Merge from mainline (160224:163495).
[official-gcc/graphite-test-results.git] / gcc / sel-sched.c
blob0f02c0c9618493f7697c06373ef1dc400119b1aa
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
68 Terminology
69 ===========
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
95 High-level overview
96 ===================
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
118 Computing available expressions
119 ===============================
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
135 Choosing the best expression
136 ============================
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
149 Scheduling the best expression
150 ==============================
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
162 Finalizing the schedule
163 =======================
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
169 Dependence analysis changes
170 ===========================
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
181 Initialization changes
182 ======================
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193 Target contexts
194 ===============
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
204 Various speedups
205 ================
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
263 /* Definitions of local types and macros. */
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
284 /* What we are searching for. */
285 rtx x;
287 /* The occurence counter. */
288 int n;
291 typedef struct rtx_search_arg *rtx_search_arg_p;
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
349 /* Local params used in move_op_* functions. */
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
371 /* Destination register. */
372 rtx dest;
374 /* Current C_EXPR. */
375 expr_t c_expr;
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
463 /* Current fences. */
464 flist_t fences;
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
540 /* Variables to accumulate different statistics. */
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572 static void debug_state (state_t);
575 /* Functions that work with fences. */
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
581 unsigned i;
582 int cycle;
583 rtx insn;
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 if (INSN_READY_CYCLE (insn) < cycle)
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
600 i++;
602 if (sched_verbose >= 2)
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
614 basic_block bb = BLOCK_FOR_INSN (insn);
616 if (bb == BLOCK_FOR_INSN (succ))
617 return true;
619 if (find_fallthru_edge (bb))
620 bb = find_fallthru_edge (bb)->dest;
621 else
622 return false;
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
627 return bb == BLOCK_FOR_INSN (succ);
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 gcc_assert (!was_here_p);
650 was_here_p = true;
652 gcc_assert (was_here_p && insn != NULL_RTX);
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
661 insn_t succ;
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 return;
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 int seqno = INSN_SEQNO (succ);
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
710 /* Functions to support substitution. */
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
733 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
762 rtx new_insn;
763 rtx *where_replace;
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_regno (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
798 return true;
800 else
801 return false;
803 else
804 return false;
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
813 /* The last param FOR_GCSE is true, because otherwise it performs excessive
814 substitutions like
815 r8 = r33
816 r16 = r33
817 for the last insn it presumes r33 equivalent to r8, so it changes it to
818 r33. Actually, there's no change, but it spoils debugging. */
819 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
821 /* Bail out if we occupy more than one register. */
822 if (REG_P (*cur_rtx)
823 && HARD_REGISTER_P (*cur_rtx)
824 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
826 p->n = 0;
827 return 1;
830 p->n++;
832 /* Do not traverse subexprs. */
833 return -1;
836 if (GET_CODE (*cur_rtx) == SUBREG
837 && REG_P (p->x)
838 && (!REG_P (SUBREG_REG (*cur_rtx))
839 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
841 /* ??? Do not support substituting regs inside subregs. In that case,
842 simplify_subreg will be called by validate_replace_rtx, and
843 unsubstitution will fail later. */
844 p->n = 0;
845 return 1;
848 /* Continue search. */
849 return 0;
852 /* Return the number of places WHAT appears within WHERE.
853 Bail out when we found a reference occupying several hard registers. */
854 static int
855 count_occurrences_equiv (rtx what, rtx where)
857 struct rtx_search_arg arg;
859 arg.x = what;
860 arg.n = 0;
862 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
864 return arg.n;
867 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
868 static bool
869 rtx_ok_for_substitution_p (rtx what, rtx where)
871 return (count_occurrences_equiv (what, where) > 0);
875 /* Functions to support register renaming. */
877 /* Substitute VI's set source with REGNO. Returns newly created pattern
878 that has REGNO as its source. */
879 static rtx
880 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
882 rtx lhs_rtx;
883 rtx pattern;
884 rtx insn_rtx;
886 lhs_rtx = copy_rtx (VINSN_LHS (vi));
888 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
889 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
891 return insn_rtx;
894 /* Returns whether INSN's src can be replaced with register number
895 NEW_SRC_REG. E.g. the following insn is valid for i386:
897 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
898 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
899 (reg:SI 0 ax [orig:770 c1 ] [770]))
900 (const_int 288 [0x120])) [0 str S1 A8])
901 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
902 (nil))
904 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
905 because of operand constraints:
907 (define_insn "*movqi_1"
908 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
909 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
912 So do constrain_operands here, before choosing NEW_SRC_REG as best
913 reg for rhs. */
915 static bool
916 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
918 vinsn_t vi = INSN_VINSN (insn);
919 enum machine_mode mode;
920 rtx dst_loc;
921 bool res;
923 gcc_assert (VINSN_SEPARABLE_P (vi));
925 get_dest_and_mode (insn, &dst_loc, &mode);
926 gcc_assert (mode == GET_MODE (new_src_reg));
928 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
929 return true;
931 /* See whether SET_SRC can be replaced with this register. */
932 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
933 res = verify_changes (0);
934 cancel_changes (0);
936 return res;
939 /* Returns whether INSN still be valid after replacing it's DEST with
940 register NEW_REG. */
941 static bool
942 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
944 vinsn_t vi = INSN_VINSN (insn);
945 bool res;
947 /* We should deal here only with separable insns. */
948 gcc_assert (VINSN_SEPARABLE_P (vi));
949 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
951 /* See whether SET_DEST can be replaced with this register. */
952 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
953 res = verify_changes (0);
954 cancel_changes (0);
956 return res;
959 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
960 static rtx
961 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
963 rtx rhs_rtx;
964 rtx pattern;
965 rtx insn_rtx;
967 rhs_rtx = copy_rtx (VINSN_RHS (vi));
969 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
970 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
972 return insn_rtx;
975 /* Substitute lhs in the given expression EXPR for the register with number
976 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
977 static void
978 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
980 rtx insn_rtx;
981 vinsn_t vinsn;
983 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
984 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
986 change_vinsn_in_expr (expr, vinsn);
987 EXPR_WAS_RENAMED (expr) = 1;
988 EXPR_TARGET_AVAILABLE (expr) = 1;
991 /* Returns whether VI writes either one of the USED_REGS registers or,
992 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
993 static bool
994 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
995 HARD_REG_SET unavailable_hard_regs)
997 unsigned regno;
998 reg_set_iterator rsi;
1000 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1002 if (REGNO_REG_SET_P (used_regs, regno))
1003 return true;
1004 if (HARD_REGISTER_NUM_P (regno)
1005 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1006 return true;
1009 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1011 if (REGNO_REG_SET_P (used_regs, regno))
1012 return true;
1013 if (HARD_REGISTER_NUM_P (regno)
1014 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1015 return true;
1018 return false;
1021 /* Returns register class of the output register in INSN.
1022 Returns NO_REGS for call insns because some targets have constraints on
1023 destination register of a call insn.
1025 Code adopted from regrename.c::build_def_use. */
1026 static enum reg_class
1027 get_reg_class (rtx insn)
1029 int alt, i, n_ops;
1031 extract_insn (insn);
1032 if (! constrain_operands (1))
1033 fatal_insn_not_found (insn);
1034 preprocess_constraints ();
1035 alt = which_alternative;
1036 n_ops = recog_data.n_operands;
1038 for (i = 0; i < n_ops; ++i)
1040 int matches = recog_op_alt[i][alt].matches;
1041 if (matches >= 0)
1042 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1045 if (asm_noperands (PATTERN (insn)) > 0)
1047 for (i = 0; i < n_ops; i++)
1048 if (recog_data.operand_type[i] == OP_OUT)
1050 rtx *loc = recog_data.operand_loc[i];
1051 rtx op = *loc;
1052 enum reg_class cl = recog_op_alt[i][alt].cl;
1054 if (REG_P (op)
1055 && REGNO (op) == ORIGINAL_REGNO (op))
1056 continue;
1058 return cl;
1061 else if (!CALL_P (insn))
1063 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1065 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1066 enum reg_class cl = recog_op_alt[opn][alt].cl;
1068 if (recog_data.operand_type[opn] == OP_OUT ||
1069 recog_data.operand_type[opn] == OP_INOUT)
1070 return cl;
1074 /* Insns like
1075 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1076 may result in returning NO_REGS, cause flags is written implicitly through
1077 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1078 return NO_REGS;
1081 #ifdef HARD_REGNO_RENAME_OK
1082 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1083 static void
1084 init_hard_regno_rename (int regno)
1086 int cur_reg;
1088 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1090 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1092 /* We are not interested in renaming in other regs. */
1093 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1094 continue;
1096 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1097 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1100 #endif
1102 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1103 data first. */
1104 static inline bool
1105 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1107 #ifdef HARD_REGNO_RENAME_OK
1108 /* Check whether this is all calculated. */
1109 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1110 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1112 init_hard_regno_rename (from);
1114 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1115 #else
1116 return true;
1117 #endif
1120 /* Calculate set of registers that are capable of holding MODE. */
1121 static void
1122 init_regs_for_mode (enum machine_mode mode)
1124 int cur_reg;
1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1127 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1129 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1131 int nregs = hard_regno_nregs[cur_reg][mode];
1132 int i;
1134 for (i = nregs - 1; i >= 0; --i)
1135 if (fixed_regs[cur_reg + i]
1136 || global_regs[cur_reg + i]
1137 /* Can't use regs which aren't saved by
1138 the prologue. */
1139 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1140 #ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145 #endif
1147 break;
1149 if (i >= 0)
1150 continue;
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1159 cur_reg);
1161 /* If the CUR_REG passed all the checks above,
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1169 /* Init all register sets gathered in HRD. */
1170 static void
1171 init_hard_regs_data (void)
1173 int cur_reg = 0;
1174 int cur_mode = 0;
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1181 /* Initialize registers that are valid based on mode when this is
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1190 #ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195 #endif
1198 /* Mark hardware regs in REG_RENAME_P that are not suitable
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1206 static void
1207 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1226 regno = REGNO (orig_dest);
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
1237 if (fixed_regs[regno]
1238 || global_regs[regno]
1239 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1241 #else
1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1243 #endif
1244 || (reload_completed && cl == NO_REGS))
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1252 return;
1255 /* If something allocated on stack in this function, mark frame pointer
1256 register unavailable, considering also modes.
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1260 int i;
1262 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1263 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1264 FRAME_POINTER_REGNUM + i);
1266 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1267 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1269 HARD_FRAME_POINTER_REGNUM + i);
1270 #endif
1273 #ifdef STACK_REGS
1274 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1275 is equivalent to as if all stack regs were in this set.
1276 I.e. no stack register can be renamed, and even if it's an original
1277 register here we make sure it won't be lifted over it's previous def
1278 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1279 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1280 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1281 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1282 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1283 sel_hrd.stack_regs);
1284 #endif
1286 /* If there's a call on this path, make regs from call_used_reg_set
1287 unavailable. */
1288 if (def->crosses_call)
1289 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1290 call_used_reg_set);
1292 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1293 but not register classes. */
1294 if (!reload_completed)
1295 return;
1297 /* Leave regs as 'available' only from the current
1298 register class. */
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]);
1302 mode = GET_MODE (orig_dest);
1304 /* Leave only registers available for this mode. */
1305 if (!sel_hrd.regs_for_mode_ok[mode])
1306 init_regs_for_mode (mode);
1307 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1308 sel_hrd.regs_for_mode[mode]);
1310 /* Exclude registers that are partially call clobbered. */
1311 if (def->crosses_call
1312 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1313 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1314 sel_hrd.regs_for_call_clobbered[mode]);
1316 /* Leave only those that are ok to rename. */
1317 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1318 0, cur_reg, hrsi)
1320 int nregs;
1321 int i;
1323 nregs = hard_regno_nregs[cur_reg][mode];
1324 gcc_assert (nregs > 0);
1326 for (i = nregs - 1; i >= 0; --i)
1327 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1328 break;
1330 if (i >= 0)
1331 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1332 cur_reg);
1335 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1336 reg_rename_p->unavailable_hard_regs);
1338 /* Regno is always ok from the renaming part of view, but it really
1339 could be in *unavailable_hard_regs already, so set it here instead
1340 of there. */
1341 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1344 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1345 best register more recently than REG2. */
1346 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1348 /* Indicates the number of times renaming happened before the current one. */
1349 static int reg_rename_this_tick;
1351 /* Choose the register among free, that is suitable for storing
1352 the rhs value.
1354 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1355 originally appears. There could be multiple original operations
1356 for single rhs since we moving it up and merging along different
1357 paths.
1359 Some code is adapted from regrename.c (regrename_optimize).
1360 If original register is available, function returns it.
1361 Otherwise it performs the checks, so the new register should
1362 comply with the following:
1363 - it should not violate any live ranges (such registers are in
1364 REG_RENAME_P->available_for_renaming set);
1365 - it should not be in the HARD_REGS_USED regset;
1366 - it should be in the class compatible with original uses;
1367 - it should not be clobbered through reference with different mode;
1368 - if we're in the leaf function, then the new register should
1369 not be in the LEAF_REGISTERS;
1370 - etc.
1372 If several registers meet the conditions, the register with smallest
1373 tick is returned to achieve more even register allocation.
1375 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1377 If no register satisfies the above conditions, NULL_RTX is returned. */
1378 static rtx
1379 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1380 struct reg_rename *reg_rename_p,
1381 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1383 int best_new_reg;
1384 unsigned cur_reg;
1385 enum machine_mode mode = VOIDmode;
1386 unsigned regno, i, n;
1387 hard_reg_set_iterator hrsi;
1388 def_list_iterator di;
1389 def_t def;
1391 /* If original register is available, return it. */
1392 *is_orig_reg_p_ptr = true;
1394 FOR_EACH_DEF (def, di, original_insns)
1396 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1398 gcc_assert (REG_P (orig_dest));
1400 /* Check that all original operations have the same mode.
1401 This is done for the next loop; if we'd return from this
1402 loop, we'd check only part of them, but in this case
1403 it doesn't matter. */
1404 if (mode == VOIDmode)
1405 mode = GET_MODE (orig_dest);
1406 gcc_assert (mode == GET_MODE (orig_dest));
1408 regno = REGNO (orig_dest);
1409 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1410 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1411 break;
1413 /* All hard registers are available. */
1414 if (i == n)
1416 gcc_assert (mode != VOIDmode);
1418 /* Hard registers should not be shared. */
1419 return gen_rtx_REG (mode, regno);
1423 *is_orig_reg_p_ptr = false;
1424 best_new_reg = -1;
1426 /* Among all available regs choose the register that was
1427 allocated earliest. */
1428 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1429 0, cur_reg, hrsi)
1430 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1432 /* Check that all hard regs for mode are available. */
1433 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1434 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1435 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1436 cur_reg + i))
1437 break;
1439 if (i < n)
1440 continue;
1442 /* All hard registers are available. */
1443 if (best_new_reg < 0
1444 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1446 best_new_reg = cur_reg;
1448 /* Return immediately when we know there's no better reg. */
1449 if (! reg_rename_tick[best_new_reg])
1450 break;
1454 if (best_new_reg >= 0)
1456 /* Use the check from the above loop. */
1457 gcc_assert (mode != VOIDmode);
1458 return gen_rtx_REG (mode, best_new_reg);
1461 return NULL_RTX;
1464 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1465 assumptions about available registers in the function. */
1466 static rtx
1467 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1468 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1470 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1471 original_insns, is_orig_reg_p_ptr);
1473 /* FIXME loop over hard_regno_nregs here. */
1474 gcc_assert (best_reg == NULL_RTX
1475 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1477 return best_reg;
1480 /* Choose the pseudo register for storing rhs value. As this is supposed
1481 to work before reload, we return either the original register or make
1482 the new one. The parameters are the same that in choose_nest_reg_1
1483 functions, except that USED_REGS may contain pseudos.
1484 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1486 TODO: take into account register pressure while doing this. Up to this
1487 moment, this function would never return NULL for pseudos, but we should
1488 not rely on this. */
1489 static rtx
1490 choose_best_pseudo_reg (regset used_regs,
1491 struct reg_rename *reg_rename_p,
1492 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1494 def_list_iterator i;
1495 def_t def;
1496 enum machine_mode mode = VOIDmode;
1497 bool bad_hard_regs = false;
1499 /* We should not use this after reload. */
1500 gcc_assert (!reload_completed);
1502 /* If original register is available, return it. */
1503 *is_orig_reg_p_ptr = true;
1505 FOR_EACH_DEF (def, i, original_insns)
1507 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1508 int orig_regno;
1510 gcc_assert (REG_P (dest));
1512 /* Check that all original operations have the same mode. */
1513 if (mode == VOIDmode)
1514 mode = GET_MODE (dest);
1515 else
1516 gcc_assert (mode == GET_MODE (dest));
1517 orig_regno = REGNO (dest);
1519 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1521 if (orig_regno < FIRST_PSEUDO_REGISTER)
1523 gcc_assert (df_regs_ever_live_p (orig_regno));
1525 /* For hard registers, we have to check hardware imposed
1526 limitations (frame/stack registers, calls crossed). */
1527 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1528 orig_regno))
1530 /* Don't let register cross a call if it doesn't already
1531 cross one. This condition is written in accordance with
1532 that in sched-deps.c sched_analyze_reg(). */
1533 if (!reg_rename_p->crosses_call
1534 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1535 return gen_rtx_REG (mode, orig_regno);
1538 bad_hard_regs = true;
1540 else
1541 return dest;
1545 *is_orig_reg_p_ptr = false;
1547 /* We had some original hard registers that couldn't be used.
1548 Those were likely special. Don't try to create a pseudo. */
1549 if (bad_hard_regs)
1550 return NULL_RTX;
1552 /* We haven't found a register from original operations. Get a new one.
1553 FIXME: control register pressure somehow. */
1555 rtx new_reg = gen_reg_rtx (mode);
1557 gcc_assert (mode != VOIDmode);
1559 max_regno = max_reg_num ();
1560 maybe_extend_reg_info_p ();
1561 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1563 return new_reg;
1567 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1568 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1569 static void
1570 verify_target_availability (expr_t expr, regset used_regs,
1571 struct reg_rename *reg_rename_p)
1573 unsigned n, i, regno;
1574 enum machine_mode mode;
1575 bool target_available, live_available, hard_available;
1577 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1578 return;
1580 regno = expr_dest_regno (expr);
1581 mode = GET_MODE (EXPR_LHS (expr));
1582 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1583 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1585 live_available = hard_available = true;
1586 for (i = 0; i < n; i++)
1588 if (bitmap_bit_p (used_regs, regno + i))
1589 live_available = false;
1590 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1591 hard_available = false;
1594 /* When target is not available, it may be due to hard register
1595 restrictions, e.g. crosses calls, so we check hard_available too. */
1596 if (target_available)
1597 gcc_assert (live_available);
1598 else
1599 /* Check only if we haven't scheduled something on the previous fence,
1600 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1601 and having more than one fence, we may end having targ_un in a block
1602 in which successors target register is actually available.
1604 The last condition handles the case when a dependence from a call insn
1605 was created in sched-deps.c for insns with destination registers that
1606 never crossed a call before, but do cross one after our code motion.
1608 FIXME: in the latter case, we just uselessly called find_used_regs,
1609 because we can't move this expression with any other register
1610 as well. */
1611 gcc_assert (scheduled_something_on_previous_fence || !live_available
1612 || !hard_available
1613 || (!reload_completed && reg_rename_p->crosses_call
1614 && REG_N_CALLS_CROSSED (regno) == 0));
1617 /* Collect unavailable registers due to liveness for EXPR from BNDS
1618 into USED_REGS. Save additional information about available
1619 registers and unavailable due to hardware restriction registers
1620 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1621 list. */
1622 static void
1623 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1624 struct reg_rename *reg_rename_p,
1625 def_list_t *original_insns)
1627 for (; bnds; bnds = BLIST_NEXT (bnds))
1629 bool res;
1630 av_set_t orig_ops = NULL;
1631 bnd_t bnd = BLIST_BND (bnds);
1633 /* If the chosen best expr doesn't belong to current boundary,
1634 skip it. */
1635 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1636 continue;
1638 /* Put in ORIG_OPS all exprs from this boundary that became
1639 RES on top. */
1640 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1642 /* Compute used regs and OR it into the USED_REGS. */
1643 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1644 reg_rename_p, original_insns);
1646 /* FIXME: the assert is true until we'd have several boundaries. */
1647 gcc_assert (res);
1648 av_set_clear (&orig_ops);
1652 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1653 If BEST_REG is valid, replace LHS of EXPR with it. */
1654 static bool
1655 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1657 /* Try whether we'll be able to generate the insn
1658 'dest := best_reg' at the place of the original operation. */
1659 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1661 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1663 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1665 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1666 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1667 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1668 return false;
1671 /* Make sure that EXPR has the right destination
1672 register. */
1673 if (expr_dest_regno (expr) != REGNO (best_reg))
1674 replace_dest_with_reg_in_expr (expr, best_reg);
1675 else
1676 EXPR_TARGET_AVAILABLE (expr) = 1;
1678 return true;
1681 /* Select and assign best register to EXPR searching from BNDS.
