Merge from mainline (168000:168310).
[official-gcc/graphite-test-results.git] / gcc / tree-if-conv.c
blob46b20c26c1946cb4b9439c671944f5ae2991e847
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Devang Patel <dpatel@apple.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements a tree level if-conversion of loops. Its
23 initial goal is to help the vectorizer to vectorize loops with
24 conditions.
26 A short description of if-conversion:
28 o Decide if a loop is if-convertible or not.
29 o Walk all loop basic blocks in breadth first order (BFS order).
30 o Remove conditional statements (at the end of basic block)
31 and propagate condition into destination basic blocks'
32 predicate list.
33 o Replace modify expression with conditional modify expression
34 using current basic block's condition.
35 o Merge all basic blocks
36 o Replace phi nodes with conditional modify expr
37 o Merge all basic blocks into header
39 Sample transformation:
41 INPUT
42 -----
44 # i_23 = PHI <0(0), i_18(10)>;
45 <L0>:;
46 j_15 = A[i_23];
47 if (j_15 > 41) goto <L1>; else goto <L17>;
49 <L17>:;
50 goto <bb 3> (<L3>);
52 <L1>:;
54 # iftmp.2_4 = PHI <0(8), 42(2)>;
55 <L3>:;
56 A[i_23] = iftmp.2_4;
57 i_18 = i_23 + 1;
58 if (i_18 <= 15) goto <L19>; else goto <L18>;
60 <L19>:;
61 goto <bb 1> (<L0>);
63 <L18>:;
65 OUTPUT
66 ------
68 # i_23 = PHI <0(0), i_18(10)>;
69 <L0>:;
70 j_15 = A[i_23];
72 <L3>:;
73 iftmp.2_4 = j_15 > 41 ? 42 : 0;
74 A[i_23] = iftmp.2_4;
75 i_18 = i_23 + 1;
76 if (i_18 <= 15) goto <L19>; else goto <L18>;
78 <L19>:;
79 goto <bb 1> (<L0>);
81 <L18>:;
84 #include "config.h"
85 #include "system.h"
86 #include "coretypes.h"
87 #include "tm.h"
88 #include "tree.h"
89 #include "flags.h"
90 #include "timevar.h"
91 #include "basic-block.h"
92 #include "tree-pretty-print.h"
93 #include "gimple-pretty-print.h"
94 #include "tree-flow.h"
95 #include "tree-dump.h"
96 #include "cfgloop.h"
97 #include "tree-chrec.h"
98 #include "tree-data-ref.h"
99 #include "tree-scalar-evolution.h"
100 #include "tree-pass.h"
101 #include "dbgcnt.h"
103 /* List of basic blocks in if-conversion-suitable order. */
104 static basic_block *ifc_bbs;
106 /* Structure used to predicate basic blocks. This is attached to the
107 ->aux field of the BBs in the loop to be if-converted. */
108 typedef struct bb_predicate_s {
110 /* The condition under which this basic block is executed. */
111 tree predicate;
113 /* PREDICATE is gimplified, and the sequence of statements is
114 recorded here, in order to avoid the duplication of computations
115 that occur in previous conditions. See PR44483. */
116 gimple_seq predicate_gimplified_stmts;
117 } *bb_predicate_p;
119 /* Returns true when the basic block BB has a predicate. */
121 static inline bool
122 bb_has_predicate (basic_block bb)
124 return bb->aux != NULL;
127 /* Returns the gimplified predicate for basic block BB. */
129 static inline tree
130 bb_predicate (basic_block bb)
132 return ((bb_predicate_p) bb->aux)->predicate;
135 /* Sets the gimplified predicate COND for basic block BB. */
137 static inline void
138 set_bb_predicate (basic_block bb, tree cond)
140 ((bb_predicate_p) bb->aux)->predicate = cond;
143 /* Returns the sequence of statements of the gimplification of the
144 predicate for basic block BB. */
146 static inline gimple_seq
147 bb_predicate_gimplified_stmts (basic_block bb)
149 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
152 /* Sets the sequence of statements STMTS of the gimplification of the
153 predicate for basic block BB. */
155 static inline void
156 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
158 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
161 /* Adds the sequence of statements STMTS to the sequence of statements
162 of the predicate for basic block BB. */
164 static inline void
165 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
167 gimple_seq_add_seq
168 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
171 /* Initializes to TRUE the predicate of basic block BB. */
173 static inline void
174 init_bb_predicate (basic_block bb)
176 bb->aux = XNEW (struct bb_predicate_s);
177 set_bb_predicate_gimplified_stmts (bb, NULL);
178 set_bb_predicate (bb, boolean_true_node);
181 /* Free the predicate of basic block BB. */
183 static inline void
184 free_bb_predicate (basic_block bb)
186 gimple_seq stmts;
188 if (!bb_has_predicate (bb))
189 return;
191 /* Release the SSA_NAMEs created for the gimplification of the
192 predicate. */
193 stmts = bb_predicate_gimplified_stmts (bb);
194 if (stmts)
196 gimple_stmt_iterator i;
198 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
199 free_stmt_operands (gsi_stmt (i));
202 free (bb->aux);
203 bb->aux = NULL;
206 /* Free the predicate of BB and reinitialize it with the true
207 predicate. */
209 static inline void
210 reset_bb_predicate (basic_block bb)
212 free_bb_predicate (bb);
213 init_bb_predicate (bb);
216 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
217 the expression EXPR. Inserts the statement created for this
218 computation before GSI and leaves the iterator GSI at the same
219 statement. */
221 static tree
222 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
224 const char *name = "_ifc_";
225 tree var, new_name;
226 gimple stmt;
228 /* Create new temporary variable. */
229 var = create_tmp_var (type, name);
230 add_referenced_var (var);
232 /* Build new statement to assign EXPR to new variable. */
233 stmt = gimple_build_assign (var, expr);
235 /* Get SSA name for the new variable and set make new statement
236 its definition statement. */
237 new_name = make_ssa_name (var, stmt);
238 gimple_assign_set_lhs (stmt, new_name);
239 SSA_NAME_DEF_STMT (new_name) = stmt;
240 update_stmt (stmt);
242 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
243 return gimple_assign_lhs (stmt);
246 /* Return true when COND is a true predicate. */
248 static inline bool
249 is_true_predicate (tree cond)
251 return (cond == NULL_TREE
252 || cond == boolean_true_node
253 || integer_onep (cond));
