Merge from mainline (168000:168310).
[official-gcc/graphite-test-results.git] / gcc / expr.c
blobcd32f4fd6ad020e81e52528efed94bad0cdb4670
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
64 #ifdef PUSH_ROUNDING
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
72 #endif
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
111 struct store_by_pieces_d
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
204 void
205 init_expr_target (void)
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
230 int regno;
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
248 SET_REGNO (reg, regno);
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
281 enum insn_code ic;
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
287 PUT_MODE (mem, srcmode);
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
295 /* This is run at the start of compiling a function. */
297 void
298 init_expr (void)
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
348 emit_move_insn (to, from);
349 return;
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
361 emit_move_insn (to, from);
362 return;
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
372 if (to_real)
374 rtx value, insns;
375 convert_optab tab;
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
390 /* Try converting directly if the insn is supported. */
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
444 if (to_mode == full_mode)
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
477 /* Now both modes are integers. */
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
555 gcc_assert (subword);
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
561 insns = get_insns ();
562 end_sequence ();
564 emit_insn (insns);
565 return;
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
583 /* Now follow all the conversions between integers
584 no more than a word long. */
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
615 else
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
690 return convert_modes (mode, VOIDmode, x, unsignedp);
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
706 rtx temp;
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
719 if (mode == oldmode)
720 return x;
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
732 double_int val = uhwi_to_double_int (INTVAL (x));
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
738 return immed_double_int_const (val, mode);
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
776 return gen_int_mode (val, mode);
779 return gen_lowpart (mode, x);
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
795 /* Return the largest alignment we can use for doing a move (or store)
796 of MAX_PIECES. ALIGN is the largest alignment we could use. */
798 static unsigned int
799 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
801 enum machine_mode tmode;
803 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
804 if (align >= GET_MODE_ALIGNMENT (tmode))
805 align = GET_MODE_ALIGNMENT (tmode);
806 else
808 enum machine_mode tmode, xmode;
810 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
811 tmode != VOIDmode;
812 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
813 if (GET_MODE_SIZE (tmode) > max_pieces
814 || SLOW_UNALIGNED_ACCESS (tmode, align))
815 break;
817 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
820 return align;
823 /* Return the widest integer mode no wider than SIZE. If no such mode
824 can be found, return VOIDmode. */
826 static enum machine_mode
827 widest_int_mode_for_size (unsigned int size)
829 enum machine_mode tmode, mode = VOIDmode;
831 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
832 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
833 if (GET_MODE_SIZE (tmode) < size)
834 mode = tmode;
836 return mode;
839 /* STORE_MAX_PIECES is the number of bytes at a time that we can
840 store efficiently. Due to internal GCC limitations, this is
841 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
842 for an immediate constant. */
844 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
846 /* Determine whether the LEN bytes can be moved by using several move
847 instructions. Return nonzero if a call to move_by_pieces should
848 succeed. */
851 can_move_by_pieces (unsigned HOST_WIDE_INT len,
852 unsigned int align ATTRIBUTE_UNUSED)
854 return MOVE_BY_PIECES_P (len, align);
857 /* Generate several move instructions to copy LEN bytes from block FROM to
858 block TO. (These are MEM rtx's with BLKmode).
860 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
861 used to push FROM to the stack.
863 ALIGN is maximum stack alignment we can assume.
865 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
866 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 stpcpy. */
870 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
871 unsigned int align, int endp)
873 struct move_by_pieces_d data;
874 enum machine_mode to_addr_mode, from_addr_mode
875 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
876 rtx to_addr, from_addr = XEXP (from, 0);
877 unsigned int max_size = MOVE_MAX_PIECES + 1;
878 enum insn_code icode;
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
895 else
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
925 /* Find the mode of the largest move...
926 MODE might not be used depending on the definitions of the
927 USE_* macros below. */
928 enum machine_mode mode ATTRIBUTE_UNUSED
929 = widest_int_mode_for_size (max_size);
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
968 while (max_size > 1)
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
972 if (mode == VOIDmode)
973 break;
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
979 max_size = GET_MODE_SIZE (mode);
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
985 if (endp)
987 rtx to1;
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
992 if (endp == 2)
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (data.to_addr,
999 -1));
1001 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1002 data.offset);
1004 else
1006 if (endp == 2)
1007 --data.offset;
1008 to1 = adjust_address (data.to, QImode, data.offset);
1010 return to1;
1012 else
1013 return data.to;
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1019 static unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1021 unsigned int max_size)
1023 unsigned HOST_WIDE_INT n_insns = 0;
1025 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1027 while (max_size > 1)
1029 enum machine_mode mode;
1030 enum insn_code icode;
1032 mode = widest_int_mode_for_size (max_size);
1034 if (mode == VOIDmode)
1035 break;
1037 icode = optab_handler (mov_optab, mode);
1038 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1039 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1041 max_size = GET_MODE_SIZE (mode);
1044 gcc_assert (!l);
1045 return n_insns;
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1052 static void
1053 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1054 struct move_by_pieces_d *data)
1056 unsigned int size = GET_MODE_SIZE (mode);
1057 rtx to1 = NULL_RTX, from1;
1059 while (data->len >= size)
1061 if (data->reverse)
1062 data->offset -= size;
1064 if (data->to)
1066 if (data->autinc_to)
1067 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1068 data->offset);
1069 else
1070 to1 = adjust_address (data->to, mode, data->offset);
1073 if (data->autinc_from)
1074 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1075 data->offset);
1076 else
1077 from1 = adjust_address (data->from, mode, data->offset);
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1080 emit_insn (gen_add2_insn (data->to_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1083 emit_insn (gen_add2_insn (data->from_addr,
1084 GEN_INT (-(HOST_WIDE_INT)size)));
1086 if (data->to)
1087 emit_insn ((*genfun) (to1, from1));
1088 else
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode, from1, NULL);
1092 #else
1093 gcc_unreachable ();
1094 #endif
1097 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1098 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1099 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1100 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1102 if (! data->reverse)
1103 data->offset += size;
1105 data->len -= size;
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1118 Return the address of the new block, if memcpy is called and returns it,
1119 0 otherwise. */
1122 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1123 unsigned int expected_align, HOST_WIDE_INT expected_size)
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1134 switch (method)
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1153 default:
1154 gcc_unreachable ();
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, size);
1173 set_mem_size (y, size);
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size))
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1184 retval = emit_block_move_via_libcall (x, y, size,
1185 method == BLOCK_OP_TAILCALL);
1186 else
1187 emit_block_move_via_loop (x, y, size, align);
1189 if (method == BLOCK_OP_CALL_PARM)
1190 OK_DEFER_POP;
1192 return retval;
1196 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1198 return emit_block_move_hints (x, y, size, method, 0, -1);
1201 /* A subroutine of emit_block_move. Returns true if calling the
1202 block move libcall will not clobber any parameters which may have
1203 already been placed on the stack. */
1205 static bool
1206 block_move_libcall_safe_for_call_parm (void)
1208 #if defined (REG_PARM_STACK_SPACE)
1209 tree fn;
1210 #endif
1212 /* If arguments are pushed on the stack, then they're safe. */
1213 if (PUSH_ARGS)
1214 return true;
1216 /* If registers go on the stack anyway, any argument is sure to clobber
1217 an outgoing argument. */
1218 #if defined (REG_PARM_STACK_SPACE)
1219 fn = emit_block_move_libcall_fn (false);
1220 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1221 depend on its argument. */
1222 (void) fn;
1223 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1224 && REG_PARM_STACK_SPACE (fn) != 0)
1225 return false;
1226 #endif
1228 /* If any argument goes in memory, then it might clobber an outgoing
1229 argument. */
1231 CUMULATIVE_ARGS args_so_far;
1232 tree fn, arg;
1234 fn = emit_block_move_libcall_fn (false);
1235 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1237 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1238 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1240 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1241 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1242 NULL_TREE, true);
1243 if (!tmp || !REG_P (tmp))
1244 return false;
1245 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1246 return false;
1247 targetm.calls.function_arg_advance (&args_so_far, mode,
1248 NULL_TREE, true);
1251 return true;
1254 /* A subroutine of emit_block_move. Expand a movmem pattern;
1255 return true if successful. */
1257 static bool
1258 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1259 unsigned int expected_align, HOST_WIDE_INT expected_size)
1261 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1262 int save_volatile_ok = volatile_ok;
1263 enum machine_mode mode;
1265 if (expected_align < align)
1266 expected_align = align;
1268 /* Since this is a move insn, we don't care about volatility. */
1269 volatile_ok = 1;
1271 /* Try the most limited insn first, because there's no point
1272 including more than one in the machine description unless
1273 the more limited one has some advantage. */
1275 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1276 mode = GET_MODE_WIDER_MODE (mode))
1278 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1279 insn_operand_predicate_fn pred;
1281 if (code != CODE_FOR_nothing
1282 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1283 here because if SIZE is less than the mode mask, as it is
1284 returned by the macro, it will definitely be less than the
1285 actual mode mask. */
1286 && ((CONST_INT_P (size)
1287 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1288 <= (GET_MODE_MASK (mode) >> 1)))
1289 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1290 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1291 || (*pred) (x, BLKmode))
1292 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1293 || (*pred) (y, BLKmode))
1294 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1295 || (*pred) (opalign, VOIDmode)))
1297 rtx op2;
1298 rtx last = get_last_insn ();
1299 rtx pat;
1301 op2 = convert_to_mode (mode, size, 1);
1302 pred = insn_data[(int) code].operand[2].predicate;
1303 if (pred != 0 && ! (*pred) (op2, mode))
1304 op2 = copy_to_mode_reg (mode, op2);
1306 /* ??? When called via emit_block_move_for_call, it'd be
1307 nice if there were some way to inform the backend, so
1308 that it doesn't fail the expansion because it thinks
1309 emitting the libcall would be more efficient. */
1311 if (insn_data[(int) code].n_operands == 4)
1312 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1313 else
1314 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1315 GEN_INT (expected_align
1316 / BITS_PER_UNIT),
1317 GEN_INT (expected_size));
1318 if (pat)
1320 emit_insn (pat);
1321 volatile_ok = save_volatile_ok;
1322 return true;
1324 else
1325 delete_insns_since (last);
1329 volatile_ok = save_volatile_ok;
1330 return false;
1333 /* A subroutine of emit_block_move. Expand a call to memcpy.
1334 Return the return value from memcpy, 0 otherwise. */
1337 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1339 rtx dst_addr, src_addr;
1340 tree call_expr, fn, src_tree, dst_tree, size_tree;
1341 enum machine_mode size_mode;
1342 rtx retval;
1344 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1345 pseudos. We can then place those new pseudos into a VAR_DECL and
1346 use them later. */
1348 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1349 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1351 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1352 src_addr = convert_memory_address (ptr_mode, src_addr);
1354 dst_tree = make_tree (ptr_type_node, dst_addr);
1355 src_tree = make_tree (ptr_type_node, src_addr);
1357 size_mode = TYPE_MODE (sizetype);
1359 size = convert_to_mode (size_mode, size, 1);
1360 size = copy_to_mode_reg (size_mode, size);
1362 /* It is incorrect to use the libcall calling conventions to call
1363 memcpy in this context. This could be a user call to memcpy and
1364 the user may wish to examine the return value from memcpy. For
1365 targets where libcalls and normal calls have different conventions
1366 for returning pointers, we could end up generating incorrect code. */
1368 size_tree = make_tree (sizetype, size);
1370 fn = emit_block_move_libcall_fn (true);
1371 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1372 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1374 retval = expand_normal (call_expr);
1376 return retval;
1379 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1380 for the function we use for block copies. The first time FOR_CALL
1381 is true, we call assemble_external. */
1383 static GTY(()) tree block_move_fn;
1385 void
1386 init_block_move_fn (const char *asmspec)
1388 if (!block_move_fn)
1390 tree args, fn;
1392 fn = get_identifier ("memcpy");
1393 args = build_function_type_list (ptr_type_node, ptr_type_node,
1394 const_ptr_type_node, sizetype,
1395 NULL_TREE);
1397 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1398 DECL_EXTERNAL (fn) = 1;
1399 TREE_PUBLIC (fn) = 1;
1400 DECL_ARTIFICIAL (fn) = 1;
1401 TREE_NOTHROW (fn) = 1;
1402 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1403 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1405 block_move_fn = fn;
1408 if (asmspec)
1409 set_user_assembler_name (block_move_fn, asmspec);
1412 static tree
1413 emit_block_move_libcall_fn (int for_call)
1415 static bool emitted_extern;
1417 if (!block_move_fn)
1418 init_block_move_fn (NULL);
1420 if (for_call && !emitted_extern)
1422 emitted_extern = true;
1423 make_decl_rtl (block_move_fn);
1424 assemble_external (block_move_fn);
1427 return block_move_fn;
1430 /* A subroutine of emit_block_move. Copy the data via an explicit
1431 loop. This is used only when libcalls are forbidden. */
1432 /* ??? It'd be nice to copy in hunks larger than QImode. */
1434 static void
1435 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1436 unsigned int align ATTRIBUTE_UNUSED)
1438 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1439 enum machine_mode x_addr_mode
1440 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1441 enum machine_mode y_addr_mode
1442 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1443 enum machine_mode iter_mode;
1445 iter_mode = GET_MODE (size);
1446 if (iter_mode == VOIDmode)
1447 iter_mode = word_mode;
1449 top_label = gen_label_rtx ();
1450 cmp_label = gen_label_rtx ();
1451 iter = gen_reg_rtx (iter_mode);
1453 emit_move_insn (iter, const0_rtx);
1455 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1456 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1457 do_pending_stack_adjust ();
1459 emit_jump (cmp_label);
1460 emit_label (top_label);
1462 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1463 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1465 if (x_addr_mode != y_addr_mode)
1466 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1467 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1469 x = change_address (x, QImode, x_addr);
1470 y = change_address (y, QImode, y_addr);
1472 emit_move_insn (x, y);
1474 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1475 true, OPTAB_LIB_WIDEN);
1476 if (tmp != iter)
1477 emit_move_insn (iter, tmp);
1479 emit_label (cmp_label);
1481 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1482 true, top_label);
1485 /* Copy all or part of a value X into registers starting at REGNO.
1486 The number of registers to be filled is NREGS. */
1488 void
1489 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1491 int i;
1492 #ifdef HAVE_load_multiple
1493 rtx pat;
1494 rtx last;
1495 #endif
1497 if (nregs == 0)
1498 return;
1500 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1501 x = validize_mem (force_const_mem (mode, x));
1503 /* See if the machine can do this with a load multiple insn. */
1504 #ifdef HAVE_load_multiple
1505 if (HAVE_load_multiple)
1507 last = get_last_insn ();
1508 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1509 GEN_INT (nregs));
1510 if (pat)
1512 emit_insn (pat);
1513 return;
1515 else
1516 delete_insns_since (last);
1518 #endif
1520 for (i = 0; i < nregs; i++)
1521 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1522 operand_subword_force (x, i, mode));
1525 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1528 void
1529 move_block_from_reg (int regno, rtx x, int nregs)
1531 int i;
1533 if (nregs == 0)
1534 return;
1536 /* See if the machine can do this with a store multiple insn. */
1537 #ifdef HAVE_store_multiple
1538 if (HAVE_store_multiple)
1540 rtx last = get_last_insn ();
1541 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1542 GEN_INT (nregs));
1543 if (pat)
1545 emit_insn (pat);
1546 return;
1548 else
1549 delete_insns_since (last);
1551 #endif
1553 for (i = 0; i < nregs; i++)
1555 rtx tem = operand_subword (x, i, 1, BLKmode);
1557 gcc_assert (tem);
1559 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1563 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1564 ORIG, where ORIG is a non-consecutive group of registers represented by
1565 a PARALLEL. The clone is identical to the original except in that the
1566 original set of registers is replaced by a new set of pseudo registers.
1567 The new set has the same modes as the original set. */
1570 gen_group_rtx (rtx orig)
1572 int i, length;
1573 rtx *tmps;
1575 gcc_assert (GET_CODE (orig) == PARALLEL);
1577 length = XVECLEN (orig, 0);
1578 tmps = XALLOCAVEC (rtx, length);
1580 /* Skip a NULL entry in first slot. */
1581 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1583 if (i)
1584 tmps[0] = 0;
1586 for (; i < length; i++)
1588 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1589 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1591 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1594 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1597 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1598 except that values are placed in TMPS[i], and must later be moved
1599 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1601 static void
1602 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1604 rtx src;
1605 int start, i;
1606 enum machine_mode m = GET_MODE (orig_src);
1608 gcc_assert (GET_CODE (dst) == PARALLEL);
1610 if (m != VOIDmode
1611 && !SCALAR_INT_MODE_P (m)
1612 && !MEM_P (orig_src)
1613 && GET_CODE (orig_src) != CONCAT)
1615 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1616 if (imode == BLKmode)
1617 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1618 else
1619 src = gen_reg_rtx (imode);
1620 if (imode != BLKmode)
1621 src = gen_lowpart (GET_MODE (orig_src), src);
1622 emit_move_insn (src, orig_src);
1623 /* ...and back again. */
1624 if (imode != BLKmode)
1625 src = gen_lowpart (imode, src);
1626 emit_group_load_1 (tmps, dst, src, type, ssize);
1627 return;
1630 /* Check for a NULL entry, used to indicate that the parameter goes
1631 both on the stack and in registers. */
1632 if (XEXP (XVECEXP (dst, 0, 0), 0))
1633 start = 0;
1634 else
1635 start = 1;
1637 /* Process the pieces. */
1638 for (i = start; i < XVECLEN (dst, 0); i++)
1640 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1641 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1642 unsigned int bytelen = GET_MODE_SIZE (mode);
1643 int shift = 0;
1645 /* Handle trailing fragments that run over the size of the struct. */
1646 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1648 /* Arrange to shift the fragment to where it belongs.
1649 extract_bit_field loads to the lsb of the reg. */
1650 if (
1651 #ifdef BLOCK_REG_PADDING
1652 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1653 == (BYTES_BIG_ENDIAN ? upward : downward)
1654 #else
1655 BYTES_BIG_ENDIAN
1656 #endif
1658 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1659 bytelen = ssize - bytepos;
1660 gcc_assert (bytelen > 0);
1663 /* If we won't be loading directly from memory, protect the real source
1664 from strange tricks we might play; but make sure that the source can
1665 be loaded directly into the destination. */
1666 src = orig_src;
1667 if (!MEM_P (orig_src)
1668 && (!CONSTANT_P (orig_src)
1669 || (GET_MODE (orig_src) != mode
1670 && GET_MODE (orig_src) != VOIDmode)))
1672 if (GET_MODE (orig_src) == VOIDmode)
1673 src = gen_reg_rtx (mode);
1674 else
1675 src = gen_reg_rtx (GET_MODE (orig_src));
1677 emit_move_insn (src, orig_src);
1680 /* Optimize the access just a bit. */
1681 if (MEM_P (src)
1682 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1683 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1684 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1685 && bytelen == GET_MODE_SIZE (mode))
1687 tmps[i] = gen_reg_rtx (mode);
1688 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1690 else if (COMPLEX_MODE_P (mode)
1691 && GET_MODE (src) == mode
1692 && bytelen == GET_MODE_SIZE (mode))
1693 /* Let emit_move_complex do the bulk of the work. */
1694 tmps[i] = src;
1695 else if (GET_CODE (src) == CONCAT)
1697 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1698 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1700 if ((bytepos == 0 && bytelen == slen0)
1701 || (bytepos != 0 && bytepos + bytelen <= slen))
1703 /* The following assumes that the concatenated objects all
1704 have the same size. In this case, a simple calculation
1705 can be used to determine the object and the bit field
1706 to be extracted. */
1707 tmps[i] = XEXP (src, bytepos / slen0);
1708 if (! CONSTANT_P (tmps[i])
1709 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1710 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1711 (bytepos % slen0) * BITS_PER_UNIT,
1712 1, false, NULL_RTX, mode, mode);
1714 else
1716 rtx mem;
1718 gcc_assert (!bytepos);
1719 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1720 emit_move_insn (mem, src);
1721 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1722 0, 1, false, NULL_RTX, mode, mode);
1725 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1726 SIMD register, which is currently broken. While we get GCC
1727 to emit proper RTL for these cases, let's dump to memory. */
1728 else if (VECTOR_MODE_P (GET_MODE (dst))
1729 && REG_P (src))
1731 int slen = GET_MODE_SIZE (GET_MODE (src));
1732 rtx mem;
1734 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1735 emit_move_insn (mem, src);
1736 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1738 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1739 && XVECLEN (dst, 0) > 1)
1740 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1741 else if (CONSTANT_P (src))
1743 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1745 if (len == ssize)
1746 tmps[i] = src;
1747 else
1749 rtx first, second;
1751 gcc_assert (2 * len == ssize);
1752 split_double (src, &first, &second);
1753 if (i)
1754 tmps[i] = second;
1755 else
1756 tmps[i] = first;
1759 else if (REG_P (src) && GET_MODE (src) == mode)
1760 tmps[i] = src;
1761 else
1762 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1763 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1764 mode, mode);
1766 if (shift)
1767 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1768 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1772 /* Emit code to move a block SRC of type TYPE to a block DST,
1773 where DST is non-consecutive registers represented by a PARALLEL.
1774 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1775 if not known. */
1777 void
1778 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1780 rtx *tmps;
1781 int i;
1783 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1784 emit_group_load_1 (tmps, dst, src, type, ssize);
1786 /* Copy the extracted pieces into the proper (probable) hard regs. */
1787 for (i = 0; i < XVECLEN (dst, 0); i++)
1789 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1790 if (d == NULL)
1791 continue;
1792 emit_move_insn (d, tmps[i]);
1796 /* Similar, but load SRC into new pseudos in a format that looks like
1797 PARALLEL. This can later be fed to emit_group_move to get things
1798 in the right place. */
1801 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1803 rtvec vec;
1804 int i;
1806 vec = rtvec_alloc (XVECLEN (parallel, 0));
1807 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1809 /* Convert the vector to look just like the original PARALLEL, except
1810 with the computed values. */
1811 for (i = 0; i < XVECLEN (parallel, 0); i++)
1813 rtx e = XVECEXP (parallel, 0, i);
1814 rtx d = XEXP (e, 0);
1816 if (d)
1818 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1819 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1821 RTVEC_ELT (vec, i) = e;
1824 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1827 /* Emit code to move a block SRC to block DST, where SRC and DST are
1828 non-consecutive groups of registers, each represented by a PARALLEL. */
1830 void
1831 emit_group_move (rtx dst, rtx src)
1833 int i;
1835 gcc_assert (GET_CODE (src) == PARALLEL
1836 && GET_CODE (dst) == PARALLEL
1837 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1839 /* Skip first entry if NULL. */
1840 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1841 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1842 XEXP (XVECEXP (src, 0, i), 0));
1845 /* Move a group of registers represented by a PARALLEL into pseudos. */
1848 emit_group_move_into_temps (rtx src)
1850 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1851 int i;
1853 for (i = 0; i < XVECLEN (src, 0); i++)
1855 rtx e = XVECEXP (src, 0, i);
1856 rtx d = XEXP (e, 0);
1858 if (d)
1859 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1860 RTVEC_ELT (vec, i) = e;
1863 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1866 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1867 where SRC is non-consecutive registers represented by a PARALLEL.
1868 SSIZE represents the total size of block ORIG_DST, or -1 if not
1869 known. */
1871 void
1872 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1874 rtx *tmps, dst;
1875 int start, finish, i;
1876 enum machine_mode m = GET_MODE (orig_dst);
1878 gcc_assert (GET_CODE (src) == PARALLEL);
1880 if (!SCALAR_INT_MODE_P (m)
1881 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1883 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1884 if (imode == BLKmode)
1885 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1886 else
1887 dst = gen_reg_rtx (imode);
1888 emit_group_store (dst, src, type, ssize);
1889 if (imode != BLKmode)
1890 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1891 emit_move_insn (orig_dst, dst);
1892 return;
1895 /* Check for a NULL entry, used to indicate that the parameter goes
1896 both on the stack and in registers. */
1897 if (XEXP (XVECEXP (src, 0, 0), 0))
1898 start = 0;
1899 else
1900 start = 1;
1901 finish = XVECLEN (src, 0);
1903 tmps = XALLOCAVEC (rtx, finish);
1905 /* Copy the (probable) hard regs into pseudos. */
1906 for (i = start; i < finish; i++)
1908 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1909 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1911 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1912 emit_move_insn (tmps[i], reg);
1914 else
1915 tmps[i] = reg;
1918 /* If we won't be storing directly into memory, protect the real destination
1919 from strange tricks we might play. */
1920 dst = orig_dst;
1921 if (GET_CODE (dst) == PARALLEL)
1923 rtx temp;
1925 /* We can get a PARALLEL dst if there is a conditional expression in
1926 a return statement. In that case, the dst and src are the same,
1927 so no action is necessary. */
1928 if (rtx_equal_p (dst, src))
1929 return;
1931 /* It is unclear if we can ever reach here, but we may as well handle
1932 it. Allocate a temporary, and split this into a store/load to/from
1933 the temporary. */
1935 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1936 emit_group_store (temp, src, type, ssize);
1937 emit_group_load (dst, temp, type, ssize);
1938 return;
1940 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1942 enum machine_mode outer = GET_MODE (dst);
1943 enum machine_mode inner;
1944 HOST_WIDE_INT bytepos;
1945 bool done = false;
1946 rtx temp;
1948 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1949 dst = gen_reg_rtx (outer);
1951 /* Make life a bit easier for combine. */
1952 /* If the first element of the vector is the low part
1953 of the destination mode, use a paradoxical subreg to
1954 initialize the destination. */
1955 if (start < finish)
1957 inner = GET_MODE (tmps[start]);
1958 bytepos = subreg_lowpart_offset (inner, outer);
1959 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1961 temp = simplify_gen_subreg (outer, tmps[start],
1962 inner, 0);
1963 if (temp)
1965 emit_move_insn (dst, temp);
1966 done = true;
1967 start++;
1972 /* If the first element wasn't the low part, try the last. */
1973 if (!done
1974 && start < finish - 1)
1976 inner = GET_MODE (tmps[finish - 1]);
1977 bytepos = subreg_lowpart_offset (inner, outer);
1978 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1980 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1981 inner, 0);
1982 if (temp)
1984 emit_move_insn (dst, temp);
1985 done = true;
1986 finish--;
1991 /* Otherwise, simply initialize the result to zero. */
1992 if (!done)
1993 emit_move_insn (dst, CONST0_RTX (outer));
1996 /* Process the pieces. */
1997 for (i = start; i < finish; i++)
1999 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2000 enum machine_mode mode = GET_MODE (tmps[i]);
2001 unsigned int bytelen = GET_MODE_SIZE (mode);
2002 unsigned int adj_bytelen = bytelen;
2003 rtx dest = dst;
2005 /* Handle trailing fragments that run over the size of the struct. */
2006 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2007 adj_bytelen = ssize - bytepos;
2009 if (GET_CODE (dst) == CONCAT)
2011 if (bytepos + adj_bytelen
2012 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2013 dest = XEXP (dst, 0);
2014 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2016 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2017 dest = XEXP (dst, 1);
2019 else
2021 enum machine_mode dest_mode = GET_MODE (dest);
2022 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2024 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2026 if (GET_MODE_ALIGNMENT (dest_mode)
2027 >= GET_MODE_ALIGNMENT (tmp_mode))
2029 dest = assign_stack_temp (dest_mode,
2030 GET_MODE_SIZE (dest_mode),
2032 emit_move_insn (adjust_address (dest,
2033 tmp_mode,
2034 bytepos),
2035 tmps[i]);
2036 dst = dest;
2038 else
2040 dest = assign_stack_temp (tmp_mode,
2041 GET_MODE_SIZE (tmp_mode),
2043 emit_move_insn (dest, tmps[i]);
2044 dst = adjust_address (dest, dest_mode, bytepos);
2046 break;
2050 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2052 /* store_bit_field always takes its value from the lsb.
2053 Move the fragment to the lsb if it's not already there. */
2054 if (
2055 #ifdef BLOCK_REG_PADDING
2056 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2057 == (BYTES_BIG_ENDIAN ? upward : downward)
2058 #else
2059 BYTES_BIG_ENDIAN
2060 #endif
2063 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2064 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2065 build_int_cst (NULL_TREE, shift),
2066 tmps[i], 0);
2068 bytelen = adj_bytelen;
2071 /* Optimize the access just a bit. */
2072 if (MEM_P (dest)
2073 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2074 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2075 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2076 && bytelen == GET_MODE_SIZE (mode))
2077 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2078 else
2079 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2080 mode, tmps[i]);
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst != dst)
2085 emit_move_insn (orig_dst, dst);
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2098 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 enum machine_mode copy_mode;
2106 if (tgtblk == 0)
2108 tgtblk = assign_temp (build_qualified_type (type,
2109 (TYPE_QUALS (type)
2110 | TYPE_QUAL_CONST)),
2111 0, 1, 1);
2112 preserve_temp_slots (tgtblk);
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes % UNITS_PER_WORD != 0
2132 && (targetm.calls.return_in_msb (type)
2133 ? !BYTES_BIG_ENDIAN
2134 : BYTES_BIG_ENDIAN))
2135 padding_correction
2136 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2141 how it is computed.
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2145 time. */
2147 copy_mode = word_mode;
2148 if (MEM_P (tgtblk))
2150 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2151 if (mem_mode != BLKmode)
2152 copy_mode = mem_mode;
2155 for (bitpos = 0, xbitpos = padding_correction;
2156 bitpos < bytes * BITS_PER_UNIT;
2157 bitpos += bitsize, xbitpos += bitsize)
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos % BITS_PER_WORD == 0
2163 || xbitpos == padding_correction)
2164 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2165 GET_MODE (srcreg));
2167 /* We need a new destination operand each time bitpos is on
2168 a word boundary. */
2169 if (bitpos % BITS_PER_WORD == 0)
2170 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2175 extract_bit_field (src, bitsize,
2176 xbitpos % BITS_PER_WORD, 1, false,
2177 NULL_RTX, copy_mode, copy_mode));
2180 return tgtblk;
2183 /* Add a USE expression for REG to the (possibly empty) list pointed
2184 to by CALL_FUSAGE. REG must denote a hard register. */
2186 void
2187 use_reg (rtx *call_fusage, rtx reg)
2189 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2191 *call_fusage
2192 = gen_rtx_EXPR_LIST (VOIDmode,
2193 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2196 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2197 starting at REGNO. All of these registers must be hard registers. */
2199 void
2200 use_regs (rtx *call_fusage, int regno, int nregs)
2202 int i;
2204 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2206 for (i = 0; i < nregs; i++)
2207 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2210 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2211 PARALLEL REGS. This is for calls that pass values in multiple
2212 non-contiguous locations. The Irix 6 ABI has examples of this. */
2214 void
2215 use_group_regs (rtx *call_fusage, rtx regs)
2217 int i;
2219 for (i = 0; i < XVECLEN (regs, 0); i++)
2221 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2223 /* A NULL entry means the parameter goes both on the stack and in
2224 registers. This can also be a MEM for targets that pass values
2225 partially on the stack and partially in registers. */
2226 if (reg != 0 && REG_P (reg))
2227 use_reg (call_fusage, reg);
2231 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2232 assigment and the code of the expresion on the RHS is CODE. Return
2233 NULL otherwise. */
2235 static gimple
2236 get_def_for_expr (tree name, enum tree_code code)
2238 gimple def_stmt;
2240 if (TREE_CODE (name) != SSA_NAME)
2241 return NULL;
2243 def_stmt = get_gimple_for_ssa_name (name);
2244 if (!def_stmt
2245 || gimple_assign_rhs_code (def_stmt) != code)
2246 return NULL;
2248 return def_stmt;
2252 /* Determine whether the LEN bytes generated by CONSTFUN can be
2253 stored to memory using several move instructions. CONSTFUNDATA is
2254 a pointer which will be passed as argument in every CONSTFUN call.
2255 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2256 a memset operation and false if it's a copy of a constant string.
2257 Return nonzero if a call to store_by_pieces should succeed. */
2260 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2261 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2262 void *constfundata, unsigned int align, bool memsetp)
2264 unsigned HOST_WIDE_INT l;
2265 unsigned int max_size;
2266 HOST_WIDE_INT offset = 0;
2267 enum machine_mode mode;
2268 enum insn_code icode;
2269 int reverse;
2270 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2271 rtx cst ATTRIBUTE_UNUSED;
2273 if (len == 0)
2274 return 1;
2276 if (! (memsetp
2277 ? SET_BY_PIECES_P (len, align)
2278 : STORE_BY_PIECES_P (len, align)))
2279 return 0;
2281 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2283 /* We would first store what we can in the largest integer mode, then go to
2284 successively smaller modes. */
2286 for (reverse = 0;
2287 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2288 reverse++)
2290 l = len;
2291 max_size = STORE_MAX_PIECES + 1;
2292 while (max_size > 1)
2294 mode = widest_int_mode_for_size (max_size);
2296 if (mode == VOIDmode)
2297 break;
2299 icode = optab_handler (mov_optab, mode);
2300 if (icode != CODE_FOR_nothing
2301 && align >= GET_MODE_ALIGNMENT (mode))
2303 unsigned int size = GET_MODE_SIZE (mode);
2305 while (l >= size)
2307 if (reverse)
2308 offset -= size;
2310 cst = (*constfun) (constfundata, offset, mode);
2311 if (!LEGITIMATE_CONSTANT_P (cst))
2312 return 0;
2314 if (!reverse)
2315 offset += size;
2317 l -= size;
2321 max_size = GET_MODE_SIZE (mode);
2324 /* The code above should have handled everything. */
2325 gcc_assert (!l);
2328 return 1;
2331 /* Generate several move instructions to store LEN bytes generated by
2332 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2333 pointer which will be passed as argument in every CONSTFUN call.