1682 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1683 Return FALSE if no register can be chosen, which could happen when:
1684 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1685 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1686 that are used on the moving path. */
1687 static bool
1688 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1690 static struct reg_rename reg_rename_data;
1692 regset used_regs;
1693 def_list_t original_insns = NULL;
1694 bool reg_ok;
1696 *is_orig_reg_p = false;
1698 /* Don't bother to do anything if this insn doesn't set any registers. */
1699 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1700 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1701 return true;
1703 used_regs = get_clear_regset_from_pool ();
1704 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1706 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1707 &original_insns);
1709 #ifdef ENABLE_CHECKING
1710 /* If after reload, make sure we're working with hard regs here. */
1711 if (reload_completed)
1713 reg_set_iterator rsi;
1714 unsigned i;
1716 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1717 gcc_unreachable ();
1719 #endif
1721 if (EXPR_SEPARABLE_P (expr))
1723 rtx best_reg = NULL_RTX;
1724 /* Check that we have computed availability of a target register
1725 correctly. */
1726 verify_target_availability (expr, used_regs, &reg_rename_data);
1728 /* Turn everything in hard regs after reload. */
1729 if (reload_completed)
1731 HARD_REG_SET hard_regs_used;
1732 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1734 /* Join hard registers unavailable due to register class
1735 restrictions and live range intersection. */
1736 IOR_HARD_REG_SET (hard_regs_used,
1737 reg_rename_data.unavailable_hard_regs);
1739 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1740 original_insns, is_orig_reg_p);
1742 else
1743 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1744 original_insns, is_orig_reg_p);
1746 if (!best_reg)
1747 reg_ok = false;
1748 else if (*is_orig_reg_p)
1750 /* In case of unification BEST_REG may be different from EXPR's LHS
1751 when EXPR's LHS is unavailable, and there is another LHS among
1752 ORIGINAL_INSNS. */
1753 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1755 else
1757 /* Forbid renaming of low-cost insns. */
1758 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1759 reg_ok = false;
1760 else
1761 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1764 else
1766 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1767 any of the HARD_REGS_USED set. */
1768 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1769 reg_rename_data.unavailable_hard_regs))
1771 reg_ok = false;
1772 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1774 else
1776 reg_ok = true;
1777 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1781 ilist_clear (&original_insns);
1782 return_regset_to_pool (used_regs);
1784 return reg_ok;
1788 /* Return true if dependence described by DS can be overcomed. */
1789 static bool
1790 can_speculate_dep_p (ds_t ds)
1792 if (spec_info == NULL)
1793 return false;
1795 /* Leave only speculative data. */
1796 ds &= SPECULATIVE;
1798 if (ds == 0)
1799 return false;
1802 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1803 that we can overcome. */
1804 ds_t spec_mask = spec_info->mask;
1806 if ((ds & spec_mask) != ds)
1807 return false;
1810 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1811 return false;
1813 return true;
1816 /* Get a speculation check instruction.
1817 C_EXPR is a speculative expression,
1818 CHECK_DS describes speculations that should be checked,
1819 ORIG_INSN is the original non-speculative insn in the stream. */
1820 static insn_t
1821 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1823 rtx check_pattern;
1824 rtx insn_rtx;
1825 insn_t insn;
1826 basic_block recovery_block;
1827 rtx label;
1829 /* Create a recovery block if target is going to emit branchy check, or if
1830 ORIG_INSN was speculative already. */
1831 if (targetm.sched.needs_block_p (check_ds)
1832 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1834 recovery_block = sel_create_recovery_block (orig_insn);
1835 label = BB_HEAD (recovery_block);
1837 else
1839 recovery_block = NULL;
1840 label = NULL_RTX;
1843 /* Get pattern of the check. */
1844 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1845 check_ds);
1847 gcc_assert (check_pattern != NULL);
1849 /* Emit check. */
1850 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1852 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1853 INSN_SEQNO (orig_insn), orig_insn);
1855 /* Make check to be non-speculative. */
1856 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1857 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1859 /* Decrease priority of check by difference of load/check instruction
1860 latencies. */
1861 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1862 - sel_vinsn_cost (INSN_VINSN (insn)));
1864 /* Emit copy of original insn (though with replaced target register,
1865 if needed) to the recovery block. */
1866 if (recovery_block != NULL)
1868 rtx twin_rtx;
1870 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1871 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1872 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1873 INSN_EXPR (orig_insn),
1874 INSN_SEQNO (insn),
1875 bb_note (recovery_block));
1878 /* If we've generated a data speculation check, make sure
1879 that all the bookkeeping instruction we'll create during
1880 this move_op () will allocate an ALAT entry so that the
1881 check won't fail.
1882 In case of control speculation we must convert C_EXPR to control
1883 speculative mode, because failing to do so will bring us an exception
1884 thrown by the non-control-speculative load. */
1885 check_ds = ds_get_max_dep_weak (check_ds);
1886 speculate_expr (c_expr, check_ds);
1888 return insn;
1891 /* True when INSN is a "regN = regN" copy. */
1892 static bool
1893 identical_copy_p (rtx insn)
1895 rtx lhs, rhs, pat;
1897 pat = PATTERN (insn);
1899 if (GET_CODE (pat) != SET)
1900 return false;
1902 lhs = SET_DEST (pat);
1903 if (!REG_P (lhs))
1904 return false;
1906 rhs = SET_SRC (pat);
1907 if (!REG_P (rhs))
1908 return false;
1910 return REGNO (lhs) == REGNO (rhs);
1913 /* Undo all transformations on *AV_PTR that were done when
1914 moving through INSN. */
1915 static void
1916 undo_transformations (av_set_t *av_ptr, rtx insn)
1918 av_set_iterator av_iter;
1919 expr_t expr;
1920 av_set_t new_set = NULL;
1922 /* First, kill any EXPR that uses registers set by an insn. This is
1923 required for correctness. */
1924 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1925 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1926 && bitmap_intersect_p (INSN_REG_SETS (insn),
1927 VINSN_REG_USES (EXPR_VINSN (expr)))
1928 /* When an insn looks like 'r1 = r1', we could substitute through
1929 it, but the above condition will still hold. This happened with
1930 gcc.c-torture/execute/961125-1.c. */
1931 && !identical_copy_p (insn))
1933 if (sched_verbose >= 6)
1934 sel_print ("Expr %d removed due to use/set conflict\n",
1935 INSN_UID (EXPR_INSN_RTX (expr)));
1936 av_set_iter_remove (&av_iter);
1939 /* Undo transformations looking at the history vector. */
1940 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1942 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1943 insn, EXPR_VINSN (expr), true);
1945 if (index >= 0)
1947 expr_history_def *phist;
1949 phist = VEC_index (expr_history_def,
1950 EXPR_HISTORY_OF_CHANGES (expr),
1951 index);
1953 switch (phist->type)
1955 case TRANS_SPECULATION:
1957 ds_t old_ds, new_ds;
1959 /* Compute the difference between old and new speculative
1960 statuses: that's what we need to check.
1961 Earlier we used to assert that the status will really
1962 change. This no longer works because only the probability
1963 bits in the status may have changed during compute_av_set,
1964 and in the case of merging different probabilities of the
1965 same speculative status along different paths we do not
1966 record this in the history vector. */
1967 old_ds = phist->spec_ds;
1968 new_ds = EXPR_SPEC_DONE_DS (expr);
1970 old_ds &= SPECULATIVE;
1971 new_ds &= SPECULATIVE;
1972 new_ds &= ~old_ds;
1974 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1975 break;
1977 case TRANS_SUBSTITUTION:
1979 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1980 vinsn_t new_vi;
1981 bool add = true;
1983 new_vi = phist->old_expr_vinsn;
1985 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1986 == EXPR_SEPARABLE_P (expr));
1987 copy_expr (tmp_expr, expr);
1989 if (vinsn_equal_p (phist->new_expr_vinsn,
1990 EXPR_VINSN (tmp_expr)))
1991 change_vinsn_in_expr (tmp_expr, new_vi);
1992 else
1993 /* This happens when we're unsubstituting on a bookkeeping
1994 copy, which was in turn substituted. The history is wrong
1995 in this case. Do it the hard way. */
1996 add = substitute_reg_in_expr (tmp_expr, insn, true);
1997 if (add)
1998 av_set_add (&new_set, tmp_expr);
1999 clear_expr (tmp_expr);
2000 break;
2002 default:
2003 gcc_unreachable ();
2009 av_set_union_and_clear (av_ptr, &new_set, NULL);
2013 /* Moveup_* helpers for code motion and computing av sets. */
2015 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2016 The difference from the below function is that only substitution is
2017 performed. */
2018 static enum MOVEUP_EXPR_CODE
2019 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2021 vinsn_t vi = EXPR_VINSN (expr);
2022 ds_t *has_dep_p;
2023 ds_t full_ds;
2025 /* Do this only inside insn group. */
2026 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2028 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2029 if (full_ds == 0)
2030 return MOVEUP_EXPR_SAME;
2032 /* Substitution is the possible choice in this case. */
2033 if (has_dep_p[DEPS_IN_RHS])
2035 /* Can't substitute UNIQUE VINSNs. */
2036 gcc_assert (!VINSN_UNIQUE_P (vi));
2038 if (can_substitute_through_p (through_insn,
2039 has_dep_p[DEPS_IN_RHS])
2040 && substitute_reg_in_expr (expr, through_insn, false))
2042 EXPR_WAS_SUBSTITUTED (expr) = true;
2043 return MOVEUP_EXPR_CHANGED;
2046 /* Don't care about this, as even true dependencies may be allowed
2047 in an insn group. */
2048 return MOVEUP_EXPR_SAME;
2051 /* This can catch output dependencies in COND_EXECs. */
2052 if (has_dep_p[DEPS_IN_INSN])
2053 return MOVEUP_EXPR_NULL;
2055 /* This is either an output or an anti dependence, which usually have
2056 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2057 will fix this. */
2058 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2059 return MOVEUP_EXPR_AS_RHS;
2062 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2063 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2064 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2065 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2066 && !sel_insn_is_speculation_check (through_insn))
2068 /* True when a conflict on a target register was found during moveup_expr. */
2069 static bool was_target_conflict = false;
2071 /* Return true when moving a debug INSN across THROUGH_INSN will
2072 create a bookkeeping block. We don't want to create such blocks,
2073 for they would cause codegen differences between compilations with
2074 and without debug info. */
2076 static bool
2077 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2078 insn_t through_insn)
2080 basic_block bbi, bbt;
2081 edge e1, e2;
2082 edge_iterator ei1, ei2;
2084 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2086 if (sched_verbose >= 9)
2087 sel_print ("no bookkeeping required: ");
2088 return FALSE;
2091 bbi = BLOCK_FOR_INSN (insn);
2093 if (EDGE_COUNT (bbi->preds) == 1)
2095 if (sched_verbose >= 9)
2096 sel_print ("only one pred edge: ");
2097 return TRUE;
2100 bbt = BLOCK_FOR_INSN (through_insn);
2102 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2104 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2106 if (find_block_for_bookkeeping (e1, e2, TRUE))
2108 if (sched_verbose >= 9)
2109 sel_print ("found existing block: ");
2110 return FALSE;
2115 if (sched_verbose >= 9)
2116 sel_print ("would create bookkeeping block: ");
2118 return TRUE;
2121 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2122 performing necessary transformations. Record the type of transformation
2123 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2124 permit all dependencies except true ones, and try to remove those
2125 too via forward substitution. All cases when a non-eliminable
2126 non-zero cost dependency exists inside an insn group will be fixed
2127 in tick_check_p instead. */
2128 static enum MOVEUP_EXPR_CODE
2129 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2130 enum local_trans_type *ptrans_type)
2132 vinsn_t vi = EXPR_VINSN (expr);
2133 insn_t insn = VINSN_INSN_RTX (vi);
2134 bool was_changed = false;
2135 bool as_rhs = false;
2136 ds_t *has_dep_p;
2137 ds_t full_ds;
2139 /* When inside_insn_group, delegate to the helper. */
2140 if (inside_insn_group)
2141 return moveup_expr_inside_insn_group (expr, through_insn);
2143 /* Deal with unique insns and control dependencies. */
2144 if (VINSN_UNIQUE_P (vi))
2146 /* We can move jumps without side-effects or jumps that are
2147 mutually exclusive with instruction THROUGH_INSN (all in cases
2148 dependencies allow to do so and jump is not speculative). */
2149 if (control_flow_insn_p (insn))
2151 basic_block fallthru_bb;
2153 /* Do not move checks and do not move jumps through other
2154 jumps. */
2155 if (control_flow_insn_p (through_insn)
2156 || sel_insn_is_speculation_check (insn))
2157 return MOVEUP_EXPR_NULL;
2159 /* Don't move jumps through CFG joins. */
2160 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2161 return MOVEUP_EXPR_NULL;
2163 /* The jump should have a clear fallthru block, and
2164 this block should be in the current region. */
2165 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2166 || ! in_current_region_p (fallthru_bb))
2167 return MOVEUP_EXPR_NULL;
2169 /* And it should be mutually exclusive with through_insn, or
2170 be an unconditional jump. */
2171 if (! any_uncondjump_p (insn)
2172 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2173 && ! DEBUG_INSN_P (through_insn))
2174 return MOVEUP_EXPR_NULL;
2177 /* Don't move what we can't move. */
2178 if (EXPR_CANT_MOVE (expr)
2179 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2180 return MOVEUP_EXPR_NULL;
2182 /* Don't move SCHED_GROUP instruction through anything.
2183 If we don't force this, then it will be possible to start
2184 scheduling a sched_group before all its dependencies are
2185 resolved.
2186 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2187 as late as possible through rank_for_schedule. */
2188 if (SCHED_GROUP_P (insn))
2189 return MOVEUP_EXPR_NULL;
2191 else
2192 gcc_assert (!control_flow_insn_p (insn));
2194 /* Don't move debug insns if this would require bookkeeping. */
2195 if (DEBUG_INSN_P (insn)
2196 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2197 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2198 return MOVEUP_EXPR_NULL;
2200 /* Deal with data dependencies. */
2201 was_target_conflict = false;
2202 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2203 if (full_ds == 0)
2205 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2206 return MOVEUP_EXPR_SAME;
2208 else
2210 /* We can move UNIQUE insn up only as a whole and unchanged,
2211 so it shouldn't have any dependencies. */
2212 if (VINSN_UNIQUE_P (vi))
2213 return MOVEUP_EXPR_NULL;
2216 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2218 int res;
2220 res = speculate_expr (expr, full_ds);
2221 if (res >= 0)
2223 /* Speculation was successful. */
2224 full_ds = 0;
2225 was_changed = (res > 0);
2226 if (res == 2)
2227 was_target_conflict = true;
2228 if (ptrans_type)
2229 *ptrans_type = TRANS_SPECULATION;
2230 sel_clear_has_dependence ();
2234 if (has_dep_p[DEPS_IN_INSN])
2235 /* We have some dependency that cannot be discarded. */
2236 return MOVEUP_EXPR_NULL;
2238 if (has_dep_p[DEPS_IN_LHS])
2240 /* Only separable insns can be moved up with the new register.
2241 Anyways, we should mark that the original register is
2242 unavailable. */
2243 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2244 return MOVEUP_EXPR_NULL;
2246 EXPR_TARGET_AVAILABLE (expr) = false;
2247 was_target_conflict = true;
2248 as_rhs = true;
2251 /* At this point we have either separable insns, that will be lifted
2252 up only as RHSes, or non-separable insns with no dependency in lhs.
2253 If dependency is in RHS, then try to perform substitution and move up
2254 substituted RHS:
2256 Ex. 1: Ex.2
2257 y = x; y = x;
2258 z = y*2; y = y*2;
2260 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2261 moved above y=x assignment as z=x*2.
2263 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2264 side can be moved because of the output dependency. The operation was
2265 cropped to its rhs above. */
2266 if (has_dep_p[DEPS_IN_RHS])
2268 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2270 /* Can't substitute UNIQUE VINSNs. */
2271 gcc_assert (!VINSN_UNIQUE_P (vi));
2273 if (can_speculate_dep_p (*rhs_dsp))
2275 int res;
2277 res = speculate_expr (expr, *rhs_dsp);
2278 if (res >= 0)
2280 /* Speculation was successful. */
2281 *rhs_dsp = 0;
2282 was_changed = (res > 0);
2283 if (res == 2)
2284 was_target_conflict = true;
2285 if (ptrans_type)
2286 *ptrans_type = TRANS_SPECULATION;
2288 else
2289 return MOVEUP_EXPR_NULL;
2291 else if (can_substitute_through_p (through_insn,
2292 *rhs_dsp)
2293 && substitute_reg_in_expr (expr, through_insn, false))
2295 /* ??? We cannot perform substitution AND speculation on the same
2296 insn. */
2297 gcc_assert (!was_changed);
2298 was_changed = true;
2299 if (ptrans_type)
2300 *ptrans_type = TRANS_SUBSTITUTION;
2301 EXPR_WAS_SUBSTITUTED (expr) = true;
2303 else
2304 return MOVEUP_EXPR_NULL;
2307 /* Don't move trapping insns through jumps.
2308 This check should be at the end to give a chance to control speculation
2309 to perform its duties. */
2310 if (CANT_MOVE_TRAPPING (expr, through_insn))
2311 return MOVEUP_EXPR_NULL;
2313 return (was_changed
2314 ? MOVEUP_EXPR_CHANGED
2315 : (as_rhs
2316 ? MOVEUP_EXPR_AS_RHS
2317 : MOVEUP_EXPR_SAME));
2320 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2321 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2322 that can exist within a parallel group. Write to RES the resulting
2323 code for moveup_expr. */
2324 static bool
2325 try_bitmap_cache (expr_t expr, insn_t insn,
2326 bool inside_insn_group,
2327 enum MOVEUP_EXPR_CODE *res)
2329 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2331 /* First check whether we've analyzed this situation already. */
2332 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2334 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2336 if (sched_verbose >= 6)
2337 sel_print ("removed (cached)\n");
2338 *res = MOVEUP_EXPR_NULL;
2339 return true;
2341 else
2343 if (sched_verbose >= 6)
2344 sel_print ("unchanged (cached)\n");
2345 *res = MOVEUP_EXPR_SAME;
2346 return true;
2349 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2351 if (inside_insn_group)
2353 if (sched_verbose >= 6)
2354 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2355 *res = MOVEUP_EXPR_SAME;
2356 return true;
2359 else
2360 EXPR_TARGET_AVAILABLE (expr) = false;
2362 /* This is the only case when propagation result can change over time,
2363 as we can dynamically switch off scheduling as RHS. In this case,
2364 just check the flag to reach the correct decision. */
2365 if (enable_schedule_as_rhs_p)
2367 if (sched_verbose >= 6)
2368 sel_print ("unchanged (as RHS, cached)\n");
2369 *res = MOVEUP_EXPR_AS_RHS;
2370 return true;
2372 else
2374 if (sched_verbose >= 6)
2375 sel_print ("removed (cached as RHS, but renaming"
2376 " is now disabled)\n");
2377 *res = MOVEUP_EXPR_NULL;
2378 return true;
2382 return false;
2385 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2386 if successful. Write to RES the resulting code for moveup_expr. */
2387 static bool
2388 try_transformation_cache (expr_t expr, insn_t insn,
2389 enum MOVEUP_EXPR_CODE *res)
2391 struct transformed_insns *pti
2392 = (struct transformed_insns *)
2393 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2394 &EXPR_VINSN (expr),
2395 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2396 if (pti)
2398 /* This EXPR was already moved through this insn and was
2399 changed as a result. Fetch the proper data from
2400 the hashtable. */
2401 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2402 INSN_UID (insn), pti->type,
2403 pti->vinsn_old, pti->vinsn_new,
2404 EXPR_SPEC_DONE_DS (expr));
2406 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2407 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2408 change_vinsn_in_expr (expr, pti->vinsn_new);
2409 if (pti->was_target_conflict)
2410 EXPR_TARGET_AVAILABLE (expr) = false;
2411 if (pti->type == TRANS_SPECULATION)
2413 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2414 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2417 if (sched_verbose >= 6)
2419 sel_print ("changed (cached): ");
2420 dump_expr (expr);
2421 sel_print ("\n");
2424 *res = MOVEUP_EXPR_CHANGED;
2425 return true;
2428 return false;
2431 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2432 static void
2433 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2434 enum MOVEUP_EXPR_CODE res)
2436 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2438 /* Do not cache result of propagating jumps through an insn group,
2439 as it is always true, which is not useful outside the group. */
2440 if (inside_insn_group)
2441 return;
2443 if (res == MOVEUP_EXPR_NULL)
2445 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2446 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2448 else if (res == MOVEUP_EXPR_SAME)
2450 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2451 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2453 else if (res == MOVEUP_EXPR_AS_RHS)
2455 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2456 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2458 else
2459 gcc_unreachable ();
2462 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2463 and transformation type TRANS_TYPE. */
2464 static void
2465 update_transformation_cache (expr_t expr, insn_t insn,
2466 bool inside_insn_group,
2467 enum local_trans_type trans_type,
2468 vinsn_t expr_old_vinsn)
2470 struct transformed_insns *pti;
2472 if (inside_insn_group)
2473 return;
2475 pti = XNEW (struct transformed_insns);
2476 pti->vinsn_old = expr_old_vinsn;
2477 pti->vinsn_new = EXPR_VINSN (expr);
2478 pti->type = trans_type;
2479 pti->was_target_conflict = was_target_conflict;
2480 pti->ds = EXPR_SPEC_DONE_DS (expr);
2481 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2482 vinsn_attach (pti->vinsn_old);
2483 vinsn_attach (pti->vinsn_new);
2484 *((struct transformed_insns **)
2485 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2486 pti, VINSN_HASH_RTX (expr_old_vinsn),
2487 INSERT)) = pti;
2490 /* Same as moveup_expr, but first looks up the result of
2491 transformation in caches. */
2492 static enum MOVEUP_EXPR_CODE
2493 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2495 enum MOVEUP_EXPR_CODE res;
2496 bool got_answer = false;
2498 if (sched_verbose >= 6)
2500 sel_print ("Moving ");
2501 dump_expr (expr);
2502 sel_print (" through %d: ", INSN_UID (insn));
2505 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2506 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2507 == EXPR_INSN_RTX (expr)))
2508 /* Don't use cached information for debug insns that are heads of
2509 basic blocks. */;
2510 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2511 /* When inside insn group, we do not want remove stores conflicting
2512 with previosly issued loads. */
2513 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2514 else if (try_transformation_cache (expr, insn, &res))
2515 got_answer = true;
2517 if (! got_answer)
2519 /* Invoke moveup_expr and record the results. */
2520 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2521 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2522 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2523 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2524 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2526 /* ??? Invent something better than this. We can't allow old_vinsn
2527 to go, we need it for the history vector. */
2528 vinsn_attach (expr_old_vinsn);
2530 res = moveup_expr (expr, insn, inside_insn_group,
2531 &trans_type);
2532 switch (res)
2534 case MOVEUP_EXPR_NULL:
2535 update_bitmap_cache (expr, insn, inside_insn_group, res);
2536 if (sched_verbose >= 6)
2537 sel_print ("removed\n");
2538 break;
2540 case MOVEUP_EXPR_SAME:
2541 update_bitmap_cache (expr, insn, inside_insn_group, res);
2542 if (sched_verbose >= 6)
2543 sel_print ("unchanged\n");
2544 break;
2546 case MOVEUP_EXPR_AS_RHS:
2547 gcc_assert (!unique_p || inside_insn_group);
2548 update_bitmap_cache (expr, insn, inside_insn_group, res);
2549 if (sched_verbose >= 6)
2550 sel_print ("unchanged (as RHS)\n");
2551 break;
2553 case MOVEUP_EXPR_CHANGED:
2554 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2555 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2556 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2557 INSN_UID (insn), trans_type,
2558 expr_old_vinsn, EXPR_VINSN (expr),
2559 expr_old_spec_ds);
2560 update_transformation_cache (expr, insn, inside_insn_group,
2561 trans_type, expr_old_vinsn);
2562 if (sched_verbose >= 6)
2564 sel_print ("changed: ");
2565 dump_expr (expr);
2566 sel_print ("\n");
2568 break;
2569 default:
2570 gcc_unreachable ();
2573 vinsn_detach (expr_old_vinsn);
2576 return res;
2579 /* Moves an av set AVP up through INSN, performing necessary
2580 transformations. */
2581 static void
2582 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2584 av_set_iterator i;
2585 expr_t expr;
2587 FOR_EACH_EXPR_1 (expr, i, avp)
2590 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2592 case MOVEUP_EXPR_SAME:
2593 case MOVEUP_EXPR_AS_RHS:
2594 break;
2596 case MOVEUP_EXPR_NULL:
2597 av_set_iter_remove (&i);
2598 break;
2600 case MOVEUP_EXPR_CHANGED:
2601 expr = merge_with_other_exprs (avp, &i, expr);
2602 break;
2604 default:
2605 gcc_unreachable ();
2610 /* Moves AVP set along PATH. */
2611 static void
2612 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2614 int last_cycle;
2616 if (sched_verbose >= 6)
2617 sel_print ("Moving expressions up in the insn group...\n");
2618 if (! path)
2619 return;
2620 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2621 while (path
2622 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2624 moveup_set_expr (avp, ILIST_INSN (path), true);
2625 path = ILIST_NEXT (path);
2629 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2630 static bool
2631 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2633 expr_def _tmp, *tmp = &_tmp;
2634 int last_cycle;
2635 bool res = true;
2637 copy_expr_onside (tmp, expr);
2638 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2639 while (path
2640 && res
2641 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2643 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2644 != MOVEUP_EXPR_NULL);
2645 path = ILIST_NEXT (path);
2648 if (res)
2650 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2651 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2653 if (tmp_vinsn != expr_vliw_vinsn)
2654 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2657 clear_expr (tmp);
2658 return res;
2662 /* Functions that compute av and lv sets. */
2664 /* Returns true if INSN is not a downward continuation of the given path P in
2665 the current stage. */
2666 static bool
2667 is_ineligible_successor (insn_t insn, ilist_t p)
2669 insn_t prev_insn;
2671 /* Check if insn is not deleted. */
2672 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2673 gcc_unreachable ();
2674 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2675 gcc_unreachable ();
2677 /* If it's the first insn visited, then the successor is ok. */
2678 if (!p)
2679 return false;
2681 prev_insn = ILIST_INSN (p);
2683 if (/* a backward edge. */
2684 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2685 /* is already visited. */
2686 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2687 && (ilist_is_in_p (p, insn)
2688 /* We can reach another fence here and still seqno of insn
2689 would be equal to seqno of prev_insn. This is possible
2690 when prev_insn is a previously created bookkeeping copy.
