Merge from mainline (160224:163495).
[official-gcc/graphite-test-results.git] / gcc / fortran / interface.c
blobe9d310a24443dee0735490e3a51749ae16a84b71
1 /* Deal with interfaces.
2 Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Andy Vaught
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Deal with interfaces. An explicit interface is represented as a
25 singly linked list of formal argument structures attached to the
26 relevant symbols. For an implicit interface, the arguments don't
27 point to symbols. Explicit interfaces point to namespaces that
28 contain the symbols within that interface.
30 Implicit interfaces are linked together in a singly linked list
31 along the next_if member of symbol nodes. Since a particular
32 symbol can only have a single explicit interface, the symbol cannot
33 be part of multiple lists and a single next-member suffices.
35 This is not the case for general classes, though. An operator
36 definition is independent of just about all other uses and has it's
37 own head pointer.
39 Nameless interfaces:
40 Nameless interfaces create symbols with explicit interfaces within
41 the current namespace. They are otherwise unlinked.
43 Generic interfaces:
44 The generic name points to a linked list of symbols. Each symbol
45 has an explicit interface. Each explicit interface has its own
46 namespace containing the arguments. Module procedures are symbols in
47 which the interface is added later when the module procedure is parsed.
49 User operators:
50 User-defined operators are stored in a their own set of symtrees
51 separate from regular symbols. The symtrees point to gfc_user_op
52 structures which in turn head up a list of relevant interfaces.
54 Extended intrinsics and assignment:
55 The head of these interface lists are stored in the containing namespace.
57 Implicit interfaces:
58 An implicit interface is represented as a singly linked list of
59 formal argument list structures that don't point to any symbol
60 nodes -- they just contain types.
63 When a subprogram is defined, the program unit's name points to an
64 interface as usual, but the link to the namespace is NULL and the
65 formal argument list points to symbols within the same namespace as
66 the program unit name. */
68 #include "config.h"
69 #include "system.h"
70 #include "gfortran.h"
71 #include "match.h"
73 /* The current_interface structure holds information about the
74 interface currently being parsed. This structure is saved and
75 restored during recursive interfaces. */
77 gfc_interface_info current_interface;
80 /* Free a singly linked list of gfc_interface structures. */
82 void
83 gfc_free_interface (gfc_interface *intr)
85 gfc_interface *next;
87 for (; intr; intr = next)
89 next = intr->next;
90 gfc_free (intr);
95 /* Change the operators unary plus and minus into binary plus and
96 minus respectively, leaving the rest unchanged. */
98 static gfc_intrinsic_op
99 fold_unary_intrinsic (gfc_intrinsic_op op)
101 switch (op)
103 case INTRINSIC_UPLUS:
104 op = INTRINSIC_PLUS;
105 break;
106 case INTRINSIC_UMINUS:
107 op = INTRINSIC_MINUS;
108 break;
109 default:
110 break;
113 return op;
117 /* Match a generic specification. Depending on which type of
118 interface is found, the 'name' or 'op' pointers may be set.
119 This subroutine doesn't return MATCH_NO. */
121 match
122 gfc_match_generic_spec (interface_type *type,
123 char *name,
124 gfc_intrinsic_op *op)
126 char buffer[GFC_MAX_SYMBOL_LEN + 1];
127 match m;
128 gfc_intrinsic_op i;
130 if (gfc_match (" assignment ( = )") == MATCH_YES)
132 *type = INTERFACE_INTRINSIC_OP;
133 *op = INTRINSIC_ASSIGN;
134 return MATCH_YES;
137 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
138 { /* Operator i/f */
139 *type = INTERFACE_INTRINSIC_OP;
140 *op = fold_unary_intrinsic (i);
141 return MATCH_YES;
144 *op = INTRINSIC_NONE;
145 if (gfc_match (" operator ( ") == MATCH_YES)
147 m = gfc_match_defined_op_name (buffer, 1);
148 if (m == MATCH_NO)
149 goto syntax;
150 if (m != MATCH_YES)
151 return MATCH_ERROR;
153 m = gfc_match_char (')');
154 if (m == MATCH_NO)
155 goto syntax;
156 if (m != MATCH_YES)
157 return MATCH_ERROR;
159 strcpy (name, buffer);
160 *type = INTERFACE_USER_OP;
161 return MATCH_YES;
164 if (gfc_match_name (buffer) == MATCH_YES)
166 strcpy (name, buffer);
167 *type = INTERFACE_GENERIC;
168 return MATCH_YES;
171 *type = INTERFACE_NAMELESS;
172 return MATCH_YES;
174 syntax:
175 gfc_error ("Syntax error in generic specification at %C");
176 return MATCH_ERROR;
180 /* Match one of the five F95 forms of an interface statement. The
181 matcher for the abstract interface follows. */
183 match
184 gfc_match_interface (void)
186 char name[GFC_MAX_SYMBOL_LEN + 1];
187 interface_type type;
188 gfc_symbol *sym;
189 gfc_intrinsic_op op;
190 match m;
192 m = gfc_match_space ();
194 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
195 return MATCH_ERROR;
197 /* If we're not looking at the end of the statement now, or if this
198 is not a nameless interface but we did not see a space, punt. */
199 if (gfc_match_eos () != MATCH_YES
200 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
202 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
203 "at %C");
204 return MATCH_ERROR;
207 current_interface.type = type;
209 switch (type)
211 case INTERFACE_GENERIC:
212 if (gfc_get_symbol (name, NULL, &sym))
213 return MATCH_ERROR;
215 if (!sym->attr.generic
216 && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
217 return MATCH_ERROR;
219 if (sym->attr.dummy)
221 gfc_error ("Dummy procedure '%s' at %C cannot have a "
222 "generic interface", sym->name);
223 return MATCH_ERROR;
226 current_interface.sym = gfc_new_block = sym;
227 break;
229 case INTERFACE_USER_OP:
230 current_interface.uop = gfc_get_uop (name);
231 break;
233 case INTERFACE_INTRINSIC_OP:
234 current_interface.op = op;
235 break;
237 case INTERFACE_NAMELESS:
238 case INTERFACE_ABSTRACT:
239 break;
242 return MATCH_YES;
247 /* Match a F2003 abstract interface. */
249 match
250 gfc_match_abstract_interface (void)
252 match m;
254 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C")
255 == FAILURE)
256 return MATCH_ERROR;
258 m = gfc_match_eos ();
260 if (m != MATCH_YES)
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
266 current_interface.type = INTERFACE_ABSTRACT;
268 return m;
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
275 match
276 gfc_match_end_interface (void)
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
283 m = gfc_match_space ();
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
298 m = MATCH_YES;
300 switch (current_interface.type)
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
310 break;
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
318 else
319 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
320 gfc_op2string (current_interface.op));
322 m = MATCH_ERROR;
325 break;
327 case INTERFACE_USER_OP:
328 /* Comparing the symbol node names is OK because only use-associated
329 symbols can be renamed. */
330 if (type != current_interface.type
331 || strcmp (current_interface.uop->name, name) != 0)
333 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
334 current_interface.uop->name);
335 m = MATCH_ERROR;
338 break;
340 case INTERFACE_GENERIC:
341 if (type != current_interface.type
342 || strcmp (current_interface.sym->name, name) != 0)
344 gfc_error ("Expecting 'END INTERFACE %s' at %C",
345 current_interface.sym->name);
346 m = MATCH_ERROR;
349 break;
352 return m;
356 /* Compare two derived types using the criteria in 4.4.2 of the standard,
357 recursing through gfc_compare_types for the components. */
360 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
362 gfc_component *dt1, *dt2;
364 if (derived1 == derived2)
365 return 1;
367 /* Special case for comparing derived types across namespaces. If the
368 true names and module names are the same and the module name is
369 nonnull, then they are equal. */
370 if (derived1 != NULL && derived2 != NULL
371 && strcmp (derived1->name, derived2->name) == 0
372 && derived1->module != NULL && derived2->module != NULL
373 && strcmp (derived1->module, derived2->module) == 0)
374 return 1;
376 /* Compare type via the rules of the standard. Both types must have
377 the SEQUENCE attribute to be equal. */
379 if (strcmp (derived1->name, derived2->name))
380 return 0;
382 if (derived1->component_access == ACCESS_PRIVATE
383 || derived2->component_access == ACCESS_PRIVATE)
384 return 0;
386 if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
387 return 0;
389 dt1 = derived1->components;
390 dt2 = derived2->components;
392 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
393 simple test can speed things up. Otherwise, lots of things have to
394 match. */
395 for (;;)
397 if (strcmp (dt1->name, dt2->name) != 0)
398 return 0;
400 if (dt1->attr.access != dt2->attr.access)
401 return 0;
403 if (dt1->attr.pointer != dt2->attr.pointer)
404 return 0;
406 if (dt1->attr.dimension != dt2->attr.dimension)
407 return 0;
409 if (dt1->attr.allocatable != dt2->attr.allocatable)
410 return 0;
412 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
413 return 0;
415 /* Make sure that link lists do not put this function into an
416 endless recursive loop! */
417 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
418 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
419 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
420 return 0;
422 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
423 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
424 return 0;
426 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
427 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
428 return 0;
430 dt1 = dt1->next;
431 dt2 = dt2->next;
433 if (dt1 == NULL && dt2 == NULL)
434 break;
435 if (dt1 == NULL || dt2 == NULL)
436 return 0;
439 return 1;
443 /* Compare two typespecs, recursively if necessary. */
446 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
448 /* See if one of the typespecs is a BT_VOID, which is what is being used
449 to allow the funcs like c_f_pointer to accept any pointer type.