2334 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2335 a memset operation and false if it's a copy of a constant string.
2336 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2337 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2338 stpcpy. */
2341 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2342 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2343 void *constfundata, unsigned int align, bool memsetp, int endp)
2345 enum machine_mode to_addr_mode
2346 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2347 struct store_by_pieces_d data;
2349 if (len == 0)
2351 gcc_assert (endp != 2);
2352 return to;
2355 gcc_assert (memsetp
2356 ? SET_BY_PIECES_P (len, align)
2357 : STORE_BY_PIECES_P (len, align));
2358 data.constfun = constfun;
2359 data.constfundata = constfundata;
2360 data.len = len;
2361 data.to = to;
2362 store_by_pieces_1 (&data, align);
2363 if (endp)
2365 rtx to1;
2367 gcc_assert (!data.reverse);
2368 if (data.autinc_to)
2370 if (endp == 2)
2372 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2373 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2374 else
2375 data.to_addr = copy_to_mode_reg (to_addr_mode,
2376 plus_constant (data.to_addr,
2377 -1));
2379 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2380 data.offset);
2382 else
2384 if (endp == 2)
2385 --data.offset;
2386 to1 = adjust_address (data.to, QImode, data.offset);
2388 return to1;
2390 else
2391 return data.to;
2394 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2395 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2397 static void
2398 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2400 struct store_by_pieces_d data;
2402 if (len == 0)
2403 return;
2405 data.constfun = clear_by_pieces_1;
2406 data.constfundata = NULL;
2407 data.len = len;
2408 data.to = to;
2409 store_by_pieces_1 (&data, align);
2412 /* Callback routine for clear_by_pieces.
2413 Return const0_rtx unconditionally. */
2415 static rtx
2416 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2417 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2418 enum machine_mode mode ATTRIBUTE_UNUSED)
2420 return const0_rtx;
2423 /* Subroutine of clear_by_pieces and store_by_pieces.
2424 Generate several move instructions to store LEN bytes of block TO. (A MEM
2425 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2427 static void
2428 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2429 unsigned int align ATTRIBUTE_UNUSED)
2431 enum machine_mode to_addr_mode
2432 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2433 rtx to_addr = XEXP (data->to, 0);
2434 unsigned int max_size = STORE_MAX_PIECES + 1;
2435 enum insn_code icode;
2437 data->offset = 0;
2438 data->to_addr = to_addr;
2439 data->autinc_to
2440 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2441 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2443 data->explicit_inc_to = 0;
2444 data->reverse
2445 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2446 if (data->reverse)
2447 data->offset = data->len;
2449 /* If storing requires more than two move insns,
2450 copy addresses to registers (to make displacements shorter)
2451 and use post-increment if available. */
2452 if (!data->autinc_to
2453 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2455 /* Determine the main mode we'll be using.
2456 MODE might not be used depending on the definitions of the
2457 USE_* macros below. */
2458 enum machine_mode mode ATTRIBUTE_UNUSED
2459 = widest_int_mode_for_size (max_size);
2461 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2463 data->to_addr = copy_to_mode_reg (to_addr_mode,
2464 plus_constant (to_addr, data->len));
2465 data->autinc_to = 1;
2466 data->explicit_inc_to = -1;
2469 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2470 && ! data->autinc_to)
2472 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2473 data->autinc_to = 1;
2474 data->explicit_inc_to = 1;
2477 if ( !data->autinc_to && CONSTANT_P (to_addr))
2478 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2481 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2483 /* First store what we can in the largest integer mode, then go to
2484 successively smaller modes. */
2486 while (max_size > 1)
2488 enum machine_mode mode = widest_int_mode_for_size (max_size);
2490 if (mode == VOIDmode)
2491 break;
2493 icode = optab_handler (mov_optab, mode);
2494 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2495 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2497 max_size = GET_MODE_SIZE (mode);
2500 /* The code above should have handled everything. */
2501 gcc_assert (!data->len);
2504 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2505 with move instructions for mode MODE. GENFUN is the gen_... function
2506 to make a move insn for that mode. DATA has all the other info. */
2508 static void
2509 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2510 struct store_by_pieces_d *data)
2512 unsigned int size = GET_MODE_SIZE (mode);
2513 rtx to1, cst;
2515 while (data->len >= size)
2517 if (data->reverse)
2518 data->offset -= size;
2520 if (data->autinc_to)
2521 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2522 data->offset);
2523 else
2524 to1 = adjust_address (data->to, mode, data->offset);
2526 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2527 emit_insn (gen_add2_insn (data->to_addr,
2528 GEN_INT (-(HOST_WIDE_INT) size)));
2530 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2531 emit_insn ((*genfun) (to1, cst));
2533 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2534 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2536 if (! data->reverse)
2537 data->offset += size;
2539 data->len -= size;
2543 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2544 its length in bytes. */
2547 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2548 unsigned int expected_align, HOST_WIDE_INT expected_size)
2550 enum machine_mode mode = GET_MODE (object);
2551 unsigned int align;
2553 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2555 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2556 just move a zero. Otherwise, do this a piece at a time. */
2557 if (mode != BLKmode
2558 && CONST_INT_P (size)
2559 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2561 rtx zero = CONST0_RTX (mode);
2562 if (zero != NULL)
2564 emit_move_insn (object, zero);
2565 return NULL;
2568 if (COMPLEX_MODE_P (mode))
2570 zero = CONST0_RTX (GET_MODE_INNER (mode));
2571 if (zero != NULL)
2573 write_complex_part (object, zero, 0);
2574 write_complex_part (object, zero, 1);
2575 return NULL;
2580 if (size == const0_rtx)
2581 return NULL;
2583 align = MEM_ALIGN (object);
2585 if (CONST_INT_P (size)
2586 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2587 clear_by_pieces (object, INTVAL (size), align);
2588 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2589 expected_align, expected_size))
2591 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2592 return set_storage_via_libcall (object, size, const0_rtx,
2593 method == BLOCK_OP_TAILCALL);
2594 else
2595 gcc_unreachable ();
2597 return NULL;
2601 clear_storage (rtx object, rtx size, enum block_op_methods method)
2603 return clear_storage_hints (object, size, method, 0, -1);
2607 /* A subroutine of clear_storage. Expand a call to memset.
2608 Return the return value of memset, 0 otherwise. */
2611 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2613 tree call_expr, fn, object_tree, size_tree, val_tree;
2614 enum machine_mode size_mode;
2615 rtx retval;
2617 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2618 place those into new pseudos into a VAR_DECL and use them later. */
2620 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2622 size_mode = TYPE_MODE (sizetype);
2623 size = convert_to_mode (size_mode, size, 1);
2624 size = copy_to_mode_reg (size_mode, size);
2626 /* It is incorrect to use the libcall calling conventions to call
2627 memset in this context. This could be a user call to memset and
2628 the user may wish to examine the return value from memset. For
2629 targets where libcalls and normal calls have different conventions
2630 for returning pointers, we could end up generating incorrect code. */
2632 object_tree = make_tree (ptr_type_node, object);
2633 if (!CONST_INT_P (val))
2634 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2635 size_tree = make_tree (sizetype, size);
2636 val_tree = make_tree (integer_type_node, val);
2638 fn = clear_storage_libcall_fn (true);
2639 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2640 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2642 retval = expand_normal (call_expr);
2644 return retval;
2647 /* A subroutine of set_storage_via_libcall. Create the tree node
2648 for the function we use for block clears. The first time FOR_CALL
2649 is true, we call assemble_external. */
2651 tree block_clear_fn;
2653 void
2654 init_block_clear_fn (const char *asmspec)
2656 if (!block_clear_fn)
2658 tree fn, args;
2660 fn = get_identifier ("memset");
2661 args = build_function_type_list (ptr_type_node, ptr_type_node,
2662 integer_type_node, sizetype,
2663 NULL_TREE);
2665 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2666 DECL_EXTERNAL (fn) = 1;
2667 TREE_PUBLIC (fn) = 1;
2668 DECL_ARTIFICIAL (fn) = 1;
2669 TREE_NOTHROW (fn) = 1;
2670 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2671 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2673 block_clear_fn = fn;
2676 if (asmspec)
2677 set_user_assembler_name (block_clear_fn, asmspec);
2680 static tree
2681 clear_storage_libcall_fn (int for_call)
2683 static bool emitted_extern;
2685 if (!block_clear_fn)
2686 init_block_clear_fn (NULL);
2688 if (for_call && !emitted_extern)
2690 emitted_extern = true;
2691 make_decl_rtl (block_clear_fn);
2692 assemble_external (block_clear_fn);
2695 return block_clear_fn;
2698 /* Expand a setmem pattern; return true if successful. */
2700 bool
2701 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2702 unsigned int expected_align, HOST_WIDE_INT expected_size)
2704 /* Try the most limited insn first, because there's no point
2705 including more than one in the machine description unless
2706 the more limited one has some advantage. */
2708 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2709 enum machine_mode mode;
2711 if (expected_align < align)
2712 expected_align = align;
2714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2715 mode = GET_MODE_WIDER_MODE (mode))
2717 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2718 insn_operand_predicate_fn pred;
2720 if (code != CODE_FOR_nothing
2721 /* We don't need MODE to be narrower than
2722 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2723 the mode mask, as it is returned by the macro, it will
2724 definitely be less than the actual mode mask. */
2725 && ((CONST_INT_P (size)
2726 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2727 <= (GET_MODE_MASK (mode) >> 1)))
2728 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2729 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2730 || (*pred) (object, BLKmode))
2731 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2732 || (*pred) (opalign, VOIDmode)))
2734 rtx opsize, opchar;
2735 enum machine_mode char_mode;
2736 rtx last = get_last_insn ();
2737 rtx pat;
2739 opsize = convert_to_mode (mode, size, 1);
2740 pred = insn_data[(int) code].operand[1].predicate;
2741 if (pred != 0 && ! (*pred) (opsize, mode))
2742 opsize = copy_to_mode_reg (mode, opsize);
2744 opchar = val;
2745 char_mode = insn_data[(int) code].operand[2].mode;
2746 if (char_mode != VOIDmode)
2748 opchar = convert_to_mode (char_mode, opchar, 1);
2749 pred = insn_data[(int) code].operand[2].predicate;
2750 if (pred != 0 && ! (*pred) (opchar, char_mode))
2751 opchar = copy_to_mode_reg (char_mode, opchar);
2754 if (insn_data[(int) code].n_operands == 4)
2755 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2756 else
2757 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2758 GEN_INT (expected_align
2759 / BITS_PER_UNIT),
2760 GEN_INT (expected_size));
2761 if (pat)
2763 emit_insn (pat);
2764 return true;
2766 else
2767 delete_insns_since (last);
2771 return false;
2775 /* Write to one of the components of the complex value CPLX. Write VAL to
2776 the real part if IMAG_P is false, and the imaginary part if its true. */
2778 static void
2779 write_complex_part (rtx cplx, rtx val, bool imag_p)
2781 enum machine_mode cmode;
2782 enum machine_mode imode;
2783 unsigned ibitsize;
2785 if (GET_CODE (cplx) == CONCAT)
2787 emit_move_insn (XEXP (cplx, imag_p), val);
2788 return;
2791 cmode = GET_MODE (cplx);
2792 imode = GET_MODE_INNER (cmode);
2793 ibitsize = GET_MODE_BITSIZE (imode);
2795 /* For MEMs simplify_gen_subreg may generate an invalid new address
2796 because, e.g., the original address is considered mode-dependent
2797 by the target, which restricts simplify_subreg from invoking
2798 adjust_address_nv. Instead of preparing fallback support for an
2799 invalid address, we call adjust_address_nv directly. */
2800 if (MEM_P (cplx))
2802 emit_move_insn (adjust_address_nv (cplx, imode,
2803 imag_p ? GET_MODE_SIZE (imode) : 0),
2804 val);
2805 return;
2808 /* If the sub-object is at least word sized, then we know that subregging
2809 will work. This special case is important, since store_bit_field
2810 wants to operate on integer modes, and there's rarely an OImode to
2811 correspond to TCmode. */
2812 if (ibitsize >= BITS_PER_WORD
2813 /* For hard regs we have exact predicates. Assume we can split
2814 the original object if it spans an even number of hard regs.
2815 This special case is important for SCmode on 64-bit platforms
2816 where the natural size of floating-point regs is 32-bit. */
2817 || (REG_P (cplx)
2818 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2819 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2821 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2822 imag_p ? GET_MODE_SIZE (imode) : 0);
2823 if (part)
2825 emit_move_insn (part, val);
2826 return;
2828 else
2829 /* simplify_gen_subreg may fail for sub-word MEMs. */
2830 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2833 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2836 /* Extract one of the components of the complex value CPLX. Extract the
2837 real part if IMAG_P is false, and the imaginary part if it's true. */
2839 static rtx
2840 read_complex_part (rtx cplx, bool imag_p)
2842 enum machine_mode cmode, imode;
2843 unsigned ibitsize;
2845 if (GET_CODE (cplx) == CONCAT)
2846 return XEXP (cplx, imag_p);
2848 cmode = GET_MODE (cplx);
2849 imode = GET_MODE_INNER (cmode);
2850 ibitsize = GET_MODE_BITSIZE (imode);
2852 /* Special case reads from complex constants that got spilled to memory. */
2853 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2855 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2856 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2858 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2859 if (CONSTANT_CLASS_P (part))
2860 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2864 /* For MEMs simplify_gen_subreg may generate an invalid new address
2865 because, e.g., the original address is considered mode-dependent
2866 by the target, which restricts simplify_subreg from invoking
2867 adjust_address_nv. Instead of preparing fallback support for an
2868 invalid address, we call adjust_address_nv directly. */
2869 if (MEM_P (cplx))
2870 return adjust_address_nv (cplx, imode,
2871 imag_p ? GET_MODE_SIZE (imode) : 0);
2873 /* If the sub-object is at least word sized, then we know that subregging
2874 will work. This special case is important, since extract_bit_field
2875 wants to operate on integer modes, and there's rarely an OImode to
2876 correspond to TCmode. */
2877 if (ibitsize >= BITS_PER_WORD
2878 /* For hard regs we have exact predicates. Assume we can split
2879 the original object if it spans an even number of hard regs.
2880 This special case is important for SCmode on 64-bit platforms
2881 where the natural size of floating-point regs is 32-bit. */
2882 || (REG_P (cplx)
2883 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2884 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2886 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2887 imag_p ? GET_MODE_SIZE (imode) : 0);
2888 if (ret)
2889 return ret;
2890 else
2891 /* simplify_gen_subreg may fail for sub-word MEMs. */
2892 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2895 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2896 true, false, NULL_RTX, imode, imode);
2899 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2900 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2901 represented in NEW_MODE. If FORCE is true, this will never happen, as
2902 we'll force-create a SUBREG if needed. */
2904 static rtx
2905 emit_move_change_mode (enum machine_mode new_mode,
2906 enum machine_mode old_mode, rtx x, bool force)
2908 rtx ret;
2910 if (push_operand (x, GET_MODE (x)))
2912 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2913 MEM_COPY_ATTRIBUTES (ret, x);
2915 else if (MEM_P (x))
2917 /* We don't have to worry about changing the address since the
2918 size in bytes is supposed to be the same. */
2919 if (reload_in_progress)
2921 /* Copy the MEM to change the mode and move any
2922 substitutions from the old MEM to the new one. */
2923 ret = adjust_address_nv (x, new_mode, 0);
2924 copy_replacements (x, ret);
2926 else
2927 ret = adjust_address (x, new_mode, 0);
2929 else
2931 /* Note that we do want simplify_subreg's behavior of validating
2932 that the new mode is ok for a hard register. If we were to use
2933 simplify_gen_subreg, we would create the subreg, but would
2934 probably run into the target not being able to implement it. */
2935 /* Except, of course, when FORCE is true, when this is exactly what
2936 we want. Which is needed for CCmodes on some targets. */
2937 if (force)
2938 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2939 else
2940 ret = simplify_subreg (new_mode, x, old_mode, 0);
2943 return ret;
2946 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2947 an integer mode of the same size as MODE. Returns the instruction
2948 emitted, or NULL if such a move could not be generated. */
2950 static rtx
2951 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2953 enum machine_mode imode;
2954 enum insn_code code;
2956 /* There must exist a mode of the exact size we require. */
2957 imode = int_mode_for_mode (mode);
2958 if (imode == BLKmode)
2959 return NULL_RTX;
2961 /* The target must support moves in this mode. */
2962 code = optab_handler (mov_optab, imode);
2963 if (code == CODE_FOR_nothing)
2964 return NULL_RTX;
2966 x = emit_move_change_mode (imode, mode, x, force);
2967 if (x == NULL_RTX)
2968 return NULL_RTX;
2969 y = emit_move_change_mode (imode, mode, y, force);
2970 if (y == NULL_RTX)
2971 return NULL_RTX;
2972 return emit_insn (GEN_FCN (code) (x, y));
2975 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2976 Return an equivalent MEM that does not use an auto-increment. */
2978 static rtx
2979 emit_move_resolve_push (enum machine_mode mode, rtx x)
2981 enum rtx_code code = GET_CODE (XEXP (x, 0));
2982 HOST_WIDE_INT adjust;
2983 rtx temp;
2985 adjust = GET_MODE_SIZE (mode);
2986 #ifdef PUSH_ROUNDING
2987 adjust = PUSH_ROUNDING (adjust);
2988 #endif
2989 if (code == PRE_DEC || code == POST_DEC)
2990 adjust = -adjust;
2991 else if (code == PRE_MODIFY || code == POST_MODIFY)
2993 rtx expr = XEXP (XEXP (x, 0), 1);
2994 HOST_WIDE_INT val;
2996 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2997 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2998 val = INTVAL (XEXP (expr, 1));
2999 if (GET_CODE (expr) == MINUS)
3000 val = -val;
3001 gcc_assert (adjust == val || adjust == -val);
3002 adjust = val;
3005 /* Do not use anti_adjust_stack, since we don't want to update
3006 stack_pointer_delta. */
3007 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3008 GEN_INT (adjust), stack_pointer_rtx,
3009 0, OPTAB_LIB_WIDEN);
3010 if (temp != stack_pointer_rtx)
3011 emit_move_insn (stack_pointer_rtx, temp);
3013 switch (code)
3015 case PRE_INC:
3016 case PRE_DEC:
3017 case PRE_MODIFY:
3018 temp = stack_pointer_rtx;
3019 break;
3020 case POST_INC:
3021 case POST_DEC:
3022 case POST_MODIFY:
3023 temp = plus_constant (stack_pointer_rtx, -adjust);
3024 break;
3025 default:
3026 gcc_unreachable ();
3029 return replace_equiv_address (x, temp);
3032 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3033 X is known to satisfy push_operand, and MODE is known to be complex.
3034 Returns the last instruction emitted. */
3037 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3039 enum machine_mode submode = GET_MODE_INNER (mode);
3040 bool imag_first;
3042 #ifdef PUSH_ROUNDING
3043 unsigned int submodesize = GET_MODE_SIZE (submode);
3045 /* In case we output to the stack, but the size is smaller than the
3046 machine can push exactly, we need to use move instructions. */
3047 if (PUSH_ROUNDING (submodesize) != submodesize)
3049 x = emit_move_resolve_push (mode, x);
3050 return emit_move_insn (x, y);
3052 #endif
3054 /* Note that the real part always precedes the imag part in memory
3055 regardless of machine's endianness. */
3056 switch (GET_CODE (XEXP (x, 0)))
3058 case PRE_DEC:
3059 case POST_DEC:
3060 imag_first = true;
3061 break;
3062 case PRE_INC:
3063 case POST_INC:
3064 imag_first = false;
3065 break;
3066 default:
3067 gcc_unreachable ();
3070 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3071 read_complex_part (y, imag_first));
3072 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3073 read_complex_part (y, !imag_first));
3076 /* A subroutine of emit_move_complex. Perform the move from Y to X
3077 via two moves of the parts. Returns the last instruction emitted. */
3080 emit_move_complex_parts (rtx x, rtx y)
3082 /* Show the output dies here. This is necessary for SUBREGs
3083 of pseudos since we cannot track their lifetimes correctly;
3084 hard regs shouldn't appear here except as return values. */
3085 if (!reload_completed && !reload_in_progress
3086 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3087 emit_clobber (x);
3089 write_complex_part (x, read_complex_part (y, false), false);
3090 write_complex_part (x, read_complex_part (y, true), true);
3092 return get_last_insn ();
3095 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3096 MODE is known to be complex. Returns the last instruction emitted. */
3098 static rtx
3099 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3101 bool try_int;
3103 /* Need to take special care for pushes, to maintain proper ordering
3104 of the data, and possibly extra padding. */
3105 if (push_operand (x, mode))
3106 return emit_move_complex_push (mode, x, y);
3108 /* See if we can coerce the target into moving both values at once. */
3110 /* Move floating point as parts. */
3111 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3112 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3113 try_int = false;
3114 /* Not possible if the values are inherently not adjacent. */
3115 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3116 try_int = false;
3117 /* Is possible if both are registers (or subregs of registers). */
3118 else if (register_operand (x, mode) && register_operand (y, mode))
3119 try_int = true;
3120 /* If one of the operands is a memory, and alignment constraints
3121 are friendly enough, we may be able to do combined memory operations.
3122 We do not attempt this if Y is a constant because that combination is
3123 usually better with the by-parts thing below. */
3124 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3125 && (!STRICT_ALIGNMENT
3126 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3127 try_int = true;
3128 else
3129 try_int = false;
3131 if (try_int)
3133 rtx ret;
3135 /* For memory to memory moves, optimal behavior can be had with the
3136 existing block move logic. */
3137 if (MEM_P (x) && MEM_P (y))
3139 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3140 BLOCK_OP_NO_LIBCALL);
3141 return get_last_insn ();
3144 ret = emit_move_via_integer (mode, x, y, true);
3145 if (ret)
3146 return ret;
3149 return emit_move_complex_parts (x, y);
3152 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3153 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3155 static rtx
3156 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3158 rtx ret;
3160 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3161 if (mode != CCmode)
3163 enum insn_code code = optab_handler (mov_optab, CCmode);
3164 if (code != CODE_FOR_nothing)
3166 x = emit_move_change_mode (CCmode, mode, x, true);
3167 y = emit_move_change_mode (CCmode, mode, y, true);
3168 return emit_insn (GEN_FCN (code) (x, y));
3172 /* Otherwise, find the MODE_INT mode of the same width. */
3173 ret = emit_move_via_integer (mode, x, y, false);
3174 gcc_assert (ret != NULL);
3175 return ret;
3178 /* Return true if word I of OP lies entirely in the
3179 undefined bits of a paradoxical subreg. */
3181 static bool
3182 undefined_operand_subword_p (const_rtx op, int i)
3184 enum machine_mode innermode, innermostmode;
3185 int offset;
3186 if (GET_CODE (op) != SUBREG)
3187 return false;
3188 innermode = GET_MODE (op);
3189 innermostmode = GET_MODE (SUBREG_REG (op));
3190 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3191 /* The SUBREG_BYTE represents offset, as if the value were stored in
3192 memory, except for a paradoxical subreg where we define
3193 SUBREG_BYTE to be 0; undo this exception as in
3194 simplify_subreg. */
3195 if (SUBREG_BYTE (op) == 0
3196 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3198 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3199 if (WORDS_BIG_ENDIAN)
3200 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3201 if (BYTES_BIG_ENDIAN)
3202 offset += difference % UNITS_PER_WORD;
3204 if (offset >= GET_MODE_SIZE (innermostmode)
3205 || offset <= -GET_MODE_SIZE (word_mode))
3206 return true;
3207 return false;
3210 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3211 MODE is any multi-word or full-word mode that lacks a move_insn
3212 pattern. Note that you will get better code if you define such
3213 patterns, even if they must turn into multiple assembler instructions. */
3215 static rtx
3216 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3218 rtx last_insn = 0;
3219 rtx seq, inner;
3220 bool need_clobber;
3221 int i;
3223 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3225 /* If X is a push on the stack, do the push now and replace
3226 X with a reference to the stack pointer. */
3227 if (push_operand (x, mode))
3228 x = emit_move_resolve_push (mode, x);
3230 /* If we are in reload, see if either operand is a MEM whose address
3231 is scheduled for replacement. */
3232 if (reload_in_progress && MEM_P (x)
3233 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3234 x = replace_equiv_address_nv (x, inner);
3235 if (reload_in_progress && MEM_P (y)
3236 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3237 y = replace_equiv_address_nv (y, inner);
3239 start_sequence ();
3241 need_clobber = false;
3242 for (i = 0;
3243 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3244 i++)
3246 rtx xpart = operand_subword (x, i, 1, mode);
3247 rtx ypart;
3249 /* Do not generate code for a move if it would come entirely
3250 from the undefined bits of a paradoxical subreg. */
3251 if (undefined_operand_subword_p (y, i))
3252 continue;
3254 ypart = operand_subword (y, i, 1, mode);
3256 /* If we can't get a part of Y, put Y into memory if it is a
3257 constant. Otherwise, force it into a register. Then we must
3258 be able to get a part of Y. */
3259 if (ypart == 0 && CONSTANT_P (y))
3261 y = use_anchored_address (force_const_mem (mode, y));
3262 ypart = operand_subword (y, i, 1, mode);
3264 else if (ypart == 0)
3265 ypart = operand_subword_force (y, i, mode);
3267 gcc_assert (xpart && ypart);
3269 need_clobber |= (GET_CODE (xpart) == SUBREG);
3271 last_insn = emit_move_insn (xpart, ypart);
3274 seq = get_insns ();
3275 end_sequence ();
3277 /* Show the output dies here. This is necessary for SUBREGs
3278 of pseudos since we cannot track their lifetimes correctly;
3279 hard regs shouldn't appear here except as return values.
3280 We never want to emit such a clobber after reload. */
3281 if (x != y
3282 && ! (reload_in_progress || reload_completed)
3283 && need_clobber != 0)
3284 emit_clobber (x);
3286 emit_insn (seq);
3288 return last_insn;
3291 /* Low level part of emit_move_insn.
3292 Called just like emit_move_insn, but assumes X and Y
3293 are basically valid. */
3296 emit_move_insn_1 (rtx x, rtx y)
3298 enum machine_mode mode = GET_MODE (x);
3299 enum insn_code code;
3301 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3303 code = optab_handler (mov_optab, mode);
3304 if (code != CODE_FOR_nothing)
3305 return emit_insn (GEN_FCN (code) (x, y));
3307 /* Expand complex moves by moving real part and imag part. */
3308 if (COMPLEX_MODE_P (mode))
3309 return emit_move_complex (mode, x, y);
3311 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3312 || ALL_FIXED_POINT_MODE_P (mode))
3314 rtx result = emit_move_via_integer (mode, x, y, true);
3316 /* If we can't find an integer mode, use multi words. */
3317 if (result)
3318 return result;
3319 else
3320 return emit_move_multi_word (mode, x, y);
3323 if (GET_MODE_CLASS (mode) == MODE_CC)
3324 return emit_move_ccmode (mode, x, y);
3326 /* Try using a move pattern for the corresponding integer mode. This is
3327 only safe when simplify_subreg can convert MODE constants into integer
3328 constants. At present, it can only do this reliably if the value
3329 fits within a HOST_WIDE_INT. */
3330 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3332 rtx ret = emit_move_via_integer (mode, x, y, false);
3333 if (ret)
3334 return ret;
3337 return emit_move_multi_word (mode, x, y);
3340 /* Generate code to copy Y into X.
3341 Both Y and X must have the same mode, except that
3342 Y can be a constant with VOIDmode.
3343 This mode cannot be BLKmode; use emit_block_move for that.
3345 Return the last instruction emitted. */
3348 emit_move_insn (rtx x, rtx y)
3350 enum machine_mode mode = GET_MODE (x);
3351 rtx y_cst = NULL_RTX;
3352 rtx last_insn, set;
3354 gcc_assert (mode != BLKmode
3355 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3357 if (CONSTANT_P (y))
3359 if (optimize
3360 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3361 && (last_insn = compress_float_constant (x, y)))
3362 return last_insn;
3364 y_cst = y;
3366 if (!LEGITIMATE_CONSTANT_P (y))
3368 y = force_const_mem (mode, y);
3370 /* If the target's cannot_force_const_mem prevented the spill,
3371 assume that the target's move expanders will also take care
3372 of the non-legitimate constant. */
3373 if (!y)
3374 y = y_cst;
3375 else
3376 y = use_anchored_address (y);
3380 /* If X or Y are memory references, verify that their addresses are valid
3381 for the machine. */
3382 if (MEM_P (x)
3383 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3384 MEM_ADDR_SPACE (x))
3385 && ! push_operand (x, GET_MODE (x))))
3386 x = validize_mem (x);
3388 if (MEM_P (y)
3389 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3390 MEM_ADDR_SPACE (y)))
3391 y = validize_mem (y);
3393 gcc_assert (mode != BLKmode);
3395 last_insn = emit_move_insn_1 (x, y);
3397 if (y_cst && REG_P (x)
3398 && (set = single_set (last_insn)) != NULL_RTX
3399 && SET_DEST (set) == x
3400 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3401 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3403 return last_insn;
3406 /* If Y is representable exactly in a narrower mode, and the target can
3407 perform the extension directly from constant or memory, then emit the
3408 move as an extension. */
3410 static rtx
3411 compress_float_constant (rtx x, rtx y)
3413 enum machine_mode dstmode = GET_MODE (x);
3414 enum machine_mode orig_srcmode = GET_MODE (y);
3415 enum machine_mode srcmode;
3416 REAL_VALUE_TYPE r;
3417 int oldcost, newcost;
3418 bool speed = optimize_insn_for_speed_p ();
3420 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3422 if (LEGITIMATE_CONSTANT_P (y))
3423 oldcost = rtx_cost (y, SET, speed);
3424 else
3425 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3427 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3428 srcmode != orig_srcmode;
3429 srcmode = GET_MODE_WIDER_MODE (srcmode))
3431 enum insn_code ic;
3432 rtx trunc_y, last_insn;
3434 /* Skip if the target can't extend this way. */
3435 ic = can_extend_p (dstmode, srcmode, 0);
3436 if (ic == CODE_FOR_nothing)
3437 continue;
3439 /* Skip if the narrowed value isn't exact. */
3440 if (! exact_real_truncate (srcmode, &r))
3441 continue;
3443 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3445 if (LEGITIMATE_CONSTANT_P (trunc_y))
3447 /* Skip if the target needs extra instructions to perform
3448 the extension. */
3449 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3450 continue;
3451 /* This is valid, but may not be cheaper than the original. */
3452 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3453 if (oldcost < newcost)
3454 continue;
3456 else if (float_extend_from_mem[dstmode][srcmode])
3458 trunc_y = force_const_mem (srcmode, trunc_y);
3459 /* This is valid, but may not be cheaper than the original. */
3460 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3461 if (oldcost < newcost)
3462 continue;
3463 trunc_y = validize_mem (trunc_y);
3465 else
3466 continue;
3468 /* For CSE's benefit, force the compressed constant pool entry
3469 into a new pseudo. This constant may be used in different modes,
3470 and if not, combine will put things back together for us. */
3471 trunc_y = force_reg (srcmode, trunc_y);
3472 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3473 last_insn = get_last_insn ();
3475 if (REG_P (x))
3476 set_unique_reg_note (last_insn, REG_EQUAL, y);
3478 return last_insn;
3481 return NULL_RTX;
3484 /* Pushing data onto the stack. */
3486 /* Push a block of length SIZE (perhaps variable)
3487 and return an rtx to address the beginning of the block.