2691 In that case it'd get a seqno of insn. Thus, check here
2692 whether insn is in current fence too. */
2693 || IN_CURRENT_FENCE_P (insn)))
2694 /* Was already scheduled on this round. */
2695 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2696 && IN_CURRENT_FENCE_P (insn))
2697 /* An insn from another fence could also be
2698 scheduled earlier even if this insn is not in
2699 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2700 || (!pipelining_p
2701 && INSN_SCHED_TIMES (insn) > 0))
2702 return true;
2703 else
2704 return false;
2707 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2708 of handling multiple successors and properly merging its av_sets. P is
2709 the current path traversed. WS is the size of lookahead window.
2710 Return the av set computed. */
2711 static av_set_t
2712 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2714 struct succs_info *sinfo;
2715 av_set_t expr_in_all_succ_branches = NULL;
2716 int is;
2717 insn_t succ, zero_succ = NULL;
2718 av_set_t av1 = NULL;
2720 gcc_assert (sel_bb_end_p (insn));
2722 /* Find different kind of successors needed for correct computing of
2723 SPEC and TARGET_AVAILABLE attributes. */
2724 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2726 /* Debug output. */
2727 if (sched_verbose >= 6)
2729 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2730 dump_insn_vector (sinfo->succs_ok);
2731 sel_print ("\n");
2732 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2733 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2736 /* Add insn to to the tail of current path. */
2737 ilist_add (&p, insn);
2739 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2741 av_set_t succ_set;
2743 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2744 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2746 av_set_split_usefulness (succ_set,
2747 VEC_index (int, sinfo->probs_ok, is),
2748 sinfo->all_prob);
2750 if (sinfo->all_succs_n > 1)
2752 /* Find EXPR'es that came from *all* successors and save them
2753 into expr_in_all_succ_branches. This set will be used later
2754 for calculating speculation attributes of EXPR'es. */
2755 if (is == 0)
2757 expr_in_all_succ_branches = av_set_copy (succ_set);
2759 /* Remember the first successor for later. */
2760 zero_succ = succ;
2762 else
2764 av_set_iterator i;
2765 expr_t expr;
2767 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2768 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2769 av_set_iter_remove (&i);
2773 /* Union the av_sets. Check liveness restrictions on target registers
2774 in special case of two successors. */
2775 if (sinfo->succs_ok_n == 2 && is == 1)
2777 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2778 basic_block bb1 = BLOCK_FOR_INSN (succ);
2780 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2781 av_set_union_and_live (&av1, &succ_set,
2782 BB_LV_SET (bb0),
2783 BB_LV_SET (bb1),
2784 insn);
2786 else
2787 av_set_union_and_clear (&av1, &succ_set, insn);
2790 /* Check liveness restrictions via hard way when there are more than
2791 two successors. */
2792 if (sinfo->succs_ok_n > 2)
2793 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2795 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2797 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2798 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2799 BB_LV_SET (succ_bb));
2802 /* Finally, check liveness restrictions on paths leaving the region. */
2803 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2804 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2805 mark_unavailable_targets
2806 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2808 if (sinfo->all_succs_n > 1)
2810 av_set_iterator i;
2811 expr_t expr;
2813 /* Increase the spec attribute of all EXPR'es that didn't come
2814 from all successors. */
2815 FOR_EACH_EXPR (expr, i, av1)
2816 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2817 EXPR_SPEC (expr)++;
2819 av_set_clear (&expr_in_all_succ_branches);
2821 /* Do not move conditional branches through other
2822 conditional branches. So, remove all conditional
2823 branches from av_set if current operator is a conditional
2824 branch. */
2825 av_set_substract_cond_branches (&av1);
2828 ilist_remove (&p);
2829 free_succs_info (sinfo);
2831 if (sched_verbose >= 6)
2833 sel_print ("av_succs (%d): ", INSN_UID (insn));
2834 dump_av_set (av1);
2835 sel_print ("\n");
2838 return av1;
2841 /* This function computes av_set for the FIRST_INSN by dragging valid
2842 av_set through all basic block insns either from the end of basic block
2843 (computed using compute_av_set_at_bb_end) or from the insn on which
2844 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2845 below the basic block and handling conditional branches.
2846 FIRST_INSN - the basic block head, P - path consisting of the insns
2847 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2848 and bb ends are added to the path), WS - current window size,
2849 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2850 static av_set_t
2851 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2852 bool need_copy_p)
2854 insn_t cur_insn;
2855 int end_ws = ws;
2856 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2857 insn_t after_bb_end = NEXT_INSN (bb_end);
2858 insn_t last_insn;
2859 av_set_t av = NULL;
2860 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2862 /* Return NULL if insn is not on the legitimate downward path. */
2863 if (is_ineligible_successor (first_insn, p))
2865 if (sched_verbose >= 6)
2866 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2868 return NULL;
2871 /* If insn already has valid av(insn) computed, just return it. */
2872 if (AV_SET_VALID_P (first_insn))
2874 av_set_t av_set;
2876 if (sel_bb_head_p (first_insn))
2877 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2878 else
2879 av_set = NULL;
2881 if (sched_verbose >= 6)
2883 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2884 dump_av_set (av_set);
2885 sel_print ("\n");
2888 return need_copy_p ? av_set_copy (av_set) : av_set;
2891 ilist_add (&p, first_insn);
2893 /* As the result after this loop have completed, in LAST_INSN we'll
2894 have the insn which has valid av_set to start backward computation
2895 from: it either will be NULL because on it the window size was exceeded
2896 or other valid av_set as returned by compute_av_set for the last insn
2897 of the basic block. */
2898 for (last_insn = first_insn; last_insn != after_bb_end;
2899 last_insn = NEXT_INSN (last_insn))
2901 /* We may encounter valid av_set not only on bb_head, but also on
2902 those insns on which previously MAX_WS was exceeded. */
2903 if (AV_SET_VALID_P (last_insn))
2905 if (sched_verbose >= 6)
2906 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2907 break;
2910 /* The special case: the last insn of the BB may be an
2911 ineligible_successor due to its SEQ_NO that was set on
2912 it as a bookkeeping. */
2913 if (last_insn != first_insn
2914 && is_ineligible_successor (last_insn, p))
2916 if (sched_verbose >= 6)
2917 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2918 break;
2921 if (DEBUG_INSN_P (last_insn))
2922 continue;
2924 if (end_ws > max_ws)
2926 /* We can reach max lookahead size at bb_header, so clean av_set
2927 first. */
2928 INSN_WS_LEVEL (last_insn) = global_level;
2930 if (sched_verbose >= 6)
2931 sel_print ("Insn %d is beyond the software lookahead window size\n",
2932 INSN_UID (last_insn));
2933 break;
2936 end_ws++;
2939 /* Get the valid av_set into AV above the LAST_INSN to start backward
2940 computation from. It either will be empty av_set or av_set computed from
2941 the successors on the last insn of the current bb. */
2942 if (last_insn != after_bb_end)
2944 av = NULL;
2946 /* This is needed only to obtain av_sets that are identical to
2947 those computed by the old compute_av_set version. */
2948 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2949 av_set_add (&av, INSN_EXPR (last_insn));
2951 else
2952 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2953 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2955 /* Compute av_set in AV starting from below the LAST_INSN up to
2956 location above the FIRST_INSN. */
2957 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2958 cur_insn = PREV_INSN (cur_insn))
2959 if (!INSN_NOP_P (cur_insn))
2961 expr_t expr;
2963 moveup_set_expr (&av, cur_insn, false);
2965 /* If the expression for CUR_INSN is already in the set,
2966 replace it by the new one. */
2967 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2968 if (expr != NULL)
2970 clear_expr (expr);
2971 copy_expr (expr, INSN_EXPR (cur_insn));
2973 else
2974 av_set_add (&av, INSN_EXPR (cur_insn));
2977 /* Clear stale bb_av_set. */
2978 if (sel_bb_head_p (first_insn))
2980 av_set_clear (&BB_AV_SET (cur_bb));
2981 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2982 BB_AV_LEVEL (cur_bb) = global_level;
2985 if (sched_verbose >= 6)
2987 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2988 dump_av_set (av);
2989 sel_print ("\n");
2992 ilist_remove (&p);
2993 return av;
2996 /* Compute av set before INSN.
2997 INSN - the current operation (actual rtx INSN)
2998 P - the current path, which is list of insns visited so far
2999 WS - software lookahead window size.
3000 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3001 if we want to save computed av_set in s_i_d, we should make a copy of it.
3003 In the resulting set we will have only expressions that don't have delay
3004 stalls and nonsubstitutable dependences. */
3005 static av_set_t
3006 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3008 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3011 /* Propagate a liveness set LV through INSN. */
3012 static void
3013 propagate_lv_set (regset lv, insn_t insn)
3015 gcc_assert (INSN_P (insn));
3017 if (INSN_NOP_P (insn))
3018 return;
3020 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3023 /* Return livness set at the end of BB. */
3024 static regset
3025 compute_live_after_bb (basic_block bb)
3027 edge e;
3028 edge_iterator ei;
3029 regset lv = get_clear_regset_from_pool ();
3031 gcc_assert (!ignore_first);
3033 FOR_EACH_EDGE (e, ei, bb->succs)
3034 if (sel_bb_empty_p (e->dest))
3036 if (! BB_LV_SET_VALID_P (e->dest))
3038 gcc_unreachable ();
3039 gcc_assert (BB_LV_SET (e->dest) == NULL);
3040 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3041 BB_LV_SET_VALID_P (e->dest) = true;
3043 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3045 else
3046 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3048 return lv;
3051 /* Compute the set of all live registers at the point before INSN and save
3052 it at INSN if INSN is bb header. */
3053 regset
3054 compute_live (insn_t insn)
3056 basic_block bb = BLOCK_FOR_INSN (insn);
3057 insn_t final, temp;
3058 regset lv;
3060 /* Return the valid set if we're already on it. */
3061 if (!ignore_first)
3063 regset src = NULL;
3065 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3066 src = BB_LV_SET (bb);
3067 else
3069 gcc_assert (in_current_region_p (bb));
3070 if (INSN_LIVE_VALID_P (insn))
3071 src = INSN_LIVE (insn);
3074 if (src)
3076 lv = get_regset_from_pool ();
3077 COPY_REG_SET (lv, src);
3079 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3081 COPY_REG_SET (BB_LV_SET (bb), lv);
3082 BB_LV_SET_VALID_P (bb) = true;
3085 return_regset_to_pool (lv);
3086 return lv;
3090 /* We've skipped the wrong lv_set. Don't skip the right one. */
3091 ignore_first = false;
3092 gcc_assert (in_current_region_p (bb));
3094 /* Find a valid LV set in this block or below, if needed.
3095 Start searching from the next insn: either ignore_first is true, or
3096 INSN doesn't have a correct live set. */
3097 temp = NEXT_INSN (insn);
3098 final = NEXT_INSN (BB_END (bb));
3099 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3100 temp = NEXT_INSN (temp);
3101 if (temp == final)
3103 lv = compute_live_after_bb (bb);
3104 temp = PREV_INSN (temp);
3106 else
3108 lv = get_regset_from_pool ();
3109 COPY_REG_SET (lv, INSN_LIVE (temp));
3112 /* Put correct lv sets on the insns which have bad sets. */
3113 final = PREV_INSN (insn);
3114 while (temp != final)
3116 propagate_lv_set (lv, temp);
3117 COPY_REG_SET (INSN_LIVE (temp), lv);
3118 INSN_LIVE_VALID_P (temp) = true;
3119 temp = PREV_INSN (temp);
3122 /* Also put it in a BB. */
3123 if (sel_bb_head_p (insn))
3125 basic_block bb = BLOCK_FOR_INSN (insn);
3127 COPY_REG_SET (BB_LV_SET (bb), lv);
3128 BB_LV_SET_VALID_P (bb) = true;
3131 /* We return LV to the pool, but will not clear it there. Thus we can
3132 legimatelly use LV till the next use of regset_pool_get (). */
3133 return_regset_to_pool (lv);
3134 return lv;
3137 /* Update liveness sets for INSN. */
3138 static inline void
3139 update_liveness_on_insn (rtx insn)
3141 ignore_first = true;
3142 compute_live (insn);
3145 /* Compute liveness below INSN and write it into REGS. */
3146 static inline void
3147 compute_live_below_insn (rtx insn, regset regs)
3149 rtx succ;
3150 succ_iterator si;
3152 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3153 IOR_REG_SET (regs, compute_live (succ));
3156 /* Update the data gathered in av and lv sets starting from INSN. */
3157 static void
3158 update_data_sets (rtx insn)
3160 update_liveness_on_insn (insn);
3161 if (sel_bb_head_p (insn))
3163 gcc_assert (AV_LEVEL (insn) != 0);
3164 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3165 compute_av_set (insn, NULL, 0, 0);
3170 /* Helper for move_op () and find_used_regs ().
3171 Return speculation type for which a check should be created on the place
3172 of INSN. EXPR is one of the original ops we are searching for. */
3173 static ds_t
3174 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3176 ds_t to_check_ds;
3177 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3179 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3181 if (targetm.sched.get_insn_checked_ds)
3182 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3184 if (spec_info != NULL
3185 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3186 already_checked_ds |= BEGIN_CONTROL;
3188 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3190 to_check_ds &= ~already_checked_ds;
3192 return to_check_ds;
3195 /* Find the set of registers that are unavailable for storing expres
3196 while moving ORIG_OPS up on the path starting from INSN due to
3197 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3199 All the original operations found during the traversal are saved in the
3200 ORIGINAL_INSNS list.
3202 REG_RENAME_P denotes the set of hardware registers that
3203 can not be used with renaming due to the register class restrictions,
3204 mode restrictions and other (the register we'll choose should be
3205 compatible class with the original uses, shouldn't be in call_used_regs,
3206 should be HARD_REGNO_RENAME_OK etc).
3208 Returns TRUE if we've found all original insns, FALSE otherwise.
3210 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3211 to traverse the code motion paths. This helper function finds registers
3212 that are not available for storing expres while moving ORIG_OPS up on the
3213 path starting from INSN. A register considered as used on the moving path,
3214 if one of the following conditions is not satisfied:
3216 (1) a register not set or read on any path from xi to an instance of
3217 the original operation,
3218 (2) not among the live registers of the point immediately following the
3219 first original operation on a given downward path, except for the
3220 original target register of the operation,
3221 (3) not live on the other path of any conditional branch that is passed
3222 by the operation, in case original operations are not present on
3223 both paths of the conditional branch.