450 TODO: Possibly should narrow this to just the one typespec coming in
451 that is for the formal arg, but oh well. */
452 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
453 return 1;
455 if (ts1->type != ts2->type
456 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
457 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
458 return 0;
459 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
460 return (ts1->kind == ts2->kind);
462 /* Compare derived types. */
463 if (gfc_type_compatible (ts1, ts2))
464 return 1;
466 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
470 /* Given two symbols that are formal arguments, compare their ranks
471 and types. Returns nonzero if they have the same rank and type,
472 zero otherwise. */
474 static int
475 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
477 int r1, r2;
479 r1 = (s1->as != NULL) ? s1->as->rank : 0;
480 r2 = (s2->as != NULL) ? s2->as->rank : 0;
482 if (r1 != r2)
483 return 0; /* Ranks differ. */
485 return gfc_compare_types (&s1->ts, &s2->ts);
489 /* Given two symbols that are formal arguments, compare their types
490 and rank and their formal interfaces if they are both dummy
491 procedures. Returns nonzero if the same, zero if different. */
493 static int
494 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
496 if (s1 == NULL || s2 == NULL)
497 return s1 == s2 ? 1 : 0;
499 if (s1 == s2)
500 return 1;
502 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
503 return compare_type_rank (s1, s2);
505 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
506 return 0;
508 /* At this point, both symbols are procedures. It can happen that
509 external procedures are compared, where one is identified by usage
510 to be a function or subroutine but the other is not. Check TKR
511 nonetheless for these cases. */
512 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
513 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
515 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
516 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
518 /* Now the type of procedure has been identified. */
519 if (s1->attr.function != s2->attr.function
520 || s1->attr.subroutine != s2->attr.subroutine)
521 return 0;
523 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
524 return 0;
526 /* Originally, gfortran recursed here to check the interfaces of passed
527 procedures. This is explicitly not required by the standard. */
528 return 1;
532 /* Given a formal argument list and a keyword name, search the list
533 for that keyword. Returns the correct symbol node if found, NULL
534 if not found. */
536 static gfc_symbol *
537 find_keyword_arg (const char *name, gfc_formal_arglist *f)
539 for (; f; f = f->next)
540 if (strcmp (f->sym->name, name) == 0)
541 return f->sym;
543 return NULL;
547 /******** Interface checking subroutines **********/
550 /* Given an operator interface and the operator, make sure that all
551 interfaces for that operator are legal. */
553 bool
554 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
555 locus opwhere)
557 gfc_formal_arglist *formal;
558 sym_intent i1, i2;
559 bt t1, t2;
560 int args, r1, r2, k1, k2;
562 gcc_assert (sym);
564 args = 0;
565 t1 = t2 = BT_UNKNOWN;
566 i1 = i2 = INTENT_UNKNOWN;
567 r1 = r2 = -1;
568 k1 = k2 = -1;
570 for (formal = sym->formal; formal; formal = formal->next)
572 gfc_symbol *fsym = formal->sym;
573 if (fsym == NULL)
575 gfc_error ("Alternate return cannot appear in operator "
576 "interface at %L", &sym->declared_at);
577 return false;
579 if (args == 0)
581 t1 = fsym->ts.type;
582 i1 = fsym->attr.intent;
583 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
584 k1 = fsym->ts.kind;
586 if (args == 1)
588 t2 = fsym->ts.type;
589 i2 = fsym->attr.intent;
590 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
591 k2 = fsym->ts.kind;
593 args++;
596 /* Only +, - and .not. can be unary operators.
597 .not. cannot be a binary operator. */
598 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
599 && op != INTRINSIC_MINUS
600 && op != INTRINSIC_NOT)
601 || (args == 2 && op == INTRINSIC_NOT))
603 gfc_error ("Operator interface at %L has the wrong number of arguments",
604 &sym->declared_at);
605 return false;
608 /* Check that intrinsics are mapped to functions, except
609 INTRINSIC_ASSIGN which should map to a subroutine. */
610 if (op == INTRINSIC_ASSIGN)
612 if (!sym->attr.subroutine)
614 gfc_error ("Assignment operator interface at %L must be "
615 "a SUBROUTINE", &sym->declared_at);
616 return false;
618 if (args != 2)
620 gfc_error ("Assignment operator interface at %L must have "
621 "two arguments", &sym->declared_at);
622 return false;
625 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
626 - First argument an array with different rank than second,
627 - Types and kinds do not conform, and
628 - First argument is of derived type. */
629 if (sym->formal->sym->ts.type != BT_DERIVED
630 && sym->formal->sym->ts.type != BT_CLASS
631 && (r1 == 0 || r1 == r2)
632 && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
633 || (gfc_numeric_ts (&sym->formal->sym->ts)
634 && gfc_numeric_ts (&sym->formal->next->sym->ts))))
636 gfc_error ("Assignment operator interface at %L must not redefine "
637 "an INTRINSIC type assignment", &sym->declared_at);
638 return false;
641 else
643 if (!sym->attr.function)
645 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
646 &sym->declared_at);
647 return false;
651 /* Check intents on operator interfaces. */
652 if (op == INTRINSIC_ASSIGN)
654 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
656 gfc_error ("First argument of defined assignment at %L must be "
657 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
658 return false;
661 if (i2 != INTENT_IN)
663 gfc_error ("Second argument of defined assignment at %L must be "
664 "INTENT(IN)", &sym->declared_at);
665 return false;
668 else
670 if (i1 != INTENT_IN)
672 gfc_error ("First argument of operator interface at %L must be "
673 "INTENT(IN)", &sym->declared_at);
674 return false;
677 if (args == 2 && i2 != INTENT_IN)
679 gfc_error ("Second argument of operator interface at %L must be "
680 "INTENT(IN)", &sym->declared_at);
681 return false;
685 /* From now on, all we have to do is check that the operator definition
686 doesn't conflict with an intrinsic operator. The rules for this
687 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
688 as well as 12.3.2.1.1 of Fortran 2003:
690 "If the operator is an intrinsic-operator (R310), the number of
691 function arguments shall be consistent with the intrinsic uses of
692 that operator, and the types, kind type parameters, or ranks of the
693 dummy arguments shall differ from those required for the intrinsic
694 operation (7.1.2)." */
696 #define IS_NUMERIC_TYPE(t) \
697 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
699 /* Unary ops are easy, do them first. */
700 if (op == INTRINSIC_NOT)
702 if (t1 == BT_LOGICAL)
703 goto bad_repl;
704 else
705 return true;
708 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
710 if (IS_NUMERIC_TYPE (t1))
711 goto bad_repl;
712 else
713 return true;
716 /* Character intrinsic operators have same character kind, thus
717 operator definitions with operands of different character kinds
718 are always safe. */
719 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
720 return true;
722 /* Intrinsic operators always perform on arguments of same rank,
723 so different ranks is also always safe. (rank == 0) is an exception
724 to that, because all intrinsic operators are elemental. */
725 if (r1 != r2 && r1 != 0 && r2 != 0)
726 return true;
728 switch (op)
730 case INTRINSIC_EQ:
731 case INTRINSIC_EQ_OS:
732 case INTRINSIC_NE:
733 case INTRINSIC_NE_OS:
734 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
735 goto bad_repl;
736 /* Fall through. */
738 case INTRINSIC_PLUS:
739 case INTRINSIC_MINUS:
740 case INTRINSIC_TIMES:
741 case INTRINSIC_DIVIDE:
742 case INTRINSIC_POWER:
743 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
744 goto bad_repl;
745 break;
747 case INTRINSIC_GT:
748 case INTRINSIC_GT_OS:
749 case INTRINSIC_GE:
750 case INTRINSIC_GE_OS:
751 case INTRINSIC_LT:
752 case INTRINSIC_LT_OS:
753 case INTRINSIC_LE:
754 case INTRINSIC_LE_OS:
755 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
756 goto bad_repl;
757 if ((t1 == BT_INTEGER || t1 == BT_REAL)
758 && (t2 == BT_INTEGER || t2 == BT_REAL))
759 goto bad_repl;
760 break;
762 case INTRINSIC_CONCAT:
763 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
764 goto bad_repl;
765 break;
767 case INTRINSIC_AND:
768 case INTRINSIC_OR:
769 case INTRINSIC_EQV:
770 case INTRINSIC_NEQV:
771 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
772 goto bad_repl;
773 break;
775 default:
776 break;
779 return true;
781 #undef IS_NUMERIC_TYPE
783 bad_repl:
784 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
785 &opwhere);
786 return false;
790 /* Given a pair of formal argument lists, we see if the two lists can
791 be distinguished by counting the number of nonoptional arguments of
792 a given type/rank in f1 and seeing if there are less then that
793 number of those arguments in f2 (including optional arguments).
794 Since this test is asymmetric, it has to be called twice to make it
795 symmetric. Returns nonzero if the argument lists are incompatible
796 by this test. This subroutine implements rule 1 of section
797 14.1.2.3 in the Fortran 95 standard. */
799 static int
800 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
802 int rc, ac1, ac2, i, j, k, n1;
803 gfc_formal_arglist *f;
805 typedef struct
807 int flag;
808 gfc_symbol *sym;
810 arginfo;
812 arginfo *arg;
814 n1 = 0;
816 for (f = f1; f; f = f->next)
817 n1++;
819 /* Build an array of integers that gives the same integer to
820 arguments of the same type/rank. */
821 arg = XCNEWVEC (arginfo, n1);
823 f = f1;
824 for (i = 0; i < n1; i++, f = f->next)
826 arg[i].flag = -1;
827 arg[i].sym = f->sym;
830 k = 0;
832 for (i = 0; i < n1; i++)
834 if (arg[i].flag != -1)
835 continue;
837 if (arg[i].sym && arg[i].sym->attr.optional)
838 continue; /* Skip optional arguments. */
840 arg[i].flag = k;
842 /* Find other nonoptional arguments of the same type/rank. */
843 for (j = i + 1; j < n1; j++)
844 if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
845 && compare_type_rank_if (arg[i].sym, arg[j].sym))
846 arg[j].flag = k;
848 k++;
851 /* Now loop over each distinct type found in f1. */
852 k = 0;
853 rc = 0;
855 for (i = 0; i < n1; i++)
857 if (arg[i].flag != k)
858 continue;
860 ac1 = 1;
861 for (j = i + 1; j < n1; j++)
862 if (arg[j].flag == k)
863 ac1++;
865 /* Count the number of arguments in f2 with that type, including
866 those that are optional. */
867 ac2 = 0;
869 for (f = f2; f; f = f->next)
870 if (compare_type_rank_if (arg[i].sym, f->sym))
871 ac2++;
873 if (ac1 > ac2)
875 rc = 1;
876 break;
879 k++;
882 gfc_free (arg);
884 return rc;
888 /* Perform the correspondence test in rule 2 of section 14.1.2.3.
889 Returns zero if no argument is found that satisfies rule 2, nonzero
890 otherwise.
892 This test is also not symmetric in f1 and f2 and must be called
893 twice. This test finds problems caused by sorting the actual
894 argument list with keywords. For example:
896 INTERFACE FOO
897 SUBROUTINE F1(A, B)
898 INTEGER :: A ; REAL :: B
899 END SUBROUTINE F1
901 SUBROUTINE F2(B, A)
902 INTEGER :: A ; REAL :: B
903 END SUBROUTINE F1
904 END INTERFACE FOO
906 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
908 static int
909 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
911 gfc_formal_arglist *f2_save, *g;
912 gfc_symbol *sym;
914 f2_save = f2;
916 while (f1)
918 if (f1->sym->attr.optional)
919 goto next;
921 if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
922 goto next;
924 /* Now search for a disambiguating keyword argument starting at
925 the current non-match. */
926 for (g = f1; g; g = g->next)
928 if (g->sym->attr.optional)
929 continue;
931 sym = find_keyword_arg (g->sym->name, f2_save);
932 if (sym == NULL || !compare_type_rank (g->sym, sym))
933 return 1;
936 next:
937 f1 = f1->next;
938 if (f2 != NULL)
939 f2 = f2->next;
942 return 0;
946 /* 'Compare' two formal interfaces associated with a pair of symbols.
947 We return nonzero if there exists an actual argument list that
948 would be ambiguous between the two interfaces, zero otherwise.
