Merge from mainline (168000:168310).
[official-gcc/graphite-test-results.git] / gcc / ada / sem_ch6.adb
blobab3f26b7a8e0c0862605f1f1f934d6a5de341501
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Lib.Xref; use Lib.Xref;
44 with Layout; use Layout;
45 with Namet; use Namet;
46 with Lib; use Lib;
47 with Nlists; use Nlists;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Output; use Output;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch3; use Sem_Ch3;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch5; use Sem_Ch5;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch10; use Sem_Ch10;
62 with Sem_Ch12; use Sem_Ch12;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elim; use Sem_Elim;
67 with Sem_Eval; use Sem_Eval;
68 with Sem_Mech; use Sem_Mech;
69 with Sem_Prag; use Sem_Prag;
70 with Sem_Res; use Sem_Res;
71 with Sem_Util; use Sem_Util;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinput; use Sinput;
75 with Stand; use Stand;
76 with Sinfo; use Sinfo;
77 with Sinfo.CN; use Sinfo.CN;
78 with Snames; use Snames;
79 with Stringt; use Stringt;
80 with Style;
81 with Stylesw; use Stylesw;
82 with Tbuild; use Tbuild;
83 with Uintp; use Uintp;
84 with Urealp; use Urealp;
85 with Validsw; use Validsw;
87 package body Sem_Ch6 is
89 May_Hide_Profile : Boolean := False;
90 -- This flag is used to indicate that two formals in two subprograms being
91 -- checked for conformance differ only in that one is an access parameter
92 -- while the other is of a general access type with the same designated
93 -- type. In this case, if the rest of the signatures match, a call to
94 -- either subprogram may be ambiguous, which is worth a warning. The flag
95 -- is set in Compatible_Types, and the warning emitted in
96 -- New_Overloaded_Entity.
98 -----------------------
99 -- Local Subprograms --
100 -----------------------
102 procedure Analyze_Return_Statement (N : Node_Id);
103 -- Common processing for simple and extended return statements
105 procedure Analyze_Function_Return (N : Node_Id);
106 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
107 -- applies to a [generic] function.
109 procedure Analyze_Return_Type (N : Node_Id);
110 -- Subsidiary to Process_Formals: analyze subtype mark in function
111 -- specification in a context where the formals are visible and hide
112 -- outer homographs.
114 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
115 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
116 -- that we can use RETURN but not skip the debug output at the end.
118 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
119 -- Analyze a generic subprogram body. N is the body to be analyzed, and
120 -- Gen_Id is the defining entity Id for the corresponding spec.
122 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
123 -- If a subprogram has pragma Inline and inlining is active, use generic
124 -- machinery to build an unexpanded body for the subprogram. This body is
125 -- subsequently used for inline expansions at call sites. If subprogram can
126 -- be inlined (depending on size and nature of local declarations) this
127 -- function returns true. Otherwise subprogram body is treated normally.
128 -- If proper warnings are enabled and the subprogram contains a construct
129 -- that cannot be inlined, the offending construct is flagged accordingly.
131 procedure Check_Conformance
132 (New_Id : Entity_Id;
133 Old_Id : Entity_Id;
134 Ctype : Conformance_Type;
135 Errmsg : Boolean;
136 Conforms : out Boolean;
137 Err_Loc : Node_Id := Empty;
138 Get_Inst : Boolean := False;
139 Skip_Controlling_Formals : Boolean := False);
140 -- Given two entities, this procedure checks that the profiles associated
141 -- with these entities meet the conformance criterion given by the third
142 -- parameter. If they conform, Conforms is set True and control returns
143 -- to the caller. If they do not conform, Conforms is set to False, and
144 -- in addition, if Errmsg is True on the call, proper messages are output
145 -- to complain about the conformance failure. If Err_Loc is non_Empty
146 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
147 -- error messages are placed on the appropriate part of the construct
148 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
149 -- against a formal access-to-subprogram type so Get_Instance_Of must
150 -- be called.
152 procedure Check_Subprogram_Order (N : Node_Id);
153 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
154 -- the alpha ordering rule for N if this ordering requirement applicable.
156 procedure Check_Returns
157 (HSS : Node_Id;
158 Mode : Character;
159 Err : out Boolean;
160 Proc : Entity_Id := Empty);
161 -- Called to check for missing return statements in a function body, or for
162 -- returns present in a procedure body which has No_Return set. HSS is the
163 -- handled statement sequence for the subprogram body. This procedure
164 -- checks all flow paths to make sure they either have return (Mode = 'F',
165 -- used for functions) or do not have a return (Mode = 'P', used for
166 -- No_Return procedures). The flag Err is set if there are any control
167 -- paths not explicitly terminated by a return in the function case, and is
168 -- True otherwise. Proc is the entity for the procedure case and is used
169 -- in posting the warning message.
171 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
172 -- In Ada 2012, a primitive equality operator on an untagged record type
173 -- must appear before the type is frozen, and have the same visibility as
174 -- that of the type. This procedure checks that this rule is met, and
175 -- otherwise emits an error on the subprogram declaration and a warning
176 -- on the earlier freeze point if it is easy to locate.
178 procedure Enter_Overloaded_Entity (S : Entity_Id);
179 -- This procedure makes S, a new overloaded entity, into the first visible
180 -- entity with that name.
182 procedure Install_Entity (E : Entity_Id);
183 -- Make single entity visible (used for generic formals as well)
185 function Is_Non_Overriding_Operation
186 (Prev_E : Entity_Id;
187 New_E : Entity_Id) return Boolean;
188 -- Enforce the rule given in 12.3(18): a private operation in an instance
189 -- overrides an inherited operation only if the corresponding operation
190 -- was overriding in the generic. This can happen for primitive operations
191 -- of types derived (in the generic unit) from formal private or formal
192 -- derived types.
194 procedure Make_Inequality_Operator (S : Entity_Id);
195 -- Create the declaration for an inequality operator that is implicitly
196 -- created by a user-defined equality operator that yields a boolean.
198 procedure May_Need_Actuals (Fun : Entity_Id);
199 -- Flag functions that can be called without parameters, i.e. those that
200 -- have no parameters, or those for which defaults exist for all parameters
202 procedure Process_PPCs
203 (N : Node_Id;
204 Spec_Id : Entity_Id;
205 Body_Id : Entity_Id);
206 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
207 -- conditions for the body and assembling and inserting the _postconditions
208 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
209 -- the entities for the body and separate spec (if there is no separate
210 -- spec, Spec_Id is Empty). Note that invariants and predicates may also
211 -- provide postconditions, and are also handled in this procedure.
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
218 ------------------------------
219 -- Analyze_Return_Statement --
220 ------------------------------
222 procedure Analyze_Return_Statement (N : Node_Id) is
224 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
225 N_Extended_Return_Statement));
227 Returns_Object : constant Boolean :=
228 Nkind (N) = N_Extended_Return_Statement
229 or else
230 (Nkind (N) = N_Simple_Return_Statement
231 and then Present (Expression (N)));
232 -- True if we're returning something; that is, "return <expression>;"
233 -- or "return Result : T [:= ...]". False for "return;". Used for error
234 -- checking: If Returns_Object is True, N should apply to a function
235 -- body; otherwise N should apply to a procedure body, entry body,
236 -- accept statement, or extended return statement.
238 function Find_What_It_Applies_To return Entity_Id;
239 -- Find the entity representing the innermost enclosing body, accept
240 -- statement, or extended return statement. If the result is a callable
241 -- construct or extended return statement, then this will be the value
242 -- of the Return_Applies_To attribute. Otherwise, the program is
243 -- illegal. See RM-6.5(4/2).
245 -----------------------------
246 -- Find_What_It_Applies_To --
247 -----------------------------
249 function Find_What_It_Applies_To return Entity_Id is
250 Result : Entity_Id := Empty;
252 begin
253 -- Loop outward through the Scope_Stack, skipping blocks and loops
255 for J in reverse 0 .. Scope_Stack.Last loop
256 Result := Scope_Stack.Table (J).Entity;
257 exit when Ekind (Result) /= E_Block and then
258 Ekind (Result) /= E_Loop;
259 end loop;
261 pragma Assert (Present (Result));
262 return Result;
263 end Find_What_It_Applies_To;
265 -- Local declarations
267 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
268 Kind : constant Entity_Kind := Ekind (Scope_Id);
269 Loc : constant Source_Ptr := Sloc (N);
270 Stm_Entity : constant Entity_Id :=
271 New_Internal_Entity
272 (E_Return_Statement, Current_Scope, Loc, 'R');
274 -- Start of processing for Analyze_Return_Statement
276 begin
277 Set_Return_Statement_Entity (N, Stm_Entity);
279 Set_Etype (Stm_Entity, Standard_Void_Type);
280 Set_Return_Applies_To (Stm_Entity, Scope_Id);
282 -- Place Return entity on scope stack, to simplify enforcement of 6.5
283 -- (4/2): an inner return statement will apply to this extended return.
285 if Nkind (N) = N_Extended_Return_Statement then
286 Push_Scope (Stm_Entity);
287 end if;
289 -- Check that pragma No_Return is obeyed. Don't complain about the
290 -- implicitly-generated return that is placed at the end.
292 if No_Return (Scope_Id) and then Comes_From_Source (N) then
293 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
294 end if;
296 -- Warn on any unassigned OUT parameters if in procedure
298 if Ekind (Scope_Id) = E_Procedure then
299 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
300 end if;
302 -- Check that functions return objects, and other things do not
304 if Kind = E_Function or else Kind = E_Generic_Function then
305 if not Returns_Object then
306 Error_Msg_N ("missing expression in return from function", N);
307 end if;
309 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
310 if Returns_Object then
311 Error_Msg_N ("procedure cannot return value (use function)", N);
312 end if;
314 elsif Kind = E_Entry or else Kind = E_Entry_Family then
315 if Returns_Object then
316 if Is_Protected_Type (Scope (Scope_Id)) then
317 Error_Msg_N ("entry body cannot return value", N);
318 else
319 Error_Msg_N ("accept statement cannot return value", N);
320 end if;
321 end if;
323 elsif Kind = E_Return_Statement then
325 -- We are nested within another return statement, which must be an
326 -- extended_return_statement.
328 if Returns_Object then
329 Error_Msg_N
330 ("extended_return_statement cannot return value; " &
331 "use `""RETURN;""`", N);
332 end if;
334 else
335 Error_Msg_N ("illegal context for return statement", N);
336 end if;
338 if Kind = E_Function or else Kind = E_Generic_Function then
339 Analyze_Function_Return (N);
340 end if;
342 if Nkind (N) = N_Extended_Return_Statement then
343 End_Scope;
344 end if;
346 Kill_Current_Values (Last_Assignment_Only => True);
347 Check_Unreachable_Code (N);
348 end Analyze_Return_Statement;
350 ---------------------------------------------
351 -- Analyze_Abstract_Subprogram_Declaration --
352 ---------------------------------------------
354 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
355 Designator : constant Entity_Id :=
356 Analyze_Subprogram_Specification (Specification (N));
357 Scop : constant Entity_Id := Current_Scope;
359 begin
360 Generate_Definition (Designator);
361 Set_Is_Abstract_Subprogram (Designator);
362 New_Overloaded_Entity (Designator);
363 Check_Delayed_Subprogram (Designator);
365 Set_Categorization_From_Scope (Designator, Scop);
367 if Ekind (Scope (Designator)) = E_Protected_Type then
368 Error_Msg_N
369 ("abstract subprogram not allowed in protected type", N);
371 -- Issue a warning if the abstract subprogram is neither a dispatching
372 -- operation nor an operation that overrides an inherited subprogram or
373 -- predefined operator, since this most likely indicates a mistake.
375 elsif Warn_On_Redundant_Constructs
376 and then not Is_Dispatching_Operation (Designator)
377 and then not Present (Overridden_Operation (Designator))
378 and then (not Is_Operator_Symbol_Name (Chars (Designator))
379 or else Scop /= Scope (Etype (First_Formal (Designator))))
380 then
381 Error_Msg_N
382 ("?abstract subprogram is not dispatching or overriding", N);
383 end if;
385 Generate_Reference_To_Formals (Designator);
386 Check_Eliminated (Designator);
387 Analyze_Aspect_Specifications (N, Designator, Aspect_Specifications (N));
388 end Analyze_Abstract_Subprogram_Declaration;
390 ----------------------------------------
391 -- Analyze_Extended_Return_Statement --
392 ----------------------------------------
394 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
395 begin
396 Analyze_Return_Statement (N);
397 end Analyze_Extended_Return_Statement;
399 ----------------------------
400 -- Analyze_Function_Call --
401 ----------------------------
403 procedure Analyze_Function_Call (N : Node_Id) is
404 P : constant Node_Id := Name (N);
405 L : constant List_Id := Parameter_Associations (N);
406 Actual : Node_Id;
408 begin
409 Analyze (P);
411 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
412 -- as B (A, X). If the rewriting is successful, the call has been
413 -- analyzed and we just return.
415 if Nkind (P) = N_Selected_Component
416 and then Name (N) /= P
417 and then Is_Rewrite_Substitution (N)
418 and then Present (Etype (N))
419 then
420 return;
421 end if;
423 -- If error analyzing name, then set Any_Type as result type and return
425 if Etype (P) = Any_Type then
426 Set_Etype (N, Any_Type);
427 return;
428 end if;
430 -- Otherwise analyze the parameters
432 if Present (L) then
433 Actual := First (L);
434 while Present (Actual) loop
435 Analyze (Actual);
436 Check_Parameterless_Call (Actual);
437 Next (Actual);
438 end loop;
439 end if;
441 Analyze_Call (N);
442 end Analyze_Function_Call;
444 -----------------------------
445 -- Analyze_Function_Return --
446 -----------------------------
448 procedure Analyze_Function_Return (N : Node_Id) is
449 Loc : constant Source_Ptr := Sloc (N);
450 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
451 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
453 R_Type : constant Entity_Id := Etype (Scope_Id);
454 -- Function result subtype
456 procedure Check_Limited_Return (Expr : Node_Id);
457 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
458 -- limited types. Used only for simple return statements.
459 -- Expr is the expression returned.
461 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
462 -- Check that the return_subtype_indication properly matches the result
463 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
465 --------------------------
466 -- Check_Limited_Return --
467 --------------------------
469 procedure Check_Limited_Return (Expr : Node_Id) is
470 begin
471 -- Ada 2005 (AI-318-02): Return-by-reference types have been
472 -- removed and replaced by anonymous access results. This is an
473 -- incompatibility with Ada 95. Not clear whether this should be
474 -- enforced yet or perhaps controllable with special switch. ???
476 if Is_Limited_Type (R_Type)
477 and then Comes_From_Source (N)
478 and then not In_Instance_Body
479 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
480 then
481 -- Error in Ada 2005
483 if Ada_Version >= Ada_2005
484 and then not Debug_Flag_Dot_L
485 and then not GNAT_Mode
486 then
487 Error_Msg_N
488 ("(Ada 2005) cannot copy object of a limited type " &
489 "(RM-2005 6.5(5.5/2))", Expr);
491 if Is_Immutably_Limited_Type (R_Type) then
492 Error_Msg_N
493 ("\return by reference not permitted in Ada 2005", Expr);
494 end if;
496 -- Warn in Ada 95 mode, to give folks a heads up about this
497 -- incompatibility.
499 -- In GNAT mode, this is just a warning, to allow it to be
500 -- evilly turned off. Otherwise it is a real error.
502 -- In a generic context, simplify the warning because it makes
503 -- no sense to discuss pass-by-reference or copy.
505 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
506 if Inside_A_Generic then
507 Error_Msg_N
508 ("return of limited object not permitted in Ada2005 "
509 & "(RM-2005 6.5(5.5/2))?", Expr);
511 elsif Is_Immutably_Limited_Type (R_Type) then
512 Error_Msg_N
513 ("return by reference not permitted in Ada 2005 "
514 & "(RM-2005 6.5(5.5/2))?", Expr);
515 else
516 Error_Msg_N
517 ("cannot copy object of a limited type in Ada 2005 "
518 & "(RM-2005 6.5(5.5/2))?", Expr);
519 end if;
521 -- Ada 95 mode, compatibility warnings disabled
523 else
524 return; -- skip continuation messages below
525 end if;
527 if not Inside_A_Generic then
528 Error_Msg_N
529 ("\consider switching to return of access type", Expr);
530 Explain_Limited_Type (R_Type, Expr);
531 end if;
532 end if;
533 end Check_Limited_Return;
535 -------------------------------------
536 -- Check_Return_Subtype_Indication --
537 -------------------------------------
539 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
540 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
542 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
543 -- Subtype given in the extended return statement (must match R_Type)
545 Subtype_Ind : constant Node_Id :=
546 Object_Definition (Original_Node (Obj_Decl));
548 R_Type_Is_Anon_Access :
549 constant Boolean :=
550 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
551 or else
552 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
553 or else
554 Ekind (R_Type) = E_Anonymous_Access_Type;
555 -- True if return type of the function is an anonymous access type
556 -- Can't we make Is_Anonymous_Access_Type in einfo ???
558 R_Stm_Type_Is_Anon_Access :
559 constant Boolean :=
560 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
561 or else
562 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
563 or else
564 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
565 -- True if type of the return object is an anonymous access type
567 begin
568 -- First, avoid cascaded errors
570 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
571 return;
572 end if;
574 -- "return access T" case; check that the return statement also has
575 -- "access T", and that the subtypes statically match:
576 -- if this is an access to subprogram the signatures must match.
578 if R_Type_Is_Anon_Access then
579 if R_Stm_Type_Is_Anon_Access then
581 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
582 then
583 if Base_Type (Designated_Type (R_Stm_Type)) /=
584 Base_Type (Designated_Type (R_Type))
585 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
586 then
587 Error_Msg_N
588 ("subtype must statically match function result subtype",
589 Subtype_Mark (Subtype_Ind));
590 end if;
592 else
593 -- For two anonymous access to subprogram types, the
594 -- types themselves must be type conformant.
596 if not Conforming_Types
597 (R_Stm_Type, R_Type, Fully_Conformant)
598 then
599 Error_Msg_N
600 ("subtype must statically match function result subtype",
601 Subtype_Ind);
602 end if;
603 end if;
605 else
606 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
607 end if;
609 -- Subtype indication case: check that the return object's type is
610 -- covered by the result type, and that the subtypes statically match
611 -- when the result subtype is constrained. Also handle record types
612 -- with unknown discriminants for which we have built the underlying
613 -- record view. Coverage is needed to allow specific-type return
614 -- objects when the result type is class-wide (see AI05-32).
616 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
617 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
618 and then
619 Covers
620 (Base_Type (R_Type),
621 Underlying_Record_View (Base_Type (R_Stm_Type))))
622 then
623 -- A null exclusion may be present on the return type, on the
624 -- function specification, on the object declaration or on the
625 -- subtype itself.
627 if Is_Access_Type (R_Type)
628 and then
629 (Can_Never_Be_Null (R_Type)
630 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
631 Can_Never_Be_Null (R_Stm_Type)
632 then
633 Error_Msg_N
634 ("subtype must statically match function result subtype",
635 Subtype_Ind);
636 end if;
638 -- AI05-103: for elementary types, subtypes must statically match
640 if Is_Constrained (R_Type)
641 or else Is_Access_Type (R_Type)
642 then
643 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
644 Error_Msg_N
645 ("subtype must statically match function result subtype",
646 Subtype_Ind);
647 end if;
648 end if;
650 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
651 and then Is_Null_Extension (Base_Type (R_Type))
652 then
653 null;
655 else
656 Error_Msg_N
657 ("wrong type for return_subtype_indication", Subtype_Ind);
658 end if;
659 end Check_Return_Subtype_Indication;
661 ---------------------
662 -- Local Variables --
663 ---------------------
665 Expr : Node_Id;
667 -- Start of processing for Analyze_Function_Return
669 begin
670 Set_Return_Present (Scope_Id);
672 if Nkind (N) = N_Simple_Return_Statement then
673 Expr := Expression (N);
674 Analyze_And_Resolve (Expr, R_Type);
675 Check_Limited_Return (Expr);
677 else
678 -- Analyze parts specific to extended_return_statement:
680 declare
681 Obj_Decl : constant Node_Id :=
682 Last (Return_Object_Declarations (N));
684 HSS : constant Node_Id := Handled_Statement_Sequence (N);
686 begin
687 Expr := Expression (Obj_Decl);
689 -- Note: The check for OK_For_Limited_Init will happen in
690 -- Analyze_Object_Declaration; we treat it as a normal
691 -- object declaration.
693 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
694 Analyze (Obj_Decl);
696 Check_Return_Subtype_Indication (Obj_Decl);
698 if Present (HSS) then
699 Analyze (HSS);
701 if Present (Exception_Handlers (HSS)) then
703 -- ???Has_Nested_Block_With_Handler needs to be set.
704 -- Probably by creating an actual N_Block_Statement.
705 -- Probably in Expand.
707 null;
708 end if;
709 end if;
711 -- Mark the return object as referenced, since the return is an
712 -- implicit reference of the object.
714 Set_Referenced (Defining_Identifier (Obj_Decl));
716 Check_References (Stm_Entity);
717 end;
718 end if;
720 -- Case of Expr present
722 if Present (Expr)
724 -- Defend against previous errors
726 and then Nkind (Expr) /= N_Empty
727 and then Present (Etype (Expr))
728 then
729 -- Apply constraint check. Note that this is done before the implicit
730 -- conversion of the expression done for anonymous access types to
731 -- ensure correct generation of the null-excluding check associated
732 -- with null-excluding expressions found in return statements.
734 Apply_Constraint_Check (Expr, R_Type);
736 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
737 -- type, apply an implicit conversion of the expression to that type
738 -- to force appropriate static and run-time accessibility checks.
740 if Ada_Version >= Ada_2005
741 and then Ekind (R_Type) = E_Anonymous_Access_Type
742 then
743 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
744 Analyze_And_Resolve (Expr, R_Type);
745 end if;
747 -- If the result type is class-wide, then check that the return
748 -- expression's type is not declared at a deeper level than the
749 -- function (RM05-6.5(5.6/2)).
751 if Ada_Version >= Ada_2005
752 and then Is_Class_Wide_Type (R_Type)
753 then
754 if Type_Access_Level (Etype (Expr)) >
755 Subprogram_Access_Level (Scope_Id)
756 then
757 Error_Msg_N
758 ("level of return expression type is deeper than " &
759 "class-wide function!", Expr);
760 end if;
761 end if;
763 -- Check incorrect use of dynamically tagged expression
765 if Is_Tagged_Type (R_Type) then
766 Check_Dynamically_Tagged_Expression
767 (Expr => Expr,
768 Typ => R_Type,
769 Related_Nod => N);
770 end if;
772 -- ??? A real run-time accessibility check is needed in cases
773 -- involving dereferences of access parameters. For now we just
774 -- check the static cases.
776 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
777 and then Is_Immutably_Limited_Type (Etype (Scope_Id))
778 and then Object_Access_Level (Expr) >
779 Subprogram_Access_Level (Scope_Id)
780 then
782 -- Suppress the message in a generic, where the rewriting
783 -- is irrelevant.