256 /* Returns true when BB has a predicate that is not trivial: true or
257 NULL_TREE. */
259 static inline bool
260 is_predicated (basic_block bb)
262 return !is_true_predicate (bb_predicate (bb));
265 /* Parses the predicate COND and returns its comparison code and
266 operands OP0 and OP1. */
268 static enum tree_code
269 parse_predicate (tree cond, tree *op0, tree *op1)
271 gimple s;
273 if (TREE_CODE (cond) == SSA_NAME
274 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
276 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
278 *op0 = gimple_assign_rhs1 (s);
279 *op1 = gimple_assign_rhs2 (s);
280 return gimple_assign_rhs_code (s);
283 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
285 tree op = gimple_assign_rhs1 (s);
286 tree type = TREE_TYPE (op);
287 enum tree_code code = parse_predicate (op, op0, op1);
289 return code == ERROR_MARK ? ERROR_MARK
290 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
293 return ERROR_MARK;
296 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
298 *op0 = TREE_OPERAND (cond, 0);
299 *op1 = TREE_OPERAND (cond, 1);
300 return TREE_CODE (cond);
303 return ERROR_MARK;
306 /* Returns the fold of predicate C1 OR C2 at location LOC. */
308 static tree
309 fold_or_predicates (location_t loc, tree c1, tree c2)
311 tree op1a, op1b, op2a, op2b;
312 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
313 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
315 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
317 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
318 code2, op2a, op2b);
319 if (t)
320 return t;
323 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
326 /* Add condition NC to the predicate list of basic block BB. */
328 static inline void
329 add_to_predicate_list (basic_block bb, tree nc)
331 tree bc;
333 if (is_true_predicate (nc))
334 return;
336 if (!is_predicated (bb))
337 bc = nc;
338 else
340 bc = bb_predicate (bb);
341 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
344 if (!is_gimple_condexpr (bc))
346 gimple_seq stmts;
347 bc = force_gimple_operand (bc, &stmts, true, NULL_TREE);
348 add_bb_predicate_gimplified_stmts (bb, stmts);
351 if (is_true_predicate (bc))
352 reset_bb_predicate (bb);
353 else
354 set_bb_predicate (bb, bc);
357 /* Add the condition COND to the previous condition PREV_COND, and add
358 this to the predicate list of the destination of edge E. LOOP is
359 the loop to be if-converted. */
361 static void
362 add_to_dst_predicate_list (struct loop *loop, edge e,
363 tree prev_cond, tree cond)
365 if (!flow_bb_inside_loop_p (loop, e->dest))
366 return;
368 if (!is_true_predicate (prev_cond))
369 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
370 prev_cond, cond);
372 add_to_predicate_list (e->dest, cond);
375 /* Return true if one of the successor edges of BB exits LOOP. */
377 static bool
378 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
380 edge e;
381 edge_iterator ei;
383 FOR_EACH_EDGE (e, ei, bb->succs)
384 if (loop_exit_edge_p (loop, e))
385 return true;
387 return false;
390 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
391 and it belongs to basic block BB.
393 PHI is not if-convertible if:
394 - it has more than 2 arguments.
396 When the flag_tree_loop_if_convert_stores is not set, PHI is not
397 if-convertible if:
398 - a virtual PHI is immediately used in another PHI node,
399 - there is a virtual PHI in a BB other than the loop->header. */
401 static bool
402 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
404 if (dump_file && (dump_flags & TDF_DETAILS))
406 fprintf (dump_file, "-------------------------\n");
407 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
410 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
412 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "More than two phi node args.\n");
414 return false;
417 if (flag_tree_loop_if_convert_stores)
418 return true;
420 /* When the flag_tree_loop_if_convert_stores is not set, check
421 that there are no memory writes in the branches of the loop to be
422 if-converted. */
423 if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi))))
425 imm_use_iterator imm_iter;
426 use_operand_p use_p;
428 if (bb != loop->header)
430 if (dump_file && (dump_flags & TDF_DETAILS))
431 fprintf (dump_file, "Virtual phi not on loop->header.\n");
432 return false;
435 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
437 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
439 if (dump_file && (dump_flags & TDF_DETAILS))
440 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
441 return false;
446 return true;
449 /* Records the status of a data reference. This struct is attached to
450 each DR->aux field. */
452 struct ifc_dr {
453 /* -1 when not initialized, 0 when false, 1 when true. */
454 int written_at_least_once;
456 /* -1 when not initialized, 0 when false, 1 when true. */
457 int rw_unconditionally;
460 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
461 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
462 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
464 /* Returns true when the memory references of STMT are read or written
465 unconditionally. In other words, this function returns true when
466 for every data reference A in STMT there exist other accesses to
467 the same data reference with predicates that add up (OR-up) to the
468 true predicate: this ensures that the data reference A is touched
469 (read or written) on every iteration of the if-converted loop. */
471 static bool
472 memrefs_read_or_written_unconditionally (gimple stmt,
473 VEC (data_reference_p, heap) *drs)
475 int i, j;
476 data_reference_p a, b;
477 tree ca = bb_predicate (gimple_bb (stmt));
479 for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
480 if (DR_STMT (a) == stmt)
482 bool found = false;
483 int x = DR_RW_UNCONDITIONALLY (a);
485 if (x == 0)
486 return false;
488 if (x == 1)
489 continue;
491 for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
492 if (DR_STMT (b) != stmt
493 && same_data_refs (a, b))