3488 The value may be virtual_outgoing_args_rtx.
3490 EXTRA is the number of bytes of padding to push in addition to SIZE.
3491 BELOW nonzero means this padding comes at low addresses;
3492 otherwise, the padding comes at high addresses. */
3495 push_block (rtx size, int extra, int below)
3497 rtx temp;
3499 size = convert_modes (Pmode, ptr_mode, size, 1);
3500 if (CONSTANT_P (size))
3501 anti_adjust_stack (plus_constant (size, extra));
3502 else if (REG_P (size) && extra == 0)
3503 anti_adjust_stack (size);
3504 else
3506 temp = copy_to_mode_reg (Pmode, size);
3507 if (extra != 0)
3508 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3509 temp, 0, OPTAB_LIB_WIDEN);
3510 anti_adjust_stack (temp);
3513 #ifndef STACK_GROWS_DOWNWARD
3514 if (0)
3515 #else
3516 if (1)
3517 #endif
3519 temp = virtual_outgoing_args_rtx;
3520 if (extra != 0 && below)
3521 temp = plus_constant (temp, extra);
3523 else
3525 if (CONST_INT_P (size))
3526 temp = plus_constant (virtual_outgoing_args_rtx,
3527 -INTVAL (size) - (below ? 0 : extra));
3528 else if (extra != 0 && !below)
3529 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3530 negate_rtx (Pmode, plus_constant (size, extra)));
3531 else
3532 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3533 negate_rtx (Pmode, size));
3536 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3539 #ifdef PUSH_ROUNDING
3541 /* Emit single push insn. */
3543 static void
3544 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3546 rtx dest_addr;
3547 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3548 rtx dest;
3549 enum insn_code icode;
3550 insn_operand_predicate_fn pred;
3552 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3553 /* If there is push pattern, use it. Otherwise try old way of throwing
3554 MEM representing push operation to move expander. */
3555 icode = optab_handler (push_optab, mode);
3556 if (icode != CODE_FOR_nothing)
3558 if (((pred = insn_data[(int) icode].operand[0].predicate)
3559 && !((*pred) (x, mode))))
3560 x = force_reg (mode, x);
3561 emit_insn (GEN_FCN (icode) (x));
3562 return;
3564 if (GET_MODE_SIZE (mode) == rounded_size)
3565 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3566 /* If we are to pad downward, adjust the stack pointer first and
3567 then store X into the stack location using an offset. This is
3568 because emit_move_insn does not know how to pad; it does not have
3569 access to type. */
3570 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3572 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3573 HOST_WIDE_INT offset;
3575 emit_move_insn (stack_pointer_rtx,
3576 expand_binop (Pmode,
3577 #ifdef STACK_GROWS_DOWNWARD
3578 sub_optab,
3579 #else
3580 add_optab,
3581 #endif
3582 stack_pointer_rtx,
3583 GEN_INT (rounded_size),
3584 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3586 offset = (HOST_WIDE_INT) padding_size;
3587 #ifdef STACK_GROWS_DOWNWARD
3588 if (STACK_PUSH_CODE == POST_DEC)
3589 /* We have already decremented the stack pointer, so get the
3590 previous value. */
3591 offset += (HOST_WIDE_INT) rounded_size;
3592 #else
3593 if (STACK_PUSH_CODE == POST_INC)
3594 /* We have already incremented the stack pointer, so get the
3595 previous value. */
3596 offset -= (HOST_WIDE_INT) rounded_size;
3597 #endif
3598 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3600 else
3602 #ifdef STACK_GROWS_DOWNWARD
3603 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3604 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3605 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3606 #else
3607 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3608 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3609 GEN_INT (rounded_size));
3610 #endif
3611 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3614 dest = gen_rtx_MEM (mode, dest_addr);
3616 if (type != 0)
3618 set_mem_attributes (dest, type, 1);
3620 if (flag_optimize_sibling_calls)
3621 /* Function incoming arguments may overlap with sibling call
3622 outgoing arguments and we cannot allow reordering of reads
3623 from function arguments with stores to outgoing arguments
3624 of sibling calls. */
3625 set_mem_alias_set (dest, 0);
3627 emit_move_insn (dest, x);
3629 #endif
3631 /* Generate code to push X onto the stack, assuming it has mode MODE and
3632 type TYPE.
3633 MODE is redundant except when X is a CONST_INT (since they don't
3634 carry mode info).
3635 SIZE is an rtx for the size of data to be copied (in bytes),
3636 needed only if X is BLKmode.
3638 ALIGN (in bits) is maximum alignment we can assume.
3640 If PARTIAL and REG are both nonzero, then copy that many of the first
3641 bytes of X into registers starting with REG, and push the rest of X.
3642 The amount of space pushed is decreased by PARTIAL bytes.
3643 REG must be a hard register in this case.
3644 If REG is zero but PARTIAL is not, take any all others actions for an
3645 argument partially in registers, but do not actually load any
3646 registers.
3648 EXTRA is the amount in bytes of extra space to leave next to this arg.
3649 This is ignored if an argument block has already been allocated.
3651 On a machine that lacks real push insns, ARGS_ADDR is the address of
3652 the bottom of the argument block for this call. We use indexing off there
3653 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3654 argument block has not been preallocated.
3656 ARGS_SO_FAR is the size of args previously pushed for this call.
3658 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3659 for arguments passed in registers. If nonzero, it will be the number
3660 of bytes required. */
3662 void
3663 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3664 unsigned int align, int partial, rtx reg, int extra,
3665 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3666 rtx alignment_pad)
3668 rtx xinner;
3669 enum direction stack_direction
3670 #ifdef STACK_GROWS_DOWNWARD
3671 = downward;
3672 #else
3673 = upward;
3674 #endif
3676 /* Decide where to pad the argument: `downward' for below,
3677 `upward' for above, or `none' for don't pad it.
3678 Default is below for small data on big-endian machines; else above. */
3679 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3681 /* Invert direction if stack is post-decrement.
3682 FIXME: why? */
3683 if (STACK_PUSH_CODE == POST_DEC)
3684 if (where_pad != none)
3685 where_pad = (where_pad == downward ? upward : downward);
3687 xinner = x;
3689 if (mode == BLKmode
3690 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3692 /* Copy a block into the stack, entirely or partially. */
3694 rtx temp;
3695 int used;
3696 int offset;
3697 int skip;
3699 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3700 used = partial - offset;
3702 if (mode != BLKmode)
3704 /* A value is to be stored in an insufficiently aligned
3705 stack slot; copy via a suitably aligned slot if
3706 necessary. */
3707 size = GEN_INT (GET_MODE_SIZE (mode));
3708 if (!MEM_P (xinner))
3710 temp = assign_temp (type, 0, 1, 1);
3711 emit_move_insn (temp, xinner);
3712 xinner = temp;
3716 gcc_assert (size);
3718 /* USED is now the # of bytes we need not copy to the stack
3719 because registers will take care of them. */
3721 if (partial != 0)
3722 xinner = adjust_address (xinner, BLKmode, used);
3724 /* If the partial register-part of the arg counts in its stack size,
3725 skip the part of stack space corresponding to the registers.
3726 Otherwise, start copying to the beginning of the stack space,
3727 by setting SKIP to 0. */
3728 skip = (reg_parm_stack_space == 0) ? 0 : used;
3730 #ifdef PUSH_ROUNDING
3731 /* Do it with several push insns if that doesn't take lots of insns
3732 and if there is no difficulty with push insns that skip bytes
3733 on the stack for alignment purposes. */
3734 if (args_addr == 0
3735 && PUSH_ARGS
3736 && CONST_INT_P (size)
3737 && skip == 0
3738 && MEM_ALIGN (xinner) >= align
3739 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3740 /* Here we avoid the case of a structure whose weak alignment
3741 forces many pushes of a small amount of data,
3742 and such small pushes do rounding that causes trouble. */
3743 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3744 || align >= BIGGEST_ALIGNMENT
3745 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3746 == (align / BITS_PER_UNIT)))
3747 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3749 /* Push padding now if padding above and stack grows down,
3750 or if padding below and stack grows up.
3751 But if space already allocated, this has already been done. */
3752 if (extra && args_addr == 0
3753 && where_pad != none && where_pad != stack_direction)
3754 anti_adjust_stack (GEN_INT (extra));
3756 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3758 else
3759 #endif /* PUSH_ROUNDING */
3761 rtx target;
3763 /* Otherwise make space on the stack and copy the data
3764 to the address of that space. */
3766 /* Deduct words put into registers from the size we must copy. */
3767 if (partial != 0)
3769 if (CONST_INT_P (size))
3770 size = GEN_INT (INTVAL (size) - used);
3771 else
3772 size = expand_binop (GET_MODE (size), sub_optab, size,
3773 GEN_INT (used), NULL_RTX, 0,
3774 OPTAB_LIB_WIDEN);
3777 /* Get the address of the stack space.
3778 In this case, we do not deal with EXTRA separately.
3779 A single stack adjust will do. */
3780 if (! args_addr)
3782 temp = push_block (size, extra, where_pad == downward);
3783 extra = 0;
3785 else if (CONST_INT_P (args_so_far))
3786 temp = memory_address (BLKmode,
3787 plus_constant (args_addr,
3788 skip + INTVAL (args_so_far)));
3789 else
3790 temp = memory_address (BLKmode,
3791 plus_constant (gen_rtx_PLUS (Pmode,
3792 args_addr,
3793 args_so_far),
3794 skip));
3796 if (!ACCUMULATE_OUTGOING_ARGS)
3798 /* If the source is referenced relative to the stack pointer,
3799 copy it to another register to stabilize it. We do not need
3800 to do this if we know that we won't be changing sp. */
3802 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3803 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3804 temp = copy_to_reg (temp);
3807 target = gen_rtx_MEM (BLKmode, temp);
3809 /* We do *not* set_mem_attributes here, because incoming arguments
3810 may overlap with sibling call outgoing arguments and we cannot
3811 allow reordering of reads from function arguments with stores
3812 to outgoing arguments of sibling calls. We do, however, want
3813 to record the alignment of the stack slot. */
3814 /* ALIGN may well be better aligned than TYPE, e.g. due to
3815 PARM_BOUNDARY. Assume the caller isn't lying. */
3816 set_mem_align (target, align);
3818 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3821 else if (partial > 0)
3823 /* Scalar partly in registers. */
3825 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3826 int i;
3827 int not_stack;
3828 /* # bytes of start of argument
3829 that we must make space for but need not store. */
3830 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3831 int args_offset = INTVAL (args_so_far);
3832 int skip;
3834 /* Push padding now if padding above and stack grows down,
3835 or if padding below and stack grows up.
3836 But if space already allocated, this has already been done. */
3837 if (extra && args_addr == 0
3838 && where_pad != none && where_pad != stack_direction)
3839 anti_adjust_stack (GEN_INT (extra));
3841 /* If we make space by pushing it, we might as well push
3842 the real data. Otherwise, we can leave OFFSET nonzero
3843 and leave the space uninitialized. */
3844 if (args_addr == 0)
3845 offset = 0;
3847 /* Now NOT_STACK gets the number of words that we don't need to
3848 allocate on the stack. Convert OFFSET to words too. */
3849 not_stack = (partial - offset) / UNITS_PER_WORD;
3850 offset /= UNITS_PER_WORD;
3852 /* If the partial register-part of the arg counts in its stack size,
3853 skip the part of stack space corresponding to the registers.
3854 Otherwise, start copying to the beginning of the stack space,
3855 by setting SKIP to 0. */
3856 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3858 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3859 x = validize_mem (force_const_mem (mode, x));
3861 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3862 SUBREGs of such registers are not allowed. */
3863 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3864 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3865 x = copy_to_reg (x);
3867 /* Loop over all the words allocated on the stack for this arg. */
3868 /* We can do it by words, because any scalar bigger than a word
3869 has a size a multiple of a word. */
3870 #ifndef PUSH_ARGS_REVERSED
3871 for (i = not_stack; i < size; i++)
3872 #else
3873 for (i = size - 1; i >= not_stack; i--)
3874 #endif
3875 if (i >= not_stack + offset)
3876 emit_push_insn (operand_subword_force (x, i, mode),
3877 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3878 0, args_addr,
3879 GEN_INT (args_offset + ((i - not_stack + skip)
3880 * UNITS_PER_WORD)),
3881 reg_parm_stack_space, alignment_pad);
3883 else
3885 rtx addr;
3886 rtx dest;
3888 /* Push padding now if padding above and stack grows down,
3889 or if padding below and stack grows up.
3890 But if space already allocated, this has already been done. */
3891 if (extra && args_addr == 0
3892 && where_pad != none && where_pad != stack_direction)
3893 anti_adjust_stack (GEN_INT (extra));
3895 #ifdef PUSH_ROUNDING
3896 if (args_addr == 0 && PUSH_ARGS)
3897 emit_single_push_insn (mode, x, type);
3898 else
3899 #endif
3901 if (CONST_INT_P (args_so_far))
3902 addr
3903 = memory_address (mode,
3904 plus_constant (args_addr,
3905 INTVAL (args_so_far)));
3906 else
3907 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3908 args_so_far));
3909 dest = gen_rtx_MEM (mode, addr);
3911 /* We do *not* set_mem_attributes here, because incoming arguments
3912 may overlap with sibling call outgoing arguments and we cannot
3913 allow reordering of reads from function arguments with stores
3914 to outgoing arguments of sibling calls. We do, however, want
3915 to record the alignment of the stack slot. */
3916 /* ALIGN may well be better aligned than TYPE, e.g. due to
3917 PARM_BOUNDARY. Assume the caller isn't lying. */
3918 set_mem_align (dest, align);
3920 emit_move_insn (dest, x);
3924 /* If part should go in registers, copy that part
3925 into the appropriate registers. Do this now, at the end,
3926 since mem-to-mem copies above may do function calls. */
3927 if (partial > 0 && reg != 0)
3929 /* Handle calls that pass values in multiple non-contiguous locations.
3930 The Irix 6 ABI has examples of this. */
3931 if (GET_CODE (reg) == PARALLEL)
3932 emit_group_load (reg, x, type, -1);
3933 else
3935 gcc_assert (partial % UNITS_PER_WORD == 0);
3936 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3940 if (extra && args_addr == 0 && where_pad == stack_direction)
3941 anti_adjust_stack (GEN_INT (extra));
3943 if (alignment_pad && args_addr == 0)
3944 anti_adjust_stack (alignment_pad);
3947 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3948 operations. */
3950 static rtx
3951 get_subtarget (rtx x)
3953 return (optimize
3954 || x == 0
3955 /* Only registers can be subtargets. */
3956 || !REG_P (x)
3957 /* Don't use hard regs to avoid extending their life. */
3958 || REGNO (x) < FIRST_PSEUDO_REGISTER
3959 ? 0 : x);
3962 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3963 FIELD is a bitfield. Returns true if the optimization was successful,
3964 and there's nothing else to do. */
3966 static bool
3967 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3968 unsigned HOST_WIDE_INT bitpos,
3969 enum machine_mode mode1, rtx str_rtx,
3970 tree to, tree src)
3972 enum machine_mode str_mode = GET_MODE (str_rtx);
3973 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3974 tree op0, op1;
3975 rtx value, result;
3976 optab binop;
3978 if (mode1 != VOIDmode
3979 || bitsize >= BITS_PER_WORD
3980 || str_bitsize > BITS_PER_WORD
3981 || TREE_SIDE_EFFECTS (to)
3982 || TREE_THIS_VOLATILE (to))
3983 return false;
3985 STRIP_NOPS (src);
3986 if (!BINARY_CLASS_P (src)
3987 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3988 return false;
3990 op0 = TREE_OPERAND (src, 0);
3991 op1 = TREE_OPERAND (src, 1);
3992 STRIP_NOPS (op0);
3994 if (!operand_equal_p (to, op0, 0))
3995 return false;
3997 if (MEM_P (str_rtx))
3999 unsigned HOST_WIDE_INT offset1;
4001 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4002 str_mode = word_mode;
4003 str_mode = get_best_mode (bitsize, bitpos,
4004 MEM_ALIGN (str_rtx), str_mode, 0);
4005 if (str_mode == VOIDmode)
4006 return false;
4007 str_bitsize = GET_MODE_BITSIZE (str_mode);
4009 offset1 = bitpos;
4010 bitpos %= str_bitsize;
4011 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4012 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4014 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4015 return false;
4017 /* If the bit field covers the whole REG/MEM, store_field
4018 will likely generate better code. */
4019 if (bitsize >= str_bitsize)
4020 return false;
4022 /* We can't handle fields split across multiple entities. */
4023 if (bitpos + bitsize > str_bitsize)
4024 return false;
4026 if (BYTES_BIG_ENDIAN)
4027 bitpos = str_bitsize - bitpos - bitsize;
4029 switch (TREE_CODE (src))
4031 case PLUS_EXPR:
4032 case MINUS_EXPR:
4033 /* For now, just optimize the case of the topmost bitfield
4034 where we don't need to do any masking and also
4035 1 bit bitfields where xor can be used.
4036 We might win by one instruction for the other bitfields
4037 too if insv/extv instructions aren't used, so that
4038 can be added later. */
4039 if (bitpos + bitsize != str_bitsize
4040 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4041 break;
4043 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4044 value = convert_modes (str_mode,
4045 TYPE_MODE (TREE_TYPE (op1)), value,
4046 TYPE_UNSIGNED (TREE_TYPE (op1)));
4048 /* We may be accessing data outside the field, which means
4049 we can alias adjacent data. */
4050 if (MEM_P (str_rtx))
4052 str_rtx = shallow_copy_rtx (str_rtx);
4053 set_mem_alias_set (str_rtx, 0);
4054 set_mem_expr (str_rtx, 0);
4057 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4058 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4060 value = expand_and (str_mode, value, const1_rtx, NULL);
4061 binop = xor_optab;
4063 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4064 build_int_cst (NULL_TREE, bitpos),
4065 NULL_RTX, 1);
4066 result = expand_binop (str_mode, binop, str_rtx,
4067 value, str_rtx, 1, OPTAB_WIDEN);
4068 if (result != str_rtx)
4069 emit_move_insn (str_rtx, result);
4070 return true;
4072 case BIT_IOR_EXPR:
4073 case BIT_XOR_EXPR:
4074 if (TREE_CODE (op1) != INTEGER_CST)
4075 break;
4076 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4077 value = convert_modes (GET_MODE (str_rtx),
4078 TYPE_MODE (TREE_TYPE (op1)), value,
4079 TYPE_UNSIGNED (TREE_TYPE (op1)));
4081 /* We may be accessing data outside the field, which means
4082 we can alias adjacent data. */
4083 if (MEM_P (str_rtx))
4085 str_rtx = shallow_copy_rtx (str_rtx);
4086 set_mem_alias_set (str_rtx, 0);
4087 set_mem_expr (str_rtx, 0);
4090 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4091 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4093 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4094 - 1);
4095 value = expand_and (GET_MODE (str_rtx), value, mask,
4096 NULL_RTX);
4098 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4099 build_int_cst (NULL_TREE, bitpos),
4100 NULL_RTX, 1);
4101 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4102 value, str_rtx, 1, OPTAB_WIDEN);
4103 if (result != str_rtx)
4104 emit_move_insn (str_rtx, result);
4105 return true;
4107 default:
4108 break;
4111 return false;
4115 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4116 is true, try generating a nontemporal store. */
4118 void
4119 expand_assignment (tree to, tree from, bool nontemporal)
4121 rtx to_rtx = 0;
4122 rtx result;
4123 enum machine_mode mode;
4124 int align, icode;
4126 /* Don't crash if the lhs of the assignment was erroneous. */
4127 if (TREE_CODE (to) == ERROR_MARK)
4129 result = expand_normal (from);
4130 return;
4133 /* Optimize away no-op moves without side-effects. */
4134 if (operand_equal_p (to, from, 0))
4135 return;
4137 mode = TYPE_MODE (TREE_TYPE (to));
4138 if ((TREE_CODE (to) == MEM_REF
4139 || TREE_CODE (to) == TARGET_MEM_REF)
4140 && mode != BLKmode
4141 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4142 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4143 < (signed) GET_MODE_ALIGNMENT (mode))
4144 && ((icode = optab_handler (movmisalign_optab, mode))
4145 != CODE_FOR_nothing))
4147 enum machine_mode address_mode, op_mode1;
4148 rtx insn, reg, op0, mem;
4150 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4151 reg = force_not_mem (reg);
4153 if (TREE_CODE (to) == MEM_REF)
4155 addr_space_t as
4156 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4157 tree base = TREE_OPERAND (to, 0);
4158 address_mode = targetm.addr_space.address_mode (as);
4159 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4160 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4161 if (!integer_zerop (TREE_OPERAND (to, 1)))
4163 rtx off
4164 = immed_double_int_const (mem_ref_offset (to), address_mode);
4165 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4167 op0 = memory_address_addr_space (mode, op0, as);
4168 mem = gen_rtx_MEM (mode, op0);
4169 set_mem_attributes (mem, to, 0);
4170 set_mem_addr_space (mem, as);
4172 else if (TREE_CODE (to) == TARGET_MEM_REF)
4174 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4175 struct mem_address addr;
4177 get_address_description (to, &addr);
4178 op0 = addr_for_mem_ref (&addr, as, true);
4179 op0 = memory_address_addr_space (mode, op0, as);
4180 mem = gen_rtx_MEM (mode, op0);
4181 set_mem_attributes (mem, to, 0);
4182 set_mem_addr_space (mem, as);
4184 else
4185 gcc_unreachable ();
4186 if (TREE_THIS_VOLATILE (to))
4187 MEM_VOLATILE_P (mem) = 1;
4189 op_mode1 = insn_data[icode].operand[1].mode;
4190 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4191 && op_mode1 != VOIDmode)
4192 reg = copy_to_mode_reg (op_mode1, reg);
4194 insn = GEN_FCN (icode) (mem, reg);
4195 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4196 silently be omitted. */
4197 gcc_assert (insn != NULL_RTX);
4198 emit_insn (insn);
4199 return;
4202 /* Assignment of a structure component needs special treatment
4203 if the structure component's rtx is not simply a MEM.
4204 Assignment of an array element at a constant index, and assignment of
4205 an array element in an unaligned packed structure field, has the same
4206 problem. */
4207 if (handled_component_p (to)
4208 /* ??? We only need to handle MEM_REF here if the access is not
4209 a full access of the base object. */
4210 || (TREE_CODE (to) == MEM_REF
4211 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4212 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4214 enum machine_mode mode1;
4215 HOST_WIDE_INT bitsize, bitpos;
4216 tree offset;
4217 int unsignedp;
4218 int volatilep = 0;
4219 tree tem;
4221 push_temp_slots ();
4222 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4223 &unsignedp, &volatilep, true);
4225 /* If we are going to use store_bit_field and extract_bit_field,
4226 make sure to_rtx will be safe for multiple use. */
4228 to_rtx = expand_normal (tem);
4230 /* If the bitfield is volatile, we want to access it in the
4231 field's mode, not the computed mode.
4232 If a MEM has VOIDmode (external with incomplete type),
4233 use BLKmode for it instead. */
4234 if (MEM_P (to_rtx))
4236 if (volatilep && flag_strict_volatile_bitfields > 0)
4237 to_rtx = adjust_address (to_rtx, mode1, 0);
4238 else if (GET_MODE (to_rtx) == VOIDmode)
4239 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4242 if (offset != 0)
4244 enum machine_mode address_mode;
4245 rtx offset_rtx;
4247 if (!MEM_P (to_rtx))
4249 /* We can get constant negative offsets into arrays with broken
4250 user code. Translate this to a trap instead of ICEing. */
4251 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4252 expand_builtin_trap ();
4253 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4256 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4257 address_mode
4258 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4259 if (GET_MODE (offset_rtx) != address_mode)
4260 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4262 /* A constant address in TO_RTX can have VOIDmode, we must not try
4263 to call force_reg for that case. Avoid that case. */
4264 if (MEM_P (to_rtx)
4265 && GET_MODE (to_rtx) == BLKmode
4266 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4267 && bitsize > 0
4268 && (bitpos % bitsize) == 0
4269 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4270 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4272 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4273 bitpos = 0;
4276 to_rtx = offset_address (to_rtx, offset_rtx,
4277 highest_pow2_factor_for_target (to,
4278 offset));
4281 /* No action is needed if the target is not a memory and the field
4282 lies completely outside that target. This can occur if the source
4283 code contains an out-of-bounds access to a small array. */
4284 if (!MEM_P (to_rtx)
4285 && GET_MODE (to_rtx) != BLKmode
4286 && (unsigned HOST_WIDE_INT) bitpos
4287 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4289 expand_normal (from);
4290 result = NULL;
4292 /* Handle expand_expr of a complex value returning a CONCAT. */
4293 else if (GET_CODE (to_rtx) == CONCAT)
4295 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4297 gcc_assert (bitpos == 0);
4298 result = store_expr (from, to_rtx, false, nontemporal);
4300 else
4302 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4303 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4304 nontemporal);
4307 else
4309 if (MEM_P (to_rtx))
4311 /* If the field is at offset zero, we could have been given the
4312 DECL_RTX of the parent struct. Don't munge it. */
4313 to_rtx = shallow_copy_rtx (to_rtx);
4315 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4317 /* Deal with volatile and readonly fields. The former is only
4318 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4319 if (volatilep)
4320 MEM_VOLATILE_P (to_rtx) = 1;
4321 if (component_uses_parent_alias_set (to))
4322 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4325 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4326 to_rtx, to, from))
4327 result = NULL;
4328 else
4329 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4330 TREE_TYPE (tem), get_alias_set (to),
4331 nontemporal);
4334 if (result)
4335 preserve_temp_slots (result);
4336 free_temp_slots ();
4337 pop_temp_slots ();
4338 return;
4341 /* If the rhs is a function call and its value is not an aggregate,
4342 call the function before we start to compute the lhs.
4343 This is needed for correct code for cases such as
4344 val = setjmp (buf) on machines where reference to val
4345 requires loading up part of an address in a separate insn.
4347 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4348 since it might be a promoted variable where the zero- or sign- extension
4349 needs to be done. Handling this in the normal way is safe because no
4350 computation is done before the call. The same is true for SSA names. */
4351 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4352 && COMPLETE_TYPE_P (TREE_TYPE (from))
4353 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4354 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4355 && REG_P (DECL_RTL (to)))
4356 || TREE_CODE (to) == SSA_NAME))
4358 rtx value;
4360 push_temp_slots ();
4361 value = expand_normal (from);
4362 if (to_rtx == 0)
4363 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4365 /* Handle calls that return values in multiple non-contiguous locations.
4366 The Irix 6 ABI has examples of this. */
4367 if (GET_CODE (to_rtx) == PARALLEL)
4368 emit_group_load (to_rtx, value, TREE_TYPE (from),
4369 int_size_in_bytes (TREE_TYPE (from)));
4370 else if (GET_MODE (to_rtx) == BLKmode)
4371 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4372 else
4374 if (POINTER_TYPE_P (TREE_TYPE (to)))
4375 value = convert_memory_address_addr_space
4376 (GET_MODE (to_rtx), value,
4377 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4379 emit_move_insn (to_rtx, value);
4381 preserve_temp_slots (to_rtx);
4382 free_temp_slots ();
4383 pop_temp_slots ();
4384 return;
4387 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4388 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4390 if (to_rtx == 0)
4391 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4393 /* Don't move directly into a return register. */
4394 if (TREE_CODE (to) == RESULT_DECL
4395 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4397 rtx temp;
4399 push_temp_slots ();
4400 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4402 if (GET_CODE (to_rtx) == PARALLEL)
4403 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4404 int_size_in_bytes (TREE_TYPE (from)));
4405 else
4406 emit_move_insn (to_rtx, temp);
4408 preserve_temp_slots (to_rtx);
4409 free_temp_slots ();
4410 pop_temp_slots ();
4411 return;
4414 /* In case we are returning the contents of an object which overlaps
4415 the place the value is being stored, use a safe function when copying
4416 a value through a pointer into a structure value return block. */
4417 if (TREE_CODE (to) == RESULT_DECL
4418 && TREE_CODE (from) == INDIRECT_REF
4419 && ADDR_SPACE_GENERIC_P
4420 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4421 && refs_may_alias_p (to, from)
4422 && cfun->returns_struct
4423 && !cfun->returns_pcc_struct)
4425 rtx from_rtx, size;
4427 push_temp_slots ();
4428 size = expr_size (from);
4429 from_rtx = expand_normal (from);
4431 emit_library_call (memmove_libfunc, LCT_NORMAL,
4432 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4433 XEXP (from_rtx, 0), Pmode,
4434 convert_to_mode (TYPE_MODE (sizetype),
4435 size, TYPE_UNSIGNED (sizetype)),
4436 TYPE_MODE (sizetype));
4438 preserve_temp_slots (to_rtx);
4439 free_temp_slots ();
4440 pop_temp_slots ();
4441 return;
4444 /* Compute FROM and store the value in the rtx we got. */
4446 push_temp_slots ();
4447 result = store_expr (from, to_rtx, 0, nontemporal);
4448 preserve_temp_slots (result);
4449 free_temp_slots ();
4450 pop_temp_slots ();
4451 return;
4454 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4455 succeeded, false otherwise. */
4457 bool
4458 emit_storent_insn (rtx to, rtx from)
4460 enum machine_mode mode = GET_MODE (to), imode;
4461 enum insn_code code = optab_handler (storent_optab, mode);
4462 rtx pattern;
4464 if (code == CODE_FOR_nothing)
4465 return false;
4467 imode = insn_data[code].operand[0].mode;
4468 if (!insn_data[code].operand[0].predicate (to, imode))
4469 return false;
4471 imode = insn_data[code].operand[1].mode;
4472 if (!insn_data[code].operand[1].predicate (from, imode))
4474 from = copy_to_mode_reg (imode, from);
4475 if (!insn_data[code].operand[1].predicate (from, imode))
4476 return false;
4479 pattern = GEN_FCN (code) (to, from);
4480 if (pattern == NULL_RTX)
4481 return false;
4483 emit_insn (pattern);
4484 return true;
4487 /* Generate code for computing expression EXP,
4488 and storing the value into TARGET.
4490 If the mode is BLKmode then we may return TARGET itself.
4491 It turns out that in BLKmode it doesn't cause a problem.
4492 because C has no operators that could combine two different
4493 assignments into the same BLKmode object with different values
4494 with no sequence point. Will other languages need this to
4495 be more thorough?
4497 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4498 stack, and block moves may need to be treated specially.
4500 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4503 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4505 rtx temp;
4506 rtx alt_rtl = NULL_RTX;
4507 location_t loc = EXPR_LOCATION (exp);
4509 if (VOID_TYPE_P (TREE_TYPE (exp)))
4511 /* C++ can generate ?: expressions with a throw expression in one
4512 branch and an rvalue in the other. Here, we resolve attempts to
4513 store the throw expression's nonexistent result. */
4514 gcc_assert (!call_param_p);
4515 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4516 return NULL_RTX;
4518 if (TREE_CODE (exp) == COMPOUND_EXPR)
4520 /* Perform first part of compound expression, then assign from second
4521 part. */
4522 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4523 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4524 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4525 nontemporal);
4527 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4529 /* For conditional expression, get safe form of the target. Then
4530 test the condition, doing the appropriate assignment on either
4531 side. This avoids the creation of unnecessary temporaries.
4532 For non-BLKmode, it is more efficient not to do this. */
4534 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4536 do_pending_stack_adjust ();
4537 NO_DEFER_POP;
4538 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4539 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4540 nontemporal);
4541 emit_jump_insn (gen_jump (lab2));
4542 emit_barrier ();
4543 emit_label (lab1);
4544 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4545 nontemporal);
4546 emit_label (lab2);
4547 OK_DEFER_POP;
4549 return NULL_RTX;
4551 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4552 /* If this is a scalar in a register that is stored in a wider mode
4553 than the declared mode, compute the result into its declared mode
4554 and then convert to the wider mode. Our value is the computed
4555 expression. */
4557 rtx inner_target = 0;
4559 /* We can do the conversion inside EXP, which will often result
4560 in some optimizations. Do the conversion in two steps: first
4561 change the signedness, if needed, then the extend. But don't
4562 do this if the type of EXP is a subtype of something else
4563 since then the conversion might involve more than just
4564 converting modes. */
4565 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4566 && TREE_TYPE (TREE_TYPE (exp)) == 0
4567 && GET_MODE_PRECISION (GET_MODE (target))
4568 == TYPE_PRECISION (TREE_TYPE (exp)))
4570 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4571 != SUBREG_PROMOTED_UNSIGNED_P (target))
4573 /* Some types, e.g. Fortran's logical*4, won't have a signed
4574 version, so use the mode instead. */
4575 tree ntype
4576 = (signed_or_unsigned_type_for
4577 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4578 if (ntype == NULL)
4579 ntype = lang_hooks.types.type_for_mode
4580 (TYPE_MODE (TREE_TYPE (exp)),
4581 SUBREG_PROMOTED_UNSIGNED_P (target));
4583 exp = fold_convert_loc (loc, ntype, exp);
4586 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4587 (GET_MODE (SUBREG_REG (target)),
4588 SUBREG_PROMOTED_UNSIGNED_P (target)),
4589 exp);
4591 inner_target = SUBREG_REG (target);
4594 temp = expand_expr (exp, inner_target, VOIDmode,
4595 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4597 /* If TEMP is a VOIDmode constant, use convert_modes to make
4598 sure that we properly convert it. */
4599 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4601 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4602 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4603 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4604 GET_MODE (target), temp,
4605 SUBREG_PROMOTED_UNSIGNED_P (target));
4608 convert_move (SUBREG_REG (target), temp,
4609 SUBREG_PROMOTED_UNSIGNED_P (target));
4611 return NULL_RTX;
4613 else if ((TREE_CODE (exp) == STRING_CST
4614 || (TREE_CODE (exp) == MEM_REF
4615 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4616 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4617 == STRING_CST
4618 && integer_zerop (TREE_OPERAND (exp, 1))))
4619 && !nontemporal && !call_param_p
4620 && MEM_P (target))
4622 /* Optimize initialization of an array with a STRING_CST. */
4623 HOST_WIDE_INT exp_len, str_copy_len;
4624 rtx dest_mem;
4625 tree str = TREE_CODE (exp) == STRING_CST
4626 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4628 exp_len = int_expr_size (exp);
4629 if (exp_len <= 0)
4630 goto normal_expr;
4632 if (TREE_STRING_LENGTH (str) <= 0)
4633 goto normal_expr;
4635 str_copy_len = strlen (TREE_STRING_POINTER (str));
4636 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4637 goto normal_expr;
4639 str_copy_len = TREE_STRING_LENGTH (str);
4640 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4641 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4643 str_copy_len += STORE_MAX_PIECES - 1;
4644 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4646 str_copy_len = MIN (str_copy_len, exp_len);
4647 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4648 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4649 MEM_ALIGN (target), false))
4650 goto normal_expr;
4652 dest_mem = target;
4654 dest_mem = store_by_pieces (dest_mem,
4655 str_copy_len, builtin_strncpy_read_str,
4656 CONST_CAST (char *,
4657 TREE_STRING_POINTER (str)),
4658 MEM_ALIGN (target), false,
4659 exp_len > str_copy_len ? 1 : 0);
4660 if (exp_len > str_copy_len)
4661 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4662 GEN_INT (exp_len - str_copy_len),
4663 BLOCK_OP_NORMAL);
4664 return NULL_RTX;
4666 else
4668 rtx tmp_target;
4670 normal_expr:
4671 /* If we want to use a nontemporal store, force the value to
4672 register first. */
4673 tmp_target = nontemporal ? NULL_RTX : target;
4674 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4675 (call_param_p
4676 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4677 &alt_rtl);
4680 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4681 the same as that of TARGET, adjust the constant. This is needed, for
4682 example, in case it is a CONST_DOUBLE and we want only a word-sized
4683 value. */
4684 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4685 && TREE_CODE (exp) != ERROR_MARK
4686 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4687 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4688 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4690 /* If value was not generated in the target, store it there.
4691 Convert the value to TARGET's type first if necessary and emit the
4692 pending incrementations that have been queued when expanding EXP.
4693 Note that we cannot emit the whole queue blindly because this will
4694 effectively disable the POST_INC optimization later.
4696 If TEMP and TARGET compare equal according to rtx_equal_p, but
4697 one or both of them are volatile memory refs, we have to distinguish
4698 two cases:
4699 - expand_expr has used TARGET. In this case, we must not generate
4700 another copy. This can be detected by TARGET being equal according
4701 to == .
4702 - expand_expr has not used TARGET - that means that the source just
4703 happens to have the same RTX form. Since temp will have been created
4704 by expand_expr, it will compare unequal according to == .
4705 We must generate a copy in this case, to reach the correct number
4706 of volatile memory references. */
4708 if ((! rtx_equal_p (temp, target)
4709 || (temp != target && (side_effects_p (temp)
4710 || side_effects_p (target))))
4711 && TREE_CODE (exp) != ERROR_MARK
4712 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4713 but TARGET is not valid memory reference, TEMP will differ
4714 from TARGET although it is really the same location. */
4715 && !(alt_rtl
4716 && rtx_equal_p (alt_rtl, target)
4717 && !side_effects_p (alt_rtl)
4718 && !side_effects_p (target))
4719 /* If there's nothing to copy, don't bother. Don't call
4720 expr_size unless necessary, because some front-ends (C++)
4721 expr_size-hook must not be given objects that are not
4722 supposed to be bit-copied or bit-initialized. */
4723 && expr_size (exp) != const0_rtx)
4725 if (GET_MODE (temp) != GET_MODE (target)
4726 && GET_MODE (temp) != VOIDmode)
4728 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4729 if (GET_MODE (target) == BLKmode
4730 && GET_MODE (temp) == BLKmode)
4731 emit_block_move (target, temp, expr_size (exp),
4732 (call_param_p
4733 ? BLOCK_OP_CALL_PARM
4734 : BLOCK_OP_NORMAL));
4735 else if (GET_MODE (target) == BLKmode)
4736 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4737 0, GET_MODE (temp), temp);
4738 else
4739 convert_move (target, temp, unsignedp);
4742 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4744 /* Handle copying a string constant into an array. The string
4745 constant may be shorter than the array. So copy just the string's
4746 actual length, and clear the rest. First get the size of the data
4747 type of the string, which is actually the size of the target. */
4748 rtx size = expr_size (exp);
4750 if (CONST_INT_P (size)
4751 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4752 emit_block_move (target, temp, size,
4753 (call_param_p
4754 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4755 else
4757 enum machine_mode pointer_mode
4758 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4759 enum machine_mode address_mode
4760 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4762 /* Compute the size of the data to copy from the string. */
4763 tree copy_size
4764 = size_binop_loc (loc, MIN_EXPR,
4765 make_tree (sizetype, size),
4766 size_int (TREE_STRING_LENGTH (exp)));
4767 rtx copy_size_rtx
4768 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4769 (call_param_p
4770 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4771 rtx label = 0;
4773 /* Copy that much. */
4774 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4775 TYPE_UNSIGNED (sizetype));
4776 emit_block_move (target, temp, copy_size_rtx,
4777 (call_param_p
4778 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4780 /* Figure out how much is left in TARGET that we have to clear.
4781 Do all calculations in pointer_mode. */
4782 if (CONST_INT_P (copy_size_rtx))
4784 size = plus_constant (size, -INTVAL (copy_size_rtx));
4785 target = adjust_address (target, BLKmode,
4786 INTVAL (copy_size_rtx));
4788 else
4790 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4791 copy_size_rtx, NULL_RTX, 0,
4792 OPTAB_LIB_WIDEN);
4794 if (GET_MODE (copy_size_rtx) != address_mode)
4795 copy_size_rtx = convert_to_mode (address_mode,
4796 copy_size_rtx,
4797 TYPE_UNSIGNED (sizetype));
4799 target = offset_address (target, copy_size_rtx,
4800 highest_pow2_factor (copy_size));
4801 label = gen_label_rtx ();
4802 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4803 GET_MODE (size), 0, label);
4806 if (size != const0_rtx)
4807 clear_storage (target, size, BLOCK_OP_NORMAL);
4809 if (label)
4810 emit_label (label);
4813 /* Handle calls that return values in multiple non-contiguous locations.
4814 The Irix 6 ABI has examples of this. */
4815 else if (GET_CODE (target) == PARALLEL)
4816 emit_group_load (target, temp, TREE_TYPE (exp),
4817 int_size_in_bytes (TREE_TYPE (exp)));
4818 else if (GET_MODE (temp) == BLKmode)
4819 emit_block_move (target, temp, expr_size (exp),
4820 (call_param_p
4821 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4822 else if (nontemporal
4823 && emit_storent_insn (target, temp))
4824 /* If we managed to emit a nontemporal store, there is nothing else to
4825 do. */
4827 else
4829 temp = force_operand (temp, target);
4830 if (temp != target)
4831 emit_move_insn (target, temp);
4835 return NULL_RTX;
4838 /* Helper for categorize_ctor_elements. Identical interface. */
4840 static bool
4841 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4842 HOST_WIDE_INT *p_elt_count,
4843 bool *p_must_clear)
4845 unsigned HOST_WIDE_INT idx;
4846 HOST_WIDE_INT nz_elts, elt_count;
4847 tree value, purpose;
4849 /* Whether CTOR is a valid constant initializer, in accordance with what
4850 initializer_constant_valid_p does. If inferred from the constructor
4851 elements, true until proven otherwise. */
4852 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4853 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4855 nz_elts = 0;
4856 elt_count = 0;
4858 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4860 HOST_WIDE_INT mult = 1;
4862 if (TREE_CODE (purpose) == RANGE_EXPR)
4864 tree lo_index = TREE_OPERAND (purpose, 0);
4865 tree hi_index = TREE_OPERAND (purpose, 1);
4867 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4868 mult = (tree_low_cst (hi_index, 1)
4869 - tree_low_cst (lo_index, 1) + 1);
4872 switch (TREE_CODE (value))
4874 case CONSTRUCTOR:
4876 HOST_WIDE_INT nz = 0, ic = 0;
4878 bool const_elt_p
4879 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4881 nz_elts += mult * nz;
4882 elt_count += mult * ic;
4884 if (const_from_elts_p && const_p)
4885 const_p = const_elt_p;
4887 break;
4889 case INTEGER_CST:
4890 case REAL_CST:
4891 case FIXED_CST:
4892 if (!initializer_zerop (value))
4893 nz_elts += mult;
4894 elt_count += mult;
4895 break;
4897 case STRING_CST:
4898 nz_elts += mult * TREE_STRING_LENGTH (value);
4899 elt_count += mult * TREE_STRING_LENGTH (value);
4900 break;
4902 case COMPLEX_CST:
4903 if (!initializer_zerop (TREE_REALPART (value)))
4904 nz_elts += mult;
4905 if (!initializer_zerop (TREE_IMAGPART (value)))
4906 nz_elts += mult;
4907 elt_count += mult;
4908 break;
4910 case VECTOR_CST:
4912 tree v;
4913 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4915 if (!initializer_zerop (TREE_VALUE (v)))
4916 nz_elts += mult;
4917 elt_count += mult;
4920 break;
4922 default:
4924 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4925 if (tc < 1)
4926 tc = 1;
4927 nz_elts += mult * tc;
4928 elt_count += mult * tc;
4930 if (const_from_elts_p && const_p)
4931 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4932 != NULL_TREE;
4934 break;
4938 if (!*p_must_clear
4939 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4940 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4942 tree init_sub_type;
4943 bool clear_this = true;
4945 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4947 /* We don't expect more than one element of the union to be
4948 initialized. Not sure what we should do otherwise... */
4949 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4950 == 1);
4952 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4953 CONSTRUCTOR_ELTS (ctor),
4954 0)->value);
4956 /* ??? We could look at each element of the union, and find the
4957 largest element. Which would avoid comparing the size of the
4958 initialized element against any tail padding in the union.
4959 Doesn't seem worth the effort... */
4960 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4961 TYPE_SIZE (init_sub_type)) == 1)
4963 /* And now we have to find out if the element itself is fully
4964 constructed. E.g. for union { struct { int a, b; } s; } u
4965 = { .s = { .a = 1 } }. */
4966 if (elt_count == count_type_elements (init_sub_type, false))
4967 clear_this = false;
4971 *p_must_clear = clear_this;
4974 *p_nz_elts += nz_elts;
4975 *p_elt_count += elt_count;
4977 return const_p;
4980 /* Examine CTOR to discover:
4981 * how many scalar fields are set to nonzero values,
4982 and place it in *P_NZ_ELTS;
4983 * how many scalar fields in total are in CTOR,
4984 and place it in *P_ELT_COUNT.
4985 * if a type is a union, and the initializer from the constructor
4986 is not the largest element in the union, then set *p_must_clear.
4988 Return whether or not CTOR is a valid static constant initializer, the same
4989 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4991 bool
4992 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4993 HOST_WIDE_INT *p_elt_count,
4994 bool *p_must_clear)
4996 *p_nz_elts = 0;
4997 *p_elt_count = 0;
4998 *p_must_clear = false;
5000 return
5001 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5004 /* Count the number of scalars in TYPE. Return -1 on overflow or
5005 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5006 array member at the end of the structure. */
5008 HOST_WIDE_INT
5009 count_type_elements (const_tree type, bool allow_flexarr)
5011 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5012 switch (TREE_CODE (type))
5014 case ARRAY_TYPE:
5016 tree telts = array_type_nelts (type);
5017 if (telts && host_integerp (telts, 1))
5019 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5020 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5021 if (n == 0)
5022 return 0;
5023 else if (max / n > m)
5024 return n * m;
5026 return -1;
5029 case RECORD_TYPE:
5031 HOST_WIDE_INT n = 0, t;
5032 tree f;
5034 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5035 if (TREE_CODE (f) == FIELD_DECL)
5037 t = count_type_elements (TREE_TYPE (f), false);
5038 if (t < 0)
5040 /* Check for structures with flexible array member. */
5041 tree tf = TREE_TYPE (f);
5042 if (allow_flexarr
5043 && DECL_CHAIN (f) == NULL
5044 && TREE_CODE (tf) == ARRAY_TYPE
5045 && TYPE_DOMAIN (tf)
5046 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5047 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5048 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5049 && int_size_in_bytes (type) >= 0)
5050 break;
5052 return -1;
5054 n += t;
5057 return n;
5060 case UNION_TYPE:
5061 case QUAL_UNION_TYPE:
5062 return -1;
5064 case COMPLEX_TYPE:
5065 return 2;
5067 case VECTOR_TYPE:
5068 return TYPE_VECTOR_SUBPARTS (type);
5070 case INTEGER_TYPE:
5071 case REAL_TYPE:
5072 case FIXED_POINT_TYPE:
5073 case ENUMERAL_TYPE:
5074 case BOOLEAN_TYPE:
5075 case POINTER_TYPE:
5076 case OFFSET_TYPE:
5077 case REFERENCE_TYPE:
5078 return 1;
5080 case ERROR_MARK:
5081 return 0;
5083 case VOID_TYPE:
5084 case METHOD_TYPE:
5085 case FUNCTION_TYPE:
5086 case LANG_TYPE:
5087 default:
5088 gcc_unreachable ();
5092 /* Return 1 if EXP contains mostly (3/4) zeros. */
5094 static int
5095 mostly_zeros_p (const_tree exp)
5097 if (TREE_CODE (exp) == CONSTRUCTOR)
5100 HOST_WIDE_INT nz_elts, count, elts;
5101 bool must_clear;
5103 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5104 if (must_clear)
5105 return 1;
5107 elts = count_type_elements (TREE_TYPE (exp), false);
5109 return nz_elts < elts / 4;
5112 return initializer_zerop (exp);
5115 /* Return 1 if EXP contains all zeros. */
5117 static int
5118 all_zeros_p (const_tree exp)
5120 if (TREE_CODE (exp) == CONSTRUCTOR)
5123 HOST_WIDE_INT nz_elts, count;
5124 bool must_clear;
5126 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5127 return nz_elts == 0;
5130 return initializer_zerop (exp);
5133 /* Helper function for store_constructor.
5134 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5135 TYPE is the type of the CONSTRUCTOR, not the element type.
5136 CLEARED is as for store_constructor.
5137 ALIAS_SET is the alias set to use for any stores.
5139 This provides a recursive shortcut back to store_constructor when it isn't
5140 necessary to go through store_field. This is so that we can pass through
5141 the cleared field to let store_constructor know that we may not have to
5142 clear a substructure if the outer structure has already been cleared. */
5144 static void
5145 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5146 HOST_WIDE_INT bitpos, enum machine_mode mode,
5147 tree exp, tree type, int cleared,
5148 alias_set_type alias_set)
5150 if (TREE_CODE (exp) == CONSTRUCTOR
5151 /* We can only call store_constructor recursively if the size and
5152 bit position are on a byte boundary. */
5153 && bitpos % BITS_PER_UNIT == 0
5154 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5155 /* If we have a nonzero bitpos for a register target, then we just
5156 let store_field do the bitfield handling. This is unlikely to
5157 generate unnecessary clear instructions anyways. */
5158 && (bitpos == 0 || MEM_P (target)))
5160 if (MEM_P (target))
5161 target
5162 = adjust_address (target,
5163 GET_MODE (target) == BLKmode
5164 || 0 != (bitpos
5165 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5166 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5169 /* Update the alias set, if required. */
5170 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5171 && MEM_ALIAS_SET (target) != 0)
5173 target = copy_rtx (target);
5174 set_mem_alias_set (target, alias_set);
5177 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5179 else
5180 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5183 /* Store the value of constructor EXP into the rtx TARGET.
5184 TARGET is either a REG or a MEM; we know it cannot conflict, since
5185 safe_from_p has been called.
5186 CLEARED is true if TARGET is known to have been zero'd.
5187 SIZE is the number of bytes of TARGET we are allowed to modify: this
5188 may not be the same as the size of EXP if we are assigning to a field
5189 which has been packed to exclude padding bits. */
5191 static void
5192 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5194 tree type = TREE_TYPE (exp);
5195 #ifdef WORD_REGISTER_OPERATIONS
5196 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5197 #endif
5199 switch (TREE_CODE (type))
5201 case RECORD_TYPE:
5202 case UNION_TYPE:
5203 case QUAL_UNION_TYPE:
5205 unsigned HOST_WIDE_INT idx;
5206 tree field, value;
5208 /* If size is zero or the target is already cleared, do nothing. */
5209 if (size == 0 || cleared)
5210 cleared = 1;
5211 /* We either clear the aggregate or indicate the value is dead. */
5212 else if ((TREE_CODE (type) == UNION_TYPE
5213 || TREE_CODE (type) == QUAL_UNION_TYPE)
5214 && ! CONSTRUCTOR_ELTS (exp))
5215 /* If the constructor is empty, clear the union. */
5217 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5218 cleared = 1;
5221 /* If we are building a static constructor into a register,
5222 set the initial value as zero so we can fold the value into
5223 a constant. But if more than one register is involved,
5224 this probably loses. */
5225 else if (REG_P (target) && TREE_STATIC (exp)
5226 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5228 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5229 cleared = 1;
5232 /* If the constructor has fewer fields than the structure or
5233 if we are initializing the structure to mostly zeros, clear
5234 the whole structure first. Don't do this if TARGET is a
5235 register whose mode size isn't equal to SIZE since
5236 clear_storage can't handle this case. */
5237 else if (size > 0
5238 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5239 != fields_length (type))
5240 || mostly_zeros_p (exp))
5241 && (!REG_P (target)
5242 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5243 == size)))
5245 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5246 cleared = 1;
5249 if (REG_P (target) && !cleared)
5250 emit_clobber (target);
5252 /* Store each element of the constructor into the
5253 corresponding field of TARGET. */
5254 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5256 enum machine_mode mode;
5257 HOST_WIDE_INT bitsize;
5258 HOST_WIDE_INT bitpos = 0;
5259 tree offset;
5260 rtx to_rtx = target;
5262 /* Just ignore missing fields. We cleared the whole
5263 structure, above, if any fields are missing. */
5264 if (field == 0)
5265 continue;
5267 if (cleared && initializer_zerop (value))
5268 continue;
5270 if (host_integerp (DECL_SIZE (field), 1))
5271 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5272 else
5273 bitsize = -1;
5275 mode = DECL_MODE (field);
5276 if (DECL_BIT_FIELD (field))
5277 mode = VOIDmode;
5279 offset = DECL_FIELD_OFFSET (field);
5280 if (host_integerp (offset, 0)
5281 && host_integerp (bit_position (field), 0))
5283 bitpos = int_bit_position (field);
5284 offset = 0;
5286 else
5287 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5289 if (offset)
5291 enum machine_mode address_mode;
5292 rtx offset_rtx;
5294 offset
5295 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5296 make_tree (TREE_TYPE (exp),
5297 target));
5299 offset_rtx = expand_normal (offset);
5300 gcc_assert (MEM_P (to_rtx));
5302 address_mode
5303 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5304 if (GET_MODE (offset_rtx) != address_mode)
5305 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5307 to_rtx = offset_address (to_rtx, offset_rtx,
5308 highest_pow2_factor (offset));
5311 #ifdef WORD_REGISTER_OPERATIONS
5312 /* If this initializes a field that is smaller than a
5313 word, at the start of a word, try to widen it to a full
5314 word. This special case allows us to output C++ member
5315 function initializations in a form that the optimizers
5316 can understand. */
5317 if (REG_P (target)
5318 && bitsize < BITS_PER_WORD
5319 && bitpos % BITS_PER_WORD == 0
5320 && GET_MODE_CLASS (mode) == MODE_INT
5321 && TREE_CODE (value) == INTEGER_CST
5322 && exp_size >= 0
5323 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5325 tree type = TREE_TYPE (value);
5327 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5329 type = lang_hooks.types.type_for_size
5330 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5331 value = fold_convert (type, value);
5334 if (BYTES_BIG_ENDIAN)
5335 value
5336 = fold_build2 (LSHIFT_EXPR, type, value,
5337 build_int_cst (type,
5338 BITS_PER_WORD - bitsize));
5339 bitsize = BITS_PER_WORD;
5340 mode = word_mode;
5342 #endif
5344 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5345 && DECL_NONADDRESSABLE_P (field))
5347 to_rtx = copy_rtx (to_rtx);
5348 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5351 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5352 value, type, cleared,
5353 get_alias_set (TREE_TYPE (field)));
5355 break;
5357 case ARRAY_TYPE:
5359 tree value, index;
5360 unsigned HOST_WIDE_INT i;
5361 int need_to_clear;
5362 tree domain;
5363 tree elttype = TREE_TYPE (type);
5364 int const_bounds_p;
5365 HOST_WIDE_INT minelt = 0;
5366 HOST_WIDE_INT maxelt = 0;
5368 domain = TYPE_DOMAIN (type);
5369 const_bounds_p = (TYPE_MIN_VALUE (domain)
5370 && TYPE_MAX_VALUE (domain)
5371 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5372 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5374 /* If we have constant bounds for the range of the type, get them. */
5375 if (const_bounds_p)
5377 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5378 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5381 /* If the constructor has fewer elements than the array, clear
5382 the whole array first. Similarly if this is static
5383 constructor of a non-BLKmode object. */
5384 if (cleared)
5385 need_to_clear = 0;
5386 else if (REG_P (target) && TREE_STATIC (exp))
5387 need_to_clear = 1;
5388 else
5390 unsigned HOST_WIDE_INT idx;
5391 tree index, value;
5392 HOST_WIDE_INT count = 0, zero_count = 0;
5393 need_to_clear = ! const_bounds_p;
5395 /* This loop is a more accurate version of the loop in
5396 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5397 is also needed to check for missing elements. */
5398 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5400 HOST_WIDE_INT this_node_count;
5402 if (need_to_clear)
5403 break;
5405 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5407 tree lo_index = TREE_OPERAND (index, 0);
5408 tree hi_index = TREE_OPERAND (index, 1);
5410 if (! host_integerp (lo_index, 1)
5411 || ! host_integerp (hi_index, 1))
5413 need_to_clear = 1;
5414 break;
5417 this_node_count = (tree_low_cst (hi_index, 1)
5418 - tree_low_cst (lo_index, 1) + 1);
5420 else
5421 this_node_count = 1;
5423 count += this_node_count;
5424 if (mostly_zeros_p (value))
5425 zero_count += this_node_count;
5428 /* Clear the entire array first if there are any missing
5429 elements, or if the incidence of zero elements is >=
5430 75%. */
5431 if (! need_to_clear
5432 && (count < maxelt - minelt + 1
5433 || 4 * zero_count >= 3 * count))
5434 need_to_clear = 1;
5437 if (need_to_clear && size > 0)
5439 if (REG_P (target))
5440 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5441 else
5442 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5443 cleared = 1;
5446 if (!cleared && REG_P (target))
5447 /* Inform later passes that the old value is dead. */
5448 emit_clobber (target);
5450 /* Store each element of the constructor into the
5451 corresponding element of TARGET, determined by counting the
5452 elements. */
5453 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5455 enum machine_mode mode;
5456 HOST_WIDE_INT bitsize;
5457 HOST_WIDE_INT bitpos;
5458 rtx xtarget = target;
5460 if (cleared && initializer_zerop (value))
5461 continue;
5463 mode = TYPE_MODE (elttype);
5464 if (mode == BLKmode)
5465 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5466 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5467 : -1);
5468 else
5469 bitsize = GET_MODE_BITSIZE (mode);
5471 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5473 tree lo_index = TREE_OPERAND (index, 0);
5474 tree hi_index = TREE_OPERAND (index, 1);
5475 rtx index_r, pos_rtx;
5476 HOST_WIDE_INT lo, hi, count;
5477 tree position;
5479 /* If the range is constant and "small", unroll the loop. */
5480 if (const_bounds_p
5481 && host_integerp (lo_index, 0)
5482 && host_integerp (hi_index, 0)
5483 && (lo = tree_low_cst (lo_index, 0),
5484 hi = tree_low_cst (hi_index, 0),
5485 count = hi - lo + 1,
5486 (!MEM_P (target)
5487 || count <= 2
5488 || (host_integerp (TYPE_SIZE (elttype), 1)
5489 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5490 <= 40 * 8)))))
5492 lo -= minelt; hi -= minelt;
5493 for (; lo <= hi; lo++)
5495 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5497 if (MEM_P (target)
5498 && !MEM_KEEP_ALIAS_SET_P (target)
5499 && TREE_CODE (type) == ARRAY_TYPE
5500 && TYPE_NONALIASED_COMPONENT (type))
5502 target = copy_rtx (target);
5503 MEM_KEEP_ALIAS_SET_P (target) = 1;
5506 store_constructor_field
5507 (target, bitsize, bitpos, mode, value, type, cleared,
5508 get_alias_set (elttype));
5511 else
5513 rtx loop_start = gen_label_rtx ();
5514 rtx loop_end = gen_label_rtx ();
5515 tree exit_cond;
5517 expand_normal (hi_index);
5519 index = build_decl (EXPR_LOCATION (exp),
5520 VAR_DECL, NULL_TREE, domain);
5521 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5522 SET_DECL_RTL (index, index_r);
5523 store_expr (lo_index, index_r, 0, false);
5525 /* Build the head of the loop. */
5526 do_pending_stack_adjust ();
5527 emit_label (loop_start);
5529 /* Assign value to element index. */
5530 position =
5531 fold_convert (ssizetype,
5532 fold_build2 (MINUS_EXPR,
5533 TREE_TYPE (index),
5534 index,
5535 TYPE_MIN_VALUE (domain)));
5537 position =
5538 size_binop (MULT_EXPR, position,
5539 fold_convert (ssizetype,
5540 TYPE_SIZE_UNIT (elttype)));
5542 pos_rtx = expand_normal (position);
5543 xtarget = offset_address (target, pos_rtx,
5544 highest_pow2_factor (position));
5545 xtarget = adjust_address (xtarget, mode, 0);
5546 if (TREE_CODE (value) == CONSTRUCTOR)
5547 store_constructor (value, xtarget, cleared,
5548 bitsize / BITS_PER_UNIT);
5549 else
5550 store_expr (value, xtarget, 0, false);
5552 /* Generate a conditional jump to exit the loop. */
5553 exit_cond = build2 (LT_EXPR, integer_type_node,
5554 index, hi_index);
5555 jumpif (exit_cond, loop_end, -1);
5557 /* Update the loop counter, and jump to the head of
5558 the loop. */
5559 expand_assignment (index,
5560 build2 (PLUS_EXPR, TREE_TYPE (index),
5561 index, integer_one_node),
5562 false);
5564 emit_jump (loop_start);
5566 /* Build the end of the loop. */
5567 emit_label (loop_end);
5570 else if ((index != 0 && ! host_integerp (index, 0))
5571 || ! host_integerp (TYPE_SIZE (elttype), 1))
5573 tree position;
5575 if (index == 0)
5576 index = ssize_int (1);
5578 if (minelt)
5579 index = fold_convert (ssizetype,
5580 fold_build2 (MINUS_EXPR,
5581 TREE_TYPE (index),
5582 index,
5583 TYPE_MIN_VALUE (domain)));
5585 position =
5586 size_binop (MULT_EXPR, index,
5587 fold_convert (ssizetype,
5588 TYPE_SIZE_UNIT (elttype)));
5589 xtarget = offset_address (target,
5590 expand_normal (position),
5591 highest_pow2_factor (position));
5592 xtarget = adjust_address (xtarget, mode, 0);
5593 store_expr (value, xtarget, 0, false);
5595 else
5597 if (index != 0)
5598 bitpos = ((tree_low_cst (index, 0) - minelt)
5599 * tree_low_cst (TYPE_SIZE (elttype), 1));
5600 else
5601 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5603 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5604 && TREE_CODE (type) == ARRAY_TYPE
5605 && TYPE_NONALIASED_COMPONENT (type))
5607 target = copy_rtx (target);
5608 MEM_KEEP_ALIAS_SET_P (target) = 1;
5610 store_constructor_field (target, bitsize, bitpos, mode, value,
5611 type, cleared, get_alias_set (elttype));
5614 break;
5617 case VECTOR_TYPE:
5619 unsigned HOST_WIDE_INT idx;
5620 constructor_elt *ce;
5621 int i;
5622 int need_to_clear;
5623 int icode = 0;
5624 tree elttype = TREE_TYPE (type);
5625 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5626 enum machine_mode eltmode = TYPE_MODE (elttype);
5627 HOST_WIDE_INT bitsize;
5628 HOST_WIDE_INT bitpos;
5629 rtvec vector = NULL;
5630 unsigned n_elts;
5631 alias_set_type alias;
5633 gcc_assert (eltmode != BLKmode);
5635 n_elts = TYPE_VECTOR_SUBPARTS (type);
5636 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5638 enum machine_mode mode = GET_MODE (target);
5640 icode = (int) optab_handler (vec_init_optab, mode);
5641 if (icode != CODE_FOR_nothing)
5643 unsigned int i;
5645 vector = rtvec_alloc (n_elts);
5646 for (i = 0; i < n_elts; i++)
5647 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5651 /* If the constructor has fewer elements than the vector,
5652 clear the whole array first. Similarly if this is static
5653 constructor of a non-BLKmode object. */
5654 if (cleared)
5655 need_to_clear = 0;
5656 else if (REG_P (target) && TREE_STATIC (exp))
5657 need_to_clear = 1;
5658 else
5660 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5661 tree value;
5663 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5665 int n_elts_here = tree_low_cst
5666 (int_const_binop (TRUNC_DIV_EXPR,
5667 TYPE_SIZE (TREE_TYPE (value)),
5668 TYPE_SIZE (elttype), 0), 1);
5670 count += n_elts_here;
5671 if (mostly_zeros_p (value))
5672 zero_count += n_elts_here;
5675 /* Clear the entire vector first if there are any missing elements,
5676 or if the incidence of zero elements is >= 75%. */
5677 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5680 if (need_to_clear && size > 0 && !vector)
5682 if (REG_P (target))
5683 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5684 else
5685 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5686 cleared = 1;
5689 /* Inform later passes that the old value is dead. */
5690 if (!cleared && !vector && REG_P (target))
5691 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5693 if (MEM_P (target))
5694 alias = MEM_ALIAS_SET (target);
5695 else
5696 alias = get_alias_set (elttype);
5698 /* Store each element of the constructor into the corresponding
5699 element of TARGET, determined by counting the elements. */
5700 for (idx = 0, i = 0;
5701 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5702 idx++, i += bitsize / elt_size)
5704 HOST_WIDE_INT eltpos;
5705 tree value = ce->value;
5707 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5708 if (cleared && initializer_zerop (value))
5709 continue;
5711 if (ce->index)
5712 eltpos = tree_low_cst (ce->index, 1);
5713 else
5714 eltpos = i;
5716 if (vector)
5718 /* Vector CONSTRUCTORs should only be built from smaller
5719 vectors in the case of BLKmode vectors. */
5720 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5721 RTVEC_ELT (vector, eltpos)
5722 = expand_normal (value);
5724 else
5726 enum machine_mode value_mode =
5727 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5728 ? TYPE_MODE (TREE_TYPE (value))
5729 : eltmode;
5730 bitpos = eltpos * elt_size;
5731 store_constructor_field (target, bitsize, bitpos,
5732 value_mode, value, type,
5733 cleared, alias);
5737 if (vector)
5738 emit_insn (GEN_FCN (icode)
5739 (target,
5740 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5741 break;
5744 default:
5745 gcc_unreachable ();
5749 /* Store the value of EXP (an expression tree)
5750 into a subfield of TARGET which has mode MODE and occupies
5751 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5752 If MODE is VOIDmode, it means that we are storing into a bit-field.
5754 Always return const0_rtx unless we have something particular to
5755 return.
5757 TYPE is the type of the underlying object,
5759 ALIAS_SET is the alias set for the destination. This value will
5760 (in general) be different from that for TARGET, since TARGET is a
5761 reference to the containing structure.
5763 If NONTEMPORAL is true, try generating a nontemporal store. */
5765 static rtx
5766 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5767 enum machine_mode mode, tree exp, tree type,
5768 alias_set_type alias_set, bool nontemporal)
5770 if (TREE_CODE (exp) == ERROR_MARK)
5771 return const0_rtx;
5773 /* If we have nothing to store, do nothing unless the expression has
5774 side-effects. */
5775 if (bitsize == 0)
5776 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5778 /* If we are storing into an unaligned field of an aligned union that is
5779 in a register, we may have the mode of TARGET being an integer mode but
5780 MODE == BLKmode. In that case, get an aligned object whose size and
5781 alignment are the same as TARGET and store TARGET into it (we can avoid
5782 the store if the field being stored is the entire width of TARGET). Then
5783 call ourselves recursively to store the field into a BLKmode version of
5784 that object. Finally, load from the object into TARGET. This is not
5785 very efficient in general, but should only be slightly more expensive
5786 than the otherwise-required unaligned accesses. Perhaps this can be
5787 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5788 twice, once with emit_move_insn and once via store_field. */
5790 if (mode == BLKmode
5791 && (REG_P (target) || GET_CODE (target) == SUBREG))
5793 rtx object = assign_temp (type, 0, 1, 1);
5794 rtx blk_object = adjust_address (object, BLKmode, 0);
5796 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5797 emit_move_insn (object, target);
5799 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5800 nontemporal);
5802 emit_move_insn (target, object);
5804 /* We want to return the BLKmode version of the data. */
5805 return blk_object;
5808 if (GET_CODE (target) == CONCAT)
5810 /* We're storing into a struct containing a single __complex. */
5812 gcc_assert (!bitpos);
5813 return store_expr (exp, target, 0, nontemporal);
5816 /* If the structure is in a register or if the component
5817 is a bit field, we cannot use addressing to access it.