949 'intent_flag' specifies whether INTENT and OPTIONAL of the arguments are
950 required to match, which is not the case for ambiguity checks.*/
953 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
954 int generic_flag, int intent_flag,
955 char *errmsg, int err_len)
957 gfc_formal_arglist *f1, *f2;
959 gcc_assert (name2 != NULL);
961 if (s1->attr.function && (s2->attr.subroutine
962 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
963 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
965 if (errmsg != NULL)
966 snprintf (errmsg, err_len, "'%s' is not a function", name2);
967 return 0;
970 if (s1->attr.subroutine && s2->attr.function)
972 if (errmsg != NULL)
973 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
974 return 0;
977 /* If the arguments are functions, check type and kind
978 (only for dummy procedures and procedure pointer assignments). */
979 if (!generic_flag && intent_flag && s1->attr.function && s2->attr.function)
981 if (s1->ts.type == BT_UNKNOWN)
982 return 1;
983 if ((s1->ts.type != s2->ts.type) || (s1->ts.kind != s2->ts.kind))
985 if (errmsg != NULL)
986 snprintf (errmsg, err_len, "Type/kind mismatch in return value "
987 "of '%s'", name2);
988 return 0;
992 if (s1->attr.if_source == IFSRC_UNKNOWN
993 || s2->attr.if_source == IFSRC_UNKNOWN)
994 return 1;
996 f1 = s1->formal;
997 f2 = s2->formal;
999 if (f1 == NULL && f2 == NULL)
1000 return 1; /* Special case: No arguments. */
1002 if (generic_flag)
1004 if (count_types_test (f1, f2) || count_types_test (f2, f1))
1005 return 0;
1006 if (generic_correspondence (f1, f2) || generic_correspondence (f2, f1))
1007 return 0;
1009 else
1010 /* Perform the abbreviated correspondence test for operators (the
1011 arguments cannot be optional and are always ordered correctly).
1012 This is also done when comparing interfaces for dummy procedures and in
1013 procedure pointer assignments. */
1015 for (;;)
1017 /* Check existence. */
1018 if (f1 == NULL && f2 == NULL)
1019 break;
1020 if (f1 == NULL || f2 == NULL)
1022 if (errmsg != NULL)
1023 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1024 "arguments", name2);
1025 return 0;
1028 /* Check type and rank. */
1029 if (!compare_type_rank (f1->sym, f2->sym))
1031 if (errmsg != NULL)
1032 snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
1033 f1->sym->name);
1034 return 0;
1037 /* Check INTENT. */
1038 if (intent_flag && (f1->sym->attr.intent != f2->sym->attr.intent))
1040 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1041 f1->sym->name);
1042 return 0;
1045 /* Check OPTIONAL. */
1046 if (intent_flag && (f1->sym->attr.optional != f2->sym->attr.optional))
1048 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1049 f1->sym->name);
1050 return 0;
1053 f1 = f1->next;
1054 f2 = f2->next;
1057 return 1;
1061 /* Given a pointer to an interface pointer, remove duplicate
1062 interfaces and make sure that all symbols are either functions or
1063 subroutines. Returns nonzero if something goes wrong. */
1065 static int
1066 check_interface0 (gfc_interface *p, const char *interface_name)
1068 gfc_interface *psave, *q, *qlast;
1070 psave = p;
1071 /* Make sure all symbols in the interface have been defined as
1072 functions or subroutines. */
1073 for (; p; p = p->next)
1074 if ((!p->sym->attr.function && !p->sym->attr.subroutine)
1075 || !p->sym->attr.if_source)
1077 if (p->sym->attr.external)
1078 gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
1079 p->sym->name, interface_name, &p->sym->declared_at);
1080 else
1081 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
1082 "subroutine", p->sym->name, interface_name,
1083 &p->sym->declared_at);
1084 return 1;
1086 p = psave;
1088 /* Remove duplicate interfaces in this interface list. */
1089 for (; p; p = p->next)
1091 qlast = p;
1093 for (q = p->next; q;)
1095 if (p->sym != q->sym)
1097 qlast = q;
1098 q = q->next;
1100 else
1102 /* Duplicate interface. */
1103 qlast->next = q->next;
1104 gfc_free (q);
1105 q = qlast->next;
1110 return 0;
1114 /* Check lists of interfaces to make sure that no two interfaces are
1115 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1117 static int
1118 check_interface1 (gfc_interface *p, gfc_interface *q0,
1119 int generic_flag, const char *interface_name,
1120 bool referenced)
1122 gfc_interface *q;
1123 for (; p; p = p->next)
1124 for (q = q0; q; q = q->next)
1126 if (p->sym == q->sym)
1127 continue; /* Duplicates OK here. */
1129 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1130 continue;
1132 if (gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag,
1133 0, NULL, 0))
1135 if (referenced)
1136 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1137 p->sym->name, q->sym->name, interface_name,
1138 &p->where);
1139 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1140 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1141 p->sym->name, q->sym->name, interface_name,
1142 &p->where);
1143 else
1144 gfc_warning ("Although not referenced, '%s' has ambiguous "
1145 "interfaces at %L", interface_name, &p->where);
1146 return 1;
1149 return 0;
1153 /* Check the generic and operator interfaces of symbols to make sure
1154 that none of the interfaces conflict. The check has to be done
1155 after all of the symbols are actually loaded. */
1157 static void
1158 check_sym_interfaces (gfc_symbol *sym)
1160 char interface_name[100];
1161 gfc_interface *p;
1163 if (sym->ns != gfc_current_ns)
1164 return;
1166 if (sym->generic != NULL)
1168 sprintf (interface_name, "generic interface '%s'", sym->name);
1169 if (check_interface0 (sym->generic, interface_name))
1170 return;
1172 for (p = sym->generic; p; p = p->next)
1174 if (p->sym->attr.mod_proc
1175 && (p->sym->attr.if_source != IFSRC_DECL
1176 || p->sym->attr.procedure))
1178 gfc_error ("'%s' at %L is not a module procedure",
1179 p->sym->name, &p->where);
1180 return;
1184 /* Originally, this test was applied to host interfaces too;
1185 this is incorrect since host associated symbols, from any
1186 source, cannot be ambiguous with local symbols. */
1187 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1188 sym->attr.referenced || !sym->attr.use_assoc);
1193 static void
1194 check_uop_interfaces (gfc_user_op *uop)
1196 char interface_name[100];
1197 gfc_user_op *uop2;
1198 gfc_namespace *ns;
1200 sprintf (interface_name, "operator interface '%s'", uop->name);
1201 if (check_interface0 (uop->op, interface_name))
1202 return;
1204 for (ns = gfc_current_ns; ns; ns = ns->parent)
1206 uop2 = gfc_find_uop (uop->name, ns);
1207 if (uop2 == NULL)
1208 continue;
1210 check_interface1 (uop->op, uop2->op, 0,
1211 interface_name, true);
1216 /* For the namespace, check generic, user operator and intrinsic
1217 operator interfaces for consistency and to remove duplicate
1218 interfaces. We traverse the whole namespace, counting on the fact
1219 that most symbols will not have generic or operator interfaces. */
1221 void
1222 gfc_check_interfaces (gfc_namespace *ns)
1224 gfc_namespace *old_ns, *ns2;
1225 char interface_name[100];
1226 int i;
1228 old_ns = gfc_current_ns;
1229 gfc_current_ns = ns;
1231 gfc_traverse_ns (ns, check_sym_interfaces);
1233 gfc_traverse_user_op (ns, check_uop_interfaces);
1235 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1237 if (i == INTRINSIC_USER)
1238 continue;
1240 if (i == INTRINSIC_ASSIGN)
1241 strcpy (interface_name, "intrinsic assignment operator");
1242 else
1243 sprintf (interface_name, "intrinsic '%s' operator",
1244 gfc_op2string ((gfc_intrinsic_op) i));
1246 if (check_interface0 (ns->op[i], interface_name))
1247 continue;
1249 if (ns->op[i])
1250 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1251 ns->op[i]->where);
1253 for (ns2 = ns; ns2; ns2 = ns2->parent)
1255 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1256 interface_name, true))
1257 goto done;
1259 switch (i)
1261 case INTRINSIC_EQ:
1262 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ_OS],
1263 0, interface_name, true)) goto done;
1264 break;
1266 case INTRINSIC_EQ_OS:
1267 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ],
1268 0, interface_name, true)) goto done;
1269 break;
1271 case INTRINSIC_NE:
1272 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE_OS],
1273 0, interface_name, true)) goto done;
1274 break;
1276 case INTRINSIC_NE_OS:
1277 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE],
1278 0, interface_name, true)) goto done;
1279 break;
1281 case INTRINSIC_GT:
1282 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT_OS],
1283 0, interface_name, true)) goto done;
1284 break;
1286 case INTRINSIC_GT_OS:
1287 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT],
1288 0, interface_name, true)) goto done;
1289 break;
1291 case INTRINSIC_GE:
1292 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE_OS],
1293 0, interface_name, true)) goto done;
1294 break;
1296 case INTRINSIC_GE_OS:
1297 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE],
1298 0, interface_name, true)) goto done;
1299 break;
1301 case INTRINSIC_LT:
1302 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT_OS],
1303 0, interface_name, true)) goto done;
1304 break;
1306 case INTRINSIC_LT_OS:
1307 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT],
1308 0, interface_name, true)) goto done;
1309 break;
1311 case INTRINSIC_LE:
1312 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE_OS],
1313 0, interface_name, true)) goto done;
1314 break;
1316 case INTRINSIC_LE_OS:
1317 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE],
1318 0, interface_name, true)) goto done;
1319 break;
1321 default:
1322 break;
1327 done:
1328 gfc_current_ns = old_ns;
1332 static int
1333 symbol_rank (gfc_symbol *sym)
1335 return (sym->as == NULL) ? 0 : sym->as->rank;
1339 /* Given a symbol of a formal argument list and an expression, if the
1340 formal argument is allocatable, check that the actual argument is
1341 allocatable. Returns nonzero if compatible, zero if not compatible. */
1343 static int
1344 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1346 symbol_attribute attr;
1348 if (formal->attr.allocatable)
1350 attr = gfc_expr_attr (actual);
1351 if (!attr.allocatable)
1352 return 0;
1355 return 1;
1359 /* Given a symbol of a formal argument list and an expression, if the
1360 formal argument is a pointer, see if the actual argument is a
1361 pointer. Returns nonzero if compatible, zero if not compatible. */
1363 static int
1364 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1366 symbol_attribute attr;
1368 if (formal->attr.pointer)
1370 attr = gfc_expr_attr (actual);
1372 /* Fortran 2008 allows non-pointer actual arguments. */
1373 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1374 return 2;
1376 if (!attr.pointer)
1377 return 0;
1380 return 1;
1384 /* Emit clear error messages for rank mismatch. */
1386 static void
1387 argument_rank_mismatch (const char *name, locus *where,
1388 int rank1, int rank2)
1390 if (rank1 == 0)