495 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
497 if (DR_RW_UNCONDITIONALLY (b) == 1
498 || is_true_predicate (cb)
499 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
500 ca, cb)))
502 DR_RW_UNCONDITIONALLY (a) = 1;
503 DR_RW_UNCONDITIONALLY (b) = 1;
504 found = true;
505 break;
509 if (!found)
511 DR_RW_UNCONDITIONALLY (a) = 0;
512 return false;
516 return true;
519 /* Returns true when the memory references of STMT are unconditionally
520 written. In other words, this function returns true when for every
521 data reference A written in STMT, there exist other writes to the
522 same data reference with predicates that add up (OR-up) to the true
523 predicate: this ensures that the data reference A is written on
524 every iteration of the if-converted loop. */
526 static bool
527 write_memrefs_written_at_least_once (gimple stmt,
528 VEC (data_reference_p, heap) *drs)
530 int i, j;
531 data_reference_p a, b;
532 tree ca = bb_predicate (gimple_bb (stmt));
534 for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
535 if (DR_STMT (a) == stmt
536 && DR_IS_WRITE (a))
538 bool found = false;
539 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
541 if (x == 0)
542 return false;
544 if (x == 1)
545 continue;
547 for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
548 if (DR_STMT (b) != stmt
549 && DR_IS_WRITE (b)
550 && same_data_refs_base_objects (a, b))
552 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
554 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
555 || is_true_predicate (cb)
556 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
557 ca, cb)))
559 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
560 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
561 found = true;
562 break;
566 if (!found)
568 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
569 return false;
573 return true;
576 /* Return true when the memory references of STMT won't trap in the
577 if-converted code. There are two things that we have to check for:
579 - writes to memory occur to writable memory: if-conversion of
580 memory writes transforms the conditional memory writes into
581 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
582 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
583 be executed at all in the original code, it may be a readonly
584 memory. To check that A is not const-qualified, we check that
585 there exists at least an unconditional write to A in the current
586 function.
588 - reads or writes to memory are valid memory accesses for every
589 iteration. To check that the memory accesses are correctly formed
590 and that we are allowed to read and write in these locations, we
591 check that the memory accesses to be if-converted occur at every
592 iteration unconditionally. */
594 static bool
595 ifcvt_memrefs_wont_trap (gimple stmt, VEC (data_reference_p, heap) *refs)
597 return write_memrefs_written_at_least_once (stmt, refs)
598 && memrefs_read_or_written_unconditionally (stmt, refs);
601 /* Wrapper around gimple_could_trap_p refined for the needs of the
602 if-conversion. Try to prove that the memory accesses of STMT could
603 not trap in the innermost loop containing STMT. */
605 static bool
606 ifcvt_could_trap_p (gimple stmt, VEC (data_reference_p, heap) *refs)
608 if (gimple_vuse (stmt)
609 && !gimple_could_trap_p_1 (stmt, false, false)
610 && ifcvt_memrefs_wont_trap (stmt, refs))
611 return false;
613 return gimple_could_trap_p (stmt);
616 /* Return true when STMT is if-convertible.
618 GIMPLE_ASSIGN statement is not if-convertible if,
619 - it is not movable,
620 - it could trap,
621 - LHS is not var decl. */
623 static bool
624 if_convertible_gimple_assign_stmt_p (gimple stmt,
625 VEC (data_reference_p, heap) *refs)
627 tree lhs = gimple_assign_lhs (stmt);
628 basic_block bb;
630 if (dump_file && (dump_flags & TDF_DETAILS))
632 fprintf (dump_file, "-------------------------\n");
633 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
636 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
637 return false;
639 /* Some of these constrains might be too conservative. */
640 if (stmt_ends_bb_p (stmt)
641 || gimple_has_volatile_ops (stmt)
642 || (TREE_CODE (lhs) == SSA_NAME
643 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
644 || gimple_has_side_effects (stmt))
646 if (dump_file && (dump_flags & TDF_DETAILS))
647 fprintf (dump_file, "stmt not suitable for ifcvt\n");
648 return false;
651 if (flag_tree_loop_if_convert_stores)
653 if (ifcvt_could_trap_p (stmt, refs))
655 if (dump_file && (dump_flags & TDF_DETAILS))
656 fprintf (dump_file, "tree could trap...\n");
657 return false;
659 return true;
662 if (gimple_assign_rhs_could_trap_p (stmt))
664 if (dump_file && (dump_flags & TDF_DETAILS))
665 fprintf (dump_file, "tree could trap...\n");
666 return false;
669 bb = gimple_bb (stmt);
671 if (TREE_CODE (lhs) != SSA_NAME
672 && bb != bb->loop_father->header
673 && !bb_with_exit_edge_p (bb->loop_father, bb))
675 if (dump_file && (dump_flags & TDF_DETAILS))
677 fprintf (dump_file, "LHS is not var\n");
678 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
680 return false;
683 return true;
686 /* Return true when STMT is if-convertible.
688 A statement is if-convertible if:
689 - it is an if-convertible GIMPLE_ASSGIN,
690 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
692 static bool
693 if_convertible_stmt_p (gimple stmt, VEC (data_reference_p, heap) *refs)
695 switch (gimple_code (stmt))
697 case GIMPLE_LABEL:
698 case GIMPLE_DEBUG:
699 case GIMPLE_COND:
700 return true;
702 case GIMPLE_ASSIGN:
703 return if_convertible_gimple_assign_stmt_p (stmt, refs);
705 default:
706 /* Don't know what to do with 'em so don't do anything. */
707 if (dump_file && (dump_flags & TDF_DETAILS))
709 fprintf (dump_file, "don't know what to do\n");
710 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
712 return false;
713 break;
716 return true;
719 /* Return true when BB is if-convertible. This routine does not check
720 basic block's statements and phis.