785 if Inside_A_Generic then
786 null;
788 else
789 Rewrite (N,
790 Make_Raise_Program_Error (Loc,
791 Reason => PE_Accessibility_Check_Failed));
792 Analyze (N);
794 Error_Msg_N
795 ("cannot return a local value by reference?", N);
796 Error_Msg_NE
797 ("\& will be raised at run time?",
798 N, Standard_Program_Error);
799 end if;
800 end if;
802 if Known_Null (Expr)
803 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
804 and then Null_Exclusion_Present (Parent (Scope_Id))
805 then
806 Apply_Compile_Time_Constraint_Error
807 (N => Expr,
808 Msg => "(Ada 2005) null not allowed for "
809 & "null-excluding return?",
810 Reason => CE_Null_Not_Allowed);
811 end if;
813 -- Apply checks suggested by AI05-0144 (dangerous order dependence)
815 Check_Order_Dependence;
816 end if;
817 end Analyze_Function_Return;
819 -------------------------------------
820 -- Analyze_Generic_Subprogram_Body --
821 -------------------------------------
823 procedure Analyze_Generic_Subprogram_Body
824 (N : Node_Id;
825 Gen_Id : Entity_Id)
827 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
828 Kind : constant Entity_Kind := Ekind (Gen_Id);
829 Body_Id : Entity_Id;
830 New_N : Node_Id;
831 Spec : Node_Id;
833 begin
834 -- Copy body and disable expansion while analyzing the generic For a
835 -- stub, do not copy the stub (which would load the proper body), this
836 -- will be done when the proper body is analyzed.
838 if Nkind (N) /= N_Subprogram_Body_Stub then
839 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
840 Rewrite (N, New_N);
841 Start_Generic;
842 end if;
844 Spec := Specification (N);
846 -- Within the body of the generic, the subprogram is callable, and
847 -- behaves like the corresponding non-generic unit.
849 Body_Id := Defining_Entity (Spec);
851 if Kind = E_Generic_Procedure
852 and then Nkind (Spec) /= N_Procedure_Specification
853 then
854 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
855 return;
857 elsif Kind = E_Generic_Function
858 and then Nkind (Spec) /= N_Function_Specification
859 then
860 Error_Msg_N ("invalid body for generic function ", Body_Id);
861 return;
862 end if;
864 Set_Corresponding_Body (Gen_Decl, Body_Id);
866 if Has_Completion (Gen_Id)
867 and then Nkind (Parent (N)) /= N_Subunit
868 then
869 Error_Msg_N ("duplicate generic body", N);
870 return;
871 else
872 Set_Has_Completion (Gen_Id);
873 end if;
875 if Nkind (N) = N_Subprogram_Body_Stub then
876 Set_Ekind (Defining_Entity (Specification (N)), Kind);
877 else
878 Set_Corresponding_Spec (N, Gen_Id);
879 end if;
881 if Nkind (Parent (N)) = N_Compilation_Unit then
882 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
883 end if;
885 -- Make generic parameters immediately visible in the body. They are
886 -- needed to process the formals declarations. Then make the formals
887 -- visible in a separate step.
889 Push_Scope (Gen_Id);
891 declare
892 E : Entity_Id;
893 First_Ent : Entity_Id;
895 begin
896 First_Ent := First_Entity (Gen_Id);
898 E := First_Ent;
899 while Present (E) and then not Is_Formal (E) loop
900 Install_Entity (E);
901 Next_Entity (E);
902 end loop;
904 Set_Use (Generic_Formal_Declarations (Gen_Decl));
906 -- Now generic formals are visible, and the specification can be
907 -- analyzed, for subsequent conformance check.
909 Body_Id := Analyze_Subprogram_Specification (Spec);
911 -- Make formal parameters visible
913 if Present (E) then
915 -- E is the first formal parameter, we loop through the formals
916 -- installing them so that they will be visible.
918 Set_First_Entity (Gen_Id, E);
919 while Present (E) loop
920 Install_Entity (E);
921 Next_Formal (E);
922 end loop;
923 end if;
925 -- Visible generic entity is callable within its own body
927 Set_Ekind (Gen_Id, Ekind (Body_Id));
928 Set_Ekind (Body_Id, E_Subprogram_Body);
929 Set_Convention (Body_Id, Convention (Gen_Id));
930 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
931 Set_Scope (Body_Id, Scope (Gen_Id));
932 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
934 if Nkind (N) = N_Subprogram_Body_Stub then
936 -- No body to analyze, so restore state of generic unit
938 Set_Ekind (Gen_Id, Kind);
939 Set_Ekind (Body_Id, Kind);
941 if Present (First_Ent) then
942 Set_First_Entity (Gen_Id, First_Ent);
943 end if;
945 End_Scope;
946 return;
947 end if;
949 -- If this is a compilation unit, it must be made visible explicitly,
950 -- because the compilation of the declaration, unlike other library
951 -- unit declarations, does not. If it is not a unit, the following
952 -- is redundant but harmless.
954 Set_Is_Immediately_Visible (Gen_Id);
955 Reference_Body_Formals (Gen_Id, Body_Id);
957 if Is_Child_Unit (Gen_Id) then
958 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
959 end if;
961 Set_Actual_Subtypes (N, Current_Scope);
962 Process_PPCs (N, Gen_Id, Body_Id);
964 -- If the generic unit carries pre- or post-conditions, copy them
965 -- to the original generic tree, so that they are properly added
966 -- to any instantiation.
968 declare
969 Orig : constant Node_Id := Original_Node (N);
970 Cond : Node_Id;
972 begin
973 Cond := First (Declarations (N));
974 while Present (Cond) loop
975 if Nkind (Cond) = N_Pragma
976 and then Pragma_Name (Cond) = Name_Check
977 then
978 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
980 elsif Nkind (Cond) = N_Pragma
981 and then Pragma_Name (Cond) = Name_Postcondition
982 then
983 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
984 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
985 else
986 exit;
987 end if;
989 Next (Cond);
990 end loop;
991 end;
993 Analyze_Declarations (Declarations (N));
994 Check_Completion;
995 Analyze (Handled_Statement_Sequence (N));
997 Save_Global_References (Original_Node (N));
999 -- Prior to exiting the scope, include generic formals again (if any
1000 -- are present) in the set of local entities.
1002 if Present (First_Ent) then
1003 Set_First_Entity (Gen_Id, First_Ent);
1004 end if;
1006 Check_References (Gen_Id);
1007 end;
1009 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1010 End_Scope;
1011 Check_Subprogram_Order (N);
1013 -- Outside of its body, unit is generic again
1015 Set_Ekind (Gen_Id, Kind);
1016 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1018 if Style_Check then
1019 Style.Check_Identifier (Body_Id, Gen_Id);
1020 end if;
1022 End_Generic;
1023 end Analyze_Generic_Subprogram_Body;
1025 -----------------------------
1026 -- Analyze_Operator_Symbol --
1027 -----------------------------
1029 -- An operator symbol such as "+" or "and" may appear in context where the
1030 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1031 -- is just a string, as in (conjunction = "or"). In these cases the parser
1032 -- generates this node, and the semantics does the disambiguation. Other
1033 -- such case are actuals in an instantiation, the generic unit in an
1034 -- instantiation, and pragma arguments.
1036 procedure Analyze_Operator_Symbol (N : Node_Id) is
1037 Par : constant Node_Id := Parent (N);
1039 begin
1040 if (Nkind (Par) = N_Function_Call
1041 and then N = Name (Par))
1042 or else Nkind (Par) = N_Function_Instantiation
1043 or else (Nkind (Par) = N_Indexed_Component
1044 and then N = Prefix (Par))
1045 or else (Nkind (Par) = N_Pragma_Argument_Association
1046 and then not Is_Pragma_String_Literal (Par))
1047 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1048 or else (Nkind (Par) = N_Attribute_Reference
1049 and then Attribute_Name (Par) /= Name_Value)
1050 then
1051 Find_Direct_Name (N);
1053 else
1054 Change_Operator_Symbol_To_String_Literal (N);
1055 Analyze (N);
1056 end if;
1057 end Analyze_Operator_Symbol;
1059 -----------------------------------
1060 -- Analyze_Parameter_Association --
1061 -----------------------------------
1063 procedure Analyze_Parameter_Association (N : Node_Id) is
1064 begin
1065 Analyze (Explicit_Actual_Parameter (N));
1066 end Analyze_Parameter_Association;
1068 --------------------------------------
1069 -- Analyze_Parameterized_Expression --
1070 --------------------------------------
1072 procedure Analyze_Parameterized_Expression (N : Node_Id) is
1073 Loc : constant Source_Ptr := Sloc (N);
1074 LocX : constant Source_Ptr := Sloc (Expression (N));
1076 begin
1077 -- This is one of the occasions on which we write things during semantic
1078 -- analysis. Transform the parameterized expression into an equivalent
1079 -- subprogram body, and then analyze that.
1081 Rewrite (N,
1082 Make_Subprogram_Body (Loc,
1083 Specification => Specification (N),
1084 Declarations => Empty_List,
1085 Handled_Statement_Sequence =>
1086 Make_Handled_Sequence_Of_Statements (LocX,
1087 Statements => New_List (
1088 Make_Simple_Return_Statement (LocX,
1089 Expression => Expression (N))))));
1090 Analyze (N);
1091 end Analyze_Parameterized_Expression;
1093 ----------------------------
1094 -- Analyze_Procedure_Call --
1095 ----------------------------
1097 procedure Analyze_Procedure_Call (N : Node_Id) is
1098 Loc : constant Source_Ptr := Sloc (N);
1099 P : constant Node_Id := Name (N);
1100 Actuals : constant List_Id := Parameter_Associations (N);
1101 Actual : Node_Id;
1102 New_N : Node_Id;
1104 procedure Analyze_Call_And_Resolve;
1105 -- Do Analyze and Resolve calls for procedure call
1106 -- At end, check illegal order dependence.
1108 ------------------------------
1109 -- Analyze_Call_And_Resolve --
1110 ------------------------------
1112 procedure Analyze_Call_And_Resolve is
1113 begin
1114 if Nkind (N) = N_Procedure_Call_Statement then
1115 Analyze_Call (N);
1116 Resolve (N, Standard_Void_Type);
1118 -- Apply checks suggested by AI05-0144
1120 Check_Order_Dependence;
1122 else
1123 Analyze (N);
1124 end if;
1125 end Analyze_Call_And_Resolve;
1127 -- Start of processing for Analyze_Procedure_Call
1129 begin
1130 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1131 -- a procedure call or an entry call. The prefix may denote an access
1132 -- to subprogram type, in which case an implicit dereference applies.
1133 -- If the prefix is an indexed component (without implicit dereference)
1134 -- then the construct denotes a call to a member of an entire family.
1135 -- If the prefix is a simple name, it may still denote a call to a
1136 -- parameterless member of an entry family. Resolution of these various
1137 -- interpretations is delicate.
1139 Analyze (P);
1141 -- If this is a call of the form Obj.Op, the call may have been
1142 -- analyzed and possibly rewritten into a block, in which case
1143 -- we are done.
1145 if Analyzed (N) then
1146 return;
1147 end if;
1149 -- If there is an error analyzing the name (which may have been
1150 -- rewritten if the original call was in prefix notation) then error
1151 -- has been emitted already, mark node and return.
1153 if Error_Posted (N)
1154 or else Etype (Name (N)) = Any_Type
1155 then
1156 Set_Etype (N, Any_Type);
1157 return;
1158 end if;
1160 -- Otherwise analyze the parameters
1162 if Present (Actuals) then
1163 Actual := First (Actuals);
1165 while Present (Actual) loop
1166 Analyze (Actual);
1167 Check_Parameterless_Call (Actual);
1168 Next (Actual);
1169 end loop;
1170 end if;
1172 -- Special processing for Elab_Spec and Elab_Body calls
1174 if Nkind (P) = N_Attribute_Reference
1175 and then (Attribute_Name (P) = Name_Elab_Spec
1176 or else Attribute_Name (P) = Name_Elab_Body)
1177 then
1178 if Present (Actuals) then
1179 Error_Msg_N
1180 ("no parameters allowed for this call", First (Actuals));
1181 return;
1182 end if;
1184 Set_Etype (N, Standard_Void_Type);
1185 Set_Analyzed (N);
1187 elsif Is_Entity_Name (P)
1188 and then Is_Record_Type (Etype (Entity (P)))
1189 and then Remote_AST_I_Dereference (P)
1190 then
1191 return;
1193 elsif Is_Entity_Name (P)
1194 and then Ekind (Entity (P)) /= E_Entry_Family
1195 then
1196 if Is_Access_Type (Etype (P))
1197 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1198 and then No (Actuals)
1199 and then Comes_From_Source (N)
1200 then
1201 Error_Msg_N ("missing explicit dereference in call", N);
1202 end if;
1204 Analyze_Call_And_Resolve;
1206 -- If the prefix is the simple name of an entry family, this is
1207 -- a parameterless call from within the task body itself.
1209 elsif Is_Entity_Name (P)
1210 and then Nkind (P) = N_Identifier
1211 and then Ekind (Entity (P)) = E_Entry_Family
1212 and then Present (Actuals)
1213 and then No (Next (First (Actuals)))
1214 then
1215 -- Can be call to parameterless entry family. What appears to be the
1216 -- sole argument is in fact the entry index. Rewrite prefix of node
1217 -- accordingly. Source representation is unchanged by this
1218 -- transformation.
1220 New_N :=
1221 Make_Indexed_Component (Loc,
1222 Prefix =>
1223 Make_Selected_Component (Loc,
1224 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1225 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1226 Expressions => Actuals);
1227 Set_Name (N, New_N);
1228 Set_Etype (New_N, Standard_Void_Type);
1229 Set_Parameter_Associations (N, No_List);
1230 Analyze_Call_And_Resolve;
1232 elsif Nkind (P) = N_Explicit_Dereference then
1233 if Ekind (Etype (P)) = E_Subprogram_Type then
1234 Analyze_Call_And_Resolve;
1235 else
1236 Error_Msg_N ("expect access to procedure in call", P);
1237 end if;
1239 -- The name can be a selected component or an indexed component that
1240 -- yields an access to subprogram. Such a prefix is legal if the call
1241 -- has parameter associations.
1243 elsif Is_Access_Type (Etype (P))
1244 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1245 then
1246 if Present (Actuals) then
1247 Analyze_Call_And_Resolve;
1248 else
1249 Error_Msg_N ("missing explicit dereference in call ", N);
1250 end if;
1252 -- If not an access to subprogram, then the prefix must resolve to the
1253 -- name of an entry, entry family, or protected operation.
1255 -- For the case of a simple entry call, P is a selected component where
1256 -- the prefix is the task and the selector name is the entry. A call to
1257 -- a protected procedure will have the same syntax. If the protected
1258 -- object contains overloaded operations, the entity may appear as a
1259 -- function, the context will select the operation whose type is Void.
1261 elsif Nkind (P) = N_Selected_Component
1262 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1263 or else
1264 Ekind (Entity (Selector_Name (P))) = E_Procedure
1265 or else
1266 Ekind (Entity (Selector_Name (P))) = E_Function)
1267 then
1268 Analyze_Call_And_Resolve;
1270 elsif Nkind (P) = N_Selected_Component
1271 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1272 and then Present (Actuals)
1273 and then No (Next (First (Actuals)))
1274 then
1275 -- Can be call to parameterless entry family. What appears to be the
1276 -- sole argument is in fact the entry index. Rewrite prefix of node
1277 -- accordingly. Source representation is unchanged by this
1278 -- transformation.
1280 New_N :=
1281 Make_Indexed_Component (Loc,
1282 Prefix => New_Copy (P),
1283 Expressions => Actuals);
1284 Set_Name (N, New_N);
1285 Set_Etype (New_N, Standard_Void_Type);
1286 Set_Parameter_Associations (N, No_List);
1287 Analyze_Call_And_Resolve;
1289 -- For the case of a reference to an element of an entry family, P is
1290 -- an indexed component whose prefix is a selected component (task and
1291 -- entry family), and whose index is the entry family index.
1293 elsif Nkind (P) = N_Indexed_Component
1294 and then Nkind (Prefix (P)) = N_Selected_Component
1295 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1296 then
1297 Analyze_Call_And_Resolve;
1299 -- If the prefix is the name of an entry family, it is a call from
1300 -- within the task body itself.
1302 elsif Nkind (P) = N_Indexed_Component
1303 and then Nkind (Prefix (P)) = N_Identifier
1304 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1305 then
1306 New_N :=
1307 Make_Selected_Component (Loc,
1308 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1309 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1310 Rewrite (Prefix (P), New_N);
1311 Analyze (P);
1312 Analyze_Call_And_Resolve;
1314 -- Anything else is an error
1316 else
1317 Error_Msg_N ("invalid procedure or entry call", N);
1318 end if;
1319 end Analyze_Procedure_Call;
1321 -------------------------------------
1322 -- Analyze_Simple_Return_Statement --
1323 -------------------------------------
1325 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1326 begin
1327 if Present (Expression (N)) then
1328 Mark_Coextensions (N, Expression (N));
1329 end if;
1331 Analyze_Return_Statement (N);
1332 end Analyze_Simple_Return_Statement;
1334 -------------------------
1335 -- Analyze_Return_Type --
1336 -------------------------
1338 procedure Analyze_Return_Type (N : Node_Id) is
1339 Designator : constant Entity_Id := Defining_Entity (N);
1340 Typ : Entity_Id := Empty;
1342 begin
1343 -- Normal case where result definition does not indicate an error
1345 if Result_Definition (N) /= Error then
1346 if Nkind (Result_Definition (N)) = N_Access_Definition then
1348 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1350 declare
1351 AD : constant Node_Id :=
1352 Access_To_Subprogram_Definition (Result_Definition (N));
1353 begin
1354 if Present (AD) and then Protected_Present (AD) then
1355 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1356 else
1357 Typ := Access_Definition (N, Result_Definition (N));
1358 end if;
1359 end;
1361 Set_Parent (Typ, Result_Definition (N));
1362 Set_Is_Local_Anonymous_Access (Typ);
1363 Set_Etype (Designator, Typ);
1365 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1367 Null_Exclusion_Static_Checks (N);
1369 -- Subtype_Mark case
1371 else
1372 Find_Type (Result_Definition (N));
1373 Typ := Entity (Result_Definition (N));
1374 Set_Etype (Designator, Typ);
1376 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1378 Null_Exclusion_Static_Checks (N);
1380 -- If a null exclusion is imposed on the result type, then create
1381 -- a null-excluding itype (an access subtype) and use it as the
1382 -- function's Etype. Note that the null exclusion checks are done
1383 -- right before this, because they don't get applied to types that
1384 -- do not come from source.
1386 if Is_Access_Type (Typ)
1387 and then Null_Exclusion_Present (N)
1388 then
1389 Set_Etype (Designator,
1390 Create_Null_Excluding_Itype
1391 (T => Typ,
1392 Related_Nod => N,
1393 Scope_Id => Scope (Current_Scope)));
1395 -- The new subtype must be elaborated before use because
1396 -- it is visible outside of the function. However its base
1397 -- type may not be frozen yet, so the reference that will
1398 -- force elaboration must be attached to the freezing of
1399 -- the base type.
1401 -- If the return specification appears on a proper body,
1402 -- the subtype will have been created already on the spec.
1404 if Is_Frozen (Typ) then
1405 if Nkind (Parent (N)) = N_Subprogram_Body
1406 and then Nkind (Parent (Parent (N))) = N_Subunit
1407 then
1408 null;
1409 else
1410 Build_Itype_Reference (Etype (Designator), Parent (N));
1411 end if;
1413 else
1414 Ensure_Freeze_Node (Typ);
1416 declare
1417 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1418 begin
1419 Set_Itype (IR, Etype (Designator));
1420 Append_Freeze_Actions (Typ, New_List (IR));
1421 end;
1422 end if;
1424 else
1425 Set_Etype (Designator, Typ);
1426 end if;
1428 if Ekind (Typ) = E_Incomplete_Type
1429 and then Is_Value_Type (Typ)
1430 then
1431 null;
1433 elsif Ekind (Typ) = E_Incomplete_Type
1434 or else (Is_Class_Wide_Type (Typ)
1435 and then
1436 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1437 then
1438 -- AI05-0151: Tagged incomplete types are allowed in all formal
1439 -- parts. Untagged incomplete types are not allowed in bodies.
1441 if Ada_Version >= Ada_2012 then
1442 if Is_Tagged_Type (Typ) then
1443 null;
1445 elsif Nkind_In (Parent (Parent (N)),
1446 N_Accept_Statement,
1447 N_Entry_Body,
1448 N_Subprogram_Body)
1449 then
1450 Error_Msg_NE
1451 ("invalid use of untagged incomplete type&",
1452 Designator, Typ);
1453 end if;
1455 else
1456 Error_Msg_NE
1457 ("invalid use of incomplete type&", Designator, Typ);
1458 end if;
1459 end if;
1460 end if;
1462 -- Case where result definition does indicate an error
1464 else
1465 Set_Etype (Designator, Any_Type);
1466 end if;
1467 end Analyze_Return_Type;
1469 -----------------------------
1470 -- Analyze_Subprogram_Body --
1471 -----------------------------
1473 procedure Analyze_Subprogram_Body (N : Node_Id) is
1474 Loc : constant Source_Ptr := Sloc (N);
1475 Body_Spec : constant Node_Id := Specification (N);
1476 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1478 begin
1479 if Debug_Flag_C then
1480 Write_Str ("==> subprogram body ");
1481 Write_Name (Chars (Body_Id));
1482 Write_Str (" from ");
1483 Write_Location (Loc);
1484 Write_Eol;
1485 Indent;
1486 end if;
1488 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1490 -- The real work is split out into the helper, so it can do "return;"
1491 -- without skipping the debug output:
1493 Analyze_Subprogram_Body_Helper (N);
1495 if Debug_Flag_C then
1496 Outdent;
1497 Write_Str ("<== subprogram body ");
1498 Write_Name (Chars (Body_Id));
1499 Write_Str (" from ");
1500 Write_Location (Loc);
1501 Write_Eol;
1502 end if;
1503 end Analyze_Subprogram_Body;
1505 ------------------------------------
1506 -- Analyze_Subprogram_Body_Helper --
1507 ------------------------------------
1509 -- This procedure is called for regular subprogram bodies, generic bodies,
1510 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1511 -- specification matters, and is used to create a proper declaration for
1512 -- the subprogram, or to perform conformance checks.
1514 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1515 Loc : constant Source_Ptr := Sloc (N);
1516 Body_Deleted : constant Boolean := False;
1517 Body_Spec : constant Node_Id := Specification (N);
1518 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1519 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1520 Conformant : Boolean;
1521 HSS : Node_Id;
1522 P_Ent : Entity_Id;
1523 Prot_Typ : Entity_Id := Empty;
1524 Spec_Id : Entity_Id;
1525 Spec_Decl : Node_Id := Empty;
1527 Last_Real_Spec_Entity : Entity_Id := Empty;
1528 -- When we analyze a separate spec, the entity chain ends up containing
1529 -- the formals, as well as any itypes generated during analysis of the
1530 -- default expressions for parameters, or the arguments of associated
1531 -- precondition/postcondition pragmas (which are analyzed in the context
1532 -- of the spec since they have visibility on formals).
1534 -- These entities belong with the spec and not the body. However we do
1535 -- the analysis of the body in the context of the spec (again to obtain
1536 -- visibility to the formals), and all the entities generated during
1537 -- this analysis end up also chained to the entity chain of the spec.
1538 -- But they really belong to the body, and there is circuitry to move
1539 -- them from the spec to the body.
