Merge from mainline (168000:168310).
[official-gcc/graphite-test-results.git] / gcc / go / gofrontend / expressions.cc
blobf64e5ee4edf52804bf6c74f8847d1eb5db4f80d3
1 // expressions.cc -- Go frontend expression handling.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include <gmp.h>
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
14 #endif
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
25 #ifndef ENABLE_BUILD_WITH_CXX
27 #endif
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
38 // Class Expression.
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
46 Expression::~Expression()
50 // If this expression has a constant integer value, return it.
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
60 // If this expression has a constant floating point value, return it.
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
79 mpz_clear(ival);
80 return ret;
83 // If this expression has a constant complex value, return it.
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
98 return false;
101 // Traverse the expressions.
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
115 return expr->do_traverse(traverse);
118 // Traverse subexpressions of this expression.
121 Expression::traverse_subexpressions(Traverse* traverse)
123 return this->do_traverse(traverse);
126 // Default implementation for do_traverse for child classes.
129 Expression::do_traverse(Traverse*)
131 return TRAVERSE_CONTINUE;
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
138 void
139 Expression::do_discarding_value()
141 this->warn_about_unused_value();
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
147 void
148 Expression::do_export(Export*) const
150 gcc_unreachable();
153 // Warn that the value of the expression is not used.
155 void
156 Expression::warn_about_unused_value()
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
164 void
165 Expression::set_is_error()
167 this->classification_ = EXPRESSION_ERROR;
170 // For children to call to report an error conveniently.
172 void
173 Expression::report_error(const char* msg)
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
179 // Set types of variables and constants. This is implemented by the
180 // child class.
182 void
183 Expression::determine_type(const Type_context* context)
185 this->do_determine_type(context);
188 // Set types when there is no context.
190 void
191 Expression::determine_type_no_context()
193 Type_context context;
194 this->do_determine_type(&context);
197 // Return a tree handling any conversions which must be done during
198 // assignment.
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
205 if (lhs_type == rhs_type)
206 return rhs_tree;
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
222 Gogo* gogo = context->gogo();
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
228 if (lhs_type->interface_type() != NULL)
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
274 return val;
276 else if (rhs_type->is_nil_type())
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
285 // No conversion is needed.
286 return rhs_tree;
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
303 else
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
366 // Start building a constructor for the value we will return.
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
382 if (rhs_type->points_to() != NULL)
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
486 // The result is going to be a two element constructor.
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
494 if (for_type_guard)
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
514 else if (lhs_is_empty)
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
523 else
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
547 // The second field is simply the object pointer.
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
561 return build_constructor(lhs_type_tree, init);
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
634 tree
635 Expression::get_tree(Translate_context* context)
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
641 return this->do_get_tree(context);
644 // Return a tree for VAL in TYPE.
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
672 else
673 gcc_unreachable();
676 // Return a tree for VAL in TYPE.
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
692 else if (TREE_CODE(type) == REAL_TYPE)
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
710 else
711 gcc_unreachable();
714 // Return a tree for REAL/IMAG in TYPE.
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
719 if (TREE_CODE(type) == COMPLEX_TYPE)
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
734 else
735 gcc_unreachable();
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
750 if (!TYPE_UNSIGNED(val_type))
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
782 // Error expressions. This are used to avoid cascading errors.
784 class Error_expression : public Expression
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
799 mpz_set_ui(val, 0);
800 return true;
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
818 void
819 do_discarding_value()
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
826 void
827 do_determine_type(const Type_context*)
830 Expression*
831 do_copy()
832 { return this; }
834 bool
835 do_is_addressable() const
836 { return true; }
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
843 Expression*
844 Expression::make_error(source_location location)
846 return new Error_expression(location);
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
852 class
853 Type_expression : public Expression
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
861 protected:
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
866 Type*
867 do_type()
868 { return this->type_; }
870 void
871 do_determine_type(const Type_context*)
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
878 Expression*
879 do_copy()
880 { return this; }
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
891 Expression*
892 Expression::make_type(Type* type, source_location location)
894 return new Type_expression(type, location);
897 // Class Parser_expression.
899 Type*
900 Parser_expression::do_type()
902 // We should never really ask for the type of a Parser_expression.
903 // However, it can happen, at least when we have an invalid const
904 // whose initializer refers to the const itself. In that case we
905 // may ask for the type when lowering the const itself.
906 gcc_assert(saw_errors());
907 return Type::make_error_type();
910 // Class Var_expression.
912 // Lower a variable expression. Here we just make sure that the
913 // initialization expression of the variable has been lowered. This
914 // ensures that we will be able to determine the type of the variable
915 // if necessary.
917 Expression*
918 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
920 if (this->variable_->is_variable())
922 Variable* var = this->variable_->var_value();
923 // This is either a local variable or a global variable. A
924 // reference to a variable which is local to an enclosing
925 // function will be a reference to a field in a closure.
926 if (var->is_global())
927 function = NULL;
928 var->lower_init_expression(gogo, function);
930 return this;
933 // Return the name of the variable.
935 const std::string&
936 Var_expression::name() const
938 return this->variable_->name();
941 // Return the type of a reference to a variable.
943 Type*
944 Var_expression::do_type()
946 if (this->variable_->is_variable())
947 return this->variable_->var_value()->type();
948 else if (this->variable_->is_result_variable())
949 return this->variable_->result_var_value()->type();
950 else
951 gcc_unreachable();
954 // Something takes the address of this variable. This means that we
955 // may want to move the variable onto the heap.
957 void
958 Var_expression::do_address_taken(bool escapes)
960 if (!escapes)
962 else if (this->variable_->is_variable())
963 this->variable_->var_value()->set_address_taken();
964 else if (this->variable_->is_result_variable())
965 this->variable_->result_var_value()->set_address_taken();
966 else
967 gcc_unreachable();
970 // Get the tree for a reference to a variable.
972 tree
973 Var_expression::do_get_tree(Translate_context* context)
975 return this->variable_->get_tree(context->gogo(), context->function());
978 // Make a reference to a variable in an expression.
980 Expression*
981 Expression::make_var_reference(Named_object* var, source_location location)
983 if (var->is_sink())
984 return Expression::make_sink(location);
986 // FIXME: Creating a new object for each reference to a variable is
987 // wasteful.
988 return new Var_expression(var, location);
991 // Class Temporary_reference_expression.
993 // The type.
995 Type*
996 Temporary_reference_expression::do_type()
998 return this->statement_->type();
1001 // Called if something takes the address of this temporary variable.
1002 // We never have to move temporary variables to the heap, but we do
1003 // need to know that they must live in the stack rather than in a
1004 // register.
1006 void
1007 Temporary_reference_expression::do_address_taken(bool)
1009 this->statement_->set_is_address_taken();
1012 // Get a tree referring to the variable.
1014 tree
1015 Temporary_reference_expression::do_get_tree(Translate_context*)
1017 return this->statement_->get_decl();
1020 // Make a reference to a temporary variable.
1022 Expression*
1023 Expression::make_temporary_reference(Temporary_statement* statement,
1024 source_location location)
1026 return new Temporary_reference_expression(statement, location);
1029 // A sink expression--a use of the blank identifier _.
1031 class Sink_expression : public Expression
1033 public:
1034 Sink_expression(source_location location)
1035 : Expression(EXPRESSION_SINK, location),
1036 type_(NULL), var_(NULL_TREE)
1039 protected:
1040 void
1041 do_discarding_value()
1044 Type*
1045 do_type();
1047 void
1048 do_determine_type(const Type_context*);
1050 Expression*
1051 do_copy()
1052 { return new Sink_expression(this->location()); }
1054 tree
1055 do_get_tree(Translate_context*);
1057 private:
1058 // The type of this sink variable.
1059 Type* type_;
1060 // The temporary variable we generate.
1061 tree var_;
1064 // Return the type of a sink expression.
1066 Type*
1067 Sink_expression::do_type()
1069 if (this->type_ == NULL)
1070 return Type::make_sink_type();
1071 return this->type_;
1074 // Determine the type of a sink expression.
1076 void
1077 Sink_expression::do_determine_type(const Type_context* context)
1079 if (context->type != NULL)
1080 this->type_ = context->type;
1083 // Return a temporary variable for a sink expression. This will
1084 // presumably be a write-only variable which the middle-end will drop.
1086 tree
1087 Sink_expression::do_get_tree(Translate_context* context)
1089 if (this->var_ == NULL_TREE)
1091 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1092 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1093 "blank");
1095 return this->var_;
1098 // Make a sink expression.
1100 Expression*
1101 Expression::make_sink(source_location location)
1103 return new Sink_expression(location);
1106 // Class Func_expression.
1108 // FIXME: Can a function expression appear in a constant expression?
1109 // The value is unchanging. Initializing a constant to the address of
1110 // a function seems like it could work, though there might be little
1111 // point to it.
1113 // Return the name of the function.
1115 const std::string&
1116 Func_expression::name() const
1118 return this->function_->name();
1121 // Traversal.
1124 Func_expression::do_traverse(Traverse* traverse)
1126 return (this->closure_ == NULL
1127 ? TRAVERSE_CONTINUE
1128 : Expression::traverse(&this->closure_, traverse));
1131 // Return the type of a function expression.
1133 Type*
1134 Func_expression::do_type()
1136 if (this->function_->is_function())
1137 return this->function_->func_value()->type();
1138 else if (this->function_->is_function_declaration())
1139 return this->function_->func_declaration_value()->type();
1140 else
1141 gcc_unreachable();
1144 // Get the tree for a function expression without evaluating the
1145 // closure.
1147 tree
1148 Func_expression::get_tree_without_closure(Gogo* gogo)
1150 Function_type* fntype;
1151 if (this->function_->is_function())
1152 fntype = this->function_->func_value()->type();
1153 else if (this->function_->is_function_declaration())
1154 fntype = this->function_->func_declaration_value()->type();
1155 else
1156 gcc_unreachable();
1158 // Builtin functions are handled specially by Call_expression. We
1159 // can't take their address.
1160 if (fntype->is_builtin())
1162 error_at(this->location(), "invalid use of special builtin function %qs",
1163 this->function_->name().c_str());
1164 return error_mark_node;
1167 Named_object* no = this->function_;
1169 tree id = no->get_id(gogo);
1170 if (id == error_mark_node)
1171 return error_mark_node;
1173 tree fndecl;
1174 if (no->is_function())
1175 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1176 else if (no->is_function_declaration())
1177 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1178 else
1179 gcc_unreachable();
1181 if (fndecl == error_mark_node)
1182 return error_mark_node;
1184 return build_fold_addr_expr_loc(this->location(), fndecl);
1187 // Get the tree for a function expression. This is used when we take
1188 // the address of a function rather than simply calling it. If the
1189 // function has a closure, we must use a trampoline.
1191 tree
1192 Func_expression::do_get_tree(Translate_context* context)
1194 Gogo* gogo = context->gogo();
1196 tree fnaddr = this->get_tree_without_closure(gogo);
1197 if (fnaddr == error_mark_node)
1198 return error_mark_node;
1200 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1201 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1202 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1204 // For a normal non-nested function call, that is all we have to do.
1205 if (!this->function_->is_function()
1206 || this->function_->func_value()->enclosing() == NULL)
1208 gcc_assert(this->closure_ == NULL);
1209 return fnaddr;
1212 // For a nested function call, we have to always allocate a
1213 // trampoline. If we don't always allocate, then closures will not
1214 // be reliably distinct.
1215 Expression* closure = this->closure_;
1216 tree closure_tree;
1217 if (closure == NULL)
1218 closure_tree = null_pointer_node;
1219 else
1221 // Get the value of the closure. This will be a pointer to
1222 // space allocated on the heap.
1223 closure_tree = closure->get_tree(context);
1224 if (closure_tree == error_mark_node)
1225 return error_mark_node;
1226 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1229 // Now we need to build some code on the heap. This code will load
1230 // the static chain pointer with the closure and then jump to the
1231 // body of the function. The normal gcc approach is to build the
1232 // code on the stack. Unfortunately we can not do that, as Go
1233 // permits us to return the function pointer.
1235 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1238 // Make a reference to a function in an expression.
1240 Expression*
1241 Expression::make_func_reference(Named_object* function, Expression* closure,
1242 source_location location)
1244 return new Func_expression(function, closure, location);
1247 // Class Unknown_expression.
1249 // Return the name of an unknown expression.
1251 const std::string&
1252 Unknown_expression::name() const
1254 return this->named_object_->name();
1257 // Lower a reference to an unknown name.
1259 Expression*
1260 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1262 source_location location = this->location();
1263 Named_object* no = this->named_object_;
1264 Named_object* real;
1265 if (!no->is_unknown())
1266 real = no;
1267 else
1269 real = no->unknown_value()->real_named_object();
1270 if (real == NULL)
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "reference to undefined name %qs",
1275 this->named_object_->message_name().c_str());
1276 return Expression::make_error(location);
1279 switch (real->classification())
1281 case Named_object::NAMED_OBJECT_CONST:
1282 return Expression::make_const_reference(real, location);
1283 case Named_object::NAMED_OBJECT_TYPE:
1284 return Expression::make_type(real->type_value(), location);
1285 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1286 if (this->is_composite_literal_key_)
1287 return this;
1288 error_at(location, "reference to undefined type %qs",
1289 real->message_name().c_str());
1290 return Expression::make_error(location);
1291 case Named_object::NAMED_OBJECT_VAR:
1292 return Expression::make_var_reference(real, location);
1293 case Named_object::NAMED_OBJECT_FUNC:
1294 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1295 return Expression::make_func_reference(real, NULL, location);
1296 case Named_object::NAMED_OBJECT_PACKAGE:
1297 if (this->is_composite_literal_key_)
1298 return this;
1299 error_at(location, "unexpected reference to package");
1300 return Expression::make_error(location);
1301 default:
1302 gcc_unreachable();
1306 // Make a reference to an unknown name.
1308 Expression*
1309 Expression::make_unknown_reference(Named_object* no, source_location location)
1311 gcc_assert(no->resolve()->is_unknown());
1312 return new Unknown_expression(no, location);
1315 // A boolean expression.
1317 class Boolean_expression : public Expression
1319 public:
1320 Boolean_expression(bool val, source_location location)
1321 : Expression(EXPRESSION_BOOLEAN, location),
1322 val_(val), type_(NULL)
1325 static Expression*
1326 do_import(Import*);
1328 protected:
1329 bool
1330 do_is_constant() const
1331 { return true; }
1333 Type*
1334 do_type();
1336 void
1337 do_determine_type(const Type_context*);
1339 Expression*
1340 do_copy()
1341 { return this; }
1343 tree
1344 do_get_tree(Translate_context*)
1345 { return this->val_ ? boolean_true_node : boolean_false_node; }
1347 void
1348 do_export(Export* exp) const
1349 { exp->write_c_string(this->val_ ? "true" : "false"); }
1351 private:
1352 // The constant.
1353 bool val_;
1354 // The type as determined by context.
1355 Type* type_;
1358 // Get the type.
1360 Type*
1361 Boolean_expression::do_type()
1363 if (this->type_ == NULL)
1364 this->type_ = Type::make_boolean_type();
1365 return this->type_;
1368 // Set the type from the context.
1370 void
1371 Boolean_expression::do_determine_type(const Type_context* context)
1373 if (this->type_ != NULL && !this->type_->is_abstract())
1375 else if (context->type != NULL && context->type->is_boolean_type())
1376 this->type_ = context->type;
1377 else if (!context->may_be_abstract)
1378 this->type_ = Type::lookup_bool_type();
1381 // Import a boolean constant.
1383 Expression*
1384 Boolean_expression::do_import(Import* imp)
1386 if (imp->peek_char() == 't')
1388 imp->require_c_string("true");
1389 return Expression::make_boolean(true, imp->location());
1391 else
1393 imp->require_c_string("false");
1394 return Expression::make_boolean(false, imp->location());
1398 // Make a boolean expression.
1400 Expression*
1401 Expression::make_boolean(bool val, source_location location)
1403 return new Boolean_expression(val, location);
1406 // Class String_expression.
1408 // Get the type.
1410 Type*
1411 String_expression::do_type()
1413 if (this->type_ == NULL)
1414 this->type_ = Type::make_string_type();
1415 return this->type_;
1418 // Set the type from the context.
1420 void
1421 String_expression::do_determine_type(const Type_context* context)
1423 if (this->type_ != NULL && !this->type_->is_abstract())
1425 else if (context->type != NULL && context->type->is_string_type())
1426 this->type_ = context->type;
1427 else if (!context->may_be_abstract)
1428 this->type_ = Type::lookup_string_type();
1431 // Build a string constant.
1433 tree
1434 String_expression::do_get_tree(Translate_context* context)
1436 return context->gogo()->go_string_constant_tree(this->val_);
1439 // Export a string expression.
1441 void
1442 String_expression::do_export(Export* exp) const
1444 std::string s;
1445 s.reserve(this->val_.length() * 4 + 2);
1446 s += '"';
1447 for (std::string::const_iterator p = this->val_.begin();
1448 p != this->val_.end();
1449 ++p)
1451 if (*p == '\\' || *p == '"')
1453 s += '\\';
1454 s += *p;
1456 else if (*p >= 0x20 && *p < 0x7f)
1457 s += *p;
1458 else if (*p == '\n')
1459 s += "\\n";
1460 else if (*p == '\t')
1461 s += "\\t";
1462 else
1464 s += "\\x";
1465 unsigned char c = *p;
1466 unsigned int dig = c >> 4;
1467 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1468 dig = c & 0xf;
1469 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1472 s += '"';
1473 exp->write_string(s);
1476 // Import a string expression.
1478 Expression*
1479 String_expression::do_import(Import* imp)
1481 imp->require_c_string("\"");
1482 std::string val;
1483 while (true)
1485 int c = imp->get_char();
1486 if (c == '"' || c == -1)
1487 break;
1488 if (c != '\\')
1489 val += static_cast<char>(c);
1490 else
1492 c = imp->get_char();
1493 if (c == '\\' || c == '"')
1494 val += static_cast<char>(c);
1495 else if (c == 'n')
1496 val += '\n';
1497 else if (c == 't')
1498 val += '\t';
1499 else if (c == 'x')
1501 c = imp->get_char();
1502 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1503 c = imp->get_char();
1504 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1505 char v = (vh << 4) | vl;
1506 val += v;
1508 else
1510 error_at(imp->location(), "bad string constant");
1511 return Expression::make_error(imp->location());
1515 return Expression::make_string(val, imp->location());
1518 // Make a string expression.
1520 Expression*
1521 Expression::make_string(const std::string& val, source_location location)
1523 return new String_expression(val, location);
1526 // Make an integer expression.
1528 class Integer_expression : public Expression
1530 public:
1531 Integer_expression(const mpz_t* val, Type* type, source_location location)
1532 : Expression(EXPRESSION_INTEGER, location),
1533 type_(type)
1534 { mpz_init_set(this->val_, *val); }
1536 static Expression*
1537 do_import(Import*);
1539 // Return whether VAL fits in the type.
1540 static bool
1541 check_constant(mpz_t val, Type*, source_location);
1543 // Write VAL to export data.
1544 static void
1545 export_integer(Export* exp, const mpz_t val);
1547 protected:
1548 bool
1549 do_is_constant() const
1550 { return true; }
1552 bool
1553 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1555 Type*
1556 do_type();
1558 void
1559 do_determine_type(const Type_context* context);
1561 void
1562 do_check_types(Gogo*);
1564 tree
1565 do_get_tree(Translate_context*);
1567 Expression*
1568 do_copy()
1569 { return Expression::make_integer(&this->val_, this->type_,
1570 this->location()); }
1572 void
1573 do_export(Export*) const;
1575 private:
1576 // The integer value.
1577 mpz_t val_;
1578 // The type so far.
1579 Type* type_;
1582 // Return an integer constant value.
1584 bool
1585 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1586 Type** ptype) const
1588 if (this->type_ != NULL)
1589 *ptype = this->type_;
1590 mpz_set(val, this->val_);
1591 return true;
1594 // Return the current type. If we haven't set the type yet, we return
1595 // an abstract integer type.
1597 Type*
1598 Integer_expression::do_type()
1600 if (this->type_ == NULL)
1601 this->type_ = Type::make_abstract_integer_type();
1602 return this->type_;
1605 // Set the type of the integer value. Here we may switch from an
1606 // abstract type to a real type.
1608 void
1609 Integer_expression::do_determine_type(const Type_context* context)
1611 if (this->type_ != NULL && !this->type_->is_abstract())
1613 else if (context->type != NULL
1614 && (context->type->integer_type() != NULL
1615 || context->type->float_type() != NULL
1616 || context->type->complex_type() != NULL))
1617 this->type_ = context->type;
1618 else if (!context->may_be_abstract)
1619 this->type_ = Type::lookup_integer_type("int");
1622 // Return true if the integer VAL fits in the range of the type TYPE.
1623 // Otherwise give an error and return false. TYPE may be NULL.
1625 bool
1626 Integer_expression::check_constant(mpz_t val, Type* type,
1627 source_location location)
1629 if (type == NULL)
1630 return true;
1631 Integer_type* itype = type->integer_type();
1632 if (itype == NULL || itype->is_abstract())
1633 return true;
1635 int bits = mpz_sizeinbase(val, 2);
1637 if (itype->is_unsigned())
1639 // For an unsigned type we can only accept a nonnegative number,
1640 // and we must be able to represent at least BITS.
1641 if (mpz_sgn(val) >= 0
1642 && bits <= itype->bits())
1643 return true;
1645 else
1647 // For a signed type we need an extra bit to indicate the sign.
1648 // We have to handle the most negative integer specially.
1649 if (bits + 1 <= itype->bits()
1650 || (bits <= itype->bits()
1651 && mpz_sgn(val) < 0
1652 && (mpz_scan1(val, 0)
1653 == static_cast<unsigned long>(itype->bits() - 1))
1654 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1655 return true;
1658 error_at(location, "integer constant overflow");
1659 return false;
1662 // Check the type of an integer constant.
1664 void
1665 Integer_expression::do_check_types(Gogo*)
1667 if (this->type_ == NULL)
1668 return;
1669 if (!Integer_expression::check_constant(this->val_, this->type_,
1670 this->location()))
1671 this->set_is_error();
1674 // Get a tree for an integer constant.
1676 tree
1677 Integer_expression::do_get_tree(Translate_context* context)
1679 Gogo* gogo = context->gogo();
1680 tree type;
1681 if (this->type_ != NULL && !this->type_->is_abstract())
1682 type = this->type_->get_tree(gogo);
1683 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1685 // We are converting to an abstract floating point type.
1686 type = Type::lookup_float_type("float64")->get_tree(gogo);
1688 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1690 // We are converting to an abstract complex type.
1691 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1693 else
1695 // If we still have an abstract type here, then this is being
1696 // used in a constant expression which didn't get reduced for
1697 // some reason. Use a type which will fit the value. We use <,
1698 // not <=, because we need an extra bit for the sign bit.
1699 int bits = mpz_sizeinbase(this->val_, 2);
1700 if (bits < INT_TYPE_SIZE)
1701 type = Type::lookup_integer_type("int")->get_tree(gogo);
1702 else if (bits < 64)
1703 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1704 else
1705 type = long_long_integer_type_node;
1707 return Expression::integer_constant_tree(this->val_, type);
1710 // Write VAL to export data.
1712 void
1713 Integer_expression::export_integer(Export* exp, const mpz_t val)
1715 char* s = mpz_get_str(NULL, 10, val);
1716 exp->write_c_string(s);
1717 free(s);
1720 // Export an integer in a constant expression.
1722 void
1723 Integer_expression::do_export(Export* exp) const
1725 Integer_expression::export_integer(exp, this->val_);
1726 // A trailing space lets us reliably identify the end of the number.
1727 exp->write_c_string(" ");
1730 // Import an integer, floating point, or complex value. This handles
1731 // all these types because they all start with digits.
1733 Expression*
1734 Integer_expression::do_import(Import* imp)
1736 std::string num = imp->read_identifier();
1737 imp->require_c_string(" ");
1738 if (!num.empty() && num[num.length() - 1] == 'i')
1740 mpfr_t real;
1741 size_t plus_pos = num.find('+', 1);
1742 size_t minus_pos = num.find('-', 1);
1743 size_t pos;
1744 if (plus_pos == std::string::npos)
1745 pos = minus_pos;
1746 else if (minus_pos == std::string::npos)
1747 pos = plus_pos;
1748 else
1750 error_at(imp->location(), "bad number in import data: %qs",
1751 num.c_str());
1752 return Expression::make_error(imp->location());
1754 if (pos == std::string::npos)
1755 mpfr_set_ui(real, 0, GMP_RNDN);
1756 else
1758 std::string real_str = num.substr(0, pos);
1759 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1761 error_at(imp->location(), "bad number in import data: %qs",
1762 real_str.c_str());
1763 return Expression::make_error(imp->location());
1767 std::string imag_str;
1768 if (pos == std::string::npos)
1769 imag_str = num;
1770 else
1771 imag_str = num.substr(pos);
1772 imag_str = imag_str.substr(0, imag_str.size() - 1);
1773 mpfr_t imag;
1774 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1776 error_at(imp->location(), "bad number in import data: %qs",
1777 imag_str.c_str());
1778 return Expression::make_error(imp->location());
1780 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1781 imp->location());
1782 mpfr_clear(real);
1783 mpfr_clear(imag);
1784 return ret;
1786 else if (num.find('.') == std::string::npos
1787 && num.find('E') == std::string::npos)
1789 mpz_t val;
1790 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1792 error_at(imp->location(), "bad number in import data: %qs",
1793 num.c_str());
1794 return Expression::make_error(imp->location());
1796 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1797 mpz_clear(val);
1798 return ret;
1800 else
1802 mpfr_t val;
1803 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1805 error_at(imp->location(), "bad number in import data: %qs",
1806 num.c_str());
1807 return Expression::make_error(imp->location());
1809 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1810 mpfr_clear(val);
1811 return ret;
1815 // Build a new integer value.
1817 Expression*
1818 Expression::make_integer(const mpz_t* val, Type* type,
1819 source_location location)
1821 return new Integer_expression(val, type, location);
1824 // Floats.
1826 class Float_expression : public Expression
1828 public:
1829 Float_expression(const mpfr_t* val, Type* type, source_location location)
1830 : Expression(EXPRESSION_FLOAT, location),
1831 type_(type)
1833 mpfr_init_set(this->val_, *val, GMP_RNDN);
1836 // Constrain VAL to fit into TYPE.
1837 static void
1838 constrain_float(mpfr_t val, Type* type);
1840 // Return whether VAL fits in the type.
1841 static bool
1842 check_constant(mpfr_t val, Type*, source_location);
1844 // Write VAL to export data.
1845 static void
1846 export_float(Export* exp, const mpfr_t val);
1848 protected:
1849 bool
1850 do_is_constant() const
1851 { return true; }
1853 bool
1854 do_float_constant_value(mpfr_t val, Type**) const;
1856 Type*
1857 do_type();
1859 void
1860 do_determine_type(const Type_context*);
1862 void
1863 do_check_types(Gogo*);
1865 Expression*
1866 do_copy()
1867 { return Expression::make_float(&this->val_, this->type_,
1868 this->location()); }
1870 tree
1871 do_get_tree(Translate_context*);
1873 void
1874 do_export(Export*) const;
1876 private:
1877 // The floating point value.
1878 mpfr_t val_;
1879 // The type so far.
1880 Type* type_;
1883 // Constrain VAL to fit into TYPE.
1885 void
1886 Float_expression::constrain_float(mpfr_t val, Type* type)
1888 Float_type* ftype = type->float_type();
1889 if (ftype != NULL && !ftype->is_abstract())
1891 tree type_tree = ftype->type_tree();
1892 REAL_VALUE_TYPE rvt;
1893 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1894 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1895 mpfr_from_real(val, &rvt, GMP_RNDN);
1899 // Return a floating point constant value.
1901 bool
1902 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1904 if (this->type_ != NULL)
1905 *ptype = this->type_;
1906 mpfr_set(val, this->val_, GMP_RNDN);
1907 return true;
1910 // Return the current type. If we haven't set the type yet, we return
1911 // an abstract float type.
1913 Type*
1914 Float_expression::do_type()
1916 if (this->type_ == NULL)
1917 this->type_ = Type::make_abstract_float_type();
1918 return this->type_;
1921 // Set the type of the float value. Here we may switch from an
1922 // abstract type to a real type.
1924 void
1925 Float_expression::do_determine_type(const Type_context* context)
1927 if (this->type_ != NULL && !this->type_->is_abstract())
1929 else if (context->type != NULL
1930 && (context->type->integer_type() != NULL
1931 || context->type->float_type() != NULL
1932 || context->type->complex_type() != NULL))
1933 this->type_ = context->type;
1934 else if (!context->may_be_abstract)
1935 this->type_ = Type::lookup_float_type("float");
1938 // Return true if the floating point value VAL fits in the range of
1939 // the type TYPE. Otherwise give an error and return false. TYPE may
1940 // be NULL.
1942 bool
1943 Float_expression::check_constant(mpfr_t val, Type* type,
1944 source_location location)
1946 if (type == NULL)
1947 return true;
1948 Float_type* ftype = type->float_type();
1949 if (ftype == NULL || ftype->is_abstract())
1950 return true;
1952 // A NaN or Infinity always fits in the range of the type.
1953 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1954 return true;
1956 mp_exp_t exp = mpfr_get_exp(val);
1957 mp_exp_t max_exp;
1958 switch (ftype->bits())
1960 case 32:
1961 max_exp = 128;
1962 break;
1963 case 64:
1964 max_exp = 1024;
1965 break;
1966 default:
1967 gcc_unreachable();
1969 if (exp > max_exp)
1971 error_at(location, "floating point constant overflow");
1972 return false;
1974 return true;
1977 // Check the type of a float value.
1979 void
1980 Float_expression::do_check_types(Gogo*)
1982 if (this->type_ == NULL)
1983 return;
1985 if (!Float_expression::check_constant(this->val_, this->type_,
1986 this->location()))
1987 this->set_is_error();
1989 Integer_type* integer_type = this->type_->integer_type();
1990 if (integer_type != NULL)
1992 if (!mpfr_integer_p(this->val_))
1993 this->report_error(_("floating point constant truncated to integer"));
1994 else
1996 gcc_assert(!integer_type->is_abstract());
1997 mpz_t ival;
1998 mpz_init(ival);
1999 mpfr_get_z(ival, this->val_, GMP_RNDN);
2000 Integer_expression::check_constant(ival, integer_type,
2001 this->location());
2002 mpz_clear(ival);
2007 // Get a tree for a float constant.
2009 tree
2010 Float_expression::do_get_tree(Translate_context* context)
2012 Gogo* gogo = context->gogo();
2013 tree type;
2014 if (this->type_ != NULL && !this->type_->is_abstract())
2015 type = this->type_->get_tree(gogo);
2016 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2018 // We have an abstract integer type. We just hope for the best.
2019 type = Type::lookup_integer_type("int")->get_tree(gogo);
2021 else
2023 // If we still have an abstract type here, then this is being
2024 // used in a constant expression which didn't get reduced. We
2025 // just use float64 and hope for the best.
2026 type = Type::lookup_float_type("float64")->get_tree(gogo);
2028 return Expression::float_constant_tree(this->val_, type);
2031 // Write a floating point number to export data.
2033 void
2034 Float_expression::export_float(Export *exp, const mpfr_t val)
2036 mp_exp_t exponent;
2037 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2038 if (*s == '-')
2039 exp->write_c_string("-");
2040 exp->write_c_string("0.");
2041 exp->write_c_string(*s == '-' ? s + 1 : s);
2042 mpfr_free_str(s);
2043 char buf[30];
2044 snprintf(buf, sizeof buf, "E%ld", exponent);
2045 exp->write_c_string(buf);
2048 // Export a floating point number in a constant expression.
2050 void
2051 Float_expression::do_export(Export* exp) const
2053 Float_expression::export_float(exp, this->val_);
2054 // A trailing space lets us reliably identify the end of the number.
2055 exp->write_c_string(" ");
2058 // Make a float expression.
2060 Expression*
2061 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2063 return new Float_expression(val, type, location);
2066 // Complex numbers.
2068 class Complex_expression : public Expression
2070 public:
2071 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2072 source_location location)
2073 : Expression(EXPRESSION_COMPLEX, location),
2074 type_(type)
2076 mpfr_init_set(this->real_, *real, GMP_RNDN);
2077 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2080 // Constrain REAL/IMAG to fit into TYPE.
2081 static void
2082 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2084 // Return whether REAL/IMAG fits in the type.
2085 static bool
2086 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2088 // Write REAL/IMAG to export data.
2089 static void
2090 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2092 protected:
2093 bool
2094 do_is_constant() const
2095 { return true; }
2097 bool
2098 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2100 Type*
2101 do_type();
2103 void
2104 do_determine_type(const Type_context*);
2106 void
2107 do_check_types(Gogo*);
2109 Expression*
2110 do_copy()
2112 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2113 this->location());
2116 tree
2117 do_get_tree(Translate_context*);
2119 void
2120 do_export(Export*) const;
2122 private:
2123 // The real part.
2124 mpfr_t real_;
2125 // The imaginary part;
2126 mpfr_t imag_;
2127 // The type if known.
2128 Type* type_;
2131 // Constrain REAL/IMAG to fit into TYPE.
2133 void
2134 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2136 Complex_type* ctype = type->complex_type();
2137 if (ctype != NULL && !ctype->is_abstract())
2139 tree type_tree = ctype->type_tree();
2141 REAL_VALUE_TYPE rvt;
2142 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2143 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2144 mpfr_from_real(real, &rvt, GMP_RNDN);
2146 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(imag, &rvt, GMP_RNDN);
2152 // Return a complex constant value.
2154 bool
2155 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2156 Type** ptype) const
2158 if (this->type_ != NULL)
2159 *ptype = this->type_;
2160 mpfr_set(real, this->real_, GMP_RNDN);
2161 mpfr_set(imag, this->imag_, GMP_RNDN);
2162 return true;
2165 // Return the current type. If we haven't set the type yet, we return
2166 // an abstract complex type.
2168 Type*
2169 Complex_expression::do_type()
2171 if (this->type_ == NULL)
2172 this->type_ = Type::make_abstract_complex_type();
2173 return this->type_;
2176 // Set the type of the complex value. Here we may switch from an
2177 // abstract type to a real type.
2179 void
2180 Complex_expression::do_determine_type(const Type_context* context)
2182 if (this->type_ != NULL && !this->type_->is_abstract())
2184 else if (context->type != NULL
2185 && context->type->complex_type() != NULL)
2186 this->type_ = context->type;
2187 else if (!context->may_be_abstract)
2188 this->type_ = Type::lookup_complex_type("complex");
2191 // Return true if the complex value REAL/IMAG fits in the range of the
2192 // type TYPE. Otherwise give an error and return false. TYPE may be
2193 // NULL.
2195 bool
2196 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2197 source_location location)
2199 if (type == NULL)
2200 return true;
2201 Complex_type* ctype = type->complex_type();
2202 if (ctype == NULL || ctype->is_abstract())
2203 return true;
2205 mp_exp_t max_exp;
2206 switch (ctype->bits())
2208 case 64:
2209 max_exp = 128;
2210 break;
2211 case 128:
2212 max_exp = 1024;
2213 break;
2214 default:
2215 gcc_unreachable();
2218 // A NaN or Infinity always fits in the range of the type.
2219 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2221 if (mpfr_get_exp(real) > max_exp)
2223 error_at(location, "complex real part constant overflow");
2224 return false;
2228 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2230 if (mpfr_get_exp(imag) > max_exp)
2232 error_at(location, "complex imaginary part constant overflow");
2233 return false;
2237 return true;
2240 // Check the type of a complex value.
2242 void
2243 Complex_expression::do_check_types(Gogo*)
2245 if (this->type_ == NULL)
2246 return;
2248 if (!Complex_expression::check_constant(this->real_, this->imag_,
2249 this->type_, this->location()))
2250 this->set_is_error();
2253 // Get a tree for a complex constant.
2255 tree
2256 Complex_expression::do_get_tree(Translate_context* context)
2258 Gogo* gogo = context->gogo();
2259 tree type;
2260 if (this->type_ != NULL && !this->type_->is_abstract())
2261 type = this->type_->get_tree(gogo);
2262 else
2264 // If we still have an abstract type here, this this is being
2265 // used in a constant expression which didn't get reduced. We
2266 // just use complex128 and hope for the best.
2267 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2269 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2272 // Write REAL/IMAG to export data.
2274 void
2275 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2276 const mpfr_t imag)
2278 if (!mpfr_zero_p(real))
2280 Float_expression::export_float(exp, real);
2281 if (mpfr_sgn(imag) > 0)
2282 exp->write_c_string("+");
2284 Float_expression::export_float(exp, imag);
2285 exp->write_c_string("i");
2288 // Export a complex number in a constant expression.
2290 void
2291 Complex_expression::do_export(Export* exp) const
2293 Complex_expression::export_complex(exp, this->real_, this->imag_);
2294 // A trailing space lets us reliably identify the end of the number.
2295 exp->write_c_string(" ");
2298 // Make a complex expression.
2300 Expression*
2301 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2302 source_location location)
2304 return new Complex_expression(real, imag, type, location);
2307 // Find a named object in an expression.
2309 class Find_named_object : public Traverse
2311 public:
2312 Find_named_object(Named_object* no)
2313 : Traverse(traverse_expressions),
2314 no_(no), found_(false)
2317 // Whether we found the object.
2318 bool
2319 found() const
2320 { return this->found_; }
2322 protected:
2324 expression(Expression**);
2326 private:
2327 // The object we are looking for.
2328 Named_object* no_;
2329 // Whether we found it.
2330 bool found_;
2333 // A reference to a const in an expression.