722 A basic block is not if-convertible if:
723 - it is non-empty and it is after the exit block (in BFS order),
724 - it is after the exit block but before the latch,
725 - its edges are not normal.
727 EXIT_BB is the basic block containing the exit of the LOOP. BB is
728 inside LOOP. */
730 static bool
731 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
733 edge e;
734 edge_iterator ei;
736 if (dump_file && (dump_flags & TDF_DETAILS))
737 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
739 if (EDGE_COUNT (bb->preds) > 2
740 || EDGE_COUNT (bb->succs) > 2)
741 return false;
743 if (exit_bb)
745 if (bb != loop->latch)
747 if (dump_file && (dump_flags & TDF_DETAILS))
748 fprintf (dump_file, "basic block after exit bb but before latch\n");
749 return false;
751 else if (!empty_block_p (bb))
753 if (dump_file && (dump_flags & TDF_DETAILS))
754 fprintf (dump_file, "non empty basic block after exit bb\n");
755 return false;
757 else if (bb == loop->latch
758 && bb != exit_bb
759 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
761 if (dump_file && (dump_flags & TDF_DETAILS))
762 fprintf (dump_file, "latch is not dominated by exit_block\n");
763 return false;
767 /* Be less adventurous and handle only normal edges. */
768 FOR_EACH_EDGE (e, ei, bb->succs)
769 if (e->flags &
770 (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
772 if (dump_file && (dump_flags & TDF_DETAILS))
773 fprintf (dump_file, "Difficult to handle edges\n");
774 return false;
777 return true;
780 /* Return true when all predecessor blocks of BB are visited. The
781 VISITED bitmap keeps track of the visited blocks. */
783 static bool
784 pred_blocks_visited_p (basic_block bb, bitmap *visited)
786 edge e;
787 edge_iterator ei;
788 FOR_EACH_EDGE (e, ei, bb->preds)
789 if (!bitmap_bit_p (*visited, e->src->index))
790 return false;
792 return true;
795 /* Get body of a LOOP in suitable order for if-conversion. It is
796 caller's responsibility to deallocate basic block list.
797 If-conversion suitable order is, breadth first sort (BFS) order
798 with an additional constraint: select a block only if all its
799 predecessors are already selected. */
801 static basic_block *
802 get_loop_body_in_if_conv_order (const struct loop *loop)
804 basic_block *blocks, *blocks_in_bfs_order;
805 basic_block bb;
806 bitmap visited;
807 unsigned int index = 0;
808 unsigned int visited_count = 0;
810 gcc_assert (loop->num_nodes);
811 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
813 blocks = XCNEWVEC (basic_block, loop->num_nodes);
814 visited = BITMAP_ALLOC (NULL);
816 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
818 index = 0;
819 while (index < loop->num_nodes)
821 bb = blocks_in_bfs_order [index];
823 if (bb->flags & BB_IRREDUCIBLE_LOOP)
825 free (blocks_in_bfs_order);
826 BITMAP_FREE (visited);
827 free (blocks);
828 return NULL;
831 if (!bitmap_bit_p (visited, bb->index))
833 if (pred_blocks_visited_p (bb, &visited)
834 || bb == loop->header)
836 /* This block is now visited. */
837 bitmap_set_bit (visited, bb->index);
838 blocks[visited_count++] = bb;
842 index++;
844 if (index == loop->num_nodes
845 && visited_count != loop->num_nodes)
846 /* Not done yet. */
847 index = 0;
849 free (blocks_in_bfs_order);
850 BITMAP_FREE (visited);
851 return blocks;
854 /* Returns true when the analysis of the predicates for all the basic
855 blocks in LOOP succeeded.
857 predicate_bbs first allocates the predicates of the basic blocks.
858 These fields are then initialized with the tree expressions
859 representing the predicates under which a basic block is executed
860 in the LOOP. As the loop->header is executed at each iteration, it
861 has the "true" predicate. Other statements executed under a
862 condition are predicated with that condition, for example
864 | if (x)
865 | S1;
866 | else
867 | S2;
869 S1 will be predicated with "x", and
870 S2 will be predicated with "!x". */
872 static bool
873 predicate_bbs (loop_p loop)
875 unsigned int i;
877 for (i = 0; i < loop->num_nodes; i++)
878 init_bb_predicate (ifc_bbs[i]);
880 for (i = 0; i < loop->num_nodes; i++)
882 basic_block bb = ifc_bbs[i];
883 tree cond;
884 gimple_stmt_iterator itr;
886 /* The loop latch is always executed and has no extra conditions
887 to be processed: skip it. */
888 if (bb == loop->latch)
890 reset_bb_predicate (loop->latch);
891 continue;
894 cond = bb_predicate (bb);
895 if (cond
896 && bb != loop->header)
898 gimple_seq stmts;
900 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
901 add_bb_predicate_gimplified_stmts (bb, stmts);
904 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
906 gimple stmt = gsi_stmt (itr);
908 switch (gimple_code (stmt))
910 case GIMPLE_LABEL:
911 case GIMPLE_ASSIGN:
912 case GIMPLE_CALL:
913 case GIMPLE_DEBUG:
914 break;
916 case GIMPLE_COND:
918 tree c2, tem;
919 edge true_edge, false_edge;
920 location_t loc = gimple_location (stmt);
921 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
922 boolean_type_node,
923 gimple_cond_lhs (stmt),
924 gimple_cond_rhs (stmt));
926 /* Add new condition into destination's predicate list. */
927 extract_true_false_edges_from_block (gimple_bb (stmt),
928 &true_edge, &false_edge);
930 /* If C is true, then TRUE_EDGE is taken. */
931 add_to_dst_predicate_list (loop, true_edge, cond, unshare_expr (c));
933 /* If C is false, then FALSE_EDGE is taken. */
934 c2 = invert_truthvalue_loc (loc, unshare_expr (c));
935 tem = canonicalize_cond_expr_cond (c2);
936 if (tem)
937 c2 = tem;
938 add_to_dst_predicate_list (loop, false_edge, cond, c2);