1392 gfc_error ("Rank mismatch in argument '%s' at %L "
1393 "(scalar and rank-%d)", name, where, rank2);
1395 else if (rank2 == 0)
1397 gfc_error ("Rank mismatch in argument '%s' at %L "
1398 "(rank-%d and scalar)", name, where, rank1);
1400 else
1402 gfc_error ("Rank mismatch in argument '%s' at %L "
1403 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1408 /* Given a symbol of a formal argument list and an expression, see if
1409 the two are compatible as arguments. Returns nonzero if
1410 compatible, zero if not compatible. */
1412 static int
1413 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1414 int ranks_must_agree, int is_elemental, locus *where)
1416 gfc_ref *ref;
1417 bool rank_check;
1419 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1420 procs c_f_pointer or c_f_procpointer, and we need to accept most
1421 pointers the user could give us. This should allow that. */
1422 if (formal->ts.type == BT_VOID)
1423 return 1;
1425 if (formal->ts.type == BT_DERIVED
1426 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1427 && actual->ts.type == BT_DERIVED
1428 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1429 return 1;
1431 if (formal->ts.type == BT_CLASS)
1432 /* Make sure the vtab symbol is present when
1433 the module variables are generated. */
1434 gfc_find_derived_vtab (formal->ts.u.derived);
1436 if (actual->ts.type == BT_PROCEDURE)
1438 char err[200];
1439 gfc_symbol *act_sym = actual->symtree->n.sym;
1441 if (formal->attr.flavor != FL_PROCEDURE)
1443 if (where)
1444 gfc_error ("Invalid procedure argument at %L", &actual->where);
1445 return 0;
1448 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1449 sizeof(err)))
1451 if (where)
1452 gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
1453 formal->name, &actual->where, err);
1454 return 0;
1457 if (formal->attr.function && !act_sym->attr.function)
1459 gfc_add_function (&act_sym->attr, act_sym->name,
1460 &act_sym->declared_at);
1461 if (act_sym->ts.type == BT_UNKNOWN
1462 && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
1463 return 0;
1465 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
1466 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1467 &act_sym->declared_at);
1469 return 1;
1472 /* F2008, C1241. */
1473 if (formal->attr.pointer && formal->attr.contiguous
1474 && !gfc_is_simply_contiguous (actual, true))
1476 if (where)
1477 gfc_error ("Actual argument to contiguous pointer dummy '%s' at %L "
1478 "must be simply contigous", formal->name, &actual->where);
1479 return 0;
1482 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1483 && actual->ts.type != BT_HOLLERITH
1484 && !gfc_compare_types (&formal->ts, &actual->ts))
1486 if (where)
1487 gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
1488 formal->name, &actual->where, gfc_typename (&actual->ts),
1489 gfc_typename (&formal->ts));
1490 return 0;
1493 if (formal->attr.codimension)
1495 gfc_ref *last = NULL;
1497 if (actual->expr_type != EXPR_VARIABLE
1498 || (actual->ref == NULL
1499 && !actual->symtree->n.sym->attr.codimension))
1501 if (where)
1502 gfc_error ("Actual argument to '%s' at %L must be a coarray",
1503 formal->name, &actual->where);
1504 return 0;
1507 for (ref = actual->ref; ref; ref = ref->next)
1509 if (ref->type == REF_ARRAY && ref->u.ar.codimen != 0)
1511 if (where)
1512 gfc_error ("Actual argument to '%s' at %L must be a coarray "
1513 "and not coindexed", formal->name, &ref->u.ar.where);
1514 return 0;
1516 if (ref->type == REF_ARRAY && ref->u.ar.as->corank
1517 && ref->u.ar.type != AR_FULL && ref->u.ar.dimen != 0)
1519 if (where)
1520 gfc_error ("Actual argument to '%s' at %L must be a coarray "
1521 "and thus shall not have an array designator",
1522 formal->name, &ref->u.ar.where);
1523 return 0;
1525 if (ref->type == REF_COMPONENT)
1526 last = ref;
1529 if (last && !last->u.c.component->attr.codimension)
1531 if (where)
1532 gfc_error ("Actual argument to '%s' at %L must be a coarray",
1533 formal->name, &actual->where);
1534 return 0;
1537 /* F2008, 12.5.2.6. */
1538 if (formal->attr.allocatable &&
1539 ((last && last->u.c.component->as->corank != formal->as->corank)
1540 || (!last
1541 && actual->symtree->n.sym->as->corank != formal->as->corank)))
1543 if (where)
1544 gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
1545 formal->name, &actual->where, formal->as->corank,
1546 last ? last->u.c.component->as->corank
1547 : actual->symtree->n.sym->as->corank);
1548 return 0;
1551 /* F2008, 12.5.2.8. */
1552 if (formal->attr.dimension
1553 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
1554 && !gfc_is_simply_contiguous (actual, true))
1556 if (where)
1557 gfc_error ("Actual argument to '%s' at %L must be simply "
1558 "contiguous", formal->name, &actual->where);
1559 return 0;
1563 /* F2008, C1239/C1240. */
1564 if (actual->expr_type == EXPR_VARIABLE
1565 && (actual->symtree->n.sym->attr.asynchronous
1566 || actual->symtree->n.sym->attr.volatile_)
1567 && (formal->attr.asynchronous || formal->attr.volatile_)
1568 && actual->rank && !gfc_is_simply_contiguous (actual, true)
1569 && ((formal->as->type != AS_ASSUMED_SHAPE && !formal->attr.pointer)
1570 || formal->attr.contiguous))
1572 if (where)
1573 gfc_error ("Dummy argument '%s' has to be a pointer or assumed-shape "
1574 "array without CONTIGUOUS attribute - as actual argument at"
1575 " %L is not simply contiguous and both are ASYNCHRONOUS "
1576 "or VOLATILE", formal->name, &actual->where);
1577 return 0;
1580 if (symbol_rank (formal) == actual->rank)
1581 return 1;
1583 rank_check = where != NULL && !is_elemental && formal->as
1584 && (formal->as->type == AS_ASSUMED_SHAPE
1585 || formal->as->type == AS_DEFERRED)
1586 && actual->expr_type != EXPR_NULL;
1588 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
1589 if (rank_check || ranks_must_agree
1590 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
1591 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
1592 || (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE
1593 && actual->expr_type != EXPR_NULL)
1594 || (actual->rank == 0 && formal->attr.dimension
1595 && gfc_is_coindexed (actual)))
1597 if (where)
1598 argument_rank_mismatch (formal->name, &actual->where,
1599 symbol_rank (formal), actual->rank);
1600 return 0;
1602 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
1603 return 1;
1605 /* At this point, we are considering a scalar passed to an array. This
1606 is valid (cf. F95 12.4.1.1; F2003 12.4.1.2),
1607 - if the actual argument is (a substring of) an element of a
1608 non-assumed-shape/non-pointer array;
1609 - (F2003) if the actual argument is of type character. */
1611 for (ref = actual->ref; ref; ref = ref->next)
1612 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
1613 && ref->u.ar.dimen > 0)
1614 break;
1616 /* Not an array element. */
1617 if (formal->ts.type == BT_CHARACTER
1618 && (ref == NULL
1619 || (actual->expr_type == EXPR_VARIABLE
1620 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1621 || actual->symtree->n.sym->attr.pointer))))
1623 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
1625 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
1626 "array dummy argument '%s' at %L",
1627 formal->name, &actual->where);
1628 return 0;
1630 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
1631 return 0;
1632 else
1633 return 1;
1635 else if (ref == NULL && actual->expr_type != EXPR_NULL)
1637 if (where)
1638 argument_rank_mismatch (formal->name, &actual->where,
1639 symbol_rank (formal), actual->rank);
1640 return 0;
1643 if (actual->expr_type == EXPR_VARIABLE
1644 && actual->symtree->n.sym->as
1645 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1646 || actual->symtree->n.sym->attr.pointer))
1648 if (where)
1649 gfc_error ("Element of assumed-shaped array passed to dummy "
1650 "argument '%s' at %L", formal->name, &actual->where);
1651 return 0;
1654 return 1;
1658 /* Given a symbol of a formal argument list and an expression, see if
1659 the two are compatible as arguments. Returns nonzero if
1660 compatible, zero if not compatible. */
1662 static int
1663 compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual)
1665 if (actual->expr_type != EXPR_VARIABLE)
1666 return 1;
1668 if (!actual->symtree->n.sym->attr.is_protected)
1669 return 1;
1671 if (!actual->symtree->n.sym->attr.use_assoc)
1672 return 1;
1674 if (formal->attr.intent == INTENT_IN
1675 || formal->attr.intent == INTENT_UNKNOWN)
1676 return 1;
1678 if (!actual->symtree->n.sym->attr.pointer)
1679 return 0;
1681 if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
1682 return 0;
1684 return 1;
1688 /* Returns the storage size of a symbol (formal argument) or
1689 zero if it cannot be determined. */
1691 static unsigned long
1692 get_sym_storage_size (gfc_symbol *sym)
1694 int i;
1695 unsigned long strlen, elements;
1697 if (sym->ts.type == BT_CHARACTER)
1699 if (sym->ts.u.cl && sym->ts.u.cl->length
1700 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1701 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
1702 else
1703 return 0;
1705 else
1706 strlen = 1;
1708 if (symbol_rank (sym) == 0)
1709 return strlen;
1711 elements = 1;
1712 if (sym->as->type != AS_EXPLICIT)
1713 return 0;
1714 for (i = 0; i < sym->as->rank; i++)
1716 if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT
1717 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
1718 return 0;
1720 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
1721 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
1724 return strlen*elements;
1728 /* Returns the storage size of an expression (actual argument) or
1729 zero if it cannot be determined. For an array element, it returns
1730 the remaining size as the element sequence consists of all storage
1731 units of the actual argument up to the end of the array. */
1733 static unsigned long
1734 get_expr_storage_size (gfc_expr *e)
1736 int i;
1737 long int strlen, elements;
1738 long int substrlen = 0;
1739 bool is_str_storage = false;
1740 gfc_ref *ref;
1742 if (e == NULL)
1743 return 0;
1745 if (e->ts.type == BT_CHARACTER)
1747 if (e->ts.u.cl && e->ts.u.cl->length
1748 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1749 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
1750 else if (e->expr_type == EXPR_CONSTANT
1751 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
1752 strlen = e->value.character.length;
1753 else
1754 return 0;
1756 else
1757 strlen = 1; /* Length per element. */
1759 if (e->rank == 0 && !e->ref)
1760 return strlen;
1762 elements = 1;
1763 if (!e->ref)
1765 if (!e->shape)
1766 return 0;
1767 for (i = 0; i < e->rank; i++)
1768 elements *= mpz_get_si (e->shape[i]);
1769 return elements*strlen;
1772 for (ref = e->ref; ref; ref = ref->next)
1774 if (ref->type == REF_SUBSTRING && ref->u.ss.start
1775 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
1777 if (is_str_storage)
1779 /* The string length is the substring length.
