1 // Vector implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 // Free Software Foundation, Inc.
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
29 * Hewlett-Packard Company
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
41 * Silicon Graphics Computer Systems, Inc.
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
52 /** @file bits/stl_vector.h
53 * This is an internal header file, included by other library headers.
54 * Do not attempt to use it directly. @headername{vector}
58 #define _STL_VECTOR_H 1
60 #include <bits/stl_iterator_base_funcs.h>
61 #include <bits/functexcept.h>
62 #include <bits/concept_check.h>
63 #include <initializer_list>
65 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std
, _GLIBCXX_STD_D
)
67 /// See bits/stl_deque.h's _Deque_base for an explanation.
68 template<typename _Tp
, typename _Alloc
>
71 typedef typename
_Alloc::template rebind
<_Tp
>::other _Tp_alloc_type
;
74 : public _Tp_alloc_type
76 typename
_Tp_alloc_type::pointer _M_start
;
77 typename
_Tp_alloc_type::pointer _M_finish
;
78 typename
_Tp_alloc_type::pointer _M_end_of_storage
;
81 : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
84 _Vector_impl(_Tp_alloc_type
const& __a
)
85 : _Tp_alloc_type(__a
), _M_start(0), _M_finish(0), _M_end_of_storage(0)
90 typedef _Alloc allocator_type
;
94 { return *static_cast<_Tp_alloc_type
*>(&this->_M_impl
); }
97 _M_get_Tp_allocator() const
98 { return *static_cast<const _Tp_alloc_type
*>(&this->_M_impl
); }
101 get_allocator() const
102 { return allocator_type(_M_get_Tp_allocator()); }
107 _Vector_base(const allocator_type
& __a
)
110 _Vector_base(size_t __n
)
113 this->_M_impl
._M_start
= this->_M_allocate(__n
);
114 this->_M_impl
._M_finish
= this->_M_impl
._M_start
;
115 this->_M_impl
._M_end_of_storage
= this->_M_impl
._M_start
+ __n
;
118 _Vector_base(size_t __n
, const allocator_type
& __a
)
121 this->_M_impl
._M_start
= this->_M_allocate(__n
);
122 this->_M_impl
._M_finish
= this->_M_impl
._M_start
;
123 this->_M_impl
._M_end_of_storage
= this->_M_impl
._M_start
+ __n
;
126 #ifdef __GXX_EXPERIMENTAL_CXX0X__
127 _Vector_base(_Vector_base
&& __x
)
128 : _M_impl(__x
._M_get_Tp_allocator())
130 this->_M_impl
._M_start
= __x
._M_impl
._M_start
;
131 this->_M_impl
._M_finish
= __x
._M_impl
._M_finish
;
132 this->_M_impl
._M_end_of_storage
= __x
._M_impl
._M_end_of_storage
;
133 __x
._M_impl
._M_start
= 0;
134 __x
._M_impl
._M_finish
= 0;
135 __x
._M_impl
._M_end_of_storage
= 0;
140 { _M_deallocate(this->_M_impl
._M_start
, this->_M_impl
._M_end_of_storage
141 - this->_M_impl
._M_start
); }
144 _Vector_impl _M_impl
;
146 typename
_Tp_alloc_type::pointer
147 _M_allocate(size_t __n
)
148 { return __n
!= 0 ? _M_impl
.allocate(__n
) : 0; }
151 _M_deallocate(typename
_Tp_alloc_type::pointer __p
, size_t __n
)
154 _M_impl
.deallocate(__p
, __n
);
160 * @brief A standard container which offers fixed time access to
161 * individual elements in any order.
165 * Meets the requirements of a <a href="tables.html#65">container</a>, a
166 * <a href="tables.html#66">reversible container</a>, and a
167 * <a href="tables.html#67">sequence</a>, including the
168 * <a href="tables.html#68">optional sequence requirements</a> with the
169 * %exception of @c push_front and @c pop_front.
171 * In some terminology a %vector can be described as a dynamic
172 * C-style array, it offers fast and efficient access to individual
173 * elements in any order and saves the user from worrying about
174 * memory and size allocation. Subscripting ( @c [] ) access is
175 * also provided as with C-style arrays.
177 template<typename _Tp
, typename _Alloc
= std::allocator
<_Tp
> >
178 class vector
: protected _Vector_base
<_Tp
, _Alloc
>
180 // Concept requirements.