5818 Use bit-field techniques or SUBREG to store in it. */
5820 if (mode == VOIDmode
5821 || (mode != BLKmode && ! direct_store[(int) mode]
5822 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5823 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5824 || REG_P (target)
5825 || GET_CODE (target) == SUBREG
5826 /* If the field isn't aligned enough to store as an ordinary memref,
5827 store it as a bit field. */
5828 || (mode != BLKmode
5829 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5830 || bitpos % GET_MODE_ALIGNMENT (mode))
5831 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5832 || (bitpos % BITS_PER_UNIT != 0)))
5833 /* If the RHS and field are a constant size and the size of the
5834 RHS isn't the same size as the bitfield, we must use bitfield
5835 operations. */
5836 || (bitsize >= 0
5837 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5838 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5839 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5840 decl we must use bitfield operations. */
5841 || (bitsize >= 0
5842 && TREE_CODE (exp) == MEM_REF
5843 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5844 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5845 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5846 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5848 rtx temp;
5849 gimple nop_def;
5851 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5852 implies a mask operation. If the precision is the same size as
5853 the field we're storing into, that mask is redundant. This is
5854 particularly common with bit field assignments generated by the
5855 C front end. */
5856 nop_def = get_def_for_expr (exp, NOP_EXPR);
5857 if (nop_def)
5859 tree type = TREE_TYPE (exp);
5860 if (INTEGRAL_TYPE_P (type)
5861 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5862 && bitsize == TYPE_PRECISION (type))
5864 tree op = gimple_assign_rhs1 (nop_def);
5865 type = TREE_TYPE (op);
5866 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5867 exp = op;
5871 temp = expand_normal (exp);
5873 /* If BITSIZE is narrower than the size of the type of EXP
5874 we will be narrowing TEMP. Normally, what's wanted are the
5875 low-order bits. However, if EXP's type is a record and this is
5876 big-endian machine, we want the upper BITSIZE bits. */
5877 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5878 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5879 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5880 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5881 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5882 - bitsize),
5883 NULL_RTX, 1);
5885 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5886 MODE. */
5887 if (mode != VOIDmode && mode != BLKmode
5888 && mode != TYPE_MODE (TREE_TYPE (exp)))
5889 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5891 /* If the modes of TEMP and TARGET are both BLKmode, both
5892 must be in memory and BITPOS must be aligned on a byte
5893 boundary. If so, we simply do a block copy. Likewise
5894 for a BLKmode-like TARGET. */
5895 if (GET_MODE (temp) == BLKmode
5896 && (GET_MODE (target) == BLKmode
5897 || (MEM_P (target)
5898 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5899 && (bitpos % BITS_PER_UNIT) == 0
5900 && (bitsize % BITS_PER_UNIT) == 0)))
5902 gcc_assert (MEM_P (target) && MEM_P (temp)
5903 && (bitpos % BITS_PER_UNIT) == 0);
5905 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5906 emit_block_move (target, temp,
5907 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5908 / BITS_PER_UNIT),
5909 BLOCK_OP_NORMAL);
5911 return const0_rtx;
5914 /* Store the value in the bitfield. */
5915 store_bit_field (target, bitsize, bitpos, mode, temp);
5917 return const0_rtx;
5919 else
5921 /* Now build a reference to just the desired component. */
5922 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5924 if (to_rtx == target)
5925 to_rtx = copy_rtx (to_rtx);
5927 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5928 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5929 set_mem_alias_set (to_rtx, alias_set);
5931 return store_expr (exp, to_rtx, 0, nontemporal);
5935 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5936 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5937 codes and find the ultimate containing object, which we return.
5939 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5940 bit position, and *PUNSIGNEDP to the signedness of the field.
5941 If the position of the field is variable, we store a tree
5942 giving the variable offset (in units) in *POFFSET.
5943 This offset is in addition to the bit position.
5944 If the position is not variable, we store 0 in *POFFSET.
5946 If any of the extraction expressions is volatile,
5947 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5949 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5950 Otherwise, it is a mode that can be used to access the field.
5952 If the field describes a variable-sized object, *PMODE is set to
5953 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5954 this case, but the address of the object can be found.
5956 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5957 look through nodes that serve as markers of a greater alignment than
5958 the one that can be deduced from the expression. These nodes make it
5959 possible for front-ends to prevent temporaries from being created by
5960 the middle-end on alignment considerations. For that purpose, the
5961 normal operating mode at high-level is to always pass FALSE so that
5962 the ultimate containing object is really returned; moreover, the
5963 associated predicate handled_component_p will always return TRUE
5964 on these nodes, thus indicating that they are essentially handled
5965 by get_inner_reference. TRUE should only be passed when the caller
5966 is scanning the expression in order to build another representation
5967 and specifically knows how to handle these nodes; as such, this is
5968 the normal operating mode in the RTL expanders. */
5970 tree
5971 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5972 HOST_WIDE_INT *pbitpos, tree *poffset,
5973 enum machine_mode *pmode, int *punsignedp,
5974 int *pvolatilep, bool keep_aligning)
5976 tree size_tree = 0;
5977 enum machine_mode mode = VOIDmode;
5978 bool blkmode_bitfield = false;
5979 tree offset = size_zero_node;
5980 double_int bit_offset = double_int_zero;
5982 /* First get the mode, signedness, and size. We do this from just the
5983 outermost expression. */
5984 *pbitsize = -1;
5985 if (TREE_CODE (exp) == COMPONENT_REF)
5987 tree field = TREE_OPERAND (exp, 1);
5988 size_tree = DECL_SIZE (field);
5989 if (!DECL_BIT_FIELD (field))
5990 mode = DECL_MODE (field);
5991 else if (DECL_MODE (field) == BLKmode)
5992 blkmode_bitfield = true;
5993 else if (TREE_THIS_VOLATILE (exp)
5994 && flag_strict_volatile_bitfields > 0)
5995 /* Volatile bitfields should be accessed in the mode of the
5996 field's type, not the mode computed based on the bit
5997 size. */
5998 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6000 *punsignedp = DECL_UNSIGNED (field);
6002 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6004 size_tree = TREE_OPERAND (exp, 1);
6005 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6006 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6008 /* For vector types, with the correct size of access, use the mode of
6009 inner type. */
6010 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6011 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6012 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6013 mode = TYPE_MODE (TREE_TYPE (exp));
6015 else
6017 mode = TYPE_MODE (TREE_TYPE (exp));
6018 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6020 if (mode == BLKmode)
6021 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6022 else
6023 *pbitsize = GET_MODE_BITSIZE (mode);
6026 if (size_tree != 0)
6028 if (! host_integerp (size_tree, 1))
6029 mode = BLKmode, *pbitsize = -1;
6030 else
6031 *pbitsize = tree_low_cst (size_tree, 1);
6034 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6035 and find the ultimate containing object. */
6036 while (1)
6038 switch (TREE_CODE (exp))
6040 case BIT_FIELD_REF:
6041 bit_offset
6042 = double_int_add (bit_offset,
6043 tree_to_double_int (TREE_OPERAND (exp, 2)));
6044 break;
6046 case COMPONENT_REF:
6048 tree field = TREE_OPERAND (exp, 1);
6049 tree this_offset = component_ref_field_offset (exp);
6051 /* If this field hasn't been filled in yet, don't go past it.
6052 This should only happen when folding expressions made during
6053 type construction. */
6054 if (this_offset == 0)
6055 break;
6057 offset = size_binop (PLUS_EXPR, offset, this_offset);
6058 bit_offset = double_int_add (bit_offset,
6059 tree_to_double_int
6060 (DECL_FIELD_BIT_OFFSET (field)));
6062 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6064 break;
6066 case ARRAY_REF:
6067 case ARRAY_RANGE_REF:
6069 tree index = TREE_OPERAND (exp, 1);
6070 tree low_bound = array_ref_low_bound (exp);
6071 tree unit_size = array_ref_element_size (exp);
6073 /* We assume all arrays have sizes that are a multiple of a byte.
6074 First subtract the lower bound, if any, in the type of the
6075 index, then convert to sizetype and multiply by the size of
6076 the array element. */
6077 if (! integer_zerop (low_bound))
6078 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6079 index, low_bound);
6081 offset = size_binop (PLUS_EXPR, offset,
6082 size_binop (MULT_EXPR,
6083 fold_convert (sizetype, index),
6084 unit_size));
6086 break;
6088 case REALPART_EXPR:
6089 break;
6091 case IMAGPART_EXPR:
6092 bit_offset = double_int_add (bit_offset,
6093 uhwi_to_double_int (*pbitsize));
6094 break;
6096 case VIEW_CONVERT_EXPR:
6097 if (keep_aligning && STRICT_ALIGNMENT
6098 && (TYPE_ALIGN (TREE_TYPE (exp))
6099 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6100 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6101 < BIGGEST_ALIGNMENT)
6102 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6103 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6104 goto done;
6105 break;
6107 case MEM_REF:
6108 /* Hand back the decl for MEM[&decl, off]. */
6109 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6111 tree off = TREE_OPERAND (exp, 1);
6112 if (!integer_zerop (off))
6114 double_int boff, coff = mem_ref_offset (exp);
6115 boff = double_int_lshift (coff,
6116 BITS_PER_UNIT == 8
6117 ? 3 : exact_log2 (BITS_PER_UNIT),
6118 HOST_BITS_PER_DOUBLE_INT, true);
6119 bit_offset = double_int_add (bit_offset, boff);
6121 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6123 goto done;
6125 default:
6126 goto done;
6129 /* If any reference in the chain is volatile, the effect is volatile. */
6130 if (TREE_THIS_VOLATILE (exp))
6131 *pvolatilep = 1;
6133 exp = TREE_OPERAND (exp, 0);
6135 done:
6137 /* If OFFSET is constant, see if we can return the whole thing as a
6138 constant bit position. Make sure to handle overflow during
6139 this conversion. */
6140 if (host_integerp (offset, 0))
6142 double_int tem = double_int_lshift (tree_to_double_int (offset),
6143 BITS_PER_UNIT == 8
6144 ? 3 : exact_log2 (BITS_PER_UNIT),
6145 HOST_BITS_PER_DOUBLE_INT, true);
6146 tem = double_int_add (tem, bit_offset);
6147 if (double_int_fits_in_shwi_p (tem))
6149 *pbitpos = double_int_to_shwi (tem);
6150 *poffset = offset = NULL_TREE;
6154 /* Otherwise, split it up. */
6155 if (offset)
6157 *pbitpos = double_int_to_shwi (bit_offset);
6158 *poffset = offset;
6161 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6162 if (mode == VOIDmode
6163 && blkmode_bitfield
6164 && (*pbitpos % BITS_PER_UNIT) == 0
6165 && (*pbitsize % BITS_PER_UNIT) == 0)
6166 *pmode = BLKmode;
6167 else
6168 *pmode = mode;
6170 return exp;
6173 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6174 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6175 EXP is marked as PACKED. */
6177 bool
6178 contains_packed_reference (const_tree exp)
6180 bool packed_p = false;
6182 while (1)
6184 switch (TREE_CODE (exp))
6186 case COMPONENT_REF:
6188 tree field = TREE_OPERAND (exp, 1);
6189 packed_p = DECL_PACKED (field)
6190 || TYPE_PACKED (TREE_TYPE (field))
6191 || TYPE_PACKED (TREE_TYPE (exp));
6192 if (packed_p)
6193 goto done;
6195 break;
6197 case BIT_FIELD_REF:
6198 case ARRAY_REF:
6199 case ARRAY_RANGE_REF:
6200 case REALPART_EXPR:
6201 case IMAGPART_EXPR:
6202 case VIEW_CONVERT_EXPR:
6203 break;
6205 default:
6206 goto done;
6208 exp = TREE_OPERAND (exp, 0);
6210 done:
6211 return packed_p;
6214 /* Return a tree of sizetype representing the size, in bytes, of the element
6215 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6217 tree
6218 array_ref_element_size (tree exp)
6220 tree aligned_size = TREE_OPERAND (exp, 3);
6221 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6222 location_t loc = EXPR_LOCATION (exp);
6224 /* If a size was specified in the ARRAY_REF, it's the size measured
6225 in alignment units of the element type. So multiply by that value. */
6226 if (aligned_size)
6228 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6229 sizetype from another type of the same width and signedness. */
6230 if (TREE_TYPE (aligned_size) != sizetype)
6231 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6232 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6233 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6236 /* Otherwise, take the size from that of the element type. Substitute
6237 any PLACEHOLDER_EXPR that we have. */
6238 else
6239 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6242 /* Return a tree representing the lower bound of the array mentioned in
6243 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6245 tree
6246 array_ref_low_bound (tree exp)
6248 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6250 /* If a lower bound is specified in EXP, use it. */
6251 if (TREE_OPERAND (exp, 2))
6252 return TREE_OPERAND (exp, 2);
6254 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6255 substituting for a PLACEHOLDER_EXPR as needed. */
6256 if (domain_type && TYPE_MIN_VALUE (domain_type))
6257 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6259 /* Otherwise, return a zero of the appropriate type. */
6260 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6263 /* Return a tree representing the upper bound of the array mentioned in
6264 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6266 tree
6267 array_ref_up_bound (tree exp)
6269 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6271 /* If there is a domain type and it has an upper bound, use it, substituting
6272 for a PLACEHOLDER_EXPR as needed. */
6273 if (domain_type && TYPE_MAX_VALUE (domain_type))
6274 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6276 /* Otherwise fail. */
6277 return NULL_TREE;
6280 /* Return a tree representing the offset, in bytes, of the field referenced
6281 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6283 tree
6284 component_ref_field_offset (tree exp)
6286 tree aligned_offset = TREE_OPERAND (exp, 2);
6287 tree field = TREE_OPERAND (exp, 1);
6288 location_t loc = EXPR_LOCATION (exp);
6290 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6291 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6292 value. */
6293 if (aligned_offset)
6295 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6296 sizetype from another type of the same width and signedness. */
6297 if (TREE_TYPE (aligned_offset) != sizetype)
6298 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6299 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6300 size_int (DECL_OFFSET_ALIGN (field)
6301 / BITS_PER_UNIT));
6304 /* Otherwise, take the offset from that of the field. Substitute
6305 any PLACEHOLDER_EXPR that we have. */
6306 else
6307 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6310 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6312 static unsigned HOST_WIDE_INT
6313 target_align (const_tree target)
6315 /* We might have a chain of nested references with intermediate misaligning
6316 bitfields components, so need to recurse to find out. */
6318 unsigned HOST_WIDE_INT this_align, outer_align;
6320 switch (TREE_CODE (target))
6322 case BIT_FIELD_REF:
6323 return 1;
6325 case COMPONENT_REF:
6326 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6327 outer_align = target_align (TREE_OPERAND (target, 0));
6328 return MIN (this_align, outer_align);
6330 case ARRAY_REF:
6331 case ARRAY_RANGE_REF:
6332 this_align = TYPE_ALIGN (TREE_TYPE (target));
6333 outer_align = target_align (TREE_OPERAND (target, 0));
6334 return MIN (this_align, outer_align);
6336 CASE_CONVERT:
6337 case NON_LVALUE_EXPR:
6338 case VIEW_CONVERT_EXPR:
6339 this_align = TYPE_ALIGN (TREE_TYPE (target));
6340 outer_align = target_align (TREE_OPERAND (target, 0));
6341 return MAX (this_align, outer_align);
6343 default:
6344 return TYPE_ALIGN (TREE_TYPE (target));
6349 /* Given an rtx VALUE that may contain additions and multiplications, return
6350 an equivalent value that just refers to a register, memory, or constant.
6351 This is done by generating instructions to perform the arithmetic and
6352 returning a pseudo-register containing the value.
6354 The returned value may be a REG, SUBREG, MEM or constant. */
6357 force_operand (rtx value, rtx target)
6359 rtx op1, op2;
6360 /* Use subtarget as the target for operand 0 of a binary operation. */
6361 rtx subtarget = get_subtarget (target);
6362 enum rtx_code code = GET_CODE (value);
6364 /* Check for subreg applied to an expression produced by loop optimizer. */
6365 if (code == SUBREG
6366 && !REG_P (SUBREG_REG (value))
6367 && !MEM_P (SUBREG_REG (value)))
6369 value
6370 = simplify_gen_subreg (GET_MODE (value),
6371 force_reg (GET_MODE (SUBREG_REG (value)),
6372 force_operand (SUBREG_REG (value),
6373 NULL_RTX)),
6374 GET_MODE (SUBREG_REG (value)),
6375 SUBREG_BYTE (value));
6376 code = GET_CODE (value);
6379 /* Check for a PIC address load. */
6380 if ((code == PLUS || code == MINUS)
6381 && XEXP (value, 0) == pic_offset_table_rtx
6382 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6383 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6384 || GET_CODE (XEXP (value, 1)) == CONST))
6386 if (!subtarget)
6387 subtarget = gen_reg_rtx (GET_MODE (value));
6388 emit_move_insn (subtarget, value);
6389 return subtarget;
6392 if (ARITHMETIC_P (value))
6394 op2 = XEXP (value, 1);
6395 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6396 subtarget = 0;
6397 if (code == MINUS && CONST_INT_P (op2))
6399 code = PLUS;
6400 op2 = negate_rtx (GET_MODE (value), op2);
6403 /* Check for an addition with OP2 a constant integer and our first
6404 operand a PLUS of a virtual register and something else. In that
6405 case, we want to emit the sum of the virtual register and the
6406 constant first and then add the other value. This allows virtual
6407 register instantiation to simply modify the constant rather than
6408 creating another one around this addition. */
6409 if (code == PLUS && CONST_INT_P (op2)
6410 && GET_CODE (XEXP (value, 0)) == PLUS
6411 && REG_P (XEXP (XEXP (value, 0), 0))
6412 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6413 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6415 rtx temp = expand_simple_binop (GET_MODE (value), code,
6416 XEXP (XEXP (value, 0), 0), op2,
6417 subtarget, 0, OPTAB_LIB_WIDEN);
6418 return expand_simple_binop (GET_MODE (value), code, temp,
6419 force_operand (XEXP (XEXP (value,
6420 0), 1), 0),
6421 target, 0, OPTAB_LIB_WIDEN);
6424 op1 = force_operand (XEXP (value, 0), subtarget);
6425 op2 = force_operand (op2, NULL_RTX);
6426 switch (code)
6428 case MULT:
6429 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6430 case DIV:
6431 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6432 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6433 target, 1, OPTAB_LIB_WIDEN);
6434 else
6435 return expand_divmod (0,
6436 FLOAT_MODE_P (GET_MODE (value))
6437 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6438 GET_MODE (value), op1, op2, target, 0);
6439 case MOD:
6440 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6441 target, 0);
6442 case UDIV:
6443 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6444 target, 1);
6445 case UMOD:
6446 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6447 target, 1);
6448 case ASHIFTRT:
6449 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6450 target, 0, OPTAB_LIB_WIDEN);
6451 default:
6452 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6453 target, 1, OPTAB_LIB_WIDEN);
6456 if (UNARY_P (value))
6458 if (!target)
6459 target = gen_reg_rtx (GET_MODE (value));
6460 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6461 switch (code)
6463 case ZERO_EXTEND:
6464 case SIGN_EXTEND:
6465 case TRUNCATE:
6466 case FLOAT_EXTEND:
6467 case FLOAT_TRUNCATE:
6468 convert_move (target, op1, code == ZERO_EXTEND);
6469 return target;
6471 case FIX:
6472 case UNSIGNED_FIX:
6473 expand_fix (target, op1, code == UNSIGNED_FIX);
6474 return target;
6476 case FLOAT:
6477 case UNSIGNED_FLOAT:
6478 expand_float (target, op1, code == UNSIGNED_FLOAT);
6479 return target;
6481 default:
6482 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6486 #ifdef INSN_SCHEDULING
6487 /* On machines that have insn scheduling, we want all memory reference to be
6488 explicit, so we need to deal with such paradoxical SUBREGs. */
6489 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6490 && (GET_MODE_SIZE (GET_MODE (value))
6491 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6492 value
6493 = simplify_gen_subreg (GET_MODE (value),
6494 force_reg (GET_MODE (SUBREG_REG (value)),
6495 force_operand (SUBREG_REG (value),
6496 NULL_RTX)),
6497 GET_MODE (SUBREG_REG (value)),
6498 SUBREG_BYTE (value));
6499 #endif
6501 return value;
6504 /* Subroutine of expand_expr: return nonzero iff there is no way that
6505 EXP can reference X, which is being modified. TOP_P is nonzero if this
6506 call is going to be used to determine whether we need a temporary
6507 for EXP, as opposed to a recursive call to this function.
6509 It is always safe for this routine to return zero since it merely
6510 searches for optimization opportunities. */
6513 safe_from_p (const_rtx x, tree exp, int top_p)
6515 rtx exp_rtl = 0;
6516 int i, nops;
6518 if (x == 0
6519 /* If EXP has varying size, we MUST use a target since we currently
6520 have no way of allocating temporaries of variable size
6521 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6522 So we assume here that something at a higher level has prevented a
6523 clash. This is somewhat bogus, but the best we can do. Only
6524 do this when X is BLKmode and when we are at the top level. */
6525 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6526 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6527 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6528 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6529 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6530 != INTEGER_CST)
6531 && GET_MODE (x) == BLKmode)
6532 /* If X is in the outgoing argument area, it is always safe. */
6533 || (MEM_P (x)
6534 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6535 || (GET_CODE (XEXP (x, 0)) == PLUS
6536 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6537 return 1;
6539 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6540 find the underlying pseudo. */
6541 if (GET_CODE (x) == SUBREG)
6543 x = SUBREG_REG (x);
6544 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6545 return 0;
6548 /* Now look at our tree code and possibly recurse. */
6549 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6551 case tcc_declaration:
6552 exp_rtl = DECL_RTL_IF_SET (exp);
6553 break;
6555 case tcc_constant:
6556 return 1;
6558 case tcc_exceptional:
6559 if (TREE_CODE (exp) == TREE_LIST)
6561 while (1)
6563 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6564 return 0;
6565 exp = TREE_CHAIN (exp);
6566 if (!exp)
6567 return 1;
6568 if (TREE_CODE (exp) != TREE_LIST)
6569 return safe_from_p (x, exp, 0);
6572 else if (TREE_CODE (exp) == CONSTRUCTOR)
6574 constructor_elt *ce;
6575 unsigned HOST_WIDE_INT idx;
6577 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6578 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6579 || !safe_from_p (x, ce->value, 0))
6580 return 0;
6581 return 1;
6583 else if (TREE_CODE (exp) == ERROR_MARK)
6584 return 1; /* An already-visited SAVE_EXPR? */
6585 else
6586 return 0;
6588 case tcc_statement:
6589 /* The only case we look at here is the DECL_INITIAL inside a
6590 DECL_EXPR. */
6591 return (TREE_CODE (exp) != DECL_EXPR
6592 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6593 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6594 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6596 case tcc_binary:
6597 case tcc_comparison:
6598 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6599 return 0;
6600 /* Fall through. */
6602 case tcc_unary:
6603 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6605 case tcc_expression:
6606 case tcc_reference:
6607 case tcc_vl_exp:
6608 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6609 the expression. If it is set, we conflict iff we are that rtx or
6610 both are in memory. Otherwise, we check all operands of the
6611 expression recursively. */
6613 switch (TREE_CODE (exp))
6615 case ADDR_EXPR:
6616 /* If the operand is static or we are static, we can't conflict.
6617 Likewise if we don't conflict with the operand at all. */
6618 if (staticp (TREE_OPERAND (exp, 0))
6619 || TREE_STATIC (exp)
6620 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6621 return 1;
6623 /* Otherwise, the only way this can conflict is if we are taking
6624 the address of a DECL a that address if part of X, which is
6625 very rare. */
6626 exp = TREE_OPERAND (exp, 0);
6627 if (DECL_P (exp))
6629 if (!DECL_RTL_SET_P (exp)
6630 || !MEM_P (DECL_RTL (exp)))
6631 return 0;
6632 else
6633 exp_rtl = XEXP (DECL_RTL (exp), 0);
6635 break;
6637 case MEM_REF:
6638 if (MEM_P (x)
6639 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6640 get_alias_set (exp)))
6641 return 0;
6642 break;
6644 case CALL_EXPR:
6645 /* Assume that the call will clobber all hard registers and
6646 all of memory. */
6647 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6648 || MEM_P (x))
6649 return 0;
6650 break;
6652 case WITH_CLEANUP_EXPR:
6653 case CLEANUP_POINT_EXPR:
6654 /* Lowered by gimplify.c. */
6655 gcc_unreachable ();
6657 case SAVE_EXPR:
6658 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6660 default:
6661 break;
6664 /* If we have an rtx, we do not need to scan our operands. */
6665 if (exp_rtl)
6666 break;
6668 nops = TREE_OPERAND_LENGTH (exp);
6669 for (i = 0; i < nops; i++)
6670 if (TREE_OPERAND (exp, i) != 0
6671 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6672 return 0;
6674 break;
6676 case tcc_type:
6677 /* Should never get a type here. */
6678 gcc_unreachable ();
6681 /* If we have an rtl, find any enclosed object. Then see if we conflict
6682 with it. */
6683 if (exp_rtl)
6685 if (GET_CODE (exp_rtl) == SUBREG)
6687 exp_rtl = SUBREG_REG (exp_rtl);
6688 if (REG_P (exp_rtl)
6689 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6690 return 0;
6693 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6694 are memory and they conflict. */
6695 return ! (rtx_equal_p (x, exp_rtl)
6696 || (MEM_P (x) && MEM_P (exp_rtl)
6697 && true_dependence (exp_rtl, VOIDmode, x,
6698 rtx_addr_varies_p)));
6701 /* If we reach here, it is safe. */
6702 return 1;
6706 /* Return the highest power of two that EXP is known to be a multiple of.
6707 This is used in updating alignment of MEMs in array references. */
6709 unsigned HOST_WIDE_INT
6710 highest_pow2_factor (const_tree exp)
6712 unsigned HOST_WIDE_INT c0, c1;
6714 switch (TREE_CODE (exp))
6716 case INTEGER_CST:
6717 /* We can find the lowest bit that's a one. If the low
6718 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6719 We need to handle this case since we can find it in a COND_EXPR,
6720 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6721 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6722 later ICE. */
6723 if (TREE_OVERFLOW (exp))
6724 return BIGGEST_ALIGNMENT;
6725 else
6727 /* Note: tree_low_cst is intentionally not used here,
6728 we don't care about the upper bits. */
6729 c0 = TREE_INT_CST_LOW (exp);
6730 c0 &= -c0;
6731 return c0 ? c0 : BIGGEST_ALIGNMENT;
6733 break;
6735 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6736 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6737 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6738 return MIN (c0, c1);
6740 case MULT_EXPR:
6741 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6742 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6743 return c0 * c1;
6745 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6746 case CEIL_DIV_EXPR:
6747 if (integer_pow2p (TREE_OPERAND (exp, 1))
6748 && host_integerp (TREE_OPERAND (exp, 1), 1))
6750 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6751 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6752 return MAX (1, c0 / c1);
6754 break;
6756 case BIT_AND_EXPR:
6757 /* The highest power of two of a bit-and expression is the maximum of
6758 that of its operands. We typically get here for a complex LHS and
6759 a constant negative power of two on the RHS to force an explicit
6760 alignment, so don't bother looking at the LHS. */
6761 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6763 CASE_CONVERT:
6764 case SAVE_EXPR:
6765 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6767 case COMPOUND_EXPR:
6768 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6770 case COND_EXPR:
6771 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6772 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6773 return MIN (c0, c1);
6775 default:
6776 break;
6779 return 1;
6782 /* Similar, except that the alignment requirements of TARGET are
6783 taken into account. Assume it is at least as aligned as its
6784 type, unless it is a COMPONENT_REF in which case the layout of
6785 the structure gives the alignment. */
6787 static unsigned HOST_WIDE_INT
6788 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6790 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6791 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6793 return MAX (factor, talign);
6796 /* Subroutine of expand_expr. Expand the two operands of a binary
6797 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6798 The value may be stored in TARGET if TARGET is nonzero. The
6799 MODIFIER argument is as documented by expand_expr. */
6801 static void
6802 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6803 enum expand_modifier modifier)
6805 if (! safe_from_p (target, exp1, 1))
6806 target = 0;
6807 if (operand_equal_p (exp0, exp1, 0))
6809 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6810 *op1 = copy_rtx (*op0);
6812 else
6814 /* If we need to preserve evaluation order, copy exp0 into its own
6815 temporary variable so that it can't be clobbered by exp1. */
6816 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6817 exp0 = save_expr (exp0);
6818 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6819 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6824 /* Return a MEM that contains constant EXP. DEFER is as for
6825 output_constant_def and MODIFIER is as for expand_expr. */
6827 static rtx
6828 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6830 rtx mem;
6832 mem = output_constant_def (exp, defer);
6833 if (modifier != EXPAND_INITIALIZER)
6834 mem = use_anchored_address (mem);
6835 return mem;
6838 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6839 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6841 static rtx
6842 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6843 enum expand_modifier modifier, addr_space_t as)
6845 rtx result, subtarget;
6846 tree inner, offset;
6847 HOST_WIDE_INT bitsize, bitpos;
6848 int volatilep, unsignedp;
6849 enum machine_mode mode1;
6851 /* If we are taking the address of a constant and are at the top level,
6852 we have to use output_constant_def since we can't call force_const_mem
6853 at top level. */
6854 /* ??? This should be considered a front-end bug. We should not be
6855 generating ADDR_EXPR of something that isn't an LVALUE. The only
6856 exception here is STRING_CST. */
6857 if (CONSTANT_CLASS_P (exp))
6858 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6860 /* Everything must be something allowed by is_gimple_addressable. */
6861 switch (TREE_CODE (exp))
6863 case INDIRECT_REF:
6864 /* This case will happen via recursion for &a->b. */
6865 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6867 case MEM_REF:
6869 tree tem = TREE_OPERAND (exp, 0);
6870 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6871 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6872 tem,
6873 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6874 return expand_expr (tem, target, tmode, modifier);
6877 case CONST_DECL:
6878 /* Expand the initializer like constants above. */
6879 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6881 case REALPART_EXPR:
6882 /* The real part of the complex number is always first, therefore
6883 the address is the same as the address of the parent object. */
6884 offset = 0;
6885 bitpos = 0;
6886 inner = TREE_OPERAND (exp, 0);
6887 break;
6889 case IMAGPART_EXPR:
6890 /* The imaginary part of the complex number is always second.
6891 The expression is therefore always offset by the size of the
6892 scalar type. */
6893 offset = 0;
6894 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6895 inner = TREE_OPERAND (exp, 0);
6896 break;
6898 default:
6899 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6900 expand_expr, as that can have various side effects; LABEL_DECLs for
6901 example, may not have their DECL_RTL set yet. Expand the rtl of
6902 CONSTRUCTORs too, which should yield a memory reference for the
6903 constructor's contents. Assume language specific tree nodes can
6904 be expanded in some interesting way. */
6905 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6906 if (DECL_P (exp)
6907 || TREE_CODE (exp) == CONSTRUCTOR
6908 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6910 result = expand_expr (exp, target, tmode,
6911 modifier == EXPAND_INITIALIZER
6912 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6914 /* If the DECL isn't in memory, then the DECL wasn't properly
6915 marked TREE_ADDRESSABLE, which will be either a front-end
6916 or a tree optimizer bug. */
6917 gcc_assert (MEM_P (result));
6918 result = XEXP (result, 0);
6920 /* ??? Is this needed anymore? */
6921 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6923 assemble_external (exp);
6924 TREE_USED (exp) = 1;
6927 if (modifier != EXPAND_INITIALIZER
6928 && modifier != EXPAND_CONST_ADDRESS)
6929 result = force_operand (result, target);
6930 return result;
6933 /* Pass FALSE as the last argument to get_inner_reference although
6934 we are expanding to RTL. The rationale is that we know how to
6935 handle "aligning nodes" here: we can just bypass them because
6936 they won't change the final object whose address will be returned
6937 (they actually exist only for that purpose). */
6938 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6939 &mode1, &unsignedp, &volatilep, false);
6940 break;
6943 /* We must have made progress. */
6944 gcc_assert (inner != exp);
6946 subtarget = offset || bitpos ? NULL_RTX : target;
6947 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6948 inner alignment, force the inner to be sufficiently aligned. */
6949 if (CONSTANT_CLASS_P (inner)
6950 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6952 inner = copy_node (inner);
6953 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6954 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6955 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6957 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6959 if (offset)
6961 rtx tmp;
6963 if (modifier != EXPAND_NORMAL)
6964 result = force_operand (result, NULL);
6965 tmp = expand_expr (offset, NULL_RTX, tmode,
6966 modifier == EXPAND_INITIALIZER
6967 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6969 result = convert_memory_address_addr_space (tmode, result, as);
6970 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6972 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6973 result = gen_rtx_PLUS (tmode, result, tmp);
6974 else
6976 subtarget = bitpos ? NULL_RTX : target;
6977 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6978 1, OPTAB_LIB_WIDEN);
6982 if (bitpos)
6984 /* Someone beforehand should have rejected taking the address
6985 of such an object. */
6986 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6988 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6989 if (modifier < EXPAND_SUM)
6990 result = force_operand (result, target);
6993 return result;
6996 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6997 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6999 static rtx
7000 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7001 enum expand_modifier modifier)
7003 addr_space_t as = ADDR_SPACE_GENERIC;
7004 enum machine_mode address_mode = Pmode;
7005 enum machine_mode pointer_mode = ptr_mode;
7006 enum machine_mode rmode;
7007 rtx result;
7009 /* Target mode of VOIDmode says "whatever's natural". */
7010 if (tmode == VOIDmode)
7011 tmode = TYPE_MODE (TREE_TYPE (exp));
7013 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7015 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7016 address_mode = targetm.addr_space.address_mode (as);
7017 pointer_mode = targetm.addr_space.pointer_mode (as);
7020 /* We can get called with some Weird Things if the user does silliness
7021 like "(short) &a". In that case, convert_memory_address won't do
7022 the right thing, so ignore the given target mode. */
7023 if (tmode != address_mode && tmode != pointer_mode)
7024 tmode = address_mode;
7026 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7027 tmode, modifier, as);
7029 /* Despite expand_expr claims concerning ignoring TMODE when not
7030 strictly convenient, stuff breaks if we don't honor it. Note
7031 that combined with the above, we only do this for pointer modes. */
7032 rmode = GET_MODE (result);
7033 if (rmode == VOIDmode)
7034 rmode = tmode;
7035 if (rmode != tmode)
7036 result = convert_memory_address_addr_space (tmode, result, as);
7038 return result;
7041 /* Generate code for computing CONSTRUCTOR EXP.
7042 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7043 is TRUE, instead of creating a temporary variable in memory
7044 NULL is returned and the caller needs to handle it differently. */
7046 static rtx
7047 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7048 bool avoid_temp_mem)
7050 tree type = TREE_TYPE (exp);
7051 enum machine_mode mode = TYPE_MODE (type);
7053 /* Try to avoid creating a temporary at all. This is possible
7054 if all of the initializer is zero.
7055 FIXME: try to handle all [0..255] initializers we can handle
7056 with memset. */
7057 if (TREE_STATIC (exp)
7058 && !TREE_ADDRESSABLE (exp)
7059 && target != 0 && mode == BLKmode
7060 && all_zeros_p (exp))
7062 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7063 return target;
7066 /* All elts simple constants => refer to a constant in memory. But
7067 if this is a non-BLKmode mode, let it store a field at a time
7068 since that should make a CONST_INT or CONST_DOUBLE when we
7069 fold. Likewise, if we have a target we can use, it is best to
7070 store directly into the target unless the type is large enough
7071 that memcpy will be used. If we are making an initializer and
7072 all operands are constant, put it in memory as well.
7074 FIXME: Avoid trying to fill vector constructors piece-meal.
7075 Output them with output_constant_def below unless we're sure
7076 they're zeros. This should go away when vector initializers
7077 are treated like VECTOR_CST instead of arrays. */
7078 if ((TREE_STATIC (exp)
7079 && ((mode == BLKmode
7080 && ! (target != 0 && safe_from_p (target, exp, 1)))
7081 || TREE_ADDRESSABLE (exp)
7082 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7083 && (! MOVE_BY_PIECES_P
7084 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7085 TYPE_ALIGN (type)))
7086 && ! mostly_zeros_p (exp))))
7087 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7088 && TREE_CONSTANT (exp)))
7090 rtx constructor;
7092 if (avoid_temp_mem)
7093 return NULL_RTX;
7095 constructor = expand_expr_constant (exp, 1, modifier);
7097 if (modifier != EXPAND_CONST_ADDRESS
7098 && modifier != EXPAND_INITIALIZER
7099 && modifier != EXPAND_SUM)
7100 constructor = validize_mem (constructor);
7102 return constructor;
7105 /* Handle calls that pass values in multiple non-contiguous
7106 locations. The Irix 6 ABI has examples of this. */
7107 if (target == 0 || ! safe_from_p (target, exp, 1)
7108 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7110 if (avoid_temp_mem)
7111 return NULL_RTX;
7113 target
7114 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7115 | (TREE_READONLY (exp)
7116 * TYPE_QUAL_CONST))),
7117 0, TREE_ADDRESSABLE (exp), 1);
7120 store_constructor (exp, target, 0, int_expr_size (exp));
7121 return target;
7125 /* expand_expr: generate code for computing expression EXP.
7126 An rtx for the computed value is returned. The value is never null.
7127 In the case of a void EXP, const0_rtx is returned.
7129 The value may be stored in TARGET if TARGET is nonzero.
7130 TARGET is just a suggestion; callers must assume that
7131 the rtx returned may not be the same as TARGET.
7133 If TARGET is CONST0_RTX, it means that the value will be ignored.
7135 If TMODE is not VOIDmode, it suggests generating the
7136 result in mode TMODE. But this is done only when convenient.
7137 Otherwise, TMODE is ignored and the value generated in its natural mode.
7138 TMODE is just a suggestion; callers must assume that
7139 the rtx returned may not have mode TMODE.
7141 Note that TARGET may have neither TMODE nor MODE. In that case, it
7142 probably will not be used.
7144 If MODIFIER is EXPAND_SUM then when EXP is an addition
7145 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7146 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7147 products as above, or REG or MEM, or constant.
7148 Ordinarily in such cases we would output mul or add instructions
7149 and then return a pseudo reg containing the sum.
7151 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7152 it also marks a label as absolutely required (it can't be dead).
7153 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7154 This is used for outputting expressions used in initializers.
7156 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7157 with a constant address even if that address is not normally legitimate.
7158 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7160 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7161 a call parameter. Such targets require special care as we haven't yet
7162 marked TARGET so that it's safe from being trashed by libcalls. We
7163 don't want to use TARGET for anything but the final result;
7164 Intermediate values must go elsewhere. Additionally, calls to
7165 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7167 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7168 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7169 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7170 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7171 recursively. */
7174 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7175 enum expand_modifier modifier, rtx *alt_rtl)
7177 rtx ret;
7179 /* Handle ERROR_MARK before anybody tries to access its type. */
7180 if (TREE_CODE (exp) == ERROR_MARK
7181 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7183 ret = CONST0_RTX (tmode);
7184 return ret ? ret : const0_rtx;
7187 /* If this is an expression of some kind and it has an associated line
7188 number, then emit the line number before expanding the expression.
7190 We need to save and restore the file and line information so that
7191 errors discovered during expansion are emitted with the right
7192 information. It would be better of the diagnostic routines
7193 used the file/line information embedded in the tree nodes rather
7194 than globals. */
7195 if (cfun && EXPR_HAS_LOCATION (exp))
7197 location_t saved_location = input_location;
7198 location_t saved_curr_loc = get_curr_insn_source_location ();
7199 tree saved_block = get_curr_insn_block ();
7200 input_location = EXPR_LOCATION (exp);
7201 set_curr_insn_source_location (input_location);
7203 /* Record where the insns produced belong. */
7204 set_curr_insn_block (TREE_BLOCK (exp));
7206 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7208 input_location = saved_location;
7209 set_curr_insn_block (saved_block);
7210 set_curr_insn_source_location (saved_curr_loc);
7212 else
7214 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7217 return ret;
7221 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7222 enum expand_modifier modifier)
7224 rtx op0, op1, op2, temp;
7225 tree type;
7226 int unsignedp;
7227 enum machine_mode mode;
7228 enum tree_code code = ops->code;
7229 optab this_optab;
7230 rtx subtarget, original_target;
7231 int ignore;
7232 bool reduce_bit_field;
7233 location_t loc = ops->location;
7234 tree treeop0, treeop1, treeop2;
7235 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7236 ? reduce_to_bit_field_precision ((expr), \
7237 target, \
7238 type) \
7239 : (expr))
7241 type = ops->type;
7242 mode = TYPE_MODE (type);
7243 unsignedp = TYPE_UNSIGNED (type);
7245 treeop0 = ops->op0;
7246 treeop1 = ops->op1;
7247 treeop2 = ops->op2;
7249 /* We should be called only on simple (binary or unary) expressions,
7250 exactly those that are valid in gimple expressions that aren't
7251 GIMPLE_SINGLE_RHS (or invalid). */
7252 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7253 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7254 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7256 ignore = (target == const0_rtx
7257 || ((CONVERT_EXPR_CODE_P (code)
7258 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7259 && TREE_CODE (type) == VOID_TYPE));
7261 /* We should be called only if we need the result. */
7262 gcc_assert (!ignore);
7264 /* An operation in what may be a bit-field type needs the
7265 result to be reduced to the precision of the bit-field type,
7266 which is narrower than that of the type's mode. */
7267 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7268 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7270 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7271 target = 0;
7273 /* Use subtarget as the target for operand 0 of a binary operation. */
7274 subtarget = get_subtarget (target);
7275 original_target = target;
7277 switch (code)
7279 case NON_LVALUE_EXPR:
7280 case PAREN_EXPR:
7281 CASE_CONVERT:
7282 if (treeop0 == error_mark_node)
7283 return const0_rtx;
7285 if (TREE_CODE (type) == UNION_TYPE)
7287 tree valtype = TREE_TYPE (treeop0);
7289 /* If both input and output are BLKmode, this conversion isn't doing
7290 anything except possibly changing memory attribute. */
7291 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7293 rtx result = expand_expr (treeop0, target, tmode,
7294 modifier);
7296 result = copy_rtx (result);
7297 set_mem_attributes (result, type, 0);
7298 return result;
7301 if (target == 0)
7303 if (TYPE_MODE (type) != BLKmode)
7304 target = gen_reg_rtx (TYPE_MODE (type));
7305 else
7306 target = assign_temp (type, 0, 1, 1);
7309 if (MEM_P (target))
7310 /* Store data into beginning of memory target. */
7311 store_expr (treeop0,
7312 adjust_address (target, TYPE_MODE (valtype), 0),
7313 modifier == EXPAND_STACK_PARM,
7314 false);
7316 else
7318 gcc_assert (REG_P (target));
7320 /* Store this field into a union of the proper type. */
7321 store_field (target,
7322 MIN ((int_size_in_bytes (TREE_TYPE
7323 (treeop0))
7324 * BITS_PER_UNIT),
7325 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7326 0, TYPE_MODE (valtype), treeop0,
7327 type, 0, false);
7330 /* Return the entire union. */
7331 return target;
7334 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7336 op0 = expand_expr (treeop0, target, VOIDmode,
7337 modifier);
7339 /* If the signedness of the conversion differs and OP0 is
7340 a promoted SUBREG, clear that indication since we now
7341 have to do the proper extension. */
7342 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7343 && GET_CODE (op0) == SUBREG)
7344 SUBREG_PROMOTED_VAR_P (op0) = 0;
7346 return REDUCE_BIT_FIELD (op0);
7349 op0 = expand_expr (treeop0, NULL_RTX, mode,
7350 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7351 if (GET_MODE (op0) == mode)
7354 /* If OP0 is a constant, just convert it into the proper mode. */
7355 else if (CONSTANT_P (op0))
7357 tree inner_type = TREE_TYPE (treeop0);
7358 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7360 if (modifier == EXPAND_INITIALIZER)
7361 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7362 subreg_lowpart_offset (mode,
7363 inner_mode));
7364 else
7365 op0= convert_modes (mode, inner_mode, op0,
7366 TYPE_UNSIGNED (inner_type));
7369 else if (modifier == EXPAND_INITIALIZER)
7370 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7372 else if (target == 0)
7373 op0 = convert_to_mode (mode, op0,
7374 TYPE_UNSIGNED (TREE_TYPE
7375 (treeop0)));
7376 else
7378 convert_move (target, op0,
7379 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7380 op0 = target;
7383 return REDUCE_BIT_FIELD (op0);
7385 case ADDR_SPACE_CONVERT_EXPR:
7387 tree treeop0_type = TREE_TYPE (treeop0);
7388 addr_space_t as_to;
7389 addr_space_t as_from;
7391 gcc_assert (POINTER_TYPE_P (type));
7392 gcc_assert (POINTER_TYPE_P (treeop0_type));
7394 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7395 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7397 /* Conversions between pointers to the same address space should
7398 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7399 gcc_assert (as_to != as_from);
7401 /* Ask target code to handle conversion between pointers
7402 to overlapping address spaces. */
7403 if (targetm.addr_space.subset_p (as_to, as_from)
7404 || targetm.addr_space.subset_p (as_from, as_to))
7406 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7407 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7408 gcc_assert (op0);
7409 return op0;
7412 /* For disjoint address spaces, converting anything but
7413 a null pointer invokes undefined behaviour. We simply
7414 always return a null pointer here. */
7415 return CONST0_RTX (mode);
7418 case POINTER_PLUS_EXPR:
7419 /* Even though the sizetype mode and the pointer's mode can be different
7420 expand is able to handle this correctly and get the correct result out
7421 of the PLUS_EXPR code. */
7422 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7423 if sizetype precision is smaller than pointer precision. */
7424 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7425 treeop1 = fold_convert_loc (loc, type,
7426 fold_convert_loc (loc, ssizetype,
7427 treeop1));
7428 case PLUS_EXPR:
7429 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7430 something else, make sure we add the register to the constant and
7431 then to the other thing. This case can occur during strength
7432 reduction and doing it this way will produce better code if the
7433 frame pointer or argument pointer is eliminated.
7435 fold-const.c will ensure that the constant is always in the inner
7436 PLUS_EXPR, so the only case we need to do anything about is if
7437 sp, ap, or fp is our second argument, in which case we must swap
7438 the innermost first argument and our second argument. */
7440 if (TREE_CODE (treeop0) == PLUS_EXPR
7441 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7442 && TREE_CODE (treeop1) == VAR_DECL
7443 && (DECL_RTL (treeop1) == frame_pointer_rtx
7444 || DECL_RTL (treeop1) == stack_pointer_rtx
7445 || DECL_RTL (treeop1) == arg_pointer_rtx))
7447 tree t = treeop1;
7449 treeop1 = TREE_OPERAND (treeop0, 0);
7450 TREE_OPERAND (treeop0, 0) = t;
7453 /* If the result is to be ptr_mode and we are adding an integer to
7454 something, we might be forming a constant. So try to use
7455 plus_constant. If it produces a sum and we can't accept it,
7456 use force_operand. This allows P = &ARR[const] to generate
7457 efficient code on machines where a SYMBOL_REF is not a valid
7458 address.
7460 If this is an EXPAND_SUM call, always return the sum. */
7461 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7462 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7464 if (modifier == EXPAND_STACK_PARM)
7465 target = 0;
7466 if (TREE_CODE (treeop0) == INTEGER_CST
7467 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7468 && TREE_CONSTANT (treeop1))
7470 rtx constant_part;
7472 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7473 EXPAND_SUM);
7474 /* Use immed_double_const to ensure that the constant is
7475 truncated according to the mode of OP1, then sign extended
7476 to a HOST_WIDE_INT. Using the constant directly can result
7477 in non-canonical RTL in a 64x32 cross compile. */
7478 constant_part
7479 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7480 (HOST_WIDE_INT) 0,
7481 TYPE_MODE (TREE_TYPE (treeop1)));
7482 op1 = plus_constant (op1, INTVAL (constant_part));
7483 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7484 op1 = force_operand (op1, target);
7485 return REDUCE_BIT_FIELD (op1);
7488 else if (TREE_CODE (treeop1) == INTEGER_CST
7489 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7490 && TREE_CONSTANT (treeop0))
7492 rtx constant_part;
7494 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7495 (modifier == EXPAND_INITIALIZER
7496 ? EXPAND_INITIALIZER : EXPAND_SUM));
7497 if (! CONSTANT_P (op0))
7499 op1 = expand_expr (treeop1, NULL_RTX,
7500 VOIDmode, modifier);
7501 /* Return a PLUS if modifier says it's OK. */
7502 if (modifier == EXPAND_SUM
7503 || modifier == EXPAND_INITIALIZER)
7504 return simplify_gen_binary (PLUS, mode, op0, op1);
7505 goto binop2;
7507 /* Use immed_double_const to ensure that the constant is
7508 truncated according to the mode of OP1, then sign extended
7509 to a HOST_WIDE_INT. Using the constant directly can result
7510 in non-canonical RTL in a 64x32 cross compile. */
7511 constant_part
7512 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7513 (HOST_WIDE_INT) 0,
7514 TYPE_MODE (TREE_TYPE (treeop0)));
7515 op0 = plus_constant (op0, INTVAL (constant_part));
7516 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7517 op0 = force_operand (op0, target);
7518 return REDUCE_BIT_FIELD (op0);
7522 /* Use TER to expand pointer addition of a negated value
7523 as pointer subtraction. */
7524 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7525 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7526 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7527 && TREE_CODE (treeop1) == SSA_NAME
7528 && TYPE_MODE (TREE_TYPE (treeop0))
7529 == TYPE_MODE (TREE_TYPE (treeop1)))
7531 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7532 if (def)
7534 treeop1 = gimple_assign_rhs1 (def);
7535 code = MINUS_EXPR;
7536 goto do_minus;
7540 /* No sense saving up arithmetic to be done
7541 if it's all in the wrong mode to form part of an address.
7542 And force_operand won't know whether to sign-extend or
7543 zero-extend. */
7544 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7545 || mode != ptr_mode)
7547 expand_operands (treeop0, treeop1,
7548 subtarget, &op0, &op1, EXPAND_NORMAL);
7549 if (op0 == const0_rtx)
7550 return op1;
7551 if (op1 == const0_rtx)
7552 return op0;
7553 goto binop2;
7556 expand_operands (treeop0, treeop1,
7557 subtarget, &op0, &op1, modifier);
7558 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7560 case MINUS_EXPR:
7561 do_minus:
7562 /* For initializers, we are allowed to return a MINUS of two
7563 symbolic constants. Here we handle all cases when both operands
7564 are constant. */
7565 /* Handle difference of two symbolic constants,
7566 for the sake of an initializer. */
7567 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7568 && really_constant_p (treeop0)
7569 && really_constant_p (treeop1))
7571 expand_operands (treeop0, treeop1,
7572 NULL_RTX, &op0, &op1, modifier);
7574 /* If the last operand is a CONST_INT, use plus_constant of
7575 the negated constant. Else make the MINUS. */
7576 if (CONST_INT_P (op1))
7577 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7578 else
7579 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7582 /* No sense saving up arithmetic to be done
7583 if it's all in the wrong mode to form part of an address.
7584 And force_operand won't know whether to sign-extend or
7585 zero-extend. */
7586 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7587 || mode != ptr_mode)
7588 goto binop;
7590 expand_operands (treeop0, treeop1,
7591 subtarget, &op0, &op1, modifier);
7593 /* Convert A - const to A + (-const). */
7594 if (CONST_INT_P (op1))
7596 op1 = negate_rtx (mode, op1);
7597 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7600 goto binop2;
7602 case WIDEN_MULT_PLUS_EXPR:
7603 case WIDEN_MULT_MINUS_EXPR:
7604 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7605 op2 = expand_normal (treeop2);
7606 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7607 target, unsignedp);
7608 return target;
7610 case WIDEN_MULT_EXPR:
7611 /* If first operand is constant, swap them.
7612 Thus the following special case checks need only
7613 check the second operand. */
7614 if (TREE_CODE (treeop0) == INTEGER_CST)
7616 tree t1 = treeop0;
7617 treeop0 = treeop1;
7618 treeop1 = t1;
7621 /* First, check if we have a multiplication of one signed and one
7622 unsigned operand. */
7623 if (TREE_CODE (treeop1) != INTEGER_CST
7624 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7625 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7627 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7628 this_optab = usmul_widen_optab;
7629 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7631 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7633 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7634 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7635 EXPAND_NORMAL);
7636 else
7637 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7638 EXPAND_NORMAL);
7639 goto binop3;
7643 /* Check for a multiplication with matching signedness. */
7644 else if ((TREE_CODE (treeop1) == INTEGER_CST
7645 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7646 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7647 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7649 tree op0type = TREE_TYPE (treeop0);
7650 enum machine_mode innermode = TYPE_MODE (op0type);
7651 bool zextend_p = TYPE_UNSIGNED (op0type);
7652 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7653 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7655 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7657 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7659 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7660 EXPAND_NORMAL);
7661 temp = expand_widening_mult (mode, op0, op1, target,
7662 unsignedp, this_optab);
7663 return REDUCE_BIT_FIELD (temp);
7665 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7666 && innermode == word_mode)
7668 rtx htem, hipart;
7669 op0 = expand_normal (treeop0);
7670 if (TREE_CODE (treeop1) == INTEGER_CST)
7671 op1 = convert_modes (innermode, mode,
7672 expand_normal (treeop1), unsignedp);
7673 else
7674 op1 = expand_normal (treeop1);
7675 temp = expand_binop (mode, other_optab, op0, op1, target,
7676 unsignedp, OPTAB_LIB_WIDEN);
7677 hipart = gen_highpart (innermode, temp);
7678 htem = expand_mult_highpart_adjust (innermode, hipart,
7679 op0, op1, hipart,
7680 zextend_p);
7681 if (htem != hipart)
7682 emit_move_insn (hipart, htem);
7683 return REDUCE_BIT_FIELD (temp);
7687 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7688 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7689 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7690 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7692 case FMA_EXPR:
7694 optab opt = fma_optab;
7695 gimple def0, def2;
7697 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7698 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7700 op0 = op2 = NULL;
7702 if (def0 && def2
7703 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7705 opt = fnms_optab;
7706 op0 = expand_normal (gimple_assign_rhs1 (def0));
7707 op2 = expand_normal (gimple_assign_rhs1 (def2));
7709 else if (def0
7710 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7712 opt = fnma_optab;
7713 op0 = expand_normal (gimple_assign_rhs1 (def0));
7715 else if (def2
7716 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7718 opt = fms_optab;
7719 op2 = expand_normal (gimple_assign_rhs1 (def2));
7722 if (op0 == NULL)
7723 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7724 if (op2 == NULL)
7725 op2 = expand_normal (treeop2);
7726 op1 = expand_normal (treeop1);
7728 return expand_ternary_op (TYPE_MODE (type), opt,
7729 op0, op1, op2, target, 0);
7732 case MULT_EXPR:
7733 /* If this is a fixed-point operation, then we cannot use the code
7734 below because "expand_mult" doesn't support sat/no-sat fixed-point
7735 multiplications. */
7736 if (ALL_FIXED_POINT_MODE_P (mode))
7737 goto binop;
7739 /* If first operand is constant, swap them.
7740 Thus the following special case checks need only
7741 check the second operand. */
7742 if (TREE_CODE (treeop0) == INTEGER_CST)
7744 tree t1 = treeop0;
7745 treeop0 = treeop1;
7746 treeop1 = t1;
7749 /* Attempt to return something suitable for generating an
7750 indexed address, for machines that support that. */
7752 if (modifier == EXPAND_SUM && mode == ptr_mode
7753 && host_integerp (treeop1, 0))
7755 tree exp1 = treeop1;
7757 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7758 EXPAND_SUM);
7760 if (!REG_P (op0))
7761 op0 = force_operand (op0, NULL_RTX);
7762 if (!REG_P (op0))
7763 op0 = copy_to_mode_reg (mode, op0);
7765 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7766 gen_int_mode (tree_low_cst (exp1, 0),
7767 TYPE_MODE (TREE_TYPE (exp1)))));
7770 if (modifier == EXPAND_STACK_PARM)
7771 target = 0;
7773 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7774 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7776 case TRUNC_DIV_EXPR:
7777 case FLOOR_DIV_EXPR:
7778 case CEIL_DIV_EXPR:
7779 case ROUND_DIV_EXPR:
7780 case EXACT_DIV_EXPR:
7781 /* If this is a fixed-point operation, then we cannot use the code
7782 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7783 divisions. */
7784 if (ALL_FIXED_POINT_MODE_P (mode))
7785 goto binop;
7787 if (modifier == EXPAND_STACK_PARM)
7788 target = 0;
7789 /* Possible optimization: compute the dividend with EXPAND_SUM
7790 then if the divisor is constant can optimize the case
7791 where some terms of the dividend have coeffs divisible by it. */
7792 expand_operands (treeop0, treeop1,
7793 subtarget, &op0, &op1, EXPAND_NORMAL);
7794 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7796 case RDIV_EXPR:
7797 goto binop;
7799 case TRUNC_MOD_EXPR:
7800 case FLOOR_MOD_EXPR:
7801 case CEIL_MOD_EXPR:
7802 case ROUND_MOD_EXPR:
7803 if (modifier == EXPAND_STACK_PARM)
7804 target = 0;
7805 expand_operands (treeop0, treeop1,
7806 subtarget, &op0, &op1, EXPAND_NORMAL);
7807 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7809 case FIXED_CONVERT_EXPR:
7810 op0 = expand_normal (treeop0);
7811 if (target == 0 || modifier == EXPAND_STACK_PARM)
7812 target = gen_reg_rtx (mode);
7814 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7815 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7816 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7817 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7818 else
7819 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7820 return target;
7822 case FIX_TRUNC_EXPR:
7823 op0 = expand_normal (treeop0);
7824 if (target == 0 || modifier == EXPAND_STACK_PARM)
7825 target = gen_reg_rtx (mode);
7826 expand_fix (target, op0, unsignedp);
7827 return target;
7829 case FLOAT_EXPR:
7830 op0 = expand_normal (treeop0);
7831 if (target == 0 || modifier == EXPAND_STACK_PARM)
7832 target = gen_reg_rtx (mode);
7833 /* expand_float can't figure out what to do if FROM has VOIDmode.
7834 So give it the correct mode. With -O, cse will optimize this. */
7835 if (GET_MODE (op0) == VOIDmode)
7836 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7837 op0);
7838 expand_float (target, op0,
7839 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7840 return target;
7842 case NEGATE_EXPR:
7843 op0 = expand_expr (treeop0, subtarget,
7844 VOIDmode, EXPAND_NORMAL);
7845 if (modifier == EXPAND_STACK_PARM)
7846 target = 0;
7847 temp = expand_unop (mode,
7848 optab_for_tree_code (NEGATE_EXPR, type,
7849 optab_default),
7850 op0, target, 0);
7851 gcc_assert (temp);
7852 return REDUCE_BIT_FIELD (temp);
7854 case ABS_EXPR:
7855 op0 = expand_expr (treeop0, subtarget,
7856 VOIDmode, EXPAND_NORMAL);
7857 if (modifier == EXPAND_STACK_PARM)
7858 target = 0;
7860 /* ABS_EXPR is not valid for complex arguments. */
7861 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7862 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7864 /* Unsigned abs is simply the operand. Testing here means we don't
7865 risk generating incorrect code below. */
7866 if (TYPE_UNSIGNED (type))
7867 return op0;
7869 return expand_abs (mode, op0, target, unsignedp,
7870 safe_from_p (target, treeop0, 1));
7872 case MAX_EXPR:
7873 case MIN_EXPR:
7874 target = original_target;
7875 if (target == 0
7876 || modifier == EXPAND_STACK_PARM
7877 || (MEM_P (target) && MEM_VOLATILE_P (target))
7878 || GET_MODE (target) != mode
7879 || (REG_P (target)
7880 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7881 target = gen_reg_rtx (mode);
7882 expand_operands (treeop0, treeop1,
7883 target, &op0, &op1, EXPAND_NORMAL);
7885 /* First try to do it with a special MIN or MAX instruction.
7886 If that does not win, use a conditional jump to select the proper
7887 value. */
7888 this_optab = optab_for_tree_code (code, type, optab_default);
7889 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7890 OPTAB_WIDEN);
7891 if (temp != 0)
7892 return temp;
7894 /* At this point, a MEM target is no longer useful; we will get better
7895 code without it. */
7897 if (! REG_P (target))
7898 target = gen_reg_rtx (mode);
7900 /* If op1 was placed in target, swap op0 and op1. */
7901 if (target != op0 && target == op1)
7903 temp = op0;
7904 op0 = op1;
7905 op1 = temp;
7908 /* We generate better code and avoid problems with op1 mentioning
7909 target by forcing op1 into a pseudo if it isn't a constant. */
7910 if (! CONSTANT_P (op1))
7911 op1 = force_reg (mode, op1);
7914 enum rtx_code comparison_code;
7915 rtx cmpop1 = op1;
7917 if (code == MAX_EXPR)
7918 comparison_code = unsignedp ? GEU : GE;
7919 else
7920 comparison_code = unsignedp ? LEU : LE;
7922 /* Canonicalize to comparisons against 0. */
7923 if (op1 == const1_rtx)
7925 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7926 or (a != 0 ? a : 1) for unsigned.
7927 For MIN we are safe converting (a <= 1 ? a : 1)
7928 into (a <= 0 ? a : 1) */
7929 cmpop1 = const0_rtx;
7930 if (code == MAX_EXPR)
7931 comparison_code = unsignedp ? NE : GT;
7933 if (op1 == constm1_rtx && !unsignedp)
7935 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7936 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7937 cmpop1 = const0_rtx;
7938 if (code == MIN_EXPR)
7939 comparison_code = LT;
7941 #ifdef HAVE_conditional_move
7942 /* Use a conditional move if possible. */
7943 if (can_conditionally_move_p (mode))
7945 rtx insn;
7947 /* ??? Same problem as in expmed.c: emit_conditional_move
7948 forces a stack adjustment via compare_from_rtx, and we
7949 lose the stack adjustment if the sequence we are about
7950 to create is discarded. */
7951 do_pending_stack_adjust ();
7953 start_sequence ();
7955 /* Try to emit the conditional move. */
7956 insn = emit_conditional_move (target, comparison_code,
7957 op0, cmpop1, mode,
7958 op0, op1, mode,
7959 unsignedp);
7961 /* If we could do the conditional move, emit the sequence,
7962 and return. */
7963 if (insn)
7965 rtx seq = get_insns ();
7966 end_sequence ();
7967 emit_insn (seq);
7968 return target;
7971 /* Otherwise discard the sequence and fall back to code with
7972 branches. */
7973 end_sequence ();
7975 #endif
7976 if (target != op0)
7977 emit_move_insn (target, op0);
7979 temp = gen_label_rtx ();
7980 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7981 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7982 -1);
7984 emit_move_insn (target, op1);
7985 emit_label (temp);
7986 return target;
7988 case BIT_NOT_EXPR:
7989 op0 = expand_expr (treeop0, subtarget,
7990 VOIDmode, EXPAND_NORMAL);
7991 if (modifier == EXPAND_STACK_PARM)
7992 target = 0;
7993 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7994 gcc_assert (temp);
7995 return temp;
7997 /* ??? Can optimize bitwise operations with one arg constant.
7998 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7999 and (a bitwise1 b) bitwise2 b (etc)
8000 but that is probably not worth while. */
8002 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8003 boolean values when we want in all cases to compute both of them. In
8004 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8005 as actual zero-or-1 values and then bitwise anding. In cases where
8006 there cannot be any side effects, better code would be made by
8007 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8008 how to recognize those cases. */
8010 case TRUTH_AND_EXPR:
8011 code = BIT_AND_EXPR;
8012 case BIT_AND_EXPR:
8013 goto binop;
8015 case TRUTH_OR_EXPR:
8016 code = BIT_IOR_EXPR;
8017 case BIT_IOR_EXPR:
8018 goto binop;
8020 case TRUTH_XOR_EXPR:
8021 code = BIT_XOR_EXPR;
8022 case BIT_XOR_EXPR:
8023 goto binop;
8025 case LROTATE_EXPR:
8026 case RROTATE_EXPR:
8027 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8028 || (GET_MODE_PRECISION (TYPE_MODE (type))
8029 == TYPE_PRECISION (type)));
8030 /* fall through */
8032 case LSHIFT_EXPR:
8033 case RSHIFT_EXPR:
8034 /* If this is a fixed-point operation, then we cannot use the code
8035 below because "expand_shift" doesn't support sat/no-sat fixed-point
8036 shifts. */
8037 if (ALL_FIXED_POINT_MODE_P (mode))
8038 goto binop;
8040 if (! safe_from_p (subtarget, treeop1, 1))
8041 subtarget = 0;
8042 if (modifier == EXPAND_STACK_PARM)
8043 target = 0;
8044 op0 = expand_expr (treeop0, subtarget,
8045 VOIDmode, EXPAND_NORMAL);
8046 temp = expand_shift (code, mode, op0, treeop1, target,
8047 unsignedp);
8048 if (code == LSHIFT_EXPR)
8049 temp = REDUCE_BIT_FIELD (temp);
8050 return temp;
8052 /* Could determine the answer when only additive constants differ. Also,
8053 the addition of one can be handled by changing the condition. */
8054 case LT_EXPR:
8055 case LE_EXPR:
8056 case GT_EXPR:
8057 case GE_EXPR:
8058 case EQ_EXPR:
8059 case NE_EXPR:
8060 case UNORDERED_EXPR:
8061 case ORDERED_EXPR:
8062 case UNLT_EXPR:
8063 case UNLE_EXPR:
8064 case UNGT_EXPR:
8065 case UNGE_EXPR:
8066 case UNEQ_EXPR:
8067 case LTGT_EXPR:
8068 temp = do_store_flag (ops,
8069 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8070 tmode != VOIDmode ? tmode : mode);
8071 if (temp)
8072 return temp;
8074 /* Use a compare and a jump for BLKmode comparisons, or for function
8075 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8077 if ((target == 0
8078 || modifier == EXPAND_STACK_PARM
8079 || ! safe_from_p (target, treeop0, 1)
8080 || ! safe_from_p (target, treeop1, 1)
8081 /* Make sure we don't have a hard reg (such as function's return
8082 value) live across basic blocks, if not optimizing. */
8083 || (!optimize && REG_P (target)
8084 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8085 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8087 emit_move_insn (target, const0_rtx);
8089 op1 = gen_label_rtx ();
8090 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8092 emit_move_insn (target, const1_rtx);
8094 emit_label (op1);
8095 return target;
8097 case TRUTH_NOT_EXPR:
8098 if (modifier == EXPAND_STACK_PARM)
8099 target = 0;
8100 op0 = expand_expr (treeop0, target,
8101 VOIDmode, EXPAND_NORMAL);
8102 /* The parser is careful to generate TRUTH_NOT_EXPR
8103 only with operands that are always zero or one. */
8104 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8105 target, 1, OPTAB_LIB_WIDEN);
8106 gcc_assert (temp);
8107 return temp;
8109 case COMPLEX_EXPR:
8110 /* Get the rtx code of the operands. */
8111 op0 = expand_normal (treeop0);
8112 op1 = expand_normal (treeop1);
8114 if (!target)
8115 target = gen_reg_rtx (TYPE_MODE (type));
8117 /* Move the real (op0) and imaginary (op1) parts to their location. */
8118 write_complex_part (target, op0, false);
8119 write_complex_part (target, op1, true);
8121 return target;
8123 case WIDEN_SUM_EXPR:
8125 tree oprnd0 = treeop0;
8126 tree oprnd1 = treeop1;
8128 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8129 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8130 target, unsignedp);
8131 return target;
8134 case REDUC_MAX_EXPR:
8135 case REDUC_MIN_EXPR:
8136 case REDUC_PLUS_EXPR:
8138 op0 = expand_normal (treeop0);
8139 this_optab = optab_for_tree_code (code, type, optab_default);
8140 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8141 gcc_assert (temp);
8142 return temp;
8145 case VEC_EXTRACT_EVEN_EXPR:
8146 case VEC_EXTRACT_ODD_EXPR:
8148 expand_operands (treeop0, treeop1,
8149 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8150 this_optab = optab_for_tree_code (code, type, optab_default);
8151 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8152 OPTAB_WIDEN);
8153 gcc_assert (temp);
8154 return temp;
8157 case VEC_INTERLEAVE_HIGH_EXPR:
8158 case VEC_INTERLEAVE_LOW_EXPR:
8160 expand_operands (treeop0, treeop1,
8161 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8162 this_optab = optab_for_tree_code (code, type, optab_default);
8163 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8164 OPTAB_WIDEN);
8165 gcc_assert (temp);
8166 return temp;
8169 case VEC_LSHIFT_EXPR:
8170 case VEC_RSHIFT_EXPR:
8172 target = expand_vec_shift_expr (ops, target);
8173 return target;
8176 case VEC_UNPACK_HI_EXPR:
8177 case VEC_UNPACK_LO_EXPR:
8179 op0 = expand_normal (treeop0);
8180 this_optab = optab_for_tree_code (code, type, optab_default);
8181 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8182 target, unsignedp);
8183 gcc_assert (temp);
8184 return temp;
8187 case VEC_UNPACK_FLOAT_HI_EXPR:
8188 case VEC_UNPACK_FLOAT_LO_EXPR:
8190 op0 = expand_normal (treeop0);
8191 /* The signedness is determined from input operand. */
8192 this_optab = optab_for_tree_code (code,
8193 TREE_TYPE (treeop0),
8194 optab_default);
8195 temp = expand_widen_pattern_expr
8196 (ops, op0, NULL_RTX, NULL_RTX,
8197 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8199 gcc_assert (temp);
8200 return temp;
8203 case VEC_WIDEN_MULT_HI_EXPR:
8204 case VEC_WIDEN_MULT_LO_EXPR:
8206 tree oprnd0 = treeop0;
8207 tree oprnd1 = treeop1;
8209 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8210 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8211 target, unsignedp);
8212 gcc_assert (target);
8213 return target;
8216 case VEC_PACK_TRUNC_EXPR:
8217 case VEC_PACK_SAT_EXPR:
8218 case VEC_PACK_FIX_TRUNC_EXPR:
8219 mode = TYPE_MODE (TREE_TYPE (treeop0));
8220 goto binop;
8222 default:
8223 gcc_unreachable ();
8226 /* Here to do an ordinary binary operator. */
8227 binop:
8228 expand_operands (treeop0, treeop1,
8229 subtarget, &op0, &op1, EXPAND_NORMAL);
8230 binop2:
8231 this_optab = optab_for_tree_code (code, type, optab_default);
8232 binop3:
8233 if (modifier == EXPAND_STACK_PARM)
8234 target = 0;
8235 temp = expand_binop (mode, this_optab, op0, op1, target,
8236 unsignedp, OPTAB_LIB_WIDEN);
8237 gcc_assert (temp);
8238 return REDUCE_BIT_FIELD (temp);
8240 #undef REDUCE_BIT_FIELD
8243 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8244 enum expand_modifier modifier, rtx *alt_rtl)
8246 rtx op0, op1, temp, decl_rtl;
8247 tree type;
8248 int unsignedp;
8249 enum machine_mode mode;
8250 enum tree_code code = TREE_CODE (exp);
8251 optab this_optab;
8252 rtx subtarget, original_target;
8253 int ignore;
8254 tree context;
8255 bool reduce_bit_field;
8256 location_t loc = EXPR_LOCATION (exp);
8257 struct separate_ops ops;
8258 tree treeop0, treeop1, treeop2;
8259 tree ssa_name = NULL_TREE;
8260 gimple g;
8262 type = TREE_TYPE (exp);
8263 mode = TYPE_MODE (type);
8264 unsignedp = TYPE_UNSIGNED (type);
8266 treeop0 = treeop1 = treeop2 = NULL_TREE;
8267 if (!VL_EXP_CLASS_P (exp))
8268 switch (TREE_CODE_LENGTH (code))
8270 default:
8271 case 3: treeop2 = TREE_OPERAND (exp, 2);
8272 case 2: treeop1 = TREE_OPERAND (exp, 1);
8273 case 1: treeop0 = TREE_OPERAND (exp, 0);
8274 case 0: break;
8276 ops.code = code;
8277 ops.type = type;
8278 ops.op0 = treeop0;
8279 ops.op1 = treeop1;
8280 ops.op2 = treeop2;
8281 ops.location = loc;
8283 ignore = (target == const0_rtx
8284 || ((CONVERT_EXPR_CODE_P (code)
8285 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8286 && TREE_CODE (type) == VOID_TYPE));
8288 /* An operation in what may be a bit-field type needs the
8289 result to be reduced to the precision of the bit-field type,
8290 which is narrower than that of the type's mode. */
8291 reduce_bit_field = (!ignore
8292 && TREE_CODE (type) == INTEGER_TYPE
8293 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8295 /* If we are going to ignore this result, we need only do something
8296 if there is a side-effect somewhere in the expression. If there
8297 is, short-circuit the most common cases here. Note that we must
8298 not call expand_expr with anything but const0_rtx in case this
8299 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8301 if (ignore)
8303 if (! TREE_SIDE_EFFECTS (exp))
8304 return const0_rtx;
8306 /* Ensure we reference a volatile object even if value is ignored, but
8307 don't do this if all we are doing is taking its address. */
8308 if (TREE_THIS_VOLATILE (exp)
8309 && TREE_CODE (exp) != FUNCTION_DECL
8310 && mode != VOIDmode && mode != BLKmode
8311 && modifier != EXPAND_CONST_ADDRESS)
8313 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8314 if (MEM_P (temp))
8315 temp = copy_to_reg (temp);
8316 return const0_rtx;
8319 if (TREE_CODE_CLASS (code) == tcc_unary
8320 || code == COMPONENT_REF || code == INDIRECT_REF)
8321 return expand_expr (treeop0, const0_rtx, VOIDmode,
8322 modifier);
8324 else if (TREE_CODE_CLASS (code) == tcc_binary
8325 || TREE_CODE_CLASS (code) == tcc_comparison
8326 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8328 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8329 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8330 return const0_rtx;
8332 else if (code == BIT_FIELD_REF)
8334 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8335 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8336 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8337 return const0_rtx;
8340 target = 0;
8343 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8344 target = 0;
8346 /* Use subtarget as the target for operand 0 of a binary operation. */
8347 subtarget = get_subtarget (target);
8348 original_target = target;
8350 switch (code)
8352 case LABEL_DECL:
8354 tree function = decl_function_context (exp);
8356 temp = label_rtx (exp);
8357 temp = gen_rtx_LABEL_REF (Pmode, temp);
8359 if (function != current_function_decl
8360 && function != 0)
8361 LABEL_REF_NONLOCAL_P (temp) = 1;
8363 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8364 return temp;
8367 case SSA_NAME:
8368 /* ??? ivopts calls expander, without any preparation from
8369 out-of-ssa. So fake instructions as if this was an access to the
8370 base variable. This unnecessarily allocates a pseudo, see how we can
8371 reuse it, if partition base vars have it set already. */
8372 if (!currently_expanding_to_rtl)
8373 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8374 NULL);
8376 g = get_gimple_for_ssa_name (exp);
8377 if (g)
8378 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8379 modifier, NULL);
8381 ssa_name = exp;
8382 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8383 exp = SSA_NAME_VAR (ssa_name);
8384 goto expand_decl_rtl;
8386 case PARM_DECL:
8387 case VAR_DECL:
8388 /* If a static var's type was incomplete when the decl was written,
8389 but the type is complete now, lay out the decl now. */
8390 if (DECL_SIZE (exp) == 0
8391 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8392 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8393 layout_decl (exp, 0);
8395 /* ... fall through ... */
8397 case FUNCTION_DECL:
8398 case RESULT_DECL:
8399 decl_rtl = DECL_RTL (exp);
8400 expand_decl_rtl:
8401 gcc_assert (decl_rtl);
8402 decl_rtl = copy_rtx (decl_rtl);
8403 /* Record writes to register variables. */
8404 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8405 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8407 int i = REGNO (decl_rtl);
8408 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8409 while (nregs)
8411 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8412 i++;
8413 nregs--;
8417 /* Ensure variable marked as used even if it doesn't go through
8418 a parser. If it hasn't be used yet, write out an external
8419 definition. */
8420 if (! TREE_USED (exp))
8422 assemble_external (exp);
8423 TREE_USED (exp) = 1;
8426 /* Show we haven't gotten RTL for this yet. */
8427 temp = 0;
8429 /* Variables inherited from containing functions should have
8430 been lowered by this point. */
8431 context = decl_function_context (exp);
8432 gcc_assert (!context
8433 || context == current_function_decl
8434 || TREE_STATIC (exp)
8435 || DECL_EXTERNAL (exp)
8436 /* ??? C++ creates functions that are not TREE_STATIC. */
8437 || TREE_CODE (exp) == FUNCTION_DECL);
8439 /* This is the case of an array whose size is to be determined
8440 from its initializer, while the initializer is still being parsed.
8441 See expand_decl. */
8443 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8444 temp = validize_mem (decl_rtl);
8446 /* If DECL_RTL is memory, we are in the normal case and the
8447 address is not valid, get the address into a register. */
8449 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8451 if (alt_rtl)
8452 *alt_rtl = decl_rtl;
8453 decl_rtl = use_anchored_address (decl_rtl);
8454 if (modifier != EXPAND_CONST_ADDRESS
8455 && modifier != EXPAND_SUM
8456 && !memory_address_addr_space_p (DECL_MODE (exp),
8457 XEXP (decl_rtl, 0),
8458 MEM_ADDR_SPACE (decl_rtl)))
8459 temp = replace_equiv_address (decl_rtl,
8460 copy_rtx (XEXP (decl_rtl, 0)));
8463 /* If we got something, return it. But first, set the alignment
8464 if the address is a register. */
8465 if (temp != 0)
8467 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8468 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8470 return temp;
8473 /* If the mode of DECL_RTL does not match that of the decl, it
8474 must be a promoted value. We return a SUBREG of the wanted mode,
8475 but mark it so that we know that it was already extended. */
8476 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8478 enum machine_mode pmode;
8480 /* Get the signedness to be used for this variable. Ensure we get
8481 the same mode we got when the variable was declared. */
8482 if (code == SSA_NAME
8483 && (g = SSA_NAME_DEF_STMT (ssa_name))
8484 && gimple_code (g) == GIMPLE_CALL)
8485 pmode = promote_function_mode (type, mode, &unsignedp,
8486 TREE_TYPE
8487 (TREE_TYPE (gimple_call_fn (g))),
8489 else
8490 pmode = promote_decl_mode (exp, &unsignedp);
8491 gcc_assert (GET_MODE (decl_rtl) == pmode);
8493 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8494 SUBREG_PROMOTED_VAR_P (temp) = 1;
8495 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8496 return temp;
8499 return decl_rtl;
8501 case INTEGER_CST:
8502 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8503 TREE_INT_CST_HIGH (exp), mode);
8505 return temp;
8507 case VECTOR_CST:
8509 tree tmp = NULL_TREE;
8510 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8511 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8512 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8513 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8514 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8515 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8516 return const_vector_from_tree (exp);
8517 if (GET_MODE_CLASS (mode) == MODE_INT)
8519 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8520 if (type_for_mode)
8521 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8523 if (!tmp)
8524 tmp = build_constructor_from_list (type,
8525 TREE_VECTOR_CST_ELTS (exp));
8526 return expand_expr (tmp, ignore ? const0_rtx : target,
8527 tmode, modifier);
8530 case CONST_DECL:
8531 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8533 case REAL_CST:
8534 /* If optimized, generate immediate CONST_DOUBLE
8535 which will be turned into memory by reload if necessary.
8537 We used to force a register so that loop.c could see it. But
8538 this does not allow gen_* patterns to perform optimizations with
8539 the constants. It also produces two insns in cases like "x = 1.0;".
8540 On most machines, floating-point constants are not permitted in
8541 many insns, so we'd end up copying it to a register in any case.
8543 Now, we do the copying in expand_binop, if appropriate. */
8544 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8545 TYPE_MODE (TREE_TYPE (exp)));
8547 case FIXED_CST:
8548 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8549 TYPE_MODE (TREE_TYPE (exp)));
8551 case COMPLEX_CST:
8552 /* Handle evaluating a complex constant in a CONCAT target. */
8553 if (original_target && GET_CODE (original_target) == CONCAT)
8555 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8556 rtx rtarg, itarg;
8558 rtarg = XEXP (original_target, 0);
8559 itarg = XEXP (original_target, 1);
8561 /* Move the real and imaginary parts separately. */
8562 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8563 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8565 if (op0 != rtarg)
8566 emit_move_insn (rtarg, op0);
8567 if (op1 != itarg)
8568 emit_move_insn (itarg, op1);
8570 return original_target;
8573 /* ... fall through ... */
8575 case STRING_CST:
8576 temp = expand_expr_constant (exp, 1, modifier);
8578 /* temp contains a constant address.
8579 On RISC machines where a constant address isn't valid,
8580 make some insns to get that address into a register. */
8581 if (modifier != EXPAND_CONST_ADDRESS
8582 && modifier != EXPAND_INITIALIZER
8583 && modifier != EXPAND_SUM
8584 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8585 MEM_ADDR_SPACE (temp)))
8586 return replace_equiv_address (temp,
8587 copy_rtx (XEXP (temp, 0)));
8588 return temp;
8590 case SAVE_EXPR:
8592 tree val = treeop0;
8593 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8595 if (!SAVE_EXPR_RESOLVED_P (exp))
8597 /* We can indeed still hit this case, typically via builtin
8598 expanders calling save_expr immediately before expanding
8599 something. Assume this means that we only have to deal
8600 with non-BLKmode values. */
8601 gcc_assert (GET_MODE (ret) != BLKmode);
8603 val = build_decl (EXPR_LOCATION (exp),
8604 VAR_DECL, NULL, TREE_TYPE (exp));
8605 DECL_ARTIFICIAL (val) = 1;
8606 DECL_IGNORED_P (val) = 1;
8607 treeop0 = val;
8608 TREE_OPERAND (exp, 0) = treeop0;
8609 SAVE_EXPR_RESOLVED_P (exp) = 1;
8611 if (!CONSTANT_P (ret))
8612 ret = copy_to_reg (ret);
8613 SET_DECL_RTL (val, ret);
8616 return ret;
8620 case CONSTRUCTOR:
8621 /* If we don't need the result, just ensure we evaluate any
8622 subexpressions. */
8623 if (ignore)
8625 unsigned HOST_WIDE_INT idx;
8626 tree value;
8628 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8629 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8631 return const0_rtx;
8634 return expand_constructor (exp, target, modifier, false);
8636 case TARGET_MEM_REF:
8638 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8639 struct mem_address addr;
8640 int icode, align;
8642 get_address_description (exp, &addr);
8643 op0 = addr_for_mem_ref (&addr, as, true);
8644 op0 = memory_address_addr_space (mode, op0, as);
8645 temp = gen_rtx_MEM (mode, op0);
8646 set_mem_attributes (temp, exp, 0);
8647 set_mem_addr_space (temp, as);
8648 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8649 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8650 if (mode != BLKmode
8651 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8652 /* If the target does not have special handling for unaligned
8653 loads of mode then it can use regular moves for them. */
8654 && ((icode = optab_handler (movmisalign_optab, mode))
8655 != CODE_FOR_nothing))
8657 rtx reg, insn;
8659 /* We've already validated the memory, and we're creating a
8660 new pseudo destination. The predicates really can't fail. */
8661 reg = gen_reg_rtx (mode);
8663 /* Nor can the insn generator. */
8664 insn = GEN_FCN (icode) (reg, temp);
8665 gcc_assert (insn != NULL_RTX);
8666 emit_insn (insn);
8668 return reg;
8670 return temp;
8673 case MEM_REF:
8675 addr_space_t as
8676 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8677 enum machine_mode address_mode;
8678 tree base = TREE_OPERAND (exp, 0);
8679 gimple def_stmt;
8680 int icode, align;
8681 /* Handle expansion of non-aliased memory with non-BLKmode. That
8682 might end up in a register. */
8683 if (TREE_CODE (base) == ADDR_EXPR)
8685 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8686 tree bit_offset;
8687 base = TREE_OPERAND (base, 0);
8688 if (!DECL_P (base))
8690 HOST_WIDE_INT off;
8691 base = get_addr_base_and_unit_offset (base, &off);
8692 gcc_assert (base);
8693 offset += off;
8695 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8696 decl we must use bitfield operations. */
8697 if (DECL_P (base)
8698 && !TREE_ADDRESSABLE (base)
8699 && DECL_MODE (base) != BLKmode
8700 && DECL_RTL_SET_P (base)
8701 && !MEM_P (DECL_RTL (base)))
8703 tree bftype;
8704 if (offset == 0
8705 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8706 && (GET_MODE_BITSIZE (DECL_MODE (base))
8707 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8708 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8709 TREE_TYPE (exp), base),
8710 target, tmode, modifier);
8711 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8712 bftype = TREE_TYPE (base);
8713 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8714 bftype = TREE_TYPE (exp);
8715 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8716 base,
8717 TYPE_SIZE (TREE_TYPE (exp)),
8718 bit_offset),
8719 target, tmode, modifier);
8722 address_mode = targetm.addr_space.address_mode (as);
8723 base = TREE_OPERAND (exp, 0);
8724 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8726 tree mask = gimple_assign_rhs2 (def_stmt);
8727 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8728 gimple_assign_rhs1 (def_stmt), mask);
8729 TREE_OPERAND (exp, 0) = base;
8731 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8732 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8733 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
8734 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8735 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8737 rtx off
8738 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8739 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8741 op0 = memory_address_addr_space (mode, op0, as);
8742 temp = gen_rtx_MEM (mode, op0);
8743 set_mem_attributes (temp, exp, 0);
8744 set_mem_addr_space (temp, as);
8745 if (TREE_THIS_VOLATILE (exp))
8746 MEM_VOLATILE_P (temp) = 1;
8747 if (mode != BLKmode
8748 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8749 /* If the target does not have special handling for unaligned
8750 loads of mode then it can use regular moves for them. */
8751 && ((icode = optab_handler (movmisalign_optab, mode))
8752 != CODE_FOR_nothing))
8754 rtx reg, insn;
8756 /* We've already validated the memory, and we're creating a
8757 new pseudo destination. The predicates really can't fail. */
8758 reg = gen_reg_rtx (mode);
8760 /* Nor can the insn generator. */
8761 insn = GEN_FCN (icode) (reg, temp);
8762 emit_insn (insn);
8764 return reg;
8766 return temp;
8769 case ARRAY_REF:
8772 tree array = treeop0;
8773 tree index = treeop1;
8775 /* Fold an expression like: "foo"[2].
8776 This is not done in fold so it won't happen inside &.
8777 Don't fold if this is for wide characters since it's too
8778 difficult to do correctly and this is a very rare case. */
8780 if (modifier != EXPAND_CONST_ADDRESS
8781 && modifier != EXPAND_INITIALIZER
8782 && modifier != EXPAND_MEMORY)
8784 tree t = fold_read_from_constant_string (exp);
8786 if (t)
8787 return expand_expr (t, target, tmode, modifier);
8790 /* If this is a constant index into a constant array,
8791 just get the value from the array. Handle both the cases when
8792 we have an explicit constructor and when our operand is a variable
8793 that was declared const. */
8795 if (modifier != EXPAND_CONST_ADDRESS
8796 && modifier != EXPAND_INITIALIZER
8797 && modifier != EXPAND_MEMORY
8798 && TREE_CODE (array) == CONSTRUCTOR
8799 && ! TREE_SIDE_EFFECTS (array)
8800 && TREE_CODE (index) == INTEGER_CST)
8802 unsigned HOST_WIDE_INT ix;
8803 tree field, value;
8805 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8806 field, value)
8807 if (tree_int_cst_equal (field, index))
8809 if (!TREE_SIDE_EFFECTS (value))
8810 return expand_expr (fold (value), target, tmode, modifier);
8811 break;
8815 else if (optimize >= 1
8816 && modifier != EXPAND_CONST_ADDRESS
8817 && modifier != EXPAND_INITIALIZER
8818 && modifier != EXPAND_MEMORY
8819 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8820 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8821 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8822 && const_value_known_p (array))
8824 if (TREE_CODE (index) == INTEGER_CST)
8826 tree init = DECL_INITIAL (array);
8828 if (TREE_CODE (init) == CONSTRUCTOR)
8830 unsigned HOST_WIDE_INT ix;
8831 tree field, value;
8833 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8834 field, value)
8835 if (tree_int_cst_equal (field, index))
8837 if (TREE_SIDE_EFFECTS (value))
8838 break;
8840 if (TREE_CODE (value) == CONSTRUCTOR)
8842 /* If VALUE is a CONSTRUCTOR, this
8843 optimization is only useful if
8844 this doesn't store the CONSTRUCTOR
8845 into memory. If it does, it is more
8846 efficient to just load the data from
8847 the array directly. */
8848 rtx ret = expand_constructor (value, target,
8849 modifier, true);
8850 if (ret == NULL_RTX)
8851 break;
8854 return expand_expr (fold (value), target, tmode,
8855 modifier);
8858 else if(TREE_CODE (init) == STRING_CST)
8860 tree index1 = index;
8861 tree low_bound = array_ref_low_bound (exp);
8862 index1 = fold_convert_loc (loc, sizetype,
8863 treeop1);
8865 /* Optimize the special-case of a zero lower bound.
8867 We convert the low_bound to sizetype to avoid some problems
8868 with constant folding. (E.g. suppose the lower bound is 1,
8869 and its mode is QI. Without the conversion,l (ARRAY
8870 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8871 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8873 if (! integer_zerop (low_bound))
8874 index1 = size_diffop_loc (loc, index1,
8875 fold_convert_loc (loc, sizetype,
8876 low_bound));
8878 if (0 > compare_tree_int (index1,
8879 TREE_STRING_LENGTH (init)))
8881 tree type = TREE_TYPE (TREE_TYPE (init));
8882 enum machine_mode mode = TYPE_MODE (type);
8884 if (GET_MODE_CLASS (mode) == MODE_INT
8885 && GET_MODE_SIZE (mode) == 1)
8886 return gen_int_mode (TREE_STRING_POINTER (init)
8887 [TREE_INT_CST_LOW (index1)],
8888 mode);
8894 goto normal_inner_ref;
8896 case COMPONENT_REF:
8897 /* If the operand is a CONSTRUCTOR, we can just extract the
8898 appropriate field if it is present. */
8899 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8901 unsigned HOST_WIDE_INT idx;
8902 tree field, value;
8904 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8905 idx, field, value)
8906 if (field == treeop1
8907 /* We can normally use the value of the field in the
8908 CONSTRUCTOR. However, if this is a bitfield in
8909 an integral mode that we can fit in a HOST_WIDE_INT,
8910 we must mask only the number of bits in the bitfield,
8911 since this is done implicitly by the constructor. If
8912 the bitfield does not meet either of those conditions,
8913 we can't do this optimization. */
8914 && (! DECL_BIT_FIELD (field)
8915 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8916 && (GET_MODE_BITSIZE (DECL_MODE (field))
8917 <= HOST_BITS_PER_WIDE_INT))))
8919 if (DECL_BIT_FIELD (field)
8920 && modifier == EXPAND_STACK_PARM)
8921 target = 0;
8922 op0 = expand_expr (value, target, tmode, modifier);
8923 if (DECL_BIT_FIELD (field))
8925 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8926 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8928 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8930 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8931 op0 = expand_and (imode, op0, op1, target);
8933 else
8935 tree count
8936 = build_int_cst (NULL_TREE,
8937 GET_MODE_BITSIZE (imode) - bitsize);
8939 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8940 target, 0);
8941 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8942 target, 0);
8946 return op0;
8949 goto normal_inner_ref;
8951 case BIT_FIELD_REF:
8952 case ARRAY_RANGE_REF:
8953 normal_inner_ref:
8955 enum machine_mode mode1, mode2;
8956 HOST_WIDE_INT bitsize, bitpos;
8957 tree offset;
8958 int volatilep = 0, must_force_mem;
8959 bool packedp = false;
8960 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8961 &mode1, &unsignedp, &volatilep, true);
8962 rtx orig_op0, memloc;
8964 /* If we got back the original object, something is wrong. Perhaps
8965 we are evaluating an expression too early. In any event, don't
8966 infinitely recurse. */
8967 gcc_assert (tem != exp);
8969 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
8970 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
8971 && DECL_PACKED (TREE_OPERAND (exp, 1))))
8972 packedp = true;
8974 /* If TEM's type is a union of variable size, pass TARGET to the inner
8975 computation, since it will need a temporary and TARGET is known
8976 to have to do. This occurs in unchecked conversion in Ada. */
8977 orig_op0 = op0
8978 = expand_expr (tem,
8979 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8980 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8981 != INTEGER_CST)
8982 && modifier != EXPAND_STACK_PARM
8983 ? target : NULL_RTX),
8984 VOIDmode,
8985 (modifier == EXPAND_INITIALIZER
8986 || modifier == EXPAND_CONST_ADDRESS
8987 || modifier == EXPAND_STACK_PARM)
8988 ? modifier : EXPAND_NORMAL);
8991 /* If the bitfield is volatile, we want to access it in the
8992 field's mode, not the computed mode.
8993 If a MEM has VOIDmode (external with incomplete type),
8994 use BLKmode for it instead. */
8995 if (MEM_P (op0))
8997 if (volatilep && flag_strict_volatile_bitfields > 0)
8998 op0 = adjust_address (op0, mode1, 0);
8999 else if (GET_MODE (op0) == VOIDmode)
9000 op0 = adjust_address (op0, BLKmode, 0);
9003 mode2
9004 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9006 /* If we have either an offset, a BLKmode result, or a reference
9007 outside the underlying object, we must force it to memory.