2335 class Const_expression : public Expression
2337 public:
2338 Const_expression(Named_object* constant, source_location location)
2339 : Expression(EXPRESSION_CONST_REFERENCE, location),
2340 constant_(constant), type_(NULL), seen_(false)
2343 Named_object*
2344 named_object()
2345 { return this->constant_; }
2347 const std::string&
2348 name() const
2349 { return this->constant_->name(); }
2351 protected:
2352 Expression*
2353 do_lower(Gogo*, Named_object*, int);
2355 bool
2356 do_is_constant() const
2357 { return true; }
2359 bool
2360 do_integer_constant_value(bool, mpz_t val, Type**) const;
2362 bool
2363 do_float_constant_value(mpfr_t val, Type**) const;
2365 bool
2366 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2368 bool
2369 do_string_constant_value(std::string* val) const
2370 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2372 Type*
2373 do_type();
2375 // The type of a const is set by the declaration, not the use.
2376 void
2377 do_determine_type(const Type_context*);
2379 void
2380 do_check_types(Gogo*);
2382 Expression*
2383 do_copy()
2384 { return this; }
2386 tree
2387 do_get_tree(Translate_context* context);
2389 // When exporting a reference to a const as part of a const
2390 // expression, we export the value. We ignore the fact that it has
2391 // a name.
2392 void
2393 do_export(Export* exp) const
2394 { this->constant_->const_value()->expr()->export_expression(exp); }
2396 private:
2397 // The constant.
2398 Named_object* constant_;
2399 // The type of this reference. This is used if the constant has an
2400 // abstract type.
2401 Type* type_;
2402 // Used to prevent infinite recursion when a constant incorrectly
2403 // refers to itself.
2404 mutable bool seen_;
2407 // Lower a constant expression. This is where we convert the
2408 // predeclared constant iota into an integer value.
2410 Expression*
2411 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2413 if (this->constant_->const_value()->expr()->classification()
2414 == EXPRESSION_IOTA)
2416 if (iota_value == -1)
2418 error_at(this->location(),
2419 "iota is only defined in const declarations");
2420 iota_value = 0;
2422 mpz_t val;
2423 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2424 Expression* ret = Expression::make_integer(&val, NULL,
2425 this->location());
2426 mpz_clear(val);
2427 return ret;
2430 // Make sure that the constant itself has been lowered.
2431 gogo->lower_constant(this->constant_);
2433 return this;
2436 // Return an integer constant value.
2438 bool
2439 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2440 Type** ptype) const
2442 if (this->seen_)
2443 return false;
2445 Type* ctype;
2446 if (this->type_ != NULL)
2447 ctype = this->type_;
2448 else
2449 ctype = this->constant_->const_value()->type();
2450 if (ctype != NULL && ctype->integer_type() == NULL)
2451 return false;
2453 Expression* e = this->constant_->const_value()->expr();
2455 this->seen_ = true;
2457 Type* t;
2458 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2460 this->seen_ = false;
2462 if (r
2463 && ctype != NULL
2464 && !Integer_expression::check_constant(val, ctype, this->location()))
2465 return false;
2467 *ptype = ctype != NULL ? ctype : t;
2468 return r;
2471 // Return a floating point constant value.
2473 bool
2474 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2476 if (this->seen_)
2477 return false;
2479 Type* ctype;
2480 if (this->type_ != NULL)
2481 ctype = this->type_;
2482 else
2483 ctype = this->constant_->const_value()->type();
2484 if (ctype != NULL && ctype->float_type() == NULL)
2485 return false;
2487 this->seen_ = true;
2489 Type* t;
2490 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2491 &t);
2493 this->seen_ = false;
2495 if (r && ctype != NULL)
2497 if (!Float_expression::check_constant(val, ctype, this->location()))
2498 return false;
2499 Float_expression::constrain_float(val, ctype);
2501 *ptype = ctype != NULL ? ctype : t;
2502 return r;
2505 // Return a complex constant value.
2507 bool
2508 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2509 Type **ptype) const
2511 if (this->seen_)
2512 return false;
2514 Type* ctype;
2515 if (this->type_ != NULL)
2516 ctype = this->type_;
2517 else
2518 ctype = this->constant_->const_value()->type();
2519 if (ctype != NULL && ctype->complex_type() == NULL)
2520 return false;
2522 this->seen_ = true;
2524 Type *t;
2525 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2526 imag,
2527 &t);
2529 this->seen_ = false;
2531 if (r && ctype != NULL)
2533 if (!Complex_expression::check_constant(real, imag, ctype,
2534 this->location()))
2535 return false;
2536 Complex_expression::constrain_complex(real, imag, ctype);
2538 *ptype = ctype != NULL ? ctype : t;
2539 return r;
2542 // Return the type of the const reference.
2544 Type*
2545 Const_expression::do_type()
2547 if (this->type_ != NULL)
2548 return this->type_;
2550 Named_constant* nc = this->constant_->const_value();
2552 if (this->seen_ || nc->lowering())
2554 this->report_error(_("constant refers to itself"));
2555 this->type_ = Type::make_error_type();
2556 return this->type_;
2559 this->seen_ = true;
2561 Type* ret = nc->type();
2563 if (ret != NULL)
2565 this->seen_ = false;
2566 return ret;
2569 // During parsing, a named constant may have a NULL type, but we
2570 // must not return a NULL type here.
2571 ret = nc->expr()->type();
2573 this->seen_ = false;
2575 return ret;
2578 // Set the type of the const reference.
2580 void
2581 Const_expression::do_determine_type(const Type_context* context)
2583 Type* ctype = this->constant_->const_value()->type();
2584 Type* cetype = (ctype != NULL
2585 ? ctype
2586 : this->constant_->const_value()->expr()->type());
2587 if (ctype != NULL && !ctype->is_abstract())
2589 else if (context->type != NULL
2590 && (context->type->integer_type() != NULL
2591 || context->type->float_type() != NULL
2592 || context->type->complex_type() != NULL)
2593 && (cetype->integer_type() != NULL
2594 || cetype->float_type() != NULL
2595 || cetype->complex_type() != NULL))
2596 this->type_ = context->type;
2597 else if (context->type != NULL
2598 && context->type->is_string_type()
2599 && cetype->is_string_type())
2600 this->type_ = context->type;
2601 else if (context->type != NULL
2602 && context->type->is_boolean_type()
2603 && cetype->is_boolean_type())
2604 this->type_ = context->type;
2605 else if (!context->may_be_abstract)
2607 if (cetype->is_abstract())
2608 cetype = cetype->make_non_abstract_type();
2609 this->type_ = cetype;
2613 // Check types of a const reference.
2615 void
2616 Const_expression::do_check_types(Gogo*)
2618 if (this->type_ != NULL && this->type_->is_error_type())
2619 return;
2621 Expression* init = this->constant_->const_value()->expr();
2622 Find_named_object find_named_object(this->constant_);
2623 Expression::traverse(&init, &find_named_object);
2624 if (find_named_object.found())
2626 this->report_error(_("constant refers to itself"));
2627 this->type_ = Type::make_error_type();
2628 return;
2631 if (this->type_ == NULL || this->type_->is_abstract())
2632 return;
2634 // Check for integer overflow.
2635 if (this->type_->integer_type() != NULL)
2637 mpz_t ival;
2638 mpz_init(ival);
2639 Type* dummy;
2640 if (!this->integer_constant_value(true, ival, &dummy))
2642 mpfr_t fval;
2643 mpfr_init(fval);
2644 Expression* cexpr = this->constant_->const_value()->expr();
2645 if (cexpr->float_constant_value(fval, &dummy))
2647 if (!mpfr_integer_p(fval))
2648 this->report_error(_("floating point constant "
2649 "truncated to integer"));
2650 else
2652 mpfr_get_z(ival, fval, GMP_RNDN);
2653 Integer_expression::check_constant(ival, this->type_,
2654 this->location());
2657 mpfr_clear(fval);
2659 mpz_clear(ival);
2663 // Return a tree for the const reference.
2665 tree
2666 Const_expression::do_get_tree(Translate_context* context)
2668 Gogo* gogo = context->gogo();
2669 tree type_tree;
2670 if (this->type_ == NULL)
2671 type_tree = NULL_TREE;
2672 else
2674 type_tree = this->type_->get_tree(gogo);
2675 if (type_tree == error_mark_node)
2676 return error_mark_node;
2679 // If the type has been set for this expression, but the underlying
2680 // object is an abstract int or float, we try to get the abstract
2681 // value. Otherwise we may lose something in the conversion.
2682 if (this->type_ != NULL
2683 && this->constant_->const_value()->type()->is_abstract())
2685 Expression* expr = this->constant_->const_value()->expr();
2686 mpz_t ival;
2687 mpz_init(ival);
2688 Type* t;
2689 if (expr->integer_constant_value(true, ival, &t))
2691 tree ret = Expression::integer_constant_tree(ival, type_tree);
2692 mpz_clear(ival);
2693 return ret;
2695 mpz_clear(ival);
2697 mpfr_t fval;
2698 mpfr_init(fval);
2699 if (expr->float_constant_value(fval, &t))
2701 tree ret = Expression::float_constant_tree(fval, type_tree);
2702 mpfr_clear(fval);
2703 return ret;
2706 mpfr_t imag;
2707 mpfr_init(imag);
2708 if (expr->complex_constant_value(fval, imag, &t))
2710 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2711 mpfr_clear(fval);
2712 mpfr_clear(imag);
2713 return ret;
2715 mpfr_clear(imag);
2716 mpfr_clear(fval);
2719 tree const_tree = this->constant_->get_tree(gogo, context->function());
2720 if (this->type_ == NULL
2721 || const_tree == error_mark_node
2722 || TREE_TYPE(const_tree) == error_mark_node)
2723 return const_tree;
2725 tree ret;
2726 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2727 ret = fold_convert(type_tree, const_tree);
2728 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2729 ret = fold(convert_to_integer(type_tree, const_tree));
2730 else if (TREE_CODE(type_tree) == REAL_TYPE)
2731 ret = fold(convert_to_real(type_tree, const_tree));
2732 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2733 ret = fold(convert_to_complex(type_tree, const_tree));
2734 else
2735 gcc_unreachable();
2736 return ret;
2739 // Make a reference to a constant in an expression.
2741 Expression*
2742 Expression::make_const_reference(Named_object* constant,
2743 source_location location)
2745 return new Const_expression(constant, location);
2748 // Find a named object in an expression.
2751 Find_named_object::expression(Expression** pexpr)
2753 switch ((*pexpr)->classification())
2755 case Expression::EXPRESSION_CONST_REFERENCE:
2756 if (static_cast<Const_expression*>(*pexpr)->named_object() == this->no_)
2757 break;
2758 return TRAVERSE_CONTINUE;
2759 case Expression::EXPRESSION_VAR_REFERENCE:
2760 if ((*pexpr)->var_expression()->named_object() == this->no_)
2761 break;
2762 return TRAVERSE_CONTINUE;
2763 case Expression::EXPRESSION_FUNC_REFERENCE:
2764 if ((*pexpr)->func_expression()->named_object() == this->no_)
2765 break;
2766 return TRAVERSE_CONTINUE;
2767 default:
2768 return TRAVERSE_CONTINUE;
2770 this->found_ = true;
2771 return TRAVERSE_EXIT;
2774 // The nil value.
2776 class Nil_expression : public Expression
2778 public:
2779 Nil_expression(source_location location)
2780 : Expression(EXPRESSION_NIL, location)
2783 static Expression*
2784 do_import(Import*);
2786 protected:
2787 bool
2788 do_is_constant() const
2789 { return true; }
2791 Type*
2792 do_type()
2793 { return Type::make_nil_type(); }
2795 void
2796 do_determine_type(const Type_context*)
2799 Expression*
2800 do_copy()
2801 { return this; }
2803 tree
2804 do_get_tree(Translate_context*)
2805 { return null_pointer_node; }
2807 void
2808 do_export(Export* exp) const
2809 { exp->write_c_string("nil"); }
2812 // Import a nil expression.
2814 Expression*
2815 Nil_expression::do_import(Import* imp)
2817 imp->require_c_string("nil");
2818 return Expression::make_nil(imp->location());
2821 // Make a nil expression.
2823 Expression*
2824 Expression::make_nil(source_location location)
2826 return new Nil_expression(location);
2829 // The value of the predeclared constant iota. This is little more
2830 // than a marker. This will be lowered to an integer in
2831 // Const_expression::do_lower, which is where we know the value that
2832 // it should have.
2834 class Iota_expression : public Parser_expression
2836 public:
2837 Iota_expression(source_location location)
2838 : Parser_expression(EXPRESSION_IOTA, location)
2841 protected:
2842 Expression*
2843 do_lower(Gogo*, Named_object*, int)
2844 { gcc_unreachable(); }
2846 // There should only ever be one of these.
2847 Expression*
2848 do_copy()
2849 { gcc_unreachable(); }
2852 // Make an iota expression. This is only called for one case: the
2853 // value of the predeclared constant iota.
2855 Expression*
2856 Expression::make_iota()
2858 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2859 return &iota_expression;
2862 // A type conversion expression.
2864 class Type_conversion_expression : public Expression
2866 public:
2867 Type_conversion_expression(Type* type, Expression* expr,
2868 source_location location)
2869 : Expression(EXPRESSION_CONVERSION, location),
2870 type_(type), expr_(expr), may_convert_function_types_(false)
2873 // Return the type to which we are converting.
2874 Type*
2875 type() const
2876 { return this->type_; }
2878 // Return the expression which we are converting.
2879 Expression*
2880 expr() const
2881 { return this->expr_; }
2883 // Permit converting from one function type to another. This is
2884 // used internally for method expressions.
2885 void
2886 set_may_convert_function_types()
2888 this->may_convert_function_types_ = true;
2891 // Import a type conversion expression.
2892 static Expression*
2893 do_import(Import*);
2895 protected:
2897 do_traverse(Traverse* traverse);
2899 Expression*
2900 do_lower(Gogo*, Named_object*, int);
2902 bool
2903 do_is_constant() const
2904 { return this->expr_->is_constant(); }
2906 bool
2907 do_integer_constant_value(bool, mpz_t, Type**) const;
2909 bool
2910 do_float_constant_value(mpfr_t, Type**) const;
2912 bool
2913 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2915 bool
2916 do_string_constant_value(std::string*) const;
2918 Type*
2919 do_type()
2920 { return this->type_; }
2922 void
2923 do_determine_type(const Type_context*)
2925 Type_context subcontext(this->type_, false);
2926 this->expr_->determine_type(&subcontext);
2929 void
2930 do_check_types(Gogo*);
2932 Expression*
2933 do_copy()
2935 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2936 this->location());
2939 tree
2940 do_get_tree(Translate_context* context);
2942 void
2943 do_export(Export*) const;
2945 private:
2946 // The type to convert to.
2947 Type* type_;
2948 // The expression to convert.
2949 Expression* expr_;
2950 // True if this is permitted to convert function types. This is
2951 // used internally for method expressions.
2952 bool may_convert_function_types_;
2955 // Traversal.
2958 Type_conversion_expression::do_traverse(Traverse* traverse)
2960 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2961 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2962 return TRAVERSE_EXIT;
2963 return TRAVERSE_CONTINUE;
2966 // Convert to a constant at lowering time.
2968 Expression*
2969 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2971 Type* type = this->type_;
2972 Expression* val = this->expr_;
2973 source_location location = this->location();
2975 if (type->integer_type() != NULL)
2977 mpz_t ival;
2978 mpz_init(ival);
2979 Type* dummy;
2980 if (val->integer_constant_value(false, ival, &dummy))
2982 if (!Integer_expression::check_constant(ival, type, location))
2983 mpz_set_ui(ival, 0);
2984 Expression* ret = Expression::make_integer(&ival, type, location);
2985 mpz_clear(ival);
2986 return ret;
2989 mpfr_t fval;
2990 mpfr_init(fval);
2991 if (val->float_constant_value(fval, &dummy))
2993 if (!mpfr_integer_p(fval))
2995 error_at(location,
2996 "floating point constant truncated to integer");
2997 return Expression::make_error(location);
2999 mpfr_get_z(ival, fval, GMP_RNDN);
3000 if (!Integer_expression::check_constant(ival, type, location))
3001 mpz_set_ui(ival, 0);
3002 Expression* ret = Expression::make_integer(&ival, type, location);
3003 mpfr_clear(fval);
3004 mpz_clear(ival);
3005 return ret;
3007 mpfr_clear(fval);
3008 mpz_clear(ival);
3011 if (type->float_type() != NULL)
3013 mpfr_t fval;
3014 mpfr_init(fval);
3015 Type* dummy;
3016 if (val->float_constant_value(fval, &dummy))
3018 if (!Float_expression::check_constant(fval, type, location))
3019 mpfr_set_ui(fval, 0, GMP_RNDN);
3020 Float_expression::constrain_float(fval, type);
3021 Expression *ret = Expression::make_float(&fval, type, location);
3022 mpfr_clear(fval);
3023 return ret;
3025 mpfr_clear(fval);
3028 if (type->complex_type() != NULL)
3030 mpfr_t real;
3031 mpfr_t imag;
3032 mpfr_init(real);
3033 mpfr_init(imag);
3034 Type* dummy;
3035 if (val->complex_constant_value(real, imag, &dummy))
3037 if (!Complex_expression::check_constant(real, imag, type, location))
3039 mpfr_set_ui(real, 0, GMP_RNDN);
3040 mpfr_set_ui(imag, 0, GMP_RNDN);
3042 Complex_expression::constrain_complex(real, imag, type);
3043 Expression* ret = Expression::make_complex(&real, &imag, type,
3044 location);
3045 mpfr_clear(real);
3046 mpfr_clear(imag);
3047 return ret;
3049 mpfr_clear(real);
3050 mpfr_clear(imag);
3053 if (type->is_open_array_type() && type->named_type() == NULL)
3055 Type* element_type = type->array_type()->element_type()->forwarded();
3056 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3057 bool is_int = element_type == Type::lookup_integer_type("int");
3058 if (is_byte || is_int)
3060 std::string s;
3061 if (val->string_constant_value(&s))
3063 Expression_list* vals = new Expression_list();
3064 if (is_byte)
3066 for (std::string::const_iterator p = s.begin();
3067 p != s.end();
3068 p++)
3070 mpz_t val;
3071 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3072 Expression* v = Expression::make_integer(&val,
3073 element_type,
3074 location);
3075 vals->push_back(v);
3076 mpz_clear(val);
3079 else
3081 const char *p = s.data();
3082 const char *pend = s.data() + s.length();
3083 while (p < pend)
3085 unsigned int c;
3086 int adv = Lex::fetch_char(p, &c);
3087 if (adv == 0)
3089 warning_at(this->location(), 0,
3090 "invalid UTF-8 encoding");
3091 adv = 1;
3093 p += adv;
3094 mpz_t val;
3095 mpz_init_set_ui(val, c);
3096 Expression* v = Expression::make_integer(&val,
3097 element_type,
3098 location);
3099 vals->push_back(v);
3100 mpz_clear(val);
3104 return Expression::make_slice_composite_literal(type, vals,
3105 location);
3110 return this;
3113 // Return the constant integer value if there is one.
3115 bool
3116 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3117 mpz_t val,
3118 Type** ptype) const
3120 if (this->type_->integer_type() == NULL)
3121 return false;
3123 mpz_t ival;
3124 mpz_init(ival);
3125 Type* dummy;
3126 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3128 if (!Integer_expression::check_constant(ival, this->type_,
3129 this->location()))
3131 mpz_clear(ival);
3132 return false;
3134 mpz_set(val, ival);
3135 mpz_clear(ival);
3136 *ptype = this->type_;
3137 return true;
3139 mpz_clear(ival);
3141 mpfr_t fval;
3142 mpfr_init(fval);
3143 if (this->expr_->float_constant_value(fval, &dummy))
3145 mpfr_get_z(val, fval, GMP_RNDN);
3146 mpfr_clear(fval);
3147 if (!Integer_expression::check_constant(val, this->type_,
3148 this->location()))
3149 return false;
3150 *ptype = this->type_;
3151 return true;
3153 mpfr_clear(fval);
3155 return false;
3158 // Return the constant floating point value if there is one.
3160 bool
3161 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3162 Type** ptype) const
3164 if (this->type_->float_type() == NULL)
3165 return false;
3167 mpfr_t fval;
3168 mpfr_init(fval);
3169 Type* dummy;
3170 if (this->expr_->float_constant_value(fval, &dummy))
3172 if (!Float_expression::check_constant(fval, this->type_,
3173 this->location()))
3175 mpfr_clear(fval);
3176 return false;
3178 mpfr_set(val, fval, GMP_RNDN);
3179 mpfr_clear(fval);
3180 Float_expression::constrain_float(val, this->type_);
3181 *ptype = this->type_;
3182 return true;
3184 mpfr_clear(fval);
3186 return false;
3189 // Return the constant complex value if there is one.
3191 bool
3192 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3193 mpfr_t imag,
3194 Type **ptype) const
3196 if (this->type_->complex_type() == NULL)
3197 return false;
3199 mpfr_t rval;
3200 mpfr_t ival;
3201 mpfr_init(rval);
3202 mpfr_init(ival);
3203 Type* dummy;
3204 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3206 if (!Complex_expression::check_constant(rval, ival, this->type_,
3207 this->location()))
3209 mpfr_clear(rval);
3210 mpfr_clear(ival);
3211 return false;
3213 mpfr_set(real, rval, GMP_RNDN);
3214 mpfr_set(imag, ival, GMP_RNDN);
3215 mpfr_clear(rval);
3216 mpfr_clear(ival);
3217 Complex_expression::constrain_complex(real, imag, this->type_);
3218 *ptype = this->type_;
3219 return true;
3221 mpfr_clear(rval);
3222 mpfr_clear(ival);
3224 return false;
3227 // Return the constant string value if there is one.
3229 bool
3230 Type_conversion_expression::do_string_constant_value(std::string* val) const
3232 if (this->type_->is_string_type()
3233 && this->expr_->type()->integer_type() != NULL)
3235 mpz_t ival;
3236 mpz_init(ival);
3237 Type* dummy;
3238 if (this->expr_->integer_constant_value(false, ival, &dummy))
3240 unsigned long ulval = mpz_get_ui(ival);
3241 if (mpz_cmp_ui(ival, ulval) == 0)
3243 Lex::append_char(ulval, true, val, this->location());
3244 mpz_clear(ival);
3245 return true;
3248 mpz_clear(ival);
3251 // FIXME: Could handle conversion from const []int here.
3253 return false;
3256 // Check that types are convertible.
3258 void
3259 Type_conversion_expression::do_check_types(Gogo*)
3261 Type* type = this->type_;
3262 Type* expr_type = this->expr_->type();
3263 std::string reason;
3265 if (type->is_error_type()
3266 || type->is_undefined()
3267 || expr_type->is_error_type()
3268 || expr_type->is_undefined())
3270 // Make sure we emit an error for an undefined type.
3271 type->base();
3272 expr_type->base();
3273 this->set_is_error();
3274 return;
3277 if (this->may_convert_function_types_
3278 && type->function_type() != NULL
3279 && expr_type->function_type() != NULL)
3280 return;
3282 if (Type::are_convertible(type, expr_type, &reason))
3283 return;
3285 error_at(this->location(), "%s", reason.c_str());
3286 this->set_is_error();
3289 // Get a tree for a type conversion.
3291 tree
3292 Type_conversion_expression::do_get_tree(Translate_context* context)
3294 Gogo* gogo = context->gogo();
3295 tree type_tree = this->type_->get_tree(gogo);
3296 tree expr_tree = this->expr_->get_tree(context);
3298 if (type_tree == error_mark_node
3299 || expr_tree == error_mark_node
3300 || TREE_TYPE(expr_tree) == error_mark_node)
3301 return error_mark_node;
3303 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3304 return fold_convert(type_tree, expr_tree);
3306 Type* type = this->type_;
3307 Type* expr_type = this->expr_->type();
3308 tree ret;
3309 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3310 ret = Expression::convert_for_assignment(context, type, expr_type,
3311 expr_tree, this->location());
3312 else if (type->integer_type() != NULL)
3314 if (expr_type->integer_type() != NULL
3315 || expr_type->float_type() != NULL
3316 || expr_type->is_unsafe_pointer_type())
3317 ret = fold(convert_to_integer(type_tree, expr_tree));
3318 else
3319 gcc_unreachable();
3321 else if (type->float_type() != NULL)
3323 if (expr_type->integer_type() != NULL
3324 || expr_type->float_type() != NULL)
3325 ret = fold(convert_to_real(type_tree, expr_tree));
3326 else
3327 gcc_unreachable();
3329 else if (type->complex_type() != NULL)
3331 if (expr_type->complex_type() != NULL)
3332 ret = fold(convert_to_complex(type_tree, expr_tree));
3333 else
3334 gcc_unreachable();
3336 else if (type->is_string_type()
3337 && expr_type->integer_type() != NULL)
3339 expr_tree = fold_convert(integer_type_node, expr_tree);
3340 if (host_integerp(expr_tree, 0))
3342 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3343 std::string s;
3344 Lex::append_char(intval, true, &s, this->location());
3345 Expression* se = Expression::make_string(s, this->location());
3346 return se->get_tree(context);
3349 static tree int_to_string_fndecl;
3350 ret = Gogo::call_builtin(&int_to_string_fndecl,
3351 this->location(),
3352 "__go_int_to_string",
3354 type_tree,
3355 integer_type_node,
3356 fold_convert(integer_type_node, expr_tree));
3358 else if (type->is_string_type()
3359 && (expr_type->array_type() != NULL
3360 || (expr_type->points_to() != NULL
3361 && expr_type->points_to()->array_type() != NULL)))
3363 Type* t = expr_type;
3364 if (t->points_to() != NULL)
3366 t = t->points_to();
3367 expr_tree = build_fold_indirect_ref(expr_tree);
3369 if (!DECL_P(expr_tree))
3370 expr_tree = save_expr(expr_tree);
3371 Array_type* a = t->array_type();
3372 Type* e = a->element_type()->forwarded();
3373 gcc_assert(e->integer_type() != NULL);
3374 tree valptr = fold_convert(const_ptr_type_node,
3375 a->value_pointer_tree(gogo, expr_tree));
3376 tree len = a->length_tree(gogo, expr_tree);
3377 len = fold_convert_loc(this->location(), size_type_node, len);
3378 if (e->integer_type()->is_unsigned()
3379 && e->integer_type()->bits() == 8)
3381 static tree byte_array_to_string_fndecl;
3382 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3383 this->location(),
3384 "__go_byte_array_to_string",
3386 type_tree,
3387 const_ptr_type_node,
3388 valptr,
3389 size_type_node,
3390 len);
3392 else
3394 gcc_assert(e == Type::lookup_integer_type("int"));
3395 static tree int_array_to_string_fndecl;
3396 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3397 this->location(),
3398 "__go_int_array_to_string",
3400 type_tree,
3401 const_ptr_type_node,
3402 valptr,
3403 size_type_node,
3404 len);
3407 else if (type->is_open_array_type() && expr_type->is_string_type())
3409 Type* e = type->array_type()->element_type()->forwarded();
3410 gcc_assert(e->integer_type() != NULL);
3411 if (e->integer_type()->is_unsigned()
3412 && e->integer_type()->bits() == 8)
3414 static tree string_to_byte_array_fndecl;
3415 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3416 this->location(),
3417 "__go_string_to_byte_array",
3419 type_tree,
3420 TREE_TYPE(expr_tree),
3421 expr_tree);
3423 else
3425 gcc_assert(e == Type::lookup_integer_type("int"));
3426 static tree string_to_int_array_fndecl;
3427 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3428 this->location(),
3429 "__go_string_to_int_array",
3431 type_tree,
3432 TREE_TYPE(expr_tree),
3433 expr_tree);
3436 else if ((type->is_unsafe_pointer_type()
3437 && expr_type->points_to() != NULL)
3438 || (expr_type->is_unsafe_pointer_type()
3439 && type->points_to() != NULL))
3440 ret = fold_convert(type_tree, expr_tree);
3441 else if (type->is_unsafe_pointer_type()
3442 && expr_type->integer_type() != NULL)
3443 ret = convert_to_pointer(type_tree, expr_tree);
3444 else if (this->may_convert_function_types_
3445 && type->function_type() != NULL
3446 && expr_type->function_type() != NULL)
3447 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3448 else
3449 ret = Expression::convert_for_assignment(context, type, expr_type,
3450 expr_tree, this->location());
3452 return ret;
3455 // Output a type conversion in a constant expression.
3457 void
3458 Type_conversion_expression::do_export(Export* exp) const
3460 exp->write_c_string("convert(");
3461 exp->write_type(this->type_);
3462 exp->write_c_string(", ");
3463 this->expr_->export_expression(exp);
3464 exp->write_c_string(")");
3467 // Import a type conversion or a struct construction.
3469 Expression*
3470 Type_conversion_expression::do_import(Import* imp)
3472 imp->require_c_string("convert(");
3473 Type* type = imp->read_type();
3474 imp->require_c_string(", ");
3475 Expression* val = Expression::import_expression(imp);
3476 imp->require_c_string(")");
3477 return Expression::make_cast(type, val, imp->location());
3480 // Make a type cast expression.
3482 Expression*
3483 Expression::make_cast(Type* type, Expression* val, source_location location)
3485 if (type->is_error_type() || val->is_error_expression())
3486 return Expression::make_error(location);
3487 return new Type_conversion_expression(type, val, location);
3490 // Unary expressions.
3492 class Unary_expression : public Expression
3494 public:
3495 Unary_expression(Operator op, Expression* expr, source_location location)
3496 : Expression(EXPRESSION_UNARY, location),
3497 op_(op), escapes_(true), expr_(expr)
3500 // Return the operator.
3501 Operator
3502 op() const
3503 { return this->op_; }
3505 // Return the operand.
3506 Expression*
3507 operand() const
3508 { return this->expr_; }
3510 // Record that an address expression does not escape.
3511 void
3512 set_does_not_escape()
3514 gcc_assert(this->op_ == OPERATOR_AND);
3515 this->escapes_ = false;
3518 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3519 // could be done, false if not.
3520 static bool
3521 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3522 source_location);
3524 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3525 // could be done, false if not.
3526 static bool
3527 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3529 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3530 // true if this could be done, false if not.
3531 static bool
3532 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3533 mpfr_t imag);
3535 static Expression*
3536 do_import(Import*);
3538 protected:
3540 do_traverse(Traverse* traverse)
3541 { return Expression::traverse(&this->expr_, traverse); }
3543 Expression*
3544 do_lower(Gogo*, Named_object*, int);
3546 bool
3547 do_is_constant() const;
3549 bool
3550 do_integer_constant_value(bool, mpz_t, Type**) const;
3552 bool
3553 do_float_constant_value(mpfr_t, Type**) const;
3555 bool
3556 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3558 Type*
3559 do_type();
3561 void
3562 do_determine_type(const Type_context*);
3564 void
3565 do_check_types(Gogo*);
3567 Expression*
3568 do_copy()
3570 return Expression::make_unary(this->op_, this->expr_->copy(),
3571 this->location());
3574 bool
3575 do_is_addressable() const
3576 { return this->op_ == OPERATOR_MULT; }
3578 tree
3579 do_get_tree(Translate_context*);
3581 void
3582 do_export(Export*) const;
3584 private:
3585 // The unary operator to apply.
3586 Operator op_;
3587 // Normally true. False if this is an address expression which does
3588 // not escape the current function.
3589 bool escapes_;
3590 // The operand.
3591 Expression* expr_;
3594 // If we are taking the address of a composite literal, and the
3595 // contents are not constant, then we want to make a heap composite
3596 // instead.
3598 Expression*
3599 Unary_expression::do_lower(Gogo*, Named_object*, int)
3601 source_location loc = this->location();
3602 Operator op = this->op_;
3603 Expression* expr = this->expr_;
3605 if (op == OPERATOR_MULT && expr->is_type_expression())
3606 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3608 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3609 // moving x to the heap. FIXME: Is it worth doing a real escape
3610 // analysis here? This case is found in math/unsafe.go and is
3611 // therefore worth special casing.
3612 if (op == OPERATOR_MULT)
3614 Expression* e = expr;
3615 while (e->classification() == EXPRESSION_CONVERSION)
3617 Type_conversion_expression* te
3618 = static_cast<Type_conversion_expression*>(e);
3619 e = te->expr();
3622 if (e->classification() == EXPRESSION_UNARY)
3624 Unary_expression* ue = static_cast<Unary_expression*>(e);
3625 if (ue->op_ == OPERATOR_AND)
3627 if (e == expr)
3629 // *&x == x.
3630 return ue->expr_;
3632 ue->set_does_not_escape();
3637 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3638 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3640 Expression* ret = NULL;
3642 mpz_t eval;
3643 mpz_init(eval);
3644 Type* etype;
3645 if (expr->integer_constant_value(false, eval, &etype))
3647 mpz_t val;
3648 mpz_init(val);
3649 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3650 ret = Expression::make_integer(&val, etype, loc);
3651 mpz_clear(val);
3653 mpz_clear(eval);
3654 if (ret != NULL)
3655 return ret;
3657 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3659 mpfr_t fval;
3660 mpfr_init(fval);
3661 Type* ftype;
3662 if (expr->float_constant_value(fval, &ftype))
3664 mpfr_t val;
3665 mpfr_init(val);
3666 if (Unary_expression::eval_float(op, fval, val))
3667 ret = Expression::make_float(&val, ftype, loc);
3668 mpfr_clear(val);
3670 if (ret != NULL)
3672 mpfr_clear(fval);
3673 return ret;
3676 mpfr_t ival;
3677 mpfr_init(ival);
3678 if (expr->complex_constant_value(fval, ival, &ftype))
3680 mpfr_t real;
3681 mpfr_t imag;
3682 mpfr_init(real);
3683 mpfr_init(imag);
3684 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3685 ret = Expression::make_complex(&real, &imag, ftype, loc);
3686 mpfr_clear(real);
3687 mpfr_clear(imag);
3689 mpfr_clear(ival);
3690 mpfr_clear(fval);
3691 if (ret != NULL)
3692 return ret;
3696 return this;
3699 // Return whether a unary expression is a constant.
3701 bool
3702 Unary_expression::do_is_constant() const
3704 if (this->op_ == OPERATOR_MULT)
3706 // Indirecting through a pointer is only constant if the object
3707 // to which the expression points is constant, but we currently
3708 // have no way to determine that.
3709 return false;
3711 else if (this->op_ == OPERATOR_AND)
3713 // Taking the address of a variable is constant if it is a
3714 // global variable, not constant otherwise. In other cases
3715 // taking the address is probably not a constant.
3716 Var_expression* ve = this->expr_->var_expression();
3717 if (ve != NULL)
3719 Named_object* no = ve->named_object();
3720 return no->is_variable() && no->var_value()->is_global();
3722 return false;
3724 else
3725 return this->expr_->is_constant();
3728 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3729 // UVAL, if known; it may be NULL. Return true if this could be done,
3730 // false if not.
3732 bool
3733 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3734 source_location location)
3736 switch (op)
3738 case OPERATOR_PLUS:
3739 mpz_set(val, uval);
3740 return true;
3741 case OPERATOR_MINUS:
3742 mpz_neg(val, uval);
3743 return Integer_expression::check_constant(val, utype, location);
3744 case OPERATOR_NOT:
3745 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3746 return true;
3747 case OPERATOR_XOR:
3748 if (utype == NULL
3749 || utype->integer_type() == NULL
3750 || utype->integer_type()->is_abstract())
3751 mpz_com(val, uval);
3752 else
3754 // The number of HOST_WIDE_INTs that it takes to represent
3755 // UVAL.
3756 size_t count = ((mpz_sizeinbase(uval, 2)
3757 + HOST_BITS_PER_WIDE_INT
3758 - 1)
3759 / HOST_BITS_PER_WIDE_INT);
3761 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3762 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3764 size_t ecount;
3765 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3766 gcc_assert(ecount <= count);
3768 // Trim down to the number of words required by the type.
3769 size_t obits = utype->integer_type()->bits();
3770 if (!utype->integer_type()->is_unsigned())
3771 ++obits;
3772 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3773 / HOST_BITS_PER_WIDE_INT);
3774 gcc_assert(ocount <= ocount);
3776 for (size_t i = 0; i < ocount; ++i)
3777 phwi[i] = ~phwi[i];
3779 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3780 if (clearbits != 0)
3781 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3782 >> clearbits);
3784 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3786 delete[] phwi;
3788 return Integer_expression::check_constant(val, utype, location);
3789 case OPERATOR_AND:
3790 case OPERATOR_MULT:
3791 return false;
3792 default:
3793 gcc_unreachable();
3797 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3798 // could be done, false if not.
3800 bool
3801 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3803 switch (op)
3805 case OPERATOR_PLUS:
3806 mpfr_set(val, uval, GMP_RNDN);
3807 return true;
3808 case OPERATOR_MINUS:
3809 mpfr_neg(val, uval, GMP_RNDN);
3810 return true;
3811 case OPERATOR_NOT:
3812 case OPERATOR_XOR:
3813 case OPERATOR_AND:
3814 case OPERATOR_MULT:
3815 return false;
3816 default:
3817 gcc_unreachable();
3821 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3822 // if this could be done, false if not.
3824 bool
3825 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3826 mpfr_t real, mpfr_t imag)
3828 switch (op)
3830 case OPERATOR_PLUS:
3831 mpfr_set(real, rval, GMP_RNDN);
3832 mpfr_set(imag, ival, GMP_RNDN);
3833 return true;
3834 case OPERATOR_MINUS:
3835 mpfr_neg(real, rval, GMP_RNDN);
3836 mpfr_neg(imag, ival, GMP_RNDN);
3837 return true;
3838 case OPERATOR_NOT:
3839 case OPERATOR_XOR:
3840 case OPERATOR_AND:
3841 case OPERATOR_MULT:
3842 return false;
3843 default:
3844 gcc_unreachable();
3848 // Return the integral constant value of a unary expression, if it has one.
3850 bool
3851 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3852 Type** ptype) const
3854 mpz_t uval;
3855 mpz_init(uval);
3856 bool ret;
3857 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3858 ret = false;
3859 else
3860 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3861 this->location());
3862 mpz_clear(uval);
3863 return ret;
3866 // Return the floating point constant value of a unary expression, if
3867 // it has one.