181 typedef typename
_Alloc::value_type _Alloc_value_type
;
182 __glibcxx_class_requires(_Tp
, _SGIAssignableConcept
)
183 __glibcxx_class_requires2(_Tp
, _Alloc_value_type
, _SameTypeConcept
)
185 typedef _Vector_base
<_Tp
, _Alloc
> _Base
;
186 typedef typename
_Base::_Tp_alloc_type _Tp_alloc_type
;
189 typedef _Tp value_type
;
190 typedef typename
_Tp_alloc_type::pointer pointer
;
191 typedef typename
_Tp_alloc_type::const_pointer const_pointer
;
192 typedef typename
_Tp_alloc_type::reference reference
;
193 typedef typename
_Tp_alloc_type::const_reference const_reference
;
194 typedef __gnu_cxx::__normal_iterator
<pointer
, vector
> iterator
;
195 typedef __gnu_cxx::__normal_iterator
<const_pointer
, vector
>
197 typedef std::reverse_iterator
<const_iterator
> const_reverse_iterator
;
198 typedef std::reverse_iterator
<iterator
> reverse_iterator
;
199 typedef size_t size_type
;
200 typedef ptrdiff_t difference_type
;
201 typedef _Alloc allocator_type
;
204 using _Base::_M_allocate
;
205 using _Base::_M_deallocate
;
206 using _Base::_M_impl
;
207 using _Base::_M_get_Tp_allocator
;
210 // [23.2.4.1] construct/copy/destroy
211 // (assign() and get_allocator() are also listed in this section)
213 * @brief Default constructor creates no elements.
219 * @brief Creates a %vector with no elements.
220 * @param a An allocator object.
223 vector(const allocator_type
& __a
)
226 #ifdef __GXX_EXPERIMENTAL_CXX0X__
228 * @brief Creates a %vector with default constructed elements.
229 * @param n The number of elements to initially create.
231 * This constructor fills the %vector with @a n default
232 * constructed elements.
235 vector(size_type __n
)
237 { _M_default_initialize(__n
); }
240 * @brief Creates a %vector with copies of an exemplar element.
241 * @param n The number of elements to initially create.
242 * @param value An element to copy.
243 * @param a An allocator.
245 * This constructor fills the %vector with @a n copies of @a value.
247 vector(size_type __n
, const value_type
& __value
,
248 const allocator_type
& __a
= allocator_type())
250 { _M_fill_initialize(__n
, __value
); }
253 * @brief Creates a %vector with copies of an exemplar element.
254 * @param n The number of elements to initially create.
255 * @param value An element to copy.
256 * @param a An allocator.
258 * This constructor fills the %vector with @a n copies of @a value.
261 vector(size_type __n
, const value_type
& __value
= value_type(),
262 const allocator_type
& __a
= allocator_type())
264 { _M_fill_initialize(__n
, __value
); }
268 * @brief %Vector copy constructor.
269 * @param x A %vector of identical element and allocator types.
271 * The newly-created %vector uses a copy of the allocation
272 * object used by @a x. All the elements of @a x are copied,
273 * but any extra memory in
274 * @a x (for fast expansion) will not be copied.
276 vector(const vector
& __x
)
277 : _Base(__x
.size(), __x
._M_get_Tp_allocator())
278 { this->_M_impl
._M_finish
=
279 std::__uninitialized_copy_a(__x
.begin(), __x
.end(),
280 this->_M_impl
._M_start
,
281 _M_get_Tp_allocator());
284 #ifdef __GXX_EXPERIMENTAL_CXX0X__
286 * @brief %Vector move constructor.
287 * @param x A %vector of identical element and allocator types.
289 * The newly-created %vector contains the exact contents of @a x.
290 * The contents of @a x are a valid, but unspecified %vector.
293 : _Base(std::move(__x
)) { }
296 * @brief Builds a %vector from an initializer list.
297 * @param l An initializer_list.
298 * @param a An allocator.
300 * Create a %vector consisting of copies of the elements in the
301 * initializer_list @a l.
303 * This will call the element type's copy constructor N times
304 * (where N is @a l.size()) and do no memory reallocation.
306 vector(initializer_list
<value_type
> __l
,
307 const allocator_type
& __a
= allocator_type())
310 _M_range_initialize(__l
.begin(), __l
.end(),
311 random_access_iterator_tag());
316 * @brief Builds a %vector from a range.
317 * @param first An input iterator.
318 * @param last An input iterator.
319 * @param a An allocator.
321 * Create a %vector consisting of copies of the elements from
324 * If the iterators are forward, bidirectional, or
325 * random-access, then this will call the elements' copy
326 * constructor N times (where N is distance(first,last)) and do
327 * no memory reallocation. But if only input iterators are
328 * used, then this will do at most 2N calls to the copy
329 * constructor, and logN memory reallocations.
331 template<typename _InputIterator
>
332 vector(_InputIterator __first
, _InputIterator __last
,
333 const allocator_type
& __a
= allocator_type())
336 // Check whether it's an integral type. If so, it's not an iterator.