9008 Such a case can occur in Ada if we have unchecked conversion
9009 of an expression from a scalar type to an aggregate type or
9010 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9011 passed a partially uninitialized object or a view-conversion
9012 to a larger size. */
9013 must_force_mem = (offset
9014 || mode1 == BLKmode
9015 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9017 /* Handle CONCAT first. */
9018 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9020 if (bitpos == 0
9021 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9022 return op0;
9023 if (bitpos == 0
9024 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9025 && bitsize)
9027 op0 = XEXP (op0, 0);
9028 mode2 = GET_MODE (op0);
9030 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9031 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9032 && bitpos
9033 && bitsize)
9035 op0 = XEXP (op0, 1);
9036 bitpos = 0;
9037 mode2 = GET_MODE (op0);
9039 else
9040 /* Otherwise force into memory. */
9041 must_force_mem = 1;
9044 /* If this is a constant, put it in a register if it is a legitimate
9045 constant and we don't need a memory reference. */
9046 if (CONSTANT_P (op0)
9047 && mode2 != BLKmode
9048 && LEGITIMATE_CONSTANT_P (op0)
9049 && !must_force_mem)
9050 op0 = force_reg (mode2, op0);
9052 /* Otherwise, if this is a constant, try to force it to the constant
9053 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9054 is a legitimate constant. */
9055 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9056 op0 = validize_mem (memloc);
9058 /* Otherwise, if this is a constant or the object is not in memory
9059 and need be, put it there. */
9060 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9062 tree nt = build_qualified_type (TREE_TYPE (tem),
9063 (TYPE_QUALS (TREE_TYPE (tem))
9064 | TYPE_QUAL_CONST));
9065 memloc = assign_temp (nt, 1, 1, 1);
9066 emit_move_insn (memloc, op0);
9067 op0 = memloc;
9070 if (offset)
9072 enum machine_mode address_mode;
9073 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9074 EXPAND_SUM);
9076 gcc_assert (MEM_P (op0));
9078 address_mode
9079 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9080 if (GET_MODE (offset_rtx) != address_mode)
9081 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9083 if (GET_MODE (op0) == BLKmode
9084 /* A constant address in OP0 can have VOIDmode, we must
9085 not try to call force_reg in that case. */
9086 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9087 && bitsize != 0
9088 && (bitpos % bitsize) == 0
9089 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9090 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9092 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9093 bitpos = 0;
9096 op0 = offset_address (op0, offset_rtx,
9097 highest_pow2_factor (offset));
9100 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9101 record its alignment as BIGGEST_ALIGNMENT. */
9102 if (MEM_P (op0) && bitpos == 0 && offset != 0
9103 && is_aligning_offset (offset, tem))
9104 set_mem_align (op0, BIGGEST_ALIGNMENT);
9106 /* Don't forget about volatility even if this is a bitfield. */
9107 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9109 if (op0 == orig_op0)
9110 op0 = copy_rtx (op0);
9112 MEM_VOLATILE_P (op0) = 1;
9115 /* In cases where an aligned union has an unaligned object
9116 as a field, we might be extracting a BLKmode value from
9117 an integer-mode (e.g., SImode) object. Handle this case
9118 by doing the extract into an object as wide as the field
9119 (which we know to be the width of a basic mode), then
9120 storing into memory, and changing the mode to BLKmode. */
9121 if (mode1 == VOIDmode
9122 || REG_P (op0) || GET_CODE (op0) == SUBREG
9123 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9124 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9125 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9126 && modifier != EXPAND_CONST_ADDRESS
9127 && modifier != EXPAND_INITIALIZER)
9128 /* If the field is volatile, we always want an aligned
9129 access. */
9130 || (volatilep && flag_strict_volatile_bitfields > 0)
9131 /* If the field isn't aligned enough to fetch as a memref,
9132 fetch it as a bit field. */
9133 || (mode1 != BLKmode
9134 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9135 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9136 || (MEM_P (op0)
9137 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9138 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9139 && ((modifier == EXPAND_CONST_ADDRESS
9140 || modifier == EXPAND_INITIALIZER)
9141 ? STRICT_ALIGNMENT
9142 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9143 || (bitpos % BITS_PER_UNIT != 0)))
9144 /* If the type and the field are a constant size and the
9145 size of the type isn't the same size as the bitfield,
9146 we must use bitfield operations. */
9147 || (bitsize >= 0
9148 && TYPE_SIZE (TREE_TYPE (exp))
9149 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9150 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9151 bitsize)))
9153 enum machine_mode ext_mode = mode;
9155 if (ext_mode == BLKmode
9156 && ! (target != 0 && MEM_P (op0)
9157 && MEM_P (target)
9158 && bitpos % BITS_PER_UNIT == 0))
9159 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9161 if (ext_mode == BLKmode)
9163 if (target == 0)
9164 target = assign_temp (type, 0, 1, 1);
9166 if (bitsize == 0)
9167 return target;
9169 /* In this case, BITPOS must start at a byte boundary and
9170 TARGET, if specified, must be a MEM. */
9171 gcc_assert (MEM_P (op0)
9172 && (!target || MEM_P (target))
9173 && !(bitpos % BITS_PER_UNIT));
9175 emit_block_move (target,
9176 adjust_address (op0, VOIDmode,
9177 bitpos / BITS_PER_UNIT),
9178 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9179 / BITS_PER_UNIT),
9180 (modifier == EXPAND_STACK_PARM
9181 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9183 return target;
9186 op0 = validize_mem (op0);
9188 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9189 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9191 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9192 (modifier == EXPAND_STACK_PARM
9193 ? NULL_RTX : target),
9194 ext_mode, ext_mode);
9196 /* If the result is a record type and BITSIZE is narrower than
9197 the mode of OP0, an integral mode, and this is a big endian
9198 machine, we must put the field into the high-order bits. */
9199 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9200 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9201 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9202 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9203 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9204 - bitsize),
9205 op0, 1);
9207 /* If the result type is BLKmode, store the data into a temporary
9208 of the appropriate type, but with the mode corresponding to the
9209 mode for the data we have (op0's mode). It's tempting to make
9210 this a constant type, since we know it's only being stored once,
9211 but that can cause problems if we are taking the address of this
9212 COMPONENT_REF because the MEM of any reference via that address
9213 will have flags corresponding to the type, which will not
9214 necessarily be constant. */
9215 if (mode == BLKmode)
9217 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9218 rtx new_rtx;
9220 /* If the reference doesn't use the alias set of its type,
9221 we cannot create the temporary using that type. */
9222 if (component_uses_parent_alias_set (exp))
9224 new_rtx = assign_stack_local (ext_mode, size, 0);
9225 set_mem_alias_set (new_rtx, get_alias_set (exp));
9227 else
9228 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9230 emit_move_insn (new_rtx, op0);
9231 op0 = copy_rtx (new_rtx);
9232 PUT_MODE (op0, BLKmode);
9233 set_mem_attributes (op0, exp, 1);
9236 return op0;
9239 /* If the result is BLKmode, use that to access the object
9240 now as well. */
9241 if (mode == BLKmode)
9242 mode1 = BLKmode;
9244 /* Get a reference to just this component. */
9245 if (modifier == EXPAND_CONST_ADDRESS
9246 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9247 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9248 else
9249 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9251 if (op0 == orig_op0)
9252 op0 = copy_rtx (op0);
9254 set_mem_attributes (op0, exp, 0);
9255 if (REG_P (XEXP (op0, 0)))
9256 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9258 MEM_VOLATILE_P (op0) |= volatilep;
9259 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9260 || modifier == EXPAND_CONST_ADDRESS
9261 || modifier == EXPAND_INITIALIZER)
9262 return op0;
9263 else if (target == 0)
9264 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9266 convert_move (target, op0, unsignedp);
9267 return target;
9270 case OBJ_TYPE_REF:
9271 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9273 case CALL_EXPR:
9274 /* All valid uses of __builtin_va_arg_pack () are removed during
9275 inlining. */
9276 if (CALL_EXPR_VA_ARG_PACK (exp))
9277 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9279 tree fndecl = get_callee_fndecl (exp), attr;
9281 if (fndecl
9282 && (attr = lookup_attribute ("error",
9283 DECL_ATTRIBUTES (fndecl))) != NULL)
9284 error ("%Kcall to %qs declared with attribute error: %s",
9285 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9286 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9287 if (fndecl
9288 && (attr = lookup_attribute ("warning",
9289 DECL_ATTRIBUTES (fndecl))) != NULL)
9290 warning_at (tree_nonartificial_location (exp),
9291 0, "%Kcall to %qs declared with attribute warning: %s",
9292 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9293 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9295 /* Check for a built-in function. */
9296 if (fndecl && DECL_BUILT_IN (fndecl))
9298 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9299 return expand_builtin (exp, target, subtarget, tmode, ignore);
9302 return expand_call (exp, target, ignore);
9304 case VIEW_CONVERT_EXPR:
9305 op0 = NULL_RTX;
9307 /* If we are converting to BLKmode, try to avoid an intermediate
9308 temporary by fetching an inner memory reference. */
9309 if (mode == BLKmode
9310 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9311 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9312 && handled_component_p (treeop0))
9314 enum machine_mode mode1;
9315 HOST_WIDE_INT bitsize, bitpos;
9316 tree offset;
9317 int unsignedp;
9318 int volatilep = 0;
9319 tree tem
9320 = get_inner_reference (treeop0, &bitsize, &bitpos,
9321 &offset, &mode1, &unsignedp, &volatilep,
9322 true);
9323 rtx orig_op0;
9325 /* ??? We should work harder and deal with non-zero offsets. */
9326 if (!offset
9327 && (bitpos % BITS_PER_UNIT) == 0
9328 && bitsize >= 0
9329 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9331 /* See the normal_inner_ref case for the rationale. */
9332 orig_op0
9333 = expand_expr (tem,
9334 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9335 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9336 != INTEGER_CST)
9337 && modifier != EXPAND_STACK_PARM
9338 ? target : NULL_RTX),
9339 VOIDmode,
9340 (modifier == EXPAND_INITIALIZER
9341 || modifier == EXPAND_CONST_ADDRESS
9342 || modifier == EXPAND_STACK_PARM)
9343 ? modifier : EXPAND_NORMAL);
9345 if (MEM_P (orig_op0))
9347 op0 = orig_op0;
9349 /* Get a reference to just this component. */
9350 if (modifier == EXPAND_CONST_ADDRESS
9351 || modifier == EXPAND_SUM
9352 || modifier == EXPAND_INITIALIZER)
9353 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9354 else
9355 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9357 if (op0 == orig_op0)
9358 op0 = copy_rtx (op0);
9360 set_mem_attributes (op0, treeop0, 0);
9361 if (REG_P (XEXP (op0, 0)))
9362 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9364 MEM_VOLATILE_P (op0) |= volatilep;
9369 if (!op0)
9370 op0 = expand_expr (treeop0,
9371 NULL_RTX, VOIDmode, modifier);
9373 /* If the input and output modes are both the same, we are done. */
9374 if (mode == GET_MODE (op0))
9376 /* If neither mode is BLKmode, and both modes are the same size
9377 then we can use gen_lowpart. */
9378 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9379 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9380 && !COMPLEX_MODE_P (GET_MODE (op0)))
9382 if (GET_CODE (op0) == SUBREG)
9383 op0 = force_reg (GET_MODE (op0), op0);
9384 temp = gen_lowpart_common (mode, op0);
9385 if (temp)
9386 op0 = temp;
9387 else
9389 if (!REG_P (op0) && !MEM_P (op0))
9390 op0 = force_reg (GET_MODE (op0), op0);
9391 op0 = gen_lowpart (mode, op0);
9394 /* If both types are integral, convert from one mode to the other. */
9395 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9396 op0 = convert_modes (mode, GET_MODE (op0), op0,
9397 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9398 /* As a last resort, spill op0 to memory, and reload it in a
9399 different mode. */
9400 else if (!MEM_P (op0))
9402 /* If the operand is not a MEM, force it into memory. Since we
9403 are going to be changing the mode of the MEM, don't call
9404 force_const_mem for constants because we don't allow pool
9405 constants to change mode. */
9406 tree inner_type = TREE_TYPE (treeop0);
9408 gcc_assert (!TREE_ADDRESSABLE (exp));
9410 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9411 target
9412 = assign_stack_temp_for_type
9413 (TYPE_MODE (inner_type),
9414 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9416 emit_move_insn (target, op0);
9417 op0 = target;
9420 /* At this point, OP0 is in the correct mode. If the output type is
9421 such that the operand is known to be aligned, indicate that it is.
9422 Otherwise, we need only be concerned about alignment for non-BLKmode
9423 results. */
9424 if (MEM_P (op0))
9426 op0 = copy_rtx (op0);
9428 if (TYPE_ALIGN_OK (type))
9429 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9430 else if (STRICT_ALIGNMENT
9431 && mode != BLKmode
9432 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9434 tree inner_type = TREE_TYPE (treeop0);
9435 HOST_WIDE_INT temp_size
9436 = MAX (int_size_in_bytes (inner_type),
9437 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9438 rtx new_rtx
9439 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9440 rtx new_with_op0_mode
9441 = adjust_address (new_rtx, GET_MODE (op0), 0);
9443 gcc_assert (!TREE_ADDRESSABLE (exp));
9445 if (GET_MODE (op0) == BLKmode)
9446 emit_block_move (new_with_op0_mode, op0,
9447 GEN_INT (GET_MODE_SIZE (mode)),
9448 (modifier == EXPAND_STACK_PARM
9449 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9450 else
9451 emit_move_insn (new_with_op0_mode, op0);
9453 op0 = new_rtx;
9456 op0 = adjust_address (op0, mode, 0);
9459 return op0;
9461 /* Use a compare and a jump for BLKmode comparisons, or for function
9462 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9464 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9465 are occassionally created by folding during expansion. */
9466 case TRUTH_ANDIF_EXPR:
9467 case TRUTH_ORIF_EXPR:
9468 if (! ignore
9469 && (target == 0
9470 || modifier == EXPAND_STACK_PARM
9471 || ! safe_from_p (target, treeop0, 1)
9472 || ! safe_from_p (target, treeop1, 1)
9473 /* Make sure we don't have a hard reg (such as function's return
9474 value) live across basic blocks, if not optimizing. */
9475 || (!optimize && REG_P (target)
9476 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9477 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9479 if (target)
9480 emit_move_insn (target, const0_rtx);
9482 op1 = gen_label_rtx ();
9483 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9485 if (target)
9486 emit_move_insn (target, const1_rtx);
9488 emit_label (op1);
9489 return ignore ? const0_rtx : target;
9491 case STATEMENT_LIST:
9493 tree_stmt_iterator iter;
9495 gcc_assert (ignore);
9497 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9498 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9500 return const0_rtx;
9502 case COND_EXPR:
9503 /* A COND_EXPR with its type being VOID_TYPE represents a
9504 conditional jump and is handled in
9505 expand_gimple_cond_expr. */
9506 gcc_assert (!VOID_TYPE_P (type));
9508 /* Note that COND_EXPRs whose type is a structure or union
9509 are required to be constructed to contain assignments of
9510 a temporary variable, so that we can evaluate them here
9511 for side effect only. If type is void, we must do likewise. */
9513 gcc_assert (!TREE_ADDRESSABLE (type)
9514 && !ignore
9515 && TREE_TYPE (treeop1) != void_type_node
9516 && TREE_TYPE (treeop2) != void_type_node);
9518 /* If we are not to produce a result, we have no target. Otherwise,
9519 if a target was specified use it; it will not be used as an
9520 intermediate target unless it is safe. If no target, use a
9521 temporary. */
9523 if (modifier != EXPAND_STACK_PARM
9524 && original_target
9525 && safe_from_p (original_target, treeop0, 1)
9526 && GET_MODE (original_target) == mode
9527 #ifdef HAVE_conditional_move
9528 && (! can_conditionally_move_p (mode)
9529 || REG_P (original_target))
9530 #endif
9531 && !MEM_P (original_target))
9532 temp = original_target;
9533 else
9534 temp = assign_temp (type, 0, 0, 1);
9536 do_pending_stack_adjust ();
9537 NO_DEFER_POP;
9538 op0 = gen_label_rtx ();
9539 op1 = gen_label_rtx ();
9540 jumpifnot (treeop0, op0, -1);
9541 store_expr (treeop1, temp,
9542 modifier == EXPAND_STACK_PARM,
9543 false);
9545 emit_jump_insn (gen_jump (op1));
9546 emit_barrier ();
9547 emit_label (op0);
9548 store_expr (treeop2, temp,
9549 modifier == EXPAND_STACK_PARM,
9550 false);
9552 emit_label (op1);
9553 OK_DEFER_POP;
9554 return temp;
9556 case VEC_COND_EXPR:
9557 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9558 return target;
9560 case MODIFY_EXPR:
9562 tree lhs = treeop0;
9563 tree rhs = treeop1;
9564 gcc_assert (ignore);
9566 /* Check for |= or &= of a bitfield of size one into another bitfield
9567 of size 1. In this case, (unless we need the result of the
9568 assignment) we can do this more efficiently with a
9569 test followed by an assignment, if necessary.
9571 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9572 things change so we do, this code should be enhanced to
9573 support it. */
9574 if (TREE_CODE (lhs) == COMPONENT_REF
9575 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9576 || TREE_CODE (rhs) == BIT_AND_EXPR)
9577 && TREE_OPERAND (rhs, 0) == lhs
9578 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9579 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9580 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9582 rtx label = gen_label_rtx ();
9583 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9584 do_jump (TREE_OPERAND (rhs, 1),
9585 value ? label : 0,
9586 value ? 0 : label, -1);
9587 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9588 MOVE_NONTEMPORAL (exp));
9589 do_pending_stack_adjust ();
9590 emit_label (label);
9591 return const0_rtx;
9594 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9595 return const0_rtx;
9598 case ADDR_EXPR:
9599 return expand_expr_addr_expr (exp, target, tmode, modifier);
9601 case REALPART_EXPR:
9602 op0 = expand_normal (treeop0);
9603 return read_complex_part (op0, false);
9605 case IMAGPART_EXPR:
9606 op0 = expand_normal (treeop0);
9607 return read_complex_part (op0, true);
9609 case RETURN_EXPR:
9610 case LABEL_EXPR:
9611 case GOTO_EXPR:
9612 case SWITCH_EXPR:
9613 case ASM_EXPR:
9614 /* Expanded in cfgexpand.c. */
9615 gcc_unreachable ();
9617 case TRY_CATCH_EXPR:
9618 case CATCH_EXPR:
9619 case EH_FILTER_EXPR:
9620 case TRY_FINALLY_EXPR:
9621 /* Lowered by tree-eh.c. */
9622 gcc_unreachable ();
9624 case WITH_CLEANUP_EXPR:
9625 case CLEANUP_POINT_EXPR:
9626 case TARGET_EXPR:
9627 case CASE_LABEL_EXPR:
9628 case VA_ARG_EXPR:
9629 case BIND_EXPR:
9630 case INIT_EXPR:
9631 case CONJ_EXPR:
9632 case COMPOUND_EXPR:
9633 case PREINCREMENT_EXPR:
9634 case PREDECREMENT_EXPR:
9635 case POSTINCREMENT_EXPR:
9636 case POSTDECREMENT_EXPR:
9637 case LOOP_EXPR:
9638 case EXIT_EXPR:
9639 /* Lowered by gimplify.c. */
9640 gcc_unreachable ();
9642 case FDESC_EXPR:
9643 /* Function descriptors are not valid except for as
9644 initialization constants, and should not be expanded. */
9645 gcc_unreachable ();
9647 case WITH_SIZE_EXPR:
9648 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9649 have pulled out the size to use in whatever context it needed. */
9650 return expand_expr_real (treeop0, original_target, tmode,
9651 modifier, alt_rtl);
9653 case REALIGN_LOAD_EXPR:
9655 tree oprnd0 = treeop0;
9656 tree oprnd1 = treeop1;
9657 tree oprnd2 = treeop2;
9658 rtx op2;
9660 this_optab = optab_for_tree_code (code, type, optab_default);
9661 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9662 op2 = expand_normal (oprnd2);
9663 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9664 target, unsignedp);
9665 gcc_assert (temp);
9666 return temp;
9669 case DOT_PROD_EXPR:
9671 tree oprnd0 = treeop0;
9672 tree oprnd1 = treeop1;
9673 tree oprnd2 = treeop2;
9674 rtx op2;
9676 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9677 op2 = expand_normal (oprnd2);
9678 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9679 target, unsignedp);
9680 return target;
9683 case COMPOUND_LITERAL_EXPR:
9685 /* Initialize the anonymous variable declared in the compound
9686 literal, then return the variable. */
9687 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9689 /* Create RTL for this variable. */
9690 if (!DECL_RTL_SET_P (decl))
9692 if (DECL_HARD_REGISTER (decl))
9693 /* The user specified an assembler name for this variable.
9694 Set that up now. */
9695 rest_of_decl_compilation (decl, 0, 0);
9696 else
9697 expand_decl (decl);
9700 return expand_expr_real (decl, original_target, tmode,
9701 modifier, alt_rtl);
9704 default:
9705 return expand_expr_real_2 (&ops, target, tmode, modifier);
9709 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9710 signedness of TYPE), possibly returning the result in TARGET. */
9711 static rtx
9712 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9714 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9715 if (target && GET_MODE (target) != GET_MODE (exp))
9716 target = 0;
9717 /* For constant values, reduce using build_int_cst_type. */
9718 if (CONST_INT_P (exp))
9720 HOST_WIDE_INT value = INTVAL (exp);
9721 tree t = build_int_cst_type (type, value);
9722 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9724 else if (TYPE_UNSIGNED (type))
9726 rtx mask = immed_double_int_const (double_int_mask (prec),
9727 GET_MODE (exp));
9728 return expand_and (GET_MODE (exp), exp, mask, target);
9730 else
9732 tree count = build_int_cst (NULL_TREE,
9733 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9734 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9735 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9739 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9740 when applied to the address of EXP produces an address known to be
9741 aligned more than BIGGEST_ALIGNMENT. */
9743 static int
9744 is_aligning_offset (const_tree offset, const_tree exp)
9746 /* Strip off any conversions. */
9747 while (CONVERT_EXPR_P (offset))
9748 offset = TREE_OPERAND (offset, 0);
9750 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9751 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9752 if (TREE_CODE (offset) != BIT_AND_EXPR
9753 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9754 || compare_tree_int (TREE_OPERAND (offset, 1),
9755 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9756 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9757 return 0;
9759 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9760 It must be NEGATE_EXPR. Then strip any more conversions. */
9761 offset = TREE_OPERAND (offset, 0);
9762 while (CONVERT_EXPR_P (offset))
9763 offset = TREE_OPERAND (offset, 0);
9765 if (TREE_CODE (offset) != NEGATE_EXPR)
9766 return 0;
9768 offset = TREE_OPERAND (offset, 0);
9769 while (CONVERT_EXPR_P (offset))
9770 offset = TREE_OPERAND (offset, 0);
9772 /* This must now be the address of EXP. */
9773 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9776 /* Return the tree node if an ARG corresponds to a string constant or zero
9777 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9778 in bytes within the string that ARG is accessing. The type of the
9779 offset will be `sizetype'. */
9781 tree
9782 string_constant (tree arg, tree *ptr_offset)
9784 tree array, offset, lower_bound;
9785 STRIP_NOPS (arg);
9787 if (TREE_CODE (arg) == ADDR_EXPR)
9789 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9791 *ptr_offset = size_zero_node;
9792 return TREE_OPERAND (arg, 0);
9794 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9796 array = TREE_OPERAND (arg, 0);
9797 offset = size_zero_node;
9799 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9801 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9802 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9803 if (TREE_CODE (array) != STRING_CST
9804 && TREE_CODE (array) != VAR_DECL)
9805 return 0;
9807 /* Check if the array has a nonzero lower bound. */
9808 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9809 if (!integer_zerop (lower_bound))
9811 /* If the offset and base aren't both constants, return 0. */
9812 if (TREE_CODE (lower_bound) != INTEGER_CST)
9813 return 0;
9814 if (TREE_CODE (offset) != INTEGER_CST)
9815 return 0;
9816 /* Adjust offset by the lower bound. */
9817 offset = size_diffop (fold_convert (sizetype, offset),
9818 fold_convert (sizetype, lower_bound));
9821 else
9822 return 0;
9824 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9826 tree arg0 = TREE_OPERAND (arg, 0);
9827 tree arg1 = TREE_OPERAND (arg, 1);
9829 STRIP_NOPS (arg0);
9830 STRIP_NOPS (arg1);
9832 if (TREE_CODE (arg0) == ADDR_EXPR
9833 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9834 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9836 array = TREE_OPERAND (arg0, 0);
9837 offset = arg1;
9839 else if (TREE_CODE (arg1) == ADDR_EXPR
9840 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9841 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9843 array = TREE_OPERAND (arg1, 0);
9844 offset = arg0;
9846 else
9847 return 0;
9849 else
9850 return 0;
9852 if (TREE_CODE (array) == STRING_CST)
9854 *ptr_offset = fold_convert (sizetype, offset);
9855 return array;
9857 else if (TREE_CODE (array) == VAR_DECL
9858 || TREE_CODE (array) == CONST_DECL)
9860 int length;
9862 /* Variables initialized to string literals can be handled too. */
9863 if (!const_value_known_p (array)
9864 || !DECL_INITIAL (array)
9865 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9866 return 0;
9868 /* Avoid const char foo[4] = "abcde"; */
9869 if (DECL_SIZE_UNIT (array) == NULL_TREE
9870 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9871 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9872 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9873 return 0;
9875 /* If variable is bigger than the string literal, OFFSET must be constant
9876 and inside of the bounds of the string literal. */
9877 offset = fold_convert (sizetype, offset);
9878 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9879 && (! host_integerp (offset, 1)
9880 || compare_tree_int (offset, length) >= 0))
9881 return 0;
9883 *ptr_offset = offset;
9884 return DECL_INITIAL (array);
9887 return 0;
9890 /* Generate code to calculate OPS, and exploded expression
9891 using a store-flag instruction and return an rtx for the result.
9892 OPS reflects a comparison.
9894 If TARGET is nonzero, store the result there if convenient.
9896 Return zero if there is no suitable set-flag instruction
9897 available on this machine.
9899 Once expand_expr has been called on the arguments of the comparison,
9900 we are committed to doing the store flag, since it is not safe to
9901 re-evaluate the expression. We emit the store-flag insn by calling
9902 emit_store_flag, but only expand the arguments if we have a reason
9903 to believe that emit_store_flag will be successful. If we think that
9904 it will, but it isn't, we have to simulate the store-flag with a
9905 set/jump/set sequence. */
9907 static rtx
9908 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9910 enum rtx_code code;
9911 tree arg0, arg1, type;
9912 tree tem;
9913 enum machine_mode operand_mode;
9914 int unsignedp;
9915 rtx op0, op1;
9916 rtx subtarget = target;
9917 location_t loc = ops->location;
9919 arg0 = ops->op0;
9920 arg1 = ops->op1;
9922 /* Don't crash if the comparison was erroneous. */
9923 if (arg0 == error_mark_node || arg1 == error_mark_node)
9924 return const0_rtx;
9926 type = TREE_TYPE (arg0);
9927 operand_mode = TYPE_MODE (type);
9928 unsignedp = TYPE_UNSIGNED (type);
9930 /* We won't bother with BLKmode store-flag operations because it would mean
9931 passing a lot of information to emit_store_flag. */
9932 if (operand_mode == BLKmode)
9933 return 0;
9935 /* We won't bother with store-flag operations involving function pointers
9936 when function pointers must be canonicalized before comparisons. */
9937 #ifdef HAVE_canonicalize_funcptr_for_compare
9938 if (HAVE_canonicalize_funcptr_for_compare
9939 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9940 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9941 == FUNCTION_TYPE))
9942 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9943 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9944 == FUNCTION_TYPE))))
9945 return 0;
9946 #endif
9948 STRIP_NOPS (arg0);
9949 STRIP_NOPS (arg1);
9951 /* Get the rtx comparison code to use. We know that EXP is a comparison
9952 operation of some type. Some comparisons against 1 and -1 can be
9953 converted to comparisons with zero. Do so here so that the tests
9954 below will be aware that we have a comparison with zero. These
9955 tests will not catch constants in the first operand, but constants
9956 are rarely passed as the first operand. */
9958 switch (ops->code)
9960 case EQ_EXPR:
9961 code = EQ;
9962 break;
9963 case NE_EXPR:
9964 code = NE;
9965 break;
9966 case LT_EXPR:
9967 if (integer_onep (arg1))
9968 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9969 else
9970 code = unsignedp ? LTU : LT;
9971 break;
9972 case LE_EXPR:
9973 if (! unsignedp && integer_all_onesp (arg1))
9974 arg1 = integer_zero_node, code = LT;
9975 else
9976 code = unsignedp ? LEU : LE;
9977 break;
9978 case GT_EXPR:
9979 if (! unsignedp && integer_all_onesp (arg1))
9980 arg1 = integer_zero_node, code = GE;
9981 else
9982 code = unsignedp ? GTU : GT;
9983 break;
9984 case GE_EXPR:
9985 if (integer_onep (arg1))
9986 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9987 else
9988 code = unsignedp ? GEU : GE;
9989 break;
9991 case UNORDERED_EXPR:
9992 code = UNORDERED;
9993 break;
9994 case ORDERED_EXPR:
9995 code = ORDERED;
9996 break;
9997 case UNLT_EXPR:
9998 code = UNLT;
9999 break;
10000 case UNLE_EXPR:
10001 code = UNLE;
10002 break;
10003 case UNGT_EXPR:
10004 code = UNGT;
10005 break;
10006 case UNGE_EXPR:
10007 code = UNGE;
10008 break;
10009 case UNEQ_EXPR:
10010 code = UNEQ;
10011 break;
10012 case LTGT_EXPR:
10013 code = LTGT;
10014 break;
10016 default:
10017 gcc_unreachable ();
10020 /* Put a constant second. */
10021 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10022 || TREE_CODE (arg0) == FIXED_CST)
10024 tem = arg0; arg0 = arg1; arg1 = tem;
10025 code = swap_condition (code);
10028 /* If this is an equality or inequality test of a single bit, we can
10029 do this by shifting the bit being tested to the low-order bit and
10030 masking the result with the constant 1. If the condition was EQ,
10031 we xor it with 1. This does not require an scc insn and is faster
10032 than an scc insn even if we have it.
10034 The code to make this transformation was moved into fold_single_bit_test,
10035 so we just call into the folder and expand its result. */
10037 if ((code == NE || code == EQ)
10038 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10039 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10041 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10042 return expand_expr (fold_single_bit_test (loc,
10043 code == NE ? NE_EXPR : EQ_EXPR,
10044 arg0, arg1, type),
10045 target, VOIDmode, EXPAND_NORMAL);
10048 if (! get_subtarget (target)
10049 || GET_MODE (subtarget) != operand_mode)
10050 subtarget = 0;
10052 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10054 if (target == 0)
10055 target = gen_reg_rtx (mode);
10057 /* Try a cstore if possible. */
10058 return emit_store_flag_force (target, code, op0, op1,
10059 operand_mode, unsignedp, 1);
10063 /* Stubs in case we haven't got a casesi insn. */
10064 #ifndef HAVE_casesi
10065 # define HAVE_casesi 0
10066 # define gen_casesi(a, b, c, d, e) (0)
10067 # define CODE_FOR_casesi CODE_FOR_nothing
10068 #endif
10070 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10071 0 otherwise (i.e. if there is no casesi instruction). */
10073 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10074 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10075 rtx fallback_label ATTRIBUTE_UNUSED)
10077 enum machine_mode index_mode = SImode;
10078 int index_bits = GET_MODE_BITSIZE (index_mode);
10079 rtx op1, op2, index;
10080 enum machine_mode op_mode;
10082 if (! HAVE_casesi)
10083 return 0;
10085 /* Convert the index to SImode. */
10086 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10088 enum machine_mode omode = TYPE_MODE (index_type);
10089 rtx rangertx = expand_normal (range);
10091 /* We must handle the endpoints in the original mode. */
10092 index_expr = build2 (MINUS_EXPR, index_type,
10093 index_expr, minval);
10094 minval = integer_zero_node;
10095 index = expand_normal (index_expr);
10096 if (default_label)
10097 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10098 omode, 1, default_label);
10099 /* Now we can safely truncate. */
10100 index = convert_to_mode (index_mode, index, 0);
10102 else
10104 if (TYPE_MODE (index_type) != index_mode)
10106 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10107 index_expr = fold_convert (index_type, index_expr);
10110 index = expand_normal (index_expr);
10113 do_pending_stack_adjust ();
10115 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10116 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10117 (index, op_mode))
10118 index = copy_to_mode_reg (op_mode, index);
10120 op1 = expand_normal (minval);
10122 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10123 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10124 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10125 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10126 (op1, op_mode))
10127 op1 = copy_to_mode_reg (op_mode, op1);
10129 op2 = expand_normal (range);
10131 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10132 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10133 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10134 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10135 (op2, op_mode))
10136 op2 = copy_to_mode_reg (op_mode, op2);
10138 emit_jump_insn (gen_casesi (index, op1, op2,
10139 table_label, !default_label
10140 ? fallback_label : default_label));
10141 return 1;
10144 /* Attempt to generate a tablejump instruction; same concept. */
10145 #ifndef HAVE_tablejump
10146 #define HAVE_tablejump 0
10147 #define gen_tablejump(x, y) (0)
10148 #endif
10150 /* Subroutine of the next function.
10152 INDEX is the value being switched on, with the lowest value
10153 in the table already subtracted.
10154 MODE is its expected mode (needed if INDEX is constant).
10155 RANGE is the length of the jump table.
10156 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10158 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10159 index value is out of range. */
10161 static void
10162 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10163 rtx default_label)
10165 rtx temp, vector;
10167 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10168 cfun->cfg->max_jumptable_ents = INTVAL (range);
10170 /* Do an unsigned comparison (in the proper mode) between the index
10171 expression and the value which represents the length of the range.
10172 Since we just finished subtracting the lower bound of the range
10173 from the index expression, this comparison allows us to simultaneously
10174 check that the original index expression value is both greater than
10175 or equal to the minimum value of the range and less than or equal to
10176 the maximum value of the range. */
10178 if (default_label)
10179 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10180 default_label);
10182 /* If index is in range, it must fit in Pmode.
10183 Convert to Pmode so we can index with it. */
10184 if (mode != Pmode)
10185 index = convert_to_mode (Pmode, index, 1);
10187 /* Don't let a MEM slip through, because then INDEX that comes
10188 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10189 and break_out_memory_refs will go to work on it and mess it up. */
10190 #ifdef PIC_CASE_VECTOR_ADDRESS
10191 if (flag_pic && !REG_P (index))
10192 index = copy_to_mode_reg (Pmode, index);
10193 #endif
10195 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10196 GET_MODE_SIZE, because this indicates how large insns are. The other
10197 uses should all be Pmode, because they are addresses. This code
10198 could fail if addresses and insns are not the same size. */
10199 index = gen_rtx_PLUS (Pmode,
10200 gen_rtx_MULT (Pmode, index,
10201 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10202 gen_rtx_LABEL_REF (Pmode, table_label));
10203 #ifdef PIC_CASE_VECTOR_ADDRESS
10204 if (flag_pic)
10205 index = PIC_CASE_VECTOR_ADDRESS (index);
10206 else
10207 #endif
10208 index = memory_address (CASE_VECTOR_MODE, index);
10209 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10210 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10211 convert_move (temp, vector, 0);
10213 emit_jump_insn (gen_tablejump (temp, table_label));
10215 /* If we are generating PIC code or if the table is PC-relative, the
10216 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10217 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10218 emit_barrier ();
10222 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10223 rtx table_label, rtx default_label)
10225 rtx index;
10227 if (! HAVE_tablejump)
10228 return 0;
10230 index_expr = fold_build2 (MINUS_EXPR, index_type,
10231 fold_convert (index_type, index_expr),
10232 fold_convert (index_type, minval));
10233 index = expand_normal (index_expr);
10234 do_pending_stack_adjust ();
10236 do_tablejump (index, TYPE_MODE (index_type),
10237 convert_modes (TYPE_MODE (index_type),
10238 TYPE_MODE (TREE_TYPE (range)),
10239 expand_normal (range),
10240 TYPE_UNSIGNED (TREE_TYPE (range))),
10241 table_label, default_label);
10242 return 1;
10245 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10246 static rtx
10247 const_vector_from_tree (tree exp)
10249 rtvec v;
10250 int units, i;
10251 tree link, elt;
10252 enum machine_mode inner, mode;
10254 mode = TYPE_MODE (TREE_TYPE (exp));
10256 if (initializer_zerop (exp))
10257 return CONST0_RTX (mode);
10259 units = GET_MODE_NUNITS (mode);
10260 inner = GET_MODE_INNER (mode);
10262 v = rtvec_alloc (units);
10264 link = TREE_VECTOR_CST_ELTS (exp);
10265 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10267 elt = TREE_VALUE (link);
10269 if (TREE_CODE (elt) == REAL_CST)
10270 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10271 inner);
10272 else if (TREE_CODE (elt) == FIXED_CST)
10273 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10274 inner);
10275 else
10276 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10277 inner);
10280 /* Initialize remaining elements to 0. */
10281 for (; i < units; ++i)
10282 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10284 return gen_rtx_CONST_VECTOR (mode, v);
10287 /* Build a decl for a personality function given a language prefix. */
10289 tree
10290 build_personality_function (const char *lang)
10292 const char *unwind_and_version;
10293 tree decl, type;
10294 char *name;
10296 switch (targetm.except_unwind_info (&global_options))
10298 case UI_NONE:
10299 return NULL;
10300 case UI_SJLJ:
10301 unwind_and_version = "_sj0";
10302 break;
10303 case UI_DWARF2:
10304 case UI_TARGET:
10305 unwind_and_version = "_v0";
10306 break;
10307 default:
10308 gcc_unreachable ();
10311 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10313 type = build_function_type_list (integer_type_node, integer_type_node,
10314 long_long_unsigned_type_node,
10315 ptr_type_node, ptr_type_node, NULL_TREE);
10316 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10317 get_identifier (name), type);
10318 DECL_ARTIFICIAL (decl) = 1;
10319 DECL_EXTERNAL (decl) = 1;
10320 TREE_PUBLIC (decl) = 1;
10322 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10323 are the flags assigned by targetm.encode_section_info. */
10324 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10326 return decl;
10329 /* Extracts the personality function of DECL and returns the corresponding
10330 libfunc. */
10333 get_personality_function (tree decl)
10335 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10336 enum eh_personality_kind pk;
10338 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10339 if (pk == eh_personality_none)
10340 return NULL;
10342 if (!personality
10343 && pk == eh_personality_any)
10344 personality = lang_hooks.eh_personality ();
10346 if (pk == eh_personality_lang)
10347 gcc_assert (personality != NULL_TREE);
10349 return XEXP (DECL_RTL (personality), 0);
10352 #include "gt-expr.h"