3225 All the original operations found during the traversal are saved in the
3226 ORIGINAL_INSNS list.
3228 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3229 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3230 to unavailable hard regs at the point original operation is found. */
3232 static bool
3233 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3234 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3236 def_list_iterator i;
3237 def_t def;
3238 int res;
3239 bool needs_spec_check_p = false;
3240 expr_t expr;
3241 av_set_iterator expr_iter;
3242 struct fur_static_params sparams;
3243 struct cmpd_local_params lparams;
3245 /* We haven't visited any blocks yet. */
3246 bitmap_clear (code_motion_visited_blocks);
3248 /* Init parameters for code_motion_path_driver. */
3249 sparams.crosses_call = false;
3250 sparams.original_insns = original_insns;
3251 sparams.used_regs = used_regs;
3253 /* Set the appropriate hooks and data. */
3254 code_motion_path_driver_info = &fur_hooks;
3256 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3258 reg_rename_p->crosses_call |= sparams.crosses_call;
3260 gcc_assert (res == 1);
3261 gcc_assert (original_insns && *original_insns);
3263 /* ??? We calculate whether an expression needs a check when computing
3264 av sets. This information is not as precise as it could be due to
3265 merging this bit in merge_expr. We can do better in find_used_regs,
3266 but we want to avoid multiple traversals of the same code motion
3267 paths. */
3268 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3269 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3271 /* Mark hardware regs in REG_RENAME_P that are not suitable
3272 for renaming expr in INSN due to hardware restrictions (register class,
3273 modes compatibility etc). */
3274 FOR_EACH_DEF (def, i, *original_insns)
3276 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3278 if (VINSN_SEPARABLE_P (vinsn))
3279 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3281 /* Do not allow clobbering of ld.[sa] address in case some of the
3282 original operations need a check. */
3283 if (needs_spec_check_p)
3284 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3287 return true;
3291 /* Functions to choose the best insn from available ones. */
3293 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3294 static int
3295 sel_target_adjust_priority (expr_t expr)
3297 int priority = EXPR_PRIORITY (expr);
3298 int new_priority;
3300 if (targetm.sched.adjust_priority)
3301 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3302 else
3303 new_priority = priority;
3305 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3306 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3308 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3310 if (sched_verbose >= 4)
3311 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3312 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3313 EXPR_PRIORITY_ADJ (expr), new_priority);
3315 return new_priority;
3318 /* Rank two available exprs for schedule. Never return 0 here. */
3319 static int
3320 sel_rank_for_schedule (const void *x, const void *y)
3322 expr_t tmp = *(const expr_t *) y;
3323 expr_t tmp2 = *(const expr_t *) x;
3324 insn_t tmp_insn, tmp2_insn;
3325 vinsn_t tmp_vinsn, tmp2_vinsn;
3326 int val;
3328 tmp_vinsn = EXPR_VINSN (tmp);
3329 tmp2_vinsn = EXPR_VINSN (tmp2);
3330 tmp_insn = EXPR_INSN_RTX (tmp);
3331 tmp2_insn = EXPR_INSN_RTX (tmp2);
3333 /* Schedule debug insns as early as possible. */
3334 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3335 return -1;
3336 else if (DEBUG_INSN_P (tmp2_insn))
3337 return 1;
3339 /* Prefer SCHED_GROUP_P insns to any others. */
3340 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3342 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3343 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3345 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3346 cannot be cloned. */
3347 if (VINSN_UNIQUE_P (tmp2_vinsn))
3348 return 1;
3349 return -1;
3352 /* Discourage scheduling of speculative checks. */
3353 val = (sel_insn_is_speculation_check (tmp_insn)
3354 - sel_insn_is_speculation_check (tmp2_insn));
3355 if (val)
3356 return val;
3358 /* Prefer not scheduled insn over scheduled one. */
3359 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3361 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3362 if (val)
3363 return val;
3366 /* Prefer jump over non-jump instruction. */
3367 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3368 return -1;
3369 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3370 return 1;
3372 /* Prefer an expr with greater priority. */
3373 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3375 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3376 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3378 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3380 else
3381 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3382 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3383 if (val)
3384 return val;
3386 if (spec_info != NULL && spec_info->mask != 0)
3387 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3389 ds_t ds1, ds2;
3390 dw_t dw1, dw2;
3391 int dw;
3393 ds1 = EXPR_SPEC_DONE_DS (tmp);
3394 if (ds1)
3395 dw1 = ds_weak (ds1);
3396 else
3397 dw1 = NO_DEP_WEAK;
3399 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3400 if (ds2)
3401 dw2 = ds_weak (ds2);
3402 else
3403 dw2 = NO_DEP_WEAK;
3405 dw = dw2 - dw1;
3406 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3407 return dw;
3410 /* Prefer an old insn to a bookkeeping insn. */
3411 if (INSN_UID (tmp_insn) < first_emitted_uid
3412 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3413 return -1;
3414 if (INSN_UID (tmp_insn) >= first_emitted_uid
3415 && INSN_UID (tmp2_insn) < first_emitted_uid)
3416 return 1;
3418 /* Prefer an insn with smaller UID, as a last resort.
3419 We can't safely use INSN_LUID as it is defined only for those insns
3420 that are in the stream. */
3421 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3424 /* Filter out expressions from av set pointed to by AV_PTR
3425 that are pipelined too many times. */
3426 static void
3427 process_pipelined_exprs (av_set_t *av_ptr)
3429 expr_t expr;
3430 av_set_iterator si;
3432 /* Don't pipeline already pipelined code as that would increase
3433 number of unnecessary register moves. */
3434 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3436 if (EXPR_SCHED_TIMES (expr)
3437 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3438 av_set_iter_remove (&si);
3442 /* Filter speculative insns from AV_PTR if we don't want them. */
3443 static void
3444 process_spec_exprs (av_set_t *av_ptr)
3446 bool try_data_p = true;
3447 bool try_control_p = true;
3448 expr_t expr;
3449 av_set_iterator si;
3451 if (spec_info == NULL)
3452 return;
3454 /* Scan *AV_PTR to find out if we want to consider speculative
3455 instructions for scheduling. */
3456 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3458 ds_t ds;
3460 ds = EXPR_SPEC_DONE_DS (expr);
3462 /* The probability of a success is too low - don't speculate. */
3463 if ((ds & SPECULATIVE)
3464 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3465 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3466 || (pipelining_p && false
3467 && (ds & DATA_SPEC)
3468 && (ds & CONTROL_SPEC))))
3470 av_set_iter_remove (&si);
3471 continue;
3474 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3475 && !(ds & BEGIN_DATA))
3476 try_data_p = false;
3478 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3479 && !(ds & BEGIN_CONTROL))
3480 try_control_p = false;
3483 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3485 ds_t ds;
3487 ds = EXPR_SPEC_DONE_DS (expr);
3489 if (ds & SPECULATIVE)
3491 if ((ds & BEGIN_DATA) && !try_data_p)
3492 /* We don't want any data speculative instructions right
3493 now. */
3494 av_set_iter_remove (&si);
3496 if ((ds & BEGIN_CONTROL) && !try_control_p)
3497 /* We don't want any control speculative instructions right
3498 now. */
3499 av_set_iter_remove (&si);
3504 /* Search for any use-like insns in AV_PTR and decide on scheduling
3505 them. Return one when found, and NULL otherwise.
3506 Note that we check here whether a USE could be scheduled to avoid
3507 an infinite loop later. */
3508 static expr_t
3509 process_use_exprs (av_set_t *av_ptr)
3511 expr_t expr;
3512 av_set_iterator si;
3513 bool uses_present_p = false;
3514 bool try_uses_p = true;
3516 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3518 /* This will also initialize INSN_CODE for later use. */
3519 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3521 /* If we have a USE in *AV_PTR that was not scheduled yet,
3522 do so because it will do good only. */
3523 if (EXPR_SCHED_TIMES (expr) <= 0)
3525 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3526 return expr;
3528 av_set_iter_remove (&si);
3530 else
3532 gcc_assert (pipelining_p);
3534 uses_present_p = true;
3537 else
3538 try_uses_p = false;
3541 if (uses_present_p)
3543 /* If we don't want to schedule any USEs right now and we have some
3544 in *AV_PTR, remove them, else just return the first one found. */
3545 if (!try_uses_p)
3547 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3548 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3549 av_set_iter_remove (&si);
3551 else
3553 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3555 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3557 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3558 return expr;
3560 av_set_iter_remove (&si);
3565 return NULL;
3568 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3569 static bool
3570 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3572 vinsn_t vinsn;
3573 int n;
3575 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3576 if (VINSN_SEPARABLE_P (vinsn))
3578 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3579 return true;
3581 else
3583 /* For non-separable instructions, the blocking insn can have
3584 another pattern due to substitution, and we can't choose
3585 different register as in the above case. Check all registers
3586 being written instead. */
3587 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3588 VINSN_REG_SETS (EXPR_VINSN (expr))))
3589 return true;
3592 return false;
3595 #ifdef ENABLE_CHECKING
3596 /* Return true if either of expressions from ORIG_OPS can be blocked
3597 by previously created bookkeeping code. STATIC_PARAMS points to static
3598 parameters of move_op. */
3599 static bool
3600 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3602 expr_t expr;
3603 av_set_iterator iter;
3604 moveop_static_params_p sparams;
3606 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3607 created while scheduling on another fence. */
3608 FOR_EACH_EXPR (expr, iter, orig_ops)
3609 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3610 return true;
3612 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3613 sparams = (moveop_static_params_p) static_params;
3615 /* Expressions can be also blocked by bookkeeping created during current
3616 move_op. */
3617 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3620 return true;
3622 /* Expressions in ORIG_OPS may have wrong destination register due to
3623 renaming. Check with the right register instead. */
3624 if (sparams->dest && REG_P (sparams->dest))
3626 unsigned regno = REGNO (sparams->dest);
3627 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3629 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3630 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3631 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3632 return true;
3635 return false;
3637 #endif
3639 /* Clear VINSN_VEC and detach vinsns. */
3640 static void
3641 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3643 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3644 if (len > 0)
3646 vinsn_t vinsn;
3647 int n;
3649 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3650 vinsn_detach (vinsn);
3651 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3655 /* Add the vinsn of EXPR to the VINSN_VEC. */
3656 static void
3657 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3659 vinsn_attach (EXPR_VINSN (expr));
3660 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3663 /* Free the vector representing blocked expressions. */
3664 static void
3665 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3667 if (*vinsn_vec)
3668 VEC_free (vinsn_t, heap, *vinsn_vec);
3671 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3673 void sel_add_to_insn_priority (rtx insn, int amount)
3675 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3677 if (sched_verbose >= 2)
3678 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3679 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3680 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3684 true if there is something to schedule. BNDS and FENCE are current
3685 boundaries and fence, respectively. If we need to stall for some cycles
3686 before an expr from AV would become available, write this number to
3687 *PNEED_STALL. */
3688 static bool
3689 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3690 int *pneed_stall)
3692 av_set_iterator si;
3693 expr_t expr;
3694 int sched_next_worked = 0, stalled, n;
3695 static int av_max_prio, est_ticks_till_branch;
3696 int min_need_stall = -1;
3697 deps_t dc = BND_DC (BLIST_BND (bnds));
3699 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3700 already scheduled. */
3701 if (av == NULL)
3702 return false;
3704 /* Empty vector from the previous stuff. */
3705 if (VEC_length (expr_t, vec_av_set) > 0)
3706 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3708 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3709 for each insn. */
3710 gcc_assert (VEC_empty (expr_t, vec_av_set));
3711 FOR_EACH_EXPR (expr, si, av)
3713 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3715 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3717 /* Adjust priority using target backend hook. */
3718 sel_target_adjust_priority (expr);
3721 /* Sort the vector. */
3722 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3723 sizeof (expr_t), sel_rank_for_schedule);
3725 /* We record maximal priority of insns in av set for current instruction
3726 group. */
3727 if (FENCE_STARTS_CYCLE_P (fence))
3728 av_max_prio = est_ticks_till_branch = INT_MIN;
3730 /* Filter out inappropriate expressions. Loop's direction is reversed to
3731 visit "best" instructions first. We assume that VEC_unordered_remove
3732 moves last element in place of one being deleted. */
3733 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3735 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3736 insn_t insn = EXPR_INSN_RTX (expr);
3737 char target_available;
3738 bool is_orig_reg_p = true;
3739 int need_cycles, new_prio;
3741 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3742 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 VEC_unordered_remove (expr_t, vec_av_set, n);
3745 continue;
3748 /* Set number of sched_next insns (just in case there
3749 could be several). */
3750 if (FENCE_SCHED_NEXT (fence))
3751 sched_next_worked++;
3753 /* Check all liveness requirements and try renaming.
3754 FIXME: try to minimize calls to this. */
3755 target_available = EXPR_TARGET_AVAILABLE (expr);
3757 /* If insn was already scheduled on the current fence,
3758 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3759 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3760 target_available = -1;
3762 /* If the availability of the EXPR is invalidated by the insertion of
3763 bookkeeping earlier, make sure that we won't choose this expr for
3764 scheduling if it's not separable, and if it is separable, then
3765 we have to recompute the set of available registers for it. */
3766 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 VEC_unordered_remove (expr_t, vec_av_set, n);
3769 if (sched_verbose >= 4)
3770 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3771 INSN_UID (insn));
3772 continue;
3775 if (target_available == true)
3777 /* Do nothing -- we can use an existing register. */
3778 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780 else if (/* Non-separable instruction will never
3781 get another register. */
3782 (target_available == false
3783 && !EXPR_SEPARABLE_P (expr))
3784 /* Don't try to find a register for low-priority expression. */
3785 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3786 /* ??? FIXME: Don't try to rename data speculation. */
3787 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3788 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790 VEC_unordered_remove (expr_t, vec_av_set, n);
3791 if (sched_verbose >= 4)
3792 sel_print ("Expr %d has no suitable target register\n",
3793 INSN_UID (insn));
3794 continue;
3797 /* Filter expressions that need to be renamed or speculated when
3798 pipelining, because compensating register copies or speculation
3799 checks are likely to be placed near the beginning of the loop,
3800 causing a stall. */
3801 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3802 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3804 /* Estimation of number of cycles until loop branch for
3805 renaming/speculation to be successful. */
3806 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3808 if ((int) current_loop_nest->ninsns < 9)
3810 VEC_unordered_remove (expr_t, vec_av_set, n);
3811 if (sched_verbose >= 4)
3812 sel_print ("Pipelining expr %d will likely cause stall\n",
3813 INSN_UID (insn));
3814 continue;
3817 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3818 < need_n_ticks_till_branch * issue_rate / 2
3819 && est_ticks_till_branch < need_n_ticks_till_branch)
3821 VEC_unordered_remove (expr_t, vec_av_set, n);
3822 if (sched_verbose >= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3829 /* We want to schedule speculation checks as late as possible. Discard
3830 them from av set if there are instructions with higher priority. */
3831 if (sel_insn_is_speculation_check (insn)
3832 && EXPR_PRIORITY (expr) < av_max_prio)
3834 stalled++;
3835 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3836 VEC_unordered_remove (expr_t, vec_av_set, n);
3837 if (sched_verbose >= 4)
3838 sel_print ("Delaying speculation check %d until its first use\n",
3839 INSN_UID (insn));
3840 continue;
3843 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3844 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3845 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3847 /* Don't allow any insns whose data is not yet ready.
3848 Check first whether we've already tried them and failed. */
3849 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3851 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3852 - FENCE_CYCLE (fence));
3853 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3854 est_ticks_till_branch = MAX (est_ticks_till_branch,
3855 EXPR_PRIORITY (expr) + need_cycles);
3857 if (need_cycles > 0)
3859 stalled++;
3860 min_need_stall = (min_need_stall < 0
3861 ? need_cycles
3862 : MIN (min_need_stall, need_cycles));
3863 VEC_unordered_remove (expr_t, vec_av_set, n);
3865 if (sched_verbose >= 4)
3866 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3867 INSN_UID (insn),
3868 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3869 continue;
3873 /* Now resort to dependence analysis to find whether EXPR might be
3874 stalled due to dependencies from FENCE's context. */
3875 need_cycles = tick_check_p (expr, dc, fence);
3876 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3878 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3879 est_ticks_till_branch = MAX (est_ticks_till_branch,
3880 new_prio);
3882 if (need_cycles > 0)
3884 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3886 int new_size = INSN_UID (insn) * 3 / 2;
3888 FENCE_READY_TICKS (fence)
3889 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3890 new_size, FENCE_READY_TICKS_SIZE (fence),
3891 sizeof (int));
3893 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3894 = FENCE_CYCLE (fence) + need_cycles;
3896 stalled++;
3897 min_need_stall = (min_need_stall < 0
3898 ? need_cycles
3899 : MIN (min_need_stall, need_cycles));
3901 VEC_unordered_remove (expr_t, vec_av_set, n);
3903 if (sched_verbose >= 4)
3904 sel_print ("Expr %d is not ready yet until cycle %d\n",
3905 INSN_UID (insn),
3906 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3907 continue;
3910 if (sched_verbose >= 4)
3911 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3912 min_need_stall = 0;
3915 /* Clear SCHED_NEXT. */
3916 if (FENCE_SCHED_NEXT (fence))
3918 gcc_assert (sched_next_worked == 1);
3919 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3922 /* No need to stall if this variable was not initialized. */
3923 if (min_need_stall < 0)
3924 min_need_stall = 0;
3926 if (VEC_empty (expr_t, vec_av_set))
3928 /* We need to set *pneed_stall here, because later we skip this code
3929 when ready list is empty. */
3930 *pneed_stall = min_need_stall;
3931 return false;
3933 else
3934 gcc_assert (min_need_stall == 0);
3936 /* Sort the vector. */
3937 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3938 sizeof (expr_t), sel_rank_for_schedule);
3940 if (sched_verbose >= 4)
3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3946 dump_expr (expr);
3947 sel_print ("\n");
3950 *pneed_stall = 0;
3951 return true;
3954 /* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956 static void
3957 convert_vec_av_set_to_ready (void)
3959 int n;
3960 expr_t expr;
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
3966 gcc_assert (ready.n_ready > 0);
3968 if (ready.n_ready > max_issue_size)
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3984 /* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989 static expr_t
3990 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3993 expr_t expr;
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3998 /* Process expressions required special handling, i.e. pipelined,
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4007 *pneed_stall = 0;
4008 return expr;
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4014 ready.n_ready = 0;
4015 return NULL;
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4023 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024 static bool
4025 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4048 return res;
4051 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053 static int
4054 invoke_reorder_hooks (fence_t fence)
4056 int issue_more;
4057 bool ran_hook = false;
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4077 if (pipelining_p)
4078 ++ready.n_ready;
4080 ran_hook = true;
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4089 if (ready.n_ready == 1)
4090 issue_more =
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4096 if (pipelining_p)
4097 --ready.n_ready;
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4105 if (pipelining_p)
4106 ++ready.n_ready;
4109 ran_hook = true;
4111 else
4112 issue_more = FENCE_ISSUE_MORE (fence);
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4125 expr_t tmp;
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4132 tmp = vec[i];
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4138 return issue_more;
4141 /* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4144 ready.vec otherwise. */
4145 static inline expr_t
4146 find_expr_for_ready (int index, bool follow_ready_element)
4148 expr_t expr;
4149 int real_index;
4151 real_index = follow_ready_element ? ready.first - index : index;
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4156 return expr;
4159 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161 static int
4162 invoke_dfa_lookahead_guard (void)
4164 int i, n;
4165 bool have_hook
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4177 /* In this loop insn is Ith element of the ready list given by
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4186 gcc_assert (INSN_CODE (insn) >= 0);
4188 /* Only insns with ready_try = 0 can get here
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4195 expr = find_expr_for_ready (i, true);
4197 if (sched_verbose >= 2)
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4209 /* Calculate the number of privileged insns and return it. */
4210 static int
4211 calculate_privileged_insns (void)
4213 expr_t cur_expr, min_spec_expr = NULL;
4214 int privileged_n = 0, i;
4216 for (i = 0; i < ready.n_ready; i++)
4218 if (ready_try[i])
4219 continue;
4221 if (! min_spec_expr)
4222 min_spec_expr = find_expr_for_ready (i, true);
4224 cur_expr = find_expr_for_ready (i, true);
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4229 ++privileged_n;
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4241 /* Call the rest of the hooks after the choice was made. Return
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245 static int
4246 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4248 gcc_assert (INSN_P (best_insn));
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
4253 if (targetm.sched.variable_issue)
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4256 issue_more =
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4265 return issue_more;
4268 /* Estimate the cost of issuing INSN on DFA state STATE. */
4269 static int
4270 estimate_insn_cost (rtx insn, state_t state)
4272 static state_t temp = NULL;
4273 int cost;
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4288 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4289 This function properly handles ASMs, USEs etc. */
4290 static int
4291 get_expr_cost (expr_t expr, fence_t fence)
4293 rtx insn = EXPR_INSN_RTX (expr);
4295 if (recog_memoized (insn) < 0)
4297 if (!FENCE_STARTS_CYCLE_P (fence)
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4313 /* Find the best insn for scheduling, either via max_issue or just take
4314 the most prioritized available. */
4315 static int
4316 choose_best_insn (fence_t fence, int privileged_n, int *index)
4318 int can_issue = 0;
4320 if (dfa_lookahead > 0)
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 can_issue = max_issue (&ready, privileged_n,
4324 FENCE_STATE (fence), index);
4325 if (sched_verbose >= 2)
4326 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327 can_issue, FENCE_ISSUED_INSNS (fence));
4329 else
4331 /* We can't use max_issue; just return the first available element. */
4332 int i;
4334 for (i = 0; i < ready.n_ready; i++)
4336 expr_t expr = find_expr_for_ready (i, true);
4338 if (get_expr_cost (expr, fence) < 1)
4340 can_issue = can_issue_more;
4341 *index = i;
4343 if (sched_verbose >= 2)
4344 sel_print ("using %dth insn from the ready list\n", i + 1);
4346 break;
4350 if (i == ready.n_ready)
4352 can_issue = 0;
4353 *index = -1;
4357 return can_issue;
4360 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361 BNDS and FENCE are current boundaries and scheduling fence respectively.
4362 Return the expr found and NULL if nothing can be issued atm.
4363 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4364 static expr_t
4365 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366 int *pneed_stall)
4368 expr_t best;
4370 /* Choose the best insn for scheduling via:
4371 1) sorting the ready list based on priority;
4372 2) calling the reorder hook;
4373 3) calling max_issue. */
4374 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375 if (best == NULL && ready.n_ready > 0)
4377 int privileged_n, index;
4379 can_issue_more = invoke_reorder_hooks (fence);
4380 if (can_issue_more > 0)
4382 /* Try choosing the best insn until we find one that is could be
4383 scheduled due to liveness restrictions on its destination register.
4384 In the future, we'd like to choose once and then just probe insns
4385 in the order of their priority. */
4386 invoke_dfa_lookahead_guard ();
4387 privileged_n = calculate_privileged_insns ();
4388 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389 if (can_issue_more)
4390 best = find_expr_for_ready (index, true);
4392 /* We had some available insns, so if we can't issue them,
4393 we have a stall. */
4394 if (can_issue_more == 0)
4396 best = NULL;
4397 *pneed_stall = 1;
4401 if (best != NULL)
4403 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404 can_issue_more);
4405 if (can_issue_more == 0)
4406 *pneed_stall = 1;
4409 if (sched_verbose >= 2)
4411 if (best != NULL)
4413 sel_print ("Best expression (vliw form): ");
4414 dump_expr (best);
4415 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4417 else
4418 sel_print ("No best expr found!\n");
4421 return best;
4425 /* Functions that implement the core of the scheduler. */
4428 /* Emit an instruction from EXPR with SEQNO and VINSN after
4429 PLACE_TO_INSERT. */
4430 static insn_t
4431 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4432 insn_t place_to_insert)
4434 /* This assert fails when we have identical instructions
4435 one of which dominates the other. In this case move_op ()
4436 finds the first instruction and doesn't search for second one.