940 cond = NULL_TREE;
941 break;
944 default:
945 /* Not handled yet in if-conversion. */
946 return false;
950 /* If current bb has only one successor, then consider it as an
951 unconditional goto. */
952 if (single_succ_p (bb))
954 basic_block bb_n = single_succ (bb);
956 /* The successor bb inherits the predicate of its
957 predecessor. If there is no predicate in the predecessor
958 bb, then consider the successor bb as always executed. */
959 if (cond == NULL_TREE)
960 cond = boolean_true_node;
962 add_to_predicate_list (bb_n, cond);
966 /* The loop header is always executed. */
967 reset_bb_predicate (loop->header);
968 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
969 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
971 return true;
974 /* Return true when LOOP is if-convertible. This is a helper function
975 for if_convertible_loop_p. REFS and DDRS are initialized and freed
976 in if_convertible_loop_p. */
978 static bool
979 if_convertible_loop_p_1 (struct loop *loop,
980 VEC (loop_p, heap) **loop_nest,
981 VEC (data_reference_p, heap) **refs,
982 VEC (ddr_p, heap) **ddrs)
984 bool res;
985 unsigned int i;
986 basic_block exit_bb = NULL;
988 /* Don't if-convert the loop when the data dependences cannot be
989 computed: the loop won't be vectorized in that case. */
990 res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
991 if (!res)
992 return false;
994 calculate_dominance_info (CDI_DOMINATORS);
996 /* Allow statements that can be handled during if-conversion. */
997 ifc_bbs = get_loop_body_in_if_conv_order (loop);
998 if (!ifc_bbs)
1000 if (dump_file && (dump_flags & TDF_DETAILS))
1001 fprintf (dump_file, "Irreducible loop\n");
1002 return false;
1005 for (i = 0; i < loop->num_nodes; i++)
1007 basic_block bb = ifc_bbs[i];
1009 if (!if_convertible_bb_p (loop, bb, exit_bb))
1010 return false;
1012 if (bb_with_exit_edge_p (loop, bb))
1013 exit_bb = bb;
1016 res = predicate_bbs (loop);
1017 if (!res)
1018 return false;
1020 if (flag_tree_loop_if_convert_stores)
1022 data_reference_p dr;
1024 for (i = 0; VEC_iterate (data_reference_p, *refs, i, dr); i++)
1026 dr->aux = XNEW (struct ifc_dr);
1027 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1028 DR_RW_UNCONDITIONALLY (dr) = -1;
1032 for (i = 0; i < loop->num_nodes; i++)
1034 basic_block bb = ifc_bbs[i];
1035 gimple_stmt_iterator itr;
1037 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1038 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
1039 return false;
1041 /* Check the if-convertibility of statements in predicated BBs. */
1042 if (is_predicated (bb))
1043 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1044 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1045 return false;
1048 if (dump_file)
1049 fprintf (dump_file, "Applying if-conversion\n");
1051 return true;
1054 /* Return true when LOOP is if-convertible.
1055 LOOP is if-convertible if:
1056 - it is innermost,
1057 - it has two or more basic blocks,
1058 - it has only one exit,
1059 - loop header is not the exit edge,
1060 - if its basic blocks and phi nodes are if convertible. */
1062 static bool
1063 if_convertible_loop_p (struct loop *loop)
1065 edge e;
1066 edge_iterator ei;
1067 bool res = false;
1068 VEC (data_reference_p, heap) *refs;
1069 VEC (ddr_p, heap) *ddrs;
1070 VEC (loop_p, heap) *loop_nest;
1072 /* Handle only innermost loop. */
1073 if (!loop || loop->inner)
1075 if (dump_file && (dump_flags & TDF_DETAILS))
1076 fprintf (dump_file, "not innermost loop\n");
1077 return false;
1080 /* If only one block, no need for if-conversion. */
1081 if (loop->num_nodes <= 2)
1083 if (dump_file && (dump_flags & TDF_DETAILS))
1084 fprintf (dump_file, "less than 2 basic blocks\n");
1085 return false;
1088 /* More than one loop exit is too much to handle. */
1089 if (!single_exit (loop))
1091 if (dump_file && (dump_flags & TDF_DETAILS))
1092 fprintf (dump_file, "multiple exits\n");
1093 return false;
1096 /* If one of the loop header's edge is an exit edge then do not
1097 apply if-conversion. */
1098 FOR_EACH_EDGE (e, ei, loop->header->succs)
1099 if (loop_exit_edge_p (loop, e))
1100 return false;
1102 refs = VEC_alloc (data_reference_p, heap, 5);
1103 ddrs = VEC_alloc (ddr_p, heap, 25);
1104 loop_nest = VEC_alloc (loop_p, heap, 3);
1105 res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs);
1107 if (flag_tree_loop_if_convert_stores)
1109 data_reference_p dr;
1110 unsigned int i;
1112 for (i = 0; VEC_iterate (data_reference_p, refs, i, dr); i++)
1113 free (dr->aux);
1116 VEC_free (loop_p, heap, loop_nest);
1117 free_data_refs (refs);
1118 free_dependence_relations (ddrs);
1119 return res;
1122 /* Basic block BB has two predecessors. Using predecessor's bb
1123 predicate, set an appropriate condition COND for the PHI node
1124 replacement. Return the true block whose phi arguments are
1125 selected when cond is true. LOOP is the loop containing the
1126 if-converted region, GSI is the place to insert the code for the
1127 if-conversion. */
1129 static basic_block
1130 find_phi_replacement_condition (struct loop *loop,
1131 basic_block bb, tree *cond,
1132 gimple_stmt_iterator *gsi)
1134 edge first_edge, second_edge;
1135 tree tmp_cond;
1137 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1138 first_edge = EDGE_PRED (bb, 0);
1139 second_edge = EDGE_PRED (bb, 1);
1141 /* Use condition based on following criteria:
1143 S1: x = !c ? a : b;
1145 S2: x = c ? b : a;
1147 S2 is preferred over S1. Make 'b' first_bb and use its condition.
1149 2) Do not make loop header first_bb.