337 typedef typename
std::__is_integer
<_InputIterator
>::__type _Integral
;
338 _M_initialize_dispatch(__first
, __last
, _Integral());
342 * The dtor only erases the elements, and note that if the
343 * elements themselves are pointers, the pointed-to memory is
344 * not touched in any way. Managing the pointer is the user's
348 { std::_Destroy(this->_M_impl
._M_start
, this->_M_impl
._M_finish
,
349 _M_get_Tp_allocator()); }
352 * @brief %Vector assignment operator.
353 * @param x A %vector of identical element and allocator types.
355 * All the elements of @a x are copied, but any extra memory in
356 * @a x (for fast expansion) will not be copied. Unlike the
357 * copy constructor, the allocator object is not copied.
360 operator=(const vector
& __x
);
362 #ifdef __GXX_EXPERIMENTAL_CXX0X__
364 * @brief %Vector move assignment operator.
365 * @param x A %vector of identical element and allocator types.
367 * The contents of @a x are moved into this %vector (without copying).
368 * @a x is a valid, but unspecified %vector.
371 operator=(vector
&& __x
)
381 * @brief %Vector list assignment operator.
382 * @param l An initializer_list.
384 * This function fills a %vector with copies of the elements in the
385 * initializer list @a l.
387 * Note that the assignment completely changes the %vector and
388 * that the resulting %vector's size is the same as the number
389 * of elements assigned. Old data may be lost.
392 operator=(initializer_list
<value_type
> __l
)
394 this->assign(__l
.begin(), __l
.end());
400 * @brief Assigns a given value to a %vector.
401 * @param n Number of elements to be assigned.
402 * @param val Value to be assigned.
404 * This function fills a %vector with @a n copies of the given
405 * value. Note that the assignment completely changes the
406 * %vector and that the resulting %vector's size is the same as
407 * the number of elements assigned. Old data may be lost.
410 assign(size_type __n
, const value_type
& __val
)
411 { _M_fill_assign(__n
, __val
); }
414 * @brief Assigns a range to a %vector.
415 * @param first An input iterator.
416 * @param last An input iterator.
418 * This function fills a %vector with copies of the elements in the
419 * range [first,last).
421 * Note that the assignment completely changes the %vector and
422 * that the resulting %vector's size is the same as the number
423 * of elements assigned. Old data may be lost.
425 template<typename _InputIterator
>
427 assign(_InputIterator __first
, _InputIterator __last
)
429 // Check whether it's an integral type. If so, it's not an iterator.
430 typedef typename
std::__is_integer
<_InputIterator
>::__type _Integral
;
431 _M_assign_dispatch(__first
, __last
, _Integral());
434 #ifdef __GXX_EXPERIMENTAL_CXX0X__
436 * @brief Assigns an initializer list to a %vector.
437 * @param l An initializer_list.
439 * This function fills a %vector with copies of the elements in the
440 * initializer list @a l.
442 * Note that the assignment completely changes the %vector and
443 * that the resulting %vector's size is the same as the number
444 * of elements assigned. Old data may be lost.
447 assign(initializer_list
<value_type
> __l
)
448 { this->assign(__l
.begin(), __l
.end()); }
451 /// Get a copy of the memory allocation object.
452 using _Base::get_allocator
;
456 * Returns a read/write iterator that points to the first
457 * element in the %vector. Iteration is done in ordinary
462 { return iterator(this->_M_impl
._M_start
); }
465 * Returns a read-only (constant) iterator that points to the
466 * first element in the %vector. Iteration is done in ordinary
471 { return const_iterator(this->_M_impl
._M_start
); }
474 * Returns a read/write iterator that points one past the last
475 * element in the %vector. Iteration is done in ordinary
480 { return iterator(this->_M_impl
._M_finish
); }
483 * Returns a read-only (constant) iterator that points one past
484 * the last element in the %vector. Iteration is done in
485 * ordinary element order.
489 { return const_iterator(this->_M_impl
._M_finish
); }
492 * Returns a read/write reverse iterator that points to the
493 * last element in the %vector. Iteration is done in reverse
498 { return reverse_iterator(end()); }
501 * Returns a read-only (constant) reverse iterator that points
502 * to the last element in the %vector. Iteration is done in
503 * reverse element order.
505 const_reverse_iterator
507 { return const_reverse_iterator(end()); }
510 * Returns a read/write reverse iterator that points to one
511 * before the first element in the %vector. Iteration is done
512 * in reverse element order.
516 { return reverse_iterator(begin()); }
519 * Returns a read-only (constant) reverse iterator that points
520 * to one before the first element in the %vector. Iteration
521 * is done in reverse element order.