1780 Set now to full string length. */
1781 if (ref->u.ss.length == NULL
1782 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
1783 return 0;
1785 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
1787 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
1788 continue;
1791 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION
1792 && ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride
1793 && ref->u.ar.as->upper)
1794 for (i = 0; i < ref->u.ar.dimen; i++)
1796 long int start, end, stride;
1797 stride = 1;
1799 if (ref->u.ar.stride[i])
1801 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
1802 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
1803 else
1804 return 0;
1807 if (ref->u.ar.start[i])
1809 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
1810 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
1811 else
1812 return 0;
1814 else if (ref->u.ar.as->lower[i]
1815 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
1816 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
1817 else
1818 return 0;
1820 if (ref->u.ar.end[i])
1822 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
1823 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
1824 else
1825 return 0;
1827 else if (ref->u.ar.as->upper[i]
1828 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1829 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
1830 else
1831 return 0;
1833 elements *= (end - start)/stride + 1L;
1835 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL
1836 && ref->u.ar.as->lower && ref->u.ar.as->upper)
1837 for (i = 0; i < ref->u.ar.as->rank; i++)
1839 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
1840 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
1841 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1842 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1843 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1844 + 1L;
1845 else
1846 return 0;
1848 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
1849 && e->expr_type == EXPR_VARIABLE)
1851 if (e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1852 || e->symtree->n.sym->attr.pointer)
1854 elements = 1;
1855 continue;
1858 /* Determine the number of remaining elements in the element
1859 sequence for array element designators. */
1860 is_str_storage = true;
1861 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
1863 if (ref->u.ar.start[i] == NULL
1864 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
1865 || ref->u.ar.as->upper[i] == NULL
1866 || ref->u.ar.as->lower[i] == NULL
1867 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
1868 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
1869 return 0;
1871 elements
1872 = elements
1873 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1874 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1875 + 1L)
1876 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
1877 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
1880 else
1881 return 0;
1884 if (substrlen)
1885 return (is_str_storage) ? substrlen + (elements-1)*strlen
1886 : elements*strlen;
1887 else
1888 return elements*strlen;
1892 /* Given an expression, check whether it is an array section
1893 which has a vector subscript. If it has, one is returned,
1894 otherwise zero. */
1897 gfc_has_vector_subscript (gfc_expr *e)
1899 int i;
1900 gfc_ref *ref;
1902 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
1903 return 0;
1905 for (ref = e->ref; ref; ref = ref->next)
1906 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
1907 for (i = 0; i < ref->u.ar.dimen; i++)
1908 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
1909 return 1;
1911 return 0;
1915 /* Given formal and actual argument lists, see if they are compatible.
1916 If they are compatible, the actual argument list is sorted to
1917 correspond with the formal list, and elements for missing optional
1918 arguments are inserted. If WHERE pointer is nonnull, then we issue
1919 errors when things don't match instead of just returning the status
1920 code. */
1922 static int
1923 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
1924 int ranks_must_agree, int is_elemental, locus *where)
1926 gfc_actual_arglist **new_arg, *a, *actual, temp;
1927 gfc_formal_arglist *f;
1928 int i, n, na;
1929 unsigned long actual_size, formal_size;
1931 actual = *ap;
1933 if (actual == NULL && formal == NULL)
1934 return 1;
1936 n = 0;
1937 for (f = formal; f; f = f->next)
1938 n++;
1940 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
1942 for (i = 0; i < n; i++)
1943 new_arg[i] = NULL;
1945 na = 0;
1946 f = formal;
1947 i = 0;
1949 for (a = actual; a; a = a->next, f = f->next)
1951 /* Look for keywords but ignore g77 extensions like %VAL. */
1952 if (a->name != NULL && a->name[0] != '%')
1954 i = 0;
1955 for (f = formal; f; f = f->next, i++)
1957 if (f->sym == NULL)
1958 continue;
1959 if (strcmp (f->sym->name, a->name) == 0)
1960 break;
1963 if (f == NULL)
1965 if (where)
1966 gfc_error ("Keyword argument '%s' at %L is not in "
1967 "the procedure", a->name, &a->expr->where);
1968 return 0;
1971 if (new_arg[i] != NULL)
1973 if (where)
1974 gfc_error ("Keyword argument '%s' at %L is already associated "
1975 "with another actual argument", a->name,
1976 &a->expr->where);
1977 return 0;
1981 if (f == NULL)
1983 if (where)
1984 gfc_error ("More actual than formal arguments in procedure "
1985 "call at %L", where);
1987 return 0;
1990 if (f->sym == NULL && a->expr == NULL)
1991 goto match;
1993 if (f->sym == NULL)
1995 if (where)
1996 gfc_error ("Missing alternate return spec in subroutine call "
1997 "at %L", where);
1998 return 0;
2001 if (a->expr == NULL)
2003 if (where)
2004 gfc_error ("Unexpected alternate return spec in subroutine "
2005 "call at %L", where);
2006 return 0;
2009 if (a->expr->expr_type == EXPR_NULL && !f->sym->attr.pointer
2010 && (f->sym->attr.allocatable || !f->sym->attr.optional
2011 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2013 if (where && (f->sym->attr.allocatable || !f->sym->attr.optional))
2014 gfc_error ("Unexpected NULL() intrinsic at %L to dummy '%s'",
2015 where, f->sym->name);
2016 else if (where)
2017 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2018 "dummy '%s'", where, f->sym->name);
2020 return 0;
2023 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2024 is_elemental, where))
2025 return 0;
2027 /* Special case for character arguments. For allocatable, pointer
2028 and assumed-shape dummies, the string length needs to match
2029 exactly. */
2030 if (a->expr->ts.type == BT_CHARACTER
2031 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2032 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2033 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2034 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2035 && (f->sym->attr.pointer || f->sym->attr.allocatable
2036 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2037 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2038 f->sym->ts.u.cl->length->value.integer) != 0))
2040 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2041 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2042 "argument and pointer or allocatable dummy argument "
2043 "'%s' at %L",
2044 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2045 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2046 f->sym->name, &a->expr->where);
2047 else if (where)
2048 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2049 "argument and assumed-shape dummy argument '%s' "
2050 "at %L",
2051 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2052 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2053 f->sym->name, &a->expr->where);
2054 return 0;
2057 actual_size = get_expr_storage_size (a->expr);
2058 formal_size = get_sym_storage_size (f->sym);
2059 if (actual_size != 0
2060 && actual_size < formal_size
2061 && a->expr->ts.type != BT_PROCEDURE)
2063 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2064 gfc_warning ("Character length of actual argument shorter "
2065 "than of dummy argument '%s' (%lu/%lu) at %L",
2066 f->sym->name, actual_size, formal_size,
2067 &a->expr->where);
2068 else if (where)
2069 gfc_warning ("Actual argument contains too few "
2070 "elements for dummy argument '%s' (%lu/%lu) at %L",
2071 f->sym->name, actual_size, formal_size,
2072 &a->expr->where);
2073 return 0;
2076 /* Satisfy 12.4.1.3 by ensuring that a procedure pointer actual argument
2077 is provided for a procedure pointer formal argument. */
2078 if (f->sym->attr.proc_pointer
2079 && !((a->expr->expr_type == EXPR_VARIABLE
2080 && a->expr->symtree->n.sym->attr.proc_pointer)
2081 || (a->expr->expr_type == EXPR_FUNCTION
2082 && a->expr->symtree->n.sym->result->attr.proc_pointer)
2083 || gfc_is_proc_ptr_comp (a->expr, NULL)))
2085 if (where)
2086 gfc_error ("Expected a procedure pointer for argument '%s' at %L",
2087 f->sym->name, &a->expr->where);
2088 return 0;
2091 /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
2092 provided for a procedure formal argument. */
2093 if (a->expr->ts.type != BT_PROCEDURE && !gfc_is_proc_ptr_comp (a->expr, NULL)
2094 && a->expr->expr_type == EXPR_VARIABLE
2095 && f->sym->attr.flavor == FL_PROCEDURE)
2097 if (where)
2098 gfc_error ("Expected a procedure for argument '%s' at %L",
2099 f->sym->name, &a->expr->where);
2100 return 0;
2103 if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure
2104 && a->expr->ts.type == BT_PROCEDURE
2105 && !a->expr->symtree->n.sym->attr.pure)
2107 if (where)
2108 gfc_error ("Expected a PURE procedure for argument '%s' at %L",
2109 f->sym->name, &a->expr->where);
2110 return 0;
2113 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2114 && a->expr->expr_type == EXPR_VARIABLE
2115 && a->expr->symtree->n.sym->as
2116 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2117 && (a->expr->ref == NULL
2118 || (a->expr->ref->type == REF_ARRAY
2119 && a->expr->ref->u.ar.type == AR_FULL)))
2121 if (where)
2122 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
2123 " array at %L", f->sym->name, where);
2124 return 0;
2127 if (a->expr->expr_type != EXPR_NULL
2128 && compare_pointer (f->sym, a->expr) == 0)
2130 if (where)
2131 gfc_error ("Actual argument for '%s' must be a pointer at %L",
2132 f->sym->name, &a->expr->where);
2133 return 0;
2136 if (a->expr->expr_type != EXPR_NULL
2137 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2138 && compare_pointer (f->sym, a->expr) == 2)
2140 if (where)
2141 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2142 "pointer dummy '%s'", &a->expr->where,f->sym->name);
2143 return 0;
2147 /* Fortran 2008, C1242. */
2148 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2150 if (where)
2151 gfc_error ("Coindexed actual argument at %L to pointer "
2152 "dummy '%s'",
2153 &a->expr->where, f->sym->name);
2154 return 0;
2157 /* Fortran 2008, 12.5.2.5 (no constraint). */
2158 if (a->expr->expr_type == EXPR_VARIABLE
2159 && f->sym->attr.intent != INTENT_IN
2160 && f->sym->attr.allocatable
2161 && gfc_is_coindexed (a->expr))
2163 if (where)
2164 gfc_error ("Coindexed actual argument at %L to allocatable "
2165 "dummy '%s' requires INTENT(IN)",
2166 &a->expr->where, f->sym->name);
2167 return 0;
2170 /* Fortran 2008, C1237. */
2171 if (a->expr->expr_type == EXPR_VARIABLE
2172 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2173 && gfc_is_coindexed (a->expr)
2174 && (a->expr->symtree->n.sym->attr.volatile_
2175 || a->expr->symtree->n.sym->attr.asynchronous))
2177 if (where)
2178 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2179 "at %L requires that dummy %s' has neither "
2180 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2181 f->sym->name);
2182 return 0;
2185 /* Fortran 2008, 12.5.2.4 (no constraint). */
2186 if (a->expr->expr_type == EXPR_VARIABLE
2187 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2188 && gfc_is_coindexed (a->expr)
2189 && gfc_has_ultimate_allocatable (a->expr))
2191 if (where)
2192 gfc_error ("Coindexed actual argument at %L with allocatable "
2193 "ultimate component to dummy '%s' requires either VALUE "
2194 "or INTENT(IN)", &a->expr->where, f->sym->name);
2195 return 0;
2198 if (a->expr->expr_type != EXPR_NULL
2199 && compare_allocatable (f->sym, a->expr) == 0)
2201 if (where)
2202 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