1152 S1: x = !(c == d)? a : b;
1154 S21: t1 = c == d;
1155 S22: x = t1 ? b : a;
1157 S3: x = (c == d) ? b : a;
1159 S3 is preferred over S1 and S2*, Make 'b' first_bb and use
1160 its condition.
1162 4) If pred B is dominated by pred A then use pred B's condition.
1163 See PR23115. */
1165 /* Select condition that is not TRUTH_NOT_EXPR. */
1166 tmp_cond = bb_predicate (first_edge->src);
1167 gcc_assert (tmp_cond);
1169 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1171 edge tmp_edge;
1173 tmp_edge = first_edge;
1174 first_edge = second_edge;
1175 second_edge = tmp_edge;
1178 /* Check if FIRST_BB is loop header or not and make sure that
1179 FIRST_BB does not dominate SECOND_BB. */
1180 if (first_edge->src == loop->header
1181 || dominated_by_p (CDI_DOMINATORS,
1182 second_edge->src, first_edge->src))
1184 *cond = bb_predicate (second_edge->src);
1186 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1187 *cond = invert_truthvalue (*cond);
1188 else
1189 /* Select non loop header bb. */
1190 first_edge = second_edge;
1192 else
1193 *cond = bb_predicate (first_edge->src);
1195 /* Gimplify the condition: the vectorizer prefers to have gimple
1196 values as conditions. Various targets use different means to
1197 communicate conditions in vector compare operations. Using a
1198 gimple value allows the compiler to emit vector compare and
1199 select RTL without exposing compare's result. */
1200 *cond = force_gimple_operand_gsi (gsi, unshare_expr (*cond),
1201 false, NULL_TREE,
1202 true, GSI_SAME_STMT);
1203 if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond))
1204 *cond = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond), gsi);
1206 gcc_assert (*cond);
1208 return first_edge->src;
1211 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1212 This routine does not handle PHI nodes with more than two
1213 arguments.
1215 For example,
1216 S1: A = PHI <x1(1), x2(5)
1217 is converted into,
1218 S2: A = cond ? x1 : x2;
1220 The generated code is inserted at GSI that points to the top of
1221 basic block's statement list. When COND is true, phi arg from
1222 TRUE_BB is selected. */
1224 static void
1225 predicate_scalar_phi (gimple phi, tree cond,
1226 basic_block true_bb,
1227 gimple_stmt_iterator *gsi)
1229 gimple new_stmt;
1230 basic_block bb;
1231 tree rhs, res, arg, scev;
1233 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1234 && gimple_phi_num_args (phi) == 2);
1236 res = gimple_phi_result (phi);
1237 /* Do not handle virtual phi nodes. */
1238 if (!is_gimple_reg (SSA_NAME_VAR (res)))
1239 return;
1241 bb = gimple_bb (phi);
1243 if ((arg = degenerate_phi_result (phi))
1244 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1245 res))
1246 && !chrec_contains_undetermined (scev)
1247 && scev != res
1248 && (arg = gimple_phi_arg_def (phi, 0))))
1249 rhs = arg;
1250 else
1252 tree arg_0, arg_1;
1253 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1254 if (EDGE_PRED (bb, 1)->src == true_bb)
1256 arg_0 = gimple_phi_arg_def (phi, 1);
1257 arg_1 = gimple_phi_arg_def (phi, 0);
1259 else
1261 arg_0 = gimple_phi_arg_def (phi, 0);
1262 arg_1 = gimple_phi_arg_def (phi, 1);
1265 /* Build new RHS using selected condition and arguments. */
1266 rhs = build3 (COND_EXPR, TREE_TYPE (res),
1267 unshare_expr (cond), arg_0, arg_1);
1270 new_stmt = gimple_build_assign (res, rhs);
1271 SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
1272 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1273 update_stmt (new_stmt);
1275 if (dump_file && (dump_flags & TDF_DETAILS))
1277 fprintf (dump_file, "new phi replacement stmt\n");
1278 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1282 /* Replaces in LOOP all the scalar phi nodes other than those in the
1283 LOOP->header block with conditional modify expressions. */
1285 static void
1286 predicate_all_scalar_phis (struct loop *loop)
1288 basic_block bb;
1289 unsigned int orig_loop_num_nodes = loop->num_nodes;
1290 unsigned int i;
1292 for (i = 1; i < orig_loop_num_nodes; i++)
1294 gimple phi;
1295 tree cond = NULL_TREE;
1296 gimple_stmt_iterator gsi, phi_gsi;
1297 basic_block true_bb = NULL;
1298 bb = ifc_bbs[i];
1300 if (bb == loop->header)
1301 continue;
1303 phi_gsi = gsi_start_phis (bb);
1304 if (gsi_end_p (phi_gsi))
1305 continue;
1307 /* BB has two predecessors. Using predecessor's aux field, set
1308 appropriate condition for the PHI node replacement. */
1309 gsi = gsi_after_labels (bb);
1310 true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi);
1312 while (!gsi_end_p (phi_gsi))
1314 phi = gsi_stmt (phi_gsi);
1315 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1316 release_phi_node (phi);
1317 gsi_next (&phi_gsi);
1320 set_phi_nodes (bb, NULL);
1324 /* Insert in each basic block of LOOP the statements produced by the
1325 gimplification of the predicates. */
1327 static void
1328 insert_gimplified_predicates (loop_p loop)
1330 unsigned int i;
1332 for (i = 0; i < loop->num_nodes; i++)
1334 basic_block bb = ifc_bbs[i];
1335 gimple_seq stmts;
1337 if (!is_predicated (bb))
1339 /* Do not insert statements for a basic block that is not
1340 predicated. Also make sure that the predicate of the
1341 basic block is set to true. */
1342 reset_bb_predicate (bb);
1343 continue;
1346 stmts = bb_predicate_gimplified_stmts (bb);
1347 if (stmts)
1349 if (flag_tree_loop_if_convert_stores)
1351 /* Insert the predicate of the BB just after the label,
1352 as the if-conversion of memory writes will use this
1353 predicate. */
1354 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1355 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1357 else
1359 /* Insert the predicate of the BB at the end of the BB
1360 as this would reduce the register pressure: the only
1361 use of this predicate will be in successor BBs. */
1362 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1364 if (gsi_end_p (gsi)
1365 || stmt_ends_bb_p (gsi_stmt (gsi)))
1366 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1367 else
1368 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1371 /* Once the sequence is code generated, set it to NULL. */
1372 set_bb_predicate_gimplified_stmts (bb, NULL);
1377 /* Predicate each write to memory in LOOP.