523 const_reverse_iterator
525 { return const_reverse_iterator(begin()); }
527 #ifdef __GXX_EXPERIMENTAL_CXX0X__
529 * Returns a read-only (constant) iterator that points to the
530 * first element in the %vector. Iteration is done in ordinary
535 { return const_iterator(this->_M_impl
._M_start
); }
538 * Returns a read-only (constant) iterator that points one past
539 * the last element in the %vector. Iteration is done in
540 * ordinary element order.
544 { return const_iterator(this->_M_impl
._M_finish
); }
547 * Returns a read-only (constant) reverse iterator that points
548 * to the last element in the %vector. Iteration is done in
549 * reverse element order.
551 const_reverse_iterator
553 { return const_reverse_iterator(end()); }
556 * Returns a read-only (constant) reverse iterator that points
557 * to one before the first element in the %vector. Iteration
558 * is done in reverse element order.
560 const_reverse_iterator
562 { return const_reverse_iterator(begin()); }
565 // [23.2.4.2] capacity
566 /** Returns the number of elements in the %vector. */
569 { return size_type(this->_M_impl
._M_finish
- this->_M_impl
._M_start
); }
571 /** Returns the size() of the largest possible %vector. */
574 { return _M_get_Tp_allocator().max_size(); }
576 #ifdef __GXX_EXPERIMENTAL_CXX0X__
578 * @brief Resizes the %vector to the specified number of elements.
579 * @param new_size Number of elements the %vector should contain.
581 * This function will %resize the %vector to the specified
582 * number of elements. If the number is smaller than the
583 * %vector's current size the %vector is truncated, otherwise
584 * default constructed elements are appended.
587 resize(size_type __new_size
)
589 if (__new_size
> size())
590 _M_default_append(__new_size
- size());
591 else if (__new_size
< size())
592 _M_erase_at_end(this->_M_impl
._M_start
+ __new_size
);
596 * @brief Resizes the %vector to the specified number of elements.
597 * @param new_size Number of elements the %vector should contain.
598 * @param x Data with which new elements should be populated.
600 * This function will %resize the %vector to the specified
601 * number of elements. If the number is smaller than the
602 * %vector's current size the %vector is truncated, otherwise
603 * the %vector is extended and new elements are populated with
607 resize(size_type __new_size
, const value_type
& __x
)
609 if (__new_size
> size())
610 insert(end(), __new_size
- size(), __x
);
611 else if (__new_size
< size())
612 _M_erase_at_end(this->_M_impl
._M_start
+ __new_size
);
616 * @brief Resizes the %vector to the specified number of elements.
617 * @param new_size Number of elements the %vector should contain.
618 * @param x Data with which new elements should be populated.
620 * This function will %resize the %vector to the specified
621 * number of elements. If the number is smaller than the
622 * %vector's current size the %vector is truncated, otherwise
623 * the %vector is extended and new elements are populated with
627 resize(size_type __new_size
, value_type __x
= value_type())
629 if (__new_size
> size())
630 insert(end(), __new_size
- size(), __x
);
631 else if (__new_size
< size())
632 _M_erase_at_end(this->_M_impl
._M_start
+ __new_size
);
636 #ifdef __GXX_EXPERIMENTAL_CXX0X__
637 /** A non-binding request to reduce capacity() to size(). */
640 { std::__shrink_to_fit
<vector
>::_S_do_it(*this); }
644 * Returns the total number of elements that the %vector can
645 * hold before needing to allocate more memory.
649 { return size_type(this->_M_impl
._M_end_of_storage
650 - this->_M_impl
._M_start
); }
653 * Returns true if the %vector is empty. (Thus begin() would
658 { return begin() == end(); }
661 * @brief Attempt to preallocate enough memory for specified number of
663 * @param n Number of elements required.
664 * @throw std::length_error If @a n exceeds @c max_size().
666 * This function attempts to reserve enough memory for the
667 * %vector to hold the specified number of elements. If the
668 * number requested is more than max_size(), length_error is
671 * The advantage of this function is that if optimal code is a
672 * necessity and the user can determine the number of elements
673 * that will be required, the user can reserve the memory in
674 * %advance, and thus prevent a possible reallocation of memory
675 * and copying of %vector data.
678 reserve(size_type __n
);
682 * @brief Subscript access to the data contained in the %vector.
683 * @param n The index of the element for which data should be
685 * @return Read/write reference to data.
687 * This operator allows for easy, array-style, data access.
688 * Note that data access with this operator is unchecked and
689 * out_of_range lookups are not defined. (For checked lookups
693 operator[](size_type __n
)
694 { return *(this->_M_impl
._M_start
+ __n
); }
697 * @brief Subscript access to the data contained in the %vector.
698 * @param n The index of the element for which data should be
700 * @return Read-only (constant) reference to data.
702 * This operator allows for easy, array-style, data access.