4437 The solution would be to compute av_set after the first found
4438 insn and, if insn present in that set, continue searching.
4439 For now we workaround this issue in move_op. */
4440 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4442 if (EXPR_WAS_RENAMED (expr))
4444 unsigned regno = expr_dest_regno (expr);
4446 if (HARD_REGISTER_NUM_P (regno))
4448 df_set_regs_ever_live (regno, true);
4449 reg_rename_tick[regno] = ++reg_rename_this_tick;
4453 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4454 place_to_insert);
4457 /* Return TRUE if BB can hold bookkeeping code. */
4458 static bool
4459 block_valid_for_bookkeeping_p (basic_block bb)
4461 insn_t bb_end = BB_END (bb);
4463 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4464 return false;
4466 if (INSN_P (bb_end))
4468 if (INSN_SCHED_TIMES (bb_end) > 0)
4469 return false;
4471 else
4472 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4474 return true;
4477 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4478 into E2->dest, except from E1->src (there may be a sequence of empty basic
4479 blocks between E1->src and E2->dest). Return found block, or NULL if new
4480 one must be created. If LAX holds, don't assume there is a simple path
4481 from E1->src to E2->dest. */
4482 static basic_block
4483 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4485 basic_block candidate_block = NULL;
4486 edge e;
4488 /* Loop over edges from E1 to E2, inclusive. */
4489 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4491 if (EDGE_COUNT (e->dest->preds) == 2)
4493 if (candidate_block == NULL)
4494 candidate_block = (EDGE_PRED (e->dest, 0) == e
4495 ? EDGE_PRED (e->dest, 1)->src
4496 : EDGE_PRED (e->dest, 0)->src);
4497 else
4498 /* Found additional edge leading to path from e1 to e2
4499 from aside. */
4500 return NULL;
4502 else if (EDGE_COUNT (e->dest->preds) > 2)
4503 /* Several edges leading to path from e1 to e2 from aside. */
4504 return NULL;
4506 if (e == e2)
4507 return ((!lax || candidate_block)
4508 && block_valid_for_bookkeeping_p (candidate_block)
4509 ? candidate_block
4510 : NULL);
4512 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4513 return NULL;
4516 if (lax)
4517 return NULL;
4519 gcc_unreachable ();
4522 /* Create new basic block for bookkeeping code for path(s) incoming into
4523 E2->dest, except from E1->src. Return created block. */
4524 static basic_block
4525 create_block_for_bookkeeping (edge e1, edge e2)
4527 basic_block new_bb, bb = e2->dest;
4529 /* Check that we don't spoil the loop structure. */
4530 if (current_loop_nest)
4532 basic_block latch = current_loop_nest->latch;
4534 /* We do not split header. */
4535 gcc_assert (e2->dest != current_loop_nest->header);
4537 /* We do not redirect the only edge to the latch block. */
4538 gcc_assert (e1->dest != latch
4539 || !single_pred_p (latch)
4540 || e1 != single_pred_edge (latch));
4543 /* Split BB to insert BOOK_INSN there. */
4544 new_bb = sched_split_block (bb, NULL);
4546 /* Move note_list from the upper bb. */
4547 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4548 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4549 BB_NOTE_LIST (bb) = NULL_RTX;
4551 gcc_assert (e2->dest == bb);
4553 /* Skip block for bookkeeping copy when leaving E1->src. */
4554 if (e1->flags & EDGE_FALLTHRU)
4555 sel_redirect_edge_and_branch_force (e1, new_bb);
4556 else
4557 sel_redirect_edge_and_branch (e1, new_bb);
4559 gcc_assert (e1->dest == new_bb);
4560 gcc_assert (sel_bb_empty_p (bb));
4562 /* To keep basic block numbers in sync between debug and non-debug
4563 compilations, we have to rotate blocks here. Consider that we
4564 started from (a,b)->d, (c,d)->e, and d contained only debug
4565 insns. It would have been removed before if the debug insns
4566 weren't there, so we'd have split e rather than d. So what we do
4567 now is to swap the block numbers of new_bb and
4568 single_succ(new_bb) == e, so that the insns that were in e before
4569 get the new block number. */
4571 if (MAY_HAVE_DEBUG_INSNS)
4573 basic_block succ;
4574 insn_t insn = sel_bb_head (new_bb);
4575 insn_t last;
4577 if (DEBUG_INSN_P (insn)
4578 && single_succ_p (new_bb)
4579 && (succ = single_succ (new_bb))
4580 && succ != EXIT_BLOCK_PTR
4581 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4583 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4584 insn = NEXT_INSN (insn);
4586 if (insn == last)
4588 sel_global_bb_info_def gbi;
4589 sel_region_bb_info_def rbi;
4590 int i;
4592 if (sched_verbose >= 2)
4593 sel_print ("Swapping block ids %i and %i\n",
4594 new_bb->index, succ->index);
4596 i = new_bb->index;
4597 new_bb->index = succ->index;
4598 succ->index = i;
4600 SET_BASIC_BLOCK (new_bb->index, new_bb);
4601 SET_BASIC_BLOCK (succ->index, succ);
4603 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4605 sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4608 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4610 sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4613 i = BLOCK_TO_BB (new_bb->index);
4614 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4615 BLOCK_TO_BB (succ->index) = i;
4617 i = CONTAINING_RGN (new_bb->index);
4618 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4619 CONTAINING_RGN (succ->index) = i;
4621 for (i = 0; i < current_nr_blocks; i++)
4622 if (BB_TO_BLOCK (i) == succ->index)
4623 BB_TO_BLOCK (i) = new_bb->index;
4624 else if (BB_TO_BLOCK (i) == new_bb->index)
4625 BB_TO_BLOCK (i) = succ->index;
4627 FOR_BB_INSNS (new_bb, insn)
4628 if (INSN_P (insn))
4629 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4631 FOR_BB_INSNS (succ, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4635 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4636 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4638 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4639 && LABEL_P (BB_HEAD (succ)));
4641 if (sched_verbose >= 4)
4642 sel_print ("Swapping code labels %i and %i\n",
4643 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4644 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4646 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4647 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4648 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4654 return bb;
4657 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4658 into E2->dest, except from E1->src. */
4659 static insn_t
4660 find_place_for_bookkeeping (edge e1, edge e2)
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4667 if (book_block)
4669 place_to_insert = BB_END (book_block);
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4677 rtx insn = sel_bb_head (book_block);
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4688 if (!book_block)
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4696 else
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4702 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4703 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4704 place_to_insert = PREV_INSN (place_to_insert);
4706 return place_to_insert;
4709 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4710 for JOIN_POINT. */
4711 static int
4712 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4714 int seqno;
4715 rtx next;
4717 /* Check if we are about to insert bookkeeping copy before a jump, and use
4718 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4719 next = NEXT_INSN (place_to_insert);
4720 if (INSN_P (next)
4721 && JUMP_P (next)
4722 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4724 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4725 seqno = INSN_SEQNO (next);
4727 else if (INSN_SEQNO (join_point) > 0)
4728 seqno = INSN_SEQNO (join_point);
4729 else
4731 seqno = get_seqno_by_preds (place_to_insert);
4733 /* Sometimes the fences can move in such a way that there will be
4734 no instructions with positive seqno around this bookkeeping.
4735 This means that there will be no way to get to it by a regular
4736 fence movement. Never mind because we pick up such pieces for
4737 rescheduling anyways, so any positive value will do for now. */
4738 if (seqno < 0)
4740 gcc_assert (pipelining_p);
4741 seqno = 1;
4745 gcc_assert (seqno > 0);
4746 return seqno;
4749 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4750 NEW_SEQNO to it. Return created insn. */
4751 static insn_t
4752 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4754 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4756 vinsn_t new_vinsn
4757 = create_vinsn_from_insn_rtx (new_insn_rtx,
4758 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4760 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4761 place_to_insert);
4763 INSN_SCHED_TIMES (new_insn) = 0;
4764 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4766 return new_insn;
4769 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4770 E2->dest, except from E1->src (there may be a sequence of empty blocks
4771 between E1->src and E2->dest). Return block containing the copy.
4772 All scheduler data is initialized for the newly created insn. */
4773 static basic_block
4774 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4776 insn_t join_point, place_to_insert, new_insn;
4777 int new_seqno;
4778 bool need_to_exchange_data_sets;
4780 if (sched_verbose >= 4)
4781 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4782 e2->dest->index);
4784 join_point = sel_bb_head (e2->dest);
4785 place_to_insert = find_place_for_bookkeeping (e1, e2);
4786 if (!place_to_insert)
4787 return NULL;
4788 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4789 need_to_exchange_data_sets
4790 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4792 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4794 /* When inserting bookkeeping insn in new block, av sets should be
4795 following: old basic block (that now holds bookkeeping) data sets are
4796 the same as was before generation of bookkeeping, and new basic block
4797 (that now hold all other insns of old basic block) data sets are
4798 invalid. So exchange data sets for these basic blocks as sel_split_block
4799 mistakenly exchanges them in this case. Cannot do it earlier because
4800 when single instruction is added to new basic block it should hold NULL
4801 lv_set. */
4802 if (need_to_exchange_data_sets)
4803 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4804 BLOCK_FOR_INSN (join_point));
4806 stat_bookkeeping_copies++;
4807 return BLOCK_FOR_INSN (new_insn);
4810 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4811 on FENCE, but we are unable to copy them. */
4812 static void
4813 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4815 expr_t expr;
4816 av_set_iterator i;
4818 /* An expression does not need bookkeeping if it is available on all paths
4819 from current block to original block and current block dominates
4820 original block. We check availability on all paths by examining
4821 EXPR_SPEC; this is not equivalent, because it may be positive even
4822 if expr is available on all paths (but if expr is not available on
4823 any path, EXPR_SPEC will be positive). */
4825 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4827 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4828 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4829 && (EXPR_SPEC (expr)
4830 || !EXPR_ORIG_BB_INDEX (expr)
4831 || !dominated_by_p (CDI_DOMINATORS,
4832 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4833 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4835 if (sched_verbose >= 4)
4836 sel_print ("Expr %d removed because it would need bookkeeping, which "
4837 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4838 av_set_iter_remove (&i);
4843 /* Moving conditional jump through some instructions.
4845 Consider example:
4847 ... <- current scheduling point
4848 NOTE BASIC BLOCK: <- bb header
4849 (p8) add r14=r14+0x9;;
4850 (p8) mov [r14]=r23
4851 (!p8) jump L1;;
4852 NOTE BASIC BLOCK:
4855 We can schedule jump one cycle earlier, than mov, because they cannot be
4856 executed together as their predicates are mutually exclusive.
4858 This is done in this way: first, new fallthrough basic block is created
4859 after jump (it is always can be done, because there already should be a
4860 fallthrough block, where control flow goes in case of predicate being true -
4861 in our example; otherwise there should be a dependence between those
4862 instructions and jump and we cannot schedule jump right now);
4863 next, all instructions between jump and current scheduling point are moved
4864 to this new block. And the result is this:
4866 NOTE BASIC BLOCK:
4867 (!p8) jump L1 <- current scheduling point
4868 NOTE BASIC BLOCK: <- bb header
4869 (p8) add r14=r14+0x9;;
4870 (p8) mov [r14]=r23
4871 NOTE BASIC BLOCK:
4874 static void
4875 move_cond_jump (rtx insn, bnd_t bnd)
4877 edge ft_edge;
4878 basic_block block_from, block_next, block_new;
4879 rtx next, prev, link;
4881 /* BLOCK_FROM holds basic block of the jump. */
4882 block_from = BLOCK_FOR_INSN (insn);
4884 /* Moving of jump should not cross any other jumps or
4885 beginnings of new basic blocks. */
4886 gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
4888 /* Jump is moved to the boundary. */
4889 prev = BND_TO (bnd);
4890 next = PREV_INSN (insn);
4891 BND_TO (bnd) = insn;
4893 ft_edge = find_fallthru_edge (block_from);
4894 block_next = ft_edge->dest;
4895 /* There must be a fallthrough block (or where should go
4896 control flow in case of false jump predicate otherwise?). */
4897 gcc_assert (block_next);
4899 /* Create new empty basic block after source block. */
4900 block_new = sel_split_edge (ft_edge);
4901 gcc_assert (block_new->next_bb == block_next
4902 && block_from->next_bb == block_new);
4904 gcc_assert (BB_END (block_from) == insn);
4906 /* Move all instructions except INSN from BLOCK_FROM to
4907 BLOCK_NEW. */
4908 for (link = prev; link != insn; link = NEXT_INSN (link))
4910 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4911 df_insn_change_bb (link, block_new);
4914 /* Set correct basic block and instructions properties. */
4915 BB_END (block_new) = PREV_INSN (insn);
4917 NEXT_INSN (PREV_INSN (prev)) = insn;
4918 PREV_INSN (insn) = PREV_INSN (prev);
4920 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4921 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4922 PREV_INSN (prev) = BB_HEAD (block_new);
4923 NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
4924 NEXT_INSN (BB_HEAD (block_new)) = prev;
4925 PREV_INSN (NEXT_INSN (next)) = next;
4927 gcc_assert (!sel_bb_empty_p (block_from)
4928 && !sel_bb_empty_p (block_new));
4930 /* Update data sets for BLOCK_NEW to represent that INSN and
4931 instructions from the other branch of INSN is no longer
4932 available at BLOCK_NEW. */
4933 BB_AV_LEVEL (block_new) = global_level;
4934 gcc_assert (BB_LV_SET (block_new) == NULL);
4935 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4936 update_data_sets (sel_bb_head (block_new));
4938 /* INSN is a new basic block header - so prepare its data
4939 structures and update availability and liveness sets. */
4940 update_data_sets (insn);
4942 if (sched_verbose >= 4)
4943 sel_print ("Moving jump %d\n", INSN_UID (insn));
4946 /* Remove nops generated during move_op for preventing removal of empty
4947 basic blocks. */
4948 static void
4949 remove_temp_moveop_nops (bool full_tidying)
4951 int i;
4952 insn_t insn;
4954 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4956 gcc_assert (INSN_NOP_P (insn));
4957 return_nop_to_pool (insn, full_tidying);
4960 /* Empty the vector. */
4961 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4962 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4963 VEC_length (insn_t, vec_temp_moveop_nops));
4966 /* Records the maximal UID before moving up an instruction. Used for
4967 distinguishing between bookkeeping copies and original insns. */
4968 static int max_uid_before_move_op = 0;
4970 /* Remove from AV_VLIW_P all instructions but next when debug counter
4971 tells us so. Next instruction is fetched from BNDS. */
4972 static void
4973 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4975 if (! dbg_cnt (sel_sched_insn_cnt))
4976 /* Leave only the next insn in av_vliw. */
4978 av_set_iterator av_it;
4979 expr_t expr;
4980 bnd_t bnd = BLIST_BND (bnds);
4981 insn_t next = BND_TO (bnd);
4983 gcc_assert (BLIST_NEXT (bnds) == NULL);
4985 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
4986 if (EXPR_INSN_RTX (expr) != next)
4987 av_set_iter_remove (&av_it);
4991 /* Compute available instructions on BNDS. FENCE is the current fence. Write
4992 the computed set to *AV_VLIW_P. */
4993 static void
4994 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
4996 if (sched_verbose >= 2)
4998 sel_print ("Boundaries: ");
4999 dump_blist (bnds);
5000 sel_print ("\n");
5003 for (; bnds; bnds = BLIST_NEXT (bnds))
5005 bnd_t bnd = BLIST_BND (bnds);
5006 av_set_t av1_copy;
5007 insn_t bnd_to = BND_TO (bnd);
5009 /* Rewind BND->TO to the basic block header in case some bookkeeping
5010 instructions were inserted before BND->TO and it needs to be
5011 adjusted. */
5012 if (sel_bb_head_p (bnd_to))
5013 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5014 else
5015 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5017 bnd_to = PREV_INSN (bnd_to);
5018 if (sel_bb_head_p (bnd_to))
5019 break;
5022 if (BND_TO (bnd) != bnd_to)
5024 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5025 FENCE_INSN (fence) = bnd_to;
5026 BND_TO (bnd) = bnd_to;
5029 av_set_clear (&BND_AV (bnd));
5030 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5032 av_set_clear (&BND_AV1 (bnd));
5033 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5035 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5037 av1_copy = av_set_copy (BND_AV1 (bnd));
5038 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5041 if (sched_verbose >= 2)
5043 sel_print ("Available exprs (vliw form): ");
5044 dump_av_set (*av_vliw_p);
5045 sel_print ("\n");
5049 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5050 expression. When FOR_MOVEOP is true, also replace the register of
5051 expressions found with the register from EXPR_VLIW. */
5052 static av_set_t
5053 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5055 av_set_t expr_seq = NULL;
5056 expr_t expr;
5057 av_set_iterator i;
5059 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5061 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5063 if (for_moveop)
5065 /* The sequential expression has the right form to pass
5066 to move_op except when renaming happened. Put the
5067 correct register in EXPR then. */
5068 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5070 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5072 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5073 stat_renamed_scheduled++;
5075 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5076 This is needed when renaming came up with original
5077 register. */
5078 else if (EXPR_TARGET_AVAILABLE (expr)
5079 != EXPR_TARGET_AVAILABLE (expr_vliw))
5081 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5082 EXPR_TARGET_AVAILABLE (expr) = 1;
5085 if (EXPR_WAS_SUBSTITUTED (expr))
5086 stat_substitutions_total++;
5089 av_set_add (&expr_seq, expr);
5091 /* With substitution inside insn group, it is possible
5092 that more than one expression in expr_seq will correspond
5093 to expr_vliw. In this case, choose one as the attempt to
5094 move both leads to miscompiles. */
5095 break;
5099 if (for_moveop && sched_verbose >= 2)
5101 sel_print ("Best expression(s) (sequential form): ");
5102 dump_av_set (expr_seq);
5103 sel_print ("\n");
5106 return expr_seq;
5110 /* Move nop to previous block. */
5111 static void ATTRIBUTE_UNUSED
5112 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5114 insn_t prev_insn, next_insn, note;
5116 gcc_assert (sel_bb_head_p (nop)
5117 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5118 note = bb_note (BLOCK_FOR_INSN (nop));
5119 prev_insn = sel_bb_end (prev_bb);
5120 next_insn = NEXT_INSN (nop);
5121 gcc_assert (prev_insn != NULL_RTX
5122 && PREV_INSN (note) == prev_insn);
5124 NEXT_INSN (prev_insn) = nop;
5125 PREV_INSN (nop) = prev_insn;
5127 PREV_INSN (note) = nop;
5128 NEXT_INSN (note) = next_insn;
5130 NEXT_INSN (nop) = note;
5131 PREV_INSN (next_insn) = note;
5133 BB_END (prev_bb) = nop;
5134 BLOCK_FOR_INSN (nop) = prev_bb;
5137 /* Prepare a place to insert the chosen expression on BND. */
5138 static insn_t
5139 prepare_place_to_insert (bnd_t bnd)
5141 insn_t place_to_insert;
5143 /* Init place_to_insert before calling move_op, as the later
5144 can possibly remove BND_TO (bnd). */
5145 if (/* If this is not the first insn scheduled. */
5146 BND_PTR (bnd))
5148 /* Add it after last scheduled. */
5149 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5150 if (DEBUG_INSN_P (place_to_insert))
5152 ilist_t l = BND_PTR (bnd);
5153 while ((l = ILIST_NEXT (l)) &&
5154 DEBUG_INSN_P (ILIST_INSN (l)))
5156 if (!l)
5157 place_to_insert = NULL;
5160 else
5161 place_to_insert = NULL;
5163 if (!place_to_insert)
5165 /* Add it before BND_TO. The difference is in the
5166 basic block, where INSN will be added. */
5167 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5168 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5169 == BLOCK_FOR_INSN (BND_TO (bnd)));
5172 return place_to_insert;
5175 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5176 Return the expression to emit in C_EXPR. */
5177 static bool
5178 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5179 av_set_t expr_seq, expr_t c_expr)
5181 bool b, should_move;
5182 unsigned book_uid;
5183 bitmap_iterator bi;
5184 int n_bookkeeping_copies_before_moveop;
5186 /* Make a move. This call will remove the original operation,
5187 insert all necessary bookkeeping instructions and update the
5188 data sets. After that all we have to do is add the operation
5189 at before BND_TO (BND). */
5190 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5191 max_uid_before_move_op = get_max_uid ();
5192 bitmap_clear (current_copies);
5193 bitmap_clear (current_originators);
5195 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5196 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5198 /* We should be able to find the expression we've chosen for
5199 scheduling. */
5200 gcc_assert (b);
5202 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5203 stat_insns_needed_bookkeeping++;
5205 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5207 unsigned uid;
5208 bitmap_iterator bi;
5210 /* We allocate these bitmaps lazily. */
5211 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5212 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5214 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5215 current_originators);
5217 /* Transitively add all originators' originators. */
5218 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5219 if (INSN_ORIGINATORS_BY_UID (uid))
5220 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5221 INSN_ORIGINATORS_BY_UID (uid));
5224 return should_move;
5228 /* Debug a DFA state as an array of bytes. */
5229 static void
5230 debug_state (state_t state)
5232 unsigned char *p;
5233 unsigned int i, size = dfa_state_size;