1541 -- However, when we do this move, we don't want to move the real spec
1542 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1543 -- variable points to the last real spec entity, so we only move those
1544 -- chained beyond that point. It is initialized to Empty to deal with
1545 -- the case where there is no separate spec.
1547 procedure Check_Anonymous_Return;
1548 -- Ada 2005: if a function returns an access type that denotes a task,
1549 -- or a type that contains tasks, we must create a master entity for
1550 -- the anonymous type, which typically will be used in an allocator
1551 -- in the body of the function.
1553 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1554 -- Look ahead to recognize a pragma that may appear after the body.
1555 -- If there is a previous spec, check that it appears in the same
1556 -- declarative part. If the pragma is Inline_Always, perform inlining
1557 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1558 -- If the body acts as a spec, and inlining is required, we create a
1559 -- subprogram declaration for it, in order to attach the body to inline.
1560 -- If pragma does not appear after the body, check whether there is
1561 -- an inline pragma before any local declarations.
1563 procedure Check_Missing_Return;
1564 -- Checks for a function with a no return statements, and also performs
1565 -- the warning checks implemented by Check_Returns.
1567 function Disambiguate_Spec return Entity_Id;
1568 -- When a primitive is declared between the private view and the full
1569 -- view of a concurrent type which implements an interface, a special
1570 -- mechanism is used to find the corresponding spec of the primitive
1571 -- body.
1573 function Is_Private_Concurrent_Primitive
1574 (Subp_Id : Entity_Id) return Boolean;
1575 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1576 -- type that implements an interface and has a private view.
1578 procedure Set_Trivial_Subprogram (N : Node_Id);
1579 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1580 -- subprogram whose body is being analyzed. N is the statement node
1581 -- causing the flag to be set, if the following statement is a return
1582 -- of an entity, we mark the entity as set in source to suppress any
1583 -- warning on the stylized use of function stubs with a dummy return.
1585 procedure Verify_Overriding_Indicator;
1586 -- If there was a previous spec, the entity has been entered in the
1587 -- current scope previously. If the body itself carries an overriding
1588 -- indicator, check that it is consistent with the known status of the
1589 -- entity.
1591 ----------------------------
1592 -- Check_Anonymous_Return --
1593 ----------------------------
1595 procedure Check_Anonymous_Return is
1596 Decl : Node_Id;
1597 Par : Node_Id;
1598 Scop : Entity_Id;
1600 begin
1601 if Present (Spec_Id) then
1602 Scop := Spec_Id;
1603 else
1604 Scop := Body_Id;
1605 end if;
1607 if Ekind (Scop) = E_Function
1608 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1609 and then not Is_Thunk (Scop)
1610 and then (Has_Task (Designated_Type (Etype (Scop)))
1611 or else
1612 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1613 and then
1614 Is_Limited_Record (Designated_Type (Etype (Scop)))))
1615 and then Expander_Active
1617 -- Avoid cases with no tasking support
1619 and then RTE_Available (RE_Current_Master)
1620 and then not Restriction_Active (No_Task_Hierarchy)
1621 then
1622 Decl :=
1623 Make_Object_Declaration (Loc,
1624 Defining_Identifier =>
1625 Make_Defining_Identifier (Loc, Name_uMaster),
1626 Constant_Present => True,
1627 Object_Definition =>
1628 New_Reference_To (RTE (RE_Master_Id), Loc),
1629 Expression =>
1630 Make_Explicit_Dereference (Loc,
1631 New_Reference_To (RTE (RE_Current_Master), Loc)));
1633 if Present (Declarations (N)) then
1634 Prepend (Decl, Declarations (N));
1635 else
1636 Set_Declarations (N, New_List (Decl));
1637 end if;
1639 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1640 Set_Has_Master_Entity (Scop);
1642 -- Now mark the containing scope as a task master
1644 Par := N;
1645 while Nkind (Par) /= N_Compilation_Unit loop
1646 Par := Parent (Par);
1647 pragma Assert (Present (Par));
1649 -- If we fall off the top, we are at the outer level, and
1650 -- the environment task is our effective master, so nothing
1651 -- to mark.
1653 if Nkind_In
1654 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1655 then
1656 Set_Is_Task_Master (Par, True);
1657 exit;
1658 end if;
1659 end loop;
1660 end if;
1661 end Check_Anonymous_Return;
1663 -------------------------
1664 -- Check_Inline_Pragma --
1665 -------------------------
1667 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1668 Prag : Node_Id;
1669 Plist : List_Id;
1671 function Is_Inline_Pragma (N : Node_Id) return Boolean;
1672 -- True when N is a pragma Inline or Inline_Always that applies
1673 -- to this subprogram.
1675 -----------------------
1676 -- Is_Inline_Pragma --
1677 -----------------------
1679 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1680 begin
1681 return
1682 Nkind (N) = N_Pragma
1683 and then
1684 (Pragma_Name (N) = Name_Inline_Always
1685 or else
1686 (Front_End_Inlining
1687 and then Pragma_Name (N) = Name_Inline))
1688 and then
1689 Chars
1690 (Expression (First (Pragma_Argument_Associations (N))))
1691 = Chars (Body_Id);
1692 end Is_Inline_Pragma;
1694 -- Start of processing for Check_Inline_Pragma
1696 begin
1697 if not Expander_Active then
1698 return;
1699 end if;
1701 if Is_List_Member (N)
1702 and then Present (Next (N))
1703 and then Is_Inline_Pragma (Next (N))
1704 then
1705 Prag := Next (N);
1707 elsif Nkind (N) /= N_Subprogram_Body_Stub
1708 and then Present (Declarations (N))
1709 and then Is_Inline_Pragma (First (Declarations (N)))
1710 then
1711 Prag := First (Declarations (N));
1713 else
1714 Prag := Empty;
1715 end if;
1717 if Present (Prag) then
1718 if Present (Spec_Id) then
1719 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
1720 Analyze (Prag);
1721 end if;
1723 else
1724 -- Create a subprogram declaration, to make treatment uniform
1726 declare
1727 Subp : constant Entity_Id :=
1728 Make_Defining_Identifier (Loc, Chars (Body_Id));
1729 Decl : constant Node_Id :=
1730 Make_Subprogram_Declaration (Loc,
1731 Specification =>
1732 New_Copy_Tree (Specification (N)));
1734 begin
1735 Set_Defining_Unit_Name (Specification (Decl), Subp);
1737 if Present (First_Formal (Body_Id)) then
1738 Plist := Copy_Parameter_List (Body_Id);
1739 Set_Parameter_Specifications
1740 (Specification (Decl), Plist);
1741 end if;
1743 Insert_Before (N, Decl);
1744 Analyze (Decl);
1745 Analyze (Prag);
1746 Set_Has_Pragma_Inline (Subp);
1748 if Pragma_Name (Prag) = Name_Inline_Always then
1749 Set_Is_Inlined (Subp);
1750 Set_Has_Pragma_Inline_Always (Subp);
1751 end if;
1753 Spec := Subp;
1754 end;
1755 end if;
1756 end if;
1757 end Check_Inline_Pragma;
1759 --------------------------
1760 -- Check_Missing_Return --
1761 --------------------------
1763 procedure Check_Missing_Return is
1764 Id : Entity_Id;
1765 Missing_Ret : Boolean;
1767 begin
1768 if Nkind (Body_Spec) = N_Function_Specification then
1769 if Present (Spec_Id) then
1770 Id := Spec_Id;
1771 else
1772 Id := Body_Id;
1773 end if;
1775 if Return_Present (Id) then
1776 Check_Returns (HSS, 'F', Missing_Ret);
1778 if Missing_Ret then
1779 Set_Has_Missing_Return (Id);
1780 end if;
1782 elsif (Is_Generic_Subprogram (Id)
1783 or else not Is_Machine_Code_Subprogram (Id))
1784 and then not Body_Deleted
1785 then
1786 Error_Msg_N ("missing RETURN statement in function body", N);
1787 end if;
1789 -- If procedure with No_Return, check returns
1791 elsif Nkind (Body_Spec) = N_Procedure_Specification
1792 and then Present (Spec_Id)
1793 and then No_Return (Spec_Id)
1794 then
1795 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
1796 end if;
1797 end Check_Missing_Return;
1799 -----------------------
1800 -- Disambiguate_Spec --
1801 -----------------------
1803 function Disambiguate_Spec return Entity_Id is
1804 Priv_Spec : Entity_Id;
1805 Spec_N : Entity_Id;
1807 procedure Replace_Types (To_Corresponding : Boolean);
1808 -- Depending on the flag, replace the type of formal parameters of
1809 -- Body_Id if it is a concurrent type implementing interfaces with
1810 -- the corresponding record type or the other way around.
1812 procedure Replace_Types (To_Corresponding : Boolean) is
1813 Formal : Entity_Id;
1814 Formal_Typ : Entity_Id;
1816 begin
1817 Formal := First_Formal (Body_Id);
1818 while Present (Formal) loop
1819 Formal_Typ := Etype (Formal);
1821 -- From concurrent type to corresponding record
1823 if To_Corresponding then
1824 if Is_Concurrent_Type (Formal_Typ)
1825 and then Present (Corresponding_Record_Type (Formal_Typ))
1826 and then Present (Interfaces (
1827 Corresponding_Record_Type (Formal_Typ)))
1828 then
1829 Set_Etype (Formal,
1830 Corresponding_Record_Type (Formal_Typ));
1831 end if;
1833 -- From corresponding record to concurrent type
1835 else
1836 if Is_Concurrent_Record_Type (Formal_Typ)
1837 and then Present (Interfaces (Formal_Typ))
1838 then
1839 Set_Etype (Formal,
1840 Corresponding_Concurrent_Type (Formal_Typ));
1841 end if;
1842 end if;
1844 Next_Formal (Formal);
1845 end loop;
1846 end Replace_Types;
1848 -- Start of processing for Disambiguate_Spec
1850 begin
1851 -- Try to retrieve the specification of the body as is. All error
1852 -- messages are suppressed because the body may not have a spec in
1853 -- its current state.
1855 Spec_N := Find_Corresponding_Spec (N, False);
1857 -- It is possible that this is the body of a primitive declared
1858 -- between a private and a full view of a concurrent type. The
1859 -- controlling parameter of the spec carries the concurrent type,
1860 -- not the corresponding record type as transformed by Analyze_
1861 -- Subprogram_Specification. In such cases, we undo the change
1862 -- made by the analysis of the specification and try to find the
1863 -- spec again.
1865 -- Note that wrappers already have their corresponding specs and
1866 -- bodies set during their creation, so if the candidate spec is
1867 -- a wrapper, then we definitely need to swap all types to their
1868 -- original concurrent status.
1870 if No (Spec_N)
1871 or else Is_Primitive_Wrapper (Spec_N)
1872 then
1873 -- Restore all references of corresponding record types to the
1874 -- original concurrent types.
1876 Replace_Types (To_Corresponding => False);
1877 Priv_Spec := Find_Corresponding_Spec (N, False);
1879 -- The current body truly belongs to a primitive declared between
1880 -- a private and a full view. We leave the modified body as is,
1881 -- and return the true spec.
1883 if Present (Priv_Spec)
1884 and then Is_Private_Primitive (Priv_Spec)
1885 then
1886 return Priv_Spec;
1887 end if;
1889 -- In case that this is some sort of error, restore the original
1890 -- state of the body.
1892 Replace_Types (To_Corresponding => True);
1893 end if;
1895 return Spec_N;
1896 end Disambiguate_Spec;
1898 -------------------------------------
1899 -- Is_Private_Concurrent_Primitive --
1900 -------------------------------------
1902 function Is_Private_Concurrent_Primitive
1903 (Subp_Id : Entity_Id) return Boolean
1905 Formal_Typ : Entity_Id;
1907 begin
1908 if Present (First_Formal (Subp_Id)) then
1909 Formal_Typ := Etype (First_Formal (Subp_Id));
1911 if Is_Concurrent_Record_Type (Formal_Typ) then
1912 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
1913 end if;
1915 -- The type of the first formal is a concurrent tagged type with
1916 -- a private view.
1918 return
1919 Is_Concurrent_Type (Formal_Typ)
1920 and then Is_Tagged_Type (Formal_Typ)
1921 and then Has_Private_Declaration (Formal_Typ);
1922 end if;
1924 return False;
1925 end Is_Private_Concurrent_Primitive;
1927 ----------------------------
1928 -- Set_Trivial_Subprogram --
1929 ----------------------------
1931 procedure Set_Trivial_Subprogram (N : Node_Id) is
1932 Nxt : constant Node_Id := Next (N);
1934 begin
1935 Set_Is_Trivial_Subprogram (Body_Id);
1937 if Present (Spec_Id) then
1938 Set_Is_Trivial_Subprogram (Spec_Id);
1939 end if;
1941 if Present (Nxt)
1942 and then Nkind (Nxt) = N_Simple_Return_Statement
1943 and then No (Next (Nxt))
1944 and then Present (Expression (Nxt))
1945 and then Is_Entity_Name (Expression (Nxt))
1946 then
1947 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1948 end if;
1949 end Set_Trivial_Subprogram;
1951 ---------------------------------
1952 -- Verify_Overriding_Indicator --
1953 ---------------------------------
1955 procedure Verify_Overriding_Indicator is
1956 begin
1957 if Must_Override (Body_Spec) then
1958 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
1959 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1960 then
1961 null;
1963 elsif not Present (Overridden_Operation (Spec_Id)) then
1964 Error_Msg_NE
1965 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1966 end if;
1968 elsif Must_Not_Override (Body_Spec) then
1969 if Present (Overridden_Operation (Spec_Id)) then
1970 Error_Msg_NE
1971 ("subprogram& overrides inherited operation",
1972 Body_Spec, Spec_Id);
1974 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
1975 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1976 then
1977 Error_Msg_NE
1978 ("subprogram & overrides predefined operator ",
1979 Body_Spec, Spec_Id);
1981 -- If this is not a primitive operation or protected subprogram,
1982 -- then the overriding indicator is altogether illegal.
1984 elsif not Is_Primitive (Spec_Id)
1985 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
1986 then
1987 Error_Msg_N
1988 ("overriding indicator only allowed " &
1989 "if subprogram is primitive",
1990 Body_Spec);
1991 end if;
1993 elsif Style_Check -- ??? incorrect use of Style_Check!
1994 and then Present (Overridden_Operation (Spec_Id))
1995 then
1996 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
1997 Style.Missing_Overriding (N, Body_Id);
1998 end if;
1999 end Verify_Overriding_Indicator;
2001 -- Start of processing for Analyze_Subprogram_Body_Helper
2003 begin
2004 -- Generic subprograms are handled separately. They always have a
2005 -- generic specification. Determine whether current scope has a
2006 -- previous declaration.
2008 -- If the subprogram body is defined within an instance of the same
2009 -- name, the instance appears as a package renaming, and will be hidden
2010 -- within the subprogram.
2012 if Present (Prev_Id)
2013 and then not Is_Overloadable (Prev_Id)
2014 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2015 or else Comes_From_Source (Prev_Id))
2016 then
2017 if Is_Generic_Subprogram (Prev_Id) then
2018 Spec_Id := Prev_Id;
2019 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2020 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2022 Analyze_Generic_Subprogram_Body (N, Spec_Id);
2024 if Nkind (N) = N_Subprogram_Body then
2025 HSS := Handled_Statement_Sequence (N);
2026 Check_Missing_Return;
2027 end if;
2029 return;
2031 else
2032 -- Previous entity conflicts with subprogram name. Attempting to
2033 -- enter name will post error.
2035 Enter_Name (Body_Id);
2036 return;
2037 end if;
2039 -- Non-generic case, find the subprogram declaration, if one was seen,
2040 -- or enter new overloaded entity in the current scope. If the
2041 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2042 -- part of the context of one of its subunits. No need to redo the
2043 -- analysis.
2045 elsif Prev_Id = Body_Id
2046 and then Has_Completion (Body_Id)
2047 then
2048 return;
2050 else
2051 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2053 if Nkind (N) = N_Subprogram_Body_Stub
2054 or else No (Corresponding_Spec (N))
2055 then
2056 if Is_Private_Concurrent_Primitive (Body_Id) then
2057 Spec_Id := Disambiguate_Spec;
2058 else
2059 Spec_Id := Find_Corresponding_Spec (N);
2060 end if;
2062 -- If this is a duplicate body, no point in analyzing it
2064 if Error_Posted (N) then
2065 return;
2066 end if;
2068 -- A subprogram body should cause freezing of its own declaration,
2069 -- but if there was no previous explicit declaration, then the
2070 -- subprogram will get frozen too late (there may be code within
2071 -- the body that depends on the subprogram having been frozen,
2072 -- such as uses of extra formals), so we force it to be frozen
2073 -- here. Same holds if the body and spec are compilation units.
2074 -- Finally, if the return type is an anonymous access to protected
2075 -- subprogram, it must be frozen before the body because its
2076 -- expansion has generated an equivalent type that is used when
2077 -- elaborating the body.
2079 if No (Spec_Id) then
2080 Freeze_Before (N, Body_Id);
2082 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2083 Freeze_Before (N, Spec_Id);
2085 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2086 Freeze_Before (N, Etype (Body_Id));
2087 end if;
2089 else
2090 Spec_Id := Corresponding_Spec (N);
2091 end if;
2092 end if;
2094 -- Do not inline any subprogram that contains nested subprograms, since
2095 -- the backend inlining circuit seems to generate uninitialized
2096 -- references in this case. We know this happens in the case of front
2097 -- end ZCX support, but it also appears it can happen in other cases as
2098 -- well. The backend often rejects attempts to inline in the case of
2099 -- nested procedures anyway, so little if anything is lost by this.
2100 -- Note that this is test is for the benefit of the back-end. There is
2101 -- a separate test for front-end inlining that also rejects nested
2102 -- subprograms.
2104 -- Do not do this test if errors have been detected, because in some
2105 -- error cases, this code blows up, and we don't need it anyway if
2106 -- there have been errors, since we won't get to the linker anyway.
2108 if Comes_From_Source (Body_Id)
2109 and then Serious_Errors_Detected = 0
2110 then
2111 P_Ent := Body_Id;
2112 loop
2113 P_Ent := Scope (P_Ent);
2114 exit when No (P_Ent) or else P_Ent = Standard_Standard;
2116 if Is_Subprogram (P_Ent) then
2117 Set_Is_Inlined (P_Ent, False);
2119 if Comes_From_Source (P_Ent)
2120 and then Has_Pragma_Inline (P_Ent)
2121 then
2122 Cannot_Inline
2123 ("cannot inline& (nested subprogram)?",
2124 N, P_Ent);
2125 end if;
2126 end if;
2127 end loop;
2128 end if;
2130 Check_Inline_Pragma (Spec_Id);
2132 -- Deal with special case of a fully private operation in the body of
2133 -- the protected type. We must create a declaration for the subprogram,
2134 -- in order to attach the protected subprogram that will be used in
2135 -- internal calls. We exclude compiler generated bodies from the
2136 -- expander since the issue does not arise for those cases.
2138 if No (Spec_Id)
2139 and then Comes_From_Source (N)
2140 and then Is_Protected_Type (Current_Scope)
2141 then
2142 Spec_Id := Build_Private_Protected_Declaration (N);
2143 end if;
2145 -- If a separate spec is present, then deal with freezing issues
2147 if Present (Spec_Id) then
2148 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2149 Verify_Overriding_Indicator;
2151 -- In general, the spec will be frozen when we start analyzing the
2152 -- body. However, for internally generated operations, such as
2153 -- wrapper functions for inherited operations with controlling
2154 -- results, the spec may not have been frozen by the time we
2155 -- expand the freeze actions that include the bodies. In particular,
2156 -- extra formals for accessibility or for return-in-place may need
2157 -- to be generated. Freeze nodes, if any, are inserted before the
2158 -- current body.
2160 if not Is_Frozen (Spec_Id)
2161 and then Expander_Active
2162 then
2163 -- Force the generation of its freezing node to ensure proper
2164 -- management of access types in the backend.
2166 -- This is definitely needed for some cases, but it is not clear
2167 -- why, to be investigated further???
2169 Set_Has_Delayed_Freeze (Spec_Id);
2170 Freeze_Before (N, Spec_Id);
2171 end if;
2172 end if;
2174 -- Mark presence of postcondition procedure in current scope and mark
2175 -- the procedure itself as needing debug info. The latter is important
2176 -- when analyzing decision coverage (for example, for MC/DC coverage).
2178 if Chars (Body_Id) = Name_uPostconditions then
2179 Set_Has_Postconditions (Current_Scope);
2180 Set_Debug_Info_Needed (Body_Id);
2181 end if;
2183 -- Place subprogram on scope stack, and make formals visible. If there
2184 -- is a spec, the visible entity remains that of the spec.
2186 if Present (Spec_Id) then
2187 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2189 if Is_Child_Unit (Spec_Id) then
2190 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2191 end if;
2193 if Style_Check then
2194 Style.Check_Identifier (Body_Id, Spec_Id);
2195 end if;
2197 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2198 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2200 if Is_Abstract_Subprogram (Spec_Id) then
2201 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2202 return;
2204 else
2205 Set_Convention (Body_Id, Convention (Spec_Id));
2206 Set_Has_Completion (Spec_Id);
2208 if Is_Protected_Type (Scope (Spec_Id)) then
2209 Prot_Typ := Scope (Spec_Id);
2210 end if;
2212 -- If this is a body generated for a renaming, do not check for
2213 -- full conformance. The check is redundant, because the spec of
2214 -- the body is a copy of the spec in the renaming declaration,
2215 -- and the test can lead to spurious errors on nested defaults.
2217 if Present (Spec_Decl)
2218 and then not Comes_From_Source (N)
2219 and then
2220 (Nkind (Original_Node (Spec_Decl)) =
2221 N_Subprogram_Renaming_Declaration
2222 or else (Present (Corresponding_Body (Spec_Decl))
2223 and then
2224 Nkind (Unit_Declaration_Node
2225 (Corresponding_Body (Spec_Decl))) =
2226 N_Subprogram_Renaming_Declaration))
2227 then
2228 Conformant := True;
2230 -- Conversely, the spec may have been generated for specless body
2231 -- with an inline pragma.
2233 elsif Comes_From_Source (N)
2234 and then not Comes_From_Source (Spec_Id)
2235 and then Has_Pragma_Inline (Spec_Id)
2236 then
2237 Conformant := True;
2239 else
2240 Check_Conformance
2241 (Body_Id, Spec_Id,
2242 Fully_Conformant, True, Conformant, Body_Id);
2243 end if;
2245 -- If the body is not fully conformant, we have to decide if we
2246 -- should analyze it or not. If it has a really messed up profile
2247 -- then we probably should not analyze it, since we will get too
2248 -- many bogus messages.
2250 -- Our decision is to go ahead in the non-fully conformant case
2251 -- only if it is at least mode conformant with the spec. Note
2252 -- that the call to Check_Fully_Conformant has issued the proper
2253 -- error messages to complain about the lack of conformance.