2203 f->sym->name, &a->expr->where);
2204 return 0;
2207 /* Check intent = OUT/INOUT for definable actual argument. */
2208 if ((a->expr->expr_type != EXPR_VARIABLE
2209 || (a->expr->symtree->n.sym->attr.flavor != FL_VARIABLE
2210 && a->expr->symtree->n.sym->attr.flavor != FL_PROCEDURE))
2211 && (f->sym->attr.intent == INTENT_OUT
2212 || f->sym->attr.intent == INTENT_INOUT))
2214 if (where)
2215 gfc_error ("Actual argument at %L must be definable as "
2216 "the dummy argument '%s' is INTENT = OUT/INOUT",
2217 &a->expr->where, f->sym->name);
2218 return 0;
2221 if (!compare_parameter_protected(f->sym, a->expr))
2223 if (where)
2224 gfc_error ("Actual argument at %L is use-associated with "
2225 "PROTECTED attribute and dummy argument '%s' is "
2226 "INTENT = OUT/INOUT",
2227 &a->expr->where,f->sym->name);
2228 return 0;
2231 if ((f->sym->attr.intent == INTENT_OUT
2232 || f->sym->attr.intent == INTENT_INOUT
2233 || f->sym->attr.volatile_
2234 || f->sym->attr.asynchronous)
2235 && gfc_has_vector_subscript (a->expr))
2237 if (where)
2238 gfc_error ("Array-section actual argument with vector "
2239 "subscripts at %L is incompatible with INTENT(OUT), "
2240 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2241 "of the dummy argument '%s'",
2242 &a->expr->where, f->sym->name);
2243 return 0;
2246 /* C1232 (R1221) For an actual argument which is an array section or
2247 an assumed-shape array, the dummy argument shall be an assumed-
2248 shape array, if the dummy argument has the VOLATILE attribute. */
2250 if (f->sym->attr.volatile_
2251 && a->expr->symtree->n.sym->as
2252 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2253 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2255 if (where)
2256 gfc_error ("Assumed-shape actual argument at %L is "
2257 "incompatible with the non-assumed-shape "
2258 "dummy argument '%s' due to VOLATILE attribute",
2259 &a->expr->where,f->sym->name);
2260 return 0;
2263 if (f->sym->attr.volatile_
2264 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2265 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2267 if (where)
2268 gfc_error ("Array-section actual argument at %L is "
2269 "incompatible with the non-assumed-shape "
2270 "dummy argument '%s' due to VOLATILE attribute",
2271 &a->expr->where,f->sym->name);
2272 return 0;
2275 /* C1233 (R1221) For an actual argument which is a pointer array, the
2276 dummy argument shall be an assumed-shape or pointer array, if the
2277 dummy argument has the VOLATILE attribute. */
2279 if (f->sym->attr.volatile_
2280 && a->expr->symtree->n.sym->attr.pointer
2281 && a->expr->symtree->n.sym->as
2282 && !(f->sym->as
2283 && (f->sym->as->type == AS_ASSUMED_SHAPE
2284 || f->sym->attr.pointer)))
2286 if (where)
2287 gfc_error ("Pointer-array actual argument at %L requires "
2288 "an assumed-shape or pointer-array dummy "
2289 "argument '%s' due to VOLATILE attribute",
2290 &a->expr->where,f->sym->name);
2291 return 0;
2294 match:
2295 if (a == actual)
2296 na = i;
2298 new_arg[i++] = a;
2301 /* Make sure missing actual arguments are optional. */
2302 i = 0;
2303 for (f = formal; f; f = f->next, i++)
2305 if (new_arg[i] != NULL)
2306 continue;
2307 if (f->sym == NULL)
2309 if (where)
2310 gfc_error ("Missing alternate return spec in subroutine call "
2311 "at %L", where);
2312 return 0;
2314 if (!f->sym->attr.optional)
2316 if (where)
2317 gfc_error ("Missing actual argument for argument '%s' at %L",
2318 f->sym->name, where);
2319 return 0;
2323 /* The argument lists are compatible. We now relink a new actual
2324 argument list with null arguments in the right places. The head
2325 of the list remains the head. */
2326 for (i = 0; i < n; i++)
2327 if (new_arg[i] == NULL)
2328 new_arg[i] = gfc_get_actual_arglist ();
2330 if (na != 0)
2332 temp = *new_arg[0];
2333 *new_arg[0] = *actual;
2334 *actual = temp;
2336 a = new_arg[0];
2337 new_arg[0] = new_arg[na];
2338 new_arg[na] = a;
2341 for (i = 0; i < n - 1; i++)
2342 new_arg[i]->next = new_arg[i + 1];
2344 new_arg[i]->next = NULL;
2346 if (*ap == NULL && n > 0)
2347 *ap = new_arg[0];
2349 /* Note the types of omitted optional arguments. */
2350 for (a = *ap, f = formal; a; a = a->next, f = f->next)
2351 if (a->expr == NULL && a->label == NULL)
2352 a->missing_arg_type = f->sym->ts.type;
2354 return 1;
2358 typedef struct
2360 gfc_formal_arglist *f;
2361 gfc_actual_arglist *a;
2363 argpair;
2365 /* qsort comparison function for argument pairs, with the following
2366 order:
2367 - p->a->expr == NULL
2368 - p->a->expr->expr_type != EXPR_VARIABLE
2369 - growing p->a->expr->symbol. */
2371 static int
2372 pair_cmp (const void *p1, const void *p2)
2374 const gfc_actual_arglist *a1, *a2;
2376 /* *p1 and *p2 are elements of the to-be-sorted array. */
2377 a1 = ((const argpair *) p1)->a;
2378 a2 = ((const argpair *) p2)->a;
2379 if (!a1->expr)
2381 if (!a2->expr)
2382 return 0;
2383 return -1;
2385 if (!a2->expr)
2386 return 1;
2387 if (a1->expr->expr_type != EXPR_VARIABLE)
2389 if (a2->expr->expr_type != EXPR_VARIABLE)
2390 return 0;
2391 return -1;
2393 if (a2->expr->expr_type != EXPR_VARIABLE)
2394 return 1;
2395 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
2399 /* Given two expressions from some actual arguments, test whether they
2400 refer to the same expression. The analysis is conservative.
2401 Returning FAILURE will produce no warning. */
2403 static gfc_try
2404 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
2406 const gfc_ref *r1, *r2;
2408 if (!e1 || !e2
2409 || e1->expr_type != EXPR_VARIABLE
2410 || e2->expr_type != EXPR_VARIABLE
2411 || e1->symtree->n.sym != e2->symtree->n.sym)
2412 return FAILURE;
2414 /* TODO: improve comparison, see expr.c:show_ref(). */
2415 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
2417 if (r1->type != r2->type)
2418 return FAILURE;
2419 switch (r1->type)
2421 case REF_ARRAY:
2422 if (r1->u.ar.type != r2->u.ar.type)
2423 return FAILURE;
2424 /* TODO: At the moment, consider only full arrays;
2425 we could do better. */
2426 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
2427 return FAILURE;
2428 break;
2430 case REF_COMPONENT:
2431 if (r1->u.c.component != r2->u.c.component)
2432 return FAILURE;
2433 break;
2435 case REF_SUBSTRING:
2436 return FAILURE;
2438 default:
2439 gfc_internal_error ("compare_actual_expr(): Bad component code");
2442 if (!r1 && !r2)
2443 return SUCCESS;
2444 return FAILURE;
2448 /* Given formal and actual argument lists that correspond to one
2449 another, check that identical actual arguments aren't not
2450 associated with some incompatible INTENTs. */
2452 static gfc_try
2453 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
2455 sym_intent f1_intent, f2_intent;
2456 gfc_formal_arglist *f1;
2457 gfc_actual_arglist *a1;
2458 size_t n, i, j;
2459 argpair *p;
2460 gfc_try t = SUCCESS;
2462 n = 0;
2463 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
2465 if (f1 == NULL && a1 == NULL)
2466 break;
2467 if (f1 == NULL || a1 == NULL)
2468 gfc_internal_error ("check_some_aliasing(): List mismatch");
2469 n++;
2471 if (n == 0)
2472 return t;
2473 p = XALLOCAVEC (argpair, n);
2475 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
2477 p[i].f = f1;
2478 p[i].a = a1;
2481 qsort (p, n, sizeof (argpair), pair_cmp);
2483 for (i = 0; i < n; i++)
2485 if (!p[i].a->expr
2486 || p[i].a->expr->expr_type != EXPR_VARIABLE
2487 || p[i].a->expr->ts.type == BT_PROCEDURE)
2488 continue;
2489 f1_intent = p[i].f->sym->attr.intent;
2490 for (j = i + 1; j < n; j++)
2492 /* Expected order after the sort. */
2493 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
2494 gfc_internal_error ("check_some_aliasing(): corrupted data");
2496 /* Are the expression the same? */
2497 if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
2498 break;
2499 f2_intent = p[j].f->sym->attr.intent;
2500 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
2501 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
2503 gfc_warning ("Same actual argument associated with INTENT(%s) "
2504 "argument '%s' and INTENT(%s) argument '%s' at %L",
2505 gfc_intent_string (f1_intent), p[i].f->sym->name,
2506 gfc_intent_string (f2_intent), p[j].f->sym->name,
2507 &p[i].a->expr->where);
2508 t = FAILURE;
2513 return t;
2517 /* Given a symbol of a formal argument list and an expression,
2518 return nonzero if their intents are compatible, zero otherwise. */
2520 static int
2521 compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual)
2523 if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer)
2524 return 1;
2526 if (actual->symtree->n.sym->attr.intent != INTENT_IN)
2527 return 1;
2529 if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT)
2530 return 0;
2532 return 1;
2536 /* Given formal and actual argument lists that correspond to one
2537 another, check that they are compatible in the sense that intents
2538 are not mismatched. */
2540 static gfc_try
2541 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
2543 sym_intent f_intent;
2545 for (;; f = f->next, a = a->next)
2547 if (f == NULL && a == NULL)
2548 break;
2549 if (f == NULL || a == NULL)
2550 gfc_internal_error ("check_intents(): List mismatch");
2552 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
2553 continue;
2555 f_intent = f->sym->attr.intent;
2557 if (!compare_parameter_intent(f->sym, a->expr))
2559 gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
2560 "specifies INTENT(%s)", &a->expr->where,
2561 gfc_intent_string (f_intent));
2562 return FAILURE;
2565 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
2567 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2569 gfc_error ("Procedure argument at %L is local to a PURE "
2570 "procedure and is passed to an INTENT(%s) argument",
2571 &a->expr->where, gfc_intent_string (f_intent));
2572 return FAILURE;
2575 if (f->sym->attr.pointer)
2577 gfc_error ("Procedure argument at %L is local to a PURE "
2578 "procedure and has the POINTER attribute",
2579 &a->expr->where);
2580 return FAILURE;
2584 /* Fortran 2008, C1283. */
2585 if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
2587 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2589 gfc_error ("Coindexed actual argument at %L in PURE procedure "
2590 "is passed to an INTENT(%s) argument",
2591 &a->expr->where, gfc_intent_string (f_intent));
2592 return FAILURE;
2595 if (f->sym->attr.pointer)
2597 gfc_error ("Coindexed actual argument at %L in PURE procedure "
2598 "is passed to a POINTER dummy argument",
2599 &a->expr->where);
2600 return FAILURE;
2604 /* F2008, Section 12.5.2.4. */
2605 if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
2606 && gfc_is_coindexed (a->expr))
2608 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
2609 "polymorphic dummy argument '%s'",
2610 &a->expr->where, f->sym->name);
2611 return FAILURE;
2615 return SUCCESS;
2619 /* Check how a procedure is used against its interface. If all goes
2620 well, the actual argument list will also end up being properly
2621 sorted. */
2623 void
2624 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
2627 /* Warn about calls with an implicit interface. Special case
2628 for calling a ISO_C_BINDING becase c_loc and c_funloc
2629 are pseudo-unknown. Additionally, warn about procedures not
2630 explicitly declared at all if requested. */
2631 if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
2633 if (gfc_option.warn_implicit_interface)
2634 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
2635 sym->name, where);
2636 else if (gfc_option.warn_implicit_procedure
2637 && sym->attr.proc == PROC_UNKNOWN)
2638 gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
2639 sym->name, where);
2642 if (sym->attr.if_source == IFSRC_UNKNOWN)
2644 gfc_actual_arglist *a;
2645 for (a = *ap; a; a = a->next)
2647 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2648 if (a->name != NULL && a->name[0] != '%')
2650 gfc_error("Keyword argument requires explicit interface "
2651 "for procedure '%s' at %L", sym->name, &a->expr->where);
2652 break;
2656 return;
2659 if (!compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where))
2660 return;
2662 check_intents (sym->formal, *ap);
2663 if (gfc_option.warn_aliasing)
2664 check_some_aliasing (sym->formal, *ap);
2668 /* Check how a procedure pointer component is used against its interface.