703 * Note that data access with this operator is unchecked and
704 * out_of_range lookups are not defined. (For checked lookups
708 operator[](size_type __n
) const
709 { return *(this->_M_impl
._M_start
+ __n
); }
712 /// Safety check used only from at().
714 _M_range_check(size_type __n
) const
716 if (__n
>= this->size())
717 __throw_out_of_range(__N("vector::_M_range_check"));
722 * @brief Provides access to the data contained in the %vector.
723 * @param n The index of the element for which data should be
725 * @return Read/write reference to data.
726 * @throw std::out_of_range If @a n is an invalid index.
728 * This function provides for safer data access. The parameter
729 * is first checked that it is in the range of the vector. The
730 * function throws out_of_range if the check fails.
740 * @brief Provides access to the data contained in the %vector.
741 * @param n The index of the element for which data should be
743 * @return Read-only (constant) reference to data.
744 * @throw std::out_of_range If @a n is an invalid index.
746 * This function provides for safer data access. The parameter
747 * is first checked that it is in the range of the vector. The
748 * function throws out_of_range if the check fails.
751 at(size_type __n
) const
758 * Returns a read/write reference to the data at the first
759 * element of the %vector.
766 * Returns a read-only (constant) reference to the data at the first
767 * element of the %vector.
774 * Returns a read/write reference to the data at the last
775 * element of the %vector.
779 { return *(end() - 1); }
782 * Returns a read-only (constant) reference to the data at the
783 * last element of the %vector.
787 { return *(end() - 1); }
789 // _GLIBCXX_RESOLVE_LIB_DEFECTS
790 // DR 464. Suggestion for new member functions in standard containers.
793 * Returns a pointer such that [data(), data() + size()) is a valid
794 * range. For a non-empty %vector, data() == &front().
796 #ifdef __GXX_EXPERIMENTAL_CXX0X__
802 { return std::__addressof(front()); }
804 #ifdef __GXX_EXPERIMENTAL_CXX0X__
810 { return std::__addressof(front()); }
812 // [23.2.4.3] modifiers
814 * @brief Add data to the end of the %vector.
815 * @param x Data to be added.
817 * This is a typical stack operation. The function creates an
818 * element at the end of the %vector and assigns the given data
819 * to it. Due to the nature of a %vector this operation can be
820 * done in constant time if the %vector has preallocated space
824 push_back(const value_type
& __x
)
826 if (this->_M_impl
._M_finish
!= this->_M_impl
._M_end_of_storage
)
828 this->_M_impl
.construct(this->_M_impl
._M_finish
, __x
);
829 ++this->_M_impl
._M_finish
;
832 _M_insert_aux(end(), __x
);
835 #ifdef __GXX_EXPERIMENTAL_CXX0X__
837 push_back(value_type
&& __x
)
838 { emplace_back(std::move(__x
)); }
840 template<typename
... _Args
>
842 emplace_back(_Args
&&... __args
);
846 * @brief Removes last element.
848 * This is a typical stack operation. It shrinks the %vector by one.
850 * Note that no data is returned, and if the last element's
851 * data is needed, it should be retrieved before pop_back() is
857 --this->_M_impl
._M_finish
;
858 this->_M_impl
.destroy(this->_M_impl
._M_finish
);
861 #ifdef __GXX_EXPERIMENTAL_CXX0X__
863 * @brief Inserts an object in %vector before specified iterator.
864 * @param position An iterator into the %vector.
865 * @param args Arguments.
866 * @return An iterator that points to the inserted data.
868 * This function will insert an object of type T constructed
869 * with T(std::forward<Args>(args)...) before the specified location.
870 * Note that this kind of operation could be expensive for a %vector
871 * and if it is frequently used the user should consider using
874 template<typename
... _Args
>
876 emplace(iterator __position
, _Args
&&... __args
);
880 * @brief Inserts given value into %vector before specified iterator.
881 * @param position An iterator into the %vector.
882 * @param x Data to be inserted.
883 * @return An iterator that points to the inserted data.
885 * This function will insert a copy of the given value before
886 * the specified location. Note that this kind of operation
887 * could be expensive for a %vector and if it is frequently
888 * used the user should consider using std::list.
891 insert(iterator __position
, const value_type
& __x
);
893 #ifdef __GXX_EXPERIMENTAL_CXX0X__
895 * @brief Inserts given rvalue into %vector before specified iterator.
896 * @param position An iterator into the %vector.
897 * @param x Data to be inserted.
898 * @return An iterator that points to the inserted data.
900 * This function will insert a copy of the given rvalue before
901 * the specified location. Note that this kind of operation
902 * could be expensive for a %vector and if it is frequently
903 * used the user should consider using std::list.