2255 if not Conformant
2256 and then not Mode_Conformant (Body_Id, Spec_Id)
2257 then
2258 return;
2259 end if;
2260 end if;
2262 if Spec_Id /= Body_Id then
2263 Reference_Body_Formals (Spec_Id, Body_Id);
2264 end if;
2266 if Nkind (N) /= N_Subprogram_Body_Stub then
2267 Set_Corresponding_Spec (N, Spec_Id);
2269 -- Ada 2005 (AI-345): If the operation is a primitive operation
2270 -- of a concurrent type, the type of the first parameter has been
2271 -- replaced with the corresponding record, which is the proper
2272 -- run-time structure to use. However, within the body there may
2273 -- be uses of the formals that depend on primitive operations
2274 -- of the type (in particular calls in prefixed form) for which
2275 -- we need the original concurrent type. The operation may have
2276 -- several controlling formals, so the replacement must be done
2277 -- for all of them.
2279 if Comes_From_Source (Spec_Id)
2280 and then Present (First_Entity (Spec_Id))
2281 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2282 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2283 and then
2284 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2285 and then
2286 Present
2287 (Corresponding_Concurrent_Type
2288 (Etype (First_Entity (Spec_Id))))
2289 then
2290 declare
2291 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2292 Form : Entity_Id;
2294 begin
2295 Form := First_Formal (Spec_Id);
2296 while Present (Form) loop
2297 if Etype (Form) = Typ then
2298 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2299 end if;
2301 Next_Formal (Form);
2302 end loop;
2303 end;
2304 end if;
2306 -- Make the formals visible, and place subprogram on scope stack.
2307 -- This is also the point at which we set Last_Real_Spec_Entity
2308 -- to mark the entities which will not be moved to the body.
2310 Install_Formals (Spec_Id);
2311 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2312 Push_Scope (Spec_Id);
2314 -- Make sure that the subprogram is immediately visible. For
2315 -- child units that have no separate spec this is indispensable.
2316 -- Otherwise it is safe albeit redundant.
2318 Set_Is_Immediately_Visible (Spec_Id);
2319 end if;
2321 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2322 Set_Ekind (Body_Id, E_Subprogram_Body);
2323 Set_Scope (Body_Id, Scope (Spec_Id));
2324 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2326 -- Case of subprogram body with no previous spec
2328 else
2329 -- Check for style warning required
2331 if Style_Check
2333 -- Only apply check for source level subprograms for which checks
2334 -- have not been suppressed.
2336 and then Comes_From_Source (Body_Id)
2337 and then not Suppress_Style_Checks (Body_Id)
2339 -- No warnings within an instance
2341 and then not In_Instance
2343 -- No warnings for parameterized expressions
2345 and then Nkind (Original_Node (N)) /= N_Parameterized_Expression
2346 then
2347 Style.Body_With_No_Spec (N);
2348 end if;
2350 New_Overloaded_Entity (Body_Id);
2352 if Nkind (N) /= N_Subprogram_Body_Stub then
2353 Set_Acts_As_Spec (N);
2354 Generate_Definition (Body_Id);
2355 Generate_Reference
2356 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2357 Generate_Reference_To_Formals (Body_Id);
2358 Install_Formals (Body_Id);
2359 Push_Scope (Body_Id);
2360 end if;
2361 end if;
2363 -- If the return type is an anonymous access type whose designated type
2364 -- is the limited view of a class-wide type and the non-limited view is
2365 -- available, update the return type accordingly.
2367 if Ada_Version >= Ada_2005
2368 and then Comes_From_Source (N)
2369 then
2370 declare
2371 Etyp : Entity_Id;
2372 Rtyp : Entity_Id;
2374 begin
2375 Rtyp := Etype (Current_Scope);
2377 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2378 Etyp := Directly_Designated_Type (Rtyp);
2380 if Is_Class_Wide_Type (Etyp)
2381 and then From_With_Type (Etyp)
2382 then
2383 Set_Directly_Designated_Type
2384 (Etype (Current_Scope), Available_View (Etyp));
2385 end if;
2386 end if;
2387 end;
2388 end if;
2390 -- If this is the proper body of a stub, we must verify that the stub
2391 -- conforms to the body, and to the previous spec if one was present.
2392 -- we know already that the body conforms to that spec. This test is
2393 -- only required for subprograms that come from source.
2395 if Nkind (Parent (N)) = N_Subunit
2396 and then Comes_From_Source (N)
2397 and then not Error_Posted (Body_Id)
2398 and then Nkind (Corresponding_Stub (Parent (N))) =
2399 N_Subprogram_Body_Stub
2400 then
2401 declare
2402 Old_Id : constant Entity_Id :=
2403 Defining_Entity
2404 (Specification (Corresponding_Stub (Parent (N))));
2406 Conformant : Boolean := False;
2408 begin
2409 if No (Spec_Id) then
2410 Check_Fully_Conformant (Body_Id, Old_Id);
2412 else
2413 Check_Conformance
2414 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2416 if not Conformant then
2418 -- The stub was taken to be a new declaration. Indicate
2419 -- that it lacks a body.
2421 Set_Has_Completion (Old_Id, False);
2422 end if;
2423 end if;
2424 end;
2425 end if;
2427 Set_Has_Completion (Body_Id);
2428 Check_Eliminated (Body_Id);
2430 if Nkind (N) = N_Subprogram_Body_Stub then
2431 return;
2433 elsif Present (Spec_Id)
2434 and then Expander_Active
2435 and then
2436 (Has_Pragma_Inline_Always (Spec_Id)
2437 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2438 then
2439 Build_Body_To_Inline (N, Spec_Id);
2440 end if;
2442 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2443 -- if its specification we have to install the private withed units.
2444 -- This holds for child units as well.
2446 if Is_Compilation_Unit (Body_Id)
2447 or else Nkind (Parent (N)) = N_Compilation_Unit
2448 then
2449 Install_Private_With_Clauses (Body_Id);
2450 end if;
2452 Check_Anonymous_Return;
2454 -- Set the Protected_Formal field of each extra formal of the protected
2455 -- subprogram to reference the corresponding extra formal of the
2456 -- subprogram that implements it. For regular formals this occurs when
2457 -- the protected subprogram's declaration is expanded, but the extra
2458 -- formals don't get created until the subprogram is frozen. We need to
2459 -- do this before analyzing the protected subprogram's body so that any
2460 -- references to the original subprogram's extra formals will be changed
2461 -- refer to the implementing subprogram's formals (see Expand_Formal).
2463 if Present (Spec_Id)
2464 and then Is_Protected_Type (Scope (Spec_Id))
2465 and then Present (Protected_Body_Subprogram (Spec_Id))
2466 then
2467 declare
2468 Impl_Subp : constant Entity_Id :=
2469 Protected_Body_Subprogram (Spec_Id);
2470 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2471 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2472 begin
2473 while Present (Prot_Ext_Formal) loop
2474 pragma Assert (Present (Impl_Ext_Formal));
2475 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2476 Next_Formal_With_Extras (Prot_Ext_Formal);
2477 Next_Formal_With_Extras (Impl_Ext_Formal);
2478 end loop;
2479 end;
2480 end if;
2482 -- Now we can go on to analyze the body
2484 HSS := Handled_Statement_Sequence (N);
2485 Set_Actual_Subtypes (N, Current_Scope);
2487 -- Deal with preconditions and postconditions
2489 Process_PPCs (N, Spec_Id, Body_Id);
2491 -- Add a declaration for the Protection object, renaming declarations
2492 -- for discriminals and privals and finally a declaration for the entry
2493 -- family index (if applicable). This form of early expansion is done
2494 -- when the Expander is active because Install_Private_Data_Declarations
2495 -- references entities which were created during regular expansion.
2497 if Expander_Active
2498 and then Comes_From_Source (N)
2499 and then Present (Prot_Typ)
2500 and then Present (Spec_Id)
2501 and then not Is_Eliminated (Spec_Id)
2502 then
2503 Install_Private_Data_Declarations
2504 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2505 end if;
2507 -- Analyze the declarations (this call will analyze the precondition
2508 -- Check pragmas we prepended to the list, as well as the declaration
2509 -- of the _Postconditions procedure).
2511 Analyze_Declarations (Declarations (N));
2513 -- Check completion, and analyze the statements
2515 Check_Completion;
2516 Inspect_Deferred_Constant_Completion (Declarations (N));
2517 Analyze (HSS);
2519 -- Deal with end of scope processing for the body
2521 Process_End_Label (HSS, 't', Current_Scope);
2522 End_Scope;
2523 Check_Subprogram_Order (N);
2524 Set_Analyzed (Body_Id);
2526 -- If we have a separate spec, then the analysis of the declarations
2527 -- caused the entities in the body to be chained to the spec id, but
2528 -- we want them chained to the body id. Only the formal parameters
2529 -- end up chained to the spec id in this case.
2531 if Present (Spec_Id) then
2533 -- We must conform to the categorization of our spec
2535 Validate_Categorization_Dependency (N, Spec_Id);
2537 -- And if this is a child unit, the parent units must conform
2539 if Is_Child_Unit (Spec_Id) then
2540 Validate_Categorization_Dependency
2541 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2542 end if;
2544 -- Here is where we move entities from the spec to the body
2546 -- Case where there are entities that stay with the spec
2548 if Present (Last_Real_Spec_Entity) then
2550 -- No body entities (happens when the only real spec entities
2551 -- come from precondition and postcondition pragmas)
2553 if No (Last_Entity (Body_Id)) then
2554 Set_First_Entity
2555 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2557 -- Body entities present (formals), so chain stuff past them
2559 else
2560 Set_Next_Entity
2561 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2562 end if;
2564 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2565 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2566 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2568 -- Case where there are no spec entities, in this case there can
2569 -- be no body entities either, so just move everything.
2571 else
2572 pragma Assert (No (Last_Entity (Body_Id)));
2573 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2574 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2575 Set_First_Entity (Spec_Id, Empty);
2576 Set_Last_Entity (Spec_Id, Empty);
2577 end if;
2578 end if;
2580 Check_Missing_Return;
2582 -- Now we are going to check for variables that are never modified in
2583 -- the body of the procedure. But first we deal with a special case
2584 -- where we want to modify this check. If the body of the subprogram
2585 -- starts with a raise statement or its equivalent, or if the body
2586 -- consists entirely of a null statement, then it is pretty obvious
2587 -- that it is OK to not reference the parameters. For example, this
2588 -- might be the following common idiom for a stubbed function:
2589 -- statement of the procedure raises an exception. In particular this
2590 -- deals with the common idiom of a stubbed function, which might
2591 -- appear as something like
2593 -- function F (A : Integer) return Some_Type;
2594 -- X : Some_Type;
2595 -- begin
2596 -- raise Program_Error;
2597 -- return X;
2598 -- end F;
2600 -- Here the purpose of X is simply to satisfy the annoying requirement
2601 -- in Ada that there be at least one return, and we certainly do not
2602 -- want to go posting warnings on X that it is not initialized! On
2603 -- the other hand, if X is entirely unreferenced that should still
2604 -- get a warning.
2606 -- What we do is to detect these cases, and if we find them, flag the
2607 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2608 -- suppress unwanted warnings. For the case of the function stub above
2609 -- we have a special test to set X as apparently assigned to suppress
2610 -- the warning.
2612 declare
2613 Stm : Node_Id;
2615 begin
2616 -- Skip initial labels (for one thing this occurs when we are in
2617 -- front end ZCX mode, but in any case it is irrelevant), and also
2618 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2620 Stm := First (Statements (HSS));
2621 while Nkind (Stm) = N_Label
2622 or else Nkind (Stm) in N_Push_xxx_Label
2623 loop
2624 Next (Stm);
2625 end loop;
2627 -- Do the test on the original statement before expansion
2629 declare
2630 Ostm : constant Node_Id := Original_Node (Stm);
2632 begin
2633 -- If explicit raise statement, turn on flag
2635 if Nkind (Ostm) = N_Raise_Statement then
2636 Set_Trivial_Subprogram (Stm);
2638 -- If null statement, and no following statements, turn on flag
2640 elsif Nkind (Stm) = N_Null_Statement
2641 and then Comes_From_Source (Stm)
2642 and then No (Next (Stm))
2643 then
2644 Set_Trivial_Subprogram (Stm);
2646 -- Check for explicit call cases which likely raise an exception
2648 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2649 if Is_Entity_Name (Name (Ostm)) then
2650 declare
2651 Ent : constant Entity_Id := Entity (Name (Ostm));
2653 begin
2654 -- If the procedure is marked No_Return, then likely it
2655 -- raises an exception, but in any case it is not coming
2656 -- back here, so turn on the flag.
2658 if Ekind (Ent) = E_Procedure
2659 and then No_Return (Ent)
2660 then
2661 Set_Trivial_Subprogram (Stm);
2662 end if;
2663 end;
2664 end if;
2665 end if;
2666 end;
2667 end;
2669 -- Check for variables that are never modified
2671 declare
2672 E1, E2 : Entity_Id;
2674 begin
2675 -- If there is a separate spec, then transfer Never_Set_In_Source
2676 -- flags from out parameters to the corresponding entities in the
2677 -- body. The reason we do that is we want to post error flags on
2678 -- the body entities, not the spec entities.
2680 if Present (Spec_Id) then
2681 E1 := First_Entity (Spec_Id);
2682 while Present (E1) loop
2683 if Ekind (E1) = E_Out_Parameter then
2684 E2 := First_Entity (Body_Id);
2685 while Present (E2) loop
2686 exit when Chars (E1) = Chars (E2);
2687 Next_Entity (E2);
2688 end loop;
2690 if Present (E2) then
2691 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2692 end if;
2693 end if;
2695 Next_Entity (E1);
2696 end loop;
2697 end if;
2699 -- Check references in body unless it was deleted. Note that the
2700 -- check of Body_Deleted here is not just for efficiency, it is
2701 -- necessary to avoid junk warnings on formal parameters.
2703 if not Body_Deleted then
2704 Check_References (Body_Id);
2705 end if;
2706 end;
2707 end Analyze_Subprogram_Body_Helper;
2709 ------------------------------------
2710 -- Analyze_Subprogram_Declaration --
2711 ------------------------------------
2713 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2714 Loc : constant Source_Ptr := Sloc (N);
2715 Scop : constant Entity_Id := Current_Scope;
2716 Designator : Entity_Id;
2717 Form : Node_Id;
2718 Null_Body : Node_Id := Empty;
2720 -- Start of processing for Analyze_Subprogram_Declaration
2722 begin
2723 -- For a null procedure, capture the profile before analysis, for
2724 -- expansion at the freeze point and at each point of call. The body
2725 -- will only be used if the procedure has preconditions. In that case
2726 -- the body is analyzed at the freeze point.
2728 if Nkind (Specification (N)) = N_Procedure_Specification
2729 and then Null_Present (Specification (N))
2730 and then Expander_Active
2731 then
2732 Null_Body :=
2733 Make_Subprogram_Body (Loc,
2734 Specification =>
2735 New_Copy_Tree (Specification (N)),
2736 Declarations =>
2737 New_List,
2738 Handled_Statement_Sequence =>
2739 Make_Handled_Sequence_Of_Statements (Loc,
2740 Statements => New_List (Make_Null_Statement (Loc))));
2742 -- Create new entities for body and formals
2744 Set_Defining_Unit_Name (Specification (Null_Body),
2745 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
2746 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2748 Form := First (Parameter_Specifications (Specification (Null_Body)));
2749 while Present (Form) loop
2750 Set_Defining_Identifier (Form,
2751 Make_Defining_Identifier (Loc,
2752 Chars (Defining_Identifier (Form))));
2754 -- Resolve the types of the formals now, because the freeze point
2755 -- may appear in a different context, e.g. an instantiation.
2757 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
2758 Find_Type (Parameter_Type (Form));
2760 elsif
2761 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
2762 then
2763 Find_Type (Subtype_Mark (Parameter_Type (Form)));
2765 else
2767 -- the case of a null procedure with a formal that is an
2768 -- access_to_subprogram type, and that is used as an actual
2769 -- in an instantiation is left to the enthusiastic reader.
2771 null;
2772 end if;
2774 Next (Form);
2775 end loop;
2777 if Is_Protected_Type (Current_Scope) then
2778 Error_Msg_N ("protected operation cannot be a null procedure", N);
2779 end if;
2780 end if;
2782 Designator := Analyze_Subprogram_Specification (Specification (N));
2783 Generate_Definition (Designator);
2785 if Debug_Flag_C then
2786 Write_Str ("==> subprogram spec ");
2787 Write_Name (Chars (Designator));
2788 Write_Str (" from ");
2789 Write_Location (Sloc (N));
2790 Write_Eol;
2791 Indent;
2792 end if;
2794 if Nkind (Specification (N)) = N_Procedure_Specification
2795 and then Null_Present (Specification (N))
2796 then
2797 Set_Has_Completion (Designator);
2799 if Present (Null_Body) then
2800 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2801 Set_Body_To_Inline (N, Null_Body);
2802 Set_Is_Inlined (Designator);
2803 end if;
2804 end if;
2806 Validate_RCI_Subprogram_Declaration (N);
2807 New_Overloaded_Entity (Designator);
2808 Check_Delayed_Subprogram (Designator);
2810 -- If the type of the first formal of the current subprogram is a
2811 -- nongeneric tagged private type, mark the subprogram as being a
2812 -- private primitive. Ditto if this is a function with controlling
2813 -- result, and the return type is currently private. In both cases,
2814 -- the type of the controlling argument or result must be in the
2815 -- current scope for the operation to be primitive.
2817 if Has_Controlling_Result (Designator)
2818 and then Is_Private_Type (Etype (Designator))
2819 and then Scope (Etype (Designator)) = Current_Scope
2820 and then not Is_Generic_Actual_Type (Etype (Designator))
2821 then
2822 Set_Is_Private_Primitive (Designator);
2824 elsif Present (First_Formal (Designator)) then
2825 declare
2826 Formal_Typ : constant Entity_Id :=
2827 Etype (First_Formal (Designator));
2828 begin
2829 Set_Is_Private_Primitive (Designator,
2830 Is_Tagged_Type (Formal_Typ)
2831 and then Scope (Formal_Typ) = Current_Scope
2832 and then Is_Private_Type (Formal_Typ)
2833 and then not Is_Generic_Actual_Type (Formal_Typ));
2834 end;
2835 end if;
2837 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2838 -- or null.
2840 if Ada_Version >= Ada_2005
2841 and then Comes_From_Source (N)
2842 and then Is_Dispatching_Operation (Designator)
2843 then
2844 declare
2845 E : Entity_Id;
2846 Etyp : Entity_Id;
2848 begin
2849 if Has_Controlling_Result (Designator) then
2850 Etyp := Etype (Designator);
2852 else
2853 E := First_Entity (Designator);
2854 while Present (E)
2855 and then Is_Formal (E)
2856 and then not Is_Controlling_Formal (E)
2857 loop
2858 Next_Entity (E);
2859 end loop;
2861 Etyp := Etype (E);
2862 end if;
2864 if Is_Access_Type (Etyp) then
2865 Etyp := Directly_Designated_Type (Etyp);
2866 end if;
2868 if Is_Interface (Etyp)
2869 and then not Is_Abstract_Subprogram (Designator)
2870 and then not (Ekind (Designator) = E_Procedure
2871 and then Null_Present (Specification (N)))
2872 then
2873 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2874 Error_Msg_N
2875 ("(Ada 2005) interface subprogram % must be abstract or null",
2877 end if;
2878 end;
2879 end if;
2881 -- What is the following code for, it used to be
2883 -- ??? Set_Suppress_Elaboration_Checks
2884 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2886 -- The following seems equivalent, but a bit dubious
2888 if Elaboration_Checks_Suppressed (Designator) then
2889 Set_Kill_Elaboration_Checks (Designator);
2890 end if;
2892 if Scop /= Standard_Standard
2893 and then not Is_Child_Unit (Designator)
2894 then
2895 Set_Categorization_From_Scope (Designator, Scop);
2896 else
2897 -- For a compilation unit, check for library-unit pragmas
2899 Push_Scope (Designator);
2900 Set_Categorization_From_Pragmas (N);
2901 Validate_Categorization_Dependency (N, Designator);
2902 Pop_Scope;
2903 end if;
2905 -- For a compilation unit, set body required. This flag will only be
2906 -- reset if a valid Import or Interface pragma is processed later on.
2908 if Nkind (Parent (N)) = N_Compilation_Unit then
2909 Set_Body_Required (Parent (N), True);
2911 if Ada_Version >= Ada_2005
2912 and then Nkind (Specification (N)) = N_Procedure_Specification
2913 and then Null_Present (Specification (N))
2914 then
2915 Error_Msg_N
2916 ("null procedure cannot be declared at library level", N);
2917 end if;
2918 end if;
2920 Generate_Reference_To_Formals (Designator);
2921 Check_Eliminated (Designator);
2923 if Debug_Flag_C then
2924 Outdent;
2925 Write_Str ("<== subprogram spec ");
2926 Write_Name (Chars (Designator));
2927 Write_Str (" from ");
2928 Write_Location (Sloc (N));
2929 Write_Eol;
2930 end if;
2932 List_Inherited_Pre_Post_Aspects (Designator);
2933 Analyze_Aspect_Specifications (N, Designator, Aspect_Specifications (N));
2934 end Analyze_Subprogram_Declaration;
2936 --------------------------------------
2937 -- Analyze_Subprogram_Specification --
2938 --------------------------------------
2940 -- Reminder: N here really is a subprogram specification (not a subprogram
2941 -- declaration). This procedure is called to analyze the specification in
2942 -- both subprogram bodies and subprogram declarations (specs).
2944 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2945 Designator : constant Entity_Id := Defining_Entity (N);
2946 Formals : constant List_Id := Parameter_Specifications (N);
2948 -- Start of processing for Analyze_Subprogram_Specification
2950 begin
2951 Generate_Definition (Designator);
2953 if Nkind (N) = N_Function_Specification then
2954 Set_Ekind (Designator, E_Function);
2955 Set_Mechanism (Designator, Default_Mechanism);
2956 else
2957 Set_Ekind (Designator, E_Procedure);
2958 Set_Etype (Designator, Standard_Void_Type);
2959 end if;
2961 -- Introduce new scope for analysis of the formals and the return type
2963 Set_Scope (Designator, Current_Scope);
2965 if Present (Formals) then
2966 Push_Scope (Designator);
2967 Process_Formals (Formals, N);
2969 -- Ada 2005 (AI-345): If this is an overriding operation of an
2970 -- inherited interface operation, and the controlling type is
2971 -- a synchronized type, replace the type with its corresponding
2972 -- record, to match the proper signature of an overriding operation.
2973 -- Same processing for an access parameter whose designated type is
2974 -- derived from a synchronized interface.
2976 if Ada_Version >= Ada_2005 then
2977 declare
2978 Formal : Entity_Id;
2979 Formal_Typ : Entity_Id;
2980 Rec_Typ : Entity_Id;
2981 Desig_Typ : Entity_Id;
2983 begin
2984 Formal := First_Formal (Designator);
2985 while Present (Formal) loop
2986 Formal_Typ := Etype (Formal);
2988 if Is_Concurrent_Type (Formal_Typ)
2989 and then Present (Corresponding_Record_Type (Formal_Typ))
2990 then
2991 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
2993 if Present (Interfaces (Rec_Typ)) then
2994 Set_Etype (Formal, Rec_Typ);
2995 end if;
2997 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
2998 Desig_Typ := Designated_Type (Formal_Typ);
3000 if Is_Concurrent_Type (Desig_Typ)
3001 and then Present (Corresponding_Record_Type (Desig_Typ))
3002 then
3003 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
3005 if Present (Interfaces (Rec_Typ)) then
3006 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
3007 end if;
3008 end if;
3009 end if;
3011 Next_Formal (Formal);
3012 end loop;
3013 end;
3014 end if;
3016 End_Scope;
3018 -- The subprogram scope is pushed and popped around the processing of
3019 -- the return type for consistency with call above to Process_Formals
3020 -- (which itself can call Analyze_Return_Type), and to ensure that any
3021 -- itype created for the return type will be associated with the proper
3022 -- scope.