1379 This function transforms control flow constructs containing memory
1380 writes of the form:
1382 | for (i = 0; i < N; i++)
1383 | if (cond)
1384 | A[i] = expr;
1386 into the following form that does not contain control flow:
1388 | for (i = 0; i < N; i++)
1389 | A[i] = cond ? expr : A[i];
1391 The original CFG looks like this:
1393 | bb_0
1394 | i = 0
1395 | end_bb_0
1397 | bb_1
1398 | if (i < N) goto bb_5 else goto bb_2
1399 | end_bb_1
1401 | bb_2
1402 | cond = some_computation;
1403 | if (cond) goto bb_3 else goto bb_4
1404 | end_bb_2
1406 | bb_3
1407 | A[i] = expr;
1408 | goto bb_4
1409 | end_bb_3
1411 | bb_4
1412 | goto bb_1
1413 | end_bb_4
1415 insert_gimplified_predicates inserts the computation of the COND
1416 expression at the beginning of the destination basic block:
1418 | bb_0
1419 | i = 0
1420 | end_bb_0
1422 | bb_1
1423 | if (i < N) goto bb_5 else goto bb_2
1424 | end_bb_1
1426 | bb_2
1427 | cond = some_computation;
1428 | if (cond) goto bb_3 else goto bb_4
1429 | end_bb_2
1431 | bb_3
1432 | cond = some_computation;
1433 | A[i] = expr;
1434 | goto bb_4
1435 | end_bb_3
1437 | bb_4
1438 | goto bb_1
1439 | end_bb_4
1441 predicate_mem_writes is then predicating the memory write as follows:
1443 | bb_0
1444 | i = 0
1445 | end_bb_0
1447 | bb_1
1448 | if (i < N) goto bb_5 else goto bb_2
1449 | end_bb_1
1451 | bb_2
1452 | if (cond) goto bb_3 else goto bb_4
1453 | end_bb_2
1455 | bb_3
1456 | cond = some_computation;
1457 | A[i] = cond ? expr : A[i];
1458 | goto bb_4
1459 | end_bb_3
1461 | bb_4
1462 | goto bb_1
1463 | end_bb_4
1465 and finally combine_blocks removes the basic block boundaries making
1466 the loop vectorizable:
1468 | bb_0
1469 | i = 0
1470 | if (i < N) goto bb_5 else goto bb_1
1471 | end_bb_0
1473 | bb_1
1474 | cond = some_computation;
1475 | A[i] = cond ? expr : A[i];
1476 | if (i < N) goto bb_5 else goto bb_4
1477 | end_bb_1
1479 | bb_4
1480 | goto bb_1
1481 | end_bb_4
1484 static void
1485 predicate_mem_writes (loop_p loop)
1487 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1489 for (i = 1; i < orig_loop_num_nodes; i++)
1491 gimple_stmt_iterator gsi;
1492 basic_block bb = ifc_bbs[i];
1493 tree cond = bb_predicate (bb);
1494 gimple stmt;
1496 if (is_true_predicate (cond))
1497 continue;
1499 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1500 if ((stmt = gsi_stmt (gsi))
1501 && gimple_assign_single_p (stmt)
1502 && gimple_vdef (stmt))
1504 tree lhs = gimple_assign_lhs (stmt);
1505 tree rhs = gimple_assign_rhs1 (stmt);
1506 tree type = TREE_TYPE (lhs);
1508 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1509 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1510 rhs = build3 (COND_EXPR, type, unshare_expr (cond), rhs, lhs);
1511 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1512 update_stmt (stmt);
1517 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1518 other than the exit and latch of the LOOP. Also resets the
1519 GIMPLE_DEBUG information. */
1521 static void
1522 remove_conditions_and_labels (loop_p loop)
1524 gimple_stmt_iterator gsi;
1525 unsigned int i;
1527 for (i = 0; i < loop->num_nodes; i++)
1529 basic_block bb = ifc_bbs[i];
1531 if (bb_with_exit_edge_p (loop, bb)
1532 || bb == loop->latch)
1533 continue;
1535 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1536 switch (gimple_code (gsi_stmt (gsi)))
1538 case GIMPLE_COND:
1539 case GIMPLE_LABEL:
1540 gsi_remove (&gsi, true);
1541 break;
1543 case GIMPLE_DEBUG:
1544 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1545 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1547 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1548 update_stmt (gsi_stmt (gsi));
1550 gsi_next (&gsi);
1551 break;
1553 default:
1554 gsi_next (&gsi);
1559 /* Combine all the basic blocks from LOOP into one or two super basic
1560 blocks. Replace PHI nodes with conditional modify expressions. */
1562 static void
1563 combine_blocks (struct loop *loop)
1565 basic_block bb, exit_bb, merge_target_bb;
1566 unsigned int orig_loop_num_nodes = loop->num_nodes;
1567 unsigned int i;
1568 edge e;
1569 edge_iterator ei;
1571 remove_conditions_and_labels (loop);
1572 insert_gimplified_predicates (loop);
1573 predicate_all_scalar_phis (loop);
1575 if (flag_tree_loop_if_convert_stores)
