Merge from mainline (160224:163495).
[official-gcc/graphite-test-results.git] / gcc / config / m68k / m68k.c
blobd9032468ada72d1c866b093c6e3c207e13741fbd
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "output.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "expr.h"
39 #include "reload.h"
40 #include "tm_p.h"
41 #include "target.h"
42 #include "target-def.h"
43 #include "debug.h"
44 #include "flags.h"
45 #include "df.h"
46 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
47 #include "sched-int.h"
48 #include "insn-codes.h"
49 #include "ggc.h"
51 enum reg_class regno_reg_class[] =
53 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
54 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
55 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
56 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
57 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
58 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
59 ADDR_REGS
63 /* The minimum number of integer registers that we want to save with the
64 movem instruction. Using two movel instructions instead of a single
65 moveml is about 15% faster for the 68020 and 68030 at no expense in
66 code size. */
67 #define MIN_MOVEM_REGS 3
69 /* The minimum number of floating point registers that we want to save
70 with the fmovem instruction. */
71 #define MIN_FMOVEM_REGS 1
73 /* Structure describing stack frame layout. */
74 struct m68k_frame
76 /* Stack pointer to frame pointer offset. */
77 HOST_WIDE_INT offset;
79 /* Offset of FPU registers. */
80 HOST_WIDE_INT foffset;
82 /* Frame size in bytes (rounded up). */
83 HOST_WIDE_INT size;
85 /* Data and address register. */
86 int reg_no;
87 unsigned int reg_mask;
89 /* FPU registers. */
90 int fpu_no;
91 unsigned int fpu_mask;
93 /* Offsets relative to ARG_POINTER. */
94 HOST_WIDE_INT frame_pointer_offset;
95 HOST_WIDE_INT stack_pointer_offset;
97 /* Function which the above information refers to. */
98 int funcdef_no;
101 /* Current frame information calculated by m68k_compute_frame_layout(). */
102 static struct m68k_frame current_frame;
104 /* Structure describing an m68k address.
106 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
107 with null fields evaluating to 0. Here:
109 - BASE satisfies m68k_legitimate_base_reg_p
110 - INDEX satisfies m68k_legitimate_index_reg_p
111 - OFFSET satisfies m68k_legitimate_constant_address_p
113 INDEX is either HImode or SImode. The other fields are SImode.
115 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
116 the address is (BASE)+. */
117 struct m68k_address {
118 enum rtx_code code;
119 rtx base;
120 rtx index;
121 rtx offset;
122 int scale;
125 static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
126 static int m68k_sched_issue_rate (void);
127 static int m68k_sched_variable_issue (FILE *, int, rtx, int);
128 static void m68k_sched_md_init_global (FILE *, int, int);
129 static void m68k_sched_md_finish_global (FILE *, int);
130 static void m68k_sched_md_init (FILE *, int, int);
131 static void m68k_sched_dfa_pre_advance_cycle (void);
132 static void m68k_sched_dfa_post_advance_cycle (void);
133 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
135 static bool m68k_can_eliminate (const int, const int);
136 static bool m68k_legitimate_address_p (enum machine_mode, rtx, bool);
137 static bool m68k_handle_option (size_t, const char *, int);
138 static rtx find_addr_reg (rtx);
139 static const char *singlemove_string (rtx *);
140 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
141 HOST_WIDE_INT, tree);
142 static rtx m68k_struct_value_rtx (tree, int);
143 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
144 tree args, int flags,
145 bool *no_add_attrs);
146 static void m68k_compute_frame_layout (void);
147 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
148 static bool m68k_ok_for_sibcall_p (tree, tree);
149 static bool m68k_tls_symbol_p (rtx);
150 static rtx m68k_legitimize_address (rtx, rtx, enum machine_mode);
151 static bool m68k_rtx_costs (rtx, int, int, int *, bool);
152 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
153 static bool m68k_return_in_memory (const_tree, const_tree);
154 #endif
155 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
156 static void m68k_trampoline_init (rtx, tree, rtx);
157 static int m68k_return_pops_args (tree, tree, int);
158 static rtx m68k_delegitimize_address (rtx);
161 /* Specify the identification number of the library being built */
162 const char *m68k_library_id_string = "_current_shared_library_a5_offset_";
164 /* Initialize the GCC target structure. */
166 #if INT_OP_GROUP == INT_OP_DOT_WORD
167 #undef TARGET_ASM_ALIGNED_HI_OP
168 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
169 #endif
171 #if INT_OP_GROUP == INT_OP_NO_DOT
172 #undef TARGET_ASM_BYTE_OP
173 #define TARGET_ASM_BYTE_OP "\tbyte\t"
174 #undef TARGET_ASM_ALIGNED_HI_OP
175 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
176 #undef TARGET_ASM_ALIGNED_SI_OP
177 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
178 #endif
180 #if INT_OP_GROUP == INT_OP_DC
181 #undef TARGET_ASM_BYTE_OP
182 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
183 #undef TARGET_ASM_ALIGNED_HI_OP
184 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
185 #undef TARGET_ASM_ALIGNED_SI_OP
186 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
187 #endif
189 #undef TARGET_ASM_UNALIGNED_HI_OP
190 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
191 #undef TARGET_ASM_UNALIGNED_SI_OP
192 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
194 #undef TARGET_ASM_OUTPUT_MI_THUNK
195 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
196 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
197 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
199 #undef TARGET_ASM_FILE_START_APP_OFF
200 #define TARGET_ASM_FILE_START_APP_OFF true
202 #undef TARGET_LEGITIMIZE_ADDRESS
203 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
205 #undef TARGET_SCHED_ADJUST_COST
206 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
208 #undef TARGET_SCHED_ISSUE_RATE
209 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
211 #undef TARGET_SCHED_VARIABLE_ISSUE
212 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
214 #undef TARGET_SCHED_INIT_GLOBAL
215 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
217 #undef TARGET_SCHED_FINISH_GLOBAL
218 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
220 #undef TARGET_SCHED_INIT
221 #define TARGET_SCHED_INIT m68k_sched_md_init
223 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
224 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
226 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
227 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
229 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
230 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
231 m68k_sched_first_cycle_multipass_dfa_lookahead
233 #undef TARGET_HANDLE_OPTION
234 #define TARGET_HANDLE_OPTION m68k_handle_option
236 #undef TARGET_RTX_COSTS
237 #define TARGET_RTX_COSTS m68k_rtx_costs
239 #undef TARGET_ATTRIBUTE_TABLE
240 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
242 #undef TARGET_PROMOTE_PROTOTYPES
243 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
245 #undef TARGET_STRUCT_VALUE_RTX
246 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
248 #undef TARGET_CANNOT_FORCE_CONST_MEM
249 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_illegitimate_symbolic_constant_p
251 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
252 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
254 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
255 #undef TARGET_RETURN_IN_MEMORY
256 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
257 #endif
259 #ifdef HAVE_AS_TLS
260 #undef TARGET_HAVE_TLS
261 #define TARGET_HAVE_TLS (true)
263 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
264 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
265 #endif
267 #undef TARGET_LEGITIMATE_ADDRESS_P
268 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
270 #undef TARGET_CAN_ELIMINATE
271 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
273 #undef TARGET_TRAMPOLINE_INIT
274 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
276 #undef TARGET_RETURN_POPS_ARGS
277 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
279 #undef TARGET_DELEGITIMIZE_ADDRESS
280 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
282 static const struct attribute_spec m68k_attribute_table[] =
284 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
285 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
286 { "interrupt_handler", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
287 { "interrupt_thread", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
288 { NULL, 0, 0, false, false, false, NULL }
291 struct gcc_target targetm = TARGET_INITIALIZER;
293 /* Base flags for 68k ISAs. */
294 #define FL_FOR_isa_00 FL_ISA_68000
295 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
296 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
297 generated 68881 code for 68020 and 68030 targets unless explicitly told
298 not to. */
299 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
300 | FL_BITFIELD | FL_68881)
301 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
302 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
304 /* Base flags for ColdFire ISAs. */
305 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
306 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
307 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
308 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
309 /* ISA_C is not upwardly compatible with ISA_B. */
310 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
312 enum m68k_isa
314 /* Traditional 68000 instruction sets. */
315 isa_00,
316 isa_10,
317 isa_20,
318 isa_40,
319 isa_cpu32,
320 /* ColdFire instruction set variants. */
321 isa_a,
322 isa_aplus,
323 isa_b,
324 isa_c,
325 isa_max
328 /* Information about one of the -march, -mcpu or -mtune arguments. */
329 struct m68k_target_selection
331 /* The argument being described. */
332 const char *name;
334 /* For -mcpu, this is the device selected by the option.
335 For -mtune and -march, it is a representative device
336 for the microarchitecture or ISA respectively. */
337 enum target_device device;
339 /* The M68K_DEVICE fields associated with DEVICE. See the comment
340 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
341 const char *family;
342 enum uarch_type microarch;
343 enum m68k_isa isa;
344 unsigned long flags;
347 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
348 static const struct m68k_target_selection all_devices[] =
350 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
351 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
352 #include "m68k-devices.def"
353 #undef M68K_DEVICE
354 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
357 /* A list of all ISAs, mapping each one to a representative device.
358 Used for -march selection. */
359 static const struct m68k_target_selection all_isas[] =
361 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
362 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
363 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
364 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
365 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
366 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
367 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
368 { "isaa", mcf5206e, NULL, ucfv2, isa_a, (FL_FOR_isa_a
369 | FL_CF_HWDIV) },
370 { "isaaplus", mcf5271, NULL, ucfv2, isa_aplus, (FL_FOR_isa_aplus
371 | FL_CF_HWDIV) },
372 { "isab", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
373 { "isac", unk_device, NULL, ucfv4, isa_c, (FL_FOR_isa_c
374 | FL_CF_HWDIV) },
375 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
378 /* A list of all microarchitectures, mapping each one to a representative
379 device. Used for -mtune selection. */
380 static const struct m68k_target_selection all_microarchs[] =
382 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
383 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
384 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
385 { "68020-40", m68020, NULL, u68020_40, isa_20, FL_FOR_isa_20 },
386 { "68020-60", m68020, NULL, u68020_60, isa_20, FL_FOR_isa_20 },
387 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
388 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
389 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
390 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
391 { "cfv1", mcf51qe, NULL, ucfv1, isa_c, FL_FOR_isa_c },
392 { "cfv2", mcf5206, NULL, ucfv2, isa_a, FL_FOR_isa_a },
393 { "cfv3", mcf5307, NULL, ucfv3, isa_a, (FL_FOR_isa_a
394 | FL_CF_HWDIV) },
395 { "cfv4", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
396 { "cfv4e", mcf547x, NULL, ucfv4e, isa_b, (FL_FOR_isa_b
397 | FL_CF_USP
398 | FL_CF_EMAC
399 | FL_CF_FPU) },
400 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
403 /* The entries associated with the -mcpu, -march and -mtune settings,
404 or null for options that have not been used. */
405 const struct m68k_target_selection *m68k_cpu_entry;
406 const struct m68k_target_selection *m68k_arch_entry;
407 const struct m68k_target_selection *m68k_tune_entry;
409 /* Which CPU we are generating code for. */
410 enum target_device m68k_cpu;
412 /* Which microarchitecture to tune for. */
413 enum uarch_type m68k_tune;
415 /* Which FPU to use. */
416 enum fpu_type m68k_fpu;
418 /* The set of FL_* flags that apply to the target processor. */
419 unsigned int m68k_cpu_flags;
421 /* The set of FL_* flags that apply to the processor to be tuned for. */
422 unsigned int m68k_tune_flags;
424 /* Asm templates for calling or jumping to an arbitrary symbolic address,
425 or NULL if such calls or jumps are not supported. The address is held
426 in operand 0. */
427 const char *m68k_symbolic_call;
428 const char *m68k_symbolic_jump;
430 /* Enum variable that corresponds to m68k_symbolic_call values. */
431 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
434 /* See whether TABLE has an entry with name NAME. Return true and
435 store the entry in *ENTRY if so, otherwise return false and
436 leave *ENTRY alone. */
438 static bool
439 m68k_find_selection (const struct m68k_target_selection **entry,
440 const struct m68k_target_selection *table,
441 const char *name)
443 size_t i;
445 for (i = 0; table[i].name; i++)
446 if (strcmp (table[i].name, name) == 0)
448 *entry = table + i;
449 return true;
451 return false;
454 /* Implement TARGET_HANDLE_OPTION. */
456 static bool
457 m68k_handle_option (size_t code, const char *arg, int value)
459 switch (code)
461 case OPT_march_:
462 return m68k_find_selection (&m68k_arch_entry, all_isas, arg);
464 case OPT_mcpu_:
465 return m68k_find_selection (&m68k_cpu_entry, all_devices, arg);
467 case OPT_mtune_:
468 return m68k_find_selection (&m68k_tune_entry, all_microarchs, arg);
470 case OPT_m5200:
471 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206");
473 case OPT_m5206e:
474 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206e");
476 case OPT_m528x:
477 return m68k_find_selection (&m68k_cpu_entry, all_devices, "528x");
479 case OPT_m5307:
480 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5307");
482 case OPT_m5407:
483 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5407");
485 case OPT_mcfv4e:
486 return m68k_find_selection (&m68k_cpu_entry, all_devices, "547x");
488 case OPT_m68000:
489 case OPT_mc68000:
490 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68000");
492 case OPT_m68010:
493 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68010");
495 case OPT_m68020:
496 case OPT_mc68020:
497 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68020");
499 case OPT_m68020_40:
500 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
501 "68020-40")
502 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
504 case OPT_m68020_60:
505 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
506 "68020-60")
507 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
509 case OPT_m68030:
510 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68030");
512 case OPT_m68040:
513 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68040");
515 case OPT_m68060:
516 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68060");
518 case OPT_m68302:
519 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68302");
521 case OPT_m68332:
522 case OPT_mcpu32:
523 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68332");
525 case OPT_mshared_library_id_:
526 if (value > MAX_LIBRARY_ID)
527 error ("-mshared-library-id=%s is not between 0 and %d",
528 arg, MAX_LIBRARY_ID);
529 else
531 char *tmp;
532 asprintf (&tmp, "%d", (value * -4) - 4);
533 m68k_library_id_string = tmp;
535 return true;
537 default:
538 return true;
542 /* Sometimes certain combinations of command options do not make
543 sense on a particular target machine. You can define a macro
544 `OVERRIDE_OPTIONS' to take account of this. This macro, if
545 defined, is executed once just after all the command options have
546 been parsed.
548 Don't use this macro to turn on various extra optimizations for
549 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
551 void
552 override_options (void)
554 const struct m68k_target_selection *entry;
555 unsigned long target_mask;
557 /* User can choose:
559 -mcpu=
560 -march=
561 -mtune=
563 -march=ARCH should generate code that runs any processor
564 implementing architecture ARCH. -mcpu=CPU should override -march
565 and should generate code that runs on processor CPU, making free
566 use of any instructions that CPU understands. -mtune=UARCH applies
567 on top of -mcpu or -march and optimizes the code for UARCH. It does
568 not change the target architecture. */
569 if (m68k_cpu_entry)
571 /* Complain if the -march setting is for a different microarchitecture,
572 or includes flags that the -mcpu setting doesn't. */
573 if (m68k_arch_entry
574 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
575 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
576 warning (0, "-mcpu=%s conflicts with -march=%s",
577 m68k_cpu_entry->name, m68k_arch_entry->name);
579 entry = m68k_cpu_entry;
581 else
582 entry = m68k_arch_entry;
584 if (!entry)
585 entry = all_devices + TARGET_CPU_DEFAULT;
587 m68k_cpu_flags = entry->flags;
589 /* Use the architecture setting to derive default values for
590 certain flags. */
591 target_mask = 0;
593 /* ColdFire is lenient about alignment. */
594 if (!TARGET_COLDFIRE)
595 target_mask |= MASK_STRICT_ALIGNMENT;
597 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
598 target_mask |= MASK_BITFIELD;
599 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
600 target_mask |= MASK_CF_HWDIV;
601 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
602 target_mask |= MASK_HARD_FLOAT;
603 target_flags |= target_mask & ~target_flags_explicit;
605 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
606 m68k_cpu = entry->device;
607 if (m68k_tune_entry)
609 m68k_tune = m68k_tune_entry->microarch;
610 m68k_tune_flags = m68k_tune_entry->flags;
612 #ifdef M68K_DEFAULT_TUNE
613 else if (!m68k_cpu_entry && !m68k_arch_entry)
615 enum target_device dev;
616 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
617 m68k_tune_flags = all_devices[dev]->flags;
619 #endif
620 else
622 m68k_tune = entry->microarch;
623 m68k_tune_flags = entry->flags;
626 /* Set the type of FPU. */
627 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
628 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
629 : FPUTYPE_68881);
631 /* Sanity check to ensure that msep-data and mid-sahred-library are not
632 * both specified together. Doing so simply doesn't make sense.
634 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
635 error ("cannot specify both -msep-data and -mid-shared-library");
637 /* If we're generating code for a separate A5 relative data segment,
638 * we've got to enable -fPIC as well. This might be relaxable to
639 * -fpic but it hasn't been tested properly.
641 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
642 flag_pic = 2;
644 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
645 error if the target does not support them. */
646 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
647 error ("-mpcrel -fPIC is not currently supported on selected cpu");
649 /* ??? A historic way of turning on pic, or is this intended to
650 be an embedded thing that doesn't have the same name binding
651 significance that it does on hosted ELF systems? */
652 if (TARGET_PCREL && flag_pic == 0)
653 flag_pic = 1;
655 if (!flag_pic)
657 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
659 m68k_symbolic_jump = "jra %a0";
661 else if (TARGET_ID_SHARED_LIBRARY)
662 /* All addresses must be loaded from the GOT. */
664 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
666 if (TARGET_PCREL)
667 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
668 else
669 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
671 if (TARGET_ISAC)
672 /* No unconditional long branch */;
673 else if (TARGET_PCREL)
674 m68k_symbolic_jump = "bra%.l %c0";
675 else
676 m68k_symbolic_jump = "bra%.l %p0";
677 /* Turn off function cse if we are doing PIC. We always want
678 function call to be done as `bsr foo@PLTPC'. */
679 /* ??? It's traditional to do this for -mpcrel too, but it isn't
680 clear how intentional that is. */
681 flag_no_function_cse = 1;
684 switch (m68k_symbolic_call_var)
686 case M68K_SYMBOLIC_CALL_JSR:
687 m68k_symbolic_call = "jsr %a0";
688 break;
690 case M68K_SYMBOLIC_CALL_BSR_C:
691 m68k_symbolic_call = "bsr%.l %c0";
692 break;
694 case M68K_SYMBOLIC_CALL_BSR_P:
695 m68k_symbolic_call = "bsr%.l %p0";
696 break;
698 case M68K_SYMBOLIC_CALL_NONE:
699 gcc_assert (m68k_symbolic_call == NULL);
700 break;
702 default:
703 gcc_unreachable ();
706 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
707 if (align_labels > 2)
709 warning (0, "-falign-labels=%d is not supported", align_labels);
710 align_labels = 0;
712 if (align_loops > 2)
714 warning (0, "-falign-loops=%d is not supported", align_loops);
715 align_loops = 0;
717 #endif
719 SUBTARGET_OVERRIDE_OPTIONS;
721 /* Setup scheduling options. */
722 if (TUNE_CFV1)
723 m68k_sched_cpu = CPU_CFV1;
724 else if (TUNE_CFV2)
725 m68k_sched_cpu = CPU_CFV2;
726 else if (TUNE_CFV3)
727 m68k_sched_cpu = CPU_CFV3;
728 else if (TUNE_CFV4)
729 m68k_sched_cpu = CPU_CFV4;
730 else
732 m68k_sched_cpu = CPU_UNKNOWN;
733 flag_schedule_insns = 0;
734 flag_schedule_insns_after_reload = 0;
735 flag_modulo_sched = 0;
738 if (m68k_sched_cpu != CPU_UNKNOWN)
740 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
741 m68k_sched_mac = MAC_CF_EMAC;
742 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
743 m68k_sched_mac = MAC_CF_MAC;
744 else
745 m68k_sched_mac = MAC_NO;
749 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
750 given argument and NAME is the argument passed to -mcpu. Return NULL
751 if -mcpu was not passed. */
753 const char *
754 m68k_cpp_cpu_ident (const char *prefix)
756 if (!m68k_cpu_entry)
757 return NULL;
758 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
761 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
762 given argument and NAME is the name of the representative device for
763 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
765 const char *
766 m68k_cpp_cpu_family (const char *prefix)
768 if (!m68k_cpu_entry)
769 return NULL;
770 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
773 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
774 "interrupt_handler" attribute and interrupt_thread if FUNC has an
775 "interrupt_thread" attribute. Otherwise, return
776 m68k_fk_normal_function. */
778 enum m68k_function_kind
779 m68k_get_function_kind (tree func)
781 tree a;
783 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
785 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
786 if (a != NULL_TREE)
787 return m68k_fk_interrupt_handler;
789 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
790 if (a != NULL_TREE)
791 return m68k_fk_interrupt_handler;
793 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
794 if (a != NULL_TREE)
795 return m68k_fk_interrupt_thread;
797 return m68k_fk_normal_function;
800 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
801 struct attribute_spec.handler. */
802 static tree
803 m68k_handle_fndecl_attribute (tree *node, tree name,
804 tree args ATTRIBUTE_UNUSED,
805 int flags ATTRIBUTE_UNUSED,
806 bool *no_add_attrs)
808 if (TREE_CODE (*node) != FUNCTION_DECL)
810 warning (OPT_Wattributes, "%qE attribute only applies to functions",
811 name);
812 *no_add_attrs = true;
815 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
817 error ("multiple interrupt attributes not allowed");
818 *no_add_attrs = true;
821 if (!TARGET_FIDOA
822 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
824 error ("interrupt_thread is available only on fido");
825 *no_add_attrs = true;
828 return NULL_TREE;
831 static void
832 m68k_compute_frame_layout (void)
834 int regno, saved;
835 unsigned int mask;
836 enum m68k_function_kind func_kind =
837 m68k_get_function_kind (current_function_decl);
838 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
839 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
841 /* Only compute the frame once per function.