3869 bool
3870 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3872 mpfr_t uval;
3873 mpfr_init(uval);
3874 bool ret;
3875 if (!this->expr_->float_constant_value(uval, ptype))
3876 ret = false;
3877 else
3878 ret = Unary_expression::eval_float(this->op_, uval, val);
3879 mpfr_clear(uval);
3880 return ret;
3883 // Return the complex constant value of a unary expression, if it has
3884 // one.
3886 bool
3887 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3888 Type** ptype) const
3890 mpfr_t rval;
3891 mpfr_t ival;
3892 mpfr_init(rval);
3893 mpfr_init(ival);
3894 bool ret;
3895 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3896 ret = false;
3897 else
3898 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3899 mpfr_clear(rval);
3900 mpfr_clear(ival);
3901 return ret;
3904 // Return the type of a unary expression.
3906 Type*
3907 Unary_expression::do_type()
3909 switch (this->op_)
3911 case OPERATOR_PLUS:
3912 case OPERATOR_MINUS:
3913 case OPERATOR_NOT:
3914 case OPERATOR_XOR:
3915 return this->expr_->type();
3917 case OPERATOR_AND:
3918 return Type::make_pointer_type(this->expr_->type());
3920 case OPERATOR_MULT:
3922 Type* subtype = this->expr_->type();
3923 Type* points_to = subtype->points_to();
3924 if (points_to == NULL)
3925 return Type::make_error_type();
3926 return points_to;
3929 default:
3930 gcc_unreachable();
3934 // Determine abstract types for a unary expression.
3936 void
3937 Unary_expression::do_determine_type(const Type_context* context)
3939 switch (this->op_)
3941 case OPERATOR_PLUS:
3942 case OPERATOR_MINUS:
3943 case OPERATOR_NOT:
3944 case OPERATOR_XOR:
3945 this->expr_->determine_type(context);
3946 break;
3948 case OPERATOR_AND:
3949 // Taking the address of something.
3951 Type* subtype = (context->type == NULL
3952 ? NULL
3953 : context->type->points_to());
3954 Type_context subcontext(subtype, false);
3955 this->expr_->determine_type(&subcontext);
3957 break;
3959 case OPERATOR_MULT:
3960 // Indirecting through a pointer.
3962 Type* subtype = (context->type == NULL
3963 ? NULL
3964 : Type::make_pointer_type(context->type));
3965 Type_context subcontext(subtype, false);
3966 this->expr_->determine_type(&subcontext);
3968 break;
3970 default:
3971 gcc_unreachable();
3975 // Check types for a unary expression.
3977 void
3978 Unary_expression::do_check_types(Gogo*)
3980 Type* type = this->expr_->type();
3981 if (type->is_error_type())
3983 this->set_is_error();
3984 return;
3987 switch (this->op_)
3989 case OPERATOR_PLUS:
3990 case OPERATOR_MINUS:
3991 if (type->integer_type() == NULL
3992 && type->float_type() == NULL
3993 && type->complex_type() == NULL)
3994 this->report_error(_("expected numeric type"));
3995 break;
3997 case OPERATOR_NOT:
3998 case OPERATOR_XOR:
3999 if (type->integer_type() == NULL
4000 && !type->is_boolean_type())
4001 this->report_error(_("expected integer or boolean type"));
4002 break;
4004 case OPERATOR_AND:
4005 if (!this->expr_->is_addressable())
4006 this->report_error(_("invalid operand for unary %<&%>"));
4007 else
4008 this->expr_->address_taken(this->escapes_);
4009 break;
4011 case OPERATOR_MULT:
4012 // Indirecting through a pointer.
4013 if (type->points_to() == NULL)
4014 this->report_error(_("expected pointer"));
4015 break;
4017 default:
4018 gcc_unreachable();
4022 // Get a tree for a unary expression.
4024 tree
4025 Unary_expression::do_get_tree(Translate_context* context)
4027 tree expr = this->expr_->get_tree(context);
4028 if (expr == error_mark_node)
4029 return error_mark_node;
4031 source_location loc = this->location();
4032 switch (this->op_)
4034 case OPERATOR_PLUS:
4035 return expr;
4037 case OPERATOR_MINUS:
4039 tree type = TREE_TYPE(expr);
4040 tree compute_type = excess_precision_type(type);
4041 if (compute_type != NULL_TREE)
4042 expr = ::convert(compute_type, expr);
4043 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4044 (compute_type != NULL_TREE
4045 ? compute_type
4046 : type),
4047 expr);
4048 if (compute_type != NULL_TREE)
4049 ret = ::convert(type, ret);
4050 return ret;
4053 case OPERATOR_NOT:
4054 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4055 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4056 else
4057 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4058 build_int_cst(TREE_TYPE(expr), 0));
4060 case OPERATOR_XOR:
4061 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4063 case OPERATOR_AND:
4064 // We should not see a non-constant constructor here; cases
4065 // where we would see one should have been moved onto the heap
4066 // at parse time. Taking the address of a nonconstant
4067 // constructor will not do what the programmer expects.
4068 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4069 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4071 // Build a decl for a constant constructor.
4072 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4074 tree decl = build_decl(this->location(), VAR_DECL,
4075 create_tmp_var_name("C"), TREE_TYPE(expr));
4076 DECL_EXTERNAL(decl) = 0;
4077 TREE_PUBLIC(decl) = 0;
4078 TREE_READONLY(decl) = 1;
4079 TREE_CONSTANT(decl) = 1;
4080 TREE_STATIC(decl) = 1;
4081 TREE_ADDRESSABLE(decl) = 1;
4082 DECL_ARTIFICIAL(decl) = 1;
4083 DECL_INITIAL(decl) = expr;
4084 rest_of_decl_compilation(decl, 1, 0);
4085 expr = decl;
4088 return build_fold_addr_expr_loc(loc, expr);
4090 case OPERATOR_MULT:
4092 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4094 // If we are dereferencing the pointer to a large struct, we
4095 // need to check for nil. We don't bother to check for small
4096 // structs because we expect the system to crash on a nil
4097 // pointer dereference.
4098 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4099 if (s == -1 || s >= 4096)
4101 if (!DECL_P(expr))
4102 expr = save_expr(expr);
4103 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4104 expr,
4105 fold_convert(TREE_TYPE(expr),
4106 null_pointer_node));
4107 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4108 loc);
4109 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4110 build3(COND_EXPR, void_type_node,
4111 compare, crash, NULL_TREE),
4112 expr);
4115 // If the type of EXPR is a recursive pointer type, then we
4116 // need to insert a cast before indirecting.
4117 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4119 Type* pt = this->expr_->type()->points_to();
4120 tree ind = pt->get_tree(context->gogo());
4121 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4124 return build_fold_indirect_ref_loc(loc, expr);
4127 default:
4128 gcc_unreachable();
4132 // Export a unary expression.
4134 void
4135 Unary_expression::do_export(Export* exp) const
4137 switch (this->op_)
4139 case OPERATOR_PLUS:
4140 exp->write_c_string("+ ");
4141 break;
4142 case OPERATOR_MINUS:
4143 exp->write_c_string("- ");
4144 break;
4145 case OPERATOR_NOT:
4146 exp->write_c_string("! ");
4147 break;
4148 case OPERATOR_XOR:
4149 exp->write_c_string("^ ");
4150 break;
4151 case OPERATOR_AND:
4152 case OPERATOR_MULT:
4153 default:
4154 gcc_unreachable();
4156 this->expr_->export_expression(exp);
4159 // Import a unary expression.
4161 Expression*
4162 Unary_expression::do_import(Import* imp)
4164 Operator op;
4165 switch (imp->get_char())
4167 case '+':
4168 op = OPERATOR_PLUS;
4169 break;
4170 case '-':
4171 op = OPERATOR_MINUS;
4172 break;
4173 case '!':
4174 op = OPERATOR_NOT;
4175 break;
4176 case '^':
4177 op = OPERATOR_XOR;
4178 break;
4179 default:
4180 gcc_unreachable();
4182 imp->require_c_string(" ");
4183 Expression* expr = Expression::import_expression(imp);
4184 return Expression::make_unary(op, expr, imp->location());
4187 // Make a unary expression.
4189 Expression*
4190 Expression::make_unary(Operator op, Expression* expr, source_location location)
4192 return new Unary_expression(op, expr, location);
4195 // If this is an indirection through a pointer, return the expression
4196 // being pointed through. Otherwise return this.
4198 Expression*
4199 Expression::deref()
4201 if (this->classification_ == EXPRESSION_UNARY)
4203 Unary_expression* ue = static_cast<Unary_expression*>(this);
4204 if (ue->op() == OPERATOR_MULT)
4205 return ue->operand();
4207 return this;
4210 // Class Binary_expression.
4212 // Traversal.
4215 Binary_expression::do_traverse(Traverse* traverse)
4217 int t = Expression::traverse(&this->left_, traverse);
4218 if (t == TRAVERSE_EXIT)
4219 return TRAVERSE_EXIT;
4220 return Expression::traverse(&this->right_, traverse);
4223 // Compare integer constants according to OP.
4225 bool
4226 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4227 mpz_t right_val)
4229 int i = mpz_cmp(left_val, right_val);
4230 switch (op)
4232 case OPERATOR_EQEQ:
4233 return i == 0;
4234 case OPERATOR_NOTEQ:
4235 return i != 0;
4236 case OPERATOR_LT:
4237 return i < 0;
4238 case OPERATOR_LE:
4239 return i <= 0;
4240 case OPERATOR_GT:
4241 return i > 0;
4242 case OPERATOR_GE:
4243 return i >= 0;
4244 default:
4245 gcc_unreachable();
4249 // Compare floating point constants according to OP.
4251 bool
4252 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4253 mpfr_t right_val)
4255 int i;
4256 if (type == NULL)
4257 i = mpfr_cmp(left_val, right_val);
4258 else
4260 mpfr_t lv;
4261 mpfr_init_set(lv, left_val, GMP_RNDN);
4262 mpfr_t rv;
4263 mpfr_init_set(rv, right_val, GMP_RNDN);
4264 Float_expression::constrain_float(lv, type);
4265 Float_expression::constrain_float(rv, type);
4266 i = mpfr_cmp(lv, rv);
4267 mpfr_clear(lv);
4268 mpfr_clear(rv);
4270 switch (op)
4272 case OPERATOR_EQEQ:
4273 return i == 0;
4274 case OPERATOR_NOTEQ:
4275 return i != 0;
4276 case OPERATOR_LT:
4277 return i < 0;
4278 case OPERATOR_LE:
4279 return i <= 0;
4280 case OPERATOR_GT:
4281 return i > 0;
4282 case OPERATOR_GE:
4283 return i >= 0;
4284 default:
4285 gcc_unreachable();
4289 // Compare complex constants according to OP. Complex numbers may
4290 // only be compared for equality.
4292 bool
4293 Binary_expression::compare_complex(Operator op, Type* type,
4294 mpfr_t left_real, mpfr_t left_imag,
4295 mpfr_t right_real, mpfr_t right_imag)
4297 bool is_equal;
4298 if (type == NULL)
4299 is_equal = (mpfr_cmp(left_real, right_real) == 0
4300 && mpfr_cmp(left_imag, right_imag) == 0);
4301 else
4303 mpfr_t lr;
4304 mpfr_t li;
4305 mpfr_init_set(lr, left_real, GMP_RNDN);
4306 mpfr_init_set(li, left_imag, GMP_RNDN);
4307 mpfr_t rr;
4308 mpfr_t ri;
4309 mpfr_init_set(rr, right_real, GMP_RNDN);
4310 mpfr_init_set(ri, right_imag, GMP_RNDN);
4311 Complex_expression::constrain_complex(lr, li, type);
4312 Complex_expression::constrain_complex(rr, ri, type);
4313 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4314 mpfr_clear(lr);
4315 mpfr_clear(li);
4316 mpfr_clear(rr);
4317 mpfr_clear(ri);
4319 switch (op)
4321 case OPERATOR_EQEQ:
4322 return is_equal;
4323 case OPERATOR_NOTEQ:
4324 return !is_equal;
4325 default:
4326 gcc_unreachable();
4330 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4331 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4332 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4333 // this could be done, false if not.
4335 bool
4336 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4337 Type* right_type, mpz_t right_val,
4338 source_location location, mpz_t val)
4340 bool is_shift_op = false;
4341 switch (op)
4343 case OPERATOR_OROR:
4344 case OPERATOR_ANDAND:
4345 case OPERATOR_EQEQ:
4346 case OPERATOR_NOTEQ:
4347 case OPERATOR_LT:
4348 case OPERATOR_LE:
4349 case OPERATOR_GT:
4350 case OPERATOR_GE:
4351 // These return boolean values. We should probably handle them
4352 // anyhow in case a type conversion is used on the result.
4353 return false;
4354 case OPERATOR_PLUS:
4355 mpz_add(val, left_val, right_val);
4356 break;
4357 case OPERATOR_MINUS:
4358 mpz_sub(val, left_val, right_val);
4359 break;
4360 case OPERATOR_OR:
4361 mpz_ior(val, left_val, right_val);
4362 break;
4363 case OPERATOR_XOR:
4364 mpz_xor(val, left_val, right_val);
4365 break;
4366 case OPERATOR_MULT:
4367 mpz_mul(val, left_val, right_val);
4368 break;
4369 case OPERATOR_DIV:
4370 if (mpz_sgn(right_val) != 0)
4371 mpz_tdiv_q(val, left_val, right_val);
4372 else
4374 error_at(location, "division by zero");
4375 mpz_set_ui(val, 0);
4376 return true;
4378 break;
4379 case OPERATOR_MOD:
4380 if (mpz_sgn(right_val) != 0)
4381 mpz_tdiv_r(val, left_val, right_val);
4382 else
4384 error_at(location, "division by zero");
4385 mpz_set_ui(val, 0);
4386 return true;
4388 break;
4389 case OPERATOR_LSHIFT:
4391 unsigned long shift = mpz_get_ui(right_val);
4392 if (mpz_cmp_ui(right_val, shift) != 0)
4394 error_at(location, "shift count overflow");
4395 mpz_set_ui(val, 0);
4396 return true;
4398 mpz_mul_2exp(val, left_val, shift);
4399 is_shift_op = true;
4400 break;
4402 break;
4403 case OPERATOR_RSHIFT:
4405 unsigned long shift = mpz_get_ui(right_val);
4406 if (mpz_cmp_ui(right_val, shift) != 0)
4408 error_at(location, "shift count overflow");
4409 mpz_set_ui(val, 0);
4410 return true;
4412 if (mpz_cmp_ui(left_val, 0) >= 0)
4413 mpz_tdiv_q_2exp(val, left_val, shift);
4414 else
4415 mpz_fdiv_q_2exp(val, left_val, shift);
4416 is_shift_op = true;
4417 break;
4419 break;
4420 case OPERATOR_AND:
4421 mpz_and(val, left_val, right_val);
4422 break;
4423 case OPERATOR_BITCLEAR:
4425 mpz_t tval;
4426 mpz_init(tval);
4427 mpz_com(tval, right_val);
4428 mpz_and(val, left_val, tval);
4429 mpz_clear(tval);
4431 break;
4432 default:
4433 gcc_unreachable();
4436 Type* type = left_type;
4437 if (!is_shift_op)
4439 if (type == NULL)
4440 type = right_type;
4441 else if (type != right_type && right_type != NULL)
4443 if (type->is_abstract())
4444 type = right_type;
4445 else if (!right_type->is_abstract())
4447 // This look like a type error which should be diagnosed
4448 // elsewhere. Don't do anything here, to avoid an
4449 // unhelpful chain of error messages.
4450 return true;
4455 if (type != NULL && !type->is_abstract())
4457 // We have to check the operands too, as we have implicitly
4458 // coerced them to TYPE.
4459 if ((type != left_type
4460 && !Integer_expression::check_constant(left_val, type, location))
4461 || (!is_shift_op
4462 && type != right_type
4463 && !Integer_expression::check_constant(right_val, type,
4464 location))
4465 || !Integer_expression::check_constant(val, type, location))
4466 mpz_set_ui(val, 0);
4469 return true;
4472 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4473 // Return true if this could be done, false if not.
4475 bool
4476 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4477 Type* right_type, mpfr_t right_val,
4478 mpfr_t val, source_location location)
4480 switch (op)
4482 case OPERATOR_OROR:
4483 case OPERATOR_ANDAND:
4484 case OPERATOR_EQEQ:
4485 case OPERATOR_NOTEQ:
4486 case OPERATOR_LT:
4487 case OPERATOR_LE:
4488 case OPERATOR_GT:
4489 case OPERATOR_GE:
4490 // These return boolean values. We should probably handle them
4491 // anyhow in case a type conversion is used on the result.
4492 return false;
4493 case OPERATOR_PLUS:
4494 mpfr_add(val, left_val, right_val, GMP_RNDN);
4495 break;
4496 case OPERATOR_MINUS:
4497 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4498 break;
4499 case OPERATOR_OR:
4500 case OPERATOR_XOR:
4501 case OPERATOR_AND:
4502 case OPERATOR_BITCLEAR:
4503 return false;
4504 case OPERATOR_MULT:
4505 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4506 break;
4507 case OPERATOR_DIV:
4508 if (mpfr_zero_p(right_val))
4509 error_at(location, "division by zero");
4510 mpfr_div(val, left_val, right_val, GMP_RNDN);
4511 break;
4512 case OPERATOR_MOD:
4513 return false;
4514 case OPERATOR_LSHIFT:
4515 case OPERATOR_RSHIFT:
4516 return false;
4517 default:
4518 gcc_unreachable();
4521 Type* type = left_type;
4522 if (type == NULL)
4523 type = right_type;
4524 else if (type != right_type && right_type != NULL)
4526 if (type->is_abstract())
4527 type = right_type;
4528 else if (!right_type->is_abstract())
4530 // This looks like a type error which should be diagnosed
4531 // elsewhere. Don't do anything here, to avoid an unhelpful
4532 // chain of error messages.
4533 return true;
4537 if (type != NULL && !type->is_abstract())
4539 if ((type != left_type
4540 && !Float_expression::check_constant(left_val, type, location))
4541 || (type != right_type
4542 && !Float_expression::check_constant(right_val, type,
4543 location))
4544 || !Float_expression::check_constant(val, type, location))
4545 mpfr_set_ui(val, 0, GMP_RNDN);
4548 return true;
4551 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4552 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4553 // could be done, false if not.
4555 bool
4556 Binary_expression::eval_complex(Operator op, Type* left_type,
4557 mpfr_t left_real, mpfr_t left_imag,
4558 Type *right_type,
4559 mpfr_t right_real, mpfr_t right_imag,
4560 mpfr_t real, mpfr_t imag,
4561 source_location location)
4563 switch (op)
4565 case OPERATOR_OROR:
4566 case OPERATOR_ANDAND:
4567 case OPERATOR_EQEQ:
4568 case OPERATOR_NOTEQ:
4569 case OPERATOR_LT:
4570 case OPERATOR_LE:
4571 case OPERATOR_GT:
4572 case OPERATOR_GE:
4573 // These return boolean values and must be handled differently.
4574 return false;
4575 case OPERATOR_PLUS:
4576 mpfr_add(real, left_real, right_real, GMP_RNDN);
4577 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4578 break;
4579 case OPERATOR_MINUS:
4580 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4581 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4582 break;
4583 case OPERATOR_OR:
4584 case OPERATOR_XOR:
4585 case OPERATOR_AND:
4586 case OPERATOR_BITCLEAR:
4587 return false;
4588 case OPERATOR_MULT:
4590 // You might think that multiplying two complex numbers would
4591 // be simple, and you would be right, until you start to think
4592 // about getting the right answer for infinity. If one
4593 // operand here is infinity and the other is anything other
4594 // than zero or NaN, then we are going to wind up subtracting
4595 // two infinity values. That will give us a NaN, but the
4596 // correct answer is infinity.
4598 mpfr_t lrrr;
4599 mpfr_init(lrrr);
4600 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4602 mpfr_t lrri;
4603 mpfr_init(lrri);
4604 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4606 mpfr_t lirr;
4607 mpfr_init(lirr);
4608 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4610 mpfr_t liri;
4611 mpfr_init(liri);
4612 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4614 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4615 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4617 // If we get NaN on both sides, check whether it should really
4618 // be infinity. The rule is that if either side of the
4619 // complex number is infinity, then the whole value is
4620 // infinity, even if the other side is NaN. So the only case
4621 // we have to fix is the one in which both sides are NaN.
4622 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4623 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4624 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4626 bool is_infinity = false;
4628 mpfr_t lr;
4629 mpfr_t li;
4630 mpfr_init_set(lr, left_real, GMP_RNDN);
4631 mpfr_init_set(li, left_imag, GMP_RNDN);
4633 mpfr_t rr;
4634 mpfr_t ri;
4635 mpfr_init_set(rr, right_real, GMP_RNDN);
4636 mpfr_init_set(ri, right_imag, GMP_RNDN);
4638 // If the left side is infinity, then the result is
4639 // infinity.
4640 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4642 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4643 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4644 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4645 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4646 if (mpfr_nan_p(rr))
4648 mpfr_set_ui(rr, 0, GMP_RNDN);
4649 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4651 if (mpfr_nan_p(ri))
4653 mpfr_set_ui(ri, 0, GMP_RNDN);
4654 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4656 is_infinity = true;
4659 // If the right side is infinity, then the result is
4660 // infinity.
4661 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4663 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4664 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4665 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4666 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4667 if (mpfr_nan_p(lr))
4669 mpfr_set_ui(lr, 0, GMP_RNDN);
4670 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4672 if (mpfr_nan_p(li))
4674 mpfr_set_ui(li, 0, GMP_RNDN);
4675 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4677 is_infinity = true;
4680 // If we got an overflow in the intermediate computations,
4681 // then the result is infinity.
4682 if (!is_infinity
4683 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4684 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4686 if (mpfr_nan_p(lr))
4688 mpfr_set_ui(lr, 0, GMP_RNDN);
4689 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4691 if (mpfr_nan_p(li))
4693 mpfr_set_ui(li, 0, GMP_RNDN);
4694 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4696 if (mpfr_nan_p(rr))
4698 mpfr_set_ui(rr, 0, GMP_RNDN);
4699 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4701 if (mpfr_nan_p(ri))
4703 mpfr_set_ui(ri, 0, GMP_RNDN);
4704 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4706 is_infinity = true;
4709 if (is_infinity)
4711 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4712 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4713 mpfr_mul(lirr, li, rr, GMP_RNDN);
4714 mpfr_mul(liri, li, ri, GMP_RNDN);
4715 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4716 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4717 mpfr_set_inf(real, mpfr_sgn(real));
4718 mpfr_set_inf(imag, mpfr_sgn(imag));
4721 mpfr_clear(lr);
4722 mpfr_clear(li);
4723 mpfr_clear(rr);
4724 mpfr_clear(ri);
4727 mpfr_clear(lrrr);
4728 mpfr_clear(lrri);
4729 mpfr_clear(lirr);
4730 mpfr_clear(liri);
4732 break;
4733 case OPERATOR_DIV:
4735 // For complex division we want to avoid having an
4736 // intermediate overflow turn the whole result in a NaN. We
4737 // scale the values to try to avoid this.
4739 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4740 error_at(location, "division by zero");
4742 mpfr_t rra;
4743 mpfr_t ria;
4744 mpfr_init(rra);
4745 mpfr_init(ria);
4746 mpfr_abs(rra, right_real, GMP_RNDN);
4747 mpfr_abs(ria, right_imag, GMP_RNDN);
4748 mpfr_t t;
4749 mpfr_init(t);
4750 mpfr_max(t, rra, ria, GMP_RNDN);
4752 mpfr_t rr;
4753 mpfr_t ri;
4754 mpfr_init_set(rr, right_real, GMP_RNDN);
4755 mpfr_init_set(ri, right_imag, GMP_RNDN);
4756 long ilogbw = 0;
4757 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4759 ilogbw = mpfr_get_exp(t);
4760 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4761 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4764 mpfr_t denom;
4765 mpfr_init(denom);
4766 mpfr_mul(denom, rr, rr, GMP_RNDN);
4767 mpfr_mul(t, ri, ri, GMP_RNDN);
4768 mpfr_add(denom, denom, t, GMP_RNDN);
4770 mpfr_mul(real, left_real, rr, GMP_RNDN);
4771 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4772 mpfr_add(real, real, t, GMP_RNDN);
4773 mpfr_div(real, real, denom, GMP_RNDN);
4774 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4776 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4777 mpfr_mul(t, left_real, ri, GMP_RNDN);
4778 mpfr_sub(imag, imag, t, GMP_RNDN);
4779 mpfr_div(imag, imag, denom, GMP_RNDN);
4780 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4782 // If we wind up with NaN on both sides, check whether we
4783 // should really have infinity. The rule is that if either
4784 // side of the complex number is infinity, then the whole
4785 // value is infinity, even if the other side is NaN. So the
4786 // only case we have to fix is the one in which both sides are
4787 // NaN.
4788 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4789 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4790 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4792 if (mpfr_zero_p(denom))
4794 mpfr_set_inf(real, mpfr_sgn(rr));
4795 mpfr_mul(real, real, left_real, GMP_RNDN);
4796 mpfr_set_inf(imag, mpfr_sgn(rr));
4797 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4799 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4800 && mpfr_number_p(rr) && mpfr_number_p(ri))
4802 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4803 mpfr_copysign(t, t, left_real, GMP_RNDN);
4805 mpfr_t t2;
4806 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4807 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4809 mpfr_t t3;
4810 mpfr_init(t3);
4811 mpfr_mul(t3, t, rr, GMP_RNDN);
4813 mpfr_t t4;
4814 mpfr_init(t4);
4815 mpfr_mul(t4, t2, ri, GMP_RNDN);
4817 mpfr_add(t3, t3, t4, GMP_RNDN);
4818 mpfr_set_inf(real, mpfr_sgn(t3));
4820 mpfr_mul(t3, t2, rr, GMP_RNDN);
4821 mpfr_mul(t4, t, ri, GMP_RNDN);
4822 mpfr_sub(t3, t3, t4, GMP_RNDN);
4823 mpfr_set_inf(imag, mpfr_sgn(t3));
4825 mpfr_clear(t2);
4826 mpfr_clear(t3);
4827 mpfr_clear(t4);
4829 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4830 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4832 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4833 mpfr_copysign(t, t, rr, GMP_RNDN);
4835 mpfr_t t2;
4836 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4837 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4839 mpfr_t t3;
4840 mpfr_init(t3);
4841 mpfr_mul(t3, left_real, t, GMP_RNDN);
4843 mpfr_t t4;
4844 mpfr_init(t4);
4845 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4847 mpfr_add(t3, t3, t4, GMP_RNDN);
4848 mpfr_set_ui(real, 0, GMP_RNDN);
4849 mpfr_mul(real, real, t3, GMP_RNDN);
4851 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4852 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4853 mpfr_sub(t3, t3, t4, GMP_RNDN);
4854 mpfr_set_ui(imag, 0, GMP_RNDN);
4855 mpfr_mul(imag, imag, t3, GMP_RNDN);
4857 mpfr_clear(t2);
4858 mpfr_clear(t3);
4859 mpfr_clear(t4);
4863 mpfr_clear(denom);
4864 mpfr_clear(rr);
4865 mpfr_clear(ri);
4866 mpfr_clear(t);
4867 mpfr_clear(rra);
4868 mpfr_clear(ria);
4870 break;
4871 case OPERATOR_MOD:
4872 return false;
4873 case OPERATOR_LSHIFT:
4874 case OPERATOR_RSHIFT:
4875 return false;
4876 default:
4877 gcc_unreachable();
4880 Type* type = left_type;
4881 if (type == NULL)
4882 type = right_type;
4883 else if (type != right_type && right_type != NULL)
4885 if (type->is_abstract())
4886 type = right_type;
4887 else if (!right_type->is_abstract())
4889 // This looks like a type error which should be diagnosed
4890 // elsewhere. Don't do anything here, to avoid an unhelpful
4891 // chain of error messages.
4892 return true;
4896 if (type != NULL && !type->is_abstract())
4898 if ((type != left_type
4899 && !Complex_expression::check_constant(left_real, left_imag,
4900 type, location))
4901 || (type != right_type
4902 && !Complex_expression::check_constant(right_real, right_imag,
4903 type, location))
4904 || !Complex_expression::check_constant(real, imag, type,
4905 location))
4907 mpfr_set_ui(real, 0, GMP_RNDN);
4908 mpfr_set_ui(imag, 0, GMP_RNDN);
4912 return true;
4915 // Lower a binary expression. We have to evaluate constant
4916 // expressions now, in order to implement Go's unlimited precision
4917 // constants.
4919 Expression*
4920 Binary_expression::do_lower(Gogo*, Named_object*, int)
4922 source_location location = this->location();
4923 Operator op = this->op_;
4924 Expression* left = this->left_;
4925 Expression* right = this->right_;
4927 const bool is_comparison = (op == OPERATOR_EQEQ
4928 || op == OPERATOR_NOTEQ
4929 || op == OPERATOR_LT
4930 || op == OPERATOR_LE
4931 || op == OPERATOR_GT
4932 || op == OPERATOR_GE);
4934 // Integer constant expressions.
4936 mpz_t left_val;
4937 mpz_init(left_val);
4938 Type* left_type;
4939 mpz_t right_val;
4940 mpz_init(right_val);
4941 Type* right_type;
4942 if (left->integer_constant_value(false, left_val, &left_type)
4943 && right->integer_constant_value(false, right_val, &right_type))
4945 Expression* ret = NULL;
4946 if (left_type != right_type
4947 && left_type != NULL
4948 && right_type != NULL
4949 && left_type->base() != right_type->base()
4950 && op != OPERATOR_LSHIFT
4951 && op != OPERATOR_RSHIFT)
4953 // May be a type error--let it be diagnosed later.
4955 else if (is_comparison)
4957 bool b = Binary_expression::compare_integer(op, left_val,
4958 right_val);
4959 ret = Expression::make_cast(Type::lookup_bool_type(),
4960 Expression::make_boolean(b, location),
4961 location);
4963 else
4965 mpz_t val;
4966 mpz_init(val);
4968 if (Binary_expression::eval_integer(op, left_type, left_val,
4969 right_type, right_val,
4970 location, val))
4972 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4973 Type* type;
4974 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4975 type = left_type;
4976 else if (left_type == NULL)
4977 type = right_type;
4978 else if (right_type == NULL)
4979 type = left_type;
4980 else if (!left_type->is_abstract()
4981 && left_type->named_type() != NULL)
4982 type = left_type;
4983 else if (!right_type->is_abstract()
4984 && right_type->named_type() != NULL)
4985 type = right_type;
4986 else if (!left_type->is_abstract())
4987 type = left_type;
4988 else if (!right_type->is_abstract())
4989 type = right_type;
4990 else if (left_type->float_type() != NULL)
4991 type = left_type;
4992 else if (right_type->float_type() != NULL)
4993 type = right_type;
4994 else if (left_type->complex_type() != NULL)
4995 type = left_type;
4996 else if (right_type->complex_type() != NULL)
4997 type = right_type;
4998 else
4999 type = left_type;
5000 ret = Expression::make_integer(&val, type, location);
5003 mpz_clear(val);
5006 if (ret != NULL)
5008 mpz_clear(right_val);
5009 mpz_clear(left_val);
5010 return ret;
5013 mpz_clear(right_val);
5014 mpz_clear(left_val);
5017 // Floating point constant expressions.
5019 mpfr_t left_val;
5020 mpfr_init(left_val);
5021 Type* left_type;
5022 mpfr_t right_val;
5023 mpfr_init(right_val);
5024 Type* right_type;
5025 if (left->float_constant_value(left_val, &left_type)
5026 && right->float_constant_value(right_val, &right_type))
5028 Expression* ret = NULL;
5029 if (left_type != right_type
5030 && left_type != NULL
5031 && right_type != NULL
5032 && left_type->base() != right_type->base()
5033 && op != OPERATOR_LSHIFT
5034 && op != OPERATOR_RSHIFT)
5036 // May be a type error--let it be diagnosed later.
5038 else if (is_comparison)
5040 bool b = Binary_expression::compare_float(op,
5041 (left_type != NULL
5042 ? left_type
5043 : right_type),
5044 left_val, right_val);
5045 ret = Expression::make_boolean(b, location);
5047 else
5049 mpfr_t val;
5050 mpfr_init(val);
5052 if (Binary_expression::eval_float(op, left_type, left_val,
5053 right_type, right_val, val,
5054 location))
5056 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5057 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5058 Type* type;
5059 if (left_type == NULL)
5060 type = right_type;
5061 else if (right_type == NULL)
5062 type = left_type;
5063 else if (!left_type->is_abstract()
5064 && left_type->named_type() != NULL)
5065 type = left_type;
5066 else if (!right_type->is_abstract()
5067 && right_type->named_type() != NULL)
5068 type = right_type;
5069 else if (!left_type->is_abstract())
5070 type = left_type;
5071 else if (!right_type->is_abstract())
5072 type = right_type;
5073 else if (left_type->float_type() != NULL)
5074 type = left_type;
5075 else if (right_type->float_type() != NULL)
5076 type = right_type;
5077 else
5078 type = left_type;
5079 ret = Expression::make_float(&val, type, location);
5082 mpfr_clear(val);
5085 if (ret != NULL)
5087 mpfr_clear(right_val);
5088 mpfr_clear(left_val);
5089 return ret;
5092 mpfr_clear(right_val);
5093 mpfr_clear(left_val);
5096 // Complex constant expressions.
5098 mpfr_t left_real;
5099 mpfr_t left_imag;
5100 mpfr_init(left_real);
5101 mpfr_init(left_imag);
5102 Type* left_type;
5104 mpfr_t right_real;
5105 mpfr_t right_imag;
5106 mpfr_init(right_real);
5107 mpfr_init(right_imag);
5108 Type* right_type;
5110 if (left->complex_constant_value(left_real, left_imag, &left_type)
5111 && right->complex_constant_value(right_real, right_imag, &right_type))
5113 Expression* ret = NULL;
5114 if (left_type != right_type
5115 && left_type != NULL
5116 && right_type != NULL
5117 && left_type->base() != right_type->base())
5119 // May be a type error--let it be diagnosed later.
5121 else if (is_comparison)
5123 bool b = Binary_expression::compare_complex(op,
5124 (left_type != NULL
5125 ? left_type
5126 : right_type),
5127 left_real,
5128 left_imag,
5129 right_real,
5130 right_imag);
5131 ret = Expression::make_boolean(b, location);
5133 else
5135 mpfr_t real;
5136 mpfr_t imag;
5137 mpfr_init(real);
5138 mpfr_init(imag);
5140 if (Binary_expression::eval_complex(op, left_type,
5141 left_real, left_imag,
5142 right_type,
5143 right_real, right_imag,
5144 real, imag,
5145 location))
5147 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5148 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5149 Type* type;
5150 if (left_type == NULL)
5151 type = right_type;
5152 else if (right_type == NULL)
5153 type = left_type;
5154 else if (!left_type->is_abstract()
5155 && left_type->named_type() != NULL)
5156 type = left_type;
5157 else if (!right_type->is_abstract()
5158 && right_type->named_type() != NULL)
5159 type = right_type;
5160 else if (!left_type->is_abstract())
5161 type = left_type;
5162 else if (!right_type->is_abstract())
5163 type = right_type;
5164 else if (left_type->complex_type() != NULL)
5165 type = left_type;
5166 else if (right_type->complex_type() != NULL)
5167 type = right_type;
5168 else
5169 type = left_type;
5170 ret = Expression::make_complex(&real, &imag, type,
5171 location);
5173 mpfr_clear(real);
5174 mpfr_clear(imag);
5177 if (ret != NULL)
5179 mpfr_clear(left_real);
5180 mpfr_clear(left_imag);
5181 mpfr_clear(right_real);
5182 mpfr_clear(right_imag);
5183 return ret;
5187 mpfr_clear(left_real);
5188 mpfr_clear(left_imag);
5189 mpfr_clear(right_real);
5190 mpfr_clear(right_imag);
5193 // String constant expressions.
5194 if (op == OPERATOR_PLUS
5195 && left->type()->is_string_type()
5196 && right->type()->is_string_type())
5198 std::string left_string;
5199 std::string right_string;
5200 if (left->string_constant_value(&left_string)
5201 && right->string_constant_value(&right_string))
5202 return Expression::make_string(left_string + right_string, location);
5205 return this;
5208 // Return the integer constant value, if it has one.
5210 bool
5211 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5212 Type** ptype) const
5214 mpz_t left_val;
5215 mpz_init(left_val);
5216 Type* left_type;
5217 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5218 &left_type))
5220 mpz_clear(left_val);
5221 return false;
5224 mpz_t right_val;
5225 mpz_init(right_val);
5226 Type* right_type;
5227 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5228 &right_type))
5230 mpz_clear(right_val);
5231 mpz_clear(left_val);
5232 return false;
5235 bool ret;
5236 if (left_type != right_type
5237 && left_type != NULL
5238 && right_type != NULL
5239 && left_type->base() != right_type->base()
5240 && this->op_ != OPERATOR_RSHIFT
5241 && this->op_ != OPERATOR_LSHIFT)
5242 ret = false;
5243 else
5244 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5245 right_type, right_val,
5246 this->location(), val);
5248 mpz_clear(right_val);
5249 mpz_clear(left_val);
5251 if (ret)
5252 *ptype = left_type;
5254 return ret;
5257 // Return the floating point constant value, if it has one.
5259 bool
5260 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5262 mpfr_t left_val;
5263 mpfr_init(left_val);
5264 Type* left_type;
5265 if (!this->left_->float_constant_value(left_val, &left_type))
5267 mpfr_clear(left_val);
5268 return false;
5271 mpfr_t right_val;
5272 mpfr_init(right_val);
5273 Type* right_type;
5274 if (!this->right_->float_constant_value(right_val, &right_type))
5276 mpfr_clear(right_val);
5277 mpfr_clear(left_val);
5278 return false;
5281 bool ret;
5282 if (left_type != right_type
5283 && left_type != NULL
5284 && right_type != NULL
5285 && left_type->base() != right_type->base())
5286 ret = false;
5287 else
5288 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5289 right_type, right_val,
5290 val, this->location());
5292 mpfr_clear(left_val);
5293 mpfr_clear(right_val);
5295 if (ret)
5296 *ptype = left_type;
5298 return ret;
5301 // Return the complex constant value, if it has one.