1576 predicate_mem_writes (loop);
1578 /* Merge basic blocks: first remove all the edges in the loop,
1579 except for those from the exit block. */
1580 exit_bb = NULL;
1581 for (i = 0; i < orig_loop_num_nodes; i++)
1583 bb = ifc_bbs[i];
1584 if (bb_with_exit_edge_p (loop, bb))
1586 exit_bb = bb;
1587 break;
1590 gcc_assert (exit_bb != loop->latch);
1592 for (i = 1; i < orig_loop_num_nodes; i++)
1594 bb = ifc_bbs[i];
1596 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1598 if (e->src == exit_bb)
1599 ei_next (&ei);
1600 else
1601 remove_edge (e);
1605 if (exit_bb != NULL)
1607 if (exit_bb != loop->header)
1609 /* Connect this node to loop header. */
1610 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1611 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1614 /* Redirect non-exit edges to loop->latch. */
1615 FOR_EACH_EDGE (e, ei, exit_bb->succs)
1617 if (!loop_exit_edge_p (loop, e))
1618 redirect_edge_and_branch (e, loop->latch);
1620 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
1622 else
1624 /* If the loop does not have an exit, reconnect header and latch. */
1625 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
1626 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
1629 merge_target_bb = loop->header;
1630 for (i = 1; i < orig_loop_num_nodes; i++)
1632 gimple_stmt_iterator gsi;
1633 gimple_stmt_iterator last;
1635 bb = ifc_bbs[i];
1637 if (bb == exit_bb || bb == loop->latch)
1638 continue;
1640 /* Make stmts member of loop->header. */
1641 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1642 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
1644 /* Update stmt list. */
1645 last = gsi_last_bb (merge_target_bb);
1646 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
1647 set_bb_seq (bb, NULL);
1649 delete_basic_block (bb);
1652 /* If possible, merge loop header to the block with the exit edge.
1653 This reduces the number of basic blocks to two, to please the
1654 vectorizer that handles only loops with two nodes. */
1655 if (exit_bb
1656 && exit_bb != loop->header
1657 && can_merge_blocks_p (loop->header, exit_bb))
1658 merge_blocks (loop->header, exit_bb);
1661 /* If-convert LOOP when it is legal. For the moment this pass has no
1662 profitability analysis. Returns true when something changed. */
1664 static bool
1665 tree_if_conversion (struct loop *loop)
1667 bool changed = false;
1668 ifc_bbs = NULL;
1670 if (!if_convertible_loop_p (loop)
1671 || !dbg_cnt (if_conversion_tree))
1672 goto cleanup;
1674 /* Now all statements are if-convertible. Combine all the basic
1675 blocks into one huge basic block doing the if-conversion
1676 on-the-fly. */
1677 combine_blocks (loop);
1679 if (flag_tree_loop_if_convert_stores)
1680 mark_sym_for_renaming (gimple_vop (cfun));
1682 changed = true;
1684 cleanup:
1685 if (ifc_bbs)
1687 unsigned int i;
1689 for (i = 0; i < loop->num_nodes; i++)
1690 free_bb_predicate (ifc_bbs[i]);
1692 free (ifc_bbs);
1693 ifc_bbs = NULL;
1696 return changed;
1699 /* Tree if-conversion pass management. */
1701 static unsigned int
1702 main_tree_if_conversion (void)
1704 loop_iterator li;
1705 struct loop *loop;
1706 bool changed = false;
1707 unsigned todo = 0;
1709 if (number_of_loops () <= 1)
1710 return 0;
1712 FOR_EACH_LOOP (li, loop, 0)
1713 changed |= tree_if_conversion (loop);
1715 if (changed)
1716 todo |= TODO_cleanup_cfg;
1718 if (changed && flag_tree_loop_if_convert_stores)
1719 todo |= TODO_update_ssa_only_virtuals;
1721 return todo;
1724 /* Returns true when the if-conversion pass is enabled. */
1726 static bool
1727 gate_tree_if_conversion (void)
1729 return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
1730 || flag_tree_loop_if_convert == 1
1731 || flag_tree_loop_if_convert_stores == 1);
1734 struct gimple_opt_pass pass_if_conversion =
1737 GIMPLE_PASS,
1738 "ifcvt", /* name */
1739 gate_tree_if_conversion, /* gate */
1740 main_tree_if_conversion, /* execute */
1741 NULL, /* sub */
1742 NULL, /* next */
1743 0, /* static_pass_number */
1744 TV_NONE, /* tv_id */
1745 PROP_cfg | PROP_ssa, /* properties_required */
1746 0, /* properties_provided */
1747 0, /* properties_destroyed */
1748 0, /* todo_flags_start */
1749 TODO_dump_func | TODO_verify_stmts | TODO_verify_flow
1750 /* todo_flags_finish */