fid.Volume;
3849 afs_GenShadowFid(&shadow_fid);
3851 ObtainWriteLock(&afs_xdcache, 716);
3853 /* Get a fresh dcache. */
3854 (void)afs_AllocDCache(&new_dc, avc, 0, 0, &shadow_fid);
3855 osi_Assert(new_dc);
3857 ObtainReadLock(&adc->mflock);
3859 /* Set up the new fid. */
3860 /* Copy interesting data from original dir dcache. */
3861 new_dc->mflags = adc->mflags;
3862 new_dc->dflags = adc->dflags;
3863 new_dc->f.modTime = adc->f.modTime;
3864 new_dc->f.versionNo = adc->f.versionNo;
3865 new_dc->f.states = adc->f.states;
3866 new_dc->f.chunk= adc->f.chunk;
3867 new_dc->f.chunkBytes = adc->f.chunkBytes;
3869 ReleaseReadLock(&adc->mflock);
3871 /* Now add to the two hash chains */
3872 i = DCHash(&shadow_fid, 0);
3873 afs_dcnextTbl[new_dc->index] = afs_dchashTbl[i];
3874 afs_dchashTbl[i] = new_dc->index;
3876 i = DVHash(&shadow_fid);
3877 afs_dvnextTbl[new_dc->index] = afs_dvhashTbl[i];
3878 afs_dvhashTbl[i] = new_dc->index;
3880 ReleaseWriteLock(&afs_xdcache);
3882 /* Make sure and flush dir buffers back into the disk cache */
3883 DFlushDCache(adc);
3885 /* Alloc a 4k block. */
3886 data = afs_osi_Alloc(4096);
3887 if (!data) {
3888 afs_warn("afs_MakeShadowDir: could not alloc data\n");
3889 ret_code = ENOMEM;
3890 goto done;
3893 /* Open the files. */
3894 tfile_src = afs_CFileOpen(&adc->f.inode);
3895 if (!tfile_src) {
3896 ret_code = EIO;
3897 goto done;
3900 tfile_dst = afs_CFileOpen(&new_dc->f.inode);
3901 if (!tfile_dst) {
3902 ret_code = EIO;
3903 goto done;
3906 /* And now copy dir dcache data into this dcache,
3907 * 4k at a time.
3909 written = 0;
3910 while (written < adc->f.chunkBytes) {
3911 trans_size = adc->f.chunkBytes - written;
3912 if (trans_size > 4096)
3913 trans_size = 4096;
3915 /* Read a chunk from the dcache. */
3916 code = afs_CFileRead(tfile_src, written, data, trans_size);
3917 if (code < trans_size) {
3918 ret_code = EIO;
3919 break;
3922 /* Write it to the new dcache. */
3923 code = afs_CFileWrite(tfile_dst, written, data, trans_size);
3924 if (code < trans_size) {
3925 ret_code = EIO;
3926 break;
3929 written+=trans_size;
3932 done:
3933 if (tfile_dst)
3934 afs_CFileClose(tfile_dst);
3935 if (tfile_src)
3936 afs_CFileClose(tfile_src);
3938 if (data)
3939 afs_osi_Free(data, 4096);
3941 ReleaseWriteLock(&new_dc->lock);
3942 afs_PutDCache(new_dc);
3944 if (!ret_code) {
3945 ObtainWriteLock(&afs_xvcache, 763);
3946 ObtainWriteLock(&afs_disconDirtyLock, 765);
3947 QAdd(&afs_disconShadow, &avc->shadowq);
3948 osi_Assert((afs_RefVCache(avc) == 0));
3949 ReleaseWriteLock(&afs_disconDirtyLock);
3950 ReleaseWriteLock(&afs_xvcache);
3952 avc->f.shadow.vnode = shadow_fid.Fid.Vnode;
3953 avc->f.shadow.unique = shadow_fid.Fid.Unique;
3956 return ret_code;
3960 * Delete the dcaches of a shadow dir.
3962 * \param avc The vcache containing the shadow fid.
3964 * \note avc must be write locked.
3966 void
3967 afs_DeleteShadowDir(struct vcache *avc)
3969 struct dcache *tdc;
3970 struct VenusFid shadow_fid;
3972 shadow_fid.Cell = avc->f.fid.Cell;
3973 shadow_fid.Fid.Volume = avc->f.fid.Fid.Volume;
3974 shadow_fid.Fid.Vnode = avc->f.shadow.vnode;
3975 shadow_fid.Fid.Unique = avc->f.shadow.unique;
3977 tdc = afs_FindDCacheByFid(&shadow_fid);
3978 if (tdc) {
3979 afs_HashOutDCache(tdc, 1);
3980 afs_DiscardDCache(tdc);
3981 afs_PutDCache(tdc);
3983 avc->f.shadow.vnode = avc->f.shadow.unique = 0;
3984 ObtainWriteLock(&afs_disconDirtyLock, 708);
3985 QRemove(&avc->shadowq);
3986 ReleaseWriteLock(&afs_disconDirtyLock);
3987 afs_PutVCache(avc); /* Because we held it when we added to the queue */
3991 * Populate a dcache with empty chunks up to a given file size,
3992 * used before extending a file in order to avoid 'holes' which
3993 * we can't access in disconnected mode.
3995 * \param avc The vcache which is being extended (locked)
3996 * \param alen The new length of the file
3999 void
4000 afs_PopulateDCache(struct vcache *avc, afs_size_t apos, struct vrequest *areq)
4002 struct dcache *tdc;
4003 afs_size_t len, offset;
4004 afs_int32 start, end;
4006 /* We're doing this to deal with the situation where we extend
4007 * by writing after lseek()ing past the end of the file . If that
4008 * extension skips chunks, then those chunks won't be created, and
4009 * GetDCache will assume that they have to be fetched from the server.
4010 * So, for each chunk between the current file position, and the new
4011 * length we GetDCache for that chunk.
4014 if (AFS_CHUNK(apos) == 0 || apos <= avc->f.m.Length)
4015 return;
4017 if (avc->f.m.Length == 0)
4018 start = 0;
4019 else
4020 start = AFS_CHUNK(avc->f.m.Length)+1;
4022 end = AFS_CHUNK(apos);
4024 while (start<end) {
4025 len = AFS_CHUNKTOSIZE(start);
4026 tdc = afs_GetDCache(avc, AFS_CHUNKTOBASE(start), areq, &offset, &len, 4);
4027 if (tdc)
4028 afs_PutDCache(tdc);
4029 start++;