5303 bool
5304 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5305 Type** ptype) const
5307 mpfr_t left_real;
5308 mpfr_t left_imag;
5309 mpfr_init(left_real);
5310 mpfr_init(left_imag);
5311 Type* left_type;
5312 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5314 mpfr_clear(left_real);
5315 mpfr_clear(left_imag);
5316 return false;
5319 mpfr_t right_real;
5320 mpfr_t right_imag;
5321 mpfr_init(right_real);
5322 mpfr_init(right_imag);
5323 Type* right_type;
5324 if (!this->right_->complex_constant_value(right_real, right_imag,
5325 &right_type))
5327 mpfr_clear(left_real);
5328 mpfr_clear(left_imag);
5329 mpfr_clear(right_real);
5330 mpfr_clear(right_imag);
5331 return false;
5334 bool ret;
5335 if (left_type != right_type
5336 && left_type != NULL
5337 && right_type != NULL
5338 && left_type->base() != right_type->base())
5339 ret = false;
5340 else
5341 ret = Binary_expression::eval_complex(this->op_, left_type,
5342 left_real, left_imag,
5343 right_type,
5344 right_real, right_imag,
5345 real, imag,
5346 this->location());
5347 mpfr_clear(left_real);
5348 mpfr_clear(left_imag);
5349 mpfr_clear(right_real);
5350 mpfr_clear(right_imag);
5352 if (ret)
5353 *ptype = left_type;
5355 return ret;
5358 // Note that the value is being discarded.
5360 void
5361 Binary_expression::do_discarding_value()
5363 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5364 this->right_->discarding_value();
5365 else
5366 this->warn_about_unused_value();
5369 // Get type.
5371 Type*
5372 Binary_expression::do_type()
5374 switch (this->op_)
5376 case OPERATOR_OROR:
5377 case OPERATOR_ANDAND:
5378 case OPERATOR_EQEQ:
5379 case OPERATOR_NOTEQ:
5380 case OPERATOR_LT:
5381 case OPERATOR_LE:
5382 case OPERATOR_GT:
5383 case OPERATOR_GE:
5384 return Type::lookup_bool_type();
5386 case OPERATOR_PLUS:
5387 case OPERATOR_MINUS:
5388 case OPERATOR_OR:
5389 case OPERATOR_XOR:
5390 case OPERATOR_MULT:
5391 case OPERATOR_DIV:
5392 case OPERATOR_MOD:
5393 case OPERATOR_AND:
5394 case OPERATOR_BITCLEAR:
5396 Type* left_type = this->left_->type();
5397 Type* right_type = this->right_->type();
5398 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5399 return left_type;
5400 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5401 return right_type;
5402 else if (!left_type->is_abstract())
5403 return left_type;
5404 else if (!right_type->is_abstract())
5405 return right_type;
5406 else if (left_type->complex_type() != NULL)
5407 return left_type;
5408 else if (right_type->complex_type() != NULL)
5409 return right_type;
5410 else if (left_type->float_type() != NULL)
5411 return left_type;
5412 else if (right_type->float_type() != NULL)
5413 return right_type;
5414 else
5415 return left_type;
5418 case OPERATOR_LSHIFT:
5419 case OPERATOR_RSHIFT:
5420 return this->left_->type();
5422 default:
5423 gcc_unreachable();
5427 // Set type for a binary expression.
5429 void
5430 Binary_expression::do_determine_type(const Type_context* context)
5432 Type* tleft = this->left_->type();
5433 Type* tright = this->right_->type();
5435 // Both sides should have the same type, except for the shift
5436 // operations. For a comparison, we should ignore the incoming
5437 // type.
5439 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5440 || this->op_ == OPERATOR_RSHIFT);
5442 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5443 || this->op_ == OPERATOR_NOTEQ
5444 || this->op_ == OPERATOR_LT
5445 || this->op_ == OPERATOR_LE
5446 || this->op_ == OPERATOR_GT
5447 || this->op_ == OPERATOR_GE);
5449 Type_context subcontext(*context);
5451 if (is_comparison)
5453 // In a comparison, the context does not determine the types of
5454 // the operands.
5455 subcontext.type = NULL;
5458 // Set the context for the left hand operand.
5459 if (is_shift_op)
5461 // The right hand operand plays no role in determining the type
5462 // of the left hand operand. A shift of an abstract integer in
5463 // a string context gets special treatment, which may be a
5464 // language bug.
5465 if (subcontext.type != NULL
5466 && subcontext.type->is_string_type()
5467 && tleft->is_abstract())
5468 error_at(this->location(), "shift of non-integer operand");
5470 else if (!tleft->is_abstract())
5471 subcontext.type = tleft;
5472 else if (!tright->is_abstract())
5473 subcontext.type = tright;
5474 else if (subcontext.type == NULL)
5476 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5477 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5478 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5480 // Both sides have an abstract integer, abstract float, or
5481 // abstract complex type. Just let CONTEXT determine
5482 // whether they may remain abstract or not.
5484 else if (tleft->complex_type() != NULL)
5485 subcontext.type = tleft;
5486 else if (tright->complex_type() != NULL)
5487 subcontext.type = tright;
5488 else if (tleft->float_type() != NULL)
5489 subcontext.type = tleft;
5490 else if (tright->float_type() != NULL)
5491 subcontext.type = tright;
5492 else
5493 subcontext.type = tleft;
5496 this->left_->determine_type(&subcontext);
5498 // The context for the right hand operand is the same as for the
5499 // left hand operand, except for a shift operator.
5500 if (is_shift_op)
5502 subcontext.type = Type::lookup_integer_type("uint");
5503 subcontext.may_be_abstract = false;
5506 this->right_->determine_type(&subcontext);
5509 // Report an error if the binary operator OP does not support TYPE.
5510 // Return whether the operation is OK. This should not be used for
5511 // shift.
5513 bool
5514 Binary_expression::check_operator_type(Operator op, Type* type,
5515 source_location location)
5517 switch (op)
5519 case OPERATOR_OROR:
5520 case OPERATOR_ANDAND:
5521 if (!type->is_boolean_type())
5523 error_at(location, "expected boolean type");
5524 return false;
5526 break;
5528 case OPERATOR_EQEQ:
5529 case OPERATOR_NOTEQ:
5530 if (type->integer_type() == NULL
5531 && type->float_type() == NULL
5532 && type->complex_type() == NULL
5533 && !type->is_string_type()
5534 && type->points_to() == NULL
5535 && !type->is_nil_type()
5536 && !type->is_boolean_type()
5537 && type->interface_type() == NULL
5538 && (type->array_type() == NULL
5539 || type->array_type()->length() != NULL)
5540 && type->map_type() == NULL
5541 && type->channel_type() == NULL
5542 && type->function_type() == NULL)
5544 error_at(location,
5545 ("expected integer, floating, complex, string, pointer, "
5546 "boolean, interface, slice, map, channel, "
5547 "or function type"));
5548 return false;
5550 break;
5552 case OPERATOR_LT:
5553 case OPERATOR_LE:
5554 case OPERATOR_GT:
5555 case OPERATOR_GE:
5556 if (type->integer_type() == NULL
5557 && type->float_type() == NULL
5558 && !type->is_string_type())
5560 error_at(location, "expected integer, floating, or string type");
5561 return false;
5563 break;
5565 case OPERATOR_PLUS:
5566 case OPERATOR_PLUSEQ:
5567 if (type->integer_type() == NULL
5568 && type->float_type() == NULL
5569 && type->complex_type() == NULL
5570 && !type->is_string_type())
5572 error_at(location,
5573 "expected integer, floating, complex, or string type");
5574 return false;
5576 break;
5578 case OPERATOR_MINUS:
5579 case OPERATOR_MINUSEQ:
5580 case OPERATOR_MULT:
5581 case OPERATOR_MULTEQ:
5582 case OPERATOR_DIV:
5583 case OPERATOR_DIVEQ:
5584 if (type->integer_type() == NULL
5585 && type->float_type() == NULL
5586 && type->complex_type() == NULL)
5588 error_at(location, "expected integer, floating, or complex type");
5589 return false;
5591 break;
5593 case OPERATOR_MOD:
5594 case OPERATOR_MODEQ:
5595 case OPERATOR_OR:
5596 case OPERATOR_OREQ:
5597 case OPERATOR_AND:
5598 case OPERATOR_ANDEQ:
5599 case OPERATOR_XOR:
5600 case OPERATOR_XOREQ:
5601 case OPERATOR_BITCLEAR:
5602 case OPERATOR_BITCLEAREQ:
5603 if (type->integer_type() == NULL)
5605 error_at(location, "expected integer type");
5606 return false;
5608 break;
5610 default:
5611 gcc_unreachable();
5614 return true;
5617 // Check types.
5619 void
5620 Binary_expression::do_check_types(Gogo*)
5622 Type* left_type = this->left_->type();
5623 Type* right_type = this->right_->type();
5624 if (left_type->is_error_type() || right_type->is_error_type())
5626 this->set_is_error();
5627 return;
5630 if (this->op_ == OPERATOR_EQEQ
5631 || this->op_ == OPERATOR_NOTEQ
5632 || this->op_ == OPERATOR_LT
5633 || this->op_ == OPERATOR_LE
5634 || this->op_ == OPERATOR_GT
5635 || this->op_ == OPERATOR_GE)
5637 if (!Type::are_assignable(left_type, right_type, NULL)
5638 && !Type::are_assignable(right_type, left_type, NULL))
5640 this->report_error(_("incompatible types in binary expression"));
5641 return;
5643 if (!Binary_expression::check_operator_type(this->op_, left_type,
5644 this->location())
5645 || !Binary_expression::check_operator_type(this->op_, right_type,
5646 this->location()))
5648 this->set_is_error();
5649 return;
5652 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5654 if (!Type::are_compatible_for_binop(left_type, right_type))
5656 this->report_error(_("incompatible types in binary expression"));
5657 return;
5659 if (!Binary_expression::check_operator_type(this->op_, left_type,
5660 this->location()))
5662 this->set_is_error();
5663 return;
5666 else
5668 if (left_type->integer_type() == NULL)
5669 this->report_error(_("shift of non-integer operand"));
5671 if (!right_type->is_abstract()
5672 && (right_type->integer_type() == NULL
5673 || !right_type->integer_type()->is_unsigned()))
5674 this->report_error(_("shift count not unsigned integer"));
5675 else
5677 mpz_t val;
5678 mpz_init(val);
5679 Type* type;
5680 if (this->right_->integer_constant_value(true, val, &type))
5682 if (mpz_sgn(val) < 0)
5683 this->report_error(_("negative shift count"));
5685 mpz_clear(val);
5690 // Get a tree for a binary expression.
5692 tree
5693 Binary_expression::do_get_tree(Translate_context* context)
5695 tree left = this->left_->get_tree(context);
5696 tree right = this->right_->get_tree(context);
5698 if (left == error_mark_node || right == error_mark_node)
5699 return error_mark_node;
5701 enum tree_code code;
5702 bool use_left_type = true;
5703 bool is_shift_op = false;
5704 switch (this->op_)
5706 case OPERATOR_EQEQ:
5707 case OPERATOR_NOTEQ:
5708 case OPERATOR_LT:
5709 case OPERATOR_LE:
5710 case OPERATOR_GT:
5711 case OPERATOR_GE:
5712 return Expression::comparison_tree(context, this->op_,
5713 this->left_->type(), left,
5714 this->right_->type(), right,
5715 this->location());
5717 case OPERATOR_OROR:
5718 code = TRUTH_ORIF_EXPR;
5719 use_left_type = false;
5720 break;
5721 case OPERATOR_ANDAND:
5722 code = TRUTH_ANDIF_EXPR;
5723 use_left_type = false;
5724 break;
5725 case OPERATOR_PLUS:
5726 code = PLUS_EXPR;
5727 break;
5728 case OPERATOR_MINUS:
5729 code = MINUS_EXPR;
5730 break;
5731 case OPERATOR_OR:
5732 code = BIT_IOR_EXPR;
5733 break;
5734 case OPERATOR_XOR:
5735 code = BIT_XOR_EXPR;
5736 break;
5737 case OPERATOR_MULT:
5738 code = MULT_EXPR;
5739 break;
5740 case OPERATOR_DIV:
5742 Type *t = this->left_->type();
5743 if (t->float_type() != NULL || t->complex_type() != NULL)
5744 code = RDIV_EXPR;
5745 else
5746 code = TRUNC_DIV_EXPR;
5748 break;
5749 case OPERATOR_MOD:
5750 code = TRUNC_MOD_EXPR;
5751 break;
5752 case OPERATOR_LSHIFT:
5753 code = LSHIFT_EXPR;
5754 is_shift_op = true;
5755 break;
5756 case OPERATOR_RSHIFT:
5757 code = RSHIFT_EXPR;
5758 is_shift_op = true;
5759 break;
5760 case OPERATOR_AND:
5761 code = BIT_AND_EXPR;
5762 break;
5763 case OPERATOR_BITCLEAR:
5764 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5765 code = BIT_AND_EXPR;
5766 break;
5767 default:
5768 gcc_unreachable();
5771 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5773 if (this->left_->type()->is_string_type())
5775 gcc_assert(this->op_ == OPERATOR_PLUS);
5776 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5777 static tree string_plus_decl;
5778 return Gogo::call_builtin(&string_plus_decl,
5779 this->location(),
5780 "__go_string_plus",
5782 string_type,
5783 string_type,
5784 left,
5785 string_type,
5786 right);
5789 tree compute_type = excess_precision_type(type);
5790 if (compute_type != NULL_TREE)
5792 left = ::convert(compute_type, left);
5793 right = ::convert(compute_type, right);
5796 tree eval_saved = NULL_TREE;
5797 if (is_shift_op)
5799 if (!DECL_P(left))
5800 left = save_expr(left);
5801 if (!DECL_P(right))
5802 right = save_expr(right);
5803 // Make sure the values are evaluated.
5804 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5805 void_type_node, left, right);
5808 tree ret = fold_build2_loc(this->location(),
5809 code,
5810 compute_type != NULL_TREE ? compute_type : type,
5811 left, right);
5813 if (compute_type != NULL_TREE)
5814 ret = ::convert(type, ret);
5816 // In Go, a shift larger than the size of the type is well-defined.
5817 // This is not true in GENERIC, so we need to insert a conditional.
5818 if (is_shift_op)
5820 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5821 gcc_assert(this->left_->type()->integer_type() != NULL);
5822 int bits = TYPE_PRECISION(TREE_TYPE(left));
5824 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5825 build_int_cst_type(TREE_TYPE(right), bits));
5827 tree overflow_result = fold_convert_loc(this->location(),
5828 TREE_TYPE(left),
5829 integer_zero_node);
5830 if (this->op_ == OPERATOR_RSHIFT
5831 && !this->left_->type()->integer_type()->is_unsigned())
5833 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5834 boolean_type_node, left,
5835 fold_convert_loc(this->location(),
5836 TREE_TYPE(left),
5837 integer_zero_node));
5838 tree neg_one = fold_build2_loc(this->location(),
5839 MINUS_EXPR, TREE_TYPE(left),
5840 fold_convert_loc(this->location(),
5841 TREE_TYPE(left),
5842 integer_zero_node),
5843 fold_convert_loc(this->location(),
5844 TREE_TYPE(left),
5845 integer_one_node));
5846 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5847 TREE_TYPE(left), neg, neg_one,
5848 overflow_result);
5851 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5852 compare, ret, overflow_result);
5854 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5855 TREE_TYPE(ret), eval_saved, ret);
5858 return ret;
5861 // Export a binary expression.
5863 void
5864 Binary_expression::do_export(Export* exp) const
5866 exp->write_c_string("(");
5867 this->left_->export_expression(exp);
5868 switch (this->op_)
5870 case OPERATOR_OROR:
5871 exp->write_c_string(" || ");
5872 break;
5873 case OPERATOR_ANDAND:
5874 exp->write_c_string(" && ");
5875 break;
5876 case OPERATOR_EQEQ:
5877 exp->write_c_string(" == ");
5878 break;
5879 case OPERATOR_NOTEQ:
5880 exp->write_c_string(" != ");
5881 break;
5882 case OPERATOR_LT:
5883 exp->write_c_string(" < ");
5884 break;
5885 case OPERATOR_LE:
5886 exp->write_c_string(" <= ");
5887 break;
5888 case OPERATOR_GT:
5889 exp->write_c_string(" > ");
5890 break;
5891 case OPERATOR_GE:
5892 exp->write_c_string(" >= ");
5893 break;
5894 case OPERATOR_PLUS:
5895 exp->write_c_string(" + ");
5896 break;
5897 case OPERATOR_MINUS:
5898 exp->write_c_string(" - ");
5899 break;
5900 case OPERATOR_OR:
5901 exp->write_c_string(" | ");
5902 break;
5903 case OPERATOR_XOR:
5904 exp->write_c_string(" ^ ");
5905 break;
5906 case OPERATOR_MULT:
5907 exp->write_c_string(" * ");
5908 break;
5909 case OPERATOR_DIV:
5910 exp->write_c_string(" / ");
5911 break;
5912 case OPERATOR_MOD:
5913 exp->write_c_string(" % ");
5914 break;
5915 case OPERATOR_LSHIFT:
5916 exp->write_c_string(" << ");
5917 break;
5918 case OPERATOR_RSHIFT:
5919 exp->write_c_string(" >> ");
5920 break;
5921 case OPERATOR_AND:
5922 exp->write_c_string(" & ");
5923 break;
5924 case OPERATOR_BITCLEAR:
5925 exp->write_c_string(" &^ ");
5926 break;
5927 default:
5928 gcc_unreachable();
5930 this->right_->export_expression(exp);
5931 exp->write_c_string(")");
5934 // Import a binary expression.
5936 Expression*
5937 Binary_expression::do_import(Import* imp)
5939 imp->require_c_string("(");
5941 Expression* left = Expression::import_expression(imp);
5943 Operator op;
5944 if (imp->match_c_string(" || "))
5946 op = OPERATOR_OROR;
5947 imp->advance(4);
5949 else if (imp->match_c_string(" && "))
5951 op = OPERATOR_ANDAND;
5952 imp->advance(4);
5954 else if (imp->match_c_string(" == "))
5956 op = OPERATOR_EQEQ;
5957 imp->advance(4);
5959 else if (imp->match_c_string(" != "))
5961 op = OPERATOR_NOTEQ;
5962 imp->advance(4);
5964 else if (imp->match_c_string(" < "))
5966 op = OPERATOR_LT;
5967 imp->advance(3);
5969 else if (imp->match_c_string(" <= "))
5971 op = OPERATOR_LE;
5972 imp->advance(4);
5974 else if (imp->match_c_string(" > "))
5976 op = OPERATOR_GT;
5977 imp->advance(3);
5979 else if (imp->match_c_string(" >= "))
5981 op = OPERATOR_GE;
5982 imp->advance(4);
5984 else if (imp->match_c_string(" + "))
5986 op = OPERATOR_PLUS;
5987 imp->advance(3);
5989 else if (imp->match_c_string(" - "))
5991 op = OPERATOR_MINUS;
5992 imp->advance(3);
5994 else if (imp->match_c_string(" | "))
5996 op = OPERATOR_OR;
5997 imp->advance(3);
5999 else if (imp->match_c_string(" ^ "))
6001 op = OPERATOR_XOR;
6002 imp->advance(3);
6004 else if (imp->match_c_string(" * "))
6006 op = OPERATOR_MULT;
6007 imp->advance(3);
6009 else if (imp->match_c_string(" / "))
6011 op = OPERATOR_DIV;
6012 imp->advance(3);
6014 else if (imp->match_c_string(" % "))
6016 op = OPERATOR_MOD;
6017 imp->advance(3);
6019 else if (imp->match_c_string(" << "))
6021 op = OPERATOR_LSHIFT;
6022 imp->advance(4);
6024 else if (imp->match_c_string(" >> "))
6026 op = OPERATOR_RSHIFT;
6027 imp->advance(4);
6029 else if (imp->match_c_string(" & "))
6031 op = OPERATOR_AND;
6032 imp->advance(3);
6034 else if (imp->match_c_string(" &^ "))
6036 op = OPERATOR_BITCLEAR;
6037 imp->advance(4);
6039 else
6041 error_at(imp->location(), "unrecognized binary operator");
6042 return Expression::make_error(imp->location());
6045 Expression* right = Expression::import_expression(imp);
6047 imp->require_c_string(")");
6049 return Expression::make_binary(op, left, right, imp->location());
6052 // Make a binary expression.
6054 Expression*
6055 Expression::make_binary(Operator op, Expression* left, Expression* right,
6056 source_location location)
6058 return new Binary_expression(op, left, right, location);
6061 // Implement a comparison.
6063 tree
6064 Expression::comparison_tree(Translate_context* context, Operator op,
6065 Type* left_type, tree left_tree,
6066 Type* right_type, tree right_tree,
6067 source_location location)
6069 enum tree_code code;
6070 switch (op)
6072 case OPERATOR_EQEQ:
6073 code = EQ_EXPR;
6074 break;
6075 case OPERATOR_NOTEQ:
6076 code = NE_EXPR;
6077 break;
6078 case OPERATOR_LT:
6079 code = LT_EXPR;
6080 break;
6081 case OPERATOR_LE:
6082 code = LE_EXPR;
6083 break;
6084 case OPERATOR_GT:
6085 code = GT_EXPR;
6086 break;
6087 case OPERATOR_GE:
6088 code = GE_EXPR;
6089 break;
6090 default:
6091 gcc_unreachable();
6094 if (left_type->is_string_type() && right_type->is_string_type())
6096 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6097 static tree string_compare_decl;
6098 left_tree = Gogo::call_builtin(&string_compare_decl,
6099 location,
6100 "__go_strcmp",
6102 integer_type_node,
6103 string_type,
6104 left_tree,
6105 string_type,
6106 right_tree);
6107 right_tree = build_int_cst_type(integer_type_node, 0);
6109 else if ((left_type->interface_type() != NULL
6110 && right_type->interface_type() == NULL
6111 && !right_type->is_nil_type())
6112 || (left_type->interface_type() == NULL
6113 && !left_type->is_nil_type()
6114 && right_type->interface_type() != NULL))
6116 // Comparing an interface value to a non-interface value.
6117 if (left_type->interface_type() == NULL)
6119 std::swap(left_type, right_type);
6120 std::swap(left_tree, right_tree);
6123 // The right operand is not an interface. We need to take its
6124 // address if it is not a pointer.
6125 tree make_tmp;
6126 tree arg;
6127 if (right_type->points_to() != NULL)
6129 make_tmp = NULL_TREE;
6130 arg = right_tree;
6132 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6134 make_tmp = NULL_TREE;
6135 arg = build_fold_addr_expr_loc(location, right_tree);
6136 if (DECL_P(right_tree))
6137 TREE_ADDRESSABLE(right_tree) = 1;
6139 else
6141 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6142 get_name(right_tree));
6143 DECL_IGNORED_P(tmp) = 0;
6144 DECL_INITIAL(tmp) = right_tree;
6145 TREE_ADDRESSABLE(tmp) = 1;
6146 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6147 SET_EXPR_LOCATION(make_tmp, location);
6148 arg = build_fold_addr_expr_loc(location, tmp);
6150 arg = fold_convert_loc(location, ptr_type_node, arg);
6152 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6154 if (left_type->interface_type()->is_empty())
6156 static tree empty_interface_value_compare_decl;
6157 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6158 location,
6159 "__go_empty_interface_value_compare",
6161 integer_type_node,
6162 TREE_TYPE(left_tree),
6163 left_tree,
6164 TREE_TYPE(descriptor),
6165 descriptor,
6166 ptr_type_node,
6167 arg);
6168 if (left_tree == error_mark_node)
6169 return error_mark_node;
6170 // This can panic if the type is not comparable.
6171 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6173 else
6175 static tree interface_value_compare_decl;
6176 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6177 location,
6178 "__go_interface_value_compare",
6180 integer_type_node,
6181 TREE_TYPE(left_tree),
6182 left_tree,
6183 TREE_TYPE(descriptor),
6184 descriptor,
6185 ptr_type_node,
6186 arg);
6187 if (left_tree == error_mark_node)
6188 return error_mark_node;
6189 // This can panic if the type is not comparable.
6190 TREE_NOTHROW(interface_value_compare_decl) = 0;
6192 right_tree = build_int_cst_type(integer_type_node, 0);
6194 if (make_tmp != NULL_TREE)
6195 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6196 left_tree);
6198 else if (left_type->interface_type() != NULL
6199 && right_type->interface_type() != NULL)
6201 if (left_type->interface_type()->is_empty())
6203 gcc_assert(right_type->interface_type()->is_empty());
6204 static tree empty_interface_compare_decl;
6205 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6206 location,
6207 "__go_empty_interface_compare",
6209 integer_type_node,
6210 TREE_TYPE(left_tree),
6211 left_tree,
6212 TREE_TYPE(right_tree),
6213 right_tree);
6214 if (left_tree == error_mark_node)
6215 return error_mark_node;
6216 // This can panic if the type is uncomparable.
6217 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6219 else
6221 gcc_assert(!right_type->interface_type()->is_empty());
6222 static tree interface_compare_decl;
6223 left_tree = Gogo::call_builtin(&interface_compare_decl,
6224 location,
6225 "__go_interface_compare",
6227 integer_type_node,
6228 TREE_TYPE(left_tree),
6229 left_tree,
6230 TREE_TYPE(right_tree),
6231 right_tree);
6232 if (left_tree == error_mark_node)
6233 return error_mark_node;
6234 // This can panic if the type is uncomparable.
6235 TREE_NOTHROW(interface_compare_decl) = 0;
6237 right_tree = build_int_cst_type(integer_type_node, 0);
6240 if (left_type->is_nil_type()
6241 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6243 std::swap(left_type, right_type);
6244 std::swap(left_tree, right_tree);
6247 if (right_type->is_nil_type())
6249 if (left_type->array_type() != NULL
6250 && left_type->array_type()->length() == NULL)
6252 Array_type* at = left_type->array_type();
6253 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6254 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6256 else if (left_type->interface_type() != NULL)
6258 // An interface is nil if the first field is nil.
6259 tree left_type_tree = TREE_TYPE(left_tree);
6260 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6261 tree field = TYPE_FIELDS(left_type_tree);
6262 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6263 field, NULL_TREE);
6264 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6266 else
6268 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6269 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6273 if (left_tree == error_mark_node || right_tree == error_mark_node)
6274 return error_mark_node;
6276 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6277 if (CAN_HAVE_LOCATION_P(ret))
6278 SET_EXPR_LOCATION(ret, location);
6279 return ret;
6282 // Class Bound_method_expression.
6284 // Traversal.
6287 Bound_method_expression::do_traverse(Traverse* traverse)
6289 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6290 return TRAVERSE_EXIT;
6291 return Expression::traverse(&this->method_, traverse);
6294 // Return the type of a bound method expression. The type of this
6295 // object is really the type of the method with no receiver. We
6296 // should be able to get away with just returning the type of the
6297 // method.
6299 Type*
6300 Bound_method_expression::do_type()
6302 return this->method_->type();
6305 // Determine the types of a method expression.
6307 void
6308 Bound_method_expression::do_determine_type(const Type_context*)
6310 this->method_->determine_type_no_context();
6311 Type* mtype = this->method_->type();
6312 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6313 if (fntype == NULL || !fntype->is_method())
6314 this->expr_->determine_type_no_context();
6315 else
6317 Type_context subcontext(fntype->receiver()->type(), false);
6318 this->expr_->determine_type(&subcontext);
6322 // Check the types of a method expression.
6324 void
6325 Bound_method_expression::do_check_types(Gogo*)
6327 Type* type = this->method_->type()->deref();
6328 if (type == NULL
6329 || type->function_type() == NULL
6330 || !type->function_type()->is_method())
6331 this->report_error(_("object is not a method"));
6332 else
6334 Type* rtype = type->function_type()->receiver()->type()->deref();
6335 Type* etype = (this->expr_type_ != NULL
6336 ? this->expr_type_
6337 : this->expr_->type());
6338 etype = etype->deref();
6339 if (!Type::are_identical(rtype, etype, true, NULL))
6340 this->report_error(_("method type does not match object type"));
6344 // Get the tree for a method expression. There is no standard tree
6345 // representation for this. The only places it may currently be used
6346 // are in a Call_expression or a Go_statement, which will take it
6347 // apart directly. So this has nothing to do at present.
6349 tree
6350 Bound_method_expression::do_get_tree(Translate_context*)
6352 gcc_unreachable();
6355 // Make a method expression.
6357 Bound_method_expression*
6358 Expression::make_bound_method(Expression* expr, Expression* method,
6359 source_location location)
6361 return new Bound_method_expression(expr, method, location);
6364 // Class Builtin_call_expression. This is used for a call to a
6365 // builtin function.
6367 class Builtin_call_expression : public Call_expression
6369 public:
6370 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6371 bool is_varargs, source_location location);
6373 protected:
6374 // This overrides Call_expression::do_lower.
6375 Expression*
6376 do_lower(Gogo*, Named_object*, int);
6378 bool
6379 do_is_constant() const;
6381 bool
6382 do_integer_constant_value(bool, mpz_t, Type**) const;
6384 bool
6385 do_float_constant_value(mpfr_t, Type**) const;
6387 bool
6388 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6390 Type*
6391 do_type();
6393 void
6394 do_determine_type(const Type_context*);
6396 void
6397 do_check_types(Gogo*);
6399 Expression*
6400 do_copy()
6402 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6403 this->args()->copy(),
6404 this->is_varargs(),
6405 this->location());
6408 tree
6409 do_get_tree(Translate_context*);
6411 void
6412 do_export(Export*) const;
6414 virtual bool
6415 do_is_recover_call() const;
6417 virtual void
6418 do_set_recover_arg(Expression*);
6420 private:
6421 // The builtin functions.
6422 enum Builtin_function_code
6424 BUILTIN_INVALID,
6426 // Predeclared builtin functions.
6427 BUILTIN_APPEND,
6428 BUILTIN_CAP,
6429 BUILTIN_CLOSE,
6430 BUILTIN_CLOSED,
6431 BUILTIN_CMPLX,
6432 BUILTIN_COPY,
6433 BUILTIN_IMAG,
6434 BUILTIN_LEN,
6435 BUILTIN_MAKE,
6436 BUILTIN_NEW,
6437 BUILTIN_PANIC,
6438 BUILTIN_PRINT,
6439 BUILTIN_PRINTLN,
6440 BUILTIN_REAL,
6441 BUILTIN_RECOVER,
6443 // Builtin functions from the unsafe package.
6444 BUILTIN_ALIGNOF,
6445 BUILTIN_OFFSETOF,
6446 BUILTIN_SIZEOF
6449 Expression*
6450 one_arg() const;
6452 bool
6453 check_one_arg();
6455 static Type*
6456 real_imag_type(Type*);
6458 static Type*
6459 cmplx_type(Type*);
6461 // A pointer back to the general IR structure. This avoids a global
6462 // variable, or passing it around everywhere.
6463 Gogo* gogo_;
6464 // The builtin function being called.
6465 Builtin_function_code code_;
6466 // Used to stop endless loops when the length of an array uses len
6467 // or cap of the array itself.
6468 mutable bool seen_;
6471 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6472 Expression* fn,
6473 Expression_list* args,
6474 bool is_varargs,
6475 source_location location)
6476 : Call_expression(fn, args, is_varargs, location),
6477 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6479 Func_expression* fnexp = this->fn()->func_expression();
6480 gcc_assert(fnexp != NULL);
6481 const std::string& name(fnexp->named_object()->name());
6482 if (name == "append")
6483 this->code_ = BUILTIN_APPEND;
6484 else if (name == "cap")
6485 this->code_ = BUILTIN_CAP;
6486 else if (name == "close")
6487 this->code_ = BUILTIN_CLOSE;
6488 else if (name == "closed")
6489 this->code_ = BUILTIN_CLOSED;
6490 else if (name == "cmplx")
6491 this->code_ = BUILTIN_CMPLX;
6492 else if (name == "copy")
6493 this->code_ = BUILTIN_COPY;
6494 else if (name == "imag")
6495 this->code_ = BUILTIN_IMAG;
6496 else if (name == "len")
6497 this->code_ = BUILTIN_LEN;
6498 else if (name == "make")
6499 this->code_ = BUILTIN_MAKE;
6500 else if (name == "new")
6501 this->code_ = BUILTIN_NEW;
6502 else if (name == "panic")
6503 this->code_ = BUILTIN_PANIC;
6504 else if (name == "print")
6505 this->code_ = BUILTIN_PRINT;
6506 else if (name == "println")
6507 this->code_ = BUILTIN_PRINTLN;
6508 else if (name == "real")
6509 this->code_ = BUILTIN_REAL;
6510 else if (name == "recover")
6511 this->code_ = BUILTIN_RECOVER;
6512 else if (name == "Alignof")
6513 this->code_ = BUILTIN_ALIGNOF;
6514 else if (name == "Offsetof")
6515 this->code_ = BUILTIN_OFFSETOF;
6516 else if (name == "Sizeof")
6517 this->code_ = BUILTIN_SIZEOF;
6518 else
6519 gcc_unreachable();
6522 // Return whether this is a call to recover. This is a virtual
6523 // function called from the parent class.
6525 bool
6526 Builtin_call_expression::do_is_recover_call() const
6528 if (this->classification() == EXPRESSION_ERROR)
6529 return false;
6530 return this->code_ == BUILTIN_RECOVER;
6533 // Set the argument for a call to recover.
6535 void
6536 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6538 const Expression_list* args = this->args();
6539 gcc_assert(args == NULL || args->empty());
6540 Expression_list* new_args = new Expression_list();
6541 new_args->push_back(arg);
6542 this->set_args(new_args);
6545 // A traversal class which looks for a call expression.
6547 class Find_call_expression : public Traverse
6549 public:
6550 Find_call_expression()
6551 : Traverse(traverse_expressions),
6552 found_(false)
6556 expression(Expression**);
6558 bool
6559 found()
6560 { return this->found_; }
6562 private:
6563 bool found_;
6567 Find_call_expression::expression(Expression** pexpr)
6569 if ((*pexpr)->call_expression() != NULL)
6571 this->found_ = true;
6572 return TRAVERSE_EXIT;
6574 return TRAVERSE_CONTINUE;
6577 // Lower a builtin call expression. This turns new and make into
6578 // specific expressions. We also convert to a constant if we can.
6580 Expression*
6581 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6583 if (this->code_ == BUILTIN_NEW)
6585 const Expression_list* args = this->args();
6586 if (args == NULL || args->size() < 1)
6587 this->report_error(_("not enough arguments"));
6588 else if (args->size() > 1)
6589 this->report_error(_("too many arguments"));
6590 else
6592 Expression* arg = args->front();
6593 if (!arg->is_type_expression())
6595 error_at(arg->location(), "expected type");
6596 this->set_is_error();
6598 else
6599 return Expression::make_allocation(arg->type(), this->location());
6602 else if (this->code_ == BUILTIN_MAKE)
6604 const Expression_list* args = this->args();
6605 if (args == NULL || args->size() < 1)
6606 this->report_error(_("not enough arguments"));
6607 else
6609 Expression* arg = args->front();
6610 if (!arg->is_type_expression())
6612 error_at(arg->location(), "expected type");
6613 this->set_is_error();
6615 else
6617 Expression_list* newargs;
6618 if (args->size() == 1)
6619 newargs = NULL;
6620 else
6622 newargs = new Expression_list();
6623 Expression_list::const_iterator p = args->begin();
6624 ++p;
6625 for (; p != args->end(); ++p)
6626 newargs->push_back(*p);
6628 return Expression::make_make(arg->type(), newargs,
6629 this->location());
6633 else if (this->is_constant())
6635 // We can only lower len and cap if there are no function calls
6636 // in the arguments. Otherwise we have to make the call.
6637 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6639 Expression* arg = this->one_arg();
6640 if (!arg->is_constant())
6642 Find_call_expression find_call;
6643 Expression::traverse(&arg, &find_call);
6644 if (find_call.found())
6645 return this;
6649 mpz_t ival;
6650 mpz_init(ival);
6651 Type* type;
6652 if (this->integer_constant_value(true, ival, &type))
6654 Expression* ret = Expression::make_integer(&ival, type,
6655 this->location());
6656 mpz_clear(ival);
6657 return ret;
6659 mpz_clear(ival);
6661 mpfr_t rval;
6662 mpfr_init(rval);
6663 if (this->float_constant_value(rval, &type))
6665 Expression* ret = Expression::make_float(&rval, type,
6666 this->location());
6667 mpfr_clear(rval);
6668 return ret;
6671 mpfr_t imag;
6672 mpfr_init(imag);
6673 if (this->complex_constant_value(rval, imag, &type))
6675 Expression* ret = Expression::make_complex(&rval, &imag, type,
6676 this->location());
6677 mpfr_clear(rval);
6678 mpfr_clear(imag);
6679 return ret;
6681 mpfr_clear(rval);
6682 mpfr_clear(imag);
6684 else if (this->code_ == BUILTIN_RECOVER)
6686 if (function != NULL)
6687 function->func_value()->set_calls_recover();
6688 else
6690 // Calling recover outside of a function always returns the
6691 // nil empty interface.
6692 Type* eface = Type::make_interface_type(NULL, this->location());
6693 return Expression::make_cast(eface,
6694 Expression::make_nil(this->location()),
6695 this->location());
6698 else if (this->code_ == BUILTIN_APPEND)
6700 // Lower the varargs.
6701 const Expression_list* args = this->args();
6702 if (args == NULL || args->empty())
6703 return this;
6704 Type* slice_type = args->front()->type();
6705 if (!slice_type->is_open_array_type())
6707 error_at(args->front()->location(), "argument 1 must be a slice");
6708 this->set_is_error();
6709 return this;
6711 return this->lower_varargs(gogo, function, slice_type, 2);
6714 return this;
6717 // Return the type of the real or imag functions, given the type of
6718 // the argument. We need to map complex to float, complex64 to
6719 // float32, and complex128 to float64, so it has to be done by name.