2669 If all goes well, the actual argument list will also end up being properly
2670 sorted. Completely analogous to gfc_procedure_use. */
2672 void
2673 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
2676 /* Warn about calls with an implicit interface. Special case
2677 for calling a ISO_C_BINDING becase c_loc and c_funloc
2678 are pseudo-unknown. */
2679 if (gfc_option.warn_implicit_interface
2680 && comp->attr.if_source == IFSRC_UNKNOWN
2681 && !comp->attr.is_iso_c)
2682 gfc_warning ("Procedure pointer component '%s' called with an implicit "
2683 "interface at %L", comp->name, where);
2685 if (comp->attr.if_source == IFSRC_UNKNOWN)
2687 gfc_actual_arglist *a;
2688 for (a = *ap; a; a = a->next)
2690 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2691 if (a->name != NULL && a->name[0] != '%')
2693 gfc_error("Keyword argument requires explicit interface "
2694 "for procedure pointer component '%s' at %L",
2695 comp->name, &a->expr->where);
2696 break;
2700 return;
2703 if (!compare_actual_formal (ap, comp->formal, 0, comp->attr.elemental, where))
2704 return;
2706 check_intents (comp->formal, *ap);
2707 if (gfc_option.warn_aliasing)
2708 check_some_aliasing (comp->formal, *ap);
2712 /* Try if an actual argument list matches the formal list of a symbol,
2713 respecting the symbol's attributes like ELEMENTAL. This is used for
2714 GENERIC resolution. */
2716 bool
2717 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
2719 bool r;
2721 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
2723 r = !sym->attr.elemental;
2724 if (compare_actual_formal (args, sym->formal, r, !r, NULL))
2726 check_intents (sym->formal, *args);
2727 if (gfc_option.warn_aliasing)
2728 check_some_aliasing (sym->formal, *args);
2729 return true;
2732 return false;
2736 /* Given an interface pointer and an actual argument list, search for
2737 a formal argument list that matches the actual. If found, returns
2738 a pointer to the symbol of the correct interface. Returns NULL if
2739 not found. */
2741 gfc_symbol *
2742 gfc_search_interface (gfc_interface *intr, int sub_flag,
2743 gfc_actual_arglist **ap)
2745 gfc_symbol *elem_sym = NULL;
2746 for (; intr; intr = intr->next)
2748 if (sub_flag && intr->sym->attr.function)
2749 continue;
2750 if (!sub_flag && intr->sym->attr.subroutine)
2751 continue;
2753 if (gfc_arglist_matches_symbol (ap, intr->sym))
2755 /* Satisfy 12.4.4.1 such that an elemental match has lower
2756 weight than a non-elemental match. */
2757 if (intr->sym->attr.elemental)
2759 elem_sym = intr->sym;
2760 continue;
2762 return intr->sym;
2766 return elem_sym ? elem_sym : NULL;
2770 /* Do a brute force recursive search for a symbol. */
2772 static gfc_symtree *
2773 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
2775 gfc_symtree * st;
2777 if (root->n.sym == sym)
2778 return root;
2780 st = NULL;
2781 if (root->left)
2782 st = find_symtree0 (root->left, sym);
2783 if (root->right && ! st)
2784 st = find_symtree0 (root->right, sym);
2785 return st;
2789 /* Find a symtree for a symbol. */
2791 gfc_symtree *
2792 gfc_find_sym_in_symtree (gfc_symbol *sym)
2794 gfc_symtree *st;
2795 gfc_namespace *ns;
2797 /* First try to find it by name. */
2798 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
2799 if (st && st->n.sym == sym)
2800 return st;
2802 /* If it's been renamed, resort to a brute-force search. */
2803 /* TODO: avoid having to do this search. If the symbol doesn't exist
2804 in the symtree for the current namespace, it should probably be added. */
2805 for (ns = gfc_current_ns; ns; ns = ns->parent)
2807 st = find_symtree0 (ns->sym_root, sym);
2808 if (st)
2809 return st;
2811 gfc_internal_error ("Unable to find symbol %s", sym->name);
2812 /* Not reached. */
2816 /* See if the arglist to an operator-call contains a derived-type argument
2817 with a matching type-bound operator. If so, return the matching specific
2818 procedure defined as operator-target as well as the base-object to use
2819 (which is the found derived-type argument with operator). The generic
2820 name, if any, is transmitted to the final expression via 'gname'. */
2822 static gfc_typebound_proc*
2823 matching_typebound_op (gfc_expr** tb_base,
2824 gfc_actual_arglist* args,
2825 gfc_intrinsic_op op, const char* uop,
2826 const char ** gname)
2828 gfc_actual_arglist* base;
2830 for (base = args; base; base = base->next)
2831 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
2833 gfc_typebound_proc* tb;
2834 gfc_symbol* derived;
2835 gfc_try result;
2837 if (base->expr->ts.type == BT_CLASS)
2838 derived = CLASS_DATA (base->expr)->ts.u.derived;
2839 else
2840 derived = base->expr->ts.u.derived;
2842 if (op == INTRINSIC_USER)
2844 gfc_symtree* tb_uop;
2846 gcc_assert (uop);
2847 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
2848 false, NULL);
2850 if (tb_uop)
2851 tb = tb_uop->n.tb;
2852 else
2853 tb = NULL;
2855 else
2856 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
2857 false, NULL);
2859 /* This means we hit a PRIVATE operator which is use-associated and
2860 should thus not be seen. */
2861 if (result == FAILURE)
2862 tb = NULL;
2864 /* Look through the super-type hierarchy for a matching specific
2865 binding. */
2866 for (; tb; tb = tb->overridden)
2868 gfc_tbp_generic* g;
2870 gcc_assert (tb->is_generic);
2871 for (g = tb->u.generic; g; g = g->next)
2873 gfc_symbol* target;
2874 gfc_actual_arglist* argcopy;
2875 bool matches;
2877 gcc_assert (g->specific);
2878 if (g->specific->error)
2879 continue;
2881 target = g->specific->u.specific->n.sym;
2883 /* Check if this arglist matches the formal. */
2884 argcopy = gfc_copy_actual_arglist (args);
2885 matches = gfc_arglist_matches_symbol (&argcopy, target);
2886 gfc_free_actual_arglist (argcopy);
2888 /* Return if we found a match. */
2889 if (matches)
2891 *tb_base = base->expr;
2892 *gname = g->specific_st->name;
2893 return g->specific;
2899 return NULL;
2903 /* For the 'actual arglist' of an operator call and a specific typebound
2904 procedure that has been found the target of a type-bound operator, build the
2905 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
2906 type-bound procedures rather than resolving type-bound operators 'directly'
2907 so that we can reuse the existing logic. */
2909 static void
2910 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
2911 gfc_expr* base, gfc_typebound_proc* target,
2912 const char *gname)
2914 e->expr_type = EXPR_COMPCALL;
2915 e->value.compcall.tbp = target;
2916 e->value.compcall.name = gname ? gname : "$op";
2917 e->value.compcall.actual = actual;
2918 e->value.compcall.base_object = base;
2919 e->value.compcall.ignore_pass = 1;
2920 e->value.compcall.assign = 0;
2924 /* This subroutine is called when an expression is being resolved.
2925 The expression node in question is either a user defined operator
2926 or an intrinsic operator with arguments that aren't compatible
2927 with the operator. This subroutine builds an actual argument list
2928 corresponding to the operands, then searches for a compatible
2929 interface. If one is found, the expression node is replaced with
2930 the appropriate function call.
2931 real_error is an additional output argument that specifies if FAILURE
2932 is because of some real error and not because no match was found. */
2934 gfc_try
2935 gfc_extend_expr (gfc_expr *e, bool *real_error)
2937 gfc_actual_arglist *actual;
2938 gfc_symbol *sym;
2939 gfc_namespace *ns;
2940 gfc_user_op *uop;
2941 gfc_intrinsic_op i;
2942 const char *gname;
2944 sym = NULL;
2946 actual = gfc_get_actual_arglist ();
2947 actual->expr = e->value.op.op1;
2949 *real_error = false;
2950 gname = NULL;
2952 if (e->value.op.op2 != NULL)
2954 actual->next = gfc_get_actual_arglist ();
2955 actual->next->expr = e->value.op.op2;
2958 i = fold_unary_intrinsic (e->value.op.op);
2960 if (i == INTRINSIC_USER)
2962 for (ns = gfc_current_ns; ns; ns = ns->parent)
2964 uop = gfc_find_uop (e->value.op.uop->name, ns);
2965 if (uop == NULL)
2966 continue;
2968 sym = gfc_search_interface (uop->op, 0, &actual);
2969 if (sym != NULL)
2970 break;
2973 else
2975 for (ns = gfc_current_ns; ns; ns = ns->parent)
2977 /* Due to the distinction between '==' and '.eq.' and friends, one has
2978 to check if either is defined. */
2979 switch (i)
2981 #define CHECK_OS_COMPARISON(comp) \
2982 case INTRINSIC_##comp: \
2983 case INTRINSIC_##comp##_OS: \
2984 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
2985 if (!sym) \
2986 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
2987 break;
2988 CHECK_OS_COMPARISON(EQ)
2989 CHECK_OS_COMPARISON(NE)
2990 CHECK_OS_COMPARISON(GT)
2991 CHECK_OS_COMPARISON(GE)
2992 CHECK_OS_COMPARISON(LT)
2993 CHECK_OS_COMPARISON(LE)
2994 #undef CHECK_OS_COMPARISON
2996 default:
2997 sym = gfc_search_interface (ns->op[i], 0, &actual);
3000 if (sym != NULL)
3001 break;
3005 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3006 found rather than just taking the first one and not checking further. */
3008 if (sym == NULL)
3010 gfc_typebound_proc* tbo;
3011 gfc_expr* tb_base;
3013 /* See if we find a matching type-bound operator. */
3014 if (i == INTRINSIC_USER)
3015 tbo = matching_typebound_op (&tb_base, actual,
3016 i, e->value.op.uop->name, &gname);
3017 else
3018 switch (i)
3020 #define CHECK_OS_COMPARISON(comp) \
3021 case INTRINSIC_##comp: \
3022 case INTRINSIC_##comp##_OS: \
3023 tbo = matching_typebound_op (&tb_base, actual, \
3024 INTRINSIC_##comp, NULL, &gname); \
3025 if (!tbo) \
3026 tbo = matching_typebound_op (&tb_base, actual, \
3027 INTRINSIC_##comp##_OS, NULL, &gname); \
3028 break;
3029 CHECK_OS_COMPARISON(EQ)
3030 CHECK_OS_COMPARISON(NE)
3031 CHECK_OS_COMPARISON(GT)
3032 CHECK_OS_COMPARISON(GE)
3033 CHECK_OS_COMPARISON(LT)
3034 CHECK_OS_COMPARISON(LE)
3035 #undef CHECK_OS_COMPARISON
3037 default:
3038 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3039 break;
3042 /* If there is a matching typebound-operator, replace the expression with
3043 a call to it and succeed. */
3044 if (tbo)
3046 gfc_try result;
3048 gcc_assert (tb_base);
3049 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3051 result = gfc_resolve_expr (e);
3052 if (result == FAILURE)
3053 *real_error = true;
3055 return result;
3058 /* Don't use gfc_free_actual_arglist(). */
3059 if (actual->next != NULL)
3060 gfc_free (actual->next);
3061 gfc_free (actual);
3063 return FAILURE;
3066 /* Change the expression node to a function call. */
3067 e->expr_type = EXPR_FUNCTION;
3068 e->symtree = gfc_find_sym_in_symtree (sym);
3069 e->value.function.actual = actual;
3070 e->value.function.esym = NULL;
3071 e->value.function.isym = NULL;
3072 e->value.function.name = NULL;
3073 e->user_operator = 1;
3075 if (gfc_resolve_expr (e) == FAILURE)
3077 *real_error = true;
3078 return FAILURE;
3081 return SUCCESS;
3085 /* Tries to replace an assignment code node with a subroutine call to
3086 the subroutine associated with the assignment operator. Return
3087 SUCCESS if the node was replaced. On FAILURE, no error is
3088 generated. */
3090 gfc_try
3091 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3093 gfc_actual_arglist *actual;
3094 gfc_expr *lhs, *rhs;
3095 gfc_symbol *sym;
3096 const char *gname;
3098 gname = NULL;
3100 lhs = c->expr1;
3101 rhs = c->expr2;
3103 /* Don't allow an intrinsic assignment to be replaced. */
3104 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3105 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3106 && (lhs->ts.type == rhs->ts.type
3107 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3108 return FAILURE;
3110 actual = gfc_get_actual_arglist ();
3111 actual->expr = lhs;
3113 actual->next = gfc_get_actual_arglist ();
3114 actual->next->expr = rhs;
3116 sym = NULL;
3118 for (; ns; ns = ns->parent)
3120 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3121 if (sym != NULL)
3122 break;
3125 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3127 if (sym == NULL)
3129 gfc_typebound_proc* tbo;
3130 gfc_expr* tb_base;
3132 /* See if we find a matching type-bound assignment. */
3133 tbo = matching_typebound_op (&tb_base, actual,
3134 INTRINSIC_ASSIGN, NULL, &gname);
3136 /* If there is one, replace the expression with a call to it and
3137 succeed. */
3138 if (tbo)
3140 gcc_assert (tb_base);
3141 c->expr1 = gfc_get_expr ();
3142 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3143 c->expr1->value.compcall.assign = 1;
3144 c->expr2 = NULL;
3145 c->op = EXEC_COMPCALL;
3147 /* c is resolved from the caller, so no need to do it here. */
3149 return SUCCESS;
3152 gfc_free (actual->next);
3153 gfc_free (actual);
3154 return FAILURE;
3157 /* Replace the assignment with the call. */
3158 c->op = EXEC_ASSIGN_CALL;
3159 c->symtree = gfc_find_sym_in_symtree (sym);
3160 c->expr1 = NULL;
3161 c->expr2 = NULL;
3162 c->ext.actual = actual;
3164 return SUCCESS;
3168 /* Make sure that the interface just parsed is not already present in
3169 the given interface list. Ambiguity isn't checked yet since module
3170 procedures can be present without interfaces. */
3172 static gfc_try
3173 check_new_interface (gfc_interface *base, gfc_symbol *new_sym)
3175 gfc_interface *ip;
3177 for (ip = base; ip; ip = ip->next)
3179 if (ip->sym == new_sym)
3181 gfc_error ("Entity '%s' at %C is already present in the interface",
3182 new_sym->name);
3183 return FAILURE;
3187 return SUCCESS;
3191 /* Add a symbol to the current interface. */
3193 gfc_try
3194 gfc_add_interface (gfc_symbol *new_sym)
3196 gfc_interface **head, *intr;
3197 gfc_namespace *ns;
3198 gfc_symbol *sym;
3200 switch (current_interface.type)
3202 case INTERFACE_NAMELESS:
3203 case INTERFACE_ABSTRACT:
3204 return SUCCESS;
3206 case INTERFACE_INTRINSIC_OP:
3207 for (ns = current_interface.ns; ns; ns = ns->parent)
3208 switch (current_interface.op)
3210 case INTRINSIC_EQ:
3211 case INTRINSIC_EQ_OS:
3212 if (check_new_interface (ns->op[INTRINSIC_EQ], new_sym) == FAILURE ||
3213 check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym) == FAILURE)
3214 return FAILURE;
3215 break;
3217 case INTRINSIC_NE:
3218 case INTRINSIC_NE_OS:
3219 if (check_new_interface (ns->op[INTRINSIC_NE], new_sym) == FAILURE ||
3220 check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym) == FAILURE)
3221 return FAILURE;
3222 break;
3224 case INTRINSIC_GT:
3225 case INTRINSIC_GT_OS:
3226 if (check_new_interface (ns->op[INTRINSIC_GT], new_sym) == FAILURE ||
3227 check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym) == FAILURE)
3228 return FAILURE;
3229 break;
3231 case INTRINSIC_GE:
3232 case INTRINSIC_GE_OS:
3233 if (check_new_interface (ns->op[INTRINSIC_GE], new_sym) == FAILURE ||
3234 check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym) == FAILURE)
3235 return FAILURE;
3236 break;
3238 case INTRINSIC_LT:
3239 case INTRINSIC_LT_OS:
3240 if (check_new_interface (ns->op[INTRINSIC_LT], new_sym) == FAILURE ||
3241 check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym) == FAILURE)
3242 return FAILURE;
3243 break;
3245 case INTRINSIC_LE:
3246 case INTRINSIC_LE_OS:
3247 if (check_new_interface (ns->op[INTRINSIC_LE], new_sym) == FAILURE ||
3248 check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym) == FAILURE)
3249 return FAILURE;
3250 break;
3252 default:
3253 if (check_new_interface (ns->op[current_interface.op], new_sym) == FAILURE)
3254 return FAILURE;
3257 head = &current_interface.ns->op[current_interface.op];
3258 break;
3260 case INTERFACE_GENERIC:
3261 for (ns = current_interface.ns; ns; ns = ns->parent)
3263 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
3264 if (sym == NULL)
3265 continue;
3267 if (check_new_interface (sym->generic, new_sym) == FAILURE)
3268 return FAILURE;
3271 head = &current_interface.sym->generic;
3272 break;
3274 case INTERFACE_USER_OP:
3275 if (check_new_interface (current_interface.uop->op, new_sym)
3276 == FAILURE)
3277 return FAILURE;
3279 head = &current_interface.uop->op;
3280 break;
3282 default:
3283 gfc_internal_error ("gfc_add_interface(): Bad interface type");
3286 intr = gfc_get_interface ();
3287 intr->sym = new_sym;
3288 intr->where = gfc_current_locus;
3290 intr->next = *head;
3291 *head = intr;
3293 return SUCCESS;
3297 gfc_interface *
3298 gfc_current_interface_head (void)
3300 switch (current_interface.type)
3302 case INTERFACE_INTRINSIC_OP:
3303 return current_interface.ns->op[current_interface.op];
3304 break;
3306 case INTERFACE_GENERIC:
3307 return current_interface.sym->generic;
3308 break;
3310 case INTERFACE_USER_OP:
3311 return current_interface.uop->op;
3312 break;
3314 default:
3315 gcc_unreachable ();
3320 void
3321 gfc_set_current_interface_head (gfc_interface *i)
3323 switch (current_interface.type)
3325 case INTERFACE_INTRINSIC_OP:
3326 current_interface.ns->op[current_interface.op] = i;
3327 break;
3329 case INTERFACE_GENERIC:
3330 current_interface.sym->generic = i;
3331 break;
3333 case INTERFACE_USER_OP:
3334 current_interface.uop->op = i;
3335 break;
3337 default:
3338 gcc_unreachable ();
3343 /* Gets rid of a formal argument list. We do not free symbols.
3344 Symbols are freed when a namespace is freed. */
3346 void
3347 gfc_free_formal_arglist (gfc_formal_arglist *p)
3349 gfc_formal_arglist *q;
3351 for (; p; p = q)
3353 q = p->next;
3354 gfc_free (p);