5235 sel_print ("state (%u):", size);
5236 for (i = 0, p = (unsigned char *) state; i < size; i++)
5237 sel_print (" %d", p[i]);
5238 sel_print ("\n");
5241 /* Advance state on FENCE with INSN. Return true if INSN is
5242 an ASM, and we should advance state once more. */
5243 static bool
5244 advance_state_on_fence (fence_t fence, insn_t insn)
5246 bool asm_p;
5248 if (recog_memoized (insn) >= 0)
5250 int res;
5251 state_t temp_state = alloca (dfa_state_size);
5253 gcc_assert (!INSN_ASM_P (insn));
5254 asm_p = false;
5256 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5257 res = state_transition (FENCE_STATE (fence), insn);
5258 gcc_assert (res < 0);
5260 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5262 FENCE_ISSUED_INSNS (fence)++;
5264 /* We should never issue more than issue_rate insns. */
5265 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5266 gcc_unreachable ();
5269 else
5271 /* This could be an ASM insn which we'd like to schedule
5272 on the next cycle. */
5273 asm_p = INSN_ASM_P (insn);
5274 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5275 advance_one_cycle (fence);
5278 if (sched_verbose >= 2)
5279 debug_state (FENCE_STATE (fence));
5280 if (!DEBUG_INSN_P (insn))
5281 FENCE_STARTS_CYCLE_P (fence) = 0;
5282 FENCE_ISSUE_MORE (fence) = can_issue_more;
5283 return asm_p;
5286 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5287 is nonzero if we need to stall after issuing INSN. */
5288 static void
5289 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5291 bool asm_p;
5293 /* First, reflect that something is scheduled on this fence. */
5294 asm_p = advance_state_on_fence (fence, insn);
5295 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5296 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5297 if (SCHED_GROUP_P (insn))
5299 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5300 SCHED_GROUP_P (insn) = 0;
5302 else
5303 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5304 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5305 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5307 /* Set instruction scheduling info. This will be used in bundling,
5308 pipelining, tick computations etc. */
5309 ++INSN_SCHED_TIMES (insn);
5310 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5311 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5312 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5313 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5315 /* This does not account for adjust_cost hooks, just add the biggest
5316 constant the hook may add to the latency. TODO: make this
5317 a target dependent constant. */
5318 INSN_READY_CYCLE (insn)
5319 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5321 : maximal_insn_latency (insn) + 1);
5323 /* Change these fields last, as they're used above. */
5324 FENCE_AFTER_STALL_P (fence) = 0;
5325 if (asm_p || need_stall)
5326 advance_one_cycle (fence);
5328 /* Indicate that we've scheduled something on this fence. */
5329 FENCE_SCHEDULED_P (fence) = true;
5330 scheduled_something_on_previous_fence = true;
5332 /* Print debug information when insn's fields are updated. */
5333 if (sched_verbose >= 2)
5335 sel_print ("Scheduling insn: ");
5336 dump_insn_1 (insn, 1);
5337 sel_print ("\n");
5341 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5342 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5343 return it. */
5344 static blist_t *
5345 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5346 blist_t *bnds_tailp)
5348 succ_iterator si;
5349 insn_t succ;
5351 advance_deps_context (BND_DC (bnd), insn);
5352 FOR_EACH_SUCC_1 (succ, si, insn,
5353 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5355 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5357 ilist_add (&ptr, insn);
5359 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5360 && is_ineligible_successor (succ, ptr))
5362 ilist_clear (&ptr);
5363 continue;
5366 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5368 if (sched_verbose >= 9)
5369 sel_print ("Updating fence insn from %i to %i\n",
5370 INSN_UID (insn), INSN_UID (succ));
5371 FENCE_INSN (fence) = succ;
5373 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5374 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5377 blist_remove (bndsp);
5378 return bnds_tailp;
5381 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5382 static insn_t
5383 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5385 av_set_t expr_seq;
5386 expr_t c_expr = XALLOCA (expr_def);
5387 insn_t place_to_insert;
5388 insn_t insn;
5389 bool should_move;
5391 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5393 /* In case of scheduling a jump skipping some other instructions,
5394 prepare CFG. After this, jump is at the boundary and can be
5395 scheduled as usual insn by MOVE_OP. */
5396 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5398 insn = EXPR_INSN_RTX (expr_vliw);
5400 /* Speculative jumps are not handled. */
5401 if (insn != BND_TO (bnd)
5402 && !sel_insn_is_speculation_check (insn))
5403 move_cond_jump (insn, bnd);
5406 /* Find a place for C_EXPR to schedule. */
5407 place_to_insert = prepare_place_to_insert (bnd);
5408 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5409 clear_expr (c_expr);
5411 /* Add the instruction. The corner case to care about is when
5412 the expr_seq set has more than one expr, and we chose the one that
5413 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5414 we can't use it. Generate the new vinsn. */
5415 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5417 vinsn_t vinsn_new;
5419 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5420 change_vinsn_in_expr (expr_vliw, vinsn_new);
5421 should_move = false;
5423 if (should_move)
5424 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5425 else
5426 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5427 place_to_insert);
5429 /* Return the nops generated for preserving of data sets back
5430 into pool. */
5431 if (INSN_NOP_P (place_to_insert))
5432 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5433 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5435 av_set_clear (&expr_seq);
5437 /* Save the expression scheduled so to reset target availability if we'll
5438 meet it later on the same fence. */
5439 if (EXPR_WAS_RENAMED (expr_vliw))
5440 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5442 /* Check that the recent movement didn't destroyed loop
5443 structure. */
5444 gcc_assert (!pipelining_p
5445 || current_loop_nest == NULL
5446 || loop_latch_edge (current_loop_nest));
5447 return insn;
5450 /* Stall for N cycles on FENCE. */
5451 static void
5452 stall_for_cycles (fence_t fence, int n)
5454 int could_more;
5456 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5457 while (n--)
5458 advance_one_cycle (fence);
5459 if (could_more)
5460 FENCE_AFTER_STALL_P (fence) = 1;
5463 /* Gather a parallel group of insns at FENCE and assign their seqno
5464 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5465 list for later recalculation of seqnos. */
5466 static void
5467 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5469 blist_t bnds = NULL, *bnds_tailp;
5470 av_set_t av_vliw = NULL;
5471 insn_t insn = FENCE_INSN (fence);
5473 if (sched_verbose >= 2)
5474 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5475 INSN_UID (insn), FENCE_CYCLE (fence));
5477 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5478 bnds_tailp = &BLIST_NEXT (bnds);
5479 set_target_context (FENCE_TC (fence));
5480 can_issue_more = FENCE_ISSUE_MORE (fence);
5481 target_bb = INSN_BB (insn);
5483 /* Do while we can add any operation to the current group. */
5486 blist_t *bnds_tailp1, *bndsp;
5487 expr_t expr_vliw;
5488 int need_stall;
5489 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5490 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5491 int max_stall = pipelining_p ? 1 : 3;
5492 bool last_insn_was_debug = false;
5493 bool was_debug_bb_end_p = false;
5495 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5496 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5497 remove_insns_for_debug (bnds, &av_vliw);
5499 /* Return early if we have nothing to schedule. */
5500 if (av_vliw == NULL)
5501 break;
5503 /* Choose the best expression and, if needed, destination register
5504 for it. */
5507 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5508 if (!expr_vliw && need_stall)
5510 /* All expressions required a stall. Do not recompute av sets
5511 as we'll get the same answer (modulo the insns between
5512 the fence and its boundary, which will not be available for
5513 pipelining). */
5514 gcc_assert (! expr_vliw && stall_iterations < 2);
5515 was_stall++;
5516 /* If we are going to stall for too long, break to recompute av
5517 sets and bring more insns for pipelining. */
5518 if (need_stall <= 3)
5519 stall_for_cycles (fence, need_stall);
5520 else
5522 stall_for_cycles (fence, 1);
5523 break;
5527 while (! expr_vliw && need_stall);
5529 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5530 if (!expr_vliw)
5532 av_set_clear (&av_vliw);
5533 break;
5536 bndsp = &bnds;
5537 bnds_tailp1 = bnds_tailp;
5540 /* This code will be executed only once until we'd have several
5541 boundaries per fence. */
5543 bnd_t bnd = BLIST_BND (*bndsp);
5545 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5547 bndsp = &BLIST_NEXT (*bndsp);
5548 continue;
5551 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5552 last_insn_was_debug = DEBUG_INSN_P (insn);
5553 if (last_insn_was_debug)
5554 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5555 update_fence_and_insn (fence, insn, need_stall);
5556 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5558 /* Add insn to the list of scheduled on this cycle instructions. */
5559 ilist_add (*scheduled_insns_tailpp, insn);
5560 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5562 while (*bndsp != *bnds_tailp1);
5564 av_set_clear (&av_vliw);
5565 if (!last_insn_was_debug)
5566 scheduled_insns++;
5568 /* We currently support information about candidate blocks only for
5569 one 'target_bb' block. Hence we can't schedule after jump insn,
5570 as this will bring two boundaries and, hence, necessity to handle
5571 information for two or more blocks concurrently. */
5572 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5573 || (was_stall
5574 && (was_stall >= max_stall
5575 || scheduled_insns >= max_insns)))
5576 break;
5578 while (bnds);
5580 gcc_assert (!FENCE_BNDS (fence));
5582 /* Update boundaries of the FENCE. */
5583 while (bnds)
5585 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5587 if (ptr)
5589 insn = ILIST_INSN (ptr);
5591 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5592 ilist_add (&FENCE_BNDS (fence), insn);
5595 blist_remove (&bnds);
5598 /* Update target context on the fence. */
5599 reset_target_context (FENCE_TC (fence), false);
5602 /* All exprs in ORIG_OPS must have the same destination register or memory.
5603 Return that destination. */
5604 static rtx
5605 get_dest_from_orig_ops (av_set_t orig_ops)
5607 rtx dest = NULL_RTX;
5608 av_set_iterator av_it;
5609 expr_t expr;
5610 bool first_p = true;
5612 FOR_EACH_EXPR (expr, av_it, orig_ops)
5614 rtx x = EXPR_LHS (expr);
5616 if (first_p)
5618 first_p = false;
5619 dest = x;
5621 else
5622 gcc_assert (dest == x
5623 || (dest != NULL_RTX && x != NULL_RTX
5624 && rtx_equal_p (dest, x)));
5627 return dest;
5630 /* Update data sets for the bookkeeping block and record those expressions
5631 which become no longer available after inserting this bookkeeping. */
5632 static void
5633 update_and_record_unavailable_insns (basic_block book_block)
5635 av_set_iterator i;
5636 av_set_t old_av_set = NULL;
5637 expr_t cur_expr;
5638 rtx bb_end = sel_bb_end (book_block);
5640 /* First, get correct liveness in the bookkeeping block. The problem is
5641 the range between the bookeeping insn and the end of block. */
5642 update_liveness_on_insn (bb_end);
5643 if (control_flow_insn_p (bb_end))
5644 update_liveness_on_insn (PREV_INSN (bb_end));
5646 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5647 fence above, where we may choose to schedule an insn which is
5648 actually blocked from moving up with the bookkeeping we create here. */
5649 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5651 old_av_set = av_set_copy (BB_AV_SET (book_block));
5652 update_data_sets (sel_bb_head (book_block));
5654 /* Traverse all the expressions in the old av_set and check whether
5655 CUR_EXPR is in new AV_SET. */
5656 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5658 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5659 EXPR_VINSN (cur_expr));
5661 if (! new_expr
5662 /* In this case, we can just turn off the E_T_A bit, but we can't
5663 represent this information with the current vector. */
5664 || EXPR_TARGET_AVAILABLE (new_expr)
5665 != EXPR_TARGET_AVAILABLE (cur_expr))
5666 /* Unfortunately, the below code could be also fired up on
5667 separable insns.
5668 FIXME: add an example of how this could happen. */
5669 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5672 av_set_clear (&old_av_set);
5676 /* The main effect of this function is that sparams->c_expr is merged
5677 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5678 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5679 lparams->c_expr_merged is copied back to sparams->c_expr after all
5680 successors has been traversed. lparams->c_expr_local is an expr allocated
5681 on stack in the caller function, and is used if there is more than one
5682 successor.
5684 SUCC is one of the SUCCS_NORMAL successors of INSN,
5685 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5686 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5687 static void
5688 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5689 insn_t succ ATTRIBUTE_UNUSED,
5690 int moveop_drv_call_res,
5691 cmpd_local_params_p lparams, void *static_params)
5693 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5695 /* Nothing to do, if original expr wasn't found below. */
5696 if (moveop_drv_call_res != 1)
5697 return;
5699 /* If this is a first successor. */
5700 if (!lparams->c_expr_merged)
5702 lparams->c_expr_merged = sparams->c_expr;
5703 sparams->c_expr = lparams->c_expr_local;
5705 else
5707 /* We must merge all found expressions to get reasonable
5708 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5709 do so then we can first find the expr with epsilon
5710 speculation success probability and only then with the
5711 good probability. As a result the insn will get epsilon
5712 probability and will never be scheduled because of
5713 weakness_cutoff in find_best_expr.
5715 We call merge_expr_data here instead of merge_expr
5716 because due to speculation C_EXPR and X may have the
5717 same insns with different speculation types. And as of
5718 now such insns are considered non-equal.
5720 However, EXPR_SCHED_TIMES is different -- we must get
5721 SCHED_TIMES from a real insn, not a bookkeeping copy.
5722 We force this here. Instead, we may consider merging
5723 SCHED_TIMES to the maximum instead of minimum in the
5724 below function. */
5725 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5727 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5728 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5729 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5731 clear_expr (sparams->c_expr);
5735 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5737 SUCC is one of the SUCCS_NORMAL successors of INSN,
5738 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5739 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5740 STATIC_PARAMS contain USED_REGS set. */
5741 static void
5742 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5743 int moveop_drv_call_res,
5744 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5745 void *static_params)
5747 regset succ_live;
5748 fur_static_params_p sparams = (fur_static_params_p) static_params;
5750 /* Here we compute live regsets only for branches that do not lie
5751 on the code motion paths. These branches correspond to value
5752 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5753 for such branches code_motion_path_driver is not called. */
5754 if (moveop_drv_call_res != 0)
5755 return;
5757 /* Mark all registers that do not meet the following condition:
5758 (3) not live on the other path of any conditional branch
5759 that is passed by the operation, in case original
5760 operations are not present on both paths of the
5761 conditional branch. */
5762 succ_live = compute_live (succ);
5763 IOR_REG_SET (sparams->used_regs, succ_live);
5766 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5767 into SP->CEXPR. */
5768 static void
5769 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5771 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5773 sp->c_expr = lp->c_expr_merged;
5776 /* Track bookkeeping copies created, insns scheduled, and blocks for
5777 rescheduling when INSN is found by move_op. */
5778 static void
5779 track_scheduled_insns_and_blocks (rtx insn)
5781 /* Even if this insn can be a copy that will be removed during current move_op,
5782 we still need to count it as an originator. */
5783 bitmap_set_bit (current_originators, INSN_UID (insn));
5785 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5787 /* Note that original block needs to be rescheduled, as we pulled an
5788 instruction out of it. */
5789 if (INSN_SCHED_TIMES (insn) > 0)
5790 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5791 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5792 num_insns_scheduled++;
5795 /* For instructions we must immediately remove insn from the
5796 stream, so subsequent update_data_sets () won't include this
5797 insn into av_set.
5798 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5799 if (INSN_UID (insn) > max_uid_before_move_op)
5800 stat_bookkeeping_copies--;
5803 /* Emit a register-register copy for INSN if needed. Return true if
5804 emitted one. PARAMS is the move_op static parameters. */
5805 static bool
5806 maybe_emit_renaming_copy (rtx insn,
5807 moveop_static_params_p params)
5809 bool insn_emitted = false;
5810 rtx cur_reg;
5812 /* Bail out early when expression can not be renamed at all. */
5813 if (!EXPR_SEPARABLE_P (params->c_expr))
5814 return false;
5816 cur_reg = expr_dest_reg (params->c_expr);
5817 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5819 /* If original operation has expr and the register chosen for
5820 that expr is not original operation's dest reg, substitute
5821 operation's right hand side with the register chosen. */
5822 if (REGNO (params->dest) != REGNO (cur_reg))
5824 insn_t reg_move_insn, reg_move_insn_rtx;
5826 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5827 params->dest);
5828 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5829 INSN_EXPR (insn),
5830 INSN_SEQNO (insn),
5831 insn);
5832 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5833 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5835 insn_emitted = true;
5836 params->was_renamed = true;
5839 return insn_emitted;
5842 /* Emit a speculative check for INSN speculated as EXPR if needed.
5843 Return true if we've emitted one. PARAMS is the move_op static
5844 parameters. */
5845 static bool
5846 maybe_emit_speculative_check (rtx insn, expr_t expr,
5847 moveop_static_params_p params)
5849 bool insn_emitted = false;
5850 insn_t x;
5851 ds_t check_ds;
5853 check_ds = get_spec_check_type_for_insn (insn, expr);
5854 if (check_ds != 0)
5856 /* A speculation check should be inserted. */
5857 x = create_speculation_check (params->c_expr, check_ds, insn);
5858 insn_emitted = true;
5860 else
5862 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5863 x = insn;
5866 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5867 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5868 return insn_emitted;
5871 /* Handle transformations that leave an insn in place of original
5872 insn such as renaming/speculation. Return true if one of such
5873 transformations actually happened, and we have emitted this insn. */
5874 static bool
5875 handle_emitting_transformations (rtx insn, expr_t expr,
5876 moveop_static_params_p params)
5878 bool insn_emitted = false;
5880 insn_emitted = maybe_emit_renaming_copy (insn, params);
5881 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5883 return insn_emitted;
5886 /* If INSN is the only insn in the basic block (not counting JUMP,
5887 which may be a jump to next insn, and DEBUG_INSNs), we want to
5888 leave a NOP there till the return to fill_insns. */
5890 static bool
5891 need_nop_to_preserve_insn_bb (rtx insn)
5893 insn_t bb_head, bb_end, bb_next, in_next;
5894 basic_block bb = BLOCK_FOR_INSN (insn);
5896 bb_head = sel_bb_head (bb);
5897 bb_end = sel_bb_end (bb);
5899 if (bb_head == bb_end)
5900 return true;
5902 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5903 bb_head = NEXT_INSN (bb_head);
5905 if (bb_head == bb_end)
5906 return true;
5908 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5909 bb_end = PREV_INSN (bb_end);
5911 if (bb_head == bb_end)
5912 return true;
5914 bb_next = NEXT_INSN (bb_head);
5915 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5916 bb_next = NEXT_INSN (bb_next);
5918 if (bb_next == bb_end && JUMP_P (bb_end))
5919 return true;
5921 in_next = NEXT_INSN (insn);
5922 while (DEBUG_INSN_P (in_next))
5923 in_next = NEXT_INSN (in_next);
5925 if (IN_CURRENT_FENCE_P (in_next))
5926 return true;
5928 return false;
5931 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5932 is not removed but reused when INSN is re-emitted. */
5933 static void
5934 remove_insn_from_stream (rtx insn, bool only_disconnect)
5936 /* If there's only one insn in the BB, make sure that a nop is
5937 inserted into it, so the basic block won't disappear when we'll
5938 delete INSN below with sel_remove_insn. It should also survive
5939 till the return to fill_insns. */
5940 if (need_nop_to_preserve_insn_bb (insn))
5942 insn_t nop = get_nop_from_pool (insn);
5943 gcc_assert (INSN_NOP_P (nop));
5944 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5947 sel_remove_insn (insn, only_disconnect, false);
5950 /* This function is called when original expr is found.
5951 INSN - current insn traversed, EXPR - the corresponding expr found.
5952 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5953 is static parameters of move_op. */
5954 static void
5955 move_op_orig_expr_found (insn_t insn, expr_t expr,
5956 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5957 void *static_params)
5959 bool only_disconnect, insn_emitted;
5960 moveop_static_params_p params = (moveop_static_params_p) static_params;
5962 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5963 track_scheduled_insns_and_blocks (insn);
5964 insn_emitted = handle_emitting_transformations (insn, expr, params);
5965 only_disconnect = (params->uid == INSN_UID (insn)
5966 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5968 /* Mark that we've disconnected an insn. */
5969 if (only_disconnect)
5970 params->uid = -1;
5971 remove_insn_from_stream (insn, only_disconnect);
5974 /* The function is called when original expr is found.
5975 INSN - current insn traversed, EXPR - the corresponding expr found,
5976 crosses_call and original_insns in STATIC_PARAMS are updated. */
5977 static void
5978 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5979 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5980 void *static_params)
5982 fur_static_params_p params = (fur_static_params_p) static_params;
5983 regset tmp;
5985 if (CALL_P (insn))
5986 params->crosses_call = true;
5988 def_list_add (params->original_insns, insn, params->crosses_call);
5990 /* Mark the registers that do not meet the following condition:
5991 (2) not among the live registers of the point
5992 immediately following the first original operation on
5993 a given downward path, except for the original target
5994 register of the operation. */
5995 tmp = get_clear_regset_from_pool ();
5996 compute_live_below_insn (insn, tmp);
5997 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
5998 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
5999 IOR_REG_SET (params->used_regs, tmp);
6000 return_regset_to_pool (tmp);
6002 /* (*1) We need to add to USED_REGS registers that are read by
6003 INSN's lhs. This may lead to choosing wrong src register.
6004 E.g. (scheduling const expr enabled):
6006 429: ax=0x0 <- Can't use AX for this expr (0x0)
6007 433: dx=[bp-0x18]
6008 427: [ax+dx+0x1]=ax
6009 REG_DEAD: ax
6010 168: di=dx
6011 REG_DEAD: dx
6013 /* FIXME: see comment above and enable MEM_P
6014 in vinsn_separable_p. */
6015 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6016 || !MEM_P (INSN_LHS (insn)));
6019 /* This function is called on the ascending pass, before returning from
6020 current basic block. */
6021 static void
6022 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6023 void *static_params)
6025 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6026 basic_block book_block = NULL;
6028 /* When we have removed the boundary insn for scheduling, which also
6029 happened to be the end insn in its bb, we don't need to update sets. */
6030 if (!lparams->removed_last_insn
6031 && lparams->e1
6032 && sel_bb_head_p (insn))
6034 /* We should generate bookkeeping code only if we are not at the
6035 top level of the move_op. */
6036 if (sel_num_cfg_preds_gt_1 (insn))
6037 book_block = generate_bookkeeping_insn (sparams->c_expr,
6038 lparams->e1, lparams->e2);
6039 /* Update data sets for the current insn. */
6040 update_data_sets (insn);
6043 /* If bookkeeping code was inserted, we need to update av sets of basic
6044 block that received bookkeeping. After generation of bookkeeping insn,
6045 bookkeeping block does not contain valid av set because we are not following
6046 the original algorithm in every detail with regards to e.g. renaming
6047 simple reg-reg copies. Consider example:
6049 bookkeeping block scheduling fence
6051 \ join /
6052 ----------
6054 ----------
6057 r1 := r2 r1 := r3
6059 We try to schedule insn "r1 := r3" on the current
6060 scheduling fence. Also, note that av set of bookkeeping block
6061 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6062 been scheduled, the CFG is as follows:
6064 r1 := r3 r1 := r3
6065 bookkeeping block scheduling fence
6067 \ join /
6068 ----------
6070 ----------
6073 r1 := r2
6075 Here, insn "r1 := r3" was scheduled at the current scheduling point
6076 and bookkeeping code was generated at the bookeeping block. This
6077 way insn "r1 := r2" is no longer available as a whole instruction
6078 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6079 This situation is handled by calling update_data_sets.
6081 Since update_data_sets is called only on the bookkeeping block, and
6082 it also may have predecessors with av_sets, containing instructions that
6083 are no longer available, we save all such expressions that become
6084 unavailable during data sets update on the bookkeeping block in
6085 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6086 expressions for scheduling. This allows us to avoid recomputation of
6087 av_sets outside the code motion path. */
6089 if (book_block)
6090 update_and_record_unavailable_insns (book_block);
6092 /* If INSN was previously marked for deletion, it's time to do it. */
6093 if (lparams->removed_last_insn)
6094 insn = PREV_INSN (insn);
6096 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6097 kill a block with a single nop in which the insn should be emitted. */
6098 if (lparams->e1)
6099 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6102 /* This function is called on the ascending pass, before returning from the
6103 current basic block. */
6104 static void
6105 fur_at_first_insn (insn_t insn,
6106 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6107 void *static_params ATTRIBUTE_UNUSED)
6109 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6110 || AV_LEVEL (insn) == -1);
6113 /* Called on the backward stage of recursion to call moveup_expr for insn
6114 and sparams->c_expr. */
6115 static void
6116 move_op_ascend (insn_t insn, void *static_params)
6118 enum MOVEUP_EXPR_CODE res;
6119 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6121 if (! INSN_NOP_P (insn))
6123 res = moveup_expr_cached (sparams->c_expr, insn, false);
6124 gcc_assert (res != MOVEUP_EXPR_NULL);
6127 /* Update liveness for this insn as it was invalidated. */
6128 update_liveness_on_insn (insn);
6131 /* This function is called on enter to the basic block.
6132 Returns TRUE if this block already have been visited and
6133 code_motion_path_driver should return 1, FALSE otherwise. */
6134 static int
6135 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6136 void *static_params, bool visited_p)
6138 fur_static_params_p sparams = (fur_static_params_p) static_params;
6140 if (visited_p)
6142 /* If we have found something below this block, there should be at
6143 least one insn in ORIGINAL_INSNS. */
6144 gcc_assert (*sparams->original_insns);
6146 /* Adjust CROSSES_CALL, since we may have come to this block along
6147 different path. */
6148 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6149 |= sparams->crosses_call;
6151 else
6152 local_params->old_original_insns = *sparams->original_insns;
6154 return 1;
6157 /* Same as above but for move_op. */
6158 static int
6159 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6160 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6161 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6163 if (visited_p)
6164 return -1;
6165 return 1;
6168 /* This function is called while descending current basic block if current
6169 insn is not the original EXPR we're searching for.
6171 Return value: FALSE, if code_motion_path_driver should perform a local
6172 cleanup and return 0 itself;
6173 TRUE, if code_motion_path_driver should continue. */
6174 static bool
6175 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6176 void *static_params)
6178 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6180 #ifdef ENABLE_CHECKING
6181 sparams->failed_insn = insn;
6182 #endif
6184 /* If we're scheduling separate expr, in order to generate correct code
6185 we need to stop the search at bookkeeping code generated with the
6186 same destination register or memory. */
6187 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6188 return false;
6189 return true;
6192 /* This function is called while descending current basic block if current
6193 insn is not the original EXPR we're searching for.
6195 Return value: TRUE (code_motion_path_driver should continue). */
6196 static bool
6197 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6199 bool mutexed;
6200 expr_t r;
6201 av_set_iterator avi;
6202 fur_static_params_p sparams = (fur_static_params_p) static_params;
6204 if (CALL_P (insn))
6205 sparams->crosses_call = true;
6206 else if (DEBUG_INSN_P (insn))
6207 return true;
6209 /* If current insn we are looking at cannot be executed together
6210 with original insn, then we can skip it safely.
6212 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6213 INSN = (!p6) r14 = r14 + 1;
6215 Here we can schedule ORIG_OP with lhs = r14, though only
6216 looking at the set of used and set registers of INSN we must
6217 forbid it. So, add set/used in INSN registers to the
6218 untouchable set only if there is an insn in ORIG_OPS that can
6219 affect INSN. */
6220 mutexed = true;
6221 FOR_EACH_EXPR (r, avi, orig_ops)
6222 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6224 mutexed = false;
6225 break;
6228 /* Mark all registers that do not meet the following condition:
6229 (1) Not set or read on any path from xi to an instance of the
6230 original operation. */
6231 if (!mutexed)
6233 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6234 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6235 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6238 return true;
6241 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6242 struct code_motion_path_driver_info_def move_op_hooks = {
6243 move_op_on_enter,
6244 move_op_orig_expr_found,
6245 move_op_orig_expr_not_found,
6246 move_op_merge_succs,
6247 move_op_after_merge_succs,
6248 move_op_ascend,
6249 move_op_at_first_insn,
6250 SUCCS_NORMAL,
6251 "move_op"
6254 /* Hooks and data to perform find_used_regs operations
6255 with code_motion_path_driver. */
6256 struct code_motion_path_driver_info_def fur_hooks = {
6257 fur_on_enter,
6258 fur_orig_expr_found,
6259 fur_orig_expr_not_found,
6260 fur_merge_succs,
6261 NULL, /* fur_after_merge_succs */
6262 NULL, /* fur_ascend */
6263 fur_at_first_insn,
6264 SUCCS_ALL,
6265 "find_used_regs"
6268 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6269 code_motion_path_driver is called recursively. Original operation
6270 was found at least on one path that is starting with one of INSN's
6271 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6272 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6273 of either move_op or find_used_regs depending on the caller.
6275 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6276 know for sure at this point. */
6277 static int
6278 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6279 ilist_t path, void *static_params)
6281 int res = 0;
6282 succ_iterator succ_i;
6283 rtx succ;
6284 basic_block bb;
6285 int old_index;
6286 unsigned old_succs;
6288 struct cmpd_local_params lparams;
6289 expr_def _x;
6291 lparams.c_expr_local = &_x;
6292 lparams.c_expr_merged = NULL;
6294 /* We need to process only NORMAL succs for move_op, and collect live
6295 registers from ALL branches (including those leading out of the
6296 region) for find_used_regs.
6298 In move_op, there can be a case when insn's bb number has changed
6299 due to created bookkeeping. This happens very rare, as we need to
6300 move expression from the beginning to the end of the same block.
6301 Rescan successors in this case. */
6303 rescan:
6304 bb = BLOCK_FOR_INSN (insn);
6305 old_index = bb->index;
6306 old_succs = EDGE_COUNT (bb->succs);
6308 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6310 int b;
6312 lparams.e1 = succ_i.e1;
6313 lparams.e2 = succ_i.e2;
6315 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6316 current region). */
6317 if (succ_i.current_flags == SUCCS_NORMAL)
6318 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6319 static_params);
6320 else
6321 b = 0;
6323 /* Merge c_expres found or unify live register sets from different
6324 successors. */
6325 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6326 static_params);
6327 if (b == 1)
6328 res = b;
6329 else if (b == -1 && res != 1)
6330 res = b;
6332 /* We have simplified the control flow below this point. In this case,
6333 the iterator becomes invalid. We need to try again. */
6334 if (BLOCK_FOR_INSN (insn)->index != old_index
6335 || EDGE_COUNT (bb->succs) != old_succs)
6336 goto rescan;
6339 #ifdef ENABLE_CHECKING
6340 /* Here, RES==1 if original expr was found at least for one of the
6341 successors. After the loop, RES may happen to have zero value
6342 only if at some point the expr searched is present in av_set, but is
6343 not found below. In most cases, this situation is an error.
6344 The exception is when the original operation is blocked by
6345 bookkeeping generated for another fence or for another path in current
6346 move_op. */
6347 gcc_assert (res == 1
6348 || (res == 0
6349 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6350 static_params))
6351 || res == -1);
6352 #endif
6354 /* Merge data, clean up, etc. */
6355 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6356 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6358 return res;
6362 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6363 is the pointer to the av set with expressions we were looking for,
6364 PATH_P is the pointer to the traversed path. */
6365 static inline void
6366 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6368 ilist_remove (path_p);
6369 av_set_clear (orig_ops_p);
6372 /* The driver function that implements move_op or find_used_regs
6373 functionality dependent whether code_motion_path_driver_INFO is set to
6374 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6375 of code (CFG traversal etc) that are shared among both functions. INSN
6376 is the insn we're starting the search from, ORIG_OPS are the expressions
6377 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6378 parameters of the driver, and STATIC_PARAMS are static parameters of
6379 the caller.
6381 Returns whether original instructions were found. Note that top-level
6382 code_motion_path_driver always returns true. */
6383 static int
6384 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6385 cmpd_local_params_p local_params_in,
6386 void *static_params)
6388 expr_t expr = NULL;
6389 basic_block bb = BLOCK_FOR_INSN (insn);
6390 insn_t first_insn, bb_tail, before_first;
6391 bool removed_last_insn = false;
6393 if (sched_verbose >= 6)
6395 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6396 dump_insn (insn);
6397 sel_print (",");
6398 dump_av_set (orig_ops);
6399 sel_print (")\n");
6402 gcc_assert (orig_ops);
6404 /* If no original operations exist below this insn, return immediately. */
6405 if (is_ineligible_successor (insn, path))
6407 if (sched_verbose >= 6)
6408 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6409 return false;
6412 /* The block can have invalid av set, in which case it was created earlier
6413 during move_op. Return immediately. */
6414 if (sel_bb_head_p (insn))
6416 if (! AV_SET_VALID_P (insn))
6418 if (sched_verbose >= 6)
6419 sel_print ("Returned from block %d as it had invalid av set\n",
6420 bb->index);
6421 return false;
6424 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6426 /* We have already found an original operation on this branch, do not
6427 go any further and just return TRUE here. If we don't stop here,
6428 function can have exponential behaviour even on the small code
6429 with many different paths (e.g. with data speculation and
6430 recovery blocks). */
6431 if (sched_verbose >= 6)
6432 sel_print ("Block %d already visited in this traversal\n", bb->index);
6433 if (code_motion_path_driver_info->on_enter)
6434 return code_motion_path_driver_info->on_enter (insn,
6435 local_params_in,
6436 static_params,
6437 true);
6441 if (code_motion_path_driver_info->on_enter)
6442 code_motion_path_driver_info->on_enter (insn, local_params_in,
6443 static_params, false);
6444 orig_ops = av_set_copy (orig_ops);
6446 /* Filter the orig_ops set. */
6447 if (AV_SET_VALID_P (insn))
6448 av_set_intersect (&orig_ops, AV_SET (insn));
6450 /* If no more original ops, return immediately. */
6451 if (!orig_ops)
6453 if (sched_verbose >= 6)
6454 sel_print ("No intersection with av set of block %d\n", bb->index);
6455 return false;
6458 /* For non-speculative insns we have to leave only one form of the
6459 original operation, because if we don't, we may end up with
6460 different C_EXPRes and, consequently, with bookkeepings for different
6461 expression forms along the same code motion path. That may lead to
6462 generation of incorrect code. So for each code motion we stick to
6463 the single form of the instruction, except for speculative insns
6464 which we need to keep in different forms with all speculation
6465 types. */
6466 av_set_leave_one_nonspec (&orig_ops);
6468 /* It is not possible that all ORIG_OPS are filtered out. */
6469 gcc_assert (orig_ops);
6471 /* It is enough to place only heads and tails of visited basic blocks into
6472 the PATH. */
6473 ilist_add (&path, insn);
6474 first_insn = insn;
6475 bb_tail = sel_bb_end (bb);
6477 /* Descend the basic block in search of the original expr; this part
6478 corresponds to the part of the original move_op procedure executed
6479 before the recursive call. */
6480 for (;;)
6482 /* Look at the insn and decide if it could be an ancestor of currently
6483 scheduling operation. If it is so, then the insn "dest = op" could
6484 either be replaced with "dest = reg", because REG now holds the result
6485 of OP, or just removed, if we've scheduled the insn as a whole.
6487 If this insn doesn't contain currently scheduling OP, then proceed
6488 with searching and look at its successors. Operations we're searching
6489 for could have changed when moving up through this insn via
6490 substituting. In this case, perform unsubstitution on them first.
6492 When traversing the DAG below this insn is finished, insert
6493 bookkeeping code, if the insn is a joint point, and remove
6494 leftovers. */
6496 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6497 if (expr)
6499 insn_t last_insn = PREV_INSN (insn);
6501 /* We have found the original operation. */
6502 if (sched_verbose >= 6)
6503 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6505 code_motion_path_driver_info->orig_expr_found
6506 (insn, expr, local_params_in, static_params);
6508 /* Step back, so on the way back we'll start traversing from the
6509 previous insn (or we'll see that it's bb_note and skip that
6510 loop). */
6511 if (insn == first_insn)
6513 first_insn = NEXT_INSN (last_insn);
6514 removed_last_insn = sel_bb_end_p (last_insn);
6516 insn = last_insn;
6517 break;
6519 else
6521 /* We haven't found the original expr, continue descending the basic
6522 block. */
6523 if (code_motion_path_driver_info->orig_expr_not_found
6524 (insn, orig_ops, static_params))
6526 /* Av set ops could have been changed when moving through this
6527 insn. To find them below it, we have to un-substitute them. */
6528 undo_transformations (&orig_ops, insn);
6530 else
6532 /* Clean up and return, if the hook tells us to do so. It may
6533 happen if we've encountered the previously created
6534 bookkeeping. */
6535 code_motion_path_driver_cleanup (&orig_ops, &path);
6536 return -1;
6539 gcc_assert (orig_ops);
6542 /* Stop at insn if we got to the end of BB. */
6543 if (insn == bb_tail)
6544 break;
6546 insn = NEXT_INSN (insn);
6549 /* Here INSN either points to the insn before the original insn (may be
6550 bb_note, if original insn was a bb_head) or to the bb_end. */
6551 if (!expr)
6553 int res;
6555 gcc_assert (insn == sel_bb_end (bb));
6557 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6558 it's already in PATH then). */
6559 if (insn != first_insn)
6560 ilist_add (&path, insn);
6562 /* Process_successors should be able to find at least one
6563 successor for which code_motion_path_driver returns TRUE. */
6564 res = code_motion_process_successors (insn, orig_ops,
6565 path, static_params);
6567 /* Remove bb tail from path. */
6568 if (insn != first_insn)
6569 ilist_remove (&path);
6571 if (res != 1)
6573 /* This is the case when one of the original expr is no longer available
6574 due to bookkeeping created on this branch with the same register.
6575 In the original algorithm, which doesn't have update_data_sets call
6576 on a bookkeeping block, it would simply result in returning
6577 FALSE when we've encountered a previously generated bookkeeping
6578 insn in moveop_orig_expr_not_found. */
6579 code_motion_path_driver_cleanup (&orig_ops, &path);
6580 return res;
6584 /* Don't need it any more. */
6585 av_set_clear (&orig_ops);
6587 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6588 the beginning of the basic block. */
6589 before_first = PREV_INSN (first_insn);
6590 while (insn != before_first)
6592 if (code_motion_path_driver_info->ascend)
6593 code_motion_path_driver_info->ascend (insn, static_params);
6595 insn = PREV_INSN (insn);
6598 /* Now we're at the bb head. */
6599 insn = first_insn;
6600 ilist_remove (&path);
6601 local_params_in->removed_last_insn = removed_last_insn;
6602 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6604 /* This should be the very last operation as at bb head we could change
6605 the numbering by creating bookkeeping blocks. */
6606 if (removed_last_insn)
6607 insn = PREV_INSN (insn);
6608 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6609 return true;
6612 /* Move up the operations from ORIG_OPS set traversing the dag starting
6613 from INSN. PATH represents the edges traversed so far.
6614 DEST is the register chosen for scheduling the current expr. Insert
6615 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6616 C_EXPR is how it looks like at the given cfg point.
6617 Set *SHOULD_MOVE to indicate whether we have only disconnected
6618 one of the insns found.
6620 Returns whether original instructions were found, which is asserted
6621 to be true in the caller. */
6622 static bool
6623 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6624 rtx dest, expr_t c_expr, bool *should_move)
6626 struct moveop_static_params sparams;
6627 struct cmpd_local_params lparams;
6628 bool res;
6630 /* Init params for code_motion_path_driver. */
6631 sparams.dest = dest;
6632 sparams.c_expr = c_expr;
6633 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6634 #ifdef ENABLE_CHECKING
6635 sparams.failed_insn = NULL;
6636 #endif
6637 sparams.was_renamed = false;
6638 lparams.e1 = NULL;
6640 /* We haven't visited any blocks yet. */
6641 bitmap_clear (code_motion_visited_blocks);
6643 /* Set appropriate hooks and data. */
6644 code_motion_path_driver_info = &move_op_hooks;
6645 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6647 if (sparams.was_renamed)
6648 EXPR_WAS_RENAMED (expr_vliw) = true;
6650 *should_move = (sparams.uid == -1);
6652 return res;
6656 /* Functions that work with regions. */
6658 /* Current number of seqno used in init_seqno and init_seqno_1. */
6659 static int cur_seqno;
6661 /* A helper for init_seqno. Traverse the region starting from BB and
6662 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6663 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6664 static void
6665 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6667 int bbi = BLOCK_TO_BB (bb->index);
6668 insn_t insn, note = bb_note (bb);
6669 insn_t succ_insn;
6670 succ_iterator si;
6672 SET_BIT (visited_bbs, bbi);
6673 if (blocks_to_reschedule)
6674 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6676 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6677 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6679 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6680 int succ_bbi = BLOCK_TO_BB (succ->index);
6682 gcc_assert (in_current_region_p (succ));
6684 if (!TEST_BIT (visited_bbs, succ_bbi))
6686 gcc_assert (succ_bbi > bbi);
6688 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6692 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6693 INSN_SEQNO (insn) = cur_seqno--;
6696 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6697 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6698 which we're rescheduling when pipelining, FROM is the block where
6699 traversing region begins (it may not be the head of the region when
6700 pipelining, but the head of the loop instead).