3024 elsif Nkind (N) = N_Function_Specification then
3025 Push_Scope (Designator);
3026 Analyze_Return_Type (N);
3027 End_Scope;
3028 end if;
3030 -- Function case
3032 if Nkind (N) = N_Function_Specification then
3034 -- Deal with operator symbol case
3036 if Nkind (Designator) = N_Defining_Operator_Symbol then
3037 Valid_Operator_Definition (Designator);
3038 end if;
3040 May_Need_Actuals (Designator);
3042 -- Ada 2005 (AI-251): If the return type is abstract, verify that
3043 -- the subprogram is abstract also. This does not apply to renaming
3044 -- declarations, where abstractness is inherited.
3046 -- In case of primitives associated with abstract interface types
3047 -- the check is applied later (see Analyze_Subprogram_Declaration).
3049 if not Nkind_In (Parent (N), N_Subprogram_Renaming_Declaration,
3050 N_Abstract_Subprogram_Declaration,
3051 N_Formal_Abstract_Subprogram_Declaration)
3052 then
3053 if Is_Abstract_Type (Etype (Designator))
3054 and then not Is_Interface (Etype (Designator))
3055 then
3056 Error_Msg_N
3057 ("function that returns abstract type must be abstract", N);
3059 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
3060 -- access result whose designated type is abstract.
3062 elsif Nkind (Result_Definition (N)) = N_Access_Definition
3063 and then
3064 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
3065 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
3066 and then Ada_Version >= Ada_2012
3067 then
3068 Error_Msg_N ("function whose access result designates "
3069 & "abstract type must be abstract", N);
3070 end if;
3071 end if;
3072 end if;
3074 return Designator;
3075 end Analyze_Subprogram_Specification;
3077 --------------------------
3078 -- Build_Body_To_Inline --
3079 --------------------------
3081 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
3082 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
3083 Original_Body : Node_Id;
3084 Body_To_Analyze : Node_Id;
3085 Max_Size : constant := 10;
3086 Stat_Count : Integer := 0;
3088 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
3089 -- Check for declarations that make inlining not worthwhile
3091 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
3092 -- Check for statements that make inlining not worthwhile: any tasking
3093 -- statement, nested at any level. Keep track of total number of
3094 -- elementary statements, as a measure of acceptable size.
3096 function Has_Pending_Instantiation return Boolean;
3097 -- If some enclosing body contains instantiations that appear before the
3098 -- corresponding generic body, the enclosing body has a freeze node so
3099 -- that it can be elaborated after the generic itself. This might
3100 -- conflict with subsequent inlinings, so that it is unsafe to try to
3101 -- inline in such a case.
3103 function Has_Single_Return return Boolean;
3104 -- In general we cannot inline functions that return unconstrained type.
3105 -- However, we can handle such functions if all return statements return
3106 -- a local variable that is the only declaration in the body of the
3107 -- function. In that case the call can be replaced by that local
3108 -- variable as is done for other inlined calls.
3110 procedure Remove_Pragmas;
3111 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
3112 -- parameter has no meaning when the body is inlined and the formals
3113 -- are rewritten. Remove it from body to inline. The analysis of the
3114 -- non-inlined body will handle the pragma properly.
3116 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
3117 -- If the body of the subprogram includes a call that returns an
3118 -- unconstrained type, the secondary stack is involved, and it
3119 -- is not worth inlining.
3121 ------------------------------
3122 -- Has_Excluded_Declaration --
3123 ------------------------------
3125 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
3126 D : Node_Id;
3128 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3129 -- Nested subprograms make a given body ineligible for inlining, but
3130 -- we make an exception for instantiations of unchecked conversion.
3131 -- The body has not been analyzed yet, so check the name, and verify
3132 -- that the visible entity with that name is the predefined unit.
3134 -----------------------------
3135 -- Is_Unchecked_Conversion --
3136 -----------------------------
3138 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3139 Id : constant Node_Id := Name (D);
3140 Conv : Entity_Id;
3142 begin
3143 if Nkind (Id) = N_Identifier
3144 and then Chars (Id) = Name_Unchecked_Conversion
3145 then
3146 Conv := Current_Entity (Id);
3148 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3149 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3150 then
3151 Conv := Current_Entity (Selector_Name (Id));
3152 else
3153 return False;
3154 end if;
3156 return Present (Conv)
3157 and then Is_Predefined_File_Name
3158 (Unit_File_Name (Get_Source_Unit (Conv)))
3159 and then Is_Intrinsic_Subprogram (Conv);
3160 end Is_Unchecked_Conversion;
3162 -- Start of processing for Has_Excluded_Declaration
3164 begin
3165 D := First (Decls);
3166 while Present (D) loop
3167 if (Nkind (D) = N_Function_Instantiation
3168 and then not Is_Unchecked_Conversion (D))
3169 or else Nkind_In (D, N_Protected_Type_Declaration,
3170 N_Package_Declaration,
3171 N_Package_Instantiation,
3172 N_Subprogram_Body,
3173 N_Procedure_Instantiation,
3174 N_Task_Type_Declaration)
3175 then
3176 Cannot_Inline
3177 ("cannot inline & (non-allowed declaration)?", D, Subp);
3178 return True;
3179 end if;
3181 Next (D);
3182 end loop;
3184 return False;
3185 end Has_Excluded_Declaration;
3187 ----------------------------
3188 -- Has_Excluded_Statement --
3189 ----------------------------
3191 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3192 S : Node_Id;
3193 E : Node_Id;
3195 begin
3196 S := First (Stats);
3197 while Present (S) loop
3198 Stat_Count := Stat_Count + 1;
3200 if Nkind_In (S, N_Abort_Statement,
3201 N_Asynchronous_Select,
3202 N_Conditional_Entry_Call,
3203 N_Delay_Relative_Statement,
3204 N_Delay_Until_Statement,
3205 N_Selective_Accept,
3206 N_Timed_Entry_Call)
3207 then
3208 Cannot_Inline
3209 ("cannot inline & (non-allowed statement)?", S, Subp);
3210 return True;
3212 elsif Nkind (S) = N_Block_Statement then
3213 if Present (Declarations (S))
3214 and then Has_Excluded_Declaration (Declarations (S))
3215 then
3216 return True;
3218 elsif Present (Handled_Statement_Sequence (S))
3219 and then
3220 (Present
3221 (Exception_Handlers (Handled_Statement_Sequence (S)))
3222 or else
3223 Has_Excluded_Statement
3224 (Statements (Handled_Statement_Sequence (S))))
3225 then
3226 return True;
3227 end if;
3229 elsif Nkind (S) = N_Case_Statement then
3230 E := First (Alternatives (S));
3231 while Present (E) loop
3232 if Has_Excluded_Statement (Statements (E)) then
3233 return True;
3234 end if;
3236 Next (E);
3237 end loop;
3239 elsif Nkind (S) = N_If_Statement then
3240 if Has_Excluded_Statement (Then_Statements (S)) then
3241 return True;
3242 end if;
3244 if Present (Elsif_Parts (S)) then
3245 E := First (Elsif_Parts (S));
3246 while Present (E) loop
3247 if Has_Excluded_Statement (Then_Statements (E)) then
3248 return True;
3249 end if;
3250 Next (E);
3251 end loop;
3252 end if;
3254 if Present (Else_Statements (S))
3255 and then Has_Excluded_Statement (Else_Statements (S))
3256 then
3257 return True;
3258 end if;
3260 elsif Nkind (S) = N_Loop_Statement
3261 and then Has_Excluded_Statement (Statements (S))
3262 then
3263 return True;
3265 elsif Nkind (S) = N_Extended_Return_Statement then
3266 if Has_Excluded_Statement
3267 (Statements (Handled_Statement_Sequence (S)))
3268 or else Present
3269 (Exception_Handlers (Handled_Statement_Sequence (S)))
3270 then
3271 return True;
3272 end if;
3273 end if;
3275 Next (S);
3276 end loop;
3278 return False;
3279 end Has_Excluded_Statement;
3281 -------------------------------
3282 -- Has_Pending_Instantiation --
3283 -------------------------------
3285 function Has_Pending_Instantiation return Boolean is
3286 S : Entity_Id;
3288 begin
3289 S := Current_Scope;
3290 while Present (S) loop
3291 if Is_Compilation_Unit (S)
3292 or else Is_Child_Unit (S)
3293 then
3294 return False;
3296 elsif Ekind (S) = E_Package
3297 and then Has_Forward_Instantiation (S)
3298 then
3299 return True;
3300 end if;
3302 S := Scope (S);
3303 end loop;
3305 return False;
3306 end Has_Pending_Instantiation;
3308 ------------------------
3309 -- Has_Single_Return --
3310 ------------------------
3312 function Has_Single_Return return Boolean is
3313 Return_Statement : Node_Id := Empty;
3315 function Check_Return (N : Node_Id) return Traverse_Result;
3317 ------------------
3318 -- Check_Return --
3319 ------------------
3321 function Check_Return (N : Node_Id) return Traverse_Result is
3322 begin
3323 if Nkind (N) = N_Simple_Return_Statement then
3324 if Present (Expression (N))
3325 and then Is_Entity_Name (Expression (N))
3326 then
3327 if No (Return_Statement) then
3328 Return_Statement := N;
3329 return OK;
3331 elsif Chars (Expression (N)) =
3332 Chars (Expression (Return_Statement))
3333 then
3334 return OK;
3336 else
3337 return Abandon;
3338 end if;
3340 -- A return statement within an extended return is a noop
3341 -- after inlining.
3343 elsif No (Expression (N))
3344 and then Nkind (Parent (Parent (N))) =
3345 N_Extended_Return_Statement
3346 then
3347 return OK;
3349 else
3350 -- Expression has wrong form
3352 return Abandon;
3353 end if;
3355 -- We can only inline a build-in-place function if
3356 -- it has a single extended return.
3358 elsif Nkind (N) = N_Extended_Return_Statement then
3359 if No (Return_Statement) then
3360 Return_Statement := N;
3361 return OK;
3363 else
3364 return Abandon;
3365 end if;
3367 else
3368 return OK;
3369 end if;
3370 end Check_Return;
3372 function Check_All_Returns is new Traverse_Func (Check_Return);
3374 -- Start of processing for Has_Single_Return
3376 begin
3377 if Check_All_Returns (N) /= OK then
3378 return False;
3380 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3381 return True;
3383 else
3384 return Present (Declarations (N))
3385 and then Present (First (Declarations (N)))
3386 and then Chars (Expression (Return_Statement)) =
3387 Chars (Defining_Identifier (First (Declarations (N))));
3388 end if;
3389 end Has_Single_Return;
3391 --------------------
3392 -- Remove_Pragmas --
3393 --------------------
3395 procedure Remove_Pragmas is
3396 Decl : Node_Id;
3397 Nxt : Node_Id;
3399 begin
3400 Decl := First (Declarations (Body_To_Analyze));
3401 while Present (Decl) loop
3402 Nxt := Next (Decl);
3404 if Nkind (Decl) = N_Pragma
3405 and then (Pragma_Name (Decl) = Name_Unreferenced
3406 or else
3407 Pragma_Name (Decl) = Name_Unmodified)
3408 then
3409 Remove (Decl);
3410 end if;
3412 Decl := Nxt;
3413 end loop;
3414 end Remove_Pragmas;
3416 --------------------------
3417 -- Uses_Secondary_Stack --
3418 --------------------------
3420 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3421 function Check_Call (N : Node_Id) return Traverse_Result;
3422 -- Look for function calls that return an unconstrained type
3424 ----------------
3425 -- Check_Call --
3426 ----------------
3428 function Check_Call (N : Node_Id) return Traverse_Result is
3429 begin
3430 if Nkind (N) = N_Function_Call
3431 and then Is_Entity_Name (Name (N))
3432 and then Is_Composite_Type (Etype (Entity (Name (N))))
3433 and then not Is_Constrained (Etype (Entity (Name (N))))
3434 then
3435 Cannot_Inline
3436 ("cannot inline & (call returns unconstrained type)?",
3437 N, Subp);
3438 return Abandon;
3439 else
3440 return OK;
3441 end if;
3442 end Check_Call;
3444 function Check_Calls is new Traverse_Func (Check_Call);
3446 begin
3447 return Check_Calls (Bod) = Abandon;
3448 end Uses_Secondary_Stack;
3450 -- Start of processing for Build_Body_To_Inline
3452 begin
3453 -- Return immediately if done already
3455 if Nkind (Decl) = N_Subprogram_Declaration
3456 and then Present (Body_To_Inline (Decl))
3457 then
3458 return;
3460 -- Functions that return unconstrained composite types require
3461 -- secondary stack handling, and cannot currently be inlined, unless
3462 -- all return statements return a local variable that is the first
3463 -- local declaration in the body.
3465 elsif Ekind (Subp) = E_Function
3466 and then not Is_Scalar_Type (Etype (Subp))
3467 and then not Is_Access_Type (Etype (Subp))
3468 and then not Is_Constrained (Etype (Subp))
3469 then
3470 if not Has_Single_Return then
3471 Cannot_Inline
3472 ("cannot inline & (unconstrained return type)?", N, Subp);
3473 return;
3474 end if;
3476 -- Ditto for functions that return controlled types, where controlled
3477 -- actions interfere in complex ways with inlining.
3479 elsif Ekind (Subp) = E_Function
3480 and then Needs_Finalization (Etype (Subp))
3481 then
3482 Cannot_Inline
3483 ("cannot inline & (controlled return type)?", N, Subp);
3484 return;
3485 end if;
3487 if Present (Declarations (N))
3488 and then Has_Excluded_Declaration (Declarations (N))
3489 then
3490 return;
3491 end if;
3493 if Present (Handled_Statement_Sequence (N)) then
3494 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3495 Cannot_Inline
3496 ("cannot inline& (exception handler)?",
3497 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3498 Subp);
3499 return;
3500 elsif
3501 Has_Excluded_Statement
3502 (Statements (Handled_Statement_Sequence (N)))
3503 then
3504 return;
3505 end if;
3506 end if;
3508 -- We do not inline a subprogram that is too large, unless it is
3509 -- marked Inline_Always. This pragma does not suppress the other
3510 -- checks on inlining (forbidden declarations, handlers, etc).
3512 if Stat_Count > Max_Size
3513 and then not Has_Pragma_Inline_Always (Subp)
3514 then
3515 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
3516 return;
3517 end if;
3519 if Has_Pending_Instantiation then
3520 Cannot_Inline
3521 ("cannot inline& (forward instance within enclosing body)?",
3522 N, Subp);
3523 return;
3524 end if;
3526 -- Within an instance, the body to inline must be treated as a nested
3527 -- generic, so that the proper global references are preserved.
3529 -- Note that we do not do this at the library level, because it is not
3530 -- needed, and furthermore this causes trouble if front end inlining
3531 -- is activated (-gnatN).
3533 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3534 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3535 Original_Body := Copy_Generic_Node (N, Empty, True);
3536 else
3537 Original_Body := Copy_Separate_Tree (N);
3538 end if;
3540 -- We need to capture references to the formals in order to substitute
3541 -- the actuals at the point of inlining, i.e. instantiation. To treat
3542 -- the formals as globals to the body to inline, we nest it within
3543 -- a dummy parameterless subprogram, declared within the real one.
3544 -- To avoid generating an internal name (which is never public, and
3545 -- which affects serial numbers of other generated names), we use
3546 -- an internal symbol that cannot conflict with user declarations.
3548 Set_Parameter_Specifications (Specification (Original_Body), No_List);
3549 Set_Defining_Unit_Name
3550 (Specification (Original_Body),
3551 Make_Defining_Identifier (Sloc (N), Name_uParent));
3552 Set_Corresponding_Spec (Original_Body, Empty);
3554 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3556 -- Set return type of function, which is also global and does not need
3557 -- to be resolved.
3559 if Ekind (Subp) = E_Function then
3560 Set_Result_Definition (Specification (Body_To_Analyze),
3561 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3562 end if;
3564 if No (Declarations (N)) then
3565 Set_Declarations (N, New_List (Body_To_Analyze));
3566 else
3567 Append (Body_To_Analyze, Declarations (N));
3568 end if;
3570 Expander_Mode_Save_And_Set (False);
3571 Remove_Pragmas;
3573 Analyze (Body_To_Analyze);
3574 Push_Scope (Defining_Entity (Body_To_Analyze));
3575 Save_Global_References (Original_Body);
3576 End_Scope;
3577 Remove (Body_To_Analyze);
3579 Expander_Mode_Restore;
3581 -- Restore environment if previously saved
3583 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3584 Restore_Env;
3585 end if;
3587 -- If secondary stk used there is no point in inlining. We have
3588 -- already issued the warning in this case, so nothing to do.
3590 if Uses_Secondary_Stack (Body_To_Analyze) then
3591 return;
3592 end if;
3594 Set_Body_To_Inline (Decl, Original_Body);
3595 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3596 Set_Is_Inlined (Subp);
3597 end Build_Body_To_Inline;
3599 -------------------
3600 -- Cannot_Inline --
3601 -------------------
3603 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3604 begin
3605 -- Do not emit warning if this is a predefined unit which is not the
3606 -- main unit. With validity checks enabled, some predefined subprograms
3607 -- may contain nested subprograms and become ineligible for inlining.
3609 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3610 and then not In_Extended_Main_Source_Unit (Subp)
3611 then
3612 null;
3614 elsif Has_Pragma_Inline_Always (Subp) then
3616 -- Remove last character (question mark) to make this into an error,
3617 -- because the Inline_Always pragma cannot be obeyed.
3619 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
3621 elsif Ineffective_Inline_Warnings then
3622 Error_Msg_NE (Msg, N, Subp);
3623 end if;
3624 end Cannot_Inline;
3626 -----------------------
3627 -- Check_Conformance --
3628 -----------------------
3630 procedure Check_Conformance
3631 (New_Id : Entity_Id;
3632 Old_Id : Entity_Id;
3633 Ctype : Conformance_Type;
3634 Errmsg : Boolean;
3635 Conforms : out Boolean;
3636 Err_Loc : Node_Id := Empty;
3637 Get_Inst : Boolean := False;
3638 Skip_Controlling_Formals : Boolean := False)
3640 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
3641 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3642 -- If Errmsg is True, then processing continues to post an error message
3643 -- for conformance error on given node. Two messages are output. The
3644 -- first message points to the previous declaration with a general "no
3645 -- conformance" message. The second is the detailed reason, supplied as
3646 -- Msg. The parameter N provide information for a possible & insertion
3647 -- in the message, and also provides the location for posting the
3648 -- message in the absence of a specified Err_Loc location.
3650 -----------------------
3651 -- Conformance_Error --
3652 -----------------------
3654 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3655 Enode : Node_Id;
3657 begin
3658 Conforms := False;
3660 if Errmsg then
3661 if No (Err_Loc) then
3662 Enode := N;
3663 else
3664 Enode := Err_Loc;
3665 end if;
3667 Error_Msg_Sloc := Sloc (Old_Id);
3669 case Ctype is
3670 when Type_Conformant =>
3671 Error_Msg_N -- CODEFIX
3672 ("not type conformant with declaration#!", Enode);
3674 when Mode_Conformant =>
3675 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3676 Error_Msg_N
3677 ("not mode conformant with operation inherited#!",
3678 Enode);
3679 else
3680 Error_Msg_N
3681 ("not mode conformant with declaration#!", Enode);
3682 end if;
3684 when Subtype_Conformant =>
3685 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3686 Error_Msg_N
3687 ("not subtype conformant with operation inherited#!",
3688 Enode);
3689 else
3690 Error_Msg_N
3691 ("not subtype conformant with declaration#!", Enode);
3692 end if;
3694 when Fully_Conformant =>
3695 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3696 Error_Msg_N -- CODEFIX
3697 ("not fully conformant with operation inherited#!",
3698 Enode);
3699 else
3700 Error_Msg_N -- CODEFIX
3701 ("not fully conformant with declaration#!", Enode);
3702 end if;
3703 end case;
3705 Error_Msg_NE (Msg, Enode, N);
3706 end if;
3707 end Conformance_Error;
3709 -- Local Variables
3711 Old_Type : constant Entity_Id := Etype (Old_Id);
3712 New_Type : constant Entity_Id := Etype (New_Id);
3713 Old_Formal : Entity_Id;
3714 New_Formal : Entity_Id;
3715 Access_Types_Match : Boolean;
3716 Old_Formal_Base : Entity_Id;
3717 New_Formal_Base : Entity_Id;
3719 -- Start of processing for Check_Conformance
3721 begin
3722 Conforms := True;
3724 -- We need a special case for operators, since they don't appear
3725 -- explicitly.
3727 if Ctype = Type_Conformant then
3728 if Ekind (New_Id) = E_Operator
3729 and then Operator_Matches_Spec (New_Id, Old_Id)
3730 then
3731 return;
3732 end if;
3733 end if;
3735 -- If both are functions/operators, check return types conform
3737 if Old_Type /= Standard_Void_Type
3738 and then New_Type /= Standard_Void_Type
3739 then
3741 -- If we are checking interface conformance we omit controlling
3742 -- arguments and result, because we are only checking the conformance
3743 -- of the remaining parameters.
3745 if Has_Controlling_Result (Old_Id)
3746 and then Has_Controlling_Result (New_Id)
3747 and then Skip_Controlling_Formals
3748 then
3749 null;
3751 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3752 Conformance_Error ("\return type does not match!", New_Id);
3753 return;
3754 end if;
3756 -- Ada 2005 (AI-231): In case of anonymous access types check the
3757 -- null-exclusion and access-to-constant attributes match.
3759 if Ada_Version >= Ada_2005
3760 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3761 and then
3762 (Can_Never_Be_Null (Old_Type)
3763 /= Can_Never_Be_Null (New_Type)
3764 or else Is_Access_Constant (Etype (Old_Type))
3765 /= Is_Access_Constant (Etype (New_Type)))
3766 then
3767 Conformance_Error ("\return type does not match!", New_Id);
3768 return;
3769 end if;
3771 -- If either is a function/operator and the other isn't, error
3773 elsif Old_Type /= Standard_Void_Type
3774 or else New_Type /= Standard_Void_Type
3775 then
3776 Conformance_Error ("\functions can only match functions!", New_Id);
3777 return;
3778 end if;
3780 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3781 -- If this is a renaming as body, refine error message to indicate that
3782 -- the conflict is with the original declaration. If the entity is not
3783 -- frozen, the conventions don't have to match, the one of the renamed
3784 -- entity is inherited.
3786 if Ctype >= Subtype_Conformant then
3787 if Convention (Old_Id) /= Convention (New_Id) then
3789 if not Is_Frozen (New_Id) then
3790 null;
3792 elsif Present (Err_Loc)
3793 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3794 and then Present (Corresponding_Spec (Err_Loc))
3795 then
3796 Error_Msg_Name_1 := Chars (New_Id);
3797 Error_Msg_Name_2 :=
3798 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3799 Conformance_Error ("\prior declaration for% has convention %!");
3801 else
3802 Conformance_Error ("\calling conventions do not match!");
3803 end if;
3805 return;
3807 elsif Is_Formal_Subprogram (Old_Id)
3808 or else Is_Formal_Subprogram (New_Id)
3809 then
3810 Conformance_Error ("\formal subprograms not allowed!");
3811 return;
3812 end if;
3813 end if;
3815 -- Deal with parameters
3817 -- Note: we use the entity information, rather than going directly
3818 -- to the specification in the tree. This is not only simpler, but
3819 -- absolutely necessary for some cases of conformance tests between
3820 -- operators, where the declaration tree simply does not exist!