6720 // This returns NULL if it can't figure out the type.
6722 Type*
6723 Builtin_call_expression::real_imag_type(Type* arg_type)
6725 if (arg_type == NULL || arg_type->is_abstract())
6726 return NULL;
6727 Named_type* nt = arg_type->named_type();
6728 if (nt == NULL)
6729 return NULL;
6730 while (nt->real_type()->named_type() != NULL)
6731 nt = nt->real_type()->named_type();
6732 if (nt->name() == "complex")
6733 return Type::lookup_float_type("float");
6734 else if (nt->name() == "complex64")
6735 return Type::lookup_float_type("float32");
6736 else if (nt->name() == "complex128")
6737 return Type::lookup_float_type("float64");
6738 else
6739 return NULL;
6742 // Return the type of the cmplx function, given the type of one of the
6743 // argments. Like real_imag_type, we have to map by name.
6745 Type*
6746 Builtin_call_expression::cmplx_type(Type* arg_type)
6748 if (arg_type == NULL || arg_type->is_abstract())
6749 return NULL;
6750 Named_type* nt = arg_type->named_type();
6751 if (nt == NULL)
6752 return NULL;
6753 while (nt->real_type()->named_type() != NULL)
6754 nt = nt->real_type()->named_type();
6755 if (nt->name() == "float")
6756 return Type::lookup_complex_type("complex");
6757 else if (nt->name() == "float32")
6758 return Type::lookup_complex_type("complex64");
6759 else if (nt->name() == "float64")
6760 return Type::lookup_complex_type("complex128");
6761 else
6762 return NULL;
6765 // Return a single argument, or NULL if there isn't one.
6767 Expression*
6768 Builtin_call_expression::one_arg() const
6770 const Expression_list* args = this->args();
6771 if (args->size() != 1)
6772 return NULL;
6773 return args->front();
6776 // Return whether this is constant: len of a string, or len or cap of
6777 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6779 bool
6780 Builtin_call_expression::do_is_constant() const
6782 switch (this->code_)
6784 case BUILTIN_LEN:
6785 case BUILTIN_CAP:
6787 if (this->seen_)
6788 return false;
6790 Expression* arg = this->one_arg();
6791 if (arg == NULL)
6792 return false;
6793 Type* arg_type = arg->type();
6795 if (arg_type->points_to() != NULL
6796 && arg_type->points_to()->array_type() != NULL
6797 && !arg_type->points_to()->is_open_array_type())
6798 arg_type = arg_type->points_to();
6800 if (arg_type->array_type() != NULL
6801 && arg_type->array_type()->length() != NULL)
6802 return true;
6804 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6806 this->seen_ = true;
6807 bool ret = arg->is_constant();
6808 this->seen_ = false;
6809 return ret;
6812 break;
6814 case BUILTIN_SIZEOF:
6815 case BUILTIN_ALIGNOF:
6816 return this->one_arg() != NULL;
6818 case BUILTIN_OFFSETOF:
6820 Expression* arg = this->one_arg();
6821 if (arg == NULL)
6822 return false;
6823 return arg->field_reference_expression() != NULL;
6826 case BUILTIN_CMPLX:
6828 const Expression_list* args = this->args();
6829 if (args != NULL && args->size() == 2)
6830 return args->front()->is_constant() && args->back()->is_constant();
6832 break;
6834 case BUILTIN_REAL:
6835 case BUILTIN_IMAG:
6837 Expression* arg = this->one_arg();
6838 return arg != NULL && arg->is_constant();
6841 default:
6842 break;
6845 return false;
6848 // Return an integer constant value if possible.
6850 bool
6851 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6852 mpz_t val,
6853 Type** ptype) const
6855 if (this->code_ == BUILTIN_LEN
6856 || this->code_ == BUILTIN_CAP)
6858 Expression* arg = this->one_arg();
6859 if (arg == NULL)
6860 return false;
6861 Type* arg_type = arg->type();
6863 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6865 std::string sval;
6866 if (arg->string_constant_value(&sval))
6868 mpz_set_ui(val, sval.length());
6869 *ptype = Type::lookup_integer_type("int");
6870 return true;
6874 if (arg_type->points_to() != NULL
6875 && arg_type->points_to()->array_type() != NULL
6876 && !arg_type->points_to()->is_open_array_type())
6877 arg_type = arg_type->points_to();
6879 if (arg_type->array_type() != NULL
6880 && arg_type->array_type()->length() != NULL)
6882 if (this->seen_)
6883 return false;
6884 Expression* e = arg_type->array_type()->length();
6885 this->seen_ = true;
6886 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6887 this->seen_ = false;
6888 if (r)
6890 *ptype = Type::lookup_integer_type("int");
6891 return true;
6895 else if (this->code_ == BUILTIN_SIZEOF
6896 || this->code_ == BUILTIN_ALIGNOF)
6898 Expression* arg = this->one_arg();
6899 if (arg == NULL)
6900 return false;
6901 Type* arg_type = arg->type();
6902 if (arg_type->is_error_type() || arg_type->is_undefined())
6903 return false;
6904 if (arg_type->is_abstract())
6905 return false;
6906 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6907 unsigned long val_long;
6908 if (this->code_ == BUILTIN_SIZEOF)
6910 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6911 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6912 if (TREE_INT_CST_HIGH(type_size) != 0)
6913 return false;
6914 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6915 val_long = static_cast<unsigned long>(val_wide);
6916 if (val_long != val_wide)
6917 return false;
6919 else if (this->code_ == BUILTIN_ALIGNOF)
6921 if (arg->field_reference_expression() == NULL)
6922 val_long = go_type_alignment(arg_type_tree);
6923 else
6925 // Calling unsafe.Alignof(s.f) returns the alignment of
6926 // the type of f when it is used as a field in a struct.
6927 val_long = go_field_alignment(arg_type_tree);
6930 else
6931 gcc_unreachable();
6932 mpz_set_ui(val, val_long);
6933 *ptype = NULL;
6934 return true;
6936 else if (this->code_ == BUILTIN_OFFSETOF)
6938 Expression* arg = this->one_arg();
6939 if (arg == NULL)
6940 return false;
6941 Field_reference_expression* farg = arg->field_reference_expression();
6942 if (farg == NULL)
6943 return false;
6944 Expression* struct_expr = farg->expr();
6945 Type* st = struct_expr->type();
6946 if (st->struct_type() == NULL)
6947 return false;
6948 tree struct_tree = st->get_tree(this->gogo_);
6949 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6950 tree field = TYPE_FIELDS(struct_tree);
6951 for (unsigned int index = farg->field_index(); index > 0; --index)
6953 field = DECL_CHAIN(field);
6954 gcc_assert(field != NULL_TREE);
6956 HOST_WIDE_INT offset_wide = int_byte_position (field);
6957 if (offset_wide < 0)
6958 return false;
6959 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6960 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6961 return false;
6962 mpz_set_ui(val, offset_long);
6963 return true;
6965 return false;
6968 // Return a floating point constant value if possible.
6970 bool
6971 Builtin_call_expression::do_float_constant_value(mpfr_t val,
6972 Type** ptype) const
6974 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6976 Expression* arg = this->one_arg();
6977 if (arg == NULL)
6978 return false;
6980 mpfr_t real;
6981 mpfr_t imag;
6982 mpfr_init(real);
6983 mpfr_init(imag);
6985 bool ret = false;
6986 Type* type;
6987 if (arg->complex_constant_value(real, imag, &type))
6989 if (this->code_ == BUILTIN_REAL)
6990 mpfr_set(val, real, GMP_RNDN);
6991 else
6992 mpfr_set(val, imag, GMP_RNDN);
6993 *ptype = Builtin_call_expression::real_imag_type(type);
6994 ret = true;
6997 mpfr_clear(real);
6998 mpfr_clear(imag);
6999 return ret;
7002 return false;
7005 // Return a complex constant value if possible.
7007 bool
7008 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7009 Type** ptype) const
7011 if (this->code_ == BUILTIN_CMPLX)
7013 const Expression_list* args = this->args();
7014 if (args == NULL || args->size() != 2)
7015 return false;
7017 mpfr_t r;
7018 mpfr_init(r);
7019 Type* rtype;
7020 if (!args->front()->float_constant_value(r, &rtype))
7022 mpfr_clear(r);
7023 return false;
7026 mpfr_t i;
7027 mpfr_init(i);
7029 bool ret = false;
7030 Type* itype;
7031 if (args->back()->float_constant_value(i, &itype)
7032 && Type::are_identical(rtype, itype, false, NULL))
7034 mpfr_set(real, r, GMP_RNDN);
7035 mpfr_set(imag, i, GMP_RNDN);
7036 *ptype = Builtin_call_expression::cmplx_type(rtype);
7037 ret = true;
7040 mpfr_clear(r);
7041 mpfr_clear(i);
7043 return ret;
7046 return false;
7049 // Return the type.
7051 Type*
7052 Builtin_call_expression::do_type()
7054 switch (this->code_)
7056 case BUILTIN_INVALID:
7057 default:
7058 gcc_unreachable();
7060 case BUILTIN_NEW:
7061 case BUILTIN_MAKE:
7063 const Expression_list* args = this->args();
7064 if (args == NULL || args->empty())
7065 return Type::make_error_type();
7066 return Type::make_pointer_type(args->front()->type());
7069 case BUILTIN_CAP:
7070 case BUILTIN_COPY:
7071 case BUILTIN_LEN:
7072 case BUILTIN_ALIGNOF:
7073 case BUILTIN_OFFSETOF:
7074 case BUILTIN_SIZEOF:
7075 return Type::lookup_integer_type("int");
7077 case BUILTIN_CLOSE:
7078 case BUILTIN_PANIC:
7079 case BUILTIN_PRINT:
7080 case BUILTIN_PRINTLN:
7081 return Type::make_void_type();
7083 case BUILTIN_CLOSED:
7084 return Type::lookup_bool_type();
7086 case BUILTIN_RECOVER:
7087 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7089 case BUILTIN_APPEND:
7091 const Expression_list* args = this->args();
7092 if (args == NULL || args->empty())
7093 return Type::make_error_type();
7094 return args->front()->type();
7097 case BUILTIN_REAL:
7098 case BUILTIN_IMAG:
7100 Expression* arg = this->one_arg();
7101 if (arg == NULL)
7102 return Type::make_error_type();
7103 Type* t = arg->type();
7104 if (t->is_abstract())
7105 t = t->make_non_abstract_type();
7106 t = Builtin_call_expression::real_imag_type(t);
7107 if (t == NULL)
7108 t = Type::make_error_type();
7109 return t;
7112 case BUILTIN_CMPLX:
7114 const Expression_list* args = this->args();
7115 if (args == NULL || args->size() != 2)
7116 return Type::make_error_type();
7117 Type* t = args->front()->type();
7118 if (t->is_abstract())
7120 t = args->back()->type();
7121 if (t->is_abstract())
7122 t = t->make_non_abstract_type();
7124 t = Builtin_call_expression::cmplx_type(t);
7125 if (t == NULL)
7126 t = Type::make_error_type();
7127 return t;
7132 // Determine the type.
7134 void
7135 Builtin_call_expression::do_determine_type(const Type_context* context)
7137 this->fn()->determine_type_no_context();
7139 const Expression_list* args = this->args();
7141 bool is_print;
7142 Type* arg_type = NULL;
7143 switch (this->code_)
7145 case BUILTIN_PRINT:
7146 case BUILTIN_PRINTLN:
7147 // Do not force a large integer constant to "int".
7148 is_print = true;
7149 break;
7151 case BUILTIN_REAL:
7152 case BUILTIN_IMAG:
7153 arg_type = Builtin_call_expression::cmplx_type(context->type);
7154 is_print = false;
7155 break;
7157 case BUILTIN_CMPLX:
7159 // For the cmplx function the type of one operand can
7160 // determine the type of the other, as in a binary expression.
7161 arg_type = Builtin_call_expression::real_imag_type(context->type);
7162 if (args != NULL && args->size() == 2)
7164 Type* t1 = args->front()->type();
7165 Type* t2 = args->front()->type();
7166 if (!t1->is_abstract())
7167 arg_type = t1;
7168 else if (!t2->is_abstract())
7169 arg_type = t2;
7171 is_print = false;
7173 break;
7175 default:
7176 is_print = false;
7177 break;
7180 if (args != NULL)
7182 for (Expression_list::const_iterator pa = args->begin();
7183 pa != args->end();
7184 ++pa)
7186 Type_context subcontext;
7187 subcontext.type = arg_type;
7189 if (is_print)
7191 // We want to print large constants, we so can't just
7192 // use the appropriate nonabstract type. Use uint64 for
7193 // an integer if we know it is nonnegative, otherwise
7194 // use int64 for a integer, otherwise use float64 for a
7195 // float or complex128 for a complex.
7196 Type* want_type = NULL;
7197 Type* atype = (*pa)->type();
7198 if (atype->is_abstract())
7200 if (atype->integer_type() != NULL)
7202 mpz_t val;
7203 mpz_init(val);
7204 Type* dummy;
7205 if (this->integer_constant_value(true, val, &dummy)
7206 && mpz_sgn(val) >= 0)
7207 want_type = Type::lookup_integer_type("uint64");
7208 else
7209 want_type = Type::lookup_integer_type("int64");
7210 mpz_clear(val);
7212 else if (atype->float_type() != NULL)
7213 want_type = Type::lookup_float_type("float64");
7214 else if (atype->complex_type() != NULL)
7215 want_type = Type::lookup_complex_type("complex128");
7216 else if (atype->is_abstract_string_type())
7217 want_type = Type::lookup_string_type();
7218 else if (atype->is_abstract_boolean_type())
7219 want_type = Type::lookup_bool_type();
7220 else
7221 gcc_unreachable();
7222 subcontext.type = want_type;
7226 (*pa)->determine_type(&subcontext);
7231 // If there is exactly one argument, return true. Otherwise give an
7232 // error message and return false.
7234 bool
7235 Builtin_call_expression::check_one_arg()
7237 const Expression_list* args = this->args();
7238 if (args == NULL || args->size() < 1)
7240 this->report_error(_("not enough arguments"));
7241 return false;
7243 else if (args->size() > 1)
7245 this->report_error(_("too many arguments"));
7246 return false;
7248 if (args->front()->is_error_expression()
7249 || args->front()->type()->is_error_type()
7250 || args->front()->type()->is_undefined())
7252 this->set_is_error();
7253 return false;
7255 return true;
7258 // Check argument types for a builtin function.
7260 void
7261 Builtin_call_expression::do_check_types(Gogo*)
7263 switch (this->code_)
7265 case BUILTIN_INVALID:
7266 case BUILTIN_NEW:
7267 case BUILTIN_MAKE:
7268 return;
7270 case BUILTIN_LEN:
7271 case BUILTIN_CAP:
7273 // The single argument may be either a string or an array or a
7274 // map or a channel, or a pointer to a closed array.
7275 if (this->check_one_arg())
7277 Type* arg_type = this->one_arg()->type();
7278 if (arg_type->points_to() != NULL
7279 && arg_type->points_to()->array_type() != NULL
7280 && !arg_type->points_to()->is_open_array_type())
7281 arg_type = arg_type->points_to();
7282 if (this->code_ == BUILTIN_CAP)
7284 if (!arg_type->is_error_type()
7285 && arg_type->array_type() == NULL
7286 && arg_type->channel_type() == NULL)
7287 this->report_error(_("argument must be array or slice "
7288 "or channel"));
7290 else
7292 if (!arg_type->is_error_type()
7293 && !arg_type->is_string_type()
7294 && arg_type->array_type() == NULL
7295 && arg_type->map_type() == NULL
7296 && arg_type->channel_type() == NULL)
7297 this->report_error(_("argument must be string or "
7298 "array or slice or map or channel"));
7302 break;
7304 case BUILTIN_PRINT:
7305 case BUILTIN_PRINTLN:
7307 const Expression_list* args = this->args();
7308 if (args == NULL)
7310 if (this->code_ == BUILTIN_PRINT)
7311 warning_at(this->location(), 0,
7312 "no arguments for builtin function %<%s%>",
7313 (this->code_ == BUILTIN_PRINT
7314 ? "print"
7315 : "println"));
7317 else
7319 for (Expression_list::const_iterator p = args->begin();
7320 p != args->end();
7321 ++p)
7323 Type* type = (*p)->type();
7324 if (type->is_error_type()
7325 || type->is_string_type()
7326 || type->integer_type() != NULL
7327 || type->float_type() != NULL
7328 || type->complex_type() != NULL
7329 || type->is_boolean_type()
7330 || type->points_to() != NULL
7331 || type->interface_type() != NULL
7332 || type->channel_type() != NULL
7333 || type->map_type() != NULL
7334 || type->function_type() != NULL
7335 || type->is_open_array_type())
7337 else
7338 this->report_error(_("unsupported argument type to "
7339 "builtin function"));
7343 break;
7345 case BUILTIN_CLOSE:
7346 case BUILTIN_CLOSED:
7347 if (this->check_one_arg())
7349 if (this->one_arg()->type()->channel_type() == NULL)
7350 this->report_error(_("argument must be channel"));
7352 break;
7354 case BUILTIN_PANIC:
7355 case BUILTIN_SIZEOF:
7356 case BUILTIN_ALIGNOF:
7357 this->check_one_arg();
7358 break;
7360 case BUILTIN_RECOVER:
7361 if (this->args() != NULL && !this->args()->empty())
7362 this->report_error(_("too many arguments"));
7363 break;
7365 case BUILTIN_OFFSETOF:
7366 if (this->check_one_arg())
7368 Expression* arg = this->one_arg();
7369 if (arg->field_reference_expression() == NULL)
7370 this->report_error(_("argument must be a field reference"));
7372 break;
7374 case BUILTIN_COPY:
7376 const Expression_list* args = this->args();
7377 if (args == NULL || args->size() < 2)
7379 this->report_error(_("not enough arguments"));
7380 break;
7382 else if (args->size() > 2)
7384 this->report_error(_("too many arguments"));
7385 break;
7387 Type* arg1_type = args->front()->type();
7388 Type* arg2_type = args->back()->type();
7389 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7390 break;
7392 Type* e1;
7393 if (arg1_type->is_open_array_type())
7394 e1 = arg1_type->array_type()->element_type();
7395 else
7397 this->report_error(_("left argument must be a slice"));
7398 break;
7401 Type* e2;
7402 if (arg2_type->is_open_array_type())
7403 e2 = arg2_type->array_type()->element_type();
7404 else if (arg2_type->is_string_type())
7405 e2 = Type::lookup_integer_type("uint8");
7406 else
7408 this->report_error(_("right argument must be a slice or a string"));
7409 break;
7412 if (!Type::are_identical(e1, e2, true, NULL))
7413 this->report_error(_("element types must be the same"));
7415 break;
7417 case BUILTIN_APPEND:
7419 const Expression_list* args = this->args();
7420 if (args == NULL || args->size() < 2)
7422 this->report_error(_("not enough arguments"));
7423 break;
7425 if (args->size() > 2)
7427 this->report_error(_("too many arguments"));
7428 break;
7430 std::string reason;
7431 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7432 &reason))
7434 if (reason.empty())
7435 this->report_error(_("arguments 1 and 2 have different types"));
7436 else
7438 error_at(this->location(),
7439 "arguments 1 and 2 have different types (%s)",
7440 reason.c_str());
7441 this->set_is_error();
7444 break;
7447 case BUILTIN_REAL:
7448 case BUILTIN_IMAG:
7449 if (this->check_one_arg())
7451 if (this->one_arg()->type()->complex_type() == NULL)
7452 this->report_error(_("argument must have complex type"));
7454 break;
7456 case BUILTIN_CMPLX:
7458 const Expression_list* args = this->args();
7459 if (args == NULL || args->size() < 2)
7460 this->report_error(_("not enough arguments"));
7461 else if (args->size() > 2)
7462 this->report_error(_("too many arguments"));
7463 else if (args->front()->is_error_expression()
7464 || args->front()->type()->is_error_type()
7465 || args->back()->is_error_expression()
7466 || args->back()->type()->is_error_type())
7467 this->set_is_error();
7468 else if (!Type::are_identical(args->front()->type(),
7469 args->back()->type(), true, NULL))
7470 this->report_error(_("cmplx arguments must have identical types"));
7471 else if (args->front()->type()->float_type() == NULL)
7472 this->report_error(_("cmplx arguments must have "
7473 "floating-point type"));
7475 break;
7477 default:
7478 gcc_unreachable();
7482 // Return the tree for a builtin function.
7484 tree
7485 Builtin_call_expression::do_get_tree(Translate_context* context)
7487 Gogo* gogo = context->gogo();
7488 source_location location = this->location();
7489 switch (this->code_)
7491 case BUILTIN_INVALID:
7492 case BUILTIN_NEW:
7493 case BUILTIN_MAKE:
7494 gcc_unreachable();
7496 case BUILTIN_LEN:
7497 case BUILTIN_CAP:
7499 const Expression_list* args = this->args();
7500 gcc_assert(args != NULL && args->size() == 1);
7501 Expression* arg = *args->begin();
7502 Type* arg_type = arg->type();
7504 if (this->seen_)
7506 gcc_assert(saw_errors());
7507 return error_mark_node;
7509 this->seen_ = true;
7511 tree arg_tree = arg->get_tree(context);
7513 this->seen_ = false;
7515 if (arg_tree == error_mark_node)
7516 return error_mark_node;
7518 if (arg_type->points_to() != NULL)
7520 arg_type = arg_type->points_to();
7521 gcc_assert(arg_type->array_type() != NULL
7522 && !arg_type->is_open_array_type());
7523 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7524 arg_tree = build_fold_indirect_ref(arg_tree);
7527 tree val_tree;
7528 if (this->code_ == BUILTIN_LEN)
7530 if (arg_type->is_string_type())
7531 val_tree = String_type::length_tree(gogo, arg_tree);
7532 else if (arg_type->array_type() != NULL)
7534 if (this->seen_)
7536 gcc_assert(saw_errors());
7537 return error_mark_node;
7539 this->seen_ = true;
7540 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7541 this->seen_ = false;
7543 else if (arg_type->map_type() != NULL)
7545 static tree map_len_fndecl;
7546 val_tree = Gogo::call_builtin(&map_len_fndecl,
7547 location,
7548 "__go_map_len",
7550 sizetype,
7551 arg_type->get_tree(gogo),
7552 arg_tree);
7554 else if (arg_type->channel_type() != NULL)
7556 static tree chan_len_fndecl;
7557 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7558 location,
7559 "__go_chan_len",
7561 sizetype,
7562 arg_type->get_tree(gogo),
7563 arg_tree);
7565 else
7566 gcc_unreachable();
7568 else
7570 if (arg_type->array_type() != NULL)
7572 if (this->seen_)
7574 gcc_assert(saw_errors());
7575 return error_mark_node;
7577 this->seen_ = true;
7578 val_tree = arg_type->array_type()->capacity_tree(gogo,
7579 arg_tree);
7580 this->seen_ = false;
7582 else if (arg_type->channel_type() != NULL)
7584 static tree chan_cap_fndecl;
7585 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7586 location,
7587 "__go_chan_cap",
7589 sizetype,
7590 arg_type->get_tree(gogo),
7591 arg_tree);
7593 else
7594 gcc_unreachable();
7597 if (val_tree == error_mark_node)
7598 return error_mark_node;
7600 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7601 if (type_tree == TREE_TYPE(val_tree))
7602 return val_tree;
7603 else
7604 return fold(convert_to_integer(type_tree, val_tree));
7607 case BUILTIN_PRINT:
7608 case BUILTIN_PRINTLN:
7610 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7611 tree stmt_list = NULL_TREE;
7613 const Expression_list* call_args = this->args();
7614 if (call_args != NULL)
7616 for (Expression_list::const_iterator p = call_args->begin();
7617 p != call_args->end();
7618 ++p)
7620 if (is_ln && p != call_args->begin())
7622 static tree print_space_fndecl;
7623 tree call = Gogo::call_builtin(&print_space_fndecl,
7624 location,
7625 "__go_print_space",
7627 void_type_node);
7628 if (call == error_mark_node)
7629 return error_mark_node;
7630 append_to_statement_list(call, &stmt_list);
7633 Type* type = (*p)->type();
7635 tree arg = (*p)->get_tree(context);
7636 if (arg == error_mark_node)
7637 return error_mark_node;
7639 tree* pfndecl;
7640 const char* fnname;
7641 if (type->is_string_type())
7643 static tree print_string_fndecl;
7644 pfndecl = &print_string_fndecl;
7645 fnname = "__go_print_string";
7647 else if (type->integer_type() != NULL
7648 && type->integer_type()->is_unsigned())
7650 static tree print_uint64_fndecl;
7651 pfndecl = &print_uint64_fndecl;
7652 fnname = "__go_print_uint64";
7653 Type* itype = Type::lookup_integer_type("uint64");
7654 arg = fold_convert_loc(location, itype->get_tree(gogo),
7655 arg);
7657 else if (type->integer_type() != NULL)
7659 static tree print_int64_fndecl;
7660 pfndecl = &print_int64_fndecl;
7661 fnname = "__go_print_int64";
7662 Type* itype = Type::lookup_integer_type("int64");
7663 arg = fold_convert_loc(location, itype->get_tree(gogo),
7664 arg);
7666 else if (type->float_type() != NULL)
7668 static tree print_double_fndecl;
7669 pfndecl = &print_double_fndecl;
7670 fnname = "__go_print_double";
7671 arg = fold_convert_loc(location, double_type_node, arg);
7673 else if (type->complex_type() != NULL)
7675 static tree print_complex_fndecl;
7676 pfndecl = &print_complex_fndecl;
7677 fnname = "__go_print_complex";
7678 arg = fold_convert_loc(location, complex_double_type_node,
7679 arg);
7681 else if (type->is_boolean_type())
7683 static tree print_bool_fndecl;
7684 pfndecl = &print_bool_fndecl;
7685 fnname = "__go_print_bool";
7687 else if (type->points_to() != NULL
7688 || type->channel_type() != NULL
7689 || type->map_type() != NULL
7690 || type->function_type() != NULL)
7692 static tree print_pointer_fndecl;
7693 pfndecl = &print_pointer_fndecl;
7694 fnname = "__go_print_pointer";
7695 arg = fold_convert_loc(location, ptr_type_node, arg);
7697 else if (type->interface_type() != NULL)
7699 if (type->interface_type()->is_empty())
7701 static tree print_empty_interface_fndecl;
7702 pfndecl = &print_empty_interface_fndecl;
7703 fnname = "__go_print_empty_interface";
7705 else
7707 static tree print_interface_fndecl;
7708 pfndecl = &print_interface_fndecl;
7709 fnname = "__go_print_interface";
7712 else if (type->is_open_array_type())
7714 static tree print_slice_fndecl;
7715 pfndecl = &print_slice_fndecl;
7716 fnname = "__go_print_slice";
7718 else
7719 gcc_unreachable();
7721 tree call = Gogo::call_builtin(pfndecl,
7722 location,
7723 fnname,
7725 void_type_node,
7726 TREE_TYPE(arg),
7727 arg);
7728 if (call == error_mark_node)
7729 return error_mark_node;
7730 append_to_statement_list(call, &stmt_list);
7734 if (is_ln)
7736 static tree print_nl_fndecl;
7737 tree call = Gogo::call_builtin(&print_nl_fndecl,
7738 location,
7739 "__go_print_nl",
7741 void_type_node);
7742 if (call == error_mark_node)
7743 return error_mark_node;
7744 append_to_statement_list(call, &stmt_list);
7747 return stmt_list;
7750 case BUILTIN_PANIC:
7752 const Expression_list* args = this->args();
7753 gcc_assert(args != NULL && args->size() == 1);
7754 Expression* arg = args->front();
7755 tree arg_tree = arg->get_tree(context);
7756 if (arg_tree == error_mark_node)
7757 return error_mark_node;
7758 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7759 arg_tree = Expression::convert_for_assignment(context, empty,
7760 arg->type(),
7761 arg_tree, location);
7762 static tree panic_fndecl;
7763 tree call = Gogo::call_builtin(&panic_fndecl,
7764 location,
7765 "__go_panic",
7767 void_type_node,
7768 TREE_TYPE(arg_tree),
7769 arg_tree);
7770 if (call == error_mark_node)
7771 return error_mark_node;
7772 // This function will throw an exception.
7773 TREE_NOTHROW(panic_fndecl) = 0;
7774 // This function will not return.
7775 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7776 return call;
7779 case BUILTIN_RECOVER:
7781 // The argument is set when building recover thunks. It's a
7782 // boolean value which is true if we can recover a value now.
7783 const Expression_list* args = this->args();
7784 gcc_assert(args != NULL && args->size() == 1);
7785 Expression* arg = args->front();
7786 tree arg_tree = arg->get_tree(context);
7787 if (arg_tree == error_mark_node)
7788 return error_mark_node;
7790 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7791 tree empty_tree = empty->get_tree(context->gogo());
7793 Type* nil_type = Type::make_nil_type();
7794 Expression* nil = Expression::make_nil(location);
7795 tree nil_tree = nil->get_tree(context);
7796 tree empty_nil_tree = Expression::convert_for_assignment(context,
7797 empty,
7798 nil_type,
7799 nil_tree,
7800 location);
7802 // We need to handle a deferred call to recover specially,
7803 // because it changes whether it can recover a panic or not.
7804 // See test7 in test/recover1.go.
7805 tree call;
7806 if (this->is_deferred())
7808 static tree deferred_recover_fndecl;
7809 call = Gogo::call_builtin(&deferred_recover_fndecl,
7810 location,
7811 "__go_deferred_recover",
7813 empty_tree);
7815 else
7817 static tree recover_fndecl;
7818 call = Gogo::call_builtin(&recover_fndecl,
7819 location,
7820 "__go_recover",
7822 empty_tree);
7824 if (call == error_mark_node)
7825 return error_mark_node;
7826 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7827 call, empty_nil_tree);
7830 case BUILTIN_CLOSE:
7831 case BUILTIN_CLOSED:
7833 const Expression_list* args = this->args();
7834 gcc_assert(args != NULL && args->size() == 1);
7835 Expression* arg = args->front();
7836 tree arg_tree = arg->get_tree(context);
7837 if (arg_tree == error_mark_node)
7838 return error_mark_node;
7839 if (this->code_ == BUILTIN_CLOSE)
7841 static tree close_fndecl;
7842 return Gogo::call_builtin(&close_fndecl,
7843 location,
7844 "__go_builtin_close",
7846 void_type_node,
7847 TREE_TYPE(arg_tree),
7848 arg_tree);
7850 else
7852 static tree closed_fndecl;
7853 return Gogo::call_builtin(&closed_fndecl,
7854 location,
7855 "__go_builtin_closed",
7857 boolean_type_node,
7858 TREE_TYPE(arg_tree),
7859 arg_tree);
7863 case BUILTIN_SIZEOF:
7864 case BUILTIN_OFFSETOF:
7865 case BUILTIN_ALIGNOF:
7867 mpz_t val;
7868 mpz_init(val);
7869 Type* dummy;
7870 bool b = this->integer_constant_value(true, val, &dummy);
7871 gcc_assert(b);
7872 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7873 tree ret = Expression::integer_constant_tree(val, type);
7874 mpz_clear(val);
7875 return ret;
7878 case BUILTIN_COPY:
7880 const Expression_list* args = this->args();
7881 gcc_assert(args != NULL && args->size() == 2);
7882 Expression* arg1 = args->front();
7883 Expression* arg2 = args->back();
7885 tree arg1_tree = arg1->get_tree(context);
7886 tree arg2_tree = arg2->get_tree(context);
7887 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7888 return error_mark_node;
7890 Type* arg1_type = arg1->type();
7891 Array_type* at = arg1_type->array_type();
7892 arg1_tree = save_expr(arg1_tree);
7893 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7894 tree arg1_len = at->length_tree(gogo, arg1_tree);
7895 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7896 return error_mark_node;
7898 Type* arg2_type = arg2->type();
7899 tree arg2_val;
7900 tree arg2_len;
7901 if (arg2_type->is_open_array_type())
7903 at = arg2_type->array_type();
7904 arg2_tree = save_expr(arg2_tree);
7905 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7906 arg2_len = at->length_tree(gogo, arg2_tree);
7908 else
7910 arg2_tree = save_expr(arg2_tree);
7911 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7912 arg2_len = String_type::length_tree(gogo, arg2_tree);
7914 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7915 return error_mark_node;
7917 arg1_len = save_expr(arg1_len);
7918 arg2_len = save_expr(arg2_len);
7919 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7920 fold_build2_loc(location, LT_EXPR,
7921 boolean_type_node,
7922 arg1_len, arg2_len),
7923 arg1_len, arg2_len);
7924 len = save_expr(len);
7926 Type* element_type = at->element_type();
7927 tree element_type_tree = element_type->get_tree(gogo);
7928 if (element_type_tree == error_mark_node)
7929 return error_mark_node;
7930 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7931 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7932 len);
7933 bytecount = fold_build2_loc(location, MULT_EXPR,
7934 TREE_TYPE(element_size),
7935 bytecount, element_size);
7936 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7938 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7939 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7941 static tree copy_fndecl;
7942 tree call = Gogo::call_builtin(&copy_fndecl,
7943 location,
7944 "__go_copy",
7946 void_type_node,
7947 ptr_type_node,
7948 arg1_val,
7949 ptr_type_node,
7950 arg2_val,
7951 size_type_node,
7952 bytecount);
7953 if (call == error_mark_node)
7954 return error_mark_node;
7956 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7957 call, len);
7960 case BUILTIN_APPEND:
7962 const Expression_list* args = this->args();
7963 gcc_assert(args != NULL && args->size() == 2);
7964 Expression* arg1 = args->front();
7965 Expression* arg2 = args->back();
7967 Array_type* at = arg1->type()->array_type();
7968 Type* element_type = at->element_type();
7970 tree arg1_tree = arg1->get_tree(context);
7971 tree arg2_tree = arg2->get_tree(context);
7972 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7973 return error_mark_node;
7975 arg2_tree = Expression::convert_for_assignment(context, at,
7976 arg2->type(),
7977 arg2_tree,
7978 location);
7979 if (arg2_tree == error_mark_node)
7980 return error_mark_node;
7982 arg2_tree = save_expr(arg2_tree);
7983 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7984 tree arg2_len = at->length_tree(gogo, arg2_tree);
7985 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7986 return error_mark_node;
7987 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7988 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
7990 tree element_type_tree = element_type->get_tree(gogo);
7991 if (element_type_tree == error_mark_node)
7992 return error_mark_node;
7993 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7994 element_size = fold_convert_loc(location, size_type_node,
7995 element_size);
7997 // We rebuild the decl each time since the slice types may
7998 // change.
7999 tree append_fndecl = NULL_TREE;
8000 return Gogo::call_builtin(&append_fndecl,
8001 location,
8002 "__go_append",
8004 TREE_TYPE(arg1_tree),
8005 TREE_TYPE(arg1_tree),
8006 arg1_tree,
8007 ptr_type_node,
8008 arg2_val,
8009 size_type_node,
8010 arg2_len,
8011 size_type_node,
8012 element_size);
8015 case BUILTIN_REAL:
8016 case BUILTIN_IMAG:
8018 const Expression_list* args = this->args();
8019 gcc_assert(args != NULL && args->size() == 1);
8020 Expression* arg = args->front();
8021 tree arg_tree = arg->get_tree(context);
8022 if (arg_tree == error_mark_node)
8023 return error_mark_node;
8024 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8025 if (this->code_ == BUILTIN_REAL)
8026 return fold_build1_loc(location, REALPART_EXPR,
8027 TREE_TYPE(TREE_TYPE(arg_tree)),
8028 arg_tree);
8029 else
8030 return fold_build1_loc(location, IMAGPART_EXPR,
8031 TREE_TYPE(TREE_TYPE(arg_tree)),
8032 arg_tree);
8035 case BUILTIN_CMPLX:
8037 const Expression_list* args = this->args();
8038 gcc_assert(args != NULL && args->size() == 2);
8039 tree r = args->front()->get_tree(context);
8040 tree i = args->back()->get_tree(context);
8041 if (r == error_mark_node || i == error_mark_node)
8042 return error_mark_node;
8043 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8044 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8045 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8046 return fold_build2_loc(location, COMPLEX_EXPR,
8047 build_complex_type(TREE_TYPE(r)),
8048 r, i);
8051 default:
8052 gcc_unreachable();
8056 // We have to support exporting a builtin call expression, because
8057 // code can set a constant to the result of a builtin expression.
8059 void
8060 Builtin_call_expression::do_export(Export* exp) const
8062 bool ok = false;
8064 mpz_t val;
8065 mpz_init(val);
8066 Type* dummy;
8067 if (this->integer_constant_value(true, val, &dummy))
8069 Integer_expression::export_integer(exp, val);
8070 ok = true;
8072 mpz_clear(val);
8074 if (!ok)
8076 mpfr_t fval;
8077 mpfr_init(fval);
8078 if (this->float_constant_value(fval, &dummy))
8080 Float_expression::export_float(exp, fval);
8081 ok = true;
8083 mpfr_clear(fval);
8086 if (!ok)
8088 mpfr_t real;
8089 mpfr_t imag;
8090 mpfr_init(real);
8091 mpfr_init(imag);
8092 if (this->complex_constant_value(real, imag, &dummy))
8094 Complex_expression::export_complex(exp, real, imag);
8095 ok = true;
8097 mpfr_clear(real);
8098 mpfr_clear(imag);
8101 if (!ok)
8103 error_at(this->location(), "value is not constant");
8104 return;
8107 // A trailing space lets us reliably identify the end of the number.
8108 exp->write_c_string(" ");
8111 // Class Call_expression.
8113 // Traversal.
8116 Call_expression::do_traverse(Traverse* traverse)
8118 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8119 return TRAVERSE_EXIT;
8120 if (this->args_ != NULL)
8122 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8123 return TRAVERSE_EXIT;
8125 return TRAVERSE_CONTINUE;
8128 // Lower a call statement.
8130 Expression*
8131 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8133 // A type case can look like a function call.
8134 if (this->fn_->is_type_expression()
8135 && this->args_ != NULL
8136 && this->args_->size() == 1)
8137 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8138 this->location());
8140 // Recognize a call to a builtin function.
8141 Func_expression* fne = this->fn_->func_expression();
8142 if (fne != NULL
8143 && fne->named_object()->is_function_declaration()
8144 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8145 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8146 this->is_varargs_, this->location());
8148 // Handle an argument which is a call to a function which returns
8149 // multiple results.
8150 if (this->args_ != NULL
8151 && this->args_->size() == 1
8152 && this->args_->front()->call_expression() != NULL
8153 && this->fn_->type()->function_type() != NULL)
8155 Function_type* fntype = this->fn_->type()->function_type();
8156 size_t rc = this->args_->front()->call_expression()->result_count();
8157 if (rc > 1
8158 && fntype->parameters() != NULL
8159 && (fntype->parameters()->size() == rc
8160 || (fntype->is_varargs()
8161 && fntype->parameters()->size() - 1 <= rc)))
8163 Call_expression* call = this->args_->front()->call_expression();
8164 Expression_list* args = new Expression_list;
8165 for (size_t i = 0; i < rc; ++i)
8166 args->push_back(Expression::make_call_result(call, i));
8167 // We can't return a new call expression here, because this
8168 // one may be referenced by Call_result expressions. FIXME.
8169 delete this->args_;
8170 this->args_ = args;
8174 // Handle a call to a varargs function by packaging up the extra
8175 // parameters.
8176 if (this->fn_->type()->function_type() != NULL
8177 && this->fn_->type()->function_type()->is_varargs())
8179 Function_type* fntype = this->fn_->type()->function_type();
8180 const Typed_identifier_list* parameters = fntype->parameters();
8181 gcc_assert(parameters != NULL && !parameters->empty());
8182 Type* varargs_type = parameters->back().type();
8183 return this->lower_varargs(gogo, function, varargs_type,
8184 parameters->size());
8187 return this;
8190 // Lower a call to a varargs function. FUNCTION is the function in
8191 // which the call occurs--it's not the function we are calling.
8192 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8193 // PARAM_COUNT is the number of parameters of the function we are
8194 // calling; the last of these parameters will be the varargs
8195 // parameter.
8197 Expression*
8198 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8199 Type* varargs_type, size_t param_count)
8201 if (this->varargs_are_lowered_)
8202 return this;
8204 source_location loc = this->location();
8206 gcc_assert(param_count > 0);
8207 gcc_assert(varargs_type->is_open_array_type());
8209 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8210 if (arg_count < param_count - 1)
8212 // Not enough arguments; will be caught in check_types.
8213 return this;
8216 Expression_list* old_args = this->args_;
8217 Expression_list* new_args = new Expression_list();
8218 bool push_empty_arg = false;
8219 if (old_args == NULL || old_args->empty())
8221 gcc_assert(param_count == 1);
8222 push_empty_arg = true;
8224 else
8226 Expression_list::const_iterator pa;
8227 int i = 1;
8228 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8230 if (static_cast<size_t>(i) == param_count)
8231 break;
8232 new_args->push_back(*pa);
8235 // We have reached the varargs parameter.
8237 bool issued_error = false;
8238 if (pa == old_args->end())
8239 push_empty_arg = true;
8240 else if (pa + 1 == old_args->end() && this->is_varargs_)
8241 new_args->push_back(*pa);
8242 else if (this->is_varargs_)
8244 this->report_error(_("too many arguments"));
8245 return this;
8247 else if (pa + 1 == old_args->end()
8248 && this->is_compatible_varargs_argument(function, *pa,
8249 varargs_type,
8250 &issued_error))
8251 new_args->push_back(*pa);
8252 else
8254 Type* element_type = varargs_type->array_type()->element_type();
8255 Expression_list* vals = new Expression_list;
8256 for (; pa != old_args->end(); ++pa, ++i)
8258 // Check types here so that we get a better message.
8259 Type* patype = (*pa)->type();
8260 source_location paloc = (*pa)->location();
8261 if (!this->check_argument_type(i, element_type, patype,
8262 paloc, issued_error))
8263 continue;
8264 vals->push_back(*pa);
8266 Expression* val =
8267 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8268 new_args->push_back(val);
8272 if (push_empty_arg)
8273 new_args->push_back(Expression::make_nil(loc));
8275 // We can't return a new call expression here, because this one may
8276 // be referenced by Call_result expressions. FIXME.
8277 if (old_args != NULL)
8278 delete old_args;
8279 this->args_ = new_args;
8280 this->varargs_are_lowered_ = true;
8282 // Lower all the new subexpressions.
8283 Expression* ret = this;
8284 gogo->lower_expression(function, &ret);
8285 gcc_assert(ret == this);
8286 return ret;
8289 // Return true if ARG is a varargs argment which should be passed to
8290 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8291 // will be the last argument passed in the call, and PARAM_TYPE will
8292 // be the type of the last parameter of the varargs function being
8293 // called.
8295 bool
8296 Call_expression::is_compatible_varargs_argument(Named_object* function,
8297 Expression* arg,
8298 Type* param_type,
8299 bool* issued_error)
8301 *issued_error = false;
8303 Type* var_type = NULL;
8305 // The simple case is passing the varargs parameter of the caller.
8306 Var_expression* ve = arg->var_expression();
8307 if (ve != NULL && ve->named_object()->is_variable())
8309 Variable* var = ve->named_object()->var_value();
8310 if (var->is_varargs_parameter())
8311 var_type = var->type();
8314 // The complex case is passing the varargs parameter of some
8315 // enclosing function. This will look like passing down *c.f where
8316 // c is the closure variable and f is a field in the closure.
8317 if (function != NULL
8318 && function->func_value()->needs_closure()
8319 && arg->classification() == EXPRESSION_UNARY)
8321 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8322 if (ue->op() == OPERATOR_MULT)
8324 Field_reference_expression* fre =
8325 ue->operand()->deref()->field_reference_expression();
8326 if (fre != NULL)
8328 Var_expression* ve = fre->expr()->deref()->var_expression();
8329 if (ve != NULL)
8331 Named_object* no = ve->named_object();
8332 Function* f = function->func_value();
8333 if (no == f->closure_var())
8335 // At this point we know that this indeed a
8336 // reference to some enclosing variable. Now we
8337 // need to figure out whether that variable is a
8338 // varargs parameter.
8339 Named_object* enclosing =
8340 f->enclosing_var(fre->field_index());
8341 Variable* var = enclosing->var_value();
8342 if (var->is_varargs_parameter())
8343 var_type = var->type();
8350 if (var_type == NULL)
8351 return false;
8353 // We only match if the parameter is the same, with an identical
8354 // type.
8355 Array_type* var_at = var_type->array_type();
8356 gcc_assert(var_at != NULL);
8357 Array_type* param_at = param_type->array_type();
8358 if (param_at != NULL
8359 && Type::are_identical(var_at->element_type(),
8360 param_at->element_type(), true, NULL))
8361 return true;
8362 error_at(arg->location(), "... mismatch: passing ...T as ...");
8363 *issued_error = true;
8364 return false;
8367 // Get the function type. Returns NULL if we don't know the type. If
8368 // this returns NULL, and if_ERROR is true, issues an error.
8370 Function_type*
8371 Call_expression::get_function_type() const
8373 return this->fn_->type()->function_type();
8376 // Return the number of values which this call will return.
8378 size_t
8379 Call_expression::result_count() const
8381 const Function_type* fntype = this->get_function_type();
8382 if (fntype == NULL)
8383 return 0;
8384 if (fntype->results() == NULL)
8385 return 0;
8386 return fntype->results()->size();
8389 // Return whether this is a call to the predeclared function recover.
8391 bool
8392 Call_expression::is_recover_call() const
8394 return this->do_is_recover_call();
8397 // Set the argument to the recover function.
8399 void
8400 Call_expression::set_recover_arg(Expression* arg)
8402 this->do_set_recover_arg(arg);
8405 // Virtual functions also implemented by Builtin_call_expression.
8407 bool
8408 Call_expression::do_is_recover_call() const
8410 return false;
8413 void
8414 Call_expression::do_set_recover_arg(Expression*)
8416 gcc_unreachable();
8419 // Get the type.
8421 Type*
8422 Call_expression::do_type()
8424 if (this->type_ != NULL)
8425 return this->type_;
8427 Type* ret;
8428 Function_type* fntype = this->get_function_type();
8429 if (fntype == NULL)
8430 return Type::make_error_type();
8432 const Typed_identifier_list* results = fntype->results();
8433 if (results == NULL)
8434 ret = Type::make_void_type();
8435 else if (results->size() == 1)
8436 ret = results->begin()->type();
8437 else
8438 ret = Type::make_call_multiple_result_type(this);
8440 this->type_ = ret;
8442 return this->type_;
8445 // Determine types for a call expression. We can use the function
8446 // parameter types to set the types of the arguments.
8448 void
8449 Call_expression::do_determine_type(const Type_context*)
8451 this->fn_->determine_type_no_context();
8452 Function_type* fntype = this->get_function_type();
8453 const Typed_identifier_list* parameters = NULL;
8454 if (fntype != NULL)
8455 parameters = fntype->parameters();
8456 if (this->args_ != NULL)
8458 Typed_identifier_list::const_iterator pt;
8459 if (parameters != NULL)
8460 pt = parameters->begin();
8461 for (Expression_list::const_iterator pa = this->args_->begin();
8462 pa != this->args_->end();
8463 ++pa)
8465 if (parameters != NULL && pt != parameters->end())
8467 Type_context subcontext(pt->type(), false);
8468 (*pa)->determine_type(&subcontext);
8469 ++pt;
8471 else
8472 (*pa)->determine_type_no_context();
8477 // Check types for parameter I.
8479 bool
8480 Call_expression::check_argument_type(int i, const Type* parameter_type,
8481 const Type* argument_type,
8482 source_location argument_location,
8483 bool issued_error)
8485 std::string reason;
8486 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8488 if (!issued_error)
8490 if (reason.empty())
8491 error_at(argument_location, "argument %d has incompatible type", i);
8492 else
8493 error_at(argument_location,
8494 "argument %d has incompatible type (%s)",
8495 i, reason.c_str());
8497 this->set_is_error();
8498 return false;
8500 return true;
8503 // Check types.
8505 void
8506 Call_expression::do_check_types(Gogo*)
8508 Function_type* fntype = this->get_function_type();
8509 if (fntype == NULL)
8511 if (!this->fn_->type()->is_error_type())
8512 this->report_error(_("expected function"));
8513 return;
8516 if (fntype->is_method())
8518 // We don't support pointers to methods, so the function has to
8519 // be a bound method expression.
8520 Bound_method_expression* bme = this->fn_->bound_method_expression();
8521 if (bme == NULL)
8523 this->report_error(_("method call without object"));
8524 return;
8526 Type* first_arg_type = bme->first_argument()->type();
8527 if (first_arg_type->points_to() == NULL)
8529 // When passing a value, we need to check that we are
8530 // permitted to copy it.
8531 std::string reason;
8532 if (!Type::are_assignable(fntype->receiver()->type(),
8533 first_arg_type, &reason))
8535 if (reason.empty())
8536 this->report_error(_("incompatible type for receiver"));
8537 else
8539 error_at(this->location(),
8540 "incompatible type for receiver (%s)",
8541 reason.c_str());
8542 this->set_is_error();
8548 // Note that varargs was handled by the lower_varargs() method, so
8549 // we don't have to worry about it here.
8551 const Typed_identifier_list* parameters = fntype->parameters();
8552 if (this->args_ == NULL)
8554 if (parameters != NULL && !parameters->empty())
8555 this->report_error(_("not enough arguments"));
8557 else if (parameters == NULL)
8558 this->report_error(_("too many arguments"));
8559 else
8561 int i = 0;
8562 Typed_identifier_list::const_iterator pt = parameters->begin();
8563 for (Expression_list::const_iterator pa = this->args_->begin();
8564 pa != this->args_->end();
8565 ++pa, ++pt, ++i)
8567 if (pt == parameters->end())
8569 this->report_error(_("too many arguments"));
8570 return;
8572 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8573 (*pa)->location(), false);
8575 if (pt != parameters->end())
8576 this->report_error(_("not enough arguments"));
8580 // Return whether we have to use a temporary variable to ensure that
8581 // we evaluate this call expression in order. If the call returns no
8582 // results then it will inevitably be executed last. If the call
8583 // returns more than one result then it will be used with Call_result
8584 // expressions. So we only have to use a temporary variable if the
8585 // call returns exactly one result.
8587 bool
8588 Call_expression::do_must_eval_in_order() const
8590 return this->result_count() == 1;
8593 // Get the function and the first argument to use when calling a bound
8594 // method.
8596 tree
8597 Call_expression::bound_method_function(Translate_context* context,
8598 Bound_method_expression* bound_method,
8599 tree* first_arg_ptr)
8601 Expression* first_argument = bound_method->first_argument();
8602 tree first_arg = first_argument->get_tree(context);
8603 if (first_arg == error_mark_node)
8604 return error_mark_node;
8606 // We always pass a pointer to the first argument when calling a
8607 // method.
8608 if (first_argument->type()->points_to() == NULL)
8610 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8611 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8612 || DECL_P(first_arg)
8613 || TREE_CODE(first_arg) == INDIRECT_REF
8614 || TREE_CODE(first_arg) == COMPONENT_REF)
8616 first_arg = build_fold_addr_expr(first_arg);
8617 if (DECL_P(first_arg))
8618 TREE_ADDRESSABLE(first_arg) = 1;
8620 else
8622 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8623 get_name(first_arg));
8624 DECL_IGNORED_P(tmp) = 0;
8625 DECL_INITIAL(tmp) = first_arg;
8626 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8627 build1(DECL_EXPR, void_type_node, tmp),
8628 build_fold_addr_expr(tmp));
8629 TREE_ADDRESSABLE(tmp) = 1;
8631 if (first_arg == error_mark_node)
8632 return error_mark_node;
8635 Type* fatype = bound_method->first_argument_type();
8636 if (fatype != NULL)
8638 if (fatype->points_to() == NULL)
8639 fatype = Type::make_pointer_type(fatype);
8640 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8641 if (first_arg == error_mark_node
8642 || TREE_TYPE(first_arg) == error_mark_node)
8643 return error_mark_node;
8646 *first_arg_ptr = first_arg;
8648 return bound_method->method()->get_tree(context);
8651 // Get the function and the first argument to use when calling an
8652 // interface method.
8654 tree
8655 Call_expression::interface_method_function(
8656 Translate_context* context,
8657 Interface_field_reference_expression* interface_method,
8658 tree* first_arg_ptr)
8660 tree expr = interface_method->expr()->get_tree(context);
8661 if (expr == error_mark_node)
8662 return error_mark_node;
8663 expr = save_expr(expr);
8664 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8665 if (first_arg == error_mark_node)
8666 return error_mark_node;
8667 *first_arg_ptr = first_arg;
8668 return interface_method->get_function_tree(context, expr);
8671 // Build the call expression.
8673 tree
8674 Call_expression::do_get_tree(Translate_context* context)
8676 if (this->tree_ != NULL_TREE)
8677 return this->tree_;
8679 Function_type* fntype = this->get_function_type();
8680 if (fntype == NULL)
8681 return error_mark_node;
8683 if (this->fn_->is_error_expression())
8684 return error_mark_node;
8686 Gogo* gogo = context->gogo();
8687 source_location location = this->location();
8689 Func_expression* func = this->fn_->func_expression();
8690 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8691 Interface_field_reference_expression* interface_method =
8692 this->fn_->interface_field_reference_expression();
8693 const bool has_closure = func != NULL && func->closure() != NULL;
8694 const bool is_method = bound_method != NULL || interface_method != NULL;
8695 gcc_assert(!fntype->is_method() || is_method);
8697 int nargs;
8698 tree* args;
8699 if (this->args_ == NULL || this->args_->empty())
8701 nargs = is_method ? 1 : 0;
8702 args = nargs == 0 ? NULL : new tree[nargs];
8704 else
8706 const Typed_identifier_list* params = fntype->parameters();
8707 gcc_assert(params != NULL);
8709 nargs = this->args_->size();
8710 int i = is_method ? 1 : 0;
8711 nargs += i;
8712 args = new tree[nargs];
8714 Typed_identifier_list::const_iterator pp = params->begin();
8715 Expression_list::const_iterator pe;
8716 for (pe = this->args_->begin();
8717 pe != this->args_->end();
8718 ++pe, ++pp, ++i)
8720 gcc_assert(pp != params->end());
8721 tree arg_val = (*pe)->get_tree(context);
8722 args[i] = Expression::convert_for_assignment(context,
8723 pp->type(),
8724 (*pe)->type(),
8725 arg_val,
8726 location);
8727 if (args[i] == error_mark_node)
8728 return error_mark_node;
8730 gcc_assert(pp == params->end());
8731 gcc_assert(i == nargs);
8734 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8735 if (rettype == error_mark_node)
8736 return error_mark_node;
8738 tree fn;
8739 if (has_closure)
8740 fn = func->get_tree_without_closure(gogo);
8741 else if (!is_method)
8742 fn = this->fn_->get_tree(context);
8743 else if (bound_method != NULL)
8744 fn = this->bound_method_function(context, bound_method, &args[0]);
8745 else if (interface_method != NULL)
8746 fn = this->interface_method_function(context, interface_method, &args[0]);
8747 else
8748 gcc_unreachable();
8750 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8751 return error_mark_node;
8753 // This is to support builtin math functions when using 80387 math.
8754 tree fndecl = fn;
8755 if (TREE_CODE(fndecl) == ADDR_EXPR)
8756 fndecl = TREE_OPERAND(fndecl, 0);
8757 tree excess_type = NULL_TREE;
8758 if (DECL_P(fndecl)
8759 && DECL_IS_BUILTIN(fndecl)
8760 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8761 && nargs > 0
8762 && ((SCALAR_FLOAT_TYPE_P(rettype)
8763 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8764 || (COMPLEX_FLOAT_TYPE_P(rettype)
8765 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8767 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8768 if (excess_type != NULL_TREE)
8770 tree excess_fndecl = mathfn_built_in(excess_type,
8771 DECL_FUNCTION_CODE(fndecl));
8772 if (excess_fndecl == NULL_TREE)
8773 excess_type = NULL_TREE;
8774 else
8776 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8777 for (int i = 0; i < nargs; ++i)
8778 args[i] = ::convert(excess_type, args[i]);
8783 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8784 fn, nargs, args);
8785 delete[] args;
8787 SET_EXPR_LOCATION(ret, location);
8789 if (has_closure)
8791 tree closure_tree = func->closure()->get_tree(context);
8792 if (closure_tree != error_mark_node)
8793 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8796 // If this is a recursive function type which returns itself, as in
8797 // type F func() F
8798 // we have used ptr_type_node for the return type. Add a cast here
8799 // to the correct type.
8800 if (TREE_TYPE(ret) == ptr_type_node)
8802 tree t = this->type()->get_tree(gogo);
8803 ret = fold_convert_loc(location, t, ret);
8806 if (excess_type != NULL_TREE)
8808 // Calling convert here can undo our excess precision change.
8809 // That may or may not be a bug in convert_to_real.
8810 ret = build1(NOP_EXPR, rettype, ret);
8813 // If there is more than one result, we will refer to the call
8814 // multiple times.
8815 if (fntype->results() != NULL && fntype->results()->size() > 1)
8816 ret = save_expr(ret);
8818 this->tree_ = ret;
8820 return ret;
8823 // Make a call expression.
8825 Call_expression*
8826 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8827 source_location location)
8829 return new Call_expression(fn, args, is_varargs, location);
8832 // A single result from a call which returns multiple results.
8834 class Call_result_expression : public Expression
8836 public:
8837 Call_result_expression(Call_expression* call, unsigned int index)
8838 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8839 call_(call), index_(index)
8842 protected:
8844 do_traverse(Traverse*);
8846 Type*
8847 do_type();
8849 void
8850 do_determine_type(const Type_context*);
8852 void
8853 do_check_types(Gogo*);
8855 Expression*
8856 do_copy()
8858 return new Call_result_expression(this->call_->call_expression(),
8859 this->index_);
8862 bool
8863 do_must_eval_in_order() const
8864 { return true; }
8866 tree
8867 do_get_tree(Translate_context*);
8869 private:
8870 // The underlying call expression.
8871 Expression* call_;
8872 // Which result we want.
8873 unsigned int index_;
8876 // Traverse a call result.
8879 Call_result_expression::do_traverse(Traverse* traverse)
8881 if (traverse->remember_expression(this->call_))
8883 // We have already traversed the call expression.
8884 return TRAVERSE_CONTINUE;
8886 return Expression::traverse(&this->call_, traverse);
8889 // Get the type.
8891 Type*
8892 Call_result_expression::do_type()
8894 if (this->classification() == EXPRESSION_ERROR)
8895 return Type::make_error_type();
8897 // THIS->CALL_ can be replaced with a temporary reference due to
8898 // Call_expression::do_must_eval_in_order when there is an error.
8899 Call_expression* ce = this->call_->call_expression();
8900 if (ce == NULL)
8901 return Type::make_error_type();
8902 Function_type* fntype = ce->get_function_type();
8903 if (fntype == NULL)
8904 return Type::make_error_type();
8905 const Typed_identifier_list* results = fntype->results();
8906 if (results == NULL)
8908 this->report_error(_("number of results does not match "
8909 "number of values"));
8910 return Type::make_error_type();
8912 Typed_identifier_list::const_iterator pr = results->begin();
8913 for (unsigned int i = 0; i < this->index_; ++i)
8915 if (pr == results->end())
8916 break;
8917 ++pr;
8919 if (pr == results->end())
8921 this->report_error(_("number of results does not match "
8922 "number of values"));
8923 return Type::make_error_type();
8925 return pr->type();
8928 // Check the type. Just make sure that we trigger the warning in
8929 // do_type.
8931 void
8932 Call_result_expression::do_check_types(Gogo*)
8934 this->type();
8937 // Determine the type. We have nothing to do here, but the 0 result
8938 // needs to pass down to the caller.
8940 void
8941 Call_result_expression::do_determine_type(const Type_context*)
8943 if (this->index_ == 0)
8944 this->call_->determine_type_no_context();
8947 // Return the tree.
8949 tree
8950 Call_result_expression::do_get_tree(Translate_context* context)
8952 tree call_tree = this->call_->get_tree(context);
8953 if (call_tree == error_mark_node)
8954 return error_mark_node;
8955 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8956 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8957 for (unsigned int i = 0; i < this->index_; ++i)
8959 gcc_assert(field != NULL_TREE);
8960 field = DECL_CHAIN(field);
8962 gcc_assert(field != NULL_TREE);
8963 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8966 // Make a reference to a single result of a call which returns
8967 // multiple results.
8969 Expression*
8970 Expression::make_call_result(Call_expression* call, unsigned int index)
8972 return new Call_result_expression(call, index);
8975 // Class Index_expression.
8977 // Traversal.
8980 Index_expression::do_traverse(Traverse* traverse)
8982 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8983 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8984 || (this->end_ != NULL
8985 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8986 return TRAVERSE_EXIT;
8987 return TRAVERSE_CONTINUE;
8990 // Lower an index expression. This converts the generic index
8991 // expression into an array index, a string index, or a map index.
8993 Expression*
8994 Index_expression::do_lower(Gogo*, Named_object*, int)
8996 source_location location = this->location();
8997 Expression* left = this->left_;
8998 Expression* start = this->start_;
8999 Expression* end = this->end_;
9001 Type* type = left->type();
9002 if (type->is_error_type())
9003 return Expression::make_error(location);
9004 else if (type->array_type() != NULL)
9005 return Expression::make_array_index(left, start, end, location);
9006 else if (type->points_to() != NULL
9007 && type->points_to()->array_type() != NULL
9008 && !type->points_to()->is_open_array_type())
9010 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9011 location);
9012 return Expression::make_array_index(deref, start, end, location);
9014 else if (type->is_string_type())
9015 return Expression::make_string_index(left, start, end, location);
9016 else if (type->map_type() != NULL)
9018 if (end != NULL)
9020 error_at(location, "invalid slice of map");
9021 return Expression::make_error(location);
9023 Map_index_expression* ret= Expression::make_map_index(left, start,
9024 location);
9025 if (this->is_lvalue_)
9026 ret->set_is_lvalue();
9027 return ret;
9029 else
9031 error_at(location,
9032 "attempt to index object which is not array, string, or map");
9033 return Expression::make_error(location);
9037 // Make an index expression.
9039 Expression*
9040 Expression::make_index(Expression* left, Expression* start, Expression* end,
9041 source_location location)
9043 return new Index_expression(left, start, end, location);
9046 // An array index. This is used for both indexing and slicing.
9048 class Array_index_expression : public Expression
9050 public:
9051 Array_index_expression(Expression* array, Expression* start,
9052 Expression* end, source_location location)
9053 : Expression(EXPRESSION_ARRAY_INDEX, location),
9054 array_(array), start_(start), end_(end), type_(NULL)
9057 protected:
9059 do_traverse(Traverse*);
9061 Type*
9062 do_type();
9064 void
9065 do_determine_type(const Type_context*);
9067 void
9068 do_check_types(Gogo*);
9070 Expression*
9071 do_copy()
9073 return Expression::make_array_index(this->array_->copy(),
9074 this->start_->copy(),
9075 (this->end_ == NULL
9076 ? NULL
9077 : this->end_->copy()),
9078 this->location());
9081 bool
9082 do_is_addressable() const;
9084 void
9085 do_address_taken(bool escapes)
9086 { this->array_->address_taken(escapes); }
9088 tree
9089 do_get_tree(Translate_context*);
9091 private:
9092 // The array we are getting a value from.
9093 Expression* array_;
9094 // The start or only index.
9095 Expression* start_;
9096 // The end index of a slice. This may be NULL for a simple array
9097 // index, or it may be a nil expression for the length of the array.
9098 Expression* end_;
9099 // The type of the expression.
9100 Type* type_;
9103 // Array index traversal.
9106 Array_index_expression::do_traverse(Traverse* traverse)
9108 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9109 return TRAVERSE_EXIT;
9110 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9111 return TRAVERSE_EXIT;
9112 if (this->end_ != NULL)
9114 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9115 return TRAVERSE_EXIT;
9117 return TRAVERSE_CONTINUE;
9120 // Return the type of an array index.
9122 Type*
9123 Array_index_expression::do_type()
9125 if (this->type_ == NULL)
9127 Array_type* type = this->array_->type()->array_type();
9128 if (type == NULL)
9129 this->type_ = Type::make_error_type();
9130 else if (this->end_ == NULL)
9131 this->type_ = type->element_type();
9132 else if (type->is_open_array_type())
9134 // A slice of a slice has the same type as the original
9135 // slice.
9136 this->type_ = this->array_->type()->deref();
9138 else
9140 // A slice of an array is a slice.
9141 this->type_ = Type::make_array_type(type->element_type(), NULL);
9144 return this->type_;
9147 // Set the type of an array index.
9149 void
9150 Array_index_expression::do_determine_type(const Type_context*)
9152 this->array_->determine_type_no_context();
9153 Type_context subcontext(NULL, true);
9154 this->start_->determine_type(&subcontext);
9155 if (this->end_ != NULL)
9156 this->end_->determine_type(&subcontext);
9159 // Check types of an array index.
9161 void
9162 Array_index_expression::do_check_types(Gogo*)
9164 if (this->start_->type()->integer_type() == NULL)
9165 this->report_error(_("index must be integer"));
9166 if (this->end_ != NULL
9167 && this->end_->type()->integer_type() == NULL
9168 && !this->end_->is_nil_expression())
9169 this->report_error(_("slice end must be integer"));
9171 Array_type* array_type = this->array_->type()->array_type();
9172 if (array_type == NULL)
9174 gcc_assert(this->array_->type()->is_error_type());
9175 return;
9178 unsigned int int_bits =
9179 Type::lookup_integer_type("int")->integer_type()->bits();
9181 Type* dummy;
9182 mpz_t lval;
9183 mpz_init(lval);
9184 bool lval_valid = (array_type->length() != NULL
9185 && array_type->length()->integer_constant_value(true,
9186 lval,
9187 &dummy));
9188 mpz_t ival;
9189 mpz_init(ival);
9190 if (this->start_->integer_constant_value(true, ival, &dummy))
9192 if (mpz_sgn(ival) < 0
9193 || mpz_sizeinbase(ival, 2) >= int_bits
9194 || (lval_valid
9195 && (this->end_ == NULL
9196 ? mpz_cmp(ival, lval) >= 0
9197 : mpz_cmp(ival, lval) > 0)))
9199 error_at(this->start_->location(), "array index out of bounds");
9200 this->set_is_error();
9203 if (this->end_ != NULL && !this->end_->is_nil_expression())
9205 if (this->end_->integer_constant_value(true, ival, &dummy))
9207 if (mpz_sgn(ival) < 0
9208 || mpz_sizeinbase(ival, 2) >= int_bits
9209 || (lval_valid && mpz_cmp(ival, lval) > 0))
9211 error_at(this->end_->location(), "array index out of bounds");
9212 this->set_is_error();
9216 mpz_clear(ival);
9217 mpz_clear(lval);
9219 // A slice of an array requires an addressable array. A slice of a
9220 // slice is always possible.
9221 if (this->end_ != NULL
9222 && !array_type->is_open_array_type()
9223 && !this->array_->is_addressable())
9224 this->report_error(_("array is not addressable"));
9227 // Return whether this expression is addressable.
9229 bool
9230 Array_index_expression::do_is_addressable() const
9232 // A slice expression is not addressable.
9233 if (this->end_ != NULL)
9234 return false;
9236 // An index into a slice is addressable.
9237 if (this->array_->type()->is_open_array_type())
9238 return true;
9240 // An index into an array is addressable if the array is
9241 // addressable.
9242 return this->array_->is_addressable();
9245 // Get a tree for an array index.
9247 tree
9248 Array_index_expression::do_get_tree(Translate_context* context)
9250 Gogo* gogo = context->gogo();
9251 source_location loc = this->location();
9253 Array_type* array_type = this->array_->type()->array_type();
9254 if (array_type == NULL)
9256 gcc_assert(this->array_->type()->is_error_type());
9257 return error_mark_node;
9260 tree type_tree = array_type->get_tree(gogo);
9261 if (type_tree == error_mark_node)
9262 return error_mark_node;
9264 tree array_tree = this->array_->get_tree(context);
9265 if (array_tree == error_mark_node)
9266 return error_mark_node;
9268 if (array_type->length() == NULL && !DECL_P(array_tree))
9269 array_tree = save_expr(array_tree);
9270 tree length_tree = array_type->length_tree(gogo, array_tree);
9271 if (length_tree == error_mark_node)
9272 return error_mark_node;
9273 length_tree = save_expr(length_tree);
9274 tree length_type = TREE_TYPE(length_tree);
9276 tree bad_index = boolean_false_node;
9278 tree start_tree = this->start_->get_tree(context);
9279 if (start_tree == error_mark_node)
9280 return error_mark_node;
9281 if (!DECL_P(start_tree))
9282 start_tree = save_expr(start_tree);
9283 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9284 start_tree = convert_to_integer(length_type, start_tree);
9286 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9287 loc);
9289 start_tree = fold_convert_loc(loc, length_type, start_tree);
9290 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9291 fold_build2_loc(loc,
9292 (this->end_ == NULL
9293 ? GE_EXPR
9294 : GT_EXPR),
9295 boolean_type_node, start_tree,
9296 length_tree));
9298 int code = (array_type->length() != NULL
9299 ? (this->end_ == NULL
9300 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9301 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9302 : (this->end_ == NULL
9303 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9304 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9305 tree crash = Gogo::runtime_error(code, loc);
9307 if (this->end_ == NULL)
9309 // Simple array indexing. This has to return an l-value, so
9310 // wrap the index check into START_TREE.
9311 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9312 build3(COND_EXPR, void_type_node,
9313 bad_index, crash, NULL_TREE),
9314 start_tree);
9315 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9317 if (array_type->length() != NULL)
9319 // Fixed array.
9320 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9321 start_tree, NULL_TREE, NULL_TREE);
9323 else
9325 // Open array.
9326 tree values = array_type->value_pointer_tree(gogo, array_tree);
9327 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9328 if (element_type_tree == error_mark_node)
9329 return error_mark_node;
9330 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9331 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9332 start_tree, element_size);
9333 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9334 TREE_TYPE(values), values, offset);
9335 return build_fold_indirect_ref(ptr);
9339 // Array slice.
9341 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9342 if (capacity_tree == error_mark_node)
9343 return error_mark_node;
9344 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9346 tree end_tree;
9347 if (this->end_->is_nil_expression())
9348 end_tree = length_tree;
9349 else
9351 end_tree = this->end_->get_tree(context);
9352 if (end_tree == error_mark_node)
9353 return error_mark_node;
9354 if (!DECL_P(end_tree))
9355 end_tree = save_expr(end_tree);
9356 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9357 end_tree = convert_to_integer(length_type, end_tree);
9359 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9360 loc);
9362 end_tree = fold_convert_loc(loc, length_type, end_tree);
9364 capacity_tree = save_expr(capacity_tree);
9365 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9366 fold_build2_loc(loc, LT_EXPR,
9367 boolean_type_node,
9368 end_tree, start_tree),
9369 fold_build2_loc(loc, GT_EXPR,
9370 boolean_type_node,
9371 end_tree, capacity_tree));
9372 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9373 bad_index, bad_end);
9376 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9377 if (element_type_tree == error_mark_node)
9378 return error_mark_node;
9379 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9381 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9382 fold_convert_loc(loc, sizetype, start_tree),
9383 element_size);
9385 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9386 if (value_pointer == error_mark_node)
9387 return error_mark_node;
9389 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9390 TREE_TYPE(value_pointer),
9391 value_pointer, offset);
9393 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9394 end_tree, start_tree);
9396 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9397 capacity_tree, start_tree);
9399 tree struct_tree = this->type()->get_tree(gogo);
9400 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9402 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9404 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9405 tree field = TYPE_FIELDS(struct_tree);
9406 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9407 elt->index = field;
9408 elt->value = value_pointer;
9410 elt = VEC_quick_push(constructor_elt, init, NULL);
9411 field = DECL_CHAIN(field);
9412 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9413 elt->index = field;
9414 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9416 elt = VEC_quick_push(constructor_elt, init, NULL);
9417 field = DECL_CHAIN(field);
9418 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9419 elt->index = field;
9420 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9422 tree constructor = build_constructor(struct_tree, init);
9424 if (TREE_CONSTANT(value_pointer)
9425 && TREE_CONSTANT(result_length_tree)
9426 && TREE_CONSTANT(result_capacity_tree))
9427 TREE_CONSTANT(constructor) = 1;
9429 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9430 build3(COND_EXPR, void_type_node,
9431 bad_index, crash, NULL_TREE),
9432 constructor);
9435 // Make an array index expression. END may be NULL.
9437 Expression*
9438 Expression::make_array_index(Expression* array, Expression* start,
9439 Expression* end, source_location location)
9441 // Taking a slice of a composite literal requires moving the literal
9442 // onto the heap.
9443 if (end != NULL && array->is_composite_literal())
9445 array = Expression::make_heap_composite(array, location);
9446 array = Expression::make_unary(OPERATOR_MULT, array, location);
9448 return new Array_index_expression(array, start, end, location);
9451 // A string index. This is used for both indexing and slicing.
9453 class String_index_expression : public Expression
9455 public:
9456 String_index_expression(Expression* string, Expression* start,
9457 Expression* end, source_location location)
9458 : Expression(EXPRESSION_STRING_INDEX, location),
9459 string_(string), start_(start), end_(end)
9462 protected:
9464 do_traverse(Traverse*);
9466 Type*
9467 do_type();
9469 void
9470 do_determine_type(const Type_context*);
9472 void
9473 do_check_types(Gogo*);
9475 Expression*
9476 do_copy()
9478 return Expression::make_string_index(this->string_->copy(),
9479 this->start_->copy(),
9480 (this->end_ == NULL
9481 ? NULL
9482 : this->end_->copy()),
9483 this->location());
9486 tree
9487 do_get_tree(Translate_context*);
9489 private:
9490 // The string we are getting a value from.
9491 Expression* string_;
9492 // The start or only index.
9493 Expression* start_;
9494 // The end index of a slice. This may be NULL for a single index,
9495 // or it may be a nil expression for the length of the string.
9496 Expression* end_;
9499 // String index traversal.
9502 String_index_expression::do_traverse(Traverse* traverse)
9504 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9505 return TRAVERSE_EXIT;
9506 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9507 return TRAVERSE_EXIT;
9508 if (this->end_ != NULL)
9510 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9511 return TRAVERSE_EXIT;
9513 return TRAVERSE_CONTINUE;
9516 // Return the type of a string index.
9518 Type*
9519 String_index_expression::do_type()
9521 if (this->end_ == NULL)
9522 return Type::lookup_integer_type("uint8");
9523 else
9524 return Type::make_string_type();
9527 // Determine the type of a string index.
9529 void
9530 String_index_expression::do_determine_type(const Type_context*)
9532 this->string_->determine_type_no_context();
9533 Type_context subcontext(NULL, true);
9534 this->start_->determine_type(&subcontext);
9535 if (this->end_ != NULL)
9536 this->end_->determine_type(&subcontext);
9539 // Check types of a string index.
9541 void
9542 String_index_expression::do_check_types(Gogo*)
9544 if (this->start_->type()->integer_type() == NULL)
9545 this->report_error(_("index must be integer"));
9546 if (this->end_ != NULL
9547 && this->end_->type()->integer_type() == NULL
9548 && !this->end_->is_nil_expression())
9549 this->report_error(_("slice end must be integer"));
9551 std::string sval;
9552 bool sval_valid = this->string_->string_constant_value(&sval);
9554 mpz_t ival;
9555 mpz_init(ival);
9556 Type* dummy;
9557 if (this->start_->integer_constant_value(true, ival, &dummy))
9559 if (mpz_sgn(ival) < 0
9560 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9562 error_at(this->start_->location(), "string index out of bounds");
9563 this->set_is_error();
9566 if (this->end_ != NULL && !this->end_->is_nil_expression())
9568 if (this->end_->integer_constant_value(true, ival, &dummy))
9570 if (mpz_sgn(ival) < 0
9571 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9573 error_at(this->end_->location(), "string index out of bounds");
9574 this->set_is_error();
9578 mpz_clear(ival);
9581 // Get a tree for a string index.
9583 tree
9584 String_index_expression::do_get_tree(Translate_context* context)
9586 source_location loc = this->location();
9588 tree string_tree = this->string_->get_tree(context);
9589 if (string_tree == error_mark_node)
9590 return error_mark_node;
9592 if (this->string_->type()->points_to() != NULL)
9593 string_tree = build_fold_indirect_ref(string_tree);
9594 if (!DECL_P(string_tree))
9595 string_tree = save_expr(string_tree);
9596 tree string_type = TREE_TYPE(string_tree);
9598 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9599 length_tree = save_expr(length_tree);
9600 tree length_type = TREE_TYPE(length_tree);
9602 tree bad_index = boolean_false_node;
9604 tree start_tree = this->start_->get_tree(context);
9605 if (start_tree == error_mark_node)
9606 return error_mark_node;
9607 if (!DECL_P(start_tree))
9608 start_tree = save_expr(start_tree);
9609 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9610 start_tree = convert_to_integer(length_type, start_tree);
9612 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9613 loc);
9615 start_tree = fold_convert_loc(loc, length_type, start_tree);
9617 int code = (this->end_ == NULL
9618 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9619 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9620 tree crash = Gogo::runtime_error(code, loc);
9622 if (this->end_ == NULL)
9624 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9625 bad_index,
9626 fold_build2_loc(loc, GE_EXPR,
9627 boolean_type_node,
9628 start_tree, length_tree));
9630 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9631 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9632 bytes_tree,
9633 fold_convert_loc(loc, sizetype, start_tree));
9634 tree index = build_fold_indirect_ref_loc(loc, ptr);
9636 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9637 build3(COND_EXPR, void_type_node,
9638 bad_index, crash, NULL_TREE),
9639 index);
9641 else
9643 tree end_tree;
9644 if (this->end_->is_nil_expression())
9645 end_tree = build_int_cst(length_type, -1);
9646 else
9648 end_tree = this->end_->get_tree(context);
9649 if (end_tree == error_mark_node)
9650 return error_mark_node;
9651 if (!DECL_P(end_tree))
9652 end_tree = save_expr(end_tree);
9653 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9654 end_tree = convert_to_integer(length_type, end_tree);
9656 bad_index = Expression::check_bounds(end_tree, length_type,
9657 bad_index, loc);
9659 end_tree = fold_convert_loc(loc, length_type, end_tree);
9662 static tree strslice_fndecl;
9663 tree ret = Gogo::call_builtin(&strslice_fndecl,
9664 loc,
9665 "__go_string_slice",
9667 string_type,
9668 string_type,
9669 string_tree,
9670 length_type,
9671 start_tree,
9672 length_type,
9673 end_tree);
9674 if (ret == error_mark_node)
9675 return error_mark_node;
9676 // This will panic if the bounds are out of range for the
9677 // string.
9678 TREE_NOTHROW(strslice_fndecl) = 0;
9680 if (bad_index == boolean_false_node)
9681 return ret;
9682 else
9683 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9684 build3(COND_EXPR, void_type_node,
9685 bad_index, crash, NULL_TREE),
9686 ret);
9690 // Make a string index expression. END may be NULL.
9692 Expression*
9693 Expression::make_string_index(Expression* string, Expression* start,
9694 Expression* end, source_location location)
9696 return new String_index_expression(string, start, end, location);
9699 // Class Map_index.
9701 // Get the type of the map.
9703 Map_type*
9704 Map_index_expression::get_map_type() const
9706 Map_type* mt = this->map_->type()->deref()->map_type();
9707 if (mt == NULL)
9708 gcc_assert(saw_errors());
9709 return mt;
9712 // Map index traversal.
9715 Map_index_expression::do_traverse(Traverse* traverse)
9717 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9718 return TRAVERSE_EXIT;
9719 return Expression::traverse(&this->index_, traverse);
9722 // Return the type of a map index.
9724 Type*
9725 Map_index_expression::do_type()
9727 Map_type* mt = this->get_map_type();
9728 if (mt == NULL)
9729 return Type::make_error_type();
9730 Type* type = mt->val_type();
9731 // If this map index is in a tuple assignment, we actually return a
9732 // pointer to the value type. Tuple_map_assignment_statement is
9733 // responsible for handling this correctly. We need to get the type
9734 // right in case this gets assigned to a temporary variable.
9735 if (this->is_in_tuple_assignment_)
9736 type = Type::make_pointer_type(type);
9737 return type;
9740 // Fix the type of a map index.
9742 void
9743 Map_index_expression::do_determine_type(const Type_context*)
9745 this->map_->determine_type_no_context();
9746 Map_type* mt = this->get_map_type();
9747 Type* key_type = mt == NULL ? NULL : mt->key_type();
9748 Type_context subcontext(key_type, false);
9749 this->index_->determine_type(&subcontext);
9752 // Check types of a map index.
9754 void
9755 Map_index_expression::do_check_types(Gogo*)
9757 std::string reason;
9758 Map_type* mt = this->get_map_type();
9759 if (mt == NULL)
9760 return;
9761 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9763 if (reason.empty())
9764 this->report_error(_("incompatible type for map index"));
9765 else
9767 error_at(this->location(), "incompatible type for map index (%s)",
9768 reason.c_str());
9769 this->set_is_error();
9774 // Get a tree for a map index.
9776 tree
9777 Map_index_expression::do_get_tree(Translate_context* context)
9779 Map_type* type = this->get_map_type();
9780 if (type == NULL)
9781 return error_mark_node;
9783 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9784 if (valptr == error_mark_node)
9785 return error_mark_node;
9786 valptr = save_expr(valptr);
9788 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9790 if (this->is_lvalue_)
9791 return build_fold_indirect_ref(valptr);
9792 else if (this->is_in_tuple_assignment_)
9794 // Tuple_map_assignment_statement is responsible for using this
9795 // appropriately.
9796 return valptr;
9798 else
9800 return fold_build3(COND_EXPR, val_type_tree,
9801 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9802 fold_convert(TREE_TYPE(valptr),
9803 null_pointer_node)),
9804 type->val_type()->get_init_tree(context->gogo(),
9805 false),
9806 build_fold_indirect_ref(valptr));
9810 // Get a tree for the map index. This returns a tree which evaluates
9811 // to a pointer to a value. The pointer will be NULL if the key is
9812 // not in the map.
9814 tree
9815 Map_index_expression::get_value_pointer(Translate_context* context,
9816 bool insert)
9818 Map_type* type = this->get_map_type();
9819 if (type == NULL)
9820 return error_mark_node;
9822 tree map_tree = this->map_->get_tree(context);
9823 tree index_tree = this->index_->get_tree(context);
9824 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9825 this->index_->type(),
9826 index_tree,
9827 this->location());
9828 if (map_tree == error_mark_node || index_tree == error_mark_node)
9829 return error_mark_node;
9831 if (this->map_->type()->points_to() != NULL)
9832 map_tree = build_fold_indirect_ref(map_tree);
9834 // We need to pass in a pointer to the key, so stuff it into a
9835 // variable.
9836 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9837 DECL_IGNORED_P(tmp) = 0;
9838 DECL_INITIAL(tmp) = index_tree;
9839 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9840 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9841 TREE_ADDRESSABLE(tmp) = 1;
9843 static tree map_index_fndecl;
9844 tree call = Gogo::call_builtin(&map_index_fndecl,
9845 this->location(),
9846 "__go_map_index",
9848 const_ptr_type_node,
9849 TREE_TYPE(map_tree),
9850 map_tree,
9851 const_ptr_type_node,
9852 tmpref,
9853 boolean_type_node,
9854 (insert
9855 ? boolean_true_node
9856 : boolean_false_node));
9857 if (call == error_mark_node)
9858 return error_mark_node;
9859 // This can panic on a map of interface type if the interface holds
9860 // an uncomparable or unhashable type.
9861 TREE_NOTHROW(map_index_fndecl) = 0;
9863 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9864 if (val_type_tree == error_mark_node)
9865 return error_mark_node;
9866 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9868 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9869 make_tmp,
9870 fold_convert(ptr_val_type_tree, call));
9873 // Make a map index expression.
9875 Map_index_expression*
9876 Expression::make_map_index(Expression* map, Expression* index,
9877 source_location location)
9879 return new Map_index_expression(map, index, location);
9882 // Class Field_reference_expression.
9884 // Return the type of a field reference.
9886 Type*
9887 Field_reference_expression::do_type()
9889 Struct_type* struct_type = this->expr_->type()->struct_type();
9890 gcc_assert(struct_type != NULL);
9891 return struct_type->field(this->field_index_)->type();
9894 // Check the types for a field reference.
9896 void
9897 Field_reference_expression::do_check_types(Gogo*)
9899 Struct_type* struct_type = this->expr_->type()->struct_type();
9900 gcc_assert(struct_type != NULL);
9901 gcc_assert(struct_type->field(this->field_index_) != NULL);
9904 // Get a tree for a field reference.
9906 tree
9907 Field_reference_expression::do_get_tree(Translate_context* context)
9909 tree struct_tree = this->expr_->get_tree(context);
9910 if (struct_tree == error_mark_node
9911 || TREE_TYPE(struct_tree) == error_mark_node)
9912 return error_mark_node;
9913 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9914 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9915 if (field == NULL_TREE)
9917 // This can happen for a type which refers to itself indirectly
9918 // and then turns out to be erroneous.
9919 gcc_assert(saw_errors());
9920 return error_mark_node;
9922 for (unsigned int i = this->field_index_; i > 0; --i)
9924 field = DECL_CHAIN(field);
9925 gcc_assert(field != NULL_TREE);
9927 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9928 NULL_TREE);
9931 // Make a reference to a qualified identifier in an expression.
9933 Field_reference_expression*
9934 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9935 source_location location)
9937 return new Field_reference_expression(expr, field_index, location);
9940 // Class Interface_field_reference_expression.
9942 // Return a tree for the pointer to the function to call.
9944 tree
9945 Interface_field_reference_expression::get_function_tree(Translate_context*,
9946 tree expr)
9948 if (this->expr_->type()->points_to() != NULL)
9949 expr = build_fold_indirect_ref(expr);
9951 tree expr_type = TREE_TYPE(expr);
9952 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9954 tree field = TYPE_FIELDS(expr_type);
9955 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9957 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9958 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9960 table = build_fold_indirect_ref(table);
9961 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9963 std::string name = Gogo::unpack_hidden_name(this->name_);
9964 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9965 field != NULL_TREE;
9966 field = DECL_CHAIN(field))
9968 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9969 break;
9971 gcc_assert(field != NULL_TREE);
9973 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9976 // Return a tree for the first argument to pass to the interface
9977 // function.
9979 tree
9980 Interface_field_reference_expression::get_underlying_object_tree(
9981 Translate_context*,
9982 tree expr)
9984 if (this->expr_->type()->points_to() != NULL)
9985 expr = build_fold_indirect_ref(expr);
9987 tree expr_type = TREE_TYPE(expr);
9988 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9990 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9991 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9993 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9996 // Traversal.
9999 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10001 return Expression::traverse(&this->expr_, traverse);
10004 // Return the type of an interface field reference.
10006 Type*
10007 Interface_field_reference_expression::do_type()
10009 Type* expr_type = this->expr_->type();
10011 Type* points_to = expr_type->points_to();
10012 if (points_to != NULL)
10013 expr_type = points_to;
10015 Interface_type* interface_type = expr_type->interface_type();
10016 if (interface_type == NULL)
10017 return Type::make_error_type();
10019 const Typed_identifier* method = interface_type->find_method(this->name_);
10020 if (method == NULL)
10021 return Type::make_error_type();
10023 return method->type();
10026 // Determine types.
10028 void
10029 Interface_field_reference_expression::do_determine_type(const Type_context*)
10031 this->expr_->determine_type_no_context();
10034 // Check the types for an interface field reference.
10036 void
10037 Interface_field_reference_expression::do_check_types(Gogo*)
10039 Type* type = this->expr_->type();
10041 Type* points_to = type->points_to();
10042 if (points_to != NULL)
10043 type = points_to;
10045 Interface_type* interface_type = type->interface_type();
10046 if (interface_type == NULL)
10047 this->report_error(_("expected interface or pointer to interface"));
10048 else
10050 const Typed_identifier* method =
10051 interface_type->find_method(this->name_);
10052 if (method == NULL)
10054 error_at(this->location(), "method %qs not in interface",
10055 Gogo::message_name(this->name_).c_str());
10056 this->set_is_error();
10061 // Get a tree for a reference to a field in an interface. There is no
10062 // standard tree type representation for this: it's a function
10063 // attached to its first argument, like a Bound_method_expression.
10064 // The only places it may currently be used are in a Call_expression
10065 // or a Go_statement, which will take it apart directly. So this has
10066 // nothing to do at present.
10068 tree
10069 Interface_field_reference_expression::do_get_tree(Translate_context*)
10071 gcc_unreachable();
10074 // Make a reference to a field in an interface.
10076 Expression*
10077 Expression::make_interface_field_reference(Expression* expr,
10078 const std::string& field,
10079 source_location location)
10081 return new Interface_field_reference_expression(expr, field, location);
10084 // A general selector. This is a Parser_expression for LEFT.NAME. It
10085 // is lowered after we know the type of the left hand side.
10087 class Selector_expression : public Parser_expression
10089 public:
10090 Selector_expression(Expression* left, const std::string& name,
10091 source_location location)
10092 : Parser_expression(EXPRESSION_SELECTOR, location),
10093 left_(left), name_(name)
10096 protected:
10098 do_traverse(Traverse* traverse)
10099 { return Expression::traverse(&this->left_, traverse); }
10101 Expression*
10102 do_lower(Gogo*, Named_object*, int);
10104 Expression*
10105 do_copy()
10107 return new Selector_expression(this->left_->copy(), this->name_,
10108 this->location());
10111 private:
10112 Expression*
10113 lower_method_expression(Gogo*);
10115 // The expression on the left hand side.
10116 Expression* left_;
10117 // The name on the right hand side.
10118 std::string name_;
10121 // Lower a selector expression once we know the real type of the left
10122 // hand side.
10124 Expression*
10125 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10127 Expression* left = this->left_;
10128 if (left->is_type_expression())
10129 return this->lower_method_expression(gogo);
10130 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10131 this->location());
10134 // Lower a method expression T.M or (*T).M. We turn this into a
10135 // function literal.
10137 Expression*
10138 Selector_expression::lower_method_expression(Gogo* gogo)
10140 source_location location = this->location();
10141 Type* type = this->left_->type();
10142 const std::string& name(this->name_);
10144 bool is_pointer;
10145 if (type->points_to() == NULL)
10146 is_pointer = false;
10147 else
10149 is_pointer = true;
10150 type = type->points_to();
10152 Named_type* nt = type->named_type();
10153 if (nt == NULL)
10155 error_at(location,
10156 ("method expression requires named type or "
10157 "pointer to named type"));
10158 return Expression::make_error(location);
10161 bool is_ambiguous;
10162 Method* method = nt->method_function(name, &is_ambiguous);
10163 if (method == NULL)
10165 if (!is_ambiguous)
10166 error_at(location, "type %<%s%> has no method %<%s%>",
10167 nt->message_name().c_str(),
10168 Gogo::message_name(name).c_str());
10169 else
10170 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10171 Gogo::message_name(name).c_str(),
10172 nt->message_name().c_str());
10173 return Expression::make_error(location);
10176 if (!is_pointer && !method->is_value_method())
10178 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10179 nt->message_name().c_str(),
10180 Gogo::message_name(name).c_str());
10181 return Expression::make_error(location);
10184 // Build a new function type in which the receiver becomes the first
10185 // argument.
10186 Function_type* method_type = method->type();
10187 gcc_assert(method_type->is_method());
10189 const char* const receiver_name = "$this";
10190 Typed_identifier_list* parameters = new Typed_identifier_list();
10191 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10192 location));
10194 const Typed_identifier_list* method_parameters = method_type->parameters();
10195 if (method_parameters != NULL)
10197 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10198 p != method_parameters->end();
10199 ++p)
10200 parameters->push_back(*p);
10203 const Typed_identifier_list* method_results = method_type->results();
10204 Typed_identifier_list* results;
10205 if (method_results == NULL)
10206 results = NULL;
10207 else
10209 results = new Typed_identifier_list();
10210 for (Typed_identifier_list::const_iterator p = method_results->begin();
10211 p != method_results->end();
10212 ++p)
10213 results->push_back(*p);
10216 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10217 location);
10218 if (method_type->is_varargs())
10219 fntype->set_is_varargs();
10221 // We generate methods which always takes a pointer to the receiver
10222 // as their first argument. If this is for a pointer type, we can
10223 // simply reuse the existing function. We use an internal hack to
10224 // get the right type.
10226 if (is_pointer)
10228 Named_object* mno = (method->needs_stub_method()
10229 ? method->stub_object()
10230 : method->named_object());
10231 Expression* f = Expression::make_func_reference(mno, NULL, location);
10232 f = Expression::make_cast(fntype, f, location);
10233 Type_conversion_expression* tce =
10234 static_cast<Type_conversion_expression*>(f);
10235 tce->set_may_convert_function_types();
10236 return f;
10239 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10240 location);
10242 Named_object* vno = gogo->lookup(receiver_name, NULL);
10243 gcc_assert(vno != NULL);
10244 Expression* ve = Expression::make_var_reference(vno, location);
10245 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10246 gcc_assert(bm != NULL && !bm->is_error_expression());
10248 Expression_list* args;
10249 if (method_parameters == NULL)
10250 args = NULL;
10251 else
10253 args = new Expression_list();
10254 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10255 p != method_parameters->end();
10256 ++p)
10258 vno = gogo->lookup(p->name(), NULL);
10259 gcc_assert(vno != NULL);
10260 args->push_back(Expression::make_var_reference(vno, location));
10264 Call_expression* call = Expression::make_call(bm, args,
10265 method_type->is_varargs(),
10266 location);
10268 size_t count = call->result_count();
10269 Statement* s;
10270 if (count == 0)
10271 s = Statement::make_statement(call);
10272 else
10274 Expression_list* retvals = new Expression_list();
10275 if (count <= 1)
10276 retvals->push_back(call);
10277 else
10279 for (size_t i = 0; i < count; ++i)
10280 retvals->push_back(Expression::make_call_result(call, i));
10282 s = Statement::make_return_statement(no->func_value()->type()->results(),
10283 retvals, location);
10285 gogo->add_statement(s);
10287 gogo->finish_function(location);
10289 return Expression::make_func_reference(no, NULL, location);
10292 // Make a selector expression.
10294 Expression*
10295 Expression::make_selector(Expression* left, const std::string& name,
10296 source_location location)
10298 return new Selector_expression(left, name, location);
10301 // Implement the builtin function new.
10303 class Allocation_expression : public Expression
10305 public:
10306 Allocation_expression(Type* type, source_location location)
10307 : Expression(EXPRESSION_ALLOCATION, location),
10308 type_(type)
10311 protected:
10313 do_traverse(Traverse* traverse)
10314 { return Type::traverse(this->type_, traverse); }
10316 Type*
10317 do_type()
10318 { return Type::make_pointer_type(this->type_); }
10320 void
10321 do_determine_type(const Type_context*)
10324 void
10325 do_check_types(Gogo*);
10327 Expression*
10328 do_copy()
10329 { return new Allocation_expression(this->type_, this->location()); }
10331 tree
10332 do_get_tree(Translate_context*);
10334 private:
10335 // The type we are allocating.
10336 Type* type_;
10339 // Check the type of an allocation expression.
10341 void
10342 Allocation_expression::do_check_types(Gogo*)
10344 if (this->type_->function_type() != NULL)
10345 this->report_error(_("invalid new of function type"));
10348 // Return a tree for an allocation expression.
10350 tree
10351 Allocation_expression::do_get_tree(Translate_context* context)
10353 tree type_tree = this->type_->get_tree(context->gogo());
10354 if (type_tree == error_mark_node)
10355 return error_mark_node;
10356 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10357 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10358 this->location());
10359 if (space == error_mark_node)
10360 return error_mark_node;
10361 return fold_convert(build_pointer_type(type_tree), space);
10364 // Make an allocation expression.
10366 Expression*
10367 Expression::make_allocation(Type* type, source_location location)
10369 return new Allocation_expression(type, location);
10372 // Implement the builtin function make.
10374 class Make_expression : public Expression
10376 public:
10377 Make_expression(Type* type, Expression_list* args, source_location location)
10378 : Expression(EXPRESSION_MAKE, location),
10379 type_(type), args_(args)
10382 protected:
10384 do_traverse(Traverse* traverse);
10386 Type*
10387 do_type()
10388 { return this->type_; }
10390 void
10391 do_determine_type(const Type_context*);
10393 void
10394 do_check_types(Gogo*);
10396 Expression*
10397 do_copy()
10399 return new Make_expression(this->type_, this->args_->copy(),
10400 this->location());
10403 tree
10404 do_get_tree(Translate_context*);
10406 private:
10407 // The type we are making.
10408 Type* type_;
10409 // The arguments to pass to the make routine.
10410 Expression_list* args_;
10413 // Traversal.
10416 Make_expression::do_traverse(Traverse* traverse)
10418 if (this->args_ != NULL
10419 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10420 return TRAVERSE_EXIT;
10421 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10422 return TRAVERSE_EXIT;
10423 return TRAVERSE_CONTINUE;
10426 // Set types of arguments.
10428 void
10429 Make_expression::do_determine_type(const Type_context*)
10431 if (this->args_ != NULL)
10433 Type_context context(Type::lookup_integer_type("int"), false);
10434 for (Expression_list::const_iterator pe = this->args_->begin();
10435 pe != this->args_->end();
10436 ++pe)
10437 (*pe)->determine_type(&context);
10441 // Check types for a make expression.
10443 void
10444 Make_expression::do_check_types(Gogo*)
10446 if (this->type_->channel_type() == NULL
10447 && this->type_->map_type() == NULL
10448 && (this->type_->array_type() == NULL
10449 || this->type_->array_type()->length() != NULL))
10450 this->report_error(_("invalid type for make function"));
10451 else if (!this->type_->check_make_expression(this->args_, this->location()))
10452 this->set_is_error();
10455 // Return a tree for a make expression.
10457 tree
10458 Make_expression::do_get_tree(Translate_context* context)
10460 return this->type_->make_expression_tree(context, this->args_,
10461 this->location());
10464 // Make a make expression.
10466 Expression*
10467 Expression::make_make(Type* type, Expression_list* args,
10468 source_location location)
10470 return new Make_expression(type, args, location);
10473 // Construct a struct.
10475 class Struct_construction_expression : public Expression
10477 public:
10478 Struct_construction_expression(Type* type, Expression_list* vals,
10479 source_location location)
10480 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10481 type_(type), vals_(vals)
10484 // Return whether this is a constant initializer.
10485 bool
10486 is_constant_struct() const;
10488 protected:
10490 do_traverse(Traverse* traverse);
10492 Type*
10493 do_type()
10494 { return this->type_; }
10496 void
10497 do_determine_type(const Type_context*);
10499 void
10500 do_check_types(Gogo*);
10502 Expression*
10503 do_copy()
10505 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10506 this->location());
10509 bool
10510 do_is_addressable() const
10511 { return true; }
10513 tree
10514 do_get_tree(Translate_context*);
10516 void
10517 do_export(Export*) const;
10519 private:
10520 // The type of the struct to construct.
10521 Type* type_;
10522 // The list of values, in order of the fields in the struct. A NULL
10523 // entry means that the field should be zero-initialized.
10524 Expression_list* vals_;
10527 // Traversal.
10530 Struct_construction_expression::do_traverse(Traverse* traverse)
10532 if (this->vals_ != NULL
10533 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10534 return TRAVERSE_EXIT;
10535 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10536 return TRAVERSE_EXIT;
10537 return TRAVERSE_CONTINUE;
10540 // Return whether this is a constant initializer.
10542 bool
10543 Struct_construction_expression::is_constant_struct() const
10545 if (this->vals_ == NULL)
10546 return true;
10547 for (Expression_list::const_iterator pv = this->vals_->begin();
10548 pv != this->vals_->end();
10549 ++pv)
10551 if (*pv != NULL
10552 && !(*pv)->is_constant()
10553 && (!(*pv)->is_composite_literal()
10554 || (*pv)->is_nonconstant_composite_literal()))
10555 return false;
10558 const Struct_field_list* fields = this->type_->struct_type()->fields();
10559 for (Struct_field_list::const_iterator pf = fields->begin();
10560 pf != fields->end();
10561 ++pf)
10563 // There are no constant constructors for interfaces.
10564 if (pf->type()->interface_type() != NULL)
10565 return false;
10568 return true;
10571 // Final type determination.
10573 void
10574 Struct_construction_expression::do_determine_type(const Type_context*)
10576 if (this->vals_ == NULL)
10577 return;
10578 const Struct_field_list* fields = this->type_->struct_type()->fields();
10579 Expression_list::const_iterator pv = this->vals_->begin();
10580 for (Struct_field_list::const_iterator pf = fields->begin();
10581 pf != fields->end();
10582 ++pf, ++pv)
10584 if (pv == this->vals_->end())
10585 return;
10586 if (*pv != NULL)
10588 Type_context subcontext(pf->type(), false);
10589 (*pv)->determine_type(&subcontext);
10594 // Check types.
10596 void
10597 Struct_construction_expression::do_check_types(Gogo*)
10599 if (this->vals_ == NULL)
10600 return;
10602 Struct_type* st = this->type_->struct_type();
10603 if (this->vals_->size() > st->field_count())
10605 this->report_error(_("too many expressions for struct"));
10606 return;
10609 const Struct_field_list* fields = st->fields();
10610 Expression_list::const_iterator pv = this->vals_->begin();
10611 int i = 0;
10612 for (Struct_field_list::const_iterator pf = fields->begin();
10613 pf != fields->end();
10614 ++pf, ++pv, ++i)
10616 if (pv == this->vals_->end())
10618 this->report_error(_("too few expressions for struct"));
10619 break;
10622 if (*pv == NULL)
10623 continue;
10625 std::string reason;
10626 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10628 if (reason.empty())
10629 error_at((*pv)->location(),
10630 "incompatible type for field %d in struct construction",
10631 i + 1);
10632 else
10633 error_at((*pv)->location(),
10634 ("incompatible type for field %d in "
10635 "struct construction (%s)"),
10636 i + 1, reason.c_str());
10637 this->set_is_error();
10640 gcc_assert(pv == this->vals_->end());
10643 // Return a tree for constructing a struct.
10645 tree
10646 Struct_construction_expression::do_get_tree(Translate_context* context)
10648 Gogo* gogo = context->gogo();
10650 if (this->vals_ == NULL)
10651 return this->type_->get_init_tree(gogo, false);
10653 tree type_tree = this->type_->get_tree(gogo);
10654 if (type_tree == error_mark_node)
10655 return error_mark_node;
10656 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10658 bool is_constant = true;
10659 const Struct_field_list* fields = this->type_->struct_type()->fields();
10660 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10661 fields->size());
10662 Struct_field_list::const_iterator pf = fields->begin();
10663 Expression_list::const_iterator pv = this->vals_->begin();
10664 for (tree field = TYPE_FIELDS(type_tree);
10665 field != NULL_TREE;
10666 field = DECL_CHAIN(field), ++pf)
10668 gcc_assert(pf != fields->end());
10670 tree val;
10671 if (pv == this->vals_->end())
10672 val = pf->type()->get_init_tree(gogo, false);
10673 else if (*pv == NULL)
10675 val = pf->type()->get_init_tree(gogo, false);
10676 ++pv;
10678 else
10680 val = Expression::convert_for_assignment(context, pf->type(),
10681 (*pv)->type(),
10682 (*pv)->get_tree(context),
10683 this->location());
10684 ++pv;
10687 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10688 return error_mark_node;
10690 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10691 elt->index = field;
10692 elt->value = val;
10693 if (!TREE_CONSTANT(val))
10694 is_constant = false;
10696 gcc_assert(pf == fields->end());
10698 tree ret = build_constructor(type_tree, elts);
10699 if (is_constant)
10700 TREE_CONSTANT(ret) = 1;
10701 return ret;
10704 // Export a struct construction.
10706 void
10707 Struct_construction_expression::do_export(Export* exp) const
10709 exp->write_c_string("convert(");
10710 exp->write_type(this->type_);
10711 for (Expression_list::const_iterator pv = this->vals_->begin();
10712 pv != this->vals_->end();
10713 ++pv)
10715 exp->write_c_string(", ");
10716 if (*pv != NULL)
10717 (*pv)->export_expression(exp);
10719 exp->write_c_string(")");
10722 // Make a struct composite literal. This used by the thunk code.
10724 Expression*
10725 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10726 source_location location)
10728 gcc_assert(type->struct_type() != NULL);
10729 return new Struct_construction_expression(type, vals, location);
10732 // Construct an array. This class is not used directly; instead we
10733 // use the child classes, Fixed_array_construction_expression and
10734 // Open_array_construction_expression.
10736 class Array_construction_expression : public Expression
10738 protected:
10739 Array_construction_expression(Expression_classification classification,
10740 Type* type, Expression_list* vals,
10741 source_location location)
10742 : Expression(classification, location),
10743 type_(type), vals_(vals)
10746 public:
10747 // Return whether this is a constant initializer.
10748 bool
10749 is_constant_array() const;
10751 // Return the number of elements.
10752 size_t
10753 element_count() const
10754 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10756 protected:
10758 do_traverse(Traverse* traverse);
10760 Type*
10761 do_type()
10762 { return this->type_; }
10764 void
10765 do_determine_type(const Type_context*);
10767 void
10768 do_check_types(Gogo*);
10770 bool
10771 do_is_addressable() const
10772 { return true; }
10774 void
10775 do_export(Export*) const;
10777 // The list of values.
10778 Expression_list*
10779 vals()
10780 { return this->vals_; }
10782 // Get a constructor tree for the array values.
10783 tree
10784 get_constructor_tree(Translate_context* context, tree type_tree);
10786 private:
10787 // The type of the array to construct.
10788 Type* type_;
10789 // The list of values.
10790 Expression_list* vals_;
10793 // Traversal.
10796 Array_construction_expression::do_traverse(Traverse* traverse)
10798 if (this->vals_ != NULL
10799 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10800 return TRAVERSE_EXIT;
10801 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10802 return TRAVERSE_EXIT;
10803 return TRAVERSE_CONTINUE;
10806 // Return whether this is a constant initializer.
10808 bool
10809 Array_construction_expression::is_constant_array() const
10811 if (this->vals_ == NULL)
10812 return true;
10814 // There are no constant constructors for interfaces.
10815 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10816 return false;
10818 for (Expression_list::const_iterator pv = this->vals_->begin();
10819 pv != this->vals_->end();
10820 ++pv)
10822 if (*pv != NULL
10823 && !(*pv)->is_constant()
10824 && (!(*pv)->is_composite_literal()
10825 || (*pv)->is_nonconstant_composite_literal()))
10826 return false;
10828 return true;
10831 // Final type determination.
10833 void
10834 Array_construction_expression::do_determine_type(const Type_context*)
10836 if (this->vals_ == NULL)
10837 return;
10838 Type_context subcontext(this->type_->array_type()->element_type(), false);
10839 for (Expression_list::const_iterator pv = this->vals_->begin();
10840 pv != this->vals_->end();
10841 ++pv)
10843 if (*pv != NULL)
10844 (*pv)->determine_type(&subcontext);
10848 // Check types.
10850 void
10851 Array_construction_expression::do_check_types(Gogo*)
10853 if (this->vals_ == NULL)
10854 return;
10856 Array_type* at = this->type_->array_type();
10857 int i = 0;
10858 Type* element_type = at->element_type();
10859 for (Expression_list::const_iterator pv = this->vals_->begin();
10860 pv != this->vals_->end();
10861 ++pv, ++i)
10863 if (*pv != NULL
10864 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10866 error_at((*pv)->location(),
10867 "incompatible type for element %d in composite literal",
10868 i + 1);
10869 this->set_is_error();
10873 Expression* length = at->length();
10874 if (length != NULL)
10876 mpz_t val;
10877 mpz_init(val);
10878 Type* type;
10879 if (at->length()->integer_constant_value(true, val, &type))
10881 if (this->vals_->size() > mpz_get_ui(val))
10882 this->report_error(_("too many elements in composite literal"));
10884 mpz_clear(val);
10888 // Get a constructor tree for the array values.
10890 tree
10891 Array_construction_expression::get_constructor_tree(Translate_context* context,
10892 tree type_tree)
10894 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10895 (this->vals_ == NULL
10897 : this->vals_->size()));
10898 Type* element_type = this->type_->array_type()->element_type();
10899 bool is_constant = true;
10900 if (this->vals_ != NULL)
10902 size_t i = 0;
10903 for (Expression_list::const_iterator pv = this->vals_->begin();
10904 pv != this->vals_->end();
10905 ++pv, ++i)
10907 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10908 elt->index = size_int(i);
10909 if (*pv == NULL)
10910 elt->value = element_type->get_init_tree(context->gogo(), false);
10911 else
10913 tree value_tree = (*pv)->get_tree(context);
10914 elt->value = Expression::convert_for_assignment(context,
10915 element_type,
10916 (*pv)->type(),
10917 value_tree,
10918 this->location());
10920 if (elt->value == error_mark_node)
10921 return error_mark_node;
10922 if (!TREE_CONSTANT(elt->value))
10923 is_constant = false;
10927 tree ret = build_constructor(type_tree, values);
10928 if (is_constant)
10929 TREE_CONSTANT(ret) = 1;
10930 return ret;
10933 // Export an array construction.
10935 void
10936 Array_construction_expression::do_export(Export* exp) const
10938 exp->write_c_string("convert(");
10939 exp->write_type(this->type_);
10940 if (this->vals_ != NULL)
10942 for (Expression_list::const_iterator pv = this->vals_->begin();
10943 pv != this->vals_->end();
10944 ++pv)
10946 exp->write_c_string(", ");
10947 if (*pv != NULL)
10948 (*pv)->export_expression(exp);
10951 exp->write_c_string(")");
10954 // Construct a fixed array.
10956 class Fixed_array_construction_expression :
10957 public Array_construction_expression
10959 public:
10960 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10961 source_location location)
10962 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10963 type, vals, location)
10965 gcc_assert(type->array_type() != NULL
10966 && type->array_type()->length() != NULL);
10969 protected:
10970 Expression*
10971 do_copy()
10973 return new Fixed_array_construction_expression(this->type(),
10974 (this->vals() == NULL
10975 ? NULL
10976 : this->vals()->copy()),
10977 this->location());
10980 tree
10981 do_get_tree(Translate_context*);
10984 // Return a tree for constructing a fixed array.
10986 tree
10987 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10989 return this->get_constructor_tree(context,
10990 this->type()->get_tree(context->gogo()));
10993 // Construct an open array.
10995 class Open_array_construction_expression : public Array_construction_expression
10997 public:
10998 Open_array_construction_expression(Type* type, Expression_list* vals,
10999 source_location location)
11000 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11001 type, vals, location)
11003 gcc_assert(type->array_type() != NULL
11004 && type->array_type()->length() == NULL);
11007 protected:
11008 // Note that taking the address of an open array literal is invalid.
11010 Expression*
11011 do_copy()
11013 return new Open_array_construction_expression(this->type(),
11014 (this->vals() == NULL
11015 ? NULL
11016 : this->vals()->copy()),
11017 this->location());
11020 tree
11021 do_get_tree(Translate_context*);
11024 // Return a tree for constructing an open array.
11026 tree
11027 Open_array_construction_expression::do_get_tree(Translate_context* context)
11029 Array_type* array_type = this->type()->array_type();
11030 if (array_type == NULL)
11032 gcc_assert(this->type()->is_error_type());
11033 return error_mark_node;
11036 Type* element_type = array_type->element_type();
11037 tree element_type_tree = element_type->get_tree(context->gogo());
11038 if (element_type_tree == error_mark_node)
11039 return error_mark_node;
11041 tree values;
11042 tree length_tree;
11043 if (this->vals() == NULL || this->vals()->empty())
11045 // We need to create a unique value.
11046 tree max = size_int(0);
11047 tree constructor_type = build_array_type(element_type_tree,
11048 build_index_type(max));
11049 if (constructor_type == error_mark_node)
11050 return error_mark_node;
11051 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11052 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11053 elt->index = size_int(0);
11054 elt->value = element_type->get_init_tree(context->gogo(), false);
11055 values = build_constructor(constructor_type, vec);
11056 if (TREE_CONSTANT(elt->value))
11057 TREE_CONSTANT(values) = 1;
11058 length_tree = size_int(0);
11060 else
11062 tree max = size_int(this->vals()->size() - 1);
11063 tree constructor_type = build_array_type(element_type_tree,
11064 build_index_type(max));
11065 if (constructor_type == error_mark_node)
11066 return error_mark_node;
11067 values = this->get_constructor_tree(context, constructor_type);
11068 length_tree = size_int(this->vals()->size());
11071 if (values == error_mark_node)
11072 return error_mark_node;
11074 bool is_constant_initializer = TREE_CONSTANT(values);
11075 bool is_in_function = context->function() != NULL;
11077 if (is_constant_initializer)
11079 tree tmp = build_decl(this->location(), VAR_DECL,
11080 create_tmp_var_name("C"), TREE_TYPE(values));
11081 DECL_EXTERNAL(tmp) = 0;
11082 TREE_PUBLIC(tmp) = 0;
11083 TREE_STATIC(tmp) = 1;
11084 DECL_ARTIFICIAL(tmp) = 1;
11085 if (is_in_function)
11087 // If this is not a function, we will only initialize the
11088 // value once, so we can use this directly rather than
11089 // copying it. In that case we can't make it read-only,
11090 // because the program is permitted to change it.
11091 TREE_READONLY(tmp) = 1;
11092 TREE_CONSTANT(tmp) = 1;
11094 DECL_INITIAL(tmp) = values;
11095 rest_of_decl_compilation(tmp, 1, 0);
11096 values = tmp;
11099 tree space;
11100 tree set;
11101 if (!is_in_function && is_constant_initializer)
11103 // Outside of a function, we know the initializer will only run
11104 // once.
11105 space = build_fold_addr_expr(values);
11106 set = NULL_TREE;
11108 else
11110 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11111 space = context->gogo()->allocate_memory(element_type, memsize,
11112 this->location());
11113 space = save_expr(space);
11115 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11116 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11117 TREE_THIS_NOTRAP(ref) = 1;
11118 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11121 // Build a constructor for the open array.
11123 tree type_tree = this->type()->get_tree(context->gogo());
11124 if (type_tree == error_mark_node)
11125 return error_mark_node;
11126 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11128 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11130 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11131 tree field = TYPE_FIELDS(type_tree);
11132 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11133 elt->index = field;
11134 elt->value = fold_convert(TREE_TYPE(field), space);
11136 elt = VEC_quick_push(constructor_elt, init, NULL);
11137 field = DECL_CHAIN(field);
11138 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11139 elt->index = field;
11140 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11142 elt = VEC_quick_push(constructor_elt, init, NULL);
11143 field = DECL_CHAIN(field);
11144 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11145 elt->index = field;
11146 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11148 tree constructor = build_constructor(type_tree, init);
11149 if (constructor == error_mark_node)
11150 return error_mark_node;
11151 if (!is_in_function && is_constant_initializer)
11152 TREE_CONSTANT(constructor) = 1;
11154 if (set == NULL_TREE)
11155 return constructor;
11156 else
11157 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11160 // Make a slice composite literal. This is used by the type
11161 // descriptor code.
11163 Expression*
11164 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11165 source_location location)
11167 gcc_assert(type->is_open_array_type());
11168 return new Open_array_construction_expression(type, vals, location);
11171 // Construct a map.
11173 class Map_construction_expression : public Expression
11175 public:
11176 Map_construction_expression(Type* type, Expression_list* vals,
11177 source_location location)
11178 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11179 type_(type), vals_(vals)
11180 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11182 protected:
11184 do_traverse(Traverse* traverse);
11186 Type*
11187 do_type()
11188 { return this->type_; }
11190 void
11191 do_determine_type(const Type_context*);
11193 void
11194 do_check_types(Gogo*);
11196 Expression*
11197 do_copy()
11199 return new Map_construction_expression(this->type_, this->vals_->copy(),
11200 this->location());
11203 tree
11204 do_get_tree(Translate_context*);
11206 void
11207 do_export(Export*) const;
11209 private:
11210 // The type of the map to construct.
11211 Type* type_;
11212 // The list of values.
11213 Expression_list* vals_;
11216 // Traversal.
11219 Map_construction_expression::do_traverse(Traverse* traverse)
11221 if (this->vals_ != NULL
11222 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11223 return TRAVERSE_EXIT;
11224 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11225 return TRAVERSE_EXIT;
11226 return TRAVERSE_CONTINUE;
11229 // Final type determination.
11231 void
11232 Map_construction_expression::do_determine_type(const Type_context*)
11234 if (this->vals_ == NULL)
11235 return;
11237 Map_type* mt = this->type_->map_type();
11238 Type_context key_context(mt->key_type(), false);
11239 Type_context val_context(mt->val_type(), false);
11240 for (Expression_list::const_iterator pv = this->vals_->begin();
11241 pv != this->vals_->end();
11242 ++pv)
11244 (*pv)->determine_type(&key_context);
11245 ++pv;
11246 (*pv)->determine_type(&val_context);
11250 // Check types.
11252 void
11253 Map_construction_expression::do_check_types(Gogo*)
11255 if (this->vals_ == NULL)
11256 return;
11258 Map_type* mt = this->type_->map_type();
11259 int i = 0;
11260 Type* key_type = mt->key_type();
11261 Type* val_type = mt->val_type();
11262 for (Expression_list::const_iterator pv = this->vals_->begin();
11263 pv != this->vals_->end();
11264 ++pv, ++i)
11266 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11268 error_at((*pv)->location(),
11269 "incompatible type for element %d key in map construction",
11270 i + 1);
11271 this->set_is_error();
11273 ++pv;
11274 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11276 error_at((*pv)->location(),
11277 ("incompatible type for element %d value "
11278 "in map construction"),
11279 i + 1);
11280 this->set_is_error();
11285 // Return a tree for constructing a map.
11287 tree
11288 Map_construction_expression::do_get_tree(Translate_context* context)
11290 Gogo* gogo = context->gogo();
11291 source_location loc = this->location();
11293 Map_type* mt = this->type_->map_type();
11295 // Build a struct to hold the key and value.
11296 tree struct_type = make_node(RECORD_TYPE);
11298 Type* key_type = mt->key_type();
11299 tree id = get_identifier("__key");
11300 tree key_type_tree = key_type->get_tree(gogo);
11301 if (key_type_tree == error_mark_node)
11302 return error_mark_node;
11303 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11304 DECL_CONTEXT(key_field) = struct_type;
11305 TYPE_FIELDS(struct_type) = key_field;
11307 Type* val_type = mt->val_type();
11308 id = get_identifier("__val");
11309 tree val_type_tree = val_type->get_tree(gogo);
11310 if (val_type_tree == error_mark_node)
11311 return error_mark_node;
11312 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11313 DECL_CONTEXT(val_field) = struct_type;
11314 DECL_CHAIN(key_field) = val_field;
11316 layout_type(struct_type);
11318 bool is_constant = true;
11319 size_t i = 0;
11320 tree valaddr;
11321 tree make_tmp;
11323 if (this->vals_ == NULL || this->vals_->empty())
11325 valaddr = null_pointer_node;
11326 make_tmp = NULL_TREE;
11328 else
11330 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11331 this->vals_->size() / 2);
11333 for (Expression_list::const_iterator pv = this->vals_->begin();
11334 pv != this->vals_->end();
11335 ++pv, ++i)
11337 bool one_is_constant = true;
11339 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11341 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11342 elt->index = key_field;
11343 tree val_tree = (*pv)->get_tree(context);
11344 elt->value = Expression::convert_for_assignment(context, key_type,
11345 (*pv)->type(),
11346 val_tree, loc);
11347 if (elt->value == error_mark_node)
11348 return error_mark_node;
11349 if (!TREE_CONSTANT(elt->value))
11350 one_is_constant = false;
11352 ++pv;
11354 elt = VEC_quick_push(constructor_elt, one, NULL);
11355 elt->index = val_field;
11356 val_tree = (*pv)->get_tree(context);
11357 elt->value = Expression::convert_for_assignment(context, val_type,
11358 (*pv)->type(),
11359 val_tree, loc);
11360 if (elt->value == error_mark_node)
11361 return error_mark_node;
11362 if (!TREE_CONSTANT(elt->value))
11363 one_is_constant = false;
11365 elt = VEC_quick_push(constructor_elt, values, NULL);
11366 elt->index = size_int(i);
11367 elt->value = build_constructor(struct_type, one);
11368 if (one_is_constant)
11369 TREE_CONSTANT(elt->value) = 1;
11370 else
11371 is_constant = false;
11374 tree index_type = build_index_type(size_int(i - 1));
11375 tree array_type = build_array_type(struct_type, index_type);
11376 tree init = build_constructor(array_type, values);
11377 if (is_constant)
11378 TREE_CONSTANT(init) = 1;
11379 tree tmp;
11380 if (current_function_decl != NULL)
11382 tmp = create_tmp_var(array_type, get_name(array_type));
11383 DECL_INITIAL(tmp) = init;
11384 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11385 TREE_ADDRESSABLE(tmp) = 1;
11387 else
11389 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11390 DECL_EXTERNAL(tmp) = 0;
11391 TREE_PUBLIC(tmp) = 0;
11392 TREE_STATIC(tmp) = 1;
11393 DECL_ARTIFICIAL(tmp) = 1;
11394 if (!TREE_CONSTANT(init))
11395 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11396 init);
11397 else
11399 TREE_READONLY(tmp) = 1;
11400 TREE_CONSTANT(tmp) = 1;
11401 DECL_INITIAL(tmp) = init;
11402 make_tmp = NULL_TREE;
11404 rest_of_decl_compilation(tmp, 1, 0);
11407 valaddr = build_fold_addr_expr(tmp);
11410 tree descriptor = gogo->map_descriptor(mt);
11412 tree type_tree = this->type_->get_tree(gogo);
11413 if (type_tree == error_mark_node)
11414 return error_mark_node;
11416 static tree construct_map_fndecl;
11417 tree call = Gogo::call_builtin(&construct_map_fndecl,
11418 loc,
11419 "__go_construct_map",
11421 type_tree,
11422 TREE_TYPE(descriptor),
11423 descriptor,
11424 sizetype,
11425 size_int(i),
11426 sizetype,
11427 TYPE_SIZE_UNIT(struct_type),
11428 sizetype,
11429 byte_position(val_field),
11430 sizetype,
11431 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11432 const_ptr_type_node,
11433 fold_convert(const_ptr_type_node, valaddr));
11434 if (call == error_mark_node)
11435 return error_mark_node;
11437 tree ret;
11438 if (make_tmp == NULL)
11439 ret = call;
11440 else
11441 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11442 return ret;
11445 // Export an array construction.
11447 void
11448 Map_construction_expression::do_export(Export* exp) const
11450 exp->write_c_string("convert(");
11451 exp->write_type(this->type_);
11452 for (Expression_list::const_iterator pv = this->vals_->begin();
11453 pv != this->vals_->end();
11454 ++pv)
11456 exp->write_c_string(", ");
11457 (*pv)->export_expression(exp);
11459 exp->write_c_string(")");
11462 // A general composite literal. This is lowered to a type specific
11463 // version.
11465 class Composite_literal_expression : public Parser_expression
11467 public:
11468 Composite_literal_expression(Type* type, int depth, bool has_keys,
11469 Expression_list* vals, source_location location)
11470 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11471 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11474 protected:
11476 do_traverse(Traverse* traverse);
11478 Expression*
11479 do_lower(Gogo*, Named_object*, int);
11481 Expression*
11482 do_copy()
11484 return new Composite_literal_expression(this->type_, this->depth_,
11485 this->has_keys_,
11486 (this->vals_ == NULL
11487 ? NULL
11488 : this->vals_->copy()),
11489 this->location());
11492 private:
11493 Expression*
11494 lower_struct(Type*);
11496 Expression*
11497 lower_array(Type*);
11499 Expression*
11500 make_array(Type*, Expression_list*);
11502 Expression*
11503 lower_map(Gogo*, Named_object*, Type*);
11505 // The type of the composite literal.
11506 Type* type_;
11507 // The depth within a list of composite literals within a composite
11508 // literal, when the type is omitted.
11509 int depth_;
11510 // The values to put in the composite literal.
11511 Expression_list* vals_;
11512 // If this is true, then VALS_ is a list of pairs: a key and a
11513 // value. In an array initializer, a missing key will be NULL.
11514 bool has_keys_;
11517 // Traversal.
11520 Composite_literal_expression::do_traverse(Traverse* traverse)
11522 if (this->vals_ != NULL
11523 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11524 return TRAVERSE_EXIT;
11525 return Type::traverse(this->type_, traverse);
11528 // Lower a generic composite literal into a specific version based on
11529 // the type.
11531 Expression*
11532 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11534 Type* type = this->type_;
11536 for (int depth = this->depth_; depth > 0; --depth)
11538 if (type->array_type() != NULL)
11539 type = type->array_type()->element_type();
11540 else if (type->map_type() != NULL)
11541 type = type->map_type()->val_type();
11542 else
11544 if (!type->is_error_type())
11545 error_at(this->location(),
11546 ("may only omit types within composite literals "
11547 "of slice, array, or map type"));
11548 return Expression::make_error(this->location());
11552 if (type->is_error_type())
11553 return Expression::make_error(this->location());
11554 else if (type->struct_type() != NULL)
11555 return this->lower_struct(type);
11556 else if (type->array_type() != NULL)
11557 return this->lower_array(type);
11558 else if (type->map_type() != NULL)
11559 return this->lower_map(gogo, function, type);
11560 else
11562 error_at(this->location(),
11563 ("expected struct, slice, array, or map type "
11564 "for composite literal"));
11565 return Expression::make_error(this->location());
11569 // Lower a struct composite literal.
11571 Expression*
11572 Composite_literal_expression::lower_struct(Type* type)
11574 source_location location = this->location();
11575 Struct_type* st = type->struct_type();
11576 if (this->vals_ == NULL || !this->has_keys_)
11577 return new Struct_construction_expression(type, this->vals_, location);
11579 size_t field_count = st->field_count();
11580 std::vector<Expression*> vals(field_count);
11581 Expression_list::const_iterator p = this->vals_->begin();
11582 while (p != this->vals_->end())
11584 Expression* name_expr = *p;
11586 ++p;
11587 gcc_assert(p != this->vals_->end());
11588 Expression* val = *p;
11590 ++p;
11592 if (name_expr == NULL)
11594 error_at(val->location(), "mixture of field and value initializers");
11595 return Expression::make_error(location);
11598 bool bad_key = false;
11599 std::string name;
11600 switch (name_expr->classification())
11602 case EXPRESSION_UNKNOWN_REFERENCE:
11603 name = name_expr->unknown_expression()->name();
11604 break;
11606 case EXPRESSION_CONST_REFERENCE:
11607 name = static_cast<Const_expression*>(name_expr)->name();
11608 break;
11610 case EXPRESSION_TYPE:
11612 Type* t = name_expr->type();
11613 Named_type* nt = t->named_type();
11614 if (nt == NULL)
11615 bad_key = true;
11616 else
11617 name = nt->name();
11619 break;
11621 case EXPRESSION_VAR_REFERENCE:
11622 name = name_expr->var_expression()->name();
11623 break;
11625 case EXPRESSION_FUNC_REFERENCE:
11626 name = name_expr->func_expression()->name();
11627 break;
11629 case EXPRESSION_UNARY:
11630 // If there is a local variable around with the same name as
11631 // the field, and this occurs in the closure, then the
11632 // parser may turn the field reference into an indirection
11633 // through the closure. FIXME: This is a mess.
11635 bad_key = true;
11636 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11637 if (ue->op() == OPERATOR_MULT)
11639 Field_reference_expression* fre =
11640 ue->operand()->field_reference_expression();
11641 if (fre != NULL)
11643 Struct_type* st =
11644 fre->expr()->type()->deref()->struct_type();
11645 if (st != NULL)
11647 const Struct_field* sf = st->field(fre->field_index());
11648 name = sf->field_name();
11649 char buf[20];
11650 snprintf(buf, sizeof buf, "%u", fre->field_index());
11651 size_t buflen = strlen(buf);
11652 if (name.compare(name.length() - buflen, buflen, buf)
11653 == 0)
11655 name = name.substr(0, name.length() - buflen);
11656 bad_key = false;
11662 break;
11664 default:
11665 bad_key = true;
11666 break;
11668 if (bad_key)
11670 error_at(name_expr->location(), "expected struct field name");
11671 return Expression::make_error(location);
11674 unsigned int index;
11675 const Struct_field* sf = st->find_local_field(name, &index);
11676 if (sf == NULL)
11678 error_at(name_expr->location(), "unknown field %qs in %qs",
11679 Gogo::message_name(name).c_str(),
11680 (type->named_type() != NULL
11681 ? type->named_type()->message_name().c_str()
11682 : "unnamed struct"));
11683 return Expression::make_error(location);
11685 if (vals[index] != NULL)
11687 error_at(name_expr->location(),
11688 "duplicate value for field %qs in %qs",
11689 Gogo::message_name(name).c_str(),
11690 (type->named_type() != NULL
11691 ? type->named_type()->message_name().c_str()
11692 : "unnamed struct"));
11693 return Expression::make_error(location);
11696 vals[index] = val;
11699 Expression_list* list = new Expression_list;
11700 list->reserve(field_count);
11701 for (size_t i = 0; i < field_count; ++i)
11702 list->push_back(vals[i]);
11704 return new Struct_construction_expression(type, list, location);
11707 // Lower an array composite literal.
11709 Expression*
11710 Composite_literal_expression::lower_array(Type* type)
11712 source_location location = this->location();
11713 if (this->vals_ == NULL || !this->has_keys_)
11714 return this->make_array(type, this->vals_);
11716 std::vector<Expression*> vals;
11717 vals.reserve(this->vals_->size());
11718 unsigned long index = 0;
11719 Expression_list::const_iterator p = this->vals_->begin();
11720 while (p != this->vals_->end())
11722 Expression* index_expr = *p;
11724 ++p;
11725 gcc_assert(p != this->vals_->end());
11726 Expression* val = *p;
11728 ++p;
11730 if (index_expr != NULL)
11732 mpz_t ival;
11733 mpz_init(ival);
11734 Type* dummy;
11735 if (!index_expr->integer_constant_value(true, ival, &dummy))
11737 mpz_clear(ival);
11738 error_at(index_expr->location(),
11739 "index expression is not integer constant");
11740 return Expression::make_error(location);
11742 if (mpz_sgn(ival) < 0)
11744 mpz_clear(ival);
11745 error_at(index_expr->location(), "index expression is negative");
11746 return Expression::make_error(location);
11748 index = mpz_get_ui(ival);
11749 if (mpz_cmp_ui(ival, index) != 0)
11751 mpz_clear(ival);
11752 error_at(index_expr->location(), "index value overflow");
11753 return Expression::make_error(location);
11755 mpz_clear(ival);
11758 if (index == vals.size())
11759 vals.push_back(val);
11760 else
11762 if (index > vals.size())
11764 vals.reserve(index + 32);
11765 vals.resize(index + 1, static_cast<Expression*>(NULL));
11767 if (vals[index] != NULL)
11769 error_at((index_expr != NULL
11770 ? index_expr->location()
11771 : val->location()),
11772 "duplicate value for index %lu",
11773 index);
11774 return Expression::make_error(location);
11776 vals[index] = val;
11779 ++index;
11782 size_t size = vals.size();
11783 Expression_list* list = new Expression_list;
11784 list->reserve(size);
11785 for (size_t i = 0; i < size; ++i)
11786 list->push_back(vals[i]);
11788 return this->make_array(type, list);
11791 // Actually build the array composite literal. This handles
11792 // [...]{...}.
11794 Expression*
11795 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11797 source_location location = this->location();
11798 Array_type* at = type->array_type();
11799 if (at->length() != NULL && at->length()->is_nil_expression())
11801 size_t size = vals == NULL ? 0 : vals->size();
11802 mpz_t vlen;
11803 mpz_init_set_ui(vlen, size);
11804 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11805 mpz_clear(vlen);
11806 at = Type::make_array_type(at->element_type(), elen);
11807 type = at;
11809 if (at->length() != NULL)
11810 return new Fixed_array_construction_expression(type, vals, location);
11811 else
11812 return new Open_array_construction_expression(type, vals, location);
11815 // Lower a map composite literal.
11817 Expression*
11818 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11819 Type* type)
11821 source_location location = this->location();
11822 if (this->vals_ != NULL)
11824 if (!this->has_keys_)
11826 error_at(location, "map composite literal must have keys");
11827 return Expression::make_error(location);
11830 for (Expression_list::iterator p = this->vals_->begin();
11831 p != this->vals_->end();
11832 p += 2)
11834 if (*p == NULL)
11836 ++p;
11837 error_at((*p)->location(),
11838 "map composite literal must have keys for every value");
11839 return Expression::make_error(location);
11841 // Make sure we have lowered the key; it may not have been
11842 // lowered in order to handle keys for struct composite
11843 // literals. Lower it now to get the right error message.
11844 if ((*p)->unknown_expression() != NULL)
11846 (*p)->unknown_expression()->clear_is_composite_literal_key();
11847 gogo->lower_expression(function, &*p);
11848 gcc_assert((*p)->is_error_expression());
11849 return Expression::make_error(location);
11854 return new Map_construction_expression(type, this->vals_, location);
11857 // Make a composite literal expression.
11859 Expression*
11860 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11861 Expression_list* vals,
11862 source_location location)
11864 return new Composite_literal_expression(type, depth, has_keys, vals,
11865 location);
11868 // Return whether this expression is a composite literal.
11870 bool
11871 Expression::is_composite_literal() const
11873 switch (this->classification_)
11875 case EXPRESSION_COMPOSITE_LITERAL:
11876 case EXPRESSION_STRUCT_CONSTRUCTION:
11877 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11878 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11879 case EXPRESSION_MAP_CONSTRUCTION:
11880 return true;
11881 default:
11882 return false;
11886 // Return whether this expression is a composite literal which is not
11887 // constant.
11889 bool
11890 Expression::is_nonconstant_composite_literal() const
11892 switch (this->classification_)
11894 case EXPRESSION_STRUCT_CONSTRUCTION:
11896 const Struct_construction_expression *psce =
11897 static_cast<const Struct_construction_expression*>(this);
11898 return !psce->is_constant_struct();
11900 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11902 const Fixed_array_construction_expression *pace =
11903 static_cast<const Fixed_array_construction_expression*>(this);
11904 return !pace->is_constant_array();
11906 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11908 const Open_array_construction_expression *pace =
11909 static_cast<const Open_array_construction_expression*>(this);
11910 return !pace->is_constant_array();
11912 case EXPRESSION_MAP_CONSTRUCTION:
11913 return true;
11914 default:
11915 return false;
11919 // Return true if this is a reference to a local variable.
11921 bool
11922 Expression::is_local_variable() const
11924 const Var_expression* ve = this->var_expression();
11925 if (ve == NULL)
11926 return false;
11927 const Named_object* no = ve->named_object();
11928 return (no->is_result_variable()
11929 || (no->is_variable() && !no->var_value()->is_global()));
11932 // Class Type_guard_expression.
11934 // Traversal.
11937 Type_guard_expression::do_traverse(Traverse* traverse)
11939 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11940 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11941 return TRAVERSE_EXIT;
11942 return TRAVERSE_CONTINUE;
11945 // Check types of a type guard expression. The expression must have
11946 // an interface type, but the actual type conversion is checked at run
11947 // time.
11949 void
11950 Type_guard_expression::do_check_types(Gogo*)
11952 // 6g permits using a type guard with unsafe.pointer; we are
11953 // compatible.
11954 Type* expr_type = this->expr_->type();
11955 if (expr_type->is_unsafe_pointer_type())
11957 if (this->type_->points_to() == NULL
11958 && (this->type_->integer_type() == NULL
11959 || (this->type_->forwarded()
11960 != Type::lookup_integer_type("uintptr"))))
11961 this->report_error(_("invalid unsafe.Pointer conversion"));
11963 else if (this->type_->is_unsafe_pointer_type())
11965 if (expr_type->points_to() == NULL
11966 && (expr_type->integer_type() == NULL
11967 || (expr_type->forwarded()
11968 != Type::lookup_integer_type("uintptr"))))
11969 this->report_error(_("invalid unsafe.Pointer conversion"));
11971 else if (expr_type->interface_type() == NULL)
11973 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11974 this->report_error(_("type assertion only valid for interface types"));
11975 this->set_is_error();
11977 else if (this->type_->interface_type() == NULL)
11979 std::string reason;
11980 if (!expr_type->interface_type()->implements_interface(this->type_,
11981 &reason))
11983 if (!this->type_->is_error_type())
11985 if (reason.empty())
11986 this->report_error(_("impossible type assertion: "
11987 "type does not implement interface"));
11988 else
11989 error_at(this->location(),
11990 ("impossible type assertion: "
11991 "type does not implement interface (%s)"),
11992 reason.c_str());
11994 this->set_is_error();
11999 // Return a tree for a type guard expression.
12001 tree
12002 Type_guard_expression::do_get_tree(Translate_context* context)
12004 Gogo* gogo = context->gogo();
12005 tree expr_tree = this->expr_->get_tree(context);
12006 if (expr_tree == error_mark_node)
12007 return error_mark_node;
12008 Type* expr_type = this->expr_->type();
12009 if ((this->type_->is_unsafe_pointer_type()
12010 && (expr_type->points_to() != NULL
12011 || expr_type->integer_type() != NULL))
12012 || (expr_type->is_unsafe_pointer_type()
12013 && this->type_->points_to() != NULL))
12014 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12015 else if (expr_type->is_unsafe_pointer_type()
12016 && this->type_->integer_type() != NULL)
12017 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12018 else if (this->type_->interface_type() != NULL)
12019 return Expression::convert_interface_to_interface(context, this->type_,
12020 this->expr_->type(),
12021 expr_tree, true,
12022 this->location());
12023 else
12024 return Expression::convert_for_assignment(context, this->type_,
12025 this->expr_->type(), expr_tree,
12026 this->location());
12029 // Make a type guard expression.
12031 Expression*
12032 Expression::make_type_guard(Expression* expr, Type* type,
12033 source_location location)
12035 return new Type_guard_expression(expr, type, location);
12038 // Class Heap_composite_expression.
12040 // When you take the address of a composite literal, it is allocated
12041 // on the heap. This class implements that.
12043 class Heap_composite_expression : public Expression
12045 public:
12046 Heap_composite_expression(Expression* expr, source_location location)
12047 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12048 expr_(expr)
12051 protected:
12053 do_traverse(Traverse* traverse)
12054 { return Expression::traverse(&this->expr_, traverse); }
12056 Type*
12057 do_type()
12058 { return Type::make_pointer_type(this->expr_->type()); }
12060 void
12061 do_determine_type(const Type_context*)
12062 { this->expr_->determine_type_no_context(); }
12064 Expression*
12065 do_copy()
12067 return Expression::make_heap_composite(this->expr_->copy(),
12068 this->location());
12071 tree
12072 do_get_tree(Translate_context*);
12074 // We only export global objects, and the parser does not generate
12075 // this in global scope.
12076 void
12077 do_export(Export*) const
12078 { gcc_unreachable(); }
12080 private:
12081 // The composite literal which is being put on the heap.
12082 Expression* expr_;
12085 // Return a tree which allocates a composite literal on the heap.
12087 tree
12088 Heap_composite_expression::do_get_tree(Translate_context* context)
12090 tree expr_tree = this->expr_->get_tree(context);
12091 if (expr_tree == error_mark_node)
12092 return error_mark_node;
12093 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12094 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12095 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12096 expr_size, this->location());
12097 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12098 space = save_expr(space);
12099 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12100 TREE_THIS_NOTRAP(ref) = 1;
12101 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12102 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12103 space);
12104 SET_EXPR_LOCATION(ret, this->location());
12105 return ret;
12108 // Allocate a composite literal on the heap.
12110 Expression*
12111 Expression::make_heap_composite(Expression* expr, source_location location)
12113 return new Heap_composite_expression(expr, location);
12116 // Class Receive_expression.
12118 // Return the type of a receive expression.
12120 Type*
12121 Receive_expression::do_type()
12123 Channel_type* channel_type = this->channel_->type()->channel_type();
12124 if (channel_type == NULL)
12125 return Type::make_error_type();
12126 return channel_type->element_type();
12129 // Check types for a receive expression.
12131 void
12132 Receive_expression::do_check_types(Gogo*)
12134 Type* type = this->channel_->type();
12135 if (type->is_error_type())
12137 this->set_is_error();
12138 return;
12140 if (type->channel_type() == NULL)
12142 this->report_error(_("expected channel"));
12143 return;
12145 if (!type->channel_type()->may_receive())
12147 this->report_error(_("invalid receive on send-only channel"));
12148 return;
12152 // Get a tree for a receive expression.
12154 tree
12155 Receive_expression::do_get_tree(Translate_context* context)
12157 Channel_type* channel_type = this->channel_->type()->channel_type();
12158 gcc_assert(channel_type != NULL);
12159 Type* element_type = channel_type->element_type();
12160 tree element_type_tree = element_type->get_tree(context->gogo());
12162 tree channel = this->channel_->get_tree(context);
12163 if (element_type_tree == error_mark_node || channel == error_mark_node)
12164 return error_mark_node;
12166 return Gogo::receive_from_channel(element_type_tree, channel,
12167 this->for_select_, this->location());
12170 // Make a receive expression.
12172 Receive_expression*
12173 Expression::make_receive(Expression* channel, source_location location)
12175 return new Receive_expression(channel, location);
12178 // Class Send_expression.
12180 // Traversal.
12183 Send_expression::do_traverse(Traverse* traverse)
12185 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12186 return TRAVERSE_EXIT;
12187 return Expression::traverse(&this->val_, traverse);
12190 // Get the type.
12192 Type*
12193 Send_expression::do_type()
12195 return Type::lookup_bool_type();
12198 // Set types.
12200 void
12201 Send_expression::do_determine_type(const Type_context*)
12203 this->channel_->determine_type_no_context();
12205 Type* type = this->channel_->type();
12206 Type_context subcontext;
12207 if (type->channel_type() != NULL)
12208 subcontext.type = type->channel_type()->element_type();
12209 this->val_->determine_type(&subcontext);
12212 // Check types.
12214 void
12215 Send_expression::do_check_types(Gogo*)
12217 Type* type = this->channel_->type();
12218 if (type->is_error_type())
12220 this->set_is_error();
12221 return;
12223 Channel_type* channel_type = type->channel_type();
12224 if (channel_type == NULL)
12226 error_at(this->location(), "left operand of %<<-%> must be channel");
12227 this->set_is_error();
12228 return;
12230 Type* element_type = channel_type->element_type();
12231 if (element_type != NULL
12232 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12234 this->report_error(_("incompatible types in send"));
12235 return;
12237 if (!channel_type->may_send())
12239 this->report_error(_("invalid send on receive-only channel"));
12240 return;
12244 // Get a tree for a send expression.
12246 tree
12247 Send_expression::do_get_tree(Translate_context* context)
12249 tree channel = this->channel_->get_tree(context);
12250 tree val = this->val_->get_tree(context);
12251 if (channel == error_mark_node || val == error_mark_node)
12252 return error_mark_node;
12253 Channel_type* channel_type = this->channel_->type()->channel_type();
12254 val = Expression::convert_for_assignment(context,
12255 channel_type->element_type(),
12256 this->val_->type(),
12257 val,
12258 this->location());
12259 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12260 this->for_select_, this->location());
12263 // Make a send expression
12265 Send_expression*
12266 Expression::make_send(Expression* channel, Expression* val,
12267 source_location location)
12269 return new Send_expression(channel, val, location);
12272 // An expression which evaluates to a pointer to the type descriptor
12273 // of a type.
12275 class Type_descriptor_expression : public Expression
12277 public:
12278 Type_descriptor_expression(Type* type, source_location location)
12279 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12280 type_(type)
12283 protected:
12284 Type*
12285 do_type()
12286 { return Type::make_type_descriptor_ptr_type(); }
12288 void
12289 do_determine_type(const Type_context*)
12292 Expression*
12293 do_copy()
12294 { return this; }
12296 tree
12297 do_get_tree(Translate_context* context)
12298 { return this->type_->type_descriptor_pointer(context->gogo()); }
12300 private:
12301 // The type for which this is the descriptor.
12302 Type* type_;
12305 // Make a type descriptor expression.
12307 Expression*
12308 Expression::make_type_descriptor(Type* type, source_location location)
12310 return new Type_descriptor_expression(type, location);
12313 // An expression which evaluates to some characteristic of a type.
12314 // This is only used to initialize fields of a type descriptor. Using
12315 // a new expression class is slightly inefficient but gives us a good
12316 // separation between the frontend and the middle-end with regard to
12317 // how types are laid out.
12319 class Type_info_expression : public Expression
12321 public:
12322 Type_info_expression(Type* type, Type_info type_info)
12323 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12324 type_(type), type_info_(type_info)
12327 protected:
12328 Type*
12329 do_type();
12331 void
12332 do_determine_type(const Type_context*)
12335 Expression*
12336 do_copy()
12337 { return this; }
12339 tree
12340 do_get_tree(Translate_context* context);
12342 private:
12343 // The type for which we are getting information.
12344 Type* type_;
12345 // What information we want.
12346 Type_info type_info_;
12349 // The type is chosen to match what the type descriptor struct
12350 // expects.
12352 Type*
12353 Type_info_expression::do_type()
12355 switch (this->type_info_)
12357 case TYPE_INFO_SIZE:
12358 return Type::lookup_integer_type("uintptr");
12359 case TYPE_INFO_ALIGNMENT:
12360 case TYPE_INFO_FIELD_ALIGNMENT:
12361 return Type::lookup_integer_type("uint8");
12362 default:
12363 gcc_unreachable();
12367 // Return type information in GENERIC.
12369 tree
12370 Type_info_expression::do_get_tree(Translate_context* context)
12372 tree type_tree = this->type_->get_tree(context->gogo());
12373 if (type_tree == error_mark_node)
12374 return error_mark_node;
12376 tree val_type_tree = this->type()->get_tree(context->gogo());
12377 gcc_assert(val_type_tree != error_mark_node);
12379 if (this->type_info_ == TYPE_INFO_SIZE)
12380 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12381 TYPE_SIZE_UNIT(type_tree));
12382 else
12384 unsigned int val;
12385 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12386 val = go_type_alignment(type_tree);
12387 else
12388 val = go_field_alignment(type_tree);
12389 return build_int_cstu(val_type_tree, val);
12393 // Make a type info expression.
12395 Expression*
12396 Expression::make_type_info(Type* type, Type_info type_info)
12398 return new Type_info_expression(type, type_info);
12401 // An expression which evaluates to the offset of a field within a
12402 // struct. This, like Type_info_expression, q.v., is only used to
12403 // initialize fields of a type descriptor.
12405 class Struct_field_offset_expression : public Expression
12407 public:
12408 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12409 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12410 type_(type), field_(field)
12413 protected:
12414 Type*
12415 do_type()
12416 { return Type::lookup_integer_type("uintptr"); }
12418 void
12419 do_determine_type(const Type_context*)
12422 Expression*
12423 do_copy()
12424 { return this; }
12426 tree
12427 do_get_tree(Translate_context* context);
12429 private:
12430 // The type of the struct.
12431 Struct_type* type_;
12432 // The field.
12433 const Struct_field* field_;
12436 // Return a struct field offset in GENERIC.
12438 tree
12439 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12441 tree type_tree = this->type_->get_tree(context->gogo());
12442 if (type_tree == error_mark_node)
12443 return error_mark_node;
12445 tree val_type_tree = this->type()->get_tree(context->gogo());
12446 gcc_assert(val_type_tree != error_mark_node);
12448 const Struct_field_list* fields = this->type_->fields();
12449 tree struct_field_tree = TYPE_FIELDS(type_tree);
12450 Struct_field_list::const_iterator p;
12451 for (p = fields->begin();
12452 p != fields->end();
12453 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12455 gcc_assert(struct_field_tree != NULL_TREE);
12456 if (&*p == this->field_)
12457 break;
12459 gcc_assert(&*p == this->field_);
12461 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12462 byte_position(struct_field_tree));
12465 // Make an expression for a struct field offset.
12467 Expression*
12468 Expression::make_struct_field_offset(Struct_type* type,
12469 const Struct_field* field)
12471 return new Struct_field_offset_expression(type, field);
12474 // An expression which evaluates to the address of an unnamed label.
12476 class Label_addr_expression : public Expression
12478 public:
12479 Label_addr_expression(Label* label, source_location location)
12480 : Expression(EXPRESSION_LABEL_ADDR, location),
12481 label_(label)
12484 protected:
12485 Type*
12486 do_type()
12487 { return Type::make_pointer_type(Type::make_void_type()); }
12489 void
12490 do_determine_type(const Type_context*)
12493 Expression*
12494 do_copy()
12495 { return new Label_addr_expression(this->label_, this->location()); }
12497 tree
12498 do_get_tree(Translate_context*)
12499 { return this->label_->get_addr(this->location()); }
12501 private:
12502 // The label whose address we are taking.
12503 Label* label_;
12506 // Make an expression for the address of an unnamed label.
12508 Expression*
12509 Expression::make_label_addr(Label* label, source_location location)
12511 return new Label_addr_expression(label, location);
12514 // Import an expression. This comes at the end in order to see the
12515 // various class definitions.
12517 Expression*
12518 Expression::import_expression(Import* imp)
12520 int c = imp->peek_char();
12521 if (imp->match_c_string("- ")
12522 || imp->match_c_string("! ")
12523 || imp->match_c_string("^ "))
12524 return Unary_expression::do_import(imp);
12525 else if (c == '(')
12526 return Binary_expression::do_import(imp);
12527 else if (imp->match_c_string("true")
12528 || imp->match_c_string("false"))
12529 return Boolean_expression::do_import(imp);
12530 else if (c == '"')
12531 return String_expression::do_import(imp);
12532 else if (c == '-' || (c >= '0' && c <= '9'))
12534 // This handles integers, floats and complex constants.
12535 return Integer_expression::do_import(imp);
12537 else if (imp->match_c_string("nil"))
12538 return Nil_expression::do_import(imp);
12539 else if (imp->match_c_string("convert"))
12540 return Type_conversion_expression::do_import(imp);
12541 else
12543 error_at(imp->location(), "import error: expected expression");
12544 return Expression::make_error(imp->location());
12548 // Class Expression_list.
12550 // Traverse the list.
12553 Expression_list::traverse(Traverse* traverse)
12555 for (Expression_list::iterator p = this->begin();
12556 p != this->end();
12557 ++p)
12559 if (*p != NULL)
12561 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12562 return TRAVERSE_EXIT;
12565 return TRAVERSE_CONTINUE;
12568 // Copy the list.
12570 Expression_list*
12571 Expression_list::copy()
12573 Expression_list* ret = new Expression_list();
12574 for (Expression_list::iterator p = this->begin();
12575 p != this->end();
12576 ++p)
12578 if (*p == NULL)
12579 ret->push_back(NULL);
12580 else
12581 ret->push_back((*p)->copy());
12583 return ret;
12586 // Return whether an expression list has an error expression.
12588 bool
12589 Expression_list::contains_error() const
12591 for (Expression_list::const_iterator p = this->begin();
12592 p != this->end();
12593 ++p)
12594 if (*p != NULL && (*p)->is_error_expression())
12595 return true;
12596 return false;