842 Don't cache information until reload has been completed. */
843 if (current_frame.funcdef_no == current_function_funcdef_no
844 && reload_completed)
845 return;
847 current_frame.size = (get_frame_size () + 3) & -4;
849 mask = saved = 0;
851 /* Interrupt thread does not need to save any register. */
852 if (!interrupt_thread)
853 for (regno = 0; regno < 16; regno++)
854 if (m68k_save_reg (regno, interrupt_handler))
856 mask |= 1 << (regno - D0_REG);
857 saved++;
859 current_frame.offset = saved * 4;
860 current_frame.reg_no = saved;
861 current_frame.reg_mask = mask;
863 current_frame.foffset = 0;
864 mask = saved = 0;
865 if (TARGET_HARD_FLOAT)
867 /* Interrupt thread does not need to save any register. */
868 if (!interrupt_thread)
869 for (regno = 16; regno < 24; regno++)
870 if (m68k_save_reg (regno, interrupt_handler))
872 mask |= 1 << (regno - FP0_REG);
873 saved++;
875 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
876 current_frame.offset += current_frame.foffset;
878 current_frame.fpu_no = saved;
879 current_frame.fpu_mask = mask;
881 /* Remember what function this frame refers to. */
882 current_frame.funcdef_no = current_function_funcdef_no;
885 /* Worker function for TARGET_CAN_ELIMINATE. */
887 bool
888 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
890 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
893 HOST_WIDE_INT
894 m68k_initial_elimination_offset (int from, int to)
896 int argptr_offset;
897 /* The arg pointer points 8 bytes before the start of the arguments,
898 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
899 frame pointer in most frames. */
900 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
901 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
902 return argptr_offset;
904 m68k_compute_frame_layout ();
906 gcc_assert (to == STACK_POINTER_REGNUM);
907 switch (from)
909 case ARG_POINTER_REGNUM:
910 return current_frame.offset + current_frame.size - argptr_offset;
911 case FRAME_POINTER_REGNUM:
912 return current_frame.offset + current_frame.size;
913 default:
914 gcc_unreachable ();
918 /* Refer to the array `regs_ever_live' to determine which registers
919 to save; `regs_ever_live[I]' is nonzero if register number I
920 is ever used in the function. This function is responsible for
921 knowing which registers should not be saved even if used.
922 Return true if we need to save REGNO. */
924 static bool
925 m68k_save_reg (unsigned int regno, bool interrupt_handler)
927 if (flag_pic && regno == PIC_REG)
929 if (crtl->saves_all_registers)
930 return true;
931 if (crtl->uses_pic_offset_table)
932 return true;
933 /* Reload may introduce constant pool references into a function
934 that thitherto didn't need a PIC register. Note that the test
935 above will not catch that case because we will only set
936 crtl->uses_pic_offset_table when emitting
937 the address reloads. */
938 if (crtl->uses_const_pool)
939 return true;
942 if (crtl->calls_eh_return)
944 unsigned int i;
945 for (i = 0; ; i++)
947 unsigned int test = EH_RETURN_DATA_REGNO (i);
948 if (test == INVALID_REGNUM)
949 break;
950 if (test == regno)
951 return true;
955 /* Fixed regs we never touch. */
956 if (fixed_regs[regno])
957 return false;
959 /* The frame pointer (if it is such) is handled specially. */
960 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
961 return false;
963 /* Interrupt handlers must also save call_used_regs
964 if they are live or when calling nested functions. */
965 if (interrupt_handler)
967 if (df_regs_ever_live_p (regno))
968 return true;
970 if (!current_function_is_leaf && call_used_regs[regno])
971 return true;
974 /* Never need to save registers that aren't touched. */
975 if (!df_regs_ever_live_p (regno))
976 return false;
978 /* Otherwise save everything that isn't call-clobbered. */
979 return !call_used_regs[regno];
982 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
983 the lowest memory address. COUNT is the number of registers to be
984 moved, with register REGNO + I being moved if bit I of MASK is set.
985 STORE_P specifies the direction of the move and ADJUST_STACK_P says
986 whether or not this is pre-decrement (if STORE_P) or post-increment
987 (if !STORE_P) operation. */
989 static rtx
990 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
991 unsigned int count, unsigned int regno,
992 unsigned int mask, bool store_p, bool adjust_stack_p)
994 int i;
995 rtx body, addr, src, operands[2];
996 enum machine_mode mode;
998 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
999 mode = reg_raw_mode[regno];
1000 i = 0;
1002 if (adjust_stack_p)
1004 src = plus_constant (base, (count
1005 * GET_MODE_SIZE (mode)
1006 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
1007 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
1010 for (; mask != 0; mask >>= 1, regno++)
1011 if (mask & 1)
1013 addr = plus_constant (base, offset);
1014 operands[!store_p] = gen_frame_mem (mode, addr);
1015 operands[store_p] = gen_rtx_REG (mode, regno);
1016 XVECEXP (body, 0, i++)
1017 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
1018 offset += GET_MODE_SIZE (mode);
1020 gcc_assert (i == XVECLEN (body, 0));
1022 return emit_insn (body);
1025 /* Make INSN a frame-related instruction. */
1027 static void
1028 m68k_set_frame_related (rtx insn)
1030 rtx body;
1031 int i;
1033 RTX_FRAME_RELATED_P (insn) = 1;
1034 body = PATTERN (insn);
1035 if (GET_CODE (body) == PARALLEL)
1036 for (i = 0; i < XVECLEN (body, 0); i++)
1037 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
1040 /* Emit RTL for the "prologue" define_expand. */
1042 void
1043 m68k_expand_prologue (void)
1045 HOST_WIDE_INT fsize_with_regs;
1046 rtx limit, src, dest;
1048 m68k_compute_frame_layout ();
1050 /* If the stack limit is a symbol, we can check it here,
1051 before actually allocating the space. */
1052 if (crtl->limit_stack
1053 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1055 limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
1056 if (!LEGITIMATE_CONSTANT_P (limit))
1058 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1059 limit = gen_rtx_REG (Pmode, D0_REG);
1061 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1062 stack_pointer_rtx, limit),
1063 stack_pointer_rtx, limit,
1064 const1_rtx));
1067 fsize_with_regs = current_frame.size;
1068 if (TARGET_COLDFIRE)
1070 /* ColdFire's move multiple instructions do not allow pre-decrement
1071 addressing. Add the size of movem saves to the initial stack
1072 allocation instead. */
1073 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1074 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1075 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1076 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1079 if (frame_pointer_needed)
1081 if (fsize_with_regs == 0 && TUNE_68040)
1083 /* On the 68040, two separate moves are faster than link.w 0. */
1084 dest = gen_frame_mem (Pmode,
1085 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1086 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1087 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1088 stack_pointer_rtx));
1090 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1091 m68k_set_frame_related
1092 (emit_insn (gen_link (frame_pointer_rtx,
1093 GEN_INT (-4 - fsize_with_regs))));
1094 else
1096 m68k_set_frame_related
1097 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1098 m68k_set_frame_related
1099 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1100 stack_pointer_rtx,
1101 GEN_INT (-fsize_with_regs))));
1104 /* If the frame pointer is needed, emit a special barrier that
1105 will prevent the scheduler from moving stores to the frame
1106 before the stack adjustment. */
1107 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1109 else if (fsize_with_regs != 0)
1110 m68k_set_frame_related
1111 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1112 stack_pointer_rtx,
1113 GEN_INT (-fsize_with_regs))));
1115 if (current_frame.fpu_mask)
1117 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1118 if (TARGET_68881)
1119 m68k_set_frame_related
1120 (m68k_emit_movem (stack_pointer_rtx,
1121 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1122 current_frame.fpu_no, FP0_REG,
1123 current_frame.fpu_mask, true, true));
1124 else
1126 int offset;
1128 /* If we're using moveml to save the integer registers,
1129 the stack pointer will point to the bottom of the moveml
1130 save area. Find the stack offset of the first FP register. */
1131 if (current_frame.reg_no < MIN_MOVEM_REGS)
1132 offset = 0;
1133 else
1134 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1135 m68k_set_frame_related
1136 (m68k_emit_movem (stack_pointer_rtx, offset,
1137 current_frame.fpu_no, FP0_REG,
1138 current_frame.fpu_mask, true, false));
1142 /* If the stack limit is not a symbol, check it here.
1143 This has the disadvantage that it may be too late... */
1144 if (crtl->limit_stack)
1146 if (REG_P (stack_limit_rtx))
1147 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1148 stack_limit_rtx),
1149 stack_pointer_rtx, stack_limit_rtx,
1150 const1_rtx));
1152 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1153 warning (0, "stack limit expression is not supported");
1156 if (current_frame.reg_no < MIN_MOVEM_REGS)
1158 /* Store each register separately in the same order moveml does. */
1159 int i;
1161 for (i = 16; i-- > 0; )
1162 if (current_frame.reg_mask & (1 << i))
1164 src = gen_rtx_REG (SImode, D0_REG + i);
1165 dest = gen_frame_mem (SImode,
1166 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1167 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1170 else
1172 if (TARGET_COLDFIRE)
1173 /* The required register save space has already been allocated.
1174 The first register should be stored at (%sp). */
1175 m68k_set_frame_related
1176 (m68k_emit_movem (stack_pointer_rtx, 0,
1177 current_frame.reg_no, D0_REG,
1178 current_frame.reg_mask, true, false));
1179 else
1180 m68k_set_frame_related
1181 (m68k_emit_movem (stack_pointer_rtx,
1182 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1183 current_frame.reg_no, D0_REG,
1184 current_frame.reg_mask, true, true));
1187 if (!TARGET_SEP_DATA
1188 && crtl->uses_pic_offset_table)
1189 emit_insn (gen_load_got (pic_offset_table_rtx));
1192 /* Return true if a simple (return) instruction is sufficient for this
1193 instruction (i.e. if no epilogue is needed). */
1195 bool
1196 m68k_use_return_insn (void)
1198 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1199 return false;
1201 m68k_compute_frame_layout ();
1202 return current_frame.offset == 0;
1205 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1206 SIBCALL_P says which.
1208 The function epilogue should not depend on the current stack pointer!
1209 It should use the frame pointer only, if there is a frame pointer.
1210 This is mandatory because of alloca; we also take advantage of it to
1211 omit stack adjustments before returning. */
1213 void
1214 m68k_expand_epilogue (bool sibcall_p)
1216 HOST_WIDE_INT fsize, fsize_with_regs;
1217 bool big, restore_from_sp;
1219 m68k_compute_frame_layout ();
1221 fsize = current_frame.size;
1222 big = false;
1223 restore_from_sp = false;
1225 /* FIXME : current_function_is_leaf below is too strong.
1226 What we really need to know there is if there could be pending
1227 stack adjustment needed at that point. */
1228 restore_from_sp = (!frame_pointer_needed
1229 || (!cfun->calls_alloca
1230 && current_function_is_leaf));
1232 /* fsize_with_regs is the size we need to adjust the sp when
1233 popping the frame. */
1234 fsize_with_regs = fsize;
1235 if (TARGET_COLDFIRE && restore_from_sp)
1237 /* ColdFire's move multiple instructions do not allow post-increment
1238 addressing. Add the size of movem loads to the final deallocation
1239 instead. */
1240 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1241 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1242 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1243 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1246 if (current_frame.offset + fsize >= 0x8000
1247 && !restore_from_sp
1248 && (current_frame.reg_mask || current_frame.fpu_mask))
1250 if (TARGET_COLDFIRE
1251 && (current_frame.reg_no >= MIN_MOVEM_REGS
1252 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1254 /* ColdFire's move multiple instructions do not support the
1255 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1256 stack-based restore. */
1257 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1258 GEN_INT (-(current_frame.offset + fsize)));
1259 emit_insn (gen_addsi3 (stack_pointer_rtx,
1260 gen_rtx_REG (Pmode, A1_REG),
1261 frame_pointer_rtx));
1262 restore_from_sp = true;
1264 else
1266 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1267 fsize = 0;
1268 big = true;
1272 if (current_frame.reg_no < MIN_MOVEM_REGS)
1274 /* Restore each register separately in the same order moveml does. */
1275 int i;
1276 HOST_WIDE_INT offset;
1278 offset = current_frame.offset + fsize;
1279 for (i = 0; i < 16; i++)
1280 if (current_frame.reg_mask & (1 << i))
1282 rtx addr;
1284 if (big)
1286 /* Generate the address -OFFSET(%fp,%a1.l). */
1287 addr = gen_rtx_REG (Pmode, A1_REG);
1288 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1289 addr = plus_constant (addr, -offset);
1291 else if (restore_from_sp)
1292 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1293 else
1294 addr = plus_constant (frame_pointer_rtx, -offset);
1295 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1296 gen_frame_mem (SImode, addr));
1297 offset -= GET_MODE_SIZE (SImode);
1300 else if (current_frame.reg_mask)
1302 if (big)
1303 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1304 gen_rtx_REG (Pmode, A1_REG),
1305 frame_pointer_rtx),
1306 -(current_frame.offset + fsize),
1307 current_frame.reg_no, D0_REG,
1308 current_frame.reg_mask, false, false);
1309 else if (restore_from_sp)
1310 m68k_emit_movem (stack_pointer_rtx, 0,
1311 current_frame.reg_no, D0_REG,
1312 current_frame.reg_mask, false,
1313 !TARGET_COLDFIRE);
1314 else
1315 m68k_emit_movem (frame_pointer_rtx,
1316 -(current_frame.offset + fsize),
1317 current_frame.reg_no, D0_REG,
1318 current_frame.reg_mask, false, false);
1321 if (current_frame.fpu_no > 0)
1323 if (big)
1324 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1325 gen_rtx_REG (Pmode, A1_REG),
1326 frame_pointer_rtx),
1327 -(current_frame.foffset + fsize),
1328 current_frame.fpu_no, FP0_REG,
1329 current_frame.fpu_mask, false, false);
1330 else if (restore_from_sp)
1332 if (TARGET_COLDFIRE)
1334 int offset;
1336 /* If we used moveml to restore the integer registers, the
1337 stack pointer will still point to the bottom of the moveml
1338 save area. Find the stack offset of the first FP
1339 register. */
1340 if (current_frame.reg_no < MIN_MOVEM_REGS)
1341 offset = 0;
1342 else
1343 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1344 m68k_emit_movem (stack_pointer_rtx, offset,
1345 current_frame.fpu_no, FP0_REG,
1346 current_frame.fpu_mask, false, false);
1348 else
1349 m68k_emit_movem (stack_pointer_rtx, 0,
1350 current_frame.fpu_no, FP0_REG,
1351 current_frame.fpu_mask, false, true);
1353 else
1354 m68k_emit_movem (frame_pointer_rtx,
1355 -(current_frame.foffset + fsize),
1356 current_frame.fpu_no, FP0_REG,
1357 current_frame.fpu_mask, false, false);
1360 if (frame_pointer_needed)
1361 emit_insn (gen_unlink (frame_pointer_rtx));
1362 else if (fsize_with_regs)
1363 emit_insn (gen_addsi3 (stack_pointer_rtx,
1364 stack_pointer_rtx,
1365 GEN_INT (fsize_with_regs)));
1367 if (crtl->calls_eh_return)
1368 emit_insn (gen_addsi3 (stack_pointer_rtx,
1369 stack_pointer_rtx,
1370 EH_RETURN_STACKADJ_RTX));
1372 if (!sibcall_p)
1373 emit_jump_insn (gen_rtx_RETURN (VOIDmode));
1376 /* Return true if X is a valid comparison operator for the dbcc
1377 instruction.
1379 Note it rejects floating point comparison operators.
1380 (In the future we could use Fdbcc).
1382 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1385 valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1387 switch (GET_CODE (x))
1389 case EQ: case NE: case GTU: case LTU:
1390 case GEU: case LEU:
1391 return 1;
1393 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1394 conservative */
1395 case GT: case LT: case GE: case LE:
1396 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1397 default:
1398 return 0;
1402 /* Return nonzero if flags are currently in the 68881 flag register. */
1404 flags_in_68881 (void)
1406 /* We could add support for these in the future */
1407 return cc_status.flags & CC_IN_68881;
1410 /* Return true if PARALLEL contains register REGNO. */
1411 static bool
1412 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1414 int i;
1416 if (REG_P (parallel) && REGNO (parallel) == regno)
1417 return true;
1419 if (GET_CODE (parallel) != PARALLEL)
1420 return false;
1422 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1424 const_rtx x;
1426 x = XEXP (XVECEXP (parallel, 0, i), 0);
1427 if (REG_P (x) && REGNO (x) == regno)
1428 return true;
1431 return false;
1434 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1436 static bool
1437 m68k_ok_for_sibcall_p (tree decl, tree exp)
1439 enum m68k_function_kind kind;
1441 /* We cannot use sibcalls for nested functions because we use the
1442 static chain register for indirect calls. */
1443 if (CALL_EXPR_STATIC_CHAIN (exp))
1444 return false;
1446 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1448 /* Check that the return value locations are the same. For
1449 example that we aren't returning a value from the sibling in
1450 a D0 register but then need to transfer it to a A0 register. */
1451 rtx cfun_value;
1452 rtx call_value;
1454 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1455 cfun->decl);
1456 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1458 /* Check that the values are equal or that the result the callee
1459 function returns is superset of what the current function returns. */
1460 if (!(rtx_equal_p (cfun_value, call_value)
1461 || (REG_P (cfun_value)
1462 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1463 return false;
1466 kind = m68k_get_function_kind (current_function_decl);
1467 if (kind == m68k_fk_normal_function)
1468 /* We can always sibcall from a normal function, because it's
1469 undefined if it is calling an interrupt function. */
1470 return true;
1472 /* Otherwise we can only sibcall if the function kind is known to be
1473 the same. */
1474 if (decl && m68k_get_function_kind (decl) == kind)
1475 return true;
1477 return false;
1480 /* Convert X to a legitimate function call memory reference and return the
1481 result. */
1484 m68k_legitimize_call_address (rtx x)
1486 gcc_assert (MEM_P (x));
1487 if (call_operand (XEXP (x, 0), VOIDmode))
1488 return x;
1489 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1492 /* Likewise for sibling calls. */
1495 m68k_legitimize_sibcall_address (rtx x)
1497 gcc_assert (MEM_P (x));
1498 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1499 return x;
1501 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1502 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1505 /* Convert X to a legitimate address and return it if successful. Otherwise
1506 return X.
1508 For the 68000, we handle X+REG by loading X into a register R and
1509 using R+REG. R will go in an address reg and indexing will be used.