3822 Old_Formal := First_Formal (Old_Id);
3823 New_Formal := First_Formal (New_Id);
3824 while Present (Old_Formal) and then Present (New_Formal) loop
3825 if Is_Controlling_Formal (Old_Formal)
3826 and then Is_Controlling_Formal (New_Formal)
3827 and then Skip_Controlling_Formals
3828 then
3829 -- The controlling formals will have different types when
3830 -- comparing an interface operation with its match, but both
3831 -- or neither must be access parameters.
3833 if Is_Access_Type (Etype (Old_Formal))
3835 Is_Access_Type (Etype (New_Formal))
3836 then
3837 goto Skip_Controlling_Formal;
3838 else
3839 Conformance_Error
3840 ("\access parameter does not match!", New_Formal);
3841 end if;
3842 end if;
3844 if Ctype = Fully_Conformant then
3846 -- Names must match. Error message is more accurate if we do
3847 -- this before checking that the types of the formals match.
3849 if Chars (Old_Formal) /= Chars (New_Formal) then
3850 Conformance_Error ("\name & does not match!", New_Formal);
3852 -- Set error posted flag on new formal as well to stop
3853 -- junk cascaded messages in some cases.
3855 Set_Error_Posted (New_Formal);
3856 return;
3857 end if;
3859 -- Null exclusion must match
3861 if Null_Exclusion_Present (Parent (Old_Formal))
3863 Null_Exclusion_Present (Parent (New_Formal))
3864 then
3865 -- Only give error if both come from source. This should be
3866 -- investigated some time, since it should not be needed ???
3868 if Comes_From_Source (Old_Formal)
3869 and then
3870 Comes_From_Source (New_Formal)
3871 then
3872 Conformance_Error
3873 ("\null exclusion for & does not match", New_Formal);
3875 -- Mark error posted on the new formal to avoid duplicated
3876 -- complaint about types not matching.
3878 Set_Error_Posted (New_Formal);
3879 end if;
3880 end if;
3881 end if;
3883 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3884 -- case occurs whenever a subprogram is being renamed and one of its
3885 -- parameters imposes a null exclusion. For example:
3887 -- type T is null record;
3888 -- type Acc_T is access T;
3889 -- subtype Acc_T_Sub is Acc_T;
3891 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3892 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3893 -- renames P;
3895 Old_Formal_Base := Etype (Old_Formal);
3896 New_Formal_Base := Etype (New_Formal);
3898 if Get_Inst then
3899 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3900 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3901 end if;
3903 Access_Types_Match := Ada_Version >= Ada_2005
3905 -- Ensure that this rule is only applied when New_Id is a
3906 -- renaming of Old_Id.
3908 and then Nkind (Parent (Parent (New_Id))) =
3909 N_Subprogram_Renaming_Declaration
3910 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3911 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3912 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3914 -- Now handle the allowed access-type case
3916 and then Is_Access_Type (Old_Formal_Base)
3917 and then Is_Access_Type (New_Formal_Base)
3919 -- The type kinds must match. The only exception occurs with
3920 -- multiple generics of the form:
3922 -- generic generic
3923 -- type F is private; type A is private;
3924 -- type F_Ptr is access F; type A_Ptr is access A;
3925 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3926 -- package F_Pack is ... package A_Pack is
3927 -- package F_Inst is
3928 -- new F_Pack (A, A_Ptr, A_P);
3930 -- When checking for conformance between the parameters of A_P
3931 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3932 -- because the compiler has transformed A_Ptr into a subtype of
3933 -- F_Ptr. We catch this case in the code below.
3935 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3936 or else
3937 (Is_Generic_Type (Old_Formal_Base)
3938 and then Is_Generic_Type (New_Formal_Base)
3939 and then Is_Internal (New_Formal_Base)
3940 and then Etype (Etype (New_Formal_Base)) =
3941 Old_Formal_Base))
3942 and then Directly_Designated_Type (Old_Formal_Base) =
3943 Directly_Designated_Type (New_Formal_Base)
3944 and then ((Is_Itype (Old_Formal_Base)
3945 and then Can_Never_Be_Null (Old_Formal_Base))
3946 or else
3947 (Is_Itype (New_Formal_Base)
3948 and then Can_Never_Be_Null (New_Formal_Base)));
3950 -- Types must always match. In the visible part of an instance,
3951 -- usual overloading rules for dispatching operations apply, and
3952 -- we check base types (not the actual subtypes).
3954 if In_Instance_Visible_Part
3955 and then Is_Dispatching_Operation (New_Id)
3956 then
3957 if not Conforming_Types
3958 (T1 => Base_Type (Etype (Old_Formal)),
3959 T2 => Base_Type (Etype (New_Formal)),
3960 Ctype => Ctype,
3961 Get_Inst => Get_Inst)
3962 and then not Access_Types_Match
3963 then
3964 Conformance_Error ("\type of & does not match!", New_Formal);
3965 return;
3966 end if;
3968 elsif not Conforming_Types
3969 (T1 => Old_Formal_Base,
3970 T2 => New_Formal_Base,
3971 Ctype => Ctype,
3972 Get_Inst => Get_Inst)
3973 and then not Access_Types_Match
3974 then
3975 -- Don't give error message if old type is Any_Type. This test
3976 -- avoids some cascaded errors, e.g. in case of a bad spec.
3978 if Errmsg and then Old_Formal_Base = Any_Type then
3979 Conforms := False;
3980 else
3981 Conformance_Error ("\type of & does not match!", New_Formal);
3982 end if;
3984 return;
3985 end if;
3987 -- For mode conformance, mode must match
3989 if Ctype >= Mode_Conformant then
3990 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3991 Conformance_Error ("\mode of & does not match!", New_Formal);
3992 return;
3994 -- Part of mode conformance for access types is having the same
3995 -- constant modifier.
3997 elsif Access_Types_Match
3998 and then Is_Access_Constant (Old_Formal_Base) /=
3999 Is_Access_Constant (New_Formal_Base)
4000 then
4001 Conformance_Error
4002 ("\constant modifier does not match!", New_Formal);
4003 return;
4004 end if;
4005 end if;
4007 if Ctype >= Subtype_Conformant then
4009 -- Ada 2005 (AI-231): In case of anonymous access types check
4010 -- the null-exclusion and access-to-constant attributes must
4011 -- match.
4013 if Ada_Version >= Ada_2005
4014 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4015 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4016 and then
4017 (Can_Never_Be_Null (Old_Formal) /=
4018 Can_Never_Be_Null (New_Formal)
4019 or else
4020 Is_Access_Constant (Etype (Old_Formal)) /=
4021 Is_Access_Constant (Etype (New_Formal)))
4023 -- Do not complain if error already posted on New_Formal. This
4024 -- avoids some redundant error messages.
4026 and then not Error_Posted (New_Formal)
4027 then
4028 -- It is allowed to omit the null-exclusion in case of stream
4029 -- attribute subprograms. We recognize stream subprograms
4030 -- through their TSS-generated suffix.
4032 declare
4033 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4034 begin
4035 if TSS_Name /= TSS_Stream_Read
4036 and then TSS_Name /= TSS_Stream_Write
4037 and then TSS_Name /= TSS_Stream_Input
4038 and then TSS_Name /= TSS_Stream_Output
4039 then
4040 Conformance_Error
4041 ("\type of & does not match!", New_Formal);
4042 return;
4043 end if;
4044 end;
4045 end if;
4046 end if;
4048 -- Full conformance checks
4050 if Ctype = Fully_Conformant then
4052 -- We have checked already that names match
4054 if Parameter_Mode (Old_Formal) = E_In_Parameter then
4056 -- Check default expressions for in parameters
4058 declare
4059 NewD : constant Boolean :=
4060 Present (Default_Value (New_Formal));
4061 OldD : constant Boolean :=
4062 Present (Default_Value (Old_Formal));
4063 begin
4064 if NewD or OldD then
4066 -- The old default value has been analyzed because the
4067 -- current full declaration will have frozen everything
4068 -- before. The new default value has not been analyzed,
4069 -- so analyze it now before we check for conformance.
4071 if NewD then
4072 Push_Scope (New_Id);
4073 Preanalyze_Spec_Expression
4074 (Default_Value (New_Formal), Etype (New_Formal));
4075 End_Scope;
4076 end if;
4078 if not (NewD and OldD)
4079 or else not Fully_Conformant_Expressions
4080 (Default_Value (Old_Formal),
4081 Default_Value (New_Formal))
4082 then
4083 Conformance_Error
4084 ("\default expression for & does not match!",
4085 New_Formal);
4086 return;
4087 end if;
4088 end if;
4089 end;
4090 end if;
4091 end if;
4093 -- A couple of special checks for Ada 83 mode. These checks are
4094 -- skipped if either entity is an operator in package Standard,
4095 -- or if either old or new instance is not from the source program.
4097 if Ada_Version = Ada_83
4098 and then Sloc (Old_Id) > Standard_Location
4099 and then Sloc (New_Id) > Standard_Location
4100 and then Comes_From_Source (Old_Id)
4101 and then Comes_From_Source (New_Id)
4102 then
4103 declare
4104 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
4105 New_Param : constant Node_Id := Declaration_Node (New_Formal);
4107 begin
4108 -- Explicit IN must be present or absent in both cases. This
4109 -- test is required only in the full conformance case.
4111 if In_Present (Old_Param) /= In_Present (New_Param)
4112 and then Ctype = Fully_Conformant
4113 then
4114 Conformance_Error
4115 ("\(Ada 83) IN must appear in both declarations",
4116 New_Formal);
4117 return;
4118 end if;
4120 -- Grouping (use of comma in param lists) must be the same
4121 -- This is where we catch a misconformance like:
4123 -- A, B : Integer
4124 -- A : Integer; B : Integer
4126 -- which are represented identically in the tree except
4127 -- for the setting of the flags More_Ids and Prev_Ids.
4129 if More_Ids (Old_Param) /= More_Ids (New_Param)
4130 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
4131 then
4132 Conformance_Error
4133 ("\grouping of & does not match!", New_Formal);
4134 return;
4135 end if;
4136 end;
4137 end if;
4139 -- This label is required when skipping controlling formals
4141 <<Skip_Controlling_Formal>>
4143 Next_Formal (Old_Formal);
4144 Next_Formal (New_Formal);
4145 end loop;
4147 if Present (Old_Formal) then
4148 Conformance_Error ("\too few parameters!");
4149 return;
4151 elsif Present (New_Formal) then
4152 Conformance_Error ("\too many parameters!", New_Formal);
4153 return;
4154 end if;
4155 end Check_Conformance;
4157 -----------------------
4158 -- Check_Conventions --
4159 -----------------------
4161 procedure Check_Conventions (Typ : Entity_Id) is
4162 Ifaces_List : Elist_Id;
4164 procedure Check_Convention (Op : Entity_Id);
4165 -- Verify that the convention of inherited dispatching operation Op is
4166 -- consistent among all subprograms it overrides. In order to minimize
4167 -- the search, Search_From is utilized to designate a specific point in
4168 -- the list rather than iterating over the whole list once more.
4170 ----------------------
4171 -- Check_Convention --
4172 ----------------------
4174 procedure Check_Convention (Op : Entity_Id) is
4175 Iface_Elmt : Elmt_Id;
4176 Iface_Prim_Elmt : Elmt_Id;
4177 Iface_Prim : Entity_Id;
4179 begin
4180 Iface_Elmt := First_Elmt (Ifaces_List);
4181 while Present (Iface_Elmt) loop
4182 Iface_Prim_Elmt :=
4183 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
4184 while Present (Iface_Prim_Elmt) loop
4185 Iface_Prim := Node (Iface_Prim_Elmt);
4187 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
4188 and then Convention (Iface_Prim) /= Convention (Op)
4189 then
4190 Error_Msg_N
4191 ("inconsistent conventions in primitive operations", Typ);
4193 Error_Msg_Name_1 := Chars (Op);
4194 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4195 Error_Msg_Sloc := Sloc (Op);
4197 if Comes_From_Source (Op) or else No (Alias (Op)) then
4198 if not Present (Overridden_Operation (Op)) then
4199 Error_Msg_N ("\\primitive % defined #", Typ);
4200 else
4201 Error_Msg_N
4202 ("\\overriding operation % with " &
4203 "convention % defined #", Typ);
4204 end if;
4206 else pragma Assert (Present (Alias (Op)));
4207 Error_Msg_Sloc := Sloc (Alias (Op));
4208 Error_Msg_N
4209 ("\\inherited operation % with " &
4210 "convention % defined #", Typ);
4211 end if;
4213 Error_Msg_Name_1 := Chars (Op);
4214 Error_Msg_Name_2 :=
4215 Get_Convention_Name (Convention (Iface_Prim));
4216 Error_Msg_Sloc := Sloc (Iface_Prim);
4217 Error_Msg_N
4218 ("\\overridden operation % with " &
4219 "convention % defined #", Typ);
4221 -- Avoid cascading errors
4223 return;
4224 end if;
4226 Next_Elmt (Iface_Prim_Elmt);
4227 end loop;
4229 Next_Elmt (Iface_Elmt);
4230 end loop;
4231 end Check_Convention;
4233 -- Local variables
4235 Prim_Op : Entity_Id;
4236 Prim_Op_Elmt : Elmt_Id;
4238 -- Start of processing for Check_Conventions
4240 begin
4241 if not Has_Interfaces (Typ) then
4242 return;
4243 end if;
4245 Collect_Interfaces (Typ, Ifaces_List);
4247 -- The algorithm checks every overriding dispatching operation against
4248 -- all the corresponding overridden dispatching operations, detecting
4249 -- differences in conventions.
4251 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4252 while Present (Prim_Op_Elmt) loop
4253 Prim_Op := Node (Prim_Op_Elmt);
4255 -- A small optimization: skip the predefined dispatching operations
4256 -- since they always have the same convention.
4258 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4259 Check_Convention (Prim_Op);
4260 end if;
4262 Next_Elmt (Prim_Op_Elmt);
4263 end loop;
4264 end Check_Conventions;
4266 ------------------------------
4267 -- Check_Delayed_Subprogram --
4268 ------------------------------
4270 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4271 F : Entity_Id;
4273 procedure Possible_Freeze (T : Entity_Id);
4274 -- T is the type of either a formal parameter or of the return type.
4275 -- If T is not yet frozen and needs a delayed freeze, then the
4276 -- subprogram itself must be delayed. If T is the limited view of an
4277 -- incomplete type the subprogram must be frozen as well, because
4278 -- T may depend on local types that have not been frozen yet.
4280 ---------------------
4281 -- Possible_Freeze --
4282 ---------------------
4284 procedure Possible_Freeze (T : Entity_Id) is
4285 begin
4286 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
4287 Set_Has_Delayed_Freeze (Designator);
4289 elsif Is_Access_Type (T)
4290 and then Has_Delayed_Freeze (Designated_Type (T))
4291 and then not Is_Frozen (Designated_Type (T))
4292 then
4293 Set_Has_Delayed_Freeze (Designator);
4295 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
4296 Set_Has_Delayed_Freeze (Designator);
4297 end if;
4299 end Possible_Freeze;
4301 -- Start of processing for Check_Delayed_Subprogram
4303 begin
4304 -- All subprograms, including abstract subprograms, may need a freeze
4305 -- node if some formal type or the return type needs one.
4307 Possible_Freeze (Etype (Designator));
4308 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
4310 -- Need delayed freeze if any of the formal types themselves need
4311 -- a delayed freeze and are not yet frozen.
4313 F := First_Formal (Designator);
4314 while Present (F) loop
4315 Possible_Freeze (Etype (F));
4316 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4317 Next_Formal (F);
4318 end loop;
4320 -- Mark functions that return by reference. Note that it cannot be
4321 -- done for delayed_freeze subprograms because the underlying
4322 -- returned type may not be known yet (for private types)
4324 if not Has_Delayed_Freeze (Designator)
4325 and then Expander_Active
4326 then
4327 declare
4328 Typ : constant Entity_Id := Etype (Designator);
4329 Utyp : constant Entity_Id := Underlying_Type (Typ);
4331 begin
4332 if Is_Immutably_Limited_Type (Typ) then
4333 Set_Returns_By_Ref (Designator);
4335 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4336 Set_Returns_By_Ref (Designator);
4337 end if;
4338 end;
4339 end if;
4340 end Check_Delayed_Subprogram;
4342 ------------------------------------
4343 -- Check_Discriminant_Conformance --
4344 ------------------------------------
4346 procedure Check_Discriminant_Conformance
4347 (N : Node_Id;
4348 Prev : Entity_Id;
4349 Prev_Loc : Node_Id)
4351 Old_Discr : Entity_Id := First_Discriminant (Prev);
4352 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4353 New_Discr_Id : Entity_Id;
4354 New_Discr_Type : Entity_Id;
4356 procedure Conformance_Error (Msg : String; N : Node_Id);
4357 -- Post error message for conformance error on given node. Two messages
4358 -- are output. The first points to the previous declaration with a
4359 -- general "no conformance" message. The second is the detailed reason,
4360 -- supplied as Msg. The parameter N provide information for a possible
4361 -- & insertion in the message.
4363 -----------------------
4364 -- Conformance_Error --
4365 -----------------------
4367 procedure Conformance_Error (Msg : String; N : Node_Id) is
4368 begin
4369 Error_Msg_Sloc := Sloc (Prev_Loc);
4370 Error_Msg_N -- CODEFIX
4371 ("not fully conformant with declaration#!", N);
4372 Error_Msg_NE (Msg, N, N);
4373 end Conformance_Error;
4375 -- Start of processing for Check_Discriminant_Conformance
4377 begin
4378 while Present (Old_Discr) and then Present (New_Discr) loop
4380 New_Discr_Id := Defining_Identifier (New_Discr);
4382 -- The subtype mark of the discriminant on the full type has not
4383 -- been analyzed so we do it here. For an access discriminant a new
4384 -- type is created.
4386 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4387 New_Discr_Type :=
4388 Access_Definition (N, Discriminant_Type (New_Discr));
4390 else
4391 Analyze (Discriminant_Type (New_Discr));
4392 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
4394 -- Ada 2005: if the discriminant definition carries a null
4395 -- exclusion, create an itype to check properly for consistency
4396 -- with partial declaration.
4398 if Is_Access_Type (New_Discr_Type)
4399 and then Null_Exclusion_Present (New_Discr)
4400 then
4401 New_Discr_Type :=
4402 Create_Null_Excluding_Itype
4403 (T => New_Discr_Type,
4404 Related_Nod => New_Discr,
4405 Scope_Id => Current_Scope);
4406 end if;
4407 end if;
4409 if not Conforming_Types
4410 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4411 then
4412 Conformance_Error ("type of & does not match!", New_Discr_Id);
4413 return;
4414 else
4415 -- Treat the new discriminant as an occurrence of the old one,
4416 -- for navigation purposes, and fill in some semantic
4417 -- information, for completeness.
4419 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4420 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4421 Set_Scope (New_Discr_Id, Scope (Old_Discr));
4422 end if;
4424 -- Names must match
4426 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4427 Conformance_Error ("name & does not match!", New_Discr_Id);
4428 return;
4429 end if;
4431 -- Default expressions must match
4433 declare
4434 NewD : constant Boolean :=
4435 Present (Expression (New_Discr));
4436 OldD : constant Boolean :=
4437 Present (Expression (Parent (Old_Discr)));
4439 begin
4440 if NewD or OldD then
4442 -- The old default value has been analyzed and expanded,
4443 -- because the current full declaration will have frozen
4444 -- everything before. The new default values have not been
4445 -- expanded, so expand now to check conformance.
4447 if NewD then
4448 Preanalyze_Spec_Expression
4449 (Expression (New_Discr), New_Discr_Type);
4450 end if;
4452 if not (NewD and OldD)
4453 or else not Fully_Conformant_Expressions
4454 (Expression (Parent (Old_Discr)),
4455 Expression (New_Discr))
4457 then
4458 Conformance_Error
4459 ("default expression for & does not match!",
4460 New_Discr_Id);
4461 return;
4462 end if;
4463 end if;
4464 end;
4466 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4468 if Ada_Version = Ada_83 then
4469 declare
4470 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4472 begin
4473 -- Grouping (use of comma in param lists) must be the same
4474 -- This is where we catch a misconformance like:
4476 -- A,B : Integer
4477 -- A : Integer; B : Integer
4479 -- which are represented identically in the tree except
4480 -- for the setting of the flags More_Ids and Prev_Ids.
4482 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4483 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4484 then
4485 Conformance_Error
4486 ("grouping of & does not match!", New_Discr_Id);
4487 return;
4488 end if;
4489 end;
4490 end if;
4492 Next_Discriminant (Old_Discr);
4493 Next (New_Discr);
4494 end loop;
4496 if Present (Old_Discr) then
4497 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4498 return;
4500 elsif Present (New_Discr) then
4501 Conformance_Error
4502 ("too many discriminants!", Defining_Identifier (New_Discr));
4503 return;
4504 end if;
4505 end Check_Discriminant_Conformance;
4507 ----------------------------
4508 -- Check_Fully_Conformant --
4509 ----------------------------
4511 procedure Check_Fully_Conformant
4512 (New_Id : Entity_Id;
4513 Old_Id : Entity_Id;
4514 Err_Loc : Node_Id := Empty)
4516 Result : Boolean;
4517 pragma Warnings (Off, Result);
4518 begin
4519 Check_Conformance
4520 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4521 end Check_Fully_Conformant;
4523 ---------------------------
4524 -- Check_Mode_Conformant --
4525 ---------------------------
4527 procedure Check_Mode_Conformant
4528 (New_Id : Entity_Id;
4529 Old_Id : Entity_Id;
4530 Err_Loc : Node_Id := Empty;
4531 Get_Inst : Boolean := False)
4533 Result : Boolean;
4534 pragma Warnings (Off, Result);
4535 begin
4536 Check_Conformance
4537 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4538 end Check_Mode_Conformant;
4540 --------------------------------
4541 -- Check_Overriding_Indicator --
4542 --------------------------------
4544 procedure Check_Overriding_Indicator
4545 (Subp : Entity_Id;
4546 Overridden_Subp : Entity_Id;
4547 Is_Primitive : Boolean)
4549 Decl : Node_Id;
4550 Spec : Node_Id;
4552 begin
4553 -- No overriding indicator for literals
4555 if Ekind (Subp) = E_Enumeration_Literal then
4556 return;
4558 elsif Ekind (Subp) = E_Entry then
4559 Decl := Parent (Subp);
4561 -- No point in analyzing a malformed operator
4563 elsif Nkind (Subp) = N_Defining_Operator_Symbol
4564 and then Error_Posted (Subp)
4565 then
4566 return;
4568 else
4569 Decl := Unit_Declaration_Node (Subp);
4570 end if;
4572 if Nkind_In (Decl, N_Subprogram_Body,
4573 N_Subprogram_Body_Stub,
4574 N_Subprogram_Declaration,
4575 N_Abstract_Subprogram_Declaration,
4576 N_Subprogram_Renaming_Declaration)
4577 then
4578 Spec := Specification (Decl);
4580 elsif Nkind (Decl) = N_Entry_Declaration then
4581 Spec := Decl;
4583 else
4584 return;
4585 end if;
4587 -- The overriding operation is type conformant with the overridden one,
4588 -- but the names of the formals are not required to match. If the names
4589 -- appear permuted in the overriding operation, this is a possible
4590 -- source of confusion that is worth diagnosing. Controlling formals
4591 -- often carry names that reflect the type, and it is not worthwhile
4592 -- requiring that their names match.