6702 Returns the maximal seqno found. */
6703 static int
6704 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6706 sbitmap visited_bbs;
6707 bitmap_iterator bi;
6708 unsigned bbi;
6710 visited_bbs = sbitmap_alloc (current_nr_blocks);
6712 if (blocks_to_reschedule)
6714 sbitmap_ones (visited_bbs);
6715 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6717 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6718 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6721 else
6723 sbitmap_zero (visited_bbs);
6724 from = EBB_FIRST_BB (0);
6727 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6728 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6729 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6731 sbitmap_free (visited_bbs);
6732 return sched_max_luid - 1;
6735 /* Initialize scheduling parameters for current region. */
6736 static void
6737 sel_setup_region_sched_flags (void)
6739 enable_schedule_as_rhs_p = 1;
6740 bookkeeping_p = 1;
6741 pipelining_p = (bookkeeping_p
6742 && (flag_sel_sched_pipelining != 0)
6743 && current_loop_nest != NULL);
6744 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6745 max_ws = MAX_WS;
6748 /* Return true if all basic blocks of current region are empty. */
6749 static bool
6750 current_region_empty_p (void)
6752 int i;
6753 for (i = 0; i < current_nr_blocks; i++)
6754 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6755 return false;
6757 return true;
6760 /* Prepare and verify loop nest for pipelining. */
6761 static void
6762 setup_current_loop_nest (int rgn)
6764 current_loop_nest = get_loop_nest_for_rgn (rgn);
6766 if (!current_loop_nest)
6767 return;
6769 /* If this loop has any saved loop preheaders from nested loops,
6770 add these basic blocks to the current region. */
6771 sel_add_loop_preheaders ();
6773 /* Check that we're starting with a valid information. */
6774 gcc_assert (loop_latch_edge (current_loop_nest));
6775 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6778 /* Compute instruction priorities for current region. */
6779 static void
6780 sel_compute_priorities (int rgn)
6782 sched_rgn_compute_dependencies (rgn);
6784 /* Compute insn priorities in haifa style. Then free haifa style
6785 dependencies that we've calculated for this. */
6786 compute_priorities ();
6788 if (sched_verbose >= 5)
6789 debug_rgn_dependencies (0);
6791 free_rgn_deps ();
6794 /* Init scheduling data for RGN. Returns true when this region should not
6795 be scheduled. */
6796 static bool
6797 sel_region_init (int rgn)
6799 int i;
6800 bb_vec_t bbs;
6802 rgn_setup_region (rgn);
6804 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6805 do region initialization here so the region can be bundled correctly,
6806 but we'll skip the scheduling in sel_sched_region (). */
6807 if (current_region_empty_p ())
6808 return true;
6810 if (flag_sel_sched_pipelining)
6811 setup_current_loop_nest (rgn);
6813 sel_setup_region_sched_flags ();
6815 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6817 for (i = 0; i < current_nr_blocks; i++)
6818 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6820 sel_init_bbs (bbs, NULL);
6822 /* Initialize luids and dependence analysis which both sel-sched and haifa
6823 need. */
6824 sched_init_luids (bbs, NULL, NULL, NULL);
6825 sched_deps_init (false);
6827 /* Initialize haifa data. */
6828 rgn_setup_sched_infos ();
6829 sel_set_sched_flags ();
6830 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6832 sel_compute_priorities (rgn);
6833 init_deps_global ();
6835 /* Main initialization. */
6836 sel_setup_sched_infos ();
6837 sel_init_global_and_expr (bbs);
6839 VEC_free (basic_block, heap, bbs);
6841 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6843 /* Init correct liveness sets on each instruction of a single-block loop.
6844 This is the only situation when we can't update liveness when calling
6845 compute_live for the first insn of the loop. */
6846 if (current_loop_nest)
6848 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6850 : 0);
6852 if (current_nr_blocks == header + 1)
6853 update_liveness_on_insn
6854 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6857 /* Set hooks so that no newly generated insn will go out unnoticed. */
6858 sel_register_cfg_hooks ();
6860 /* !!! We call target.sched.init () for the whole region, but we invoke
6861 targetm.sched.finish () for every ebb. */
6862 if (targetm.sched.init)
6863 /* None of the arguments are actually used in any target. */
6864 targetm.sched.init (sched_dump, sched_verbose, -1);
6866 first_emitted_uid = get_max_uid () + 1;
6867 preheader_removed = false;
6869 /* Reset register allocation ticks array. */
6870 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6871 reg_rename_this_tick = 0;
6873 bitmap_initialize (forced_ebb_heads, 0);
6874 bitmap_clear (forced_ebb_heads);
6876 setup_nop_vinsn ();
6877 current_copies = BITMAP_ALLOC (NULL);
6878 current_originators = BITMAP_ALLOC (NULL);
6879 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6881 return false;
6884 /* Simplify insns after the scheduling. */
6885 static void
6886 simplify_changed_insns (void)
6888 int i;
6890 for (i = 0; i < current_nr_blocks; i++)
6892 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6893 rtx insn;
6895 FOR_BB_INSNS (bb, insn)
6896 if (INSN_P (insn))
6898 expr_t expr = INSN_EXPR (insn);
6900 if (EXPR_WAS_SUBSTITUTED (expr))
6901 validate_simplify_insn (insn);
6906 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6907 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6908 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6909 static void
6910 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6912 insn_t head, tail;
6913 basic_block bb1 = bb;
6914 if (sched_verbose >= 2)
6915 sel_print ("Finishing schedule in bbs: ");
6919 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6921 if (sched_verbose >= 2)
6922 sel_print ("%d; ", bb1->index);
6924 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6926 if (sched_verbose >= 2)
6927 sel_print ("\n");
6929 get_ebb_head_tail (bb, bb1, &head, &tail);
6931 current_sched_info->head = head;
6932 current_sched_info->tail = tail;
6933 current_sched_info->prev_head = PREV_INSN (head);
6934 current_sched_info->next_tail = NEXT_INSN (tail);
6937 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6938 static void
6939 reset_sched_cycles_in_current_ebb (void)
6941 int last_clock = 0;
6942 int haifa_last_clock = -1;
6943 int haifa_clock = 0;
6944 insn_t insn;
6946 if (targetm.sched.init)
6948 /* None of the arguments are actually used in any target.
6949 NB: We should have md_reset () hook for cases like this. */
6950 targetm.sched.init (sched_dump, sched_verbose, -1);
6953 state_reset (curr_state);
6954 advance_state (curr_state);
6956 for (insn = current_sched_info->head;
6957 insn != current_sched_info->next_tail;
6958 insn = NEXT_INSN (insn))
6960 int cost, haifa_cost;
6961 int sort_p;
6962 bool asm_p, real_insn, after_stall;
6963 int clock;
6965 if (!INSN_P (insn))
6966 continue;
6968 asm_p = false;
6969 real_insn = recog_memoized (insn) >= 0;
6970 clock = INSN_SCHED_CYCLE (insn);
6972 cost = clock - last_clock;
6974 /* Initialize HAIFA_COST. */
6975 if (! real_insn)
6977 asm_p = INSN_ASM_P (insn);
6979 if (asm_p)
6980 /* This is asm insn which *had* to be scheduled first
6981 on the cycle. */
6982 haifa_cost = 1;
6983 else
6984 /* This is a use/clobber insn. It should not change
6985 cost. */
6986 haifa_cost = 0;
6988 else
6989 haifa_cost = estimate_insn_cost (insn, curr_state);
6991 /* Stall for whatever cycles we've stalled before. */
6992 after_stall = 0;
6993 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
6995 haifa_cost = cost;
6996 after_stall = 1;
6999 if (haifa_cost > 0)
7001 int i = 0;
7003 while (haifa_cost--)
7005 advance_state (curr_state);
7006 i++;
7008 if (sched_verbose >= 2)
7010 sel_print ("advance_state (state_transition)\n");
7011 debug_state (curr_state);
7014 /* The DFA may report that e.g. insn requires 2 cycles to be
7015 issued, but on the next cycle it says that insn is ready
7016 to go. Check this here. */
7017 if (!after_stall
7018 && real_insn
7019 && haifa_cost > 0
7020 && estimate_insn_cost (insn, curr_state) == 0)
7021 break;
7024 haifa_clock += i;
7026 else
7027 gcc_assert (haifa_cost == 0);
7029 if (sched_verbose >= 2)
7030 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7032 if (targetm.sched.dfa_new_cycle)
7033 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7034 haifa_last_clock, haifa_clock,
7035 &sort_p))
7037 advance_state (curr_state);
7038 haifa_clock++;
7039 if (sched_verbose >= 2)
7041 sel_print ("advance_state (dfa_new_cycle)\n");
7042 debug_state (curr_state);
7046 if (real_insn)
7048 cost = state_transition (curr_state, insn);
7050 if (sched_verbose >= 2)
7051 debug_state (curr_state);
7053 gcc_assert (cost < 0);
7056 if (targetm.sched.variable_issue)
7057 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7059 INSN_SCHED_CYCLE (insn) = haifa_clock;
7061 last_clock = clock;
7062 haifa_last_clock = haifa_clock;
7066 /* Put TImode markers on insns starting a new issue group. */
7067 static void
7068 put_TImodes (void)
7070 int last_clock = -1;
7071 insn_t insn;
7073 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7074 insn = NEXT_INSN (insn))
7076 int cost, clock;
7078 if (!INSN_P (insn))
7079 continue;
7081 clock = INSN_SCHED_CYCLE (insn);
7082 cost = (last_clock == -1) ? 1 : clock - last_clock;
7084 gcc_assert (cost >= 0);
7086 if (issue_rate > 1
7087 && GET_CODE (PATTERN (insn)) != USE
7088 && GET_CODE (PATTERN (insn)) != CLOBBER)
7090 if (reload_completed && cost > 0)
7091 PUT_MODE (insn, TImode);
7093 last_clock = clock;
7096 if (sched_verbose >= 2)
7097 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7101 /* Perform MD_FINISH on EBBs comprising current region. When
7102 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7103 to produce correct sched cycles on insns. */
7104 static void
7105 sel_region_target_finish (bool reset_sched_cycles_p)
7107 int i;
7108 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7110 for (i = 0; i < current_nr_blocks; i++)
7112 if (bitmap_bit_p (scheduled_blocks, i))
7113 continue;
7115 /* While pipelining outer loops, skip bundling for loop
7116 preheaders. Those will be rescheduled in the outer loop. */
7117 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7118 continue;
7120 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7122 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7123 continue;
7125 if (reset_sched_cycles_p)
7126 reset_sched_cycles_in_current_ebb ();
7128 if (targetm.sched.init)
7129 targetm.sched.init (sched_dump, sched_verbose, -1);
7131 put_TImodes ();
7133 if (targetm.sched.finish)
7135 targetm.sched.finish (sched_dump, sched_verbose);
7137 /* Extend luids so that insns generated by the target will
7138 get zero luid. */
7139 sched_init_luids (NULL, NULL, NULL, NULL);
7143 BITMAP_FREE (scheduled_blocks);
7146 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7147 is true, make an additional pass emulating scheduler to get correct insn
7148 cycles for md_finish calls. */
7149 static void
7150 sel_region_finish (bool reset_sched_cycles_p)
7152 simplify_changed_insns ();
7153 sched_finish_ready_list ();
7154 free_nop_pool ();
7156 /* Free the vectors. */
7157 if (vec_av_set)
7158 VEC_free (expr_t, heap, vec_av_set);
7159 BITMAP_FREE (current_copies);
7160 BITMAP_FREE (current_originators);
7161 BITMAP_FREE (code_motion_visited_blocks);
7162 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7163 vinsn_vec_free (&vec_target_unavailable_vinsns);
7165 /* If LV_SET of the region head should be updated, do it now because
7166 there will be no other chance. */
7168 succ_iterator si;
7169 insn_t insn;
7171 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7172 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7174 basic_block bb = BLOCK_FOR_INSN (insn);
7176 if (!BB_LV_SET_VALID_P (bb))
7177 compute_live (insn);
7181 /* Emulate the Haifa scheduler for bundling. */
7182 if (reload_completed)
7183 sel_region_target_finish (reset_sched_cycles_p);
7185 sel_finish_global_and_expr ();
7187 bitmap_clear (forced_ebb_heads);
7189 free_nop_vinsn ();
7191 finish_deps_global ();
7192 sched_finish_luids ();
7194 sel_finish_bbs ();
7195 BITMAP_FREE (blocks_to_reschedule);
7197 sel_unregister_cfg_hooks ();
7199 max_issue_size = 0;
7203 /* Functions that implement the scheduler driver. */
7205 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7206 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7207 of insns scheduled -- these would be postprocessed later. */
7208 static void
7209 schedule_on_fences (flist_t fences, int max_seqno,
7210 ilist_t **scheduled_insns_tailpp)
7212 flist_t old_fences = fences;
7214 if (sched_verbose >= 1)
7216 sel_print ("\nScheduling on fences: ");
7217 dump_flist (fences);
7218 sel_print ("\n");
7221 scheduled_something_on_previous_fence = false;
7222 for (; fences; fences = FLIST_NEXT (fences))
7224 fence_t fence = NULL;
7225 int seqno = 0;
7226 flist_t fences2;
7227 bool first_p = true;
7229 /* Choose the next fence group to schedule.
7230 The fact that insn can be scheduled only once
7231 on the cycle is guaranteed by two properties:
7232 1. seqnos of parallel groups decrease with each iteration.
7233 2. If is_ineligible_successor () sees the larger seqno, it
7234 checks if candidate insn is_in_current_fence_p (). */
7235 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7237 fence_t f = FLIST_FENCE (fences2);
7239 if (!FENCE_PROCESSED_P (f))
7241 int i = INSN_SEQNO (FENCE_INSN (f));
7243 if (first_p || i > seqno)
7245 seqno = i;
7246 fence = f;
7247 first_p = false;
7249 else
7250 /* ??? Seqnos of different groups should be different. */
7251 gcc_assert (1 || i != seqno);
7255 gcc_assert (fence);
7257 /* As FENCE is nonnull, SEQNO is initialized. */
7258 seqno -= max_seqno + 1;
7259 fill_insns (fence, seqno, scheduled_insns_tailpp);
7260 FENCE_PROCESSED_P (fence) = true;
7263 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7264 don't need to keep bookkeeping-invalidated and target-unavailable
7265 vinsns any more. */
7266 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7267 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7270 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7271 static void
7272 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7274 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7276 /* The first element is already processed. */
7277 while ((fences = FLIST_NEXT (fences)))
7279 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7281 if (*min_seqno > seqno)
7282 *min_seqno = seqno;
7283 else if (*max_seqno < seqno)
7284 *max_seqno = seqno;
7288 /* Calculate new fences from FENCES. */
7289 static flist_t
7290 calculate_new_fences (flist_t fences, int orig_max_seqno)
7292 flist_t old_fences = fences;
7293 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7295 flist_tail_init (new_fences);
7296 for (; fences; fences = FLIST_NEXT (fences))
7298 fence_t fence = FLIST_FENCE (fences);
7299 insn_t insn;
7301 if (!FENCE_BNDS (fence))
7303 /* This fence doesn't have any successors. */
7304 if (!FENCE_SCHEDULED_P (fence))
7306 /* Nothing was scheduled on this fence. */
7307 int seqno;
7309 insn = FENCE_INSN (fence);
7310 seqno = INSN_SEQNO (insn);
7311 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7313 if (sched_verbose >= 1)
7314 sel_print ("Fence %d[%d] has not changed\n",
7315 INSN_UID (insn),
7316 BLOCK_NUM (insn));
7317 move_fence_to_fences (fences, new_fences);
7320 else
7321 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7324 flist_clear (&old_fences);
7325 return FLIST_TAIL_HEAD (new_fences);
7328 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7329 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7330 the highest seqno used in a region. Return the updated highest seqno. */
7331 static int
7332 update_seqnos_and_stage (int min_seqno, int max_seqno,
7333 int highest_seqno_in_use,
7334 ilist_t *pscheduled_insns)
7336 int new_hs;
7337 ilist_iterator ii;
7338 insn_t insn;
7340 /* Actually, new_hs is the seqno of the instruction, that was
7341 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7342 if (*pscheduled_insns)
7344 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7345 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7346 gcc_assert (new_hs > highest_seqno_in_use);
7348 else
7349 new_hs = highest_seqno_in_use;
7351 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7353 gcc_assert (INSN_SEQNO (insn) < 0);
7354 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7355 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7357 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7358 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7359 require > 1GB of memory e.g. on limit-fnargs.c. */
7360 if (! pipelining_p)
7361 free_data_for_scheduled_insn (insn);
7364 ilist_clear (pscheduled_insns);
7365 global_level++;
7367 return new_hs;
7370 /* The main driver for scheduling a region. This function is responsible
7371 for correct propagation of fences (i.e. scheduling points) and creating
7372 a group of parallel insns at each of them. It also supports
7373 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7374 of scheduling. */
7375 static void
7376 sel_sched_region_2 (int orig_max_seqno)
7378 int highest_seqno_in_use = orig_max_seqno;
7380 stat_bookkeeping_copies = 0;
7381 stat_insns_needed_bookkeeping = 0;
7382 stat_renamed_scheduled = 0;
7383 stat_substitutions_total = 0;
7384 num_insns_scheduled = 0;
7386 while (fences)
7388 int min_seqno, max_seqno;
7389 ilist_t scheduled_insns = NULL;
7390 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7392 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7393 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7394 fences = calculate_new_fences (fences, orig_max_seqno);
7395 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7396 highest_seqno_in_use,
7397 &scheduled_insns);
7400 if (sched_verbose >= 1)
7401 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7402 "bookkeeping, %d insns renamed, %d insns substituted\n",
7403 stat_bookkeeping_copies,
7404 stat_insns_needed_bookkeeping,
7405 stat_renamed_scheduled,
7406 stat_substitutions_total);
7409 /* Schedule a region. When pipelining, search for possibly never scheduled
7410 bookkeeping code and schedule it. Reschedule pipelined code without
7411 pipelining after. */
7412 static void
7413 sel_sched_region_1 (void)
7415 int number_of_insns;
7416 int orig_max_seqno;
7418 /* Remove empty blocks that might be in the region from the beginning.
7419 We need to do save sched_max_luid before that, as it actually shows
7420 the number of insns in the region, and purge_empty_blocks can
7421 alter it. */
7422 number_of_insns = sched_max_luid - 1;
7423 purge_empty_blocks ();
7425 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7426 gcc_assert (orig_max_seqno >= 1);
7428 /* When pipelining outer loops, create fences on the loop header,
7429 not preheader. */
7430 fences = NULL;
7431 if (current_loop_nest)
7432 init_fences (BB_END (EBB_FIRST_BB (0)));
7433 else
7434 init_fences (bb_note (EBB_FIRST_BB (0)));
7435 global_level = 1;
7437 sel_sched_region_2 (orig_max_seqno);
7439 gcc_assert (fences == NULL);
7441 if (pipelining_p)
7443 int i;
7444 basic_block bb;
7445 struct flist_tail_def _new_fences;
7446 flist_tail_t new_fences = &_new_fences;
7447 bool do_p = true;
7449 pipelining_p = false;
7450 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7451 bookkeeping_p = false;
7452 enable_schedule_as_rhs_p = false;
7454 /* Schedule newly created code, that has not been scheduled yet. */
7455 do_p = true;
7457 while (do_p)
7459 do_p = false;
7461 for (i = 0; i < current_nr_blocks; i++)
7463 basic_block bb = EBB_FIRST_BB (i);
7465 if (sel_bb_empty_p (bb))
7467 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7468 continue;
7471 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7473 clear_outdated_rtx_info (bb);
7474 if (sel_insn_is_speculation_check (BB_END (bb))
7475 && JUMP_P (BB_END (bb)))
7476 bitmap_set_bit (blocks_to_reschedule,
7477 BRANCH_EDGE (bb)->dest->index);
7479 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7480 bitmap_set_bit (blocks_to_reschedule, bb->index);
7483 for (i = 0; i < current_nr_blocks; i++)
7485 bb = EBB_FIRST_BB (i);
7487 /* While pipelining outer loops, skip bundling for loop
7488 preheaders. Those will be rescheduled in the outer
7489 loop. */
7490 if (sel_is_loop_preheader_p (bb))
7492 clear_outdated_rtx_info (bb);
7493 continue;
7496 if (bitmap_clear_bit (blocks_to_reschedule, bb->index))
7498 flist_tail_init (new_fences);
7500 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7502 /* Mark BB as head of the new ebb. */
7503 bitmap_set_bit (forced_ebb_heads, bb->index);
7505 gcc_assert (fences == NULL);
7507 init_fences (bb_note (bb));
7509 sel_sched_region_2 (orig_max_seqno);
7511 do_p = true;
7512 break;
7519 /* Schedule the RGN region. */
7520 void
7521 sel_sched_region (int rgn)
7523 bool schedule_p;
7524 bool reset_sched_cycles_p;
7526 if (sel_region_init (rgn))
7527 return;
7529 if (sched_verbose >= 1)
7530 sel_print ("Scheduling region %d\n", rgn);
7532 schedule_p = (!sched_is_disabled_for_current_region_p ()
7533 && dbg_cnt (sel_sched_region_cnt));
7534 reset_sched_cycles_p = pipelining_p;
7535 if (schedule_p)
7536 sel_sched_region_1 ();
7537 else
7538 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7539 reset_sched_cycles_p = true;
7541 sel_region_finish (reset_sched_cycles_p);
7544 /* Perform global init for the scheduler. */
7545 static void
7546 sel_global_init (void)
7548 calculate_dominance_info (CDI_DOMINATORS);
7549 alloc_sched_pools ();
7551 /* Setup the infos for sched_init. */
7552 sel_setup_sched_infos ();
7553 setup_sched_dump ();
7555 sched_rgn_init (false);
7556 sched_init ();
7558 sched_init_bbs ();
7559 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7560 after_recovery = 0;
7561 can_issue_more = issue_rate;
7563 sched_extend_target ();
7564 sched_deps_init (true);
7565 setup_nop_and_exit_insns ();
7566 sel_extend_global_bb_info ();
7567 init_lv_sets ();
7568 init_hard_regs_data ();
7571 /* Free the global data of the scheduler. */
7572 static void
7573 sel_global_finish (void)
7575 free_bb_note_pool ();
7576 free_lv_sets ();
7577 sel_finish_global_bb_info ();
7579 free_regset_pool ();
7580 free_nop_and_exit_insns ();
7582 sched_rgn_finish ();
7583 sched_deps_finish ();
7584 sched_finish ();
7586 if (current_loops)
7587 sel_finish_pipelining ();
7589 free_sched_pools ();
7590 free_dominance_info (CDI_DOMINATORS);
7593 /* Return true when we need to skip selective scheduling. Used for debugging. */
7594 bool
7595 maybe_skip_selective_scheduling (void)
7597 return ! dbg_cnt (sel_sched_cnt);
7600 /* The entry point. */
7601 void
7602 run_selective_scheduling (void)
7604 int rgn;
7606 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7607 return;
7609 sel_global_init ();
7611 for (rgn = 0; rgn < nr_regions; rgn++)
7612 sel_sched_region (rgn);
7614 sel_global_finish ();
7617 #endif