1510 However, if REG is a broken-out memory address or multiplication,
1511 nothing needs to be done because REG can certainly go in an address reg. */
1513 static rtx
1514 m68k_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
1516 if (m68k_tls_symbol_p (x))
1517 return m68k_legitimize_tls_address (x);
1519 if (GET_CODE (x) == PLUS)
1521 int ch = (x) != (oldx);
1522 int copied = 0;
1524 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1526 if (GET_CODE (XEXP (x, 0)) == MULT)
1528 COPY_ONCE (x);
1529 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1531 if (GET_CODE (XEXP (x, 1)) == MULT)
1533 COPY_ONCE (x);
1534 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1536 if (ch)
1538 if (GET_CODE (XEXP (x, 1)) == REG
1539 && GET_CODE (XEXP (x, 0)) == REG)
1541 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1543 COPY_ONCE (x);
1544 x = force_operand (x, 0);
1546 return x;
1548 if (memory_address_p (mode, x))
1549 return x;
1551 if (GET_CODE (XEXP (x, 0)) == REG
1552 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1553 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1554 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1556 rtx temp = gen_reg_rtx (Pmode);
1557 rtx val = force_operand (XEXP (x, 1), 0);
1558 emit_move_insn (temp, val);
1559 COPY_ONCE (x);
1560 XEXP (x, 1) = temp;
1561 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1562 && GET_CODE (XEXP (x, 0)) == REG)
1563 x = force_operand (x, 0);
1565 else if (GET_CODE (XEXP (x, 1)) == REG
1566 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1567 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1568 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1570 rtx temp = gen_reg_rtx (Pmode);
1571 rtx val = force_operand (XEXP (x, 0), 0);
1572 emit_move_insn (temp, val);
1573 COPY_ONCE (x);
1574 XEXP (x, 0) = temp;
1575 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1576 && GET_CODE (XEXP (x, 1)) == REG)
1577 x = force_operand (x, 0);
1581 return x;
1585 /* Output a dbCC; jCC sequence. Note we do not handle the
1586 floating point version of this sequence (Fdbcc). We also
1587 do not handle alternative conditions when CC_NO_OVERFLOW is
1588 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1589 kick those out before we get here. */
1591 void
1592 output_dbcc_and_branch (rtx *operands)
1594 switch (GET_CODE (operands[3]))
1596 case EQ:
1597 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1598 break;
1600 case NE:
1601 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1602 break;
1604 case GT:
1605 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1606 break;
1608 case GTU:
1609 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1610 break;
1612 case LT:
1613 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1614 break;
1616 case LTU:
1617 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1618 break;
1620 case GE:
1621 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1622 break;
1624 case GEU:
1625 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1626 break;
1628 case LE:
1629 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1630 break;
1632 case LEU:
1633 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1634 break;
1636 default:
1637 gcc_unreachable ();
1640 /* If the decrement is to be done in SImode, then we have
1641 to compensate for the fact that dbcc decrements in HImode. */
1642 switch (GET_MODE (operands[0]))
1644 case SImode:
1645 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1646 break;
1648 case HImode:
1649 break;
1651 default:
1652 gcc_unreachable ();
1656 const char *
1657 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1659 rtx loperands[7];
1660 enum rtx_code op_code = GET_CODE (op);
1662 /* This does not produce a useful cc. */
1663 CC_STATUS_INIT;
1665 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1666 below. Swap the operands and change the op if these requirements
1667 are not fulfilled. */
1668 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1670 rtx tmp = operand1;
1672 operand1 = operand2;
1673 operand2 = tmp;
1674 op_code = swap_condition (op_code);
1676 loperands[0] = operand1;
1677 if (GET_CODE (operand1) == REG)
1678 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1679 else
1680 loperands[1] = adjust_address (operand1, SImode, 4);
1681 if (operand2 != const0_rtx)
1683 loperands[2] = operand2;
1684 if (GET_CODE (operand2) == REG)
1685 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1686 else
1687 loperands[3] = adjust_address (operand2, SImode, 4);
1689 loperands[4] = gen_label_rtx ();
1690 if (operand2 != const0_rtx)
1691 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1692 else
1694 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1695 output_asm_insn ("tst%.l %0", loperands);
1696 else
1697 output_asm_insn ("cmp%.w #0,%0", loperands);
1699 output_asm_insn ("jne %l4", loperands);
1701 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1702 output_asm_insn ("tst%.l %1", loperands);
1703 else
1704 output_asm_insn ("cmp%.w #0,%1", loperands);
1707 loperands[5] = dest;
1709 switch (op_code)
1711 case EQ:
1712 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1713 CODE_LABEL_NUMBER (loperands[4]));
1714 output_asm_insn ("seq %5", loperands);
1715 break;
1717 case NE:
1718 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1719 CODE_LABEL_NUMBER (loperands[4]));
1720 output_asm_insn ("sne %5", loperands);
1721 break;
1723 case GT:
1724 loperands[6] = gen_label_rtx ();
1725 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1726 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1727 CODE_LABEL_NUMBER (loperands[4]));
1728 output_asm_insn ("sgt %5", loperands);
1729 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1730 CODE_LABEL_NUMBER (loperands[6]));
1731 break;
1733 case GTU:
1734 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1735 CODE_LABEL_NUMBER (loperands[4]));
1736 output_asm_insn ("shi %5", loperands);
1737 break;
1739 case LT:
1740 loperands[6] = gen_label_rtx ();
1741 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1742 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1743 CODE_LABEL_NUMBER (loperands[4]));
1744 output_asm_insn ("slt %5", loperands);
1745 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1746 CODE_LABEL_NUMBER (loperands[6]));
1747 break;
1749 case LTU:
1750 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1751 CODE_LABEL_NUMBER (loperands[4]));
1752 output_asm_insn ("scs %5", loperands);
1753 break;
1755 case GE:
1756 loperands[6] = gen_label_rtx ();
1757 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1758 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1759 CODE_LABEL_NUMBER (loperands[4]));
1760 output_asm_insn ("sge %5", loperands);
1761 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1762 CODE_LABEL_NUMBER (loperands[6]));
1763 break;
1765 case GEU:
1766 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1767 CODE_LABEL_NUMBER (loperands[4]));
1768 output_asm_insn ("scc %5", loperands);
1769 break;
1771 case LE:
1772 loperands[6] = gen_label_rtx ();
1773 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1774 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1775 CODE_LABEL_NUMBER (loperands[4]));
1776 output_asm_insn ("sle %5", loperands);
1777 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1778 CODE_LABEL_NUMBER (loperands[6]));
1779 break;
1781 case LEU:
1782 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1783 CODE_LABEL_NUMBER (loperands[4]));
1784 output_asm_insn ("sls %5", loperands);
1785 break;
1787 default:
1788 gcc_unreachable ();
1790 return "";
1793 const char *
1794 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1796 operands[0] = countop;
1797 operands[1] = dataop;
1799 if (GET_CODE (countop) == CONST_INT)
1801 register int count = INTVAL (countop);
1802 /* If COUNT is bigger than size of storage unit in use,
1803 advance to the containing unit of same size. */
1804 if (count > signpos)
1806 int offset = (count & ~signpos) / 8;
1807 count = count & signpos;
1808 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1810 if (count == signpos)
1811 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1812 else
1813 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1815 /* These three statements used to use next_insns_test_no...
1816 but it appears that this should do the same job. */
1817 if (count == 31
1818 && next_insn_tests_no_inequality (insn))
1819 return "tst%.l %1";
1820 if (count == 15
1821 && next_insn_tests_no_inequality (insn))
1822 return "tst%.w %1";
1823 if (count == 7
1824 && next_insn_tests_no_inequality (insn))
1825 return "tst%.b %1";
1826 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1827 On some m68k variants unfortunately that's slower than btst.
1828 On 68000 and higher, that should also work for all HImode operands. */
1829 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1831 if (count == 3 && DATA_REG_P (operands[1])
1832 && next_insn_tests_no_inequality (insn))
1834 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1835 return "move%.w %1,%%ccr";
1837 if (count == 2 && DATA_REG_P (operands[1])
1838 && next_insn_tests_no_inequality (insn))
1840 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1841 return "move%.w %1,%%ccr";
1843 /* count == 1 followed by bvc/bvs and
1844 count == 0 followed by bcc/bcs are also possible, but need
1845 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1848 cc_status.flags = CC_NOT_NEGATIVE;
1850 return "btst %0,%1";
1853 /* Return true if X is a legitimate base register. STRICT_P says
1854 whether we need strict checking. */
1856 bool
1857 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1859 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1860 if (!strict_p && GET_CODE (x) == SUBREG)
1861 x = SUBREG_REG (x);
1863 return (REG_P (x)
1864 && (strict_p
1865 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1866 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1869 /* Return true if X is a legitimate index register. STRICT_P says
1870 whether we need strict checking. */
1872 bool
1873 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1875 if (!strict_p && GET_CODE (x) == SUBREG)
1876 x = SUBREG_REG (x);
1878 return (REG_P (x)
1879 && (strict_p
1880 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1881 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1884 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1885 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1886 ADDRESS if so. STRICT_P says whether we need strict checking. */
1888 static bool
1889 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1891 int scale;
1893 /* Check for a scale factor. */
1894 scale = 1;
1895 if ((TARGET_68020 || TARGET_COLDFIRE)
1896 && GET_CODE (x) == MULT
1897 && GET_CODE (XEXP (x, 1)) == CONST_INT
1898 && (INTVAL (XEXP (x, 1)) == 2
1899 || INTVAL (XEXP (x, 1)) == 4
1900 || (INTVAL (XEXP (x, 1)) == 8
1901 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1903 scale = INTVAL (XEXP (x, 1));
1904 x = XEXP (x, 0);
1907 /* Check for a word extension. */
1908 if (!TARGET_COLDFIRE
1909 && GET_CODE (x) == SIGN_EXTEND
1910 && GET_MODE (XEXP (x, 0)) == HImode)
1911 x = XEXP (x, 0);
1913 if (m68k_legitimate_index_reg_p (x, strict_p))
1915 address->scale = scale;
1916 address->index = x;
1917 return true;
1920 return false;
1923 /* Return true if X is an illegitimate symbolic constant. */
1925 bool
1926 m68k_illegitimate_symbolic_constant_p (rtx x)
1928 rtx base, offset;
1930 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1932 split_const (x, &base, &offset);
1933 if (GET_CODE (base) == SYMBOL_REF
1934 && !offset_within_block_p (base, INTVAL (offset)))
1935 return true;
1937 return m68k_tls_reference_p (x, false);
1940 /* Return true if X is a legitimate constant address that can reach
1941 bytes in the range [X, X + REACH). STRICT_P says whether we need
1942 strict checking. */
1944 static bool
1945 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1947 rtx base, offset;
1949 if (!CONSTANT_ADDRESS_P (x))
1950 return false;
1952 if (flag_pic
1953 && !(strict_p && TARGET_PCREL)
1954 && symbolic_operand (x, VOIDmode))
1955 return false;
1957 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1959 split_const (x, &base, &offset);
1960 if (GET_CODE (base) == SYMBOL_REF
1961 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1962 return false;
1965 return !m68k_tls_reference_p (x, false);
1968 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1969 labels will become jump tables. */
1971 static bool
1972 m68k_jump_table_ref_p (rtx x)
1974 if (GET_CODE (x) != LABEL_REF)
1975 return false;
1977 x = XEXP (x, 0);
1978 if (!NEXT_INSN (x) && !PREV_INSN (x))
1979 return true;
1981 x = next_nonnote_insn (x);
1982 return x && JUMP_TABLE_DATA_P (x);
1985 /* Return true if X is a legitimate address for values of mode MODE.
1986 STRICT_P says whether strict checking is needed. If the address
1987 is valid, describe its components in *ADDRESS. */
1989 static bool
1990 m68k_decompose_address (enum machine_mode mode, rtx x,
1991 bool strict_p, struct m68k_address *address)
1993 unsigned int reach;
1995 memset (address, 0, sizeof (*address));
1997 if (mode == BLKmode)
1998 reach = 1;
1999 else
2000 reach = GET_MODE_SIZE (mode);
2002 /* Check for (An) (mode 2). */
2003 if (m68k_legitimate_base_reg_p (x, strict_p))
2005 address->base = x;
2006 return true;
2009 /* Check for -(An) and (An)+ (modes 3 and 4). */
2010 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
2011 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2013 address->code = GET_CODE (x);
2014 address->base = XEXP (x, 0);
2015 return true;
2018 /* Check for (d16,An) (mode 5). */
2019 if (GET_CODE (x) == PLUS
2020 && GET_CODE (XEXP (x, 1)) == CONST_INT
2021 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2022 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2024 address->base = XEXP (x, 0);
2025 address->offset = XEXP (x, 1);
2026 return true;
2029 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2030 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2031 addresses. */
2032 if (GET_CODE (x) == PLUS
2033 && XEXP (x, 0) == pic_offset_table_rtx)
2035 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2036 they are invalid in this context. */
2037 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2039 address->base = XEXP (x, 0);
2040 address->offset = XEXP (x, 1);
2041 return true;
2045 /* The ColdFire FPU only accepts addressing modes 2-5. */
2046 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2047 return false;
2049 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2050 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2051 All these modes are variations of mode 7. */
2052 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2054 address->offset = x;
2055 return true;
2058 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2059 tablejumps.
2061 ??? do_tablejump creates these addresses before placing the target
2062 label, so we have to assume that unplaced labels are jump table
2063 references. It seems unlikely that we would ever generate indexed
2064 accesses to unplaced labels in other cases. */
2065 if (GET_CODE (x) == PLUS
2066 && m68k_jump_table_ref_p (XEXP (x, 1))
2067 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2069 address->offset = XEXP (x, 1);
2070 return true;
2073 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2074 (bd,An,Xn.SIZE*SCALE) addresses. */
2076 if (TARGET_68020)
2078 /* Check for a nonzero base displacement. */
2079 if (GET_CODE (x) == PLUS
2080 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2082 address->offset = XEXP (x, 1);
2083 x = XEXP (x, 0);
2086 /* Check for a suppressed index register. */
2087 if (m68k_legitimate_base_reg_p (x, strict_p))
2089 address->base = x;
2090 return true;
2093 /* Check for a suppressed base register. Do not allow this case
2094 for non-symbolic offsets as it effectively gives gcc freedom
2095 to treat data registers as base registers, which can generate
2096 worse code. */
2097 if (address->offset
2098 && symbolic_operand (address->offset, VOIDmode)
2099 && m68k_decompose_index (x, strict_p, address))
2100 return true;
2102 else
2104 /* Check for a nonzero base displacement. */
2105 if (GET_CODE (x) == PLUS
2106 && GET_CODE (XEXP (x, 1)) == CONST_INT
2107 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2109 address->offset = XEXP (x, 1);
2110 x = XEXP (x, 0);
2114 /* We now expect the sum of a base and an index. */
2115 if (GET_CODE (x) == PLUS)
2117 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2118 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2120 address->base = XEXP (x, 0);
2121 return true;
2124 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2125 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2127 address->base = XEXP (x, 1);
2128 return true;
2131 return false;
2134 /* Return true if X is a legitimate address for values of mode MODE.
2135 STRICT_P says whether strict checking is needed. */
2137 bool
2138 m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2140 struct m68k_address address;
2142 return m68k_decompose_address (mode, x, strict_p, &address);
2145 /* Return true if X is a memory, describing its address in ADDRESS if so.
2146 Apply strict checking if called during or after reload. */
2148 static bool
2149 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2151 return (MEM_P (x)
2152 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2153 reload_in_progress || reload_completed,
2154 address));
2157 /* Return true if X matches the 'Q' constraint. It must be a memory
2158 with a base address and no constant offset or index. */
2160 bool
2161 m68k_matches_q_p (rtx x)
2163 struct m68k_address address;
2165 return (m68k_legitimate_mem_p (x, &address)
2166 && address.code == UNKNOWN
2167 && address.base
2168 && !address.offset
2169 && !address.index);
2172 /* Return true if X matches the 'U' constraint. It must be a base address
2173 with a constant offset and no index. */
2175 bool
2176 m68k_matches_u_p (rtx x)
2178 struct m68k_address address;
2180 return (m68k_legitimate_mem_p (x, &address)
2181 && address.code == UNKNOWN
2182 && address.base
2183 && address.offset
2184 && !address.index);
2187 /* Return GOT pointer. */
2189 static rtx
2190 m68k_get_gp (void)
2192 if (pic_offset_table_rtx == NULL_RTX)
2193 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2195 crtl->uses_pic_offset_table = 1;
2197 return pic_offset_table_rtx;
2200 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2201 wrappers. */
2202 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2203 RELOC_TLSIE, RELOC_TLSLE };
2205 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2207 /* Wrap symbol X into unspec representing relocation RELOC.
2208 BASE_REG - register that should be added to the result.
2209 TEMP_REG - if non-null, temporary register. */
2211 static rtx
2212 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2214 bool use_x_p;
2216 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2218 if (TARGET_COLDFIRE && use_x_p)
2219 /* When compiling with -mx{got, tls} switch the code will look like this:
2221 move.l <X>@<RELOC>,<TEMP_REG>
2222 add.l <BASE_REG>,<TEMP_REG> */
2224 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2225 to put @RELOC after reference. */
2226 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2227 UNSPEC_RELOC32);
2228 x = gen_rtx_CONST (Pmode, x);
2230 if (temp_reg == NULL)
2232 gcc_assert (can_create_pseudo_p ());
2233 temp_reg = gen_reg_rtx (Pmode);
2236 emit_move_insn (temp_reg, x);
2237 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2238 x = temp_reg;
2240 else
2242 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2243 UNSPEC_RELOC16);
2244 x = gen_rtx_CONST (Pmode, x);
2246 x = gen_rtx_PLUS (Pmode, base_reg, x);
2249 return x;
2252 /* Helper for m68k_unwrap_symbol.
2253 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2254 sets *RELOC_PTR to relocation type for the symbol. */
2256 static rtx
2257 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2258 enum m68k_reloc *reloc_ptr)
2260 if (GET_CODE (orig) == CONST)
2262 rtx x;
2263 enum m68k_reloc dummy;
2265 x = XEXP (orig, 0);
2267 if (reloc_ptr == NULL)
2268 reloc_ptr = &dummy;
2270 /* Handle an addend. */
2271 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2272 && CONST_INT_P (XEXP (x, 1)))
2273 x = XEXP (x, 0);
2275 if (GET_CODE (x) == UNSPEC)
2277 switch (XINT (x, 1))
2279 case UNSPEC_RELOC16:
2280 orig = XVECEXP (x, 0, 0);
2281 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2282 break;
2284 case UNSPEC_RELOC32:
2285 if (unwrap_reloc32_p)
2287 orig = XVECEXP (x, 0, 0);
2288 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2290 break;
2292 default:
2293 break;
2298 return orig;
2301 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2302 UNSPEC_RELOC32 wrappers. */
2305 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2307 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2310 /* Helper for m68k_final_prescan_insn. */
2312 static int
2313 m68k_final_prescan_insn_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2315 rtx x = *x_ptr;
2317 if (m68k_unwrap_symbol (x, true) != x)
2318 /* For rationale of the below, see comment in m68k_final_prescan_insn. */
2320 rtx plus;
2322 gcc_assert (GET_CODE (x) == CONST);
2323 plus = XEXP (x, 0);
2325 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2327 rtx unspec;
2328 rtx addend;
2330 unspec = XEXP (plus, 0);
2331 gcc_assert (GET_CODE (unspec) == UNSPEC);
2332 addend = XEXP (plus, 1);
2333 gcc_assert (CONST_INT_P (addend));
2335 /* We now have all the pieces, rearrange them. */
2337 /* Move symbol to plus. */
2338 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2340 /* Move plus inside unspec. */
2341 XVECEXP (unspec, 0, 0) = plus;
2343 /* Move unspec to top level of const. */
2344 XEXP (x, 0) = unspec;
2347 return -1;
2350 return 0;
2353 /* Prescan insn before outputing assembler for it. */
2355 void
2356 m68k_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
2357 rtx *operands, int n_operands)
2359 int i;
2361 /* Combine and, possibly, other optimizations may do good job
2362 converting
2363 (const (unspec [(symbol)]))
2364 into
2365 (const (plus (unspec [(symbol)])
2366 (const_int N))).
2367 The problem with this is emitting @TLS or @GOT decorations.
2368 The decoration is emitted when processing (unspec), so the
2369 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2371 It seems that the easiest solution to this is to convert such
2372 operands to
2373 (const (unspec [(plus (symbol)
2374 (const_int N))])).
2375 Note, that the top level of operand remains intact, so we don't have
2376 to patch up anything outside of the operand. */
2378 for (i = 0; i < n_operands; ++i)
2380 rtx op;
2382 op = operands[i];
2384 for_each_rtx (&op, m68k_final_prescan_insn_1, NULL);
2388 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2389 If REG is non-null, use it; generate new pseudo otherwise. */
2391 static rtx
2392 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2394 rtx insn;
2396 if (reg == NULL_RTX)
2398 gcc_assert (can_create_pseudo_p ());
2399 reg = gen_reg_rtx (Pmode);
2402 insn = emit_move_insn (reg, x);
2403 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2404 by loop. */
2405 set_unique_reg_note (insn, REG_EQUAL, orig);
2407 return reg;
2410 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2411 GOT slot. */
2413 static rtx
2414 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2416 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2418 x = gen_rtx_MEM (Pmode, x);
2419 MEM_READONLY_P (x) = 1;
2421 return x;
2424 /* Legitimize PIC addresses. If the address is already
2425 position-independent, we return ORIG. Newly generated
2426 position-independent addresses go to REG. If we need more
2427 than one register, we lose.
2429 An address is legitimized by making an indirect reference
2430 through the Global Offset Table with the name of the symbol
2431 used as an offset.
2433 The assembler and linker are responsible for placing the
2434 address of the symbol in the GOT. The function prologue
2435 is responsible for initializing a5 to the starting address
2436 of the GOT.
2438 The assembler is also responsible for translating a symbol name
2439 into a constant displacement from the start of the GOT.
2441 A quick example may make things a little clearer:
2443 When not generating PIC code to store the value 12345 into _foo
2444 we would generate the following code:
2446 movel #12345, _foo
2448 When generating PIC two transformations are made. First, the compiler
2449 loads the address of foo into a register. So the first transformation makes:
2451 lea _foo, a0
2452 movel #12345, a0@
2454 The code in movsi will intercept the lea instruction and call this
2455 routine which will transform the instructions into:
2457 movel a5@(_foo:w), a0
2458 movel #12345, a0@
2461 That (in a nutshell) is how *all* symbol and label references are
2462 handled. */
2465 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2466 rtx reg)
2468 rtx pic_ref = orig;
2470 /* First handle a simple SYMBOL_REF or LABEL_REF */
2471 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2473 gcc_assert (reg);
2475 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2476 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2478 else if (GET_CODE (orig) == CONST)
2480 rtx base;
2482 /* Make sure this has not already been legitimized. */
2483 if (m68k_unwrap_symbol (orig, true) != orig)
2484 return orig;
2486 gcc_assert (reg);
2488 /* legitimize both operands of the PLUS */
2489 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2491 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2492 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2493 base == reg ? 0 : reg);
2495 if (GET_CODE (orig) == CONST_INT)
2496 pic_ref = plus_constant (base, INTVAL (orig));
2497 else
2498 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2501 return pic_ref;
2504 /* The __tls_get_addr symbol. */
2505 static GTY(()) rtx m68k_tls_get_addr;
2507 /* Return SYMBOL_REF for __tls_get_addr. */
2509 static rtx
2510 m68k_get_tls_get_addr (void)
2512 if (m68k_tls_get_addr == NULL_RTX)
2513 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2515 return m68k_tls_get_addr;
2518 /* Return libcall result in A0 instead of usual D0. */
2519 static bool m68k_libcall_value_in_a0_p = false;
2521 /* Emit instruction sequence that calls __tls_get_addr. X is
2522 the TLS symbol we are referencing and RELOC is the symbol type to use
2523 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2524 emitted. A pseudo register with result of __tls_get_addr call is
2525 returned. */
2527 static rtx
2528 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2530 rtx a0;
2531 rtx insns;
2532 rtx dest;
2534 /* Emit the call sequence. */
2535 start_sequence ();
2537 /* FIXME: Unfortunately, emit_library_call_value does not
2538 consider (plus (%a5) (const (unspec))) to be a good enough
2539 operand for push, so it forces it into a register. The bad
2540 thing about this is that combiner, due to copy propagation and other
2541 optimizations, sometimes can not later fix this. As a consequence,
2542 additional register may be allocated resulting in a spill.
2543 For reference, see args processing loops in
2544 calls.c:emit_library_call_value_1.
2545 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2546 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2548 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2549 is the simpliest way of generating a call. The difference between
2550 __tls_get_addr() and libcall is that the result is returned in D0
2551 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2552 which temporarily switches returning the result to A0. */
2554 m68k_libcall_value_in_a0_p = true;
2555 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2556 Pmode, 1, x, Pmode);
2557 m68k_libcall_value_in_a0_p = false;
2559 insns = get_insns ();
2560 end_sequence ();
2562 gcc_assert (can_create_pseudo_p ());
2563 dest = gen_reg_rtx (Pmode);
2564 emit_libcall_block (insns, dest, a0, eqv);
2566 return dest;
2569 /* The __tls_get_addr symbol. */
2570 static GTY(()) rtx m68k_read_tp;
2572 /* Return SYMBOL_REF for __m68k_read_tp. */
2574 static rtx
2575 m68k_get_m68k_read_tp (void)
2577 if (m68k_read_tp == NULL_RTX)
2578 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2580 return m68k_read_tp;
2583 /* Emit instruction sequence that calls __m68k_read_tp.
2584 A pseudo register with result of __m68k_read_tp call is returned. */
2586 static rtx
2587 m68k_call_m68k_read_tp (void)
2589 rtx a0;
2590 rtx eqv;
2591 rtx insns;
2592 rtx dest;
2594 start_sequence ();
2596 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2597 is the simpliest way of generating a call. The difference between
2598 __m68k_read_tp() and libcall is that the result is returned in D0
2599 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2600 which temporarily switches returning the result to A0. */
2602 /* Emit the call sequence. */
2603 m68k_libcall_value_in_a0_p = true;
2604 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2605 Pmode, 0);
2606 m68k_libcall_value_in_a0_p = false;
2607 insns = get_insns ();
2608 end_sequence ();
2610 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2611 share the m68k_read_tp result with other IE/LE model accesses. */
2612 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2614 gcc_assert (can_create_pseudo_p ());
2615 dest = gen_reg_rtx (Pmode);
2616 emit_libcall_block (insns, dest, a0, eqv);
2618 return dest;
2621 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2622 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2623 ColdFire. */
2626 m68k_legitimize_tls_address (rtx orig)
2628 switch (SYMBOL_REF_TLS_MODEL (orig))
2630 case TLS_MODEL_GLOBAL_DYNAMIC:
2631 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2632 break;
2634 case TLS_MODEL_LOCAL_DYNAMIC:
2636 rtx eqv;
2637 rtx a0;
2638 rtx x;
2640 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2641 share the LDM result with other LD model accesses. */
2642 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2643 UNSPEC_RELOC32);
2645 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2647 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2649 if (can_create_pseudo_p ())
2650 x = m68k_move_to_reg (x, orig, NULL_RTX);
2652 orig = x;
2653 break;
2656 case TLS_MODEL_INITIAL_EXEC:
2658 rtx a0;
2659 rtx x;
2661 a0 = m68k_call_m68k_read_tp ();
2663 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2664 x = gen_rtx_PLUS (Pmode, x, a0);
2666 if (can_create_pseudo_p ())
2667 x = m68k_move_to_reg (x, orig, NULL_RTX);
2669 orig = x;
2670 break;
2673 case TLS_MODEL_LOCAL_EXEC:
2675 rtx a0;
2676 rtx x;
2678 a0 = m68k_call_m68k_read_tp ();
2680 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2682 if (can_create_pseudo_p ())
2683 x = m68k_move_to_reg (x, orig, NULL_RTX);
2685 orig = x;
2686 break;
2689 default:
2690 gcc_unreachable ();
2693 return orig;
2696 /* Return true if X is a TLS symbol. */
2698 static bool
2699 m68k_tls_symbol_p (rtx x)
2701 if (!TARGET_HAVE_TLS)
2702 return false;
2704 if (GET_CODE (x) != SYMBOL_REF)
2705 return false;
2707 return SYMBOL_REF_TLS_MODEL (x) != 0;
2710 /* Helper for m68k_tls_referenced_p. */
2712 static int
2713 m68k_tls_reference_p_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2715 /* Note: this is not the same as m68k_tls_symbol_p. */
2716 if (GET_CODE (*x_ptr) == SYMBOL_REF)
2717 return SYMBOL_REF_TLS_MODEL (*x_ptr) != 0 ? 1 : 0;
2719 /* Don't recurse into legitimate TLS references. */
2720 if (m68k_tls_reference_p (*x_ptr, true))
2721 return -1;
2723 return 0;
2726 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2727 though illegitimate one.
2728 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2730 bool
2731 m68k_tls_reference_p (rtx x, bool legitimate_p)
2733 if (!TARGET_HAVE_TLS)
2734 return false;
2736 if (!legitimate_p)
2737 return for_each_rtx (&x, m68k_tls_reference_p_1, NULL) == 1 ? true : false;
2738 else
2740 enum m68k_reloc reloc = RELOC_GOT;
2742 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2743 && TLS_RELOC_P (reloc));
2749 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2751 /* Return the type of move that should be used for integer I. */
2753 M68K_CONST_METHOD
2754 m68k_const_method (HOST_WIDE_INT i)
2756 unsigned u;
2758 if (USE_MOVQ (i))
2759 return MOVQ;
2761 /* The ColdFire doesn't have byte or word operations. */
2762 /* FIXME: This may not be useful for the m68060 either. */
2763 if (!TARGET_COLDFIRE)
2765 /* if -256 < N < 256 but N is not in range for a moveq
2766 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2767 if (USE_MOVQ (i ^ 0xff))
2768 return NOTB;
2769 /* Likewise, try with not.w */
2770 if (USE_MOVQ (i ^ 0xffff))
2771 return NOTW;
2772 /* This is the only value where neg.w is useful */
2773 if (i == -65408)
2774 return NEGW;
2777 /* Try also with swap. */
2778 u = i;
2779 if (USE_MOVQ ((u >> 16) | (u << 16)))
2780 return SWAP;
2782 if (TARGET_ISAB)
2784 /* Try using MVZ/MVS with an immediate value to load constants. */
2785 if (i >= 0 && i <= 65535)
2786 return MVZ;
2787 if (i >= -32768 && i <= 32767)
2788 return MVS;
2791 /* Otherwise, use move.l */
2792 return MOVL;
2795 /* Return the cost of moving constant I into a data register. */
2797 static int
2798 const_int_cost (HOST_WIDE_INT i)
2800 switch (m68k_const_method (i))
2802 case MOVQ:
2803 /* Constants between -128 and 127 are cheap due to moveq. */
2804 return 0;
2805 case MVZ:
2806 case MVS:
2807 case NOTB:
2808 case NOTW:
2809 case NEGW:
2810 case SWAP:
2811 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2812 return 1;
2813 case MOVL:
2814 return 2;
2815 default:
2816 gcc_unreachable ();
2820 static bool
2821 m68k_rtx_costs (rtx x, int code, int outer_code, int *total,
2822 bool speed ATTRIBUTE_UNUSED)
2824 switch (code)
2826 case CONST_INT:
2827 /* Constant zero is super cheap due to clr instruction. */
2828 if (x == const0_rtx)
2829 *total = 0;
2830 else
2831 *total = const_int_cost (INTVAL (x));
2832 return true;
2834 case CONST:
2835 case LABEL_REF:
2836 case SYMBOL_REF:
2837 *total = 3;
2838 return true;
2840 case CONST_DOUBLE:
2841 /* Make 0.0 cheaper than other floating constants to
2842 encourage creating tstsf and tstdf insns. */
2843 if (outer_code == COMPARE
2844 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2845 *total = 4;
2846 else
2847 *total = 5;
2848 return true;
2850 /* These are vaguely right for a 68020. */
2851 /* The costs for long multiply have been adjusted to work properly
2852 in synth_mult on the 68020, relative to an average of the time
2853 for add and the time for shift, taking away a little more because
2854 sometimes move insns are needed. */
2855 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2856 terms. */
2857 #define MULL_COST \
2858 (TUNE_68060 ? 2 \
2859 : TUNE_68040 ? 5 \
2860 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2861 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2862 : TUNE_CFV2 ? 8 \
2863 : TARGET_COLDFIRE ? 3 : 13)
2865 #define MULW_COST \
2866 (TUNE_68060 ? 2 \
2867 : TUNE_68040 ? 3 \
2868 : TUNE_68000_10 ? 5 \
2869 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2870 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2871 : TUNE_CFV2 ? 8 \
2872 : TARGET_COLDFIRE ? 2 : 8)
2874 #define DIVW_COST \
2875 (TARGET_CF_HWDIV ? 11 \
2876 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2878 case PLUS:
2879 /* An lea costs about three times as much as a simple add. */
2880 if (GET_MODE (x) == SImode
2881 && GET_CODE (XEXP (x, 1)) == REG
2882 && GET_CODE (XEXP (x, 0)) == MULT
2883 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2884 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2885 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2886 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2887 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2889 /* lea an@(dx:l:i),am */
2890 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2891 return true;
2893 return false;
2895 case ASHIFT:
2896 case ASHIFTRT:
2897 case LSHIFTRT:
2898 if (TUNE_68060)
2900 *total = COSTS_N_INSNS(1);
2901 return true;
2903 if (TUNE_68000_10)
2905 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2907 if (INTVAL (XEXP (x, 1)) < 16)
2908 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2909 else
2910 /* We're using clrw + swap for these cases. */
2911 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2913 else
2914 *total = COSTS_N_INSNS (10); /* Worst case. */
2915 return true;
2917 /* A shift by a big integer takes an extra instruction. */
2918 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2919 && (INTVAL (XEXP (x, 1)) == 16))
2921 *total = COSTS_N_INSNS (2); /* clrw;swap */
2922 return true;
2924 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2925 && !(INTVAL (XEXP (x, 1)) > 0
2926 && INTVAL (XEXP (x, 1)) <= 8))
2928 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2929 return true;
2931 return false;
2933 case MULT:
2934 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2935 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2936 && GET_MODE (x) == SImode)
2937 *total = COSTS_N_INSNS (MULW_COST);
2938 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2939 *total = COSTS_N_INSNS (MULW_COST);
2940 else
2941 *total = COSTS_N_INSNS (MULL_COST);
2942 return true;
2944 case DIV:
2945 case UDIV:
2946 case MOD:
2947 case UMOD:
2948 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2949 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2950 else if (TARGET_CF_HWDIV)
2951 *total = COSTS_N_INSNS (18);
2952 else
2953 *total = COSTS_N_INSNS (43); /* div.l */
2954 return true;
2956 case ZERO_EXTRACT:
2957 if (outer_code == COMPARE)
2958 *total = 0;
2959 return false;
2961 default:
2962 return false;
2966 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2967 OPERANDS[0]. */
2969 static const char *
2970 output_move_const_into_data_reg (rtx *operands)
2972 HOST_WIDE_INT i;
2974 i = INTVAL (operands[1]);
2975 switch (m68k_const_method (i))
2977 case MVZ:
2978 return "mvzw %1,%0";
2979 case MVS:
2980 return "mvsw %1,%0";
2981 case MOVQ:
2982 return "moveq %1,%0";
2983 case NOTB:
2984 CC_STATUS_INIT;
2985 operands[1] = GEN_INT (i ^ 0xff);
2986 return "moveq %1,%0\n\tnot%.b %0";
2987 case NOTW:
2988 CC_STATUS_INIT;
2989 operands[1] = GEN_INT (i ^ 0xffff);
2990 return "moveq %1,%0\n\tnot%.w %0";
2991 case NEGW:
2992 CC_STATUS_INIT;
2993 return "moveq #-128,%0\n\tneg%.w %0";
2994 case SWAP:
2996 unsigned u = i;
2998 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2999 return "moveq %1,%0\n\tswap %0";
3001 case MOVL:
3002 return "move%.l %1,%0";
3003 default:
3004 gcc_unreachable ();
3008 /* Return true if I can be handled by ISA B's mov3q instruction. */
3010 bool
3011 valid_mov3q_const (HOST_WIDE_INT i)
3013 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
3016 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3017 I is the value of OPERANDS[1]. */
3019 static const char *
3020 output_move_simode_const (rtx *operands)
3022 rtx dest;
3023 HOST_WIDE_INT src;
3025 dest = operands[0];
3026 src = INTVAL (operands[1]);
3027 if (src == 0
3028 && (DATA_REG_P (dest) || MEM_P (dest))
3029 /* clr insns on 68000 read before writing. */
3030 && ((TARGET_68010 || TARGET_COLDFIRE)
3031 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3032 return "clr%.l %0";
3033 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3034 return "mov3q%.l %1,%0";
3035 else if (src == 0 && ADDRESS_REG_P (dest))
3036 return "sub%.l %0,%0";
3037 else if (DATA_REG_P (dest))
3038 return output_move_const_into_data_reg (operands);
3039 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3041 if (valid_mov3q_const (src))
3042 return "mov3q%.l %1,%0";
3043 return "move%.w %1,%0";
3045 else if (MEM_P (dest)
3046 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3047 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3048 && IN_RANGE (src, -0x8000, 0x7fff))
3050 if (valid_mov3q_const (src))
3051 return "mov3q%.l %1,%-";
3052 return "pea %a1";
3054 return "move%.l %1,%0";
3057 const char *
3058 output_move_simode (rtx *operands)
3060 if (GET_CODE (operands[1]) == CONST_INT)
3061 return output_move_simode_const (operands);
3062 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3063 || GET_CODE (operands[1]) == CONST)
3064 && push_operand (operands[0], SImode))
3065 return "pea %a1";
3066 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3067 || GET_CODE (operands[1]) == CONST)
3068 && ADDRESS_REG_P (operands[0]))
3069 return "lea %a1,%0";
3070 return "move%.l %1,%0";
3073 const char *
3074 output_move_himode (rtx *operands)
3076 if (GET_CODE (operands[1]) == CONST_INT)
3078 if (operands[1] == const0_rtx
3079 && (DATA_REG_P (operands[0])
3080 || GET_CODE (operands[0]) == MEM)
3081 /* clr insns on 68000 read before writing. */
3082 && ((TARGET_68010 || TARGET_COLDFIRE)
3083 || !(GET_CODE (operands[0]) == MEM
3084 && MEM_VOLATILE_P (operands[0]))))
3085 return "clr%.w %0";
3086 else if (operands[1] == const0_rtx
3087 && ADDRESS_REG_P (operands[0]))
3088 return "sub%.l %0,%0";
3089 else if (DATA_REG_P (operands[0])
3090 && INTVAL (operands[1]) < 128
3091 && INTVAL (operands[1]) >= -128)
3092 return "moveq %1,%0";
3093 else if (INTVAL (operands[1]) < 0x8000
3094 && INTVAL (operands[1]) >= -0x8000)
3095 return "move%.w %1,%0";
3097 else if (CONSTANT_P (operands[1]))
3098 return "move%.l %1,%0";
3099 return "move%.w %1,%0";
3102 const char *
3103 output_move_qimode (rtx *operands)
3105 /* 68k family always modifies the stack pointer by at least 2, even for
3106 byte pushes. The 5200 (ColdFire) does not do this. */
3108 /* This case is generated by pushqi1 pattern now. */
3109 gcc_assert (!(GET_CODE (operands[0]) == MEM
3110 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3111 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3112 && ! ADDRESS_REG_P (operands[1])
3113 && ! TARGET_COLDFIRE));
3115 /* clr and st insns on 68000 read before writing. */
3116 if (!ADDRESS_REG_P (operands[0])
3117 && ((TARGET_68010 || TARGET_COLDFIRE)
3118 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3120 if (operands[1] == const0_rtx)
3121 return "clr%.b %0";
3122 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3123 && GET_CODE (operands[1]) == CONST_INT
3124 && (INTVAL (operands[1]) & 255) == 255)
3126 CC_STATUS_INIT;
3127 return "st %0";
3130 if (GET_CODE (operands[1]) == CONST_INT
3131 && DATA_REG_P (operands[0])
3132 && INTVAL (operands[1]) < 128
3133 && INTVAL (operands[1]) >= -128)
3134 return "moveq %1,%0";
3135 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3136 return "sub%.l %0,%0";
3137 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3138 return "move%.l %1,%0";
3139 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3140 from address registers. */
3141 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3142 return "move%.w %1,%0";
3143 return "move%.b %1,%0";
3146 const char *
3147 output_move_stricthi (rtx *operands)
3149 if (operands[1] == const0_rtx
3150 /* clr insns on 68000 read before writing. */
3151 && ((TARGET_68010 || TARGET_COLDFIRE)
3152 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3153 return "clr%.w %0";
3154 return "move%.w %1,%0";
3157 const char *
3158 output_move_strictqi (rtx *operands)
3160 if (operands[1] == const0_rtx
3161 /* clr insns on 68000 read before writing. */
3162 && ((TARGET_68010 || TARGET_COLDFIRE)
3163 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3164 return "clr%.b %0";
3165 return "move%.b %1,%0";
3168 /* Return the best assembler insn template
3169 for moving operands[1] into operands[0] as a fullword. */
3171 static const char *
3172 singlemove_string (rtx *operands)
3174 if (GET_CODE (operands[1]) == CONST_INT)
3175 return output_move_simode_const (operands);
3176 return "move%.l %1,%0";
3180 /* Output assembler or rtl code to perform a doubleword move insn
3181 with operands OPERANDS.
3182 Pointers to 3 helper functions should be specified:
3183 HANDLE_REG_ADJUST to adjust a register by a small value,
3184 HANDLE_COMPADR to compute an address and
3185 HANDLE_MOVSI to move 4 bytes. */
3187 static void
3188 handle_move_double (rtx operands[2],
3189 void (*handle_reg_adjust) (rtx, int),
3190 void (*handle_compadr) (rtx [2]),
3191 void (*handle_movsi) (rtx [2]))
3193 enum
3195 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3196 } optype0, optype1;
3197 rtx latehalf[2];
3198 rtx middlehalf[2];
3199 rtx xops[2];
3200 rtx addreg0 = 0, addreg1 = 0;
3201 int dest_overlapped_low = 0;
3202 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3204 middlehalf[0] = 0;
3205 middlehalf[1] = 0;
3207 /* First classify both operands. */
3209 if (REG_P (operands[0]))
3210 optype0 = REGOP;
3211 else if (offsettable_memref_p (operands[0]))
3212 optype0 = OFFSOP;
3213 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3214 optype0 = POPOP;
3215 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3216 optype0 = PUSHOP;
3217 else if (GET_CODE (operands[0]) == MEM)
3218 optype0 = MEMOP;
3219 else
3220 optype0 = RNDOP;
3222 if (REG_P (operands[1]))
3223 optype1 = REGOP;
3224 else if (CONSTANT_P (operands[1]))
3225 optype1 = CNSTOP;
3226 else if (offsettable_memref_p (operands[1]))
3227 optype1 = OFFSOP;
3228 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3229 optype1 = POPOP;
3230 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3231 optype1 = PUSHOP;
3232 else if (GET_CODE (operands[1]) == MEM)
3233 optype1 = MEMOP;
3234 else
3235 optype1 = RNDOP;
3237 /* Check for the cases that the operand constraints are not supposed
3238 to allow to happen. Generating code for these cases is
3239 painful. */
3240 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3242 /* If one operand is decrementing and one is incrementing
3243 decrement the former register explicitly
3244 and change that operand into ordinary indexing. */
3246 if (optype0 == PUSHOP && optype1 == POPOP)
3248 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3250 handle_reg_adjust (operands[0], -size);
3252 if (GET_MODE (operands[1]) == XFmode)
3253 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3254 else if (GET_MODE (operands[0]) == DFmode)
3255 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3256 else
3257 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3258 optype0 = OFFSOP;
3260 if (optype0 == POPOP && optype1 == PUSHOP)
3262 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3264 handle_reg_adjust (operands[1], -size);
3266 if (GET_MODE (operands[1]) == XFmode)
3267 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3268 else if (GET_MODE (operands[1]) == DFmode)
3269 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3270 else
3271 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3272 optype1 = OFFSOP;
3275 /* If an operand is an unoffsettable memory ref, find a register
3276 we can increment temporarily to make it refer to the second word. */
3278 if (optype0 == MEMOP)
3279 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3281 if (optype1 == MEMOP)
3282 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3284 /* Ok, we can do one word at a time.
3285 Normally we do the low-numbered word first,
3286 but if either operand is autodecrementing then we
3287 do the high-numbered word first.
3289 In either case, set up in LATEHALF the operands to use
3290 for the high-numbered word and in some cases alter the
3291 operands in OPERANDS to be suitable for the low-numbered word. */
3293 if (size == 12)
3295 if (optype0 == REGOP)
3297 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3298 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3300 else if (optype0 == OFFSOP)
3302 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3303 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3305 else
3307 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3308 latehalf[0] = adjust_address (operands[0], SImode, 0);
3311 if (optype1 == REGOP)
3313 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3314 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3316 else if (optype1 == OFFSOP)
3318 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3319 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3321 else if (optype1 == CNSTOP)
3323 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3325 REAL_VALUE_TYPE r;
3326 long l[3];
3328 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3329 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3330 operands[1] = GEN_INT (l[0]);
3331 middlehalf[1] = GEN_INT (l[1]);
3332 latehalf[1] = GEN_INT (l[2]);
3334 else
3336 /* No non-CONST_DOUBLE constant should ever appear
3337 here. */
3338 gcc_assert (!CONSTANT_P (operands[1]));
3341 else
3343 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3344 latehalf[1] = adjust_address (operands[1], SImode, 0);
3347 else
3348 /* size is not 12: */
3350 if (optype0 == REGOP)
3351 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3352 else if (optype0 == OFFSOP)
3353 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3354 else
3355 latehalf[0] = adjust_address (operands[0], SImode, 0);
3357 if (optype1 == REGOP)
3358 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3359 else if (optype1 == OFFSOP)
3360 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3361 else if (optype1 == CNSTOP)
3362 split_double (operands[1], &operands[1], &latehalf[1]);
3363 else
3364 latehalf[1] = adjust_address (operands[1], SImode, 0);
3367 /* If insn is effectively movd N(sp),-(sp) then we will do the
3368 high word first. We should use the adjusted operand 1 (which is N+4(sp))
3369 for the low word as well, to compensate for the first decrement of sp. */
3370 if (optype0 == PUSHOP
3371 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
3372 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
3373 operands[1] = middlehalf[1] = latehalf[1];
3375 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3376 if the upper part of reg N does not appear in the MEM, arrange to
3377 emit the move late-half first. Otherwise, compute the MEM address
3378 into the upper part of N and use that as a pointer to the memory
3379 operand. */
3380 if (optype0 == REGOP
3381 && (optype1 == OFFSOP || optype1 == MEMOP))
3383 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3385 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3386 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3388 /* If both halves of dest are used in the src memory address,
3389 compute the address into latehalf of dest.
3390 Note that this can't happen if the dest is two data regs. */
3391 compadr:
3392 xops[0] = latehalf[0];
3393 xops[1] = XEXP (operands[1], 0);
3395 handle_compadr (xops);
3396 if (GET_MODE (operands[1]) == XFmode)
3398 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3399 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3400 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3402 else
3404 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3405 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3408 else if (size == 12
3409 && reg_overlap_mentioned_p (middlehalf[0],
3410 XEXP (operands[1], 0)))
3412 /* Check for two regs used by both source and dest.
3413 Note that this can't happen if the dest is all data regs.
3414 It can happen if the dest is d6, d7, a0.
3415 But in that case, latehalf is an addr reg, so
3416 the code at compadr does ok. */
3418 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3419 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3420 goto compadr;
3422 /* JRV says this can't happen: */
3423 gcc_assert (!addreg0 && !addreg1);
3425 /* Only the middle reg conflicts; simply put it last. */
3426 handle_movsi (operands);
3427 handle_movsi (latehalf);
3428 handle_movsi (middlehalf);
3430 return;
3432 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3433 /* If the low half of dest is mentioned in the source memory
3434 address, the arrange to emit the move late half first. */
3435 dest_overlapped_low = 1;
3438 /* If one or both operands autodecrementing,
3439 do the two words, high-numbered first. */
3441 /* Likewise, the first move would clobber the source of the second one,
3442 do them in the other order. This happens only for registers;
3443 such overlap can't happen in memory unless the user explicitly
3444 sets it up, and that is an undefined circumstance. */
3446 if (optype0 == PUSHOP || optype1 == PUSHOP
3447 || (optype0 == REGOP && optype1 == REGOP
3448 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3449 || REGNO (operands[0]) == REGNO (latehalf[1])))
3450 || dest_overlapped_low)
3452 /* Make any unoffsettable addresses point at high-numbered word. */
3453 if (addreg0)
3454 handle_reg_adjust (addreg0, size - 4);
3455 if (addreg1)
3456 handle_reg_adjust (addreg1, size - 4);
3458 /* Do that word. */
3459 handle_movsi (latehalf);
3461 /* Undo the adds we just did. */
3462 if (addreg0)
3463 handle_reg_adjust (addreg0, -4);
3464 if (addreg1)
3465 handle_reg_adjust (addreg1, -4);
3467 if (size == 12)
3469 handle_movsi (middlehalf);
3471 if (addreg0)
3472 handle_reg_adjust (addreg0, -4);
3473 if (addreg1)
3474 handle_reg_adjust (addreg1, -4);
3477 /* Do low-numbered word. */
3479 handle_movsi (operands);
3480 return;
3483 /* Normal case: do the two words, low-numbered first. */
3485 handle_movsi (operands);
3487 /* Do the middle one of the three words for long double */
3488 if (size == 12)
3490 if (addreg0)
3491 handle_reg_adjust (addreg0, 4);
3492 if (addreg1)
3493 handle_reg_adjust (addreg1, 4);
3495 handle_movsi (middlehalf);
3498 /* Make any unoffsettable addresses point at high-numbered word. */
3499 if (addreg0)
3500 handle_reg_adjust (addreg0, 4);
3501 if (addreg1)
3502 handle_reg_adjust (addreg1, 4);
3504 /* Do that word. */
3505 handle_movsi (latehalf);
3507 /* Undo the adds we just did. */
3508 if (addreg0)
3509 handle_reg_adjust (addreg0, -(size - 4));
3510 if (addreg1)
3511 handle_reg_adjust (addreg1, -(size - 4));
3513 return;
3516 /* Output assembler code to adjust REG by N. */
3517 static void
3518 output_reg_adjust (rtx reg, int n)
3520 const char *s;
3522 gcc_assert (GET_MODE (reg) == SImode
3523 && -12 <= n && n != 0 && n <= 12);
3525 switch (n)
3527 case 12:
3528 s = "add%.l #12,%0";
3529 break;
3531 case 8:
3532 s = "addq%.l #8,%0";
3533 break;
3535 case 4:
3536 s = "addq%.l #4,%0";
3537 break;
3539 case -12:
3540 s = "sub%.l #12,%0";
3541 break;
3543 case -8:
3544 s = "subq%.l #8,%0";
3545 break;
3547 case -4:
3548 s = "subq%.l #4,%0";
3549 break;
3551 default:
3552 gcc_unreachable ();
3553 s = NULL;
3556 output_asm_insn (s, &reg);
3559 /* Emit rtl code to adjust REG by N. */
3560 static void
3561 emit_reg_adjust (rtx reg1, int n)
3563 rtx reg2;
3565 gcc_assert (GET_MODE (reg1) == SImode
3566 && -12 <= n && n != 0 && n <= 12);
3568 reg1 = copy_rtx (reg1);
3569 reg2 = copy_rtx (reg1);
3571 if (n < 0)
3572 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3573 else if (n > 0)
3574 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3575 else
3576 gcc_unreachable ();
3579 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3580 static void
3581 output_compadr (rtx operands[2])
3583 output_asm_insn ("lea %a1,%0", operands);
3586 /* Output the best assembler insn for moving operands[1] into operands[0]
3587 as a fullword. */
3588 static void
3589 output_movsi (rtx operands[2])
3591 output_asm_insn (singlemove_string (operands), operands);
3594 /* Copy OP and change its mode to MODE. */
3595 static rtx
3596 copy_operand (rtx op, enum machine_mode mode)
3598 /* ??? This looks really ugly. There must be a better way
3599 to change a mode on the operand. */
3600 if (GET_MODE (op) != VOIDmode)
3602 if (REG_P (op))
3603 op = gen_rtx_REG (mode, REGNO (op));
3604 else
3606 op = copy_rtx (op);
3607 PUT_MODE (op, mode);
3611 return op;
3614 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3615 static void
3616 emit_movsi (rtx operands[2])
3618 operands[0] = copy_operand (operands[0], SImode);
3619 operands[1] = copy_operand (operands[1], SImode);
3621 emit_insn (gen_movsi (operands[0], operands[1]));
3624 /* Output assembler code to perform a doubleword move insn
3625 with operands OPERANDS. */
3626 const char *
3627 output_move_double (rtx *operands)
3629 handle_move_double (operands,
3630 output_reg_adjust, output_compadr, output_movsi);
3632 return "";
3635 /* Output rtl code to perform a doubleword move insn
3636 with operands OPERANDS. */
3637 void
3638 m68k_emit_move_double (rtx operands[2])
3640 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3643 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3644 new rtx with the correct mode. */
3646 static rtx
3647 force_mode (enum machine_mode mode, rtx orig)
3649 if (mode == GET_MODE (orig))
3650 return orig;
3652 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3653 abort ();
3655 return gen_rtx_REG (mode, REGNO (orig));
3658 static int
3659 fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3661 return reg_renumber && FP_REG_P (op);
3664 /* Emit insns to move operands[1] into operands[0].
3666 Return 1 if we have written out everything that needs to be done to
3667 do the move. Otherwise, return 0 and the caller will emit the move
3668 normally.
3670 Note SCRATCH_REG may not be in the proper mode depending on how it
3671 will be used. This routine is responsible for creating a new copy
3672 of SCRATCH_REG in the proper mode. */
3675 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3677 register rtx operand0 = operands[0];
3678 register rtx operand1 = operands[1];
3679 register rtx tem;
3681 if (scratch_reg
3682 && reload_in_progress && GET_CODE (operand0) == REG
3683 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3684 operand0 = reg_equiv_mem[REGNO (operand0)];
3685 else if (scratch_reg
3686 && reload_in_progress && GET_CODE (operand0) == SUBREG
3687 && GET_CODE (SUBREG_REG (operand0)) == REG
3688 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3690 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3691 the code which tracks sets/uses for delete_output_reload. */
3692 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3693 reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
3694 SUBREG_BYTE (operand0));
3695 operand0 = alter_subreg (&temp);
3698 if (scratch_reg
3699 && reload_in_progress && GET_CODE (operand1) == REG
3700 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3701 operand1 = reg_equiv_mem[REGNO (operand1)];
3702 else if (scratch_reg
3703 && reload_in_progress && GET_CODE (operand1) == SUBREG
3704 && GET_CODE (SUBREG_REG (operand1)) == REG
3705 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3707 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3708 the code which tracks sets/uses for delete_output_reload. */
3709 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3710 reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
3711 SUBREG_BYTE (operand1));
3712 operand1 = alter_subreg (&temp);
3715 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3716 && ((tem = find_replacement (&XEXP (operand0, 0)))
3717 != XEXP (operand0, 0)))
3718 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3719 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3720 && ((tem = find_replacement (&XEXP (operand1, 0)))
3721 != XEXP (operand1, 0)))
3722 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3724 /* Handle secondary reloads for loads/stores of FP registers where
3725 the address is symbolic by using the scratch register */
3726 if (fp_reg_operand (operand0, mode)
3727 && ((GET_CODE (operand1) == MEM
3728 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3729 || ((GET_CODE (operand1) == SUBREG
3730 && GET_CODE (XEXP (operand1, 0)) == MEM
3731 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3732 && scratch_reg)
3734 if (GET_CODE (operand1) == SUBREG)
3735 operand1 = XEXP (operand1, 0);
3737 /* SCRATCH_REG will hold an address. We want
3738 it in SImode regardless of what mode it was originally given
3739 to us. */
3740 scratch_reg = force_mode (SImode, scratch_reg);
3742 /* D might not fit in 14 bits either; for such cases load D into
3743 scratch reg. */
3744 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3746 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3747 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3748 Pmode,
3749 XEXP (XEXP (operand1, 0), 0),
3750 scratch_reg));
3752 else
3753 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3754 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3755 gen_rtx_MEM (mode, scratch_reg)));
3756 return 1;
3758 else if (fp_reg_operand (operand1, mode)
3759 && ((GET_CODE (operand0) == MEM
3760 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3761 || ((GET_CODE (operand0) == SUBREG)
3762 && GET_CODE (XEXP (operand0, 0)) == MEM
3763 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3764 && scratch_reg)
3766 if (GET_CODE (operand0) == SUBREG)
3767 operand0 = XEXP (operand0, 0);
3769 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3770 it in SIMODE regardless of what mode it was originally given
3771 to us. */
3772 scratch_reg = force_mode (SImode, scratch_reg);
3774 /* D might not fit in 14 bits either; for such cases load D into
3775 scratch reg. */
3776 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3778 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3779 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3780 0)),
3781 Pmode,
3782 XEXP (XEXP (operand0, 0),
3784 scratch_reg));
3786 else
3787 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3788 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3789 operand1));
3790 return 1;
3792 /* Handle secondary reloads for loads of FP registers from constant
3793 expressions by forcing the constant into memory.
3795 use scratch_reg to hold the address of the memory location.
3797 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3798 NO_REGS when presented with a const_int and an register class
3799 containing only FP registers. Doing so unfortunately creates
3800 more problems than it solves. Fix this for 2.5. */
3801 else if (fp_reg_operand (operand0, mode)
3802 && CONSTANT_P (operand1)
3803 && scratch_reg)
3805 rtx xoperands[2];
3807 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3808 it in SIMODE regardless of what mode it was originally given
3809 to us. */
3810 scratch_reg = force_mode (SImode, scratch_reg);
3812 /* Force the constant into memory and put the address of the
3813 memory location into scratch_reg. */
3814 xoperands[0] = scratch_reg;
3815 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3816 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3818 /* Now load the destination register. */
3819 emit_insn (gen_rtx_SET (mode, operand0,
3820 gen_rtx_MEM (mode, scratch_reg)));
3821 return 1;
3824 /* Now have insn-emit do whatever it normally does. */
3825 return 0;
3828 /* Split one or more DImode RTL references into pairs of SImode
3829 references. The RTL can be REG, offsettable MEM, integer constant, or
3830 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3831 split and "num" is its length. lo_half and hi_half are output arrays
3832 that parallel "operands". */
3834 void
3835 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3837 while (num--)
3839 rtx op = operands[num];
3841 /* simplify_subreg refuses to split volatile memory addresses,
3842 but we still have to handle it. */
3843 if (GET_CODE (op) == MEM)
3845 lo_half[num] = adjust_address (op, SImode, 4);
3846 hi_half[num] = adjust_address (op, SImode, 0);
3848 else
3850 lo_half[num] = simplify_gen_subreg (SImode, op,
3851 GET_MODE (op) == VOIDmode
3852 ? DImode : GET_MODE (op), 4);
3853 hi_half[num] = simplify_gen_subreg (SImode, op,
3854 GET_MODE (op) == VOIDmode
3855 ? DImode : GET_MODE (op), 0);
3860 /* Split X into a base and a constant offset, storing them in *BASE
3861 and *OFFSET respectively. */
3863 static void
3864 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3866 *offset = 0;
3867 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3869 *offset += INTVAL (XEXP (x, 1));
3870 x = XEXP (x, 0);
3872 *base = x;
3875 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3876 instruction. STORE_P says whether the move is a load or store.
3878 If the instruction uses post-increment or pre-decrement addressing,
3879 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3880 adjustment. This adjustment will be made by the first element of
3881 PARALLEL, with the loads or stores starting at element 1. If the
3882 instruction does not use post-increment or pre-decrement addressing,
3883 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3884 start at element 0. */
3886 bool
3887 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3888 HOST_WIDE_INT automod_offset, bool store_p)
3890 rtx base, mem_base, set, mem, reg, last_reg;
3891 HOST_WIDE_INT offset, mem_offset;
3892 int i, first, len;
3893 enum reg_class rclass;
3895 len = XVECLEN (pattern, 0);
3896 first = (automod_base != NULL);
3898 if (automod_base)
3900 /* Stores must be pre-decrement and loads must be post-increment. */
3901 if (store_p != (automod_offset < 0))
3902 return false;
3904 /* Work out the base and offset for lowest memory location. */
3905 base = automod_base;
3906 offset = (automod_offset < 0 ? automod_offset : 0);
3908 else
3910 /* Allow any valid base and offset in the first access. */
3911 base = NULL;
3912 offset = 0;
3915 last_reg = NULL;
3916 rclass = NO_REGS;
3917 for (i = first; i < len; i++)
3919 /* We need a plain SET. */
3920 set = XVECEXP (pattern, 0, i);
3921 if (GET_CODE (set) != SET)
3922 return false;
3924 /* Check that we have a memory location... */
3925 mem = XEXP (set, !store_p);
3926 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3927 return false;
3929 /* ...with the right address. */
3930 if (base == NULL)
3932 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3933 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3934 There are no mode restrictions for 680x0 besides the
3935 automodification rules enforced above. */
3936 if (TARGET_COLDFIRE
3937 && !m68k_legitimate_base_reg_p (base, reload_completed))
3938 return false;
3940 else
3942 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3943 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3944 return false;
3947 /* Check that we have a register of the required mode and class. */
3948 reg = XEXP (set, store_p);
3949 if (!REG_P (reg)
3950 || !HARD_REGISTER_P (reg)
3951 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3952 return false;
3954 if (last_reg)
3956 /* The register must belong to RCLASS and have a higher number
3957 than the register in the previous SET. */
3958 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3959 || REGNO (last_reg) >= REGNO (reg))
3960 return false;
3962 else
3964 /* Work out which register class we need. */
3965 if (INT_REGNO_P (REGNO (reg)))
3966 rclass = GENERAL_REGS;
3967 else if (FP_REGNO_P (REGNO (reg)))
3968 rclass = FP_REGS;
3969 else
3970 return false;
3973 last_reg = reg;
3974 offset += GET_MODE_SIZE (GET_MODE (reg));
3977 /* If we have an automodification, check whether the final offset is OK. */
3978 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3979 return false;
3981 /* Reject unprofitable cases. */
3982 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3983 return false;
3985 return true;
3988 /* Return the assembly code template for a movem or fmovem instruction
3989 whose pattern is given by PATTERN. Store the template's operands
3990 in OPERANDS.
3992 If the instruction uses post-increment or pre-decrement addressing,
3993 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3994 is true if this is a store instruction. */
3996 const char *
3997 m68k_output_movem (rtx *operands, rtx pattern,
3998 HOST_WIDE_INT automod_offset, bool store_p)
4000 unsigned int mask;
4001 int i, first;
4003 gcc_assert (GET_CODE (pattern) == PARALLEL);
4004 mask = 0;
4005 first = (automod_offset != 0);
4006 for (i = first; i < XVECLEN (pattern, 0); i++)
4008 /* When using movem with pre-decrement addressing, register X + D0_REG
4009 is controlled by bit 15 - X. For all other addressing modes,
4010 register X + D0_REG is controlled by bit X. Confusingly, the
4011 register mask for fmovem is in the opposite order to that for
4012 movem. */
4013 unsigned int regno;
4015 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4016 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4017 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4018 if (automod_offset < 0)
4020 if (FP_REGNO_P (regno))
4021 mask |= 1 << (regno - FP0_REG);
4022 else
4023 mask |= 1 << (15 - (regno - D0_REG));
4025 else
4027 if (FP_REGNO_P (regno))
4028 mask |= 1 << (7 - (regno - FP0_REG));
4029 else
4030 mask |= 1 << (regno - D0_REG);
4033 CC_STATUS_INIT;
4035 if (automod_offset == 0)
4036 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4037 else if (automod_offset < 0)
4038 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4039 else
4040 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4041 operands[1] = GEN_INT (mask);
4042 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4044 if (store_p)
4045 return "fmovem %1,%a0";
4046 else
4047 return "fmovem %a0,%1";
4049 else
4051 if (store_p)
4052 return "movem%.l %1,%a0";
4053 else
4054 return "movem%.l %a0,%1";
4058 /* Return a REG that occurs in ADDR with coefficient 1.
4059 ADDR can be effectively incremented by incrementing REG. */
4061 static rtx
4062 find_addr_reg (rtx addr)
4064 while (GET_CODE (addr) == PLUS)
4066 if (GET_CODE (XEXP (addr, 0)) == REG)
4067 addr = XEXP (addr, 0);
4068 else if (GET_CODE (XEXP (addr, 1)) == REG)
4069 addr = XEXP (addr, 1);
4070 else if (CONSTANT_P (XEXP (addr, 0)))
4071 addr = XEXP (addr, 1);
4072 else if (CONSTANT_P (XEXP (addr, 1)))
4073 addr = XEXP (addr, 0);
4074 else
4075 gcc_unreachable ();
4077 gcc_assert (GET_CODE (addr) == REG);
4078 return addr;
4081 /* Output assembler code to perform a 32-bit 3-operand add. */
4083 const char *
4084 output_addsi3 (rtx *operands)
4086 if (! operands_match_p (operands[0], operands[1]))
4088 if (!ADDRESS_REG_P (operands[1]))
4090 rtx tmp = operands[1];
4092 operands[1] = operands[2];
4093 operands[2] = tmp;
4096 /* These insns can result from reloads to access
4097 stack slots over 64k from the frame pointer. */
4098 if (GET_CODE (operands[2]) == CONST_INT
4099 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4100 return "move%.l %2,%0\n\tadd%.l %1,%0";
4101 if (GET_CODE (operands[2]) == REG)
4102 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4103 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4105 if (GET_CODE (operands[2]) == CONST_INT)
4107 if (INTVAL (operands[2]) > 0
4108 && INTVAL (operands[2]) <= 8)
4109 return "addq%.l %2,%0";
4110 if (INTVAL (operands[2]) < 0
4111 && INTVAL (operands[2]) >= -8)
4113 operands[2] = GEN_INT (- INTVAL (operands[2]));
4114 return "subq%.l %2,%0";
4116 /* On the CPU32 it is faster to use two addql instructions to
4117 add a small integer (8 < N <= 16) to a register.
4118 Likewise for subql. */
4119 if (TUNE_CPU32 && REG_P (operands[0]))
4121 if (INTVAL (operands[2]) > 8
4122 && INTVAL (operands[2]) <= 16)
4124 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4125 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4127 if (INTVAL (operands[2]) < -8
4128 && INTVAL (operands[2]) >= -16)
4130 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4131 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4134 if (ADDRESS_REG_P (operands[0])
4135 && INTVAL (operands[2]) >= -0x8000
4136 && INTVAL (operands[2]) < 0x8000)
4138 if (TUNE_68040)
4139 return "add%.w %2,%0";
4140 else
4141 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4144 return "add%.l %2,%0";
4147 /* Store in cc_status the expressions that the condition codes will
4148 describe after execution of an instruction whose pattern is EXP.
4149 Do not alter them if the instruction would not alter the cc's. */
4151 /* On the 68000, all the insns to store in an address register fail to
4152 set the cc's. However, in some cases these instructions can make it
4153 possibly invalid to use the saved cc's. In those cases we clear out
4154 some or all of the saved cc's so they won't be used. */
4156 void
4157 notice_update_cc (rtx exp, rtx insn)
4159 if (GET_CODE (exp) == SET)
4161 if (GET_CODE (SET_SRC (exp)) == CALL)
4162 CC_STATUS_INIT;
4163 else if (ADDRESS_REG_P (SET_DEST (exp)))
4165 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4166 cc_status.value1 = 0;
4167 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4168 cc_status.value2 = 0;
4170 /* fmoves to memory or data registers do not set the condition
4171 codes. Normal moves _do_ set the condition codes, but not in
4172 a way that is appropriate for comparison with 0, because -0.0
4173 would be treated as a negative nonzero number. Note that it
4174 isn't appropriate to conditionalize this restriction on
4175 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4176 we care about the difference between -0.0 and +0.0. */
4177 else if (!FP_REG_P (SET_DEST (exp))
4178 && SET_DEST (exp) != cc0_rtx
4179 && (FP_REG_P (SET_SRC (exp))
4180 || GET_CODE (SET_SRC (exp)) == FIX
4181 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4182 CC_STATUS_INIT;
4183 /* A pair of move insns doesn't produce a useful overall cc. */
4184 else if (!FP_REG_P (SET_DEST (exp))
4185 && !FP_REG_P (SET_SRC (exp))
4186 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4187 && (GET_CODE (SET_SRC (exp)) == REG
4188 || GET_CODE (SET_SRC (exp)) == MEM
4189 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4190 CC_STATUS_INIT;
4191 else if (SET_DEST (exp) != pc_rtx)
4193 cc_status.flags = 0;
4194 cc_status.value1 = SET_DEST (exp);
4195 cc_status.value2 = SET_SRC (exp);
4198 else if (GET_CODE (exp) == PARALLEL
4199 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4201 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4202 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4204 if (ADDRESS_REG_P (dest))
4205 CC_STATUS_INIT;
4206 else if (dest != pc_rtx)
4208 cc_status.flags = 0;
4209 cc_status.value1 = dest;
4210 cc_status.value2 = src;
4213 else
4214 CC_STATUS_INIT;
4215 if (cc_status.value2 != 0
4216 && ADDRESS_REG_P (cc_status.value2)
4217 && GET_MODE (cc_status.value2) == QImode)
4218 CC_STATUS_INIT;
4219 if (cc_status.value2 != 0)
4220 switch (GET_CODE (cc_status.value2))
4222 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4223 case ROTATE: case ROTATERT:
4224 /* These instructions always clear the overflow bit, and set
4225 the carry to the bit shifted out. */
4226 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4227 break;
4229 case PLUS: case MINUS: case MULT:
4230 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4231 if (GET_MODE (cc_status.value2) != VOIDmode)
4232 cc_status.flags |= CC_NO_OVERFLOW;
4233 break;
4234 case ZERO_EXTEND:
4235 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4236 ends with a move insn moving r2 in r2's mode.
4237 Thus, the cc's are set for r2.
4238 This can set N bit spuriously. */
4239 cc_status.flags |= CC_NOT_NEGATIVE;
4241 default:
4242 break;
4244 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4245 && cc_status.value2
4246 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4247 cc_status.value2 = 0;
4248 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4249 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4250 cc_status.flags = CC_IN_68881;
4251 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4252 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4254 cc_status.flags = CC_IN_68881;
4255 if (!FP_REG_P (XEXP (cc_status.value2, 0)))
4256 cc_status.flags |= CC_REVERSED;
4260 const char *
4261 output_move_const_double (rtx *operands)
4263 int code = standard_68881_constant_p (operands[1]);
4265 if (code != 0)
4267 static char buf[40];
4269 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4270 return buf;
4272 return "fmove%.d %1,%0";
4275 const char *
4276 output_move_const_single (rtx *operands)
4278 int code = standard_68881_constant_p (operands[1]);
4280 if (code != 0)
4282 static char buf[40];
4284 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4285 return buf;
4287 return "fmove%.s %f1,%0";
4290 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4291 from the "fmovecr" instruction.
4292 The value, anded with 0xff, gives the code to use in fmovecr
4293 to get the desired constant. */
4295 /* This code has been fixed for cross-compilation. */
4297 static int inited_68881_table = 0;
4299 static const char *const strings_68881[7] = {
4300 "0.0",
4301 "1.0",
4302 "10.0",
4303 "100.0",
4304 "10000.0",
4305 "1e8",
4306 "1e16"
4309 static const int codes_68881[7] = {
4310 0x0f,
4311 0x32,
4312 0x33,
4313 0x34,
4314 0x35,
4315 0x36,
4316 0x37
4319 REAL_VALUE_TYPE values_68881[7];
4321 /* Set up values_68881 array by converting the decimal values
4322 strings_68881 to binary. */
4324 void
4325 init_68881_table (void)
4327 int i;
4328 REAL_VALUE_TYPE r;
4329 enum machine_mode mode;
4331 mode = SFmode;
4332 for (i = 0; i < 7; i++)
4334 if (i == 6)
4335 mode = DFmode;
4336 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4337 values_68881[i] = r;
4339 inited_68881_table = 1;
4343 standard_68881_constant_p (rtx x)
4345 REAL_VALUE_TYPE r;
4346 int i;
4348 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4349 used at all on those chips. */
4350 if (TUNE_68040_60)
4351 return 0;
4353 if (! inited_68881_table)
4354 init_68881_table ();
4356 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4358 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4359 is rejected. */
4360 for (i = 0; i < 6; i++)
4362 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
4363 return (codes_68881[i]);
4366 if (GET_MODE (x) == SFmode)
4367 return 0;
4369 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4370 return (codes_68881[6]);
4372 /* larger powers of ten in the constants ram are not used
4373 because they are not equal to a `double' C constant. */
4374 return 0;
4377 /* If X is a floating-point constant, return the logarithm of X base 2,
4378 or 0 if X is not a power of 2. */
4381 floating_exact_log2 (rtx x)
4383 REAL_VALUE_TYPE r, r1;
4384 int exp;
4386 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4388 if (REAL_VALUES_LESS (r, dconst1))
4389 return 0;
4391 exp = real_exponent (&r);
4392 real_2expN (&r1, exp, DFmode);
4393 if (REAL_VALUES_EQUAL (r1, r))
4394 return exp;
4396 return 0;
4399 /* A C compound statement to output to stdio stream STREAM the
4400 assembler syntax for an instruction operand X. X is an RTL
4401 expression.
4403 CODE is a value that can be used to specify one of several ways
4404 of printing the operand. It is used when identical operands
4405 must be printed differently depending on the context. CODE
4406 comes from the `%' specification that was used to request
4407 printing of the operand. If the specification was just `%DIGIT'
4408 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4409 is the ASCII code for LTR.
4411 If X is a register, this macro should print the register's name.
4412 The names can be found in an array `reg_names' whose type is
4413 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4415 When the machine description has a specification `%PUNCT' (a `%'
4416 followed by a punctuation character), this macro is called with
4417 a null pointer for X and the punctuation character for CODE.
4419 The m68k specific codes are:
4421 '.' for dot needed in Motorola-style opcode names.
4422 '-' for an operand pushing on the stack:
4423 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4424 '+' for an operand pushing on the stack:
4425 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4426 '@' for a reference to the top word on the stack:
4427 sp@, (sp) or (%sp) depending on the style of syntax.
4428 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4429 but & in SGS syntax).
4430 '!' for the cc register (used in an `and to cc' insn).
4431 '$' for the letter `s' in an op code, but only on the 68040.
4432 '&' for the letter `d' in an op code, but only on the 68040.
4433 '/' for register prefix needed by longlong.h.
4434 '?' for m68k_library_id_string
4436 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4437 'd' to force memory addressing to be absolute, not relative.
4438 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4439 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4440 or print pair of registers as rx:ry.
4441 'p' print an address with @PLTPC attached, but only if the operand
4442 is not locally-bound. */
4444 void
4445 print_operand (FILE *file, rtx op, int letter)
4447 if (letter == '.')
4449 if (MOTOROLA)
4450 fprintf (file, ".");
4452 else if (letter == '#')
4453 asm_fprintf (file, "%I");
4454 else if (letter == '-')
4455 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4456 else if (letter == '+')
4457 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4458 else if (letter == '@')
4459 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4460 else if (letter == '!')
4461 asm_fprintf (file, "%Rfpcr");
4462 else if (letter == '$')
4464 if (TARGET_68040)
4465 fprintf (file, "s");
4467 else if (letter == '&')
4469 if (TARGET_68040)
4470 fprintf (file, "d");
4472 else if (letter == '/')
4473 asm_fprintf (file, "%R");
4474 else if (letter == '?')
4475 asm_fprintf (file, m68k_library_id_string);
4476 else if (letter == 'p')
4478 output_addr_const (file, op);
4479 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4480 fprintf (file, "@PLTPC");
4482 else if (GET_CODE (op) == REG)
4484 if (letter == 'R')
4485 /* Print out the second register name of a register pair.
4486 I.e., R (6) => 7. */
4487 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4488 else
4489 fputs (M68K_REGNAME(REGNO (op)), file);
4491 else if (GET_CODE (op) == MEM)
4493 output_address (XEXP (op, 0));
4494 if (letter == 'd' && ! TARGET_68020
4495 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4496 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4497 && INTVAL (XEXP (op, 0)) < 0x8000
4498 && INTVAL (XEXP (op, 0)) >= -0x8000))
4499 fprintf (file, MOTOROLA ? ".l" : ":l");
4501 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4503 REAL_VALUE_TYPE r;
4504 long l;
4505 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4506 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4507 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4509 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4511 REAL_VALUE_TYPE r;
4512 long l[3];
4513 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4514 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
4515 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4516 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4518 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4520 REAL_VALUE_TYPE r;
4521 long l[2];
4522 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4523 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4524 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4526 else
4528 /* Use `print_operand_address' instead of `output_addr_const'
4529 to ensure that we print relevant PIC stuff. */
4530 asm_fprintf (file, "%I");
4531 if (TARGET_PCREL
4532 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4533 print_operand_address (file, op);
4534 else
4535 output_addr_const (file, op);
4539 /* Return string for TLS relocation RELOC. */
4541 static const char *
4542 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4544 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4545 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4547 switch (reloc)
4549 case RELOC_GOT:
4550 if (MOTOROLA)
4552 if (flag_pic == 1 && TARGET_68020)
4553 return "@GOT.w";
4554 else
4555 return "@GOT";
4557 else
4559 if (TARGET_68020)
4561 switch (flag_pic)
4563 case 1:
4564 return ":w";
4565 case 2:
4566 return ":l";
4567 default:
4568 return "";
4573 case RELOC_TLSGD:
4574 return "@TLSGD";
4576 case RELOC_TLSLDM:
4577 return "@TLSLDM";
4579 case RELOC_TLSLDO:
4580 return "@TLSLDO";
4582 case RELOC_TLSIE:
4583 return "@TLSIE";
4585 case RELOC_TLSLE:
4586 return "@TLSLE";
4588 default:
4589 gcc_unreachable ();
4593 /* m68k implementation of OUTPUT_ADDR_CONST_EXTRA. */
4595 bool
4596 m68k_output_addr_const_extra (FILE *file, rtx x)
4598 if (GET_CODE (x) == UNSPEC)
4600 switch (XINT (x, 1))
4602 case UNSPEC_RELOC16:
4603 case UNSPEC_RELOC32:
4604 output_addr_const (file, XVECEXP (x, 0, 0));
4605 fputs (m68k_get_reloc_decoration
4606 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4607 return true;
4609 default:
4610 break;
4614 return false;
4617 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4619 static void
4620 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4622 gcc_assert (size == 4);
4623 fputs ("\t.long\t", file);
4624 output_addr_const (file, x);
4625 fputs ("@TLSLDO+0x8000", file);
4628 /* In the name of slightly smaller debug output, and to cater to
4629 general assembler lossage, recognize various UNSPEC sequences
4630 and turn them back into a direct symbol reference. */
4632 static rtx
4633 m68k_delegitimize_address (rtx orig_x)
4635 rtx x, y;
4636 rtx addend = NULL_RTX;
4637 rtx result;
4639 orig_x = delegitimize_mem_from_attrs (orig_x);
4640 if (! MEM_P (orig_x))
4641 return orig_x;
4643 x = XEXP (orig_x, 0);
4645 if (GET_CODE (x) == PLUS
4646 && GET_CODE (XEXP (x, 1)) == CONST
4647 && REG_P (XEXP (x, 0))
4648 && REGNO (XEXP (x, 0)) == PIC_REG)
4650 y = x = XEXP (XEXP (x, 1), 0);
4652 /* Handle an addend. */
4653 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
4654 && CONST_INT_P (XEXP (x, 1)))
4656 addend = XEXP (x, 1);
4657 x = XEXP (x, 0);
4660 if (GET_CODE (x) == UNSPEC
4661 && (XINT (x, 1) == UNSPEC_RELOC16
4662 || XINT (x, 1) == UNSPEC_RELOC32))
4664 result = XVECEXP (x, 0, 0);
4665 if (addend)
4667 if (GET_CODE (y) == PLUS)
4668 result = gen_rtx_PLUS (Pmode, result, addend);
4669 else
4670 result = gen_rtx_MINUS (Pmode, result, addend);
4671 result = gen_rtx_CONST (Pmode, result);
4673 return result;
4677 return orig_x;
4681 /* A C compound statement to output to stdio stream STREAM the
4682 assembler syntax for an instruction operand that is a memory
4683 reference whose address is ADDR. ADDR is an RTL expression.
4685 Note that this contains a kludge that knows that the only reason
4686 we have an address (plus (label_ref...) (reg...)) when not generating
4687 PIC code is in the insn before a tablejump, and we know that m68k.md
4688 generates a label LInnn: on such an insn.
4690 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4691 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4693 This routine is responsible for distinguishing between -fpic and -fPIC
4694 style relocations in an address. When generating -fpic code the
4695 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4696 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4698 void
4699 print_operand_address (FILE *file, rtx addr)
4701 struct m68k_address address;
4703 if (!m68k_decompose_address (QImode, addr, true, &address))
4704 gcc_unreachable ();
4706 if (address.code == PRE_DEC)
4707 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4708 M68K_REGNAME (REGNO (address.base)));
4709 else if (address.code == POST_INC)
4710 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4711 M68K_REGNAME (REGNO (address.base)));
4712 else if (!address.base && !address.index)
4714 /* A constant address. */
4715 gcc_assert (address.offset == addr);
4716 if (GET_CODE (addr) == CONST_INT)
4718 /* (xxx).w or (xxx).l. */
4719 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4720 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4721 else
4722 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4724 else if (TARGET_PCREL)
4726 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4727 fputc ('(', file);
4728 output_addr_const (file, addr);
4729 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4731 else
4733 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4734 name ends in `.<letter>', as the last 2 characters can be
4735 mistaken as a size suffix. Put the name in parentheses. */
4736 if (GET_CODE (addr) == SYMBOL_REF
4737 && strlen (XSTR (addr, 0)) > 2
4738 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4740 putc ('(', file);
4741 output_addr_const (file, addr);
4742 putc (')', file);
4744 else
4745 output_addr_const (file, addr);
4748 else
4750 int labelno;
4752 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4753 label being accessed, otherwise it is -1. */
4754 labelno = (address.offset
4755 && !address.base
4756 && GET_CODE (address.offset) == LABEL_REF
4757 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4758 : -1);
4759 if (MOTOROLA)
4761 /* Print the "offset(base" component. */
4762 if (labelno >= 0)
4763 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4764 else
4766 if (address.offset)
4767 output_addr_const (file, address.offset);
4769 putc ('(', file);
4770 if (address.base)
4771 fputs (M68K_REGNAME (REGNO (address.base)), file);
4773 /* Print the ",index" component, if any. */
4774 if (address.index)
4776 if (address.base)
4777 putc (',', file);
4778 fprintf (file, "%s.%c",
4779 M68K_REGNAME (REGNO (address.index)),
4780 GET_MODE (address.index) == HImode ? 'w' : 'l');
4781 if (address.scale != 1)
4782 fprintf (file, "*%d", address.scale);
4784 putc (')', file);
4786 else /* !MOTOROLA */
4788 if (!address.offset && !address.index)
4789 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4790 else
4792 /* Print the "base@(offset" component. */
4793 if (labelno >= 0)
4794 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4795 else
4797 if (address.base)
4798 fputs (M68K_REGNAME (REGNO (address.base)), file);
4799 fprintf (file, "@(");
4800 if (address.offset)
4801 output_addr_const (file, address.offset);
4803 /* Print the ",index" component, if any. */
4804 if (address.index)
4806 fprintf (file, ",%s:%c",
4807 M68K_REGNAME (REGNO (address.index)),
4808 GET_MODE (address.index) == HImode ? 'w' : 'l');
4809 if (address.scale != 1)
4810 fprintf (file, ":%d", address.scale);
4812 putc (')', file);
4818 /* Check for cases where a clr insns can be omitted from code using
4819 strict_low_part sets. For example, the second clrl here is not needed:
4820 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4822 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4823 insn we are checking for redundancy. TARGET is the register set by the
4824 clear insn. */
4826 bool
4827 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
4828 rtx target)
4830 rtx p = first_insn;
4832 while ((p = PREV_INSN (p)))
4834 if (NOTE_INSN_BASIC_BLOCK_P (p))
4835 return false;
4837 if (NOTE_P (p))
4838 continue;
4840 /* If it isn't an insn, then give up. */
4841 if (!INSN_P (p))
4842 return false;
4844 if (reg_set_p (target, p))
4846 rtx set = single_set (p);
4847 rtx dest;
4849 /* If it isn't an easy to recognize insn, then give up. */
4850 if (! set)
4851 return false;
4853 dest = SET_DEST (set);
4855 /* If this sets the entire target register to zero, then our
4856 first_insn is redundant. */
4857 if (rtx_equal_p (dest, target)
4858 && SET_SRC (set) == const0_rtx)
4859 return true;
4860 else if (GET_CODE (dest) == STRICT_LOW_PART
4861 && GET_CODE (XEXP (dest, 0)) == REG
4862 && REGNO (XEXP (dest, 0)) == REGNO (target)
4863 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4864 <= GET_MODE_SIZE (mode)))
4865 /* This is a strict low part set which modifies less than
4866 we are using, so it is safe. */
4868 else
4869 return false;
4873 return false;
4876 /* Operand predicates for implementing asymmetric pc-relative addressing
4877 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4878 when used as a source operand, but not as a destination operand.
4880 We model this by restricting the meaning of the basic predicates
4881 (general_operand, memory_operand, etc) to forbid the use of this
4882 addressing mode, and then define the following predicates that permit
4883 this addressing mode. These predicates can then be used for the
4884 source operands of the appropriate instructions.
4886 n.b. While it is theoretically possible to change all machine patterns
4887 to use this addressing more where permitted by the architecture,
4888 it has only been implemented for "common" cases: SImode, HImode, and
4889 QImode operands, and only for the principle operations that would
4890 require this addressing mode: data movement and simple integer operations.
4892 In parallel with these new predicates, two new constraint letters
4893 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4894 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4895 In the pcrel case 's' is only valid in combination with 'a' registers.
4896 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4897 of how these constraints are used.
4899 The use of these predicates is strictly optional, though patterns that
4900 don't will cause an extra reload register to be allocated where one
4901 was not necessary:
4903 lea (abc:w,%pc),%a0 ; need to reload address
4904 moveq &1,%d1 ; since write to pc-relative space
4905 movel %d1,%a0@ ; is not allowed
4907 lea (abc:w,%pc),%a1 ; no need to reload address here
4908 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4910 For more info, consult tiemann@cygnus.com.
4913 All of the ugliness with predicates and constraints is due to the
4914 simple fact that the m68k does not allow a pc-relative addressing
4915 mode as a destination. gcc does not distinguish between source and
4916 destination addresses. Hence, if we claim that pc-relative address
4917 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4918 end up with invalid code. To get around this problem, we left
4919 pc-relative modes as invalid addresses, and then added special
4920 predicates and constraints to accept them.
4922 A cleaner way to handle this is to modify gcc to distinguish
4923 between source and destination addresses. We can then say that
4924 pc-relative is a valid source address but not a valid destination
4925 address, and hopefully avoid a lot of the predicate and constraint
4926 hackery. Unfortunately, this would be a pretty big change. It would
4927 be a useful change for a number of ports, but there aren't any current
4928 plans to undertake this.
4930 ***************************************************************************/
4933 const char *
4934 output_andsi3 (rtx *operands)
4936 int logval;
4937 if (GET_CODE (operands[2]) == CONST_INT
4938 && (INTVAL (operands[2]) | 0xffff) == -1
4939 && (DATA_REG_P (operands[0])
4940 || offsettable_memref_p (operands[0]))
4941 && !TARGET_COLDFIRE)
4943 if (GET_CODE (operands[0]) != REG)
4944 operands[0] = adjust_address (operands[0], HImode, 2);
4945 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4946 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4947 CC_STATUS_INIT;
4948 if (operands[2] == const0_rtx)
4949 return "clr%.w %0";
4950 return "and%.w %2,%0";
4952 if (GET_CODE (operands[2]) == CONST_INT
4953 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4954 && (DATA_REG_P (operands[0])
4955 || offsettable_memref_p (operands[0])))
4957 if (DATA_REG_P (operands[0]))
4958 operands[1] = GEN_INT (logval);
4959 else
4961 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4962 operands[1] = GEN_INT (logval % 8);
4964 /* This does not set condition codes in a standard way. */
4965 CC_STATUS_INIT;
4966 return "bclr %1,%0";
4968 return "and%.l %2,%0";
4971 const char *
4972 output_iorsi3 (rtx *operands)
4974 register int logval;
4975 if (GET_CODE (operands[2]) == CONST_INT
4976 && INTVAL (operands[2]) >> 16 == 0
4977 && (DATA_REG_P (operands[0])
4978 || offsettable_memref_p (operands[0]))
4979 && !TARGET_COLDFIRE)
4981 if (GET_CODE (operands[0]) != REG)
4982 operands[0] = adjust_address (operands[0], HImode, 2);
4983 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4984 CC_STATUS_INIT;
4985 if (INTVAL (operands[2]) == 0xffff)
4986 return "mov%.w %2,%0";
4987 return "or%.w %2,%0";
4989 if (GET_CODE (operands[2]) == CONST_INT
4990 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4991 && (DATA_REG_P (operands[0])
4992 || offsettable_memref_p (operands[0])))
4994 if (DATA_REG_P (operands[0]))
4995 operands[1] = GEN_INT (logval);
4996 else
4998 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4999 operands[1] = GEN_INT (logval % 8);
5001 CC_STATUS_INIT;
5002 return "bset %1,%0";
5004 return "or%.l %2,%0";
5007 const char *
5008 output_xorsi3 (rtx *operands)
5010 register int logval;
5011 if (GET_CODE (operands[2]) == CONST_INT
5012 && INTVAL (operands[2]) >> 16 == 0
5013 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
5014 && !TARGET_COLDFIRE)
5016 if (! DATA_REG_P (operands[0]))
5017 operands[0] = adjust_address (operands[0], HImode, 2);
5018 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5019 CC_STATUS_INIT;
5020 if (INTVAL (operands[2]) == 0xffff)
5021 return "not%.w %0";
5022 return "eor%.w %2,%0";
5024 if (GET_CODE (operands[2]) == CONST_INT
5025 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5026 && (DATA_REG_P (operands[0])
5027 || offsettable_memref_p (operands[0])))
5029 if (DATA_REG_P (operands[0]))
5030 operands[1] = GEN_INT (logval);
5031 else
5033 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5034 operands[1] = GEN_INT (logval % 8);
5036 CC_STATUS_INIT;
5037 return "bchg %1,%0";
5039 return "eor%.l %2,%0";
5042 /* Return the instruction that should be used for a call to address X,
5043 which is known to be in operand 0. */
5045 const char *
5046 output_call (rtx x)
5048 if (symbolic_operand (x, VOIDmode))
5049 return m68k_symbolic_call;
5050 else
5051 return "jsr %a0";
5054 /* Likewise sibling calls. */
5056 const char *
5057 output_sibcall (rtx x)
5059 if (symbolic_operand (x, VOIDmode))
5060 return m68k_symbolic_jump;
5061 else
5062 return "jmp %a0";
5065 static void
5066 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5067 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5068 tree function)
5070 rtx this_slot, offset, addr, mem, insn, tmp;
5072 /* Avoid clobbering the struct value reg by using the
5073 static chain reg as a temporary. */
5074 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5076 /* Pretend to be a post-reload pass while generating rtl. */
5077 reload_completed = 1;
5079 /* The "this" pointer is stored at 4(%sp). */
5080 this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
5082 /* Add DELTA to THIS. */
5083 if (delta != 0)
5085 /* Make the offset a legitimate operand for memory addition. */
5086 offset = GEN_INT (delta);
5087 if ((delta < -8 || delta > 8)
5088 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5090 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5091 offset = gen_rtx_REG (Pmode, D0_REG);
5093 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5094 copy_rtx (this_slot), offset));
5097 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5098 if (vcall_offset != 0)
5100 /* Set the static chain register to *THIS. */
5101 emit_move_insn (tmp, this_slot);
5102 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5104 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5105 addr = plus_constant (tmp, vcall_offset);
5106 if (!m68k_legitimate_address_p (Pmode, addr, true))
5108 emit_insn (gen_rtx_SET (VOIDmode, tmp, addr));
5109 addr = tmp;
5112 /* Load the offset into %d0 and add it to THIS. */
5113 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5114 gen_rtx_MEM (Pmode, addr));
5115 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5116 copy_rtx (this_slot),
5117 gen_rtx_REG (Pmode, D0_REG)));
5120 /* Jump to the target function. Use a sibcall if direct jumps are
5121 allowed, otherwise load the address into a register first. */
5122 mem = DECL_RTL (function);
5123 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5125 gcc_assert (flag_pic);
5127 if (!TARGET_SEP_DATA)
5129 /* Use the static chain register as a temporary (call-clobbered)
5130 GOT pointer for this function. We can use the static chain
5131 register because it isn't live on entry to the thunk. */
5132 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5133 emit_insn (gen_load_got (pic_offset_table_rtx));
5135 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5136 mem = replace_equiv_address (mem, tmp);
5138 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5139 SIBLING_CALL_P (insn) = 1;
5141 /* Run just enough of rest_of_compilation. */
5142 insn = get_insns ();
5143 split_all_insns_noflow ();
5144 final_start_function (insn, file, 1);
5145 final (insn, file, 1);
5146 final_end_function ();
5148 /* Clean up the vars set above. */
5149 reload_completed = 0;
5151 /* Restore the original PIC register. */
5152 if (flag_pic)
5153 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5156 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5158 static rtx
5159 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5160 int incoming ATTRIBUTE_UNUSED)
5162 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5165 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5167 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5168 unsigned int new_reg)
5171 /* Interrupt functions can only use registers that have already been
5172 saved by the prologue, even if they would normally be
5173 call-clobbered. */
5175 if ((m68k_get_function_kind (current_function_decl)
5176 == m68k_fk_interrupt_handler)
5177 && !df_regs_ever_live_p (new_reg))
5178 return 0;
5180 return 1;
5183 /* Value is true if hard register REGNO can hold a value of machine-mode
5184 MODE. On the 68000, we let the cpu registers can hold any mode, but
5185 restrict the 68881 registers to floating-point modes. */
5187 bool
5188 m68k_regno_mode_ok (int regno, enum machine_mode mode)
5190 if (DATA_REGNO_P (regno))
5192 /* Data Registers, can hold aggregate if fits in. */
5193 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5194 return true;
5196 else if (ADDRESS_REGNO_P (regno))
5198 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5199 return true;
5201 else if (FP_REGNO_P (regno))
5203 /* FPU registers, hold float or complex float of long double or
5204 smaller. */
5205 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5206 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5207 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5208 return true;
5210 return false;
5213 /* Implement SECONDARY_RELOAD_CLASS. */
5215 enum reg_class
5216 m68k_secondary_reload_class (enum reg_class rclass,
5217 enum machine_mode mode, rtx x)
5219 int regno;
5221 regno = true_regnum (x);
5223 /* If one operand of a movqi is an address register, the other
5224 operand must be a general register or constant. Other types
5225 of operand must be reloaded through a data register. */
5226 if (GET_MODE_SIZE (mode) == 1
5227 && reg_classes_intersect_p (rclass, ADDR_REGS)
5228 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5229 return DATA_REGS;
5231 /* PC-relative addresses must be loaded into an address register first. */
5232 if (TARGET_PCREL
5233 && !reg_class_subset_p (rclass, ADDR_REGS)
5234 && symbolic_operand (x, VOIDmode))
5235 return ADDR_REGS;
5237 return NO_REGS;
5240 /* Implement PREFERRED_RELOAD_CLASS. */
5242 enum reg_class
5243 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5245 enum reg_class secondary_class;
5247 /* If RCLASS might need a secondary reload, try restricting it to
5248 a class that doesn't. */
5249 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5250 if (secondary_class != NO_REGS
5251 && reg_class_subset_p (secondary_class, rclass))
5252 return secondary_class;
5254 /* Prefer to use moveq for in-range constants. */
5255 if (GET_CODE (x) == CONST_INT
5256 && reg_class_subset_p (DATA_REGS, rclass)
5257 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5258 return DATA_REGS;
5260 /* ??? Do we really need this now? */
5261 if (GET_CODE (x) == CONST_DOUBLE
5262 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5264 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5265 return FP_REGS;
5267 return NO_REGS;
5270 return rclass;
5273 /* Return floating point values in a 68881 register. This makes 68881 code
5274 a little bit faster. It also makes -msoft-float code incompatible with
5275 hard-float code, so people have to be careful not to mix the two.
5276 For ColdFire it was decided the ABI incompatibility is undesirable.
5277 If there is need for a hard-float ABI it is probably worth doing it
5278 properly and also passing function arguments in FP registers. */
5280 m68k_libcall_value (enum machine_mode mode)
5282 switch (mode) {
5283 case SFmode:
5284 case DFmode:
5285 case XFmode:
5286 if (TARGET_68881)
5287 return gen_rtx_REG (mode, FP0_REG);
5288 break;
5289 default:
5290 break;
5293 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5296 /* Location in which function value is returned.
5297 NOTE: Due to differences in ABIs, don't call this function directly,
5298 use FUNCTION_VALUE instead. */
5300 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5302 enum machine_mode mode;
5304 mode = TYPE_MODE (valtype);
5305 switch (mode) {
5306 case SFmode:
5307 case DFmode:
5308 case XFmode:
5309 if (TARGET_68881)
5310 return gen_rtx_REG (mode, FP0_REG);
5311 break;
5312 default:
5313 break;
5316 /* If the function returns a pointer, push that into %a0. */
5317 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5318 /* For compatibility with the large body of existing code which
5319 does not always properly declare external functions returning
5320 pointer types, the m68k/SVR4 convention is to copy the value
5321 returned for pointer functions from a0 to d0 in the function
5322 epilogue, so that callers that have neglected to properly
5323 declare the callee can still find the correct return value in
5324 d0. */
5325 return gen_rtx_PARALLEL
5326 (mode,
5327 gen_rtvec (2,
5328 gen_rtx_EXPR_LIST (VOIDmode,
5329 gen_rtx_REG (mode, A0_REG),
5330 const0_rtx),
5331 gen_rtx_EXPR_LIST (VOIDmode,
5332 gen_rtx_REG (mode, D0_REG),
5333 const0_rtx)));
5334 else if (POINTER_TYPE_P (valtype))
5335 return gen_rtx_REG (mode, A0_REG);
5336 else
5337 return gen_rtx_REG (mode, D0_REG);
5340 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5341 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5342 static bool
5343 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5345 enum machine_mode mode = TYPE_MODE (type);
5347 if (mode == BLKmode)
5348 return true;
5350 /* If TYPE's known alignment is less than the alignment of MODE that
5351 would contain the structure, then return in memory. We need to
5352 do so to maintain the compatibility between code compiled with
5353 -mstrict-align and that compiled with -mno-strict-align. */
5354 if (AGGREGATE_TYPE_P (type)
5355 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5356 return true;
5358 return false;
5360 #endif
5362 /* CPU to schedule the program for. */
5363 enum attr_cpu m68k_sched_cpu;
5365 /* MAC to schedule the program for. */
5366 enum attr_mac m68k_sched_mac;
5368 /* Operand type. */
5369 enum attr_op_type
5371 /* No operand. */
5372 OP_TYPE_NONE,
5374 /* Integer register. */
5375 OP_TYPE_RN,
5377 /* FP register. */
5378 OP_TYPE_FPN,
5380 /* Implicit mem reference (e.g. stack). */
5381 OP_TYPE_MEM1,
5383 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5384 OP_TYPE_MEM234,
5386 /* Memory with offset but without indexing. EA mode 5. */
5387 OP_TYPE_MEM5,
5389 /* Memory with indexing. EA mode 6. */
5390 OP_TYPE_MEM6,
5392 /* Memory referenced by absolute address. EA mode 7. */
5393 OP_TYPE_MEM7,
5395 /* Immediate operand that doesn't require extension word. */
5396 OP_TYPE_IMM_Q,
5398 /* Immediate 16 bit operand. */
5399 OP_TYPE_IMM_W,
5401 /* Immediate 32 bit operand. */
5402 OP_TYPE_IMM_L
5405 /* Return type of memory ADDR_RTX refers to. */
5406 static enum attr_op_type
5407 sched_address_type (enum machine_mode mode, rtx addr_rtx)
5409 struct m68k_address address;
5411 if (symbolic_operand (addr_rtx, VOIDmode))
5412 return OP_TYPE_MEM7;
5414 if (!m68k_decompose_address (mode, addr_rtx,
5415 reload_completed, &address))
5417 gcc_assert (!reload_completed);
5418 /* Reload will likely fix the address to be in the register. */
5419 return OP_TYPE_MEM234;
5422 if (address.scale != 0)
5423 return OP_TYPE_MEM6;
5425 if (address.base != NULL_RTX)
5427 if (address.offset == NULL_RTX)
5428 return OP_TYPE_MEM234;
5430 return OP_TYPE_MEM5;
5433 gcc_assert (address.offset != NULL_RTX);
5435 return OP_TYPE_MEM7;
5438 /* Return X or Y (depending on OPX_P) operand of INSN. */
5439 static rtx
5440 sched_get_operand (rtx insn, bool opx_p)
5442 int i;
5444 if (recog_memoized (insn) < 0)
5445 gcc_unreachable ();
5447 extract_constrain_insn_cached (insn);
5449 if (opx_p)
5450 i = get_attr_opx (insn);
5451 else
5452 i = get_attr_opy (insn);
5454 if (i >= recog_data.n_operands)
5455 return NULL;
5457 return recog_data.operand[i];
5460 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5461 If ADDRESS_P is true, return type of memory location operand refers to. */
5462 static enum attr_op_type
5463 sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
5465 rtx op;
5467 op = sched_get_operand (insn, opx_p);
5469 if (op == NULL)
5471 gcc_assert (!reload_completed);
5472 return OP_TYPE_RN;
5475 if (address_p)
5476 return sched_address_type (QImode, op);
5478 if (memory_operand (op, VOIDmode))
5479 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5481 if (register_operand (op, VOIDmode))
5483 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5484 || (reload_completed && FP_REG_P (op)))
5485 return OP_TYPE_FPN;
5487 return OP_TYPE_RN;
5490 if (GET_CODE (op) == CONST_INT)
5492 int ival;
5494 ival = INTVAL (op);
5496 /* Check for quick constants. */
5497 switch (get_attr_type (insn))
5499 case TYPE_ALUQ_L:
5500 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5501 return OP_TYPE_IMM_Q;
5503 gcc_assert (!reload_completed);
5504 break;
5506 case TYPE_MOVEQ_L:
5507 if (USE_MOVQ (ival))
5508 return OP_TYPE_IMM_Q;
5510 gcc_assert (!reload_completed);
5511 break;
5513 case TYPE_MOV3Q_L:
5514 if (valid_mov3q_const (ival))
5515 return OP_TYPE_IMM_Q;
5517 gcc_assert (!reload_completed);
5518 break;
5520 default:
5521 break;
5524 if (IN_RANGE (ival, -0x8000, 0x7fff))
5525 return OP_TYPE_IMM_W;
5527 return OP_TYPE_IMM_L;
5530 if (GET_CODE (op) == CONST_DOUBLE)
5532 switch (GET_MODE (op))
5534 case SFmode:
5535 return OP_TYPE_IMM_W;
5537 case VOIDmode:
5538 case DFmode:
5539 return OP_TYPE_IMM_L;
5541 default:
5542 gcc_unreachable ();
5546 if (GET_CODE (op) == CONST
5547 || symbolic_operand (op, VOIDmode)
5548 || LABEL_P (op))
5550 switch (GET_MODE (op))
5552 case QImode:
5553 return OP_TYPE_IMM_Q;
5555 case HImode:
5556 return OP_TYPE_IMM_W;
5558 case SImode:
5559 return OP_TYPE_IMM_L;
5561 default:
5562 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5563 /* Just a guess. */
5564 return OP_TYPE_IMM_W;
5566 return OP_TYPE_IMM_L;
5570 gcc_assert (!reload_completed);
5572 if (FLOAT_MODE_P (GET_MODE (op)))
5573 return OP_TYPE_FPN;
5575 return OP_TYPE_RN;
5578 /* Implement opx_type attribute.
5579 Return type of INSN's operand X.
5580 If ADDRESS_P is true, return type of memory location operand refers to. */
5581 enum attr_opx_type
5582 m68k_sched_attr_opx_type (rtx insn, int address_p)
5584 switch (sched_attr_op_type (insn, true, address_p != 0))
5586 case OP_TYPE_RN:
5587 return OPX_TYPE_RN;
5589 case OP_TYPE_FPN:
5590 return OPX_TYPE_FPN;
5592 case OP_TYPE_MEM1:
5593 return OPX_TYPE_MEM1;
5595 case OP_TYPE_MEM234:
5596 return OPX_TYPE_MEM234;
5598 case OP_TYPE_MEM5:
5599 return OPX_TYPE_MEM5;
5601 case OP_TYPE_MEM6:
5602 return OPX_TYPE_MEM6;
5604 case OP_TYPE_MEM7:
5605 return OPX_TYPE_MEM7;
5607 case OP_TYPE_IMM_Q:
5608 return OPX_TYPE_IMM_Q;
5610 case OP_TYPE_IMM_W:
5611 return OPX_TYPE_IMM_W;
5613 case OP_TYPE_IMM_L:
5614 return OPX_TYPE_IMM_L;
5616 default:
5617 gcc_unreachable ();
5621 /* Implement opy_type attribute.
5622 Return type of INSN's operand Y.
5623 If ADDRESS_P is true, return type of memory location operand refers to. */
5624 enum attr_opy_type
5625 m68k_sched_attr_opy_type (rtx insn, int address_p)
5627 switch (sched_attr_op_type (insn, false, address_p != 0))
5629 case OP_TYPE_RN:
5630 return OPY_TYPE_RN;
5632 case OP_TYPE_FPN:
5633 return OPY_TYPE_FPN;
5635 case OP_TYPE_MEM1:
5636 return OPY_TYPE_MEM1;
5638 case OP_TYPE_MEM234:
5639 return OPY_TYPE_MEM234;
5641 case OP_TYPE_MEM5:
5642 return OPY_TYPE_MEM5;
5644 case OP_TYPE_MEM6:
5645 return OPY_TYPE_MEM6;
5647 case OP_TYPE_MEM7:
5648 return OPY_TYPE_MEM7;
5650 case OP_TYPE_IMM_Q:
5651 return OPY_TYPE_IMM_Q;
5653 case OP_TYPE_IMM_W:
5654 return OPY_TYPE_IMM_W;
5656 case OP_TYPE_IMM_L:
5657 return OPY_TYPE_IMM_L;
5659 default:
5660 gcc_unreachable ();
5664 /* Return size of INSN as int. */
5665 static int
5666 sched_get_attr_size_int (rtx insn)
5668 int size;
5670 switch (get_attr_type (insn))
5672 case TYPE_IGNORE:
5673 /* There should be no references to m68k_sched_attr_size for 'ignore'
5674 instructions. */
5675 gcc_unreachable ();
5676 return 0;
5678 case TYPE_MUL_L:
5679 size = 2;
5680 break;
5682 default:
5683 size = 1;
5684 break;
5687 switch (get_attr_opx_type (insn))
5689 case OPX_TYPE_NONE:
5690 case OPX_TYPE_RN:
5691 case OPX_TYPE_FPN:
5692 case OPX_TYPE_MEM1:
5693 case OPX_TYPE_MEM234:
5694 case OPY_TYPE_IMM_Q:
5695 break;
5697 case OPX_TYPE_MEM5:
5698 case OPX_TYPE_MEM6:
5699 /* Here we assume that most absolute references are short. */
5700 case OPX_TYPE_MEM7:
5701 case OPY_TYPE_IMM_W:
5702 ++size;
5703 break;
5705 case OPY_TYPE_IMM_L:
5706 size += 2;
5707 break;
5709 default:
5710 gcc_unreachable ();
5713 switch (get_attr_opy_type (insn))
5715 case OPY_TYPE_NONE:
5716 case OPY_TYPE_RN:
5717 case OPY_TYPE_FPN:
5718 case OPY_TYPE_MEM1:
5719 case OPY_TYPE_MEM234:
5720 case OPY_TYPE_IMM_Q:
5721 break;
5723 case OPY_TYPE_MEM5:
5724 case OPY_TYPE_MEM6:
5725 /* Here we assume that most absolute references are short. */
5726 case OPY_TYPE_MEM7:
5727 case OPY_TYPE_IMM_W:
5728 ++size;
5729 break;
5731 case OPY_TYPE_IMM_L:
5732 size += 2;
5733 break;
5735 default:
5736 gcc_unreachable ();
5739 if (size > 3)
5741 gcc_assert (!reload_completed);
5743 size = 3;
5746 return size;
5749 /* Return size of INSN as attribute enum value. */
5750 enum attr_size
5751 m68k_sched_attr_size (rtx insn)
5753 switch (sched_get_attr_size_int (insn))
5755 case 1:
5756 return SIZE_1;
5758 case 2:
5759 return SIZE_2;
5761 case 3:
5762 return SIZE_3;
5764 default:
5765 gcc_unreachable ();
5769 /* Return operand X or Y (depending on OPX_P) of INSN,
5770 if it is a MEM, or NULL overwise. */
5771 static enum attr_op_type
5772 sched_get_opxy_mem_type (rtx insn, bool opx_p)
5774 if (opx_p)
5776 switch (get_attr_opx_type (insn))
5778 case OPX_TYPE_NONE:
5779 case OPX_TYPE_RN:
5780 case OPX_TYPE_FPN:
5781 case OPX_TYPE_IMM_Q:
5782 case OPX_TYPE_IMM_W:
5783 case OPX_TYPE_IMM_L:
5784 return OP_TYPE_RN;
5786 case OPX_TYPE_MEM1:
5787 case OPX_TYPE_MEM234:
5788 case OPX_TYPE_MEM5:
5789 case OPX_TYPE_MEM7:
5790 return OP_TYPE_MEM1;
5792 case OPX_TYPE_MEM6:
5793 return OP_TYPE_MEM6;
5795 default:
5796 gcc_unreachable ();
5799 else
5801 switch (get_attr_opy_type (insn))
5803 case OPY_TYPE_NONE:
5804 case OPY_TYPE_RN:
5805 case OPY_TYPE_FPN:
5806 case OPY_TYPE_IMM_Q:
5807 case OPY_TYPE_IMM_W:
5808 case OPY_TYPE_IMM_L:
5809 return OP_TYPE_RN;
5811 case OPY_TYPE_MEM1:
5812 case OPY_TYPE_MEM234:
5813 case OPY_TYPE_MEM5:
5814 case OPY_TYPE_MEM7:
5815 return OP_TYPE_MEM1;
5817 case OPY_TYPE_MEM6:
5818 return OP_TYPE_MEM6;
5820 default:
5821 gcc_unreachable ();
5826 /* Implement op_mem attribute. */
5827 enum attr_op_mem
5828 m68k_sched_attr_op_mem (rtx insn)
5830 enum attr_op_type opx;
5831 enum attr_op_type opy;
5833 opx = sched_get_opxy_mem_type (insn, true);
5834 opy = sched_get_opxy_mem_type (insn, false);
5836 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5837 return OP_MEM_00;
5839 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5841 switch (get_attr_opx_access (insn))
5843 case OPX_ACCESS_R:
5844 return OP_MEM_10;
5846 case OPX_ACCESS_W:
5847 return OP_MEM_01;
5849 case OPX_ACCESS_RW:
5850 return OP_MEM_11;
5852 default:
5853 gcc_unreachable ();
5857 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5859 switch (get_attr_opx_access (insn))
5861 case OPX_ACCESS_R:
5862 return OP_MEM_I0;
5864 case OPX_ACCESS_W:
5865 return OP_MEM_0I;
5867 case OPX_ACCESS_RW:
5868 return OP_MEM_I1;
5870 default:
5871 gcc_unreachable ();
5875 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5876 return OP_MEM_10;
5878 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5880 switch (get_attr_opx_access (insn))
5882 case OPX_ACCESS_W:
5883 return OP_MEM_11;
5885 default:
5886 gcc_assert (!reload_completed);
5887 return OP_MEM_11;
5891 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5893 switch (get_attr_opx_access (insn))
5895 case OPX_ACCESS_W:
5896 return OP_MEM_1I;
5898 default:
5899 gcc_assert (!reload_completed);
5900 return OP_MEM_1I;
5904 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5905 return OP_MEM_I0;
5907 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5909 switch (get_attr_opx_access (insn))
5911 case OPX_ACCESS_W:
5912 return OP_MEM_I1;
5914 default:
5915 gcc_assert (!reload_completed);
5916 return OP_MEM_I1;
5920 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5921 gcc_assert (!reload_completed);
5922 return OP_MEM_I1;
5925 /* Jump instructions types. Indexed by INSN_UID.
5926 The same rtl insn can be expanded into different asm instructions
5927 depending on the cc0_status. To properly determine type of jump
5928 instructions we scan instruction stream and map jumps types to this
5929 array. */
5930 static enum attr_type *sched_branch_type;
5932 /* Return the type of the jump insn. */
5933 enum attr_type
5934 m68k_sched_branch_type (rtx insn)
5936 enum attr_type type;
5938 type = sched_branch_type[INSN_UID (insn)];
5940 gcc_assert (type != 0);
5942 return type;
5945 /* Data for ColdFire V4 index bypass.
5946 Producer modifies register that is used as index in consumer with
5947 specified scale. */
5948 static struct
5950 /* Producer instruction. */
5951 rtx pro;
5953 /* Consumer instruction. */
5954 rtx con;
5956 /* Scale of indexed memory access within consumer.
5957 Or zero if bypass should not be effective at the moment. */
5958 int scale;
5959 } sched_cfv4_bypass_data;
5961 /* An empty state that is used in m68k_sched_adjust_cost. */
5962 static state_t sched_adjust_cost_state;
5964 /* Implement adjust_cost scheduler hook.
5965 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5966 static int
5967 m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
5968 int cost)
5970 int delay;
5972 if (recog_memoized (def_insn) < 0
5973 || recog_memoized (insn) < 0)
5974 return cost;
5976 if (sched_cfv4_bypass_data.scale == 1)
5977 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5979 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5980 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5981 that the data in sched_cfv4_bypass_data is up to date. */
5982 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5983 && sched_cfv4_bypass_data.con == insn);
5985 if (cost < 3)
5986 cost = 3;
5988 sched_cfv4_bypass_data.pro = NULL;
5989 sched_cfv4_bypass_data.con = NULL;
5990 sched_cfv4_bypass_data.scale = 0;
5992 else
5993 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5994 && sched_cfv4_bypass_data.con == NULL
5995 && sched_cfv4_bypass_data.scale == 0);
5997 /* Don't try to issue INSN earlier than DFA permits.
5998 This is especially useful for instructions that write to memory,
5999 as their true dependence (default) latency is better to be set to 0
6000 to workaround alias analysis limitations.
6001 This is, in fact, a machine independent tweak, so, probably,
6002 it should be moved to haifa-sched.c: insn_cost (). */
6003 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
6004 if (delay > cost)
6005 cost = delay;
6007 return cost;
6010 /* Return maximal number of insns that can be scheduled on a single cycle. */
6011 static int
6012 m68k_sched_issue_rate (void)
6014 switch (m68k_sched_cpu)
6016 case CPU_CFV1:
6017 case CPU_CFV2:
6018 case CPU_CFV3:
6019 return 1;
6021 case CPU_CFV4:
6022 return 2;
6024 default:
6025 gcc_unreachable ();
6026 return 0;
6030 /* Maximal length of instruction for current CPU.
6031 E.g. it is 3 for any ColdFire core. */
6032 static int max_insn_size;
6034 /* Data to model instruction buffer of CPU. */
6035 struct _sched_ib
6037 /* True if instruction buffer model is modeled for current CPU. */
6038 bool enabled_p;
6040 /* Size of the instruction buffer in words. */
6041 int size;
6043 /* Number of filled words in the instruction buffer. */
6044 int filled;
6046 /* Additional information about instruction buffer for CPUs that have
6047 a buffer of instruction records, rather then a plain buffer
6048 of instruction words. */
6049 struct _sched_ib_records
6051 /* Size of buffer in records. */
6052 int n_insns;
6054 /* Array to hold data on adjustements made to the size of the buffer. */
6055 int *adjust;
6057 /* Index of the above array. */
6058 int adjust_index;
6059 } records;
6061 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6062 rtx insn;
6065 static struct _sched_ib sched_ib;
6067 /* ID of memory unit. */
6068 static int sched_mem_unit_code;
6070 /* Implementation of the targetm.sched.variable_issue () hook.
6071 It is called after INSN was issued. It returns the number of insns
6072 that can possibly get scheduled on the current cycle.
6073 It is used here to determine the effect of INSN on the instruction
6074 buffer. */
6075 static int
6076 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6077 int sched_verbose ATTRIBUTE_UNUSED,
6078 rtx insn, int can_issue_more)
6080 int insn_size;
6082 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6084 switch (m68k_sched_cpu)
6086 case CPU_CFV1:
6087 case CPU_CFV2:
6088 insn_size = sched_get_attr_size_int (insn);
6089 break;
6091 case CPU_CFV3:
6092 insn_size = sched_get_attr_size_int (insn);
6094 /* ColdFire V3 and V4 cores have instruction buffers that can
6095 accumulate up to 8 instructions regardless of instructions'
6096 sizes. So we should take care not to "prefetch" 24 one-word
6097 or 12 two-words instructions.
6098 To model this behavior we temporarily decrease size of the
6099 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6101 int adjust;
6103 adjust = max_insn_size - insn_size;
6104 sched_ib.size -= adjust;
6106 if (sched_ib.filled > sched_ib.size)
6107 sched_ib.filled = sched_ib.size;
6109 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6112 ++sched_ib.records.adjust_index;
6113 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6114 sched_ib.records.adjust_index = 0;
6116 /* Undo adjustement we did 7 instructions ago. */
6117 sched_ib.size
6118 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6120 break;
6122 case CPU_CFV4:
6123 gcc_assert (!sched_ib.enabled_p);
6124 insn_size = 0;
6125 break;
6127 default:
6128 gcc_unreachable ();
6131 gcc_assert (insn_size <= sched_ib.filled);
6132 --can_issue_more;
6134 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6135 || asm_noperands (PATTERN (insn)) >= 0)
6136 insn_size = sched_ib.filled;
6137 else
6138 insn_size = 0;
6140 sched_ib.filled -= insn_size;
6142 return can_issue_more;
6145 /* Return how many instructions should scheduler lookahead to choose the
6146 best one. */
6147 static int
6148 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6150 return m68k_sched_issue_rate () - 1;
6153 /* Implementation of targetm.sched.init_global () hook.
6154 It is invoked once per scheduling pass and is used here
6155 to initialize scheduler constants. */
6156 static void
6157 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6158 int sched_verbose ATTRIBUTE_UNUSED,
6159 int n_insns ATTRIBUTE_UNUSED)
6161 /* Init branch types. */
6163 rtx insn;
6165 sched_branch_type = XCNEWVEC (enum attr_type, get_max_uid () + 1);
6167 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6169 if (JUMP_P (insn))
6170 /* !!! FIXME: Implement real scan here. */
6171 sched_branch_type[INSN_UID (insn)] = TYPE_BCC;
6175 #ifdef ENABLE_CHECKING
6176 /* Check that all instructions have DFA reservations and
6177 that all instructions can be issued from a clean state. */
6179 rtx insn;
6180 state_t state;
6182 state = alloca (state_size ());
6184 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6186 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6188 gcc_assert (insn_has_dfa_reservation_p (insn));
6190 state_reset (state);
6191 if (state_transition (state, insn) >= 0)
6192 gcc_unreachable ();
6196 #endif
6198 /* Setup target cpu. */
6200 /* ColdFire V4 has a set of features to keep its instruction buffer full
6201 (e.g., a separate memory bus for instructions) and, hence, we do not model
6202 buffer for this CPU. */
6203 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6205 switch (m68k_sched_cpu)
6207 case CPU_CFV4:
6208 sched_ib.filled = 0;
6210 /* FALLTHRU */
6212 case CPU_CFV1:
6213 case CPU_CFV2:
6214 max_insn_size = 3;
6215 sched_ib.records.n_insns = 0;
6216 sched_ib.records.adjust = NULL;
6217 break;
6219 case CPU_CFV3:
6220 max_insn_size = 3;
6221 sched_ib.records.n_insns = 8;
6222 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6223 break;
6225 default:
6226 gcc_unreachable ();
6229 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6231 sched_adjust_cost_state = xmalloc (state_size ());
6232 state_reset (sched_adjust_cost_state);
6234 start_sequence ();
6235 emit_insn (gen_ib ());
6236 sched_ib.insn = get_insns ();
6237 end_sequence ();
6240 /* Scheduling pass is now finished. Free/reset static variables. */
6241 static void
6242 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6243 int verbose ATTRIBUTE_UNUSED)
6245 sched_ib.insn = NULL;
6247 free (sched_adjust_cost_state);
6248 sched_adjust_cost_state = NULL;
6250 sched_mem_unit_code = 0;
6252 free (sched_ib.records.adjust);
6253 sched_ib.records.adjust = NULL;
6254 sched_ib.records.n_insns = 0;
6255 max_insn_size = 0;
6257 free (sched_branch_type);
6258 sched_branch_type = NULL;
6261 /* Implementation of targetm.sched.init () hook.
6262 It is invoked each time scheduler starts on the new block (basic block or
6263 extended basic block). */
6264 static void
6265 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6266 int sched_verbose ATTRIBUTE_UNUSED,
6267 int n_insns ATTRIBUTE_UNUSED)
6269 switch (m68k_sched_cpu)
6271 case CPU_CFV1:
6272 case CPU_CFV2:
6273 sched_ib.size = 6;
6274 break;
6276 case CPU_CFV3:
6277 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6279 memset (sched_ib.records.adjust, 0,
6280 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6281 sched_ib.records.adjust_index = 0;
6282 break;
6284 case CPU_CFV4:
6285 gcc_assert (!sched_ib.enabled_p);
6286 sched_ib.size = 0;
6287 break;
6289 default:
6290 gcc_unreachable ();
6293 if (sched_ib.enabled_p)
6294 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6295 the first cycle. Workaround that. */
6296 sched_ib.filled = -2;
6299 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6300 It is invoked just before current cycle finishes and is used here
6301 to track if instruction buffer got its two words this cycle. */
6302 static void
6303 m68k_sched_dfa_pre_advance_cycle (void)
6305 if (!sched_ib.enabled_p)
6306 return;
6308 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6310 sched_ib.filled += 2;
6312 if (sched_ib.filled > sched_ib.size)
6313 sched_ib.filled = sched_ib.size;
6317 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6318 It is invoked just after new cycle begins and is used here
6319 to setup number of filled words in the instruction buffer so that
6320 instructions which won't have all their words prefetched would be
6321 stalled for a cycle. */
6322 static void
6323 m68k_sched_dfa_post_advance_cycle (void)
6325 int i;
6327 if (!sched_ib.enabled_p)
6328 return;
6330 /* Setup number of prefetched instruction words in the instruction
6331 buffer. */
6332 i = max_insn_size - sched_ib.filled;
6334 while (--i >= 0)
6336 if (state_transition (curr_state, sched_ib.insn) >= 0)
6337 gcc_unreachable ();
6341 /* Return X or Y (depending on OPX_P) operand of INSN,
6342 if it is an integer register, or NULL overwise. */
6343 static rtx
6344 sched_get_reg_operand (rtx insn, bool opx_p)
6346 rtx op = NULL;
6348 if (opx_p)
6350 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6352 op = sched_get_operand (insn, true);
6353 gcc_assert (op != NULL);
6355 if (!reload_completed && !REG_P (op))
6356 return NULL;
6359 else
6361 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6363 op = sched_get_operand (insn, false);
6364 gcc_assert (op != NULL);
6366 if (!reload_completed && !REG_P (op))
6367 return NULL;
6371 return op;
6374 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6375 is a MEM. */
6376 static bool
6377 sched_mem_operand_p (rtx insn, bool opx_p)
6379 switch (sched_get_opxy_mem_type (insn, opx_p))
6381 case OP_TYPE_MEM1:
6382 case OP_TYPE_MEM6:
6383 return true;
6385 default:
6386 return false;
6390 /* Return X or Y (depending on OPX_P) operand of INSN,
6391 if it is a MEM, or NULL overwise. */
6392 static rtx
6393 sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
6395 bool opx_p;
6396 bool opy_p;
6398 opx_p = false;
6399 opy_p = false;
6401 if (must_read_p)
6403 opx_p = true;
6404 opy_p = true;
6407 if (must_write_p)
6409 opx_p = true;
6410 opy_p = false;
6413 if (opy_p && sched_mem_operand_p (insn, false))
6414 return sched_get_operand (insn, false);
6416 if (opx_p && sched_mem_operand_p (insn, true))
6417 return sched_get_operand (insn, true);
6419 gcc_unreachable ();
6420 return NULL;
6423 /* Return non-zero if PRO modifies register used as part of
6424 address in CON. */
6426 m68k_sched_address_bypass_p (rtx pro, rtx con)
6428 rtx pro_x;
6429 rtx con_mem_read;
6431 pro_x = sched_get_reg_operand (pro, true);
6432 if (pro_x == NULL)
6433 return 0;
6435 con_mem_read = sched_get_mem_operand (con, true, false);
6436 gcc_assert (con_mem_read != NULL);
6438 if (reg_mentioned_p (pro_x, con_mem_read))
6439 return 1;
6441 return 0;
6444 /* Helper function for m68k_sched_indexed_address_bypass_p.
6445 if PRO modifies register used as index in CON,
6446 return scale of indexed memory access in CON. Return zero overwise. */
6447 static int
6448 sched_get_indexed_address_scale (rtx pro, rtx con)
6450 rtx reg;
6451 rtx mem;
6452 struct m68k_address address;
6454 reg = sched_get_reg_operand (pro, true);
6455 if (reg == NULL)
6456 return 0;
6458 mem = sched_get_mem_operand (con, true, false);
6459 gcc_assert (mem != NULL && MEM_P (mem));
6461 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6462 &address))
6463 gcc_unreachable ();
6465 if (REGNO (reg) == REGNO (address.index))
6467 gcc_assert (address.scale != 0);
6468 return address.scale;
6471 return 0;
6474 /* Return non-zero if PRO modifies register used
6475 as index with scale 2 or 4 in CON. */
6477 m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
6479 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6480 && sched_cfv4_bypass_data.con == NULL
6481 && sched_cfv4_bypass_data.scale == 0);
6483 switch (sched_get_indexed_address_scale (pro, con))
6485 case 1:
6486 /* We can't have a variable latency bypass, so
6487 remember to adjust the insn cost in adjust_cost hook. */
6488 sched_cfv4_bypass_data.pro = pro;
6489 sched_cfv4_bypass_data.con = con;
6490 sched_cfv4_bypass_data.scale = 1;
6491 return 0;
6493 case 2:
6494 case 4:
6495 return 1;
6497 default:
6498 return 0;
6502 /* We generate a two-instructions program at M_TRAMP :
6503 movea.l &CHAIN_VALUE,%a0
6504 jmp FNADDR
6505 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6507 static void
6508 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6510 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6511 rtx mem;
6513 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6515 mem = adjust_address (m_tramp, HImode, 0);
6516 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6517 mem = adjust_address (m_tramp, SImode, 2);
6518 emit_move_insn (mem, chain_value);
6520 mem = adjust_address (m_tramp, HImode, 6);
6521 emit_move_insn (mem, GEN_INT(0x4EF9));
6522 mem = adjust_address (m_tramp, SImode, 8);
6523 emit_move_insn (mem, fnaddr);
6525 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6528 /* On the 68000, the RTS insn cannot pop anything.
6529 On the 68010, the RTD insn may be used to pop them if the number
6530 of args is fixed, but if the number is variable then the caller
6531 must pop them all. RTD can't be used for library calls now
6532 because the library is compiled with the Unix compiler.
6533 Use of RTD is a selectable option, since it is incompatible with
6534 standard Unix calling sequences. If the option is not selected,
6535 the caller must always pop the args. */
6537 static int
6538 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6540 return ((TARGET_RTD
6541 && (!fundecl
6542 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6543 && (!stdarg_p (funtype)))
6544 ? size : 0);
6547 #include "gt-m68k.h"