4594 if Present (Overridden_Subp)
4595 and then Nkind (Subp) /= N_Defining_Operator_Symbol
4596 then
4597 declare
4598 Form1 : Entity_Id;
4599 Form2 : Entity_Id;
4601 begin
4602 Form1 := First_Formal (Subp);
4603 Form2 := First_Formal (Overridden_Subp);
4605 -- If the overriding operation is a synchronized operation, skip
4606 -- the first parameter of the overridden operation, which is
4607 -- implicit in the new one. If the operation is declared in the
4608 -- body it is not primitive and all formals must match.
4610 if Is_Concurrent_Type (Scope (Subp))
4611 and then Is_Tagged_Type (Scope (Subp))
4612 and then not Has_Completion (Scope (Subp))
4613 then
4614 Form2 := Next_Formal (Form2);
4615 end if;
4617 if Present (Form1) then
4618 Form1 := Next_Formal (Form1);
4619 Form2 := Next_Formal (Form2);
4620 end if;
4622 while Present (Form1) loop
4623 if not Is_Controlling_Formal (Form1)
4624 and then Present (Next_Formal (Form2))
4625 and then Chars (Form1) = Chars (Next_Formal (Form2))
4626 then
4627 Error_Msg_Node_2 := Alias (Overridden_Subp);
4628 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
4629 Error_Msg_NE
4630 ("& does not match corresponding formal of&#",
4631 Form1, Form1);
4632 exit;
4633 end if;
4635 Next_Formal (Form1);
4636 Next_Formal (Form2);
4637 end loop;
4638 end;
4639 end if;
4641 -- If there is an overridden subprogram, then check that there is no
4642 -- "not overriding" indicator, and mark the subprogram as overriding.
4643 -- This is not done if the overridden subprogram is marked as hidden,
4644 -- which can occur for the case of inherited controlled operations
4645 -- (see Derive_Subprogram), unless the inherited subprogram's parent
4646 -- subprogram is not itself hidden. (Note: This condition could probably
4647 -- be simplified, leaving out the testing for the specific controlled
4648 -- cases, but it seems safer and clearer this way, and echoes similar
4649 -- special-case tests of this kind in other places.)
4651 if Present (Overridden_Subp)
4652 and then (not Is_Hidden (Overridden_Subp)
4653 or else
4654 ((Chars (Overridden_Subp) = Name_Initialize
4655 or else
4656 Chars (Overridden_Subp) = Name_Adjust
4657 or else
4658 Chars (Overridden_Subp) = Name_Finalize)
4659 and then Present (Alias (Overridden_Subp))
4660 and then not Is_Hidden (Alias (Overridden_Subp))))
4661 then
4662 if Must_Not_Override (Spec) then
4663 Error_Msg_Sloc := Sloc (Overridden_Subp);
4665 if Ekind (Subp) = E_Entry then
4666 Error_Msg_NE
4667 ("entry & overrides inherited operation #", Spec, Subp);
4668 else
4669 Error_Msg_NE
4670 ("subprogram & overrides inherited operation #", Spec, Subp);
4671 end if;
4673 elsif Is_Subprogram (Subp) then
4674 if No (Overridden_Operation (Subp)) then
4676 -- For entities generated by Derive_Subprograms the overridden
4677 -- operation is the inherited primitive (which is available
4678 -- through the attribute alias)
4680 if (Is_Dispatching_Operation (Subp)
4681 or else Is_Dispatching_Operation (Overridden_Subp))
4682 and then not Comes_From_Source (Overridden_Subp)
4683 and then Find_Dispatching_Type (Overridden_Subp) =
4684 Find_Dispatching_Type (Subp)
4685 and then Present (Alias (Overridden_Subp))
4686 and then Comes_From_Source (Alias (Overridden_Subp))
4687 then
4688 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
4689 else
4690 Set_Overridden_Operation (Subp, Overridden_Subp);
4691 end if;
4692 end if;
4693 end if;
4695 -- If primitive flag is set or this is a protected operation, then
4696 -- the operation is overriding at the point of its declaration, so
4697 -- warn if necessary. Otherwise it may have been declared before the
4698 -- operation it overrides and no check is required.
4700 if Style_Check
4701 and then not Must_Override (Spec)
4702 and then (Is_Primitive
4703 or else Ekind (Scope (Subp)) = E_Protected_Type)
4704 then
4705 Style.Missing_Overriding (Decl, Subp);
4706 end if;
4708 -- If Subp is an operator, it may override a predefined operation, if
4709 -- it is defined in the same scope as the type to which it applies.
4710 -- In that case Overridden_Subp is empty because of our implicit
4711 -- representation for predefined operators. We have to check whether the
4712 -- signature of Subp matches that of a predefined operator. Note that
4713 -- first argument provides the name of the operator, and the second
4714 -- argument the signature that may match that of a standard operation.
4715 -- If the indicator is overriding, then the operator must match a
4716 -- predefined signature, because we know already that there is no
4717 -- explicit overridden operation.
4719 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
4720 declare
4721 Typ : constant Entity_Id :=
4722 Base_Type (Etype (First_Formal (Subp)));
4724 Can_Override : constant Boolean :=
4725 Operator_Matches_Spec (Subp, Subp)
4726 and then Scope (Subp) = Scope (Typ)
4727 and then not Is_Class_Wide_Type (Typ);
4729 begin
4730 if Must_Not_Override (Spec) then
4732 -- If this is not a primitive or a protected subprogram, then
4733 -- "not overriding" is illegal.
4735 if not Is_Primitive
4736 and then Ekind (Scope (Subp)) /= E_Protected_Type
4737 then
4738 Error_Msg_N
4739 ("overriding indicator only allowed "
4740 & "if subprogram is primitive", Subp);
4742 elsif Can_Override then
4743 Error_Msg_NE
4744 ("subprogram& overrides predefined operator ", Spec, Subp);
4745 end if;
4747 elsif Must_Override (Spec) then
4748 if No (Overridden_Operation (Subp))
4749 and then not Can_Override
4750 then
4751 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4752 end if;
4754 elsif not Error_Posted (Subp)
4755 and then Style_Check
4756 and then Can_Override
4757 and then
4758 not Is_Predefined_File_Name
4759 (Unit_File_Name (Get_Source_Unit (Subp)))
4760 then
4761 -- If style checks are enabled, indicate that the indicator is
4762 -- missing. However, at the point of declaration, the type of
4763 -- which this is a primitive operation may be private, in which
4764 -- case the indicator would be premature.
4766 if Has_Private_Declaration (Etype (Subp))
4767 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
4768 then
4769 null;
4770 else
4771 Style.Missing_Overriding (Decl, Subp);
4772 end if;
4773 end if;
4774 end;
4776 elsif Must_Override (Spec) then
4777 if Ekind (Subp) = E_Entry then
4778 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
4779 else
4780 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4781 end if;
4783 -- If the operation is marked "not overriding" and it's not primitive
4784 -- then an error is issued, unless this is an operation of a task or
4785 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4786 -- has been specified have already been checked above.
4788 elsif Must_Not_Override (Spec)
4789 and then not Is_Primitive
4790 and then Ekind (Subp) /= E_Entry
4791 and then Ekind (Scope (Subp)) /= E_Protected_Type
4792 then
4793 Error_Msg_N
4794 ("overriding indicator only allowed if subprogram is primitive",
4795 Subp);
4796 return;
4797 end if;
4798 end Check_Overriding_Indicator;
4800 -------------------
4801 -- Check_Returns --
4802 -------------------
4804 -- Note: this procedure needs to know far too much about how the expander
4805 -- messes with exceptions. The use of the flag Exception_Junk and the
4806 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4807 -- works, but is not very clean. It would be better if the expansion
4808 -- routines would leave Original_Node working nicely, and we could use
4809 -- Original_Node here to ignore all the peculiar expander messing ???
4811 procedure Check_Returns
4812 (HSS : Node_Id;
4813 Mode : Character;
4814 Err : out Boolean;
4815 Proc : Entity_Id := Empty)
4817 Handler : Node_Id;
4819 procedure Check_Statement_Sequence (L : List_Id);
4820 -- Internal recursive procedure to check a list of statements for proper
4821 -- termination by a return statement (or a transfer of control or a
4822 -- compound statement that is itself internally properly terminated).
4824 ------------------------------
4825 -- Check_Statement_Sequence --
4826 ------------------------------
4828 procedure Check_Statement_Sequence (L : List_Id) is
4829 Last_Stm : Node_Id;
4830 Stm : Node_Id;
4831 Kind : Node_Kind;
4833 Raise_Exception_Call : Boolean;
4834 -- Set True if statement sequence terminated by Raise_Exception call
4835 -- or a Reraise_Occurrence call.
4837 begin
4838 Raise_Exception_Call := False;
4840 -- Get last real statement
4842 Last_Stm := Last (L);
4844 -- Deal with digging out exception handler statement sequences that
4845 -- have been transformed by the local raise to goto optimization.
4846 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4847 -- optimization has occurred, we are looking at something like:
4849 -- begin
4850 -- original stmts in block
4852 -- exception \
4853 -- when excep1 => |
4854 -- goto L1; | omitted if No_Exception_Propagation
4855 -- when excep2 => |
4856 -- goto L2; /
4857 -- end;
4859 -- goto L3; -- skip handler when exception not raised
4861 -- <<L1>> -- target label for local exception
4862 -- begin
4863 -- estmts1
4864 -- end;
4866 -- goto L3;
4868 -- <<L2>>
4869 -- begin
4870 -- estmts2
4871 -- end;
4873 -- <<L3>>
4875 -- and what we have to do is to dig out the estmts1 and estmts2
4876 -- sequences (which were the original sequences of statements in
4877 -- the exception handlers) and check them.
4879 if Nkind (Last_Stm) = N_Label
4880 and then Exception_Junk (Last_Stm)
4881 then
4882 Stm := Last_Stm;
4883 loop
4884 Prev (Stm);
4885 exit when No (Stm);
4886 exit when Nkind (Stm) /= N_Block_Statement;
4887 exit when not Exception_Junk (Stm);
4888 Prev (Stm);
4889 exit when No (Stm);
4890 exit when Nkind (Stm) /= N_Label;
4891 exit when not Exception_Junk (Stm);
4892 Check_Statement_Sequence
4893 (Statements (Handled_Statement_Sequence (Next (Stm))));
4895 Prev (Stm);
4896 Last_Stm := Stm;
4897 exit when No (Stm);
4898 exit when Nkind (Stm) /= N_Goto_Statement;
4899 exit when not Exception_Junk (Stm);
4900 end loop;
4901 end if;
4903 -- Don't count pragmas
4905 while Nkind (Last_Stm) = N_Pragma
4907 -- Don't count call to SS_Release (can happen after Raise_Exception)
4909 or else
4910 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4911 and then
4912 Nkind (Name (Last_Stm)) = N_Identifier
4913 and then
4914 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4916 -- Don't count exception junk
4918 or else
4919 (Nkind_In (Last_Stm, N_Goto_Statement,
4920 N_Label,
4921 N_Object_Declaration)
4922 and then Exception_Junk (Last_Stm))
4923 or else Nkind (Last_Stm) in N_Push_xxx_Label
4924 or else Nkind (Last_Stm) in N_Pop_xxx_Label
4925 loop
4926 Prev (Last_Stm);
4927 end loop;
4929 -- Here we have the "real" last statement
4931 Kind := Nkind (Last_Stm);
4933 -- Transfer of control, OK. Note that in the No_Return procedure
4934 -- case, we already diagnosed any explicit return statements, so
4935 -- we can treat them as OK in this context.
4937 if Is_Transfer (Last_Stm) then
4938 return;
4940 -- Check cases of explicit non-indirect procedure calls
4942 elsif Kind = N_Procedure_Call_Statement
4943 and then Is_Entity_Name (Name (Last_Stm))
4944 then
4945 -- Check call to Raise_Exception procedure which is treated
4946 -- specially, as is a call to Reraise_Occurrence.
4948 -- We suppress the warning in these cases since it is likely that
4949 -- the programmer really does not expect to deal with the case
4950 -- of Null_Occurrence, and thus would find a warning about a
4951 -- missing return curious, and raising Program_Error does not
4952 -- seem such a bad behavior if this does occur.
4954 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4955 -- behavior will be to raise Constraint_Error (see AI-329).
4957 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4958 or else
4959 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4960 then
4961 Raise_Exception_Call := True;
4963 -- For Raise_Exception call, test first argument, if it is
4964 -- an attribute reference for a 'Identity call, then we know
4965 -- that the call cannot possibly return.
4967 declare
4968 Arg : constant Node_Id :=
4969 Original_Node (First_Actual (Last_Stm));
4970 begin
4971 if Nkind (Arg) = N_Attribute_Reference
4972 and then Attribute_Name (Arg) = Name_Identity
4973 then
4974 return;
4975 end if;
4976 end;
4977 end if;
4979 -- If statement, need to look inside if there is an else and check
4980 -- each constituent statement sequence for proper termination.
4982 elsif Kind = N_If_Statement
4983 and then Present (Else_Statements (Last_Stm))
4984 then
4985 Check_Statement_Sequence (Then_Statements (Last_Stm));
4986 Check_Statement_Sequence (Else_Statements (Last_Stm));
4988 if Present (Elsif_Parts (Last_Stm)) then
4989 declare
4990 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4992 begin
4993 while Present (Elsif_Part) loop
4994 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4995 Next (Elsif_Part);
4996 end loop;
4997 end;
4998 end if;
5000 return;
5002 -- Case statement, check each case for proper termination
5004 elsif Kind = N_Case_Statement then
5005 declare
5006 Case_Alt : Node_Id;
5007 begin
5008 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
5009 while Present (Case_Alt) loop
5010 Check_Statement_Sequence (Statements (Case_Alt));
5011 Next_Non_Pragma (Case_Alt);
5012 end loop;
5013 end;
5015 return;
5017 -- Block statement, check its handled sequence of statements
5019 elsif Kind = N_Block_Statement then
5020 declare
5021 Err1 : Boolean;
5023 begin
5024 Check_Returns
5025 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
5027 if Err1 then
5028 Err := True;
5029 end if;
5031 return;
5032 end;
5034 -- Loop statement. If there is an iteration scheme, we can definitely
5035 -- fall out of the loop. Similarly if there is an exit statement, we
5036 -- can fall out. In either case we need a following return.
5038 elsif Kind = N_Loop_Statement then
5039 if Present (Iteration_Scheme (Last_Stm))
5040 or else Has_Exit (Entity (Identifier (Last_Stm)))
5041 then
5042 null;
5044 -- A loop with no exit statement or iteration scheme is either
5045 -- an infinite loop, or it has some other exit (raise/return).
5046 -- In either case, no warning is required.
5048 else
5049 return;
5050 end if;
5052 -- Timed entry call, check entry call and delay alternatives
5054 -- Note: in expanded code, the timed entry call has been converted
5055 -- to a set of expanded statements on which the check will work
5056 -- correctly in any case.
5058 elsif Kind = N_Timed_Entry_Call then
5059 declare
5060 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5061 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
5063 begin
5064 -- If statement sequence of entry call alternative is missing,
5065 -- then we can definitely fall through, and we post the error
5066 -- message on the entry call alternative itself.
5068 if No (Statements (ECA)) then
5069 Last_Stm := ECA;
5071 -- If statement sequence of delay alternative is missing, then
5072 -- we can definitely fall through, and we post the error
5073 -- message on the delay alternative itself.
5075 -- Note: if both ECA and DCA are missing the return, then we
5076 -- post only one message, should be enough to fix the bugs.
5077 -- If not we will get a message next time on the DCA when the
5078 -- ECA is fixed!
5080 elsif No (Statements (DCA)) then
5081 Last_Stm := DCA;
5083 -- Else check both statement sequences
5085 else
5086 Check_Statement_Sequence (Statements (ECA));
5087 Check_Statement_Sequence (Statements (DCA));
5088 return;
5089 end if;
5090 end;
5092 -- Conditional entry call, check entry call and else part
5094 -- Note: in expanded code, the conditional entry call has been
5095 -- converted to a set of expanded statements on which the check
5096 -- will work correctly in any case.
5098 elsif Kind = N_Conditional_Entry_Call then
5099 declare
5100 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5102 begin
5103 -- If statement sequence of entry call alternative is missing,
5104 -- then we can definitely fall through, and we post the error
5105 -- message on the entry call alternative itself.
5107 if No (Statements (ECA)) then
5108 Last_Stm := ECA;
5110 -- Else check statement sequence and else part
5112 else
5113 Check_Statement_Sequence (Statements (ECA));
5114 Check_Statement_Sequence (Else_Statements (Last_Stm));
5115 return;
5116 end if;
5117 end;
5118 end if;
5120 -- If we fall through, issue appropriate message
5122 if Mode = 'F' then
5123 if not Raise_Exception_Call then
5124 Error_Msg_N
5125 ("?RETURN statement missing following this statement!",
5126 Last_Stm);
5127 Error_Msg_N
5128 ("\?Program_Error may be raised at run time!",
5129 Last_Stm);
5130 end if;
5132 -- Note: we set Err even though we have not issued a warning
5133 -- because we still have a case of a missing return. This is
5134 -- an extremely marginal case, probably will never be noticed
5135 -- but we might as well get it right.
5137 Err := True;
5139 -- Otherwise we have the case of a procedure marked No_Return
5141 else
5142 if not Raise_Exception_Call then
5143 Error_Msg_N
5144 ("?implied return after this statement " &
5145 "will raise Program_Error",
5146 Last_Stm);
5147 Error_Msg_NE
5148 ("\?procedure & is marked as No_Return!",
5149 Last_Stm, Proc);
5150 end if;
5152 declare
5153 RE : constant Node_Id :=
5154 Make_Raise_Program_Error (Sloc (Last_Stm),
5155 Reason => PE_Implicit_Return);
5156 begin
5157 Insert_After (Last_Stm, RE);
5158 Analyze (RE);
5159 end;
5160 end if;
5161 end Check_Statement_Sequence;
5163 -- Start of processing for Check_Returns
5165 begin
5166 Err := False;
5167 Check_Statement_Sequence (Statements (HSS));
5169 if Present (Exception_Handlers (HSS)) then
5170 Handler := First_Non_Pragma (Exception_Handlers (HSS));
5171 while Present (Handler) loop
5172 Check_Statement_Sequence (Statements (Handler));
5173 Next_Non_Pragma (Handler);
5174 end loop;
5175 end if;
5176 end Check_Returns;
5178 ----------------------------
5179 -- Check_Subprogram_Order --
5180 ----------------------------
5182 procedure Check_Subprogram_Order (N : Node_Id) is
5184 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
5185 -- This is used to check if S1 > S2 in the sense required by this
5186 -- test, for example nameab < namec, but name2 < name10.
5188 -----------------------------
5189 -- Subprogram_Name_Greater --
5190 -----------------------------
5192 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
5193 L1, L2 : Positive;
5194 N1, N2 : Natural;
5196 begin
5197 -- Remove trailing numeric parts
5199 L1 := S1'Last;
5200 while S1 (L1) in '0' .. '9' loop
5201 L1 := L1 - 1;
5202 end loop;
5204 L2 := S2'Last;
5205 while S2 (L2) in '0' .. '9' loop
5206 L2 := L2 - 1;
5207 end loop;
5209 -- If non-numeric parts non-equal, that's decisive
5211 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
5212 return False;
5214 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
5215 return True;
5217 -- If non-numeric parts equal, compare suffixed numeric parts. Note
5218 -- that a missing suffix is treated as numeric zero in this test.
5220 else
5221 N1 := 0;
5222 while L1 < S1'Last loop
5223 L1 := L1 + 1;
5224 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
5225 end loop;
5227 N2 := 0;
5228 while L2 < S2'Last loop
5229 L2 := L2 + 1;
5230 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
5231 end loop;
5233 return N1 > N2;
5234 end if;
5235 end Subprogram_Name_Greater;
5237 -- Start of processing for Check_Subprogram_Order
5239 begin
5240 -- Check body in alpha order if this is option
5242 if Style_Check
5243 and then Style_Check_Order_Subprograms
5244 and then Nkind (N) = N_Subprogram_Body
5245 and then Comes_From_Source (N)
5246 and then In_Extended_Main_Source_Unit (N)
5247 then
5248 declare
5249 LSN : String_Ptr
5250 renames Scope_Stack.Table
5251 (Scope_Stack.Last).Last_Subprogram_Name;
5253 Body_Id : constant Entity_Id :=
5254 Defining_Entity (Specification (N));
5256 begin
5257 Get_Decoded_Name_String (Chars (Body_Id));
5259 if LSN /= null then
5260 if Subprogram_Name_Greater
5261 (LSN.all, Name_Buffer (1 .. Name_Len))
5262 then
5263 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5264 end if;
5266 Free (LSN);
5267 end if;
5269 LSN := new String'(Name_Buffer (1 .. Name_Len));
5270 end;
5271 end if;
5272 end Check_Subprogram_Order;
5274 ------------------------------
5275 -- Check_Subtype_Conformant --
5276 ------------------------------
5278 procedure Check_Subtype_Conformant
5279 (New_Id : Entity_Id;
5280 Old_Id : Entity_Id;
5281 Err_Loc : Node_Id := Empty;
5282 Skip_Controlling_Formals : Boolean := False)
5284 Result : Boolean;
5285 pragma Warnings (Off, Result);
5286 begin
5287 Check_Conformance
5288 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5289 Skip_Controlling_Formals => Skip_Controlling_Formals);
5290 end Check_Subtype_Conformant;
5292 ---------------------------
5293 -- Check_Type_Conformant --
5294 ---------------------------
5296 procedure Check_Type_Conformant
5297 (New_Id : Entity_Id;
5298 Old_Id : Entity_Id;
5299 Err_Loc : Node_Id := Empty)
5301 Result : Boolean;
5302 pragma Warnings (Off, Result);
5303 begin
5304 Check_Conformance
5305 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5306 end Check_Type_Conformant;
5308 ----------------------
5309 -- Conforming_Types --
5310 ----------------------
5312 function Conforming_Types
5313 (T1 : Entity_Id;
5314 T2 : Entity_Id;
5315 Ctype : Conformance_Type;
5316 Get_Inst : Boolean := False) return Boolean
5318 Type_1 : Entity_Id := T1;
5319 Type_2 : Entity_Id := T2;
5320 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
5322 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
5323 -- If neither T1 nor T2 are generic actual types, or if they are in
5324 -- different scopes (e.g. parent and child instances), then verify that
5325 -- the base types are equal. Otherwise T1 and T2 must be on the same
5326 -- subtype chain. The whole purpose of this procedure is to prevent
5327 -- spurious ambiguities in an instantiation that may arise if two
5328 -- distinct generic types are instantiated with the same actual.