906 insert(iterator __position
, value_type
&& __x
)
907 { return emplace(__position
, std::move(__x
)); }
910 * @brief Inserts an initializer_list into the %vector.
911 * @param position An iterator into the %vector.
912 * @param l An initializer_list.
914 * This function will insert copies of the data in the
915 * initializer_list @a l into the %vector before the location
916 * specified by @a position.
918 * Note that this kind of operation could be expensive for a
919 * %vector and if it is frequently used the user should
920 * consider using std::list.
923 insert(iterator __position
, initializer_list
<value_type
> __l
)
924 { this->insert(__position
, __l
.begin(), __l
.end()); }
928 * @brief Inserts a number of copies of given data into the %vector.
929 * @param position An iterator into the %vector.
930 * @param n Number of elements to be inserted.
931 * @param x Data to be inserted.
933 * This function will insert a specified number of copies of
934 * the given data before the location specified by @a position.
936 * Note that this kind of operation could be expensive for a
937 * %vector and if it is frequently used the user should
938 * consider using std::list.
941 insert(iterator __position
, size_type __n
, const value_type
& __x
)
942 { _M_fill_insert(__position
, __n
, __x
); }
945 * @brief Inserts a range into the %vector.
946 * @param position An iterator into the %vector.
947 * @param first An input iterator.
948 * @param last An input iterator.
950 * This function will insert copies of the data in the range
951 * [first,last) into the %vector before the location specified
954 * Note that this kind of operation could be expensive for a
955 * %vector and if it is frequently used the user should
956 * consider using std::list.
958 template<typename _InputIterator
>
960 insert(iterator __position
, _InputIterator __first
,
961 _InputIterator __last
)
963 // Check whether it's an integral type. If so, it's not an iterator.
964 typedef typename
std::__is_integer
<_InputIterator
>::__type _Integral
;
965 _M_insert_dispatch(__position
, __first
, __last
, _Integral());
969 * @brief Remove element at given position.
970 * @param position Iterator pointing to element to be erased.
971 * @return An iterator pointing to the next element (or end()).
973 * This function will erase the element at the given position and thus
974 * shorten the %vector by one.
976 * Note This operation could be expensive and if it is
977 * frequently used the user should consider using std::list.
978 * The user is also cautioned that this function only erases
979 * the element, and that if the element is itself a pointer,
980 * the pointed-to memory is not touched in any way. Managing
981 * the pointer is the user's responsibility.
984 erase(iterator __position
);
987 * @brief Remove a range of elements.
988 * @param first Iterator pointing to the first element to be erased.
989 * @param last Iterator pointing to one past the last element to be
991 * @return An iterator pointing to the element pointed to by @a last
992 * prior to erasing (or end()).
994 * This function will erase the elements in the range [first,last) and
995 * shorten the %vector accordingly.
997 * Note This operation could be expensive and if it is
998 * frequently used the user should consider using std::list.
999 * The user is also cautioned that this function only erases
1000 * the elements, and that if the elements themselves are
1001 * pointers, the pointed-to memory is not touched in any way.
1002 * Managing the pointer is the user's responsibility.
1005 erase(iterator __first
, iterator __last
);
1008 * @brief Swaps data with another %vector.
1009 * @param x A %vector of the same element and allocator types.
1011 * This exchanges the elements between two vectors in constant time.
1012 * (Three pointers, so it should be quite fast.)
1013 * Note that the global std::swap() function is specialized such that
1014 * std::swap(v1,v2) will feed to this function.
1019 std::swap(this->_M_impl
._M_start
, __x
._M_impl
._M_start
);
1020 std::swap(this->_M_impl
._M_finish
, __x
._M_impl
._M_finish
);
1021 std::swap(this->_M_impl
._M_end_of_storage
,
1022 __x
._M_impl
._M_end_of_storage
);
1024 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1025 // 431. Swapping containers with unequal allocators.
1026 std::__alloc_swap
<_Tp_alloc_type
>::_S_do_it(_M_get_Tp_allocator(),
1027 __x
._M_get_Tp_allocator());
1031 * Erases all the elements. Note that this function only erases the
1032 * elements, and that if the elements themselves are pointers, the
1033 * pointed-to memory is not touched in any way. Managing the pointer is
1034 * the user's responsibility.
1038 { _M_erase_at_end(this->_M_impl
._M_start
); }
1042 * Memory expansion handler. Uses the member allocation function to
1043 * obtain @a n bytes of memory, and then copies [first,last) into it.
1045 template<typename _ForwardIterator
>
1047 _M_allocate_and_copy(size_type __n
,
1048 _ForwardIterator __first
, _ForwardIterator __last
)
1050 pointer __result
= this->_M_allocate(__n
);
1053 std::__uninitialized_copy_a(__first
, __last
, __result
,
1054 _M_get_Tp_allocator());
1059 _M_deallocate(__result
, __n
);
1060 __throw_exception_again
;
1065 // Internal constructor functions follow.
1067 // Called by the range constructor to implement [23.1.1]/9
1069 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1070 // 438. Ambiguity in the "do the right thing" clause
1071 template<typename _Integer
>
1073 _M_initialize_dispatch(_Integer __n
, _Integer __value
, __true_type
)
1075 this->_M_impl
._M_start
= _M_allocate(static_cast<size_type
>(__n
));
1076 this->_M_impl
._M_end_of_storage
=
1077 this->_M_impl
._M_start
+ static_cast<size_type
>(__n
);
1078 _M_fill_initialize(static_cast<size_type
>(__n
), __value
);
1081 // Called by the range constructor to implement [23.1.1]/9
1082 template<typename _InputIterator
>
1084 _M_initialize_dispatch(_InputIterator __first
, _InputIterator __last
,
1087 typedef typename
std::iterator_traits
<_InputIterator
>::
1088 iterator_category _IterCategory
;
1089 _M_range_initialize(__first
, __last
, _IterCategory());
1092 // Called by the second initialize_dispatch above
1093 template<typename _InputIterator
>
1095 _M_range_initialize(_InputIterator __first
,
1096 _InputIterator __last
, std::input_iterator_tag
)
1098 for (; __first
!= __last
; ++__first
)
1099 push_back(*__first
);
1102 // Called by the second initialize_dispatch above
1103 template<typename _ForwardIterator
>
1105 _M_range_initialize(_ForwardIterator __first
,
1106 _ForwardIterator __last
, std::forward_iterator_tag
)
1108 const size_type __n
= std::distance(__first
, __last
);
1109 this->_M_impl
._M_start
= this->_M_allocate(__n
);
1110 this->_M_impl
._M_end_of_storage
= this->_M_impl
._M_start
+ __n
;
1111 this->_M_impl
._M_finish
=
1112 std::__uninitialized_copy_a(__first
, __last
,
1113 this->_M_impl
._M_start
,
1114 _M_get_Tp_allocator());
1117 // Called by the first initialize_dispatch above and by the
1118 // vector(n,value,a) constructor.
1120 _M_fill_initialize(size_type __n
, const value_type
& __value
)
1122 std::__uninitialized_fill_n_a(this->_M_impl
._M_start
, __n
, __value
,
1123 _M_get_Tp_allocator());
1124 this->_M_impl
._M_finish
= this->_M_impl
._M_end_of_storage
;
1127 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1128 // Called by the vector(n) constructor.
1130 _M_default_initialize(size_type __n
)
1132 std::__uninitialized_default_n_a(this->_M_impl
._M_start
, __n
,
1133 _M_get_Tp_allocator());
1134 this->_M_impl
._M_finish
= this->_M_impl
._M_end_of_storage
;
1138 // Internal assign functions follow. The *_aux functions do the actual
1139 // assignment work for the range versions.
1141 // Called by the range assign to implement [23.1.1]/9
1143 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1144 // 438. Ambiguity in the "do the right thing" clause
1145 template<typename _Integer
>
1147 _M_assign_dispatch(_Integer __n
, _Integer __val
, __true_type
)
1148 { _M_fill_assign(__n
, __val
); }
1150 // Called by the range assign to implement [23.1.1]/9
1151 template<typename _InputIterator
>
1153 _M_assign_dispatch(_InputIterator __first
, _InputIterator __last
,
1156 typedef typename
std::iterator_traits
<_InputIterator
>::
1157 iterator_category _IterCategory
;
1158 _M_assign_aux(__first
, __last
, _IterCategory());
1161 // Called by the second assign_dispatch above
1162 template<typename _InputIterator
>
1164 _M_assign_aux(_InputIterator __first
, _InputIterator __last
,
1165 std::input_iterator_tag
);
1167 // Called by the second assign_dispatch above
1168 template<typename _ForwardIterator
>
1170 _M_assign_aux(_ForwardIterator __first
, _ForwardIterator __last
,
1171 std::forward_iterator_tag
);
1173 // Called by assign(n,t), and the range assign when it turns out
1174 // to be the same thing.
1176 _M_fill_assign(size_type __n
, const value_type
& __val
);
1179 // Internal insert functions follow.
1181 // Called by the range insert to implement [23.1.1]/9
1183 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1184 // 438. Ambiguity in the "do the right thing" clause
1185 template<typename _Integer
>
1187 _M_insert_dispatch(iterator __pos
, _Integer __n
, _Integer __val
,
1189 { _M_fill_insert(__pos
, __n
, __val
); }
1191 // Called by the range insert to implement [23.1.1]/9
1192 template<typename _InputIterator
>
1194 _M_insert_dispatch(iterator __pos
, _InputIterator __first
,
1195 _InputIterator __last
, __false_type
)
1197 typedef typename
std::iterator_traits
<_InputIterator
>::
1198 iterator_category _IterCategory
;
1199 _M_range_insert(__pos
, __first
, __last
, _IterCategory());
1202 // Called by the second insert_dispatch above
1203 template<typename _InputIterator
>
1205 _M_range_insert(iterator __pos
, _InputIterator __first
,
1206 _InputIterator __last
, std::input_iterator_tag
);
1208 // Called by the second insert_dispatch above
1209 template<typename _ForwardIterator
>
1211 _M_range_insert(iterator __pos
, _ForwardIterator __first
,
1212 _ForwardIterator __last
, std::forward_iterator_tag
);
1214 // Called by insert(p,n,x), and the range insert when it turns out to be
1217 _M_fill_insert(iterator __pos
, size_type __n
, const value_type
& __x
);
1219 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1220 // Called by resize(n).
1222 _M_default_append(size_type __n
);
1225 // Called by insert(p,x)
1226 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1228 _M_insert_aux(iterator __position
, const value_type
& __x
);
1230 template<typename
... _Args
>
1232 _M_insert_aux(iterator __position
, _Args
&&... __args
);
1235 // Called by the latter.
1237 _M_check_len(size_type __n
, const char* __s
) const
1239 if (max_size() - size() < __n
)
1240 __throw_length_error(__N(__s
));
1242 const size_type __len
= size() + std::max(size(), __n
);
1243 return (__len
< size() || __len
> max_size()) ? max_size() : __len
;
1246 // Internal erase functions follow.
1248 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1251 _M_erase_at_end(pointer __pos
)
1253 std::_Destroy(__pos
, this->_M_impl
._M_finish
, _M_get_Tp_allocator());
1254 this->_M_impl
._M_finish
= __pos
;
1260 * @brief Vector equality comparison.
1261 * @param x A %vector.
1262 * @param y A %vector of the same type as @a x.
1263 * @return True iff the size and elements of the vectors are equal.
1265 * This is an equivalence relation. It is linear in the size of the
1266 * vectors. Vectors are considered equivalent if their sizes are equal,
1267 * and if corresponding elements compare equal.
1269 template<typename _Tp
, typename _Alloc
>
1271 operator==(const vector
<_Tp
, _Alloc
>& __x
, const vector
<_Tp
, _Alloc
>& __y
)
1272 { return (__x
.size() == __y
.size()
1273 && std::equal(__x
.begin(), __x
.end(), __y
.begin())); }
1276 * @brief Vector ordering relation.
1277 * @param x A %vector.
1278 * @param y A %vector of the same type as @a x.
1279 * @return True iff @a x is lexicographically less than @a y.
1281 * This is a total ordering relation. It is linear in the size of the
1282 * vectors. The elements must be comparable with @c <.
1284 * See std::lexicographical_compare() for how the determination is made.
1286 template<typename _Tp
, typename _Alloc
>
1288 operator<(const vector
<_Tp
, _Alloc
>& __x
, const vector
<_Tp
, _Alloc
>& __y
)
1289 { return std::lexicographical_compare(__x
.begin(), __x
.end(),
1290 __y
.begin(), __y
.end()); }
1292 /// Based on operator==
1293 template<typename _Tp
, typename _Alloc
>
1295 operator!=(const vector
<_Tp
, _Alloc
>& __x
, const vector
<_Tp
, _Alloc
>& __y
)
1296 { return !(__x
== __y
); }
1298 /// Based on operator<
1299 template<typename _Tp
, typename _Alloc
>
1301 operator>(const vector
<_Tp
, _Alloc
>& __x
, const vector
<_Tp
, _Alloc
>& __y
)
1302 { return __y
< __x
; }
1304 /// Based on operator<
1305 template<typename _Tp
, typename _Alloc
>
1307 operator<=(const vector
<_Tp
, _Alloc
>& __x
, const vector
<_Tp
, _Alloc
>& __y
)
1308 { return !(__y
< __x
); }
1310 /// Based on operator<
1311 template<typename _Tp
, typename _Alloc
>
1313 operator>=(const vector
<_Tp
, _Alloc
>& __x
, const vector
<_Tp
, _Alloc
>& __y
)
1314 { return !(__x
< __y
); }
1316 /// See std::vector::swap().
1317 template<typename _Tp
, typename _Alloc
>
1319 swap(vector
<_Tp
, _Alloc
>& __x
, vector
<_Tp
, _Alloc
>& __y
)
1322 _GLIBCXX_END_NESTED_NAMESPACE
1324 #endif /* _STL_VECTOR_H */