5330 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5331 -- An access parameter can designate an incomplete type. If the
5332 -- incomplete type is the limited view of a type from a limited_
5333 -- with_clause, check whether the non-limited view is available. If
5334 -- it is a (non-limited) incomplete type, get the full view.
5336 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5337 -- Returns True if and only if either T1 denotes a limited view of T2
5338 -- or T2 denotes a limited view of T1. This can arise when the limited
5339 -- with view of a type is used in a subprogram declaration and the
5340 -- subprogram body is in the scope of a regular with clause for the
5341 -- same unit. In such a case, the two type entities can be considered
5342 -- identical for purposes of conformance checking.
5344 ----------------------
5345 -- Base_Types_Match --
5346 ----------------------
5348 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5349 begin
5350 if T1 = T2 then
5351 return True;
5353 elsif Base_Type (T1) = Base_Type (T2) then
5355 -- The following is too permissive. A more precise test should
5356 -- check that the generic actual is an ancestor subtype of the
5357 -- other ???.
5359 return not Is_Generic_Actual_Type (T1)
5360 or else not Is_Generic_Actual_Type (T2)
5361 or else Scope (T1) /= Scope (T2);
5363 else
5364 return False;
5365 end if;
5366 end Base_Types_Match;
5368 --------------------------
5369 -- Find_Designated_Type --
5370 --------------------------
5372 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5373 Desig : Entity_Id;
5375 begin
5376 Desig := Directly_Designated_Type (T);
5378 if Ekind (Desig) = E_Incomplete_Type then
5380 -- If regular incomplete type, get full view if available
5382 if Present (Full_View (Desig)) then
5383 Desig := Full_View (Desig);
5385 -- If limited view of a type, get non-limited view if available,
5386 -- and check again for a regular incomplete type.
5388 elsif Present (Non_Limited_View (Desig)) then
5389 Desig := Get_Full_View (Non_Limited_View (Desig));
5390 end if;
5391 end if;
5393 return Desig;
5394 end Find_Designated_Type;
5396 -------------------------------
5397 -- Matches_Limited_With_View --
5398 -------------------------------
5400 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5401 begin
5402 -- In some cases a type imported through a limited_with clause, and
5403 -- its nonlimited view are both visible, for example in an anonymous
5404 -- access-to-class-wide type in a formal. Both entities designate the
5405 -- same type.
5407 if From_With_Type (T1)
5408 and then T2 = Available_View (T1)
5409 then
5410 return True;
5412 elsif From_With_Type (T2)
5413 and then T1 = Available_View (T2)
5414 then
5415 return True;
5417 else
5418 return False;
5419 end if;
5420 end Matches_Limited_With_View;
5422 -- Start of processing for Conforming_Types
5424 begin
5425 -- The context is an instance association for a formal
5426 -- access-to-subprogram type; the formal parameter types require
5427 -- mapping because they may denote other formal parameters of the
5428 -- generic unit.
5430 if Get_Inst then
5431 Type_1 := Get_Instance_Of (T1);
5432 Type_2 := Get_Instance_Of (T2);
5433 end if;
5435 -- If one of the types is a view of the other introduced by a limited
5436 -- with clause, treat these as conforming for all purposes.
5438 if Matches_Limited_With_View (T1, T2) then
5439 return True;
5441 elsif Base_Types_Match (Type_1, Type_2) then
5442 return Ctype <= Mode_Conformant
5443 or else Subtypes_Statically_Match (Type_1, Type_2);
5445 elsif Is_Incomplete_Or_Private_Type (Type_1)
5446 and then Present (Full_View (Type_1))
5447 and then Base_Types_Match (Full_View (Type_1), Type_2)
5448 then
5449 return Ctype <= Mode_Conformant
5450 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5452 elsif Ekind (Type_2) = E_Incomplete_Type
5453 and then Present (Full_View (Type_2))
5454 and then Base_Types_Match (Type_1, Full_View (Type_2))
5455 then
5456 return Ctype <= Mode_Conformant
5457 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5459 elsif Is_Private_Type (Type_2)
5460 and then In_Instance
5461 and then Present (Full_View (Type_2))
5462 and then Base_Types_Match (Type_1, Full_View (Type_2))
5463 then
5464 return Ctype <= Mode_Conformant
5465 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5466 end if;
5468 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
5469 -- treated recursively because they carry a signature.
5471 Are_Anonymous_Access_To_Subprogram_Types :=
5472 Ekind (Type_1) = Ekind (Type_2)
5473 and then
5474 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
5475 or else
5476 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
5478 -- Test anonymous access type case. For this case, static subtype
5479 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5480 -- the base types because we may have built internal subtype entities
5481 -- to handle null-excluding types (see Process_Formals).
5483 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5484 and then
5485 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
5486 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
5487 then
5488 declare
5489 Desig_1 : Entity_Id;
5490 Desig_2 : Entity_Id;
5492 begin
5493 -- In Ada2005, access constant indicators must match for
5494 -- subtype conformance.
5496 if Ada_Version >= Ada_2005
5497 and then Ctype >= Subtype_Conformant
5498 and then
5499 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5500 then
5501 return False;
5502 end if;
5504 Desig_1 := Find_Designated_Type (Type_1);
5505 Desig_2 := Find_Designated_Type (Type_2);
5507 -- If the context is an instance association for a formal
5508 -- access-to-subprogram type; formal access parameter designated
5509 -- types require mapping because they may denote other formal
5510 -- parameters of the generic unit.
5512 if Get_Inst then
5513 Desig_1 := Get_Instance_Of (Desig_1);
5514 Desig_2 := Get_Instance_Of (Desig_2);
5515 end if;
5517 -- It is possible for a Class_Wide_Type to be introduced for an
5518 -- incomplete type, in which case there is a separate class_ wide
5519 -- type for the full view. The types conform if their Etypes
5520 -- conform, i.e. one may be the full view of the other. This can
5521 -- only happen in the context of an access parameter, other uses
5522 -- of an incomplete Class_Wide_Type are illegal.
5524 if Is_Class_Wide_Type (Desig_1)
5525 and then
5526 Is_Class_Wide_Type (Desig_2)
5527 then
5528 return
5529 Conforming_Types
5530 (Etype (Base_Type (Desig_1)),
5531 Etype (Base_Type (Desig_2)), Ctype);
5533 elsif Are_Anonymous_Access_To_Subprogram_Types then
5534 if Ada_Version < Ada_2005 then
5535 return Ctype = Type_Conformant
5536 or else
5537 Subtypes_Statically_Match (Desig_1, Desig_2);
5539 -- We must check the conformance of the signatures themselves
5541 else
5542 declare
5543 Conformant : Boolean;
5544 begin
5545 Check_Conformance
5546 (Desig_1, Desig_2, Ctype, False, Conformant);
5547 return Conformant;
5548 end;
5549 end if;
5551 else
5552 return Base_Type (Desig_1) = Base_Type (Desig_2)
5553 and then (Ctype = Type_Conformant
5554 or else
5555 Subtypes_Statically_Match (Desig_1, Desig_2));
5556 end if;
5557 end;
5559 -- Otherwise definitely no match
5561 else
5562 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5563 and then Is_Access_Type (Type_2))
5564 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5565 and then Is_Access_Type (Type_1)))
5566 and then
5567 Conforming_Types
5568 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5569 then
5570 May_Hide_Profile := True;
5571 end if;
5573 return False;
5574 end if;
5575 end Conforming_Types;
5577 --------------------------
5578 -- Create_Extra_Formals --
5579 --------------------------
5581 procedure Create_Extra_Formals (E : Entity_Id) is
5582 Formal : Entity_Id;
5583 First_Extra : Entity_Id := Empty;
5584 Last_Extra : Entity_Id;
5585 Formal_Type : Entity_Id;
5586 P_Formal : Entity_Id := Empty;
5588 function Add_Extra_Formal
5589 (Assoc_Entity : Entity_Id;
5590 Typ : Entity_Id;
5591 Scope : Entity_Id;
5592 Suffix : String) return Entity_Id;
5593 -- Add an extra formal to the current list of formals and extra formals.
5594 -- The extra formal is added to the end of the list of extra formals,
5595 -- and also returned as the result. These formals are always of mode IN.
5596 -- The new formal has the type Typ, is declared in Scope, and its name
5597 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5598 -- The following suffixes are currently used. They should not be changed
5599 -- without coordinating with CodePeer, which makes use of these to
5600 -- provide better messages.
5602 -- O denotes the Constrained bit.
5603 -- L denotes the accessibility level.
5604 -- BIP_xxx denotes an extra formal for a build-in-place function. See
5605 -- the full list in exp_ch6.BIP_Formal_Kind.
5607 ----------------------
5608 -- Add_Extra_Formal --
5609 ----------------------
5611 function Add_Extra_Formal
5612 (Assoc_Entity : Entity_Id;
5613 Typ : Entity_Id;
5614 Scope : Entity_Id;
5615 Suffix : String) return Entity_Id
5617 EF : constant Entity_Id :=
5618 Make_Defining_Identifier (Sloc (Assoc_Entity),
5619 Chars => New_External_Name (Chars (Assoc_Entity),
5620 Suffix => Suffix));
5622 begin
5623 -- A little optimization. Never generate an extra formal for the
5624 -- _init operand of an initialization procedure, since it could
5625 -- never be used.
5627 if Chars (Formal) = Name_uInit then
5628 return Empty;
5629 end if;
5631 Set_Ekind (EF, E_In_Parameter);
5632 Set_Actual_Subtype (EF, Typ);
5633 Set_Etype (EF, Typ);
5634 Set_Scope (EF, Scope);
5635 Set_Mechanism (EF, Default_Mechanism);
5636 Set_Formal_Validity (EF);
5638 if No (First_Extra) then
5639 First_Extra := EF;
5640 Set_Extra_Formals (Scope, First_Extra);
5641 end if;
5643 if Present (Last_Extra) then
5644 Set_Extra_Formal (Last_Extra, EF);
5645 end if;
5647 Last_Extra := EF;
5649 return EF;
5650 end Add_Extra_Formal;
5652 -- Start of processing for Create_Extra_Formals
5654 begin
5655 -- We never generate extra formals if expansion is not active
5656 -- because we don't need them unless we are generating code.
5658 if not Expander_Active then
5659 return;
5660 end if;
5662 -- If this is a derived subprogram then the subtypes of the parent
5663 -- subprogram's formal parameters will be used to determine the need
5664 -- for extra formals.
5666 if Is_Overloadable (E) and then Present (Alias (E)) then
5667 P_Formal := First_Formal (Alias (E));
5668 end if;
5670 Last_Extra := Empty;
5671 Formal := First_Formal (E);
5672 while Present (Formal) loop
5673 Last_Extra := Formal;
5674 Next_Formal (Formal);
5675 end loop;
5677 -- If Extra_formals were already created, don't do it again. This
5678 -- situation may arise for subprogram types created as part of
5679 -- dispatching calls (see Expand_Dispatching_Call)
5681 if Present (Last_Extra) and then
5682 Present (Extra_Formal (Last_Extra))
5683 then
5684 return;
5685 end if;
5687 -- If the subprogram is a predefined dispatching subprogram then don't
5688 -- generate any extra constrained or accessibility level formals. In
5689 -- general we suppress these for internal subprograms (by not calling
5690 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5691 -- generated stream attributes do get passed through because extra
5692 -- build-in-place formals are needed in some cases (limited 'Input).
5694 if Is_Predefined_Internal_Operation (E) then
5695 goto Test_For_BIP_Extras;
5696 end if;
5698 Formal := First_Formal (E);
5699 while Present (Formal) loop
5701 -- Create extra formal for supporting the attribute 'Constrained.
5702 -- The case of a private type view without discriminants also
5703 -- requires the extra formal if the underlying type has defaulted
5704 -- discriminants.
5706 if Ekind (Formal) /= E_In_Parameter then
5707 if Present (P_Formal) then
5708 Formal_Type := Etype (P_Formal);
5709 else
5710 Formal_Type := Etype (Formal);
5711 end if;
5713 -- Do not produce extra formals for Unchecked_Union parameters.
5714 -- Jump directly to the end of the loop.
5716 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5717 goto Skip_Extra_Formal_Generation;
5718 end if;
5720 if not Has_Discriminants (Formal_Type)
5721 and then Ekind (Formal_Type) in Private_Kind
5722 and then Present (Underlying_Type (Formal_Type))
5723 then
5724 Formal_Type := Underlying_Type (Formal_Type);
5725 end if;
5727 -- Suppress the extra formal if formal's subtype is constrained or
5728 -- indefinite, or we're compiling for Ada 2012 and the underlying
5729 -- type is tagged and limited. In Ada 2012, a limited tagged type
5730 -- can have defaulted discriminants, but 'Constrained is required
5731 -- to return True, so the formal is never needed (see AI05-0214).
5732 -- Note that this ensures consistency of calling sequences for
5733 -- dispatching operations when some types in a class have defaults
5734 -- on discriminants and others do not (and requiring the extra
5735 -- formal would introduce distributed overhead).
5737 if Has_Discriminants (Formal_Type)
5738 and then not Is_Constrained (Formal_Type)
5739 and then not Is_Indefinite_Subtype (Formal_Type)
5740 and then (Ada_Version < Ada_2012
5741 or else
5742 not (Is_Tagged_Type (Underlying_Type (Formal_Type))
5743 and then Is_Limited_Type (Formal_Type)))
5744 then
5745 Set_Extra_Constrained
5746 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
5747 end if;
5748 end if;
5750 -- Create extra formal for supporting accessibility checking. This
5751 -- is done for both anonymous access formals and formals of named
5752 -- access types that are marked as controlling formals. The latter
5753 -- case can occur when Expand_Dispatching_Call creates a subprogram
5754 -- type and substitutes the types of access-to-class-wide actuals
5755 -- for the anonymous access-to-specific-type of controlling formals.
5756 -- Base_Type is applied because in cases where there is a null
5757 -- exclusion the formal may have an access subtype.
5759 -- This is suppressed if we specifically suppress accessibility
5760 -- checks at the package level for either the subprogram, or the
5761 -- package in which it resides. However, we do not suppress it
5762 -- simply if the scope has accessibility checks suppressed, since
5763 -- this could cause trouble when clients are compiled with a
5764 -- different suppression setting. The explicit checks at the
5765 -- package level are safe from this point of view.
5767 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
5768 or else (Is_Controlling_Formal (Formal)
5769 and then Is_Access_Type (Base_Type (Etype (Formal)))))
5770 and then not
5771 (Explicit_Suppress (E, Accessibility_Check)
5772 or else
5773 Explicit_Suppress (Scope (E), Accessibility_Check))
5774 and then
5775 (No (P_Formal)
5776 or else Present (Extra_Accessibility (P_Formal)))
5777 then
5778 Set_Extra_Accessibility
5779 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
5780 end if;
5782 -- This label is required when skipping extra formal generation for
5783 -- Unchecked_Union parameters.
5785 <<Skip_Extra_Formal_Generation>>
5787 if Present (P_Formal) then
5788 Next_Formal (P_Formal);
5789 end if;
5791 Next_Formal (Formal);
5792 end loop;
5794 <<Test_For_BIP_Extras>>
5796 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
5797 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5799 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
5800 declare
5801 Result_Subt : constant Entity_Id := Etype (E);
5803 Discard : Entity_Id;
5804 pragma Warnings (Off, Discard);
5806 begin
5807 -- In the case of functions with unconstrained result subtypes,
5808 -- add a 4-state formal indicating whether the return object is
5809 -- allocated by the caller (1), or should be allocated by the
5810 -- callee on the secondary stack (2), in the global heap (3), or
5811 -- in a user-defined storage pool (4). For the moment we just use
5812 -- Natural for the type of this formal. Note that this formal
5813 -- isn't usually needed in the case where the result subtype is
5814 -- constrained, but it is needed when the function has a tagged
5815 -- result, because generally such functions can be called in a
5816 -- dispatching context and such calls must be handled like calls
5817 -- to a class-wide function.
5819 if not Is_Constrained (Underlying_Type (Result_Subt))
5820 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5821 then
5822 Discard :=
5823 Add_Extra_Formal
5824 (E, Standard_Natural,
5825 E, BIP_Formal_Suffix (BIP_Alloc_Form));
5826 end if;
5828 -- For functions whose result type has controlled parts, we have
5829 -- an extra formal of type System.Finalization_Implementation.
5830 -- Finalizable_Ptr_Ptr. That is, we are passing a pointer to a
5831 -- finalization list (which is itself a pointer). This extra
5832 -- formal is then passed along to Move_Final_List in case of
5833 -- successful completion of a return statement. We cannot pass an
5834 -- 'in out' parameter, because we need to update the finalization
5835 -- list during an abort-deferred region, rather than using
5836 -- copy-back after the function returns. This is true even if we
5837 -- are able to get away with having 'in out' parameters, which are
5838 -- normally illegal for functions. This formal is also needed when
5839 -- the function has a tagged result.
5841 if Needs_BIP_Final_List (E) then
5842 Discard :=
5843 Add_Extra_Formal
5844 (E, RTE (RE_Finalizable_Ptr_Ptr),
5845 E, BIP_Formal_Suffix (BIP_Final_List));
5846 end if;
5848 -- If the result type contains tasks, we have two extra formals:
5849 -- the master of the tasks to be created, and the caller's
5850 -- activation chain.
5852 if Has_Task (Result_Subt) then
5853 Discard :=
5854 Add_Extra_Formal
5855 (E, RTE (RE_Master_Id),
5856 E, BIP_Formal_Suffix (BIP_Master));
5857 Discard :=
5858 Add_Extra_Formal
5859 (E, RTE (RE_Activation_Chain_Access),
5860 E, BIP_Formal_Suffix (BIP_Activation_Chain));
5861 end if;
5863 -- All build-in-place functions get an extra formal that will be
5864 -- passed the address of the return object within the caller.
5866 declare
5867 Formal_Type : constant Entity_Id :=
5868 Create_Itype
5869 (E_Anonymous_Access_Type, E,
5870 Scope_Id => Scope (E));
5871 begin
5872 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
5873 Set_Etype (Formal_Type, Formal_Type);
5874 Set_Depends_On_Private
5875 (Formal_Type, Has_Private_Component (Formal_Type));
5876 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
5877 Set_Is_Access_Constant (Formal_Type, False);
5879 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5880 -- the designated type comes from the limited view (for
5881 -- back-end purposes).
5883 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
5885 Layout_Type (Formal_Type);
5887 Discard :=
5888 Add_Extra_Formal
5889 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
5890 end;
5891 end;
5892 end if;
5893 end Create_Extra_Formals;
5895 -----------------------------
5896 -- Enter_Overloaded_Entity --
5897 -----------------------------
5899 procedure Enter_Overloaded_Entity (S : Entity_Id) is
5900 E : Entity_Id := Current_Entity_In_Scope (S);
5901 C_E : Entity_Id := Current_Entity (S);
5903 begin
5904 if Present (E) then
5905 Set_Has_Homonym (E);
5906 Set_Has_Homonym (S);
5907 end if;
5909 Set_Is_Immediately_Visible (S);
5910 Set_Scope (S, Current_Scope);
5912 -- Chain new entity if front of homonym in current scope, so that
5913 -- homonyms are contiguous.
5915 if Present (E)
5916 and then E /= C_E
5917 then
5918 while Homonym (C_E) /= E loop
5919 C_E := Homonym (C_E);
5920 end loop;
5922 Set_Homonym (C_E, S);
5924 else
5925 E := C_E;
5926 Set_Current_Entity (S);
5927 end if;
5929 Set_Homonym (S, E);
5931 Append_Entity (S, Current_Scope);
5932 Set_Public_Status (S);
5934 if Debug_Flag_E then
5935 Write_Str ("New overloaded entity chain: ");
5936 Write_Name (Chars (S));
5938 E := S;
5939 while Present (E) loop
5940 Write_Str (" "); Write_Int (Int (E));
5941 E := Homonym (E);
5942 end loop;
5944 Write_Eol;
5945 end if;
5947 -- Generate warning for hiding
5949 if Warn_On_Hiding
5950 and then Comes_From_Source (S)
5951 and then In_Extended_Main_Source_Unit (S)
5952 then
5953 E := S;
5954 loop
5955 E := Homonym (E);
5956 exit when No (E);
5958 -- Warn unless genuine overloading. Do not emit warning on
5959 -- hiding predefined operators in Standard (these are either an
5960 -- (artifact of our implicit declarations, or simple noise) but
5961 -- keep warning on a operator defined on a local subtype, because
5962 -- of the real danger that different operators may be applied in
5963 -- various parts of the program.
5965 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5966 and then (Is_Immediately_Visible (E)
5967 or else
5968 Is_Potentially_Use_Visible (S))
5969 then
5970 if Scope (E) /= Standard_Standard then
5971 Error_Msg_Sloc := Sloc (E);
5972 Error_Msg_N ("declaration of & hides one#?", S);
5974 elsif Nkind (S) = N_Defining_Operator_Symbol
5975 and then
5976 Scope (
5977 Base_Type (Etype (First_Formal (S)))) /= Scope (S)
5978 then
5979 Error_Msg_N
5980 ("declaration of & hides predefined operator?", S);
5981 end if;
5982 end if;
5983 end loop;
5984 end if;
5985 end Enter_Overloaded_Entity;
5987 -----------------------------
5988 -- Check_Untagged_Equality --
5989 -----------------------------
5991 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
5992 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
5993 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
5994 Obj_Decl : Node_Id;
5996 begin
5997 if Nkind (Decl) = N_Subprogram_Declaration
5998 and then Is_Record_Type (Typ)
5999 and then not Is_Tagged_Type (Typ)
6000 then
6001 -- If the type is not declared in a package, or if we are in the
6002 -- body of the package or in some other scope, the new operation is
6003 -- not primitive, and therefore legal, though suspicious. If the
6004 -- type is a generic actual (sub)type, the operation is not primitive
6005 -- either because the base type is declared elsewhere.
6007 if Is_Frozen (Typ) then
6008 if Ekind (Scope (Typ)) /= E_Package
6009 or else Scope (Typ) /= Current_Scope
6010 then
6011 null;
6013 elsif Is_Generic_Actual_Type (Typ) then
6014 null;
6016 elsif In_Package_Body (Scope (Typ)) then
6017 Error_Msg_NE
6018 ("equality operator must be declared "
6019 & "before type& is frozen", Eq_Op, Typ);
6020 Error_Msg_N
6021 ("\move declaration to package spec", Eq_Op);
6023 else
6024 Error_Msg_NE
6025 ("equality operator must be declared "
6026 & "before type& is frozen", Eq_Op, Typ);
6028 Obj_Decl := Next (Parent (Typ));
6029 while Present (Obj_Decl)
6030 and then Obj_Decl /= Decl
6031 loop
6032 if Nkind (Obj_Decl) = N_Object_Declaration
6033 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
6034 then
6035 Error_Msg_NE ("type& is frozen by declaration?",
6036 Obj_Decl, Typ);
6037 Error_Msg_N
6038 ("\an equality operator cannot be declared after this "
6039 & "point ('R'M 4.5.2 (9.8)) (Ada 2012))?", Obj_Decl);
6040 exit;
6041 end if;
6043 Next (Obj_Decl);
6044 end loop;
6045 end if;
6047 elsif not In_Same_List (Parent (Typ), Decl)
6048 and then not Is_Limited_Type (Typ)
6049 then
6051 -- This makes it illegal to have a primitive equality declared in
6052 -- the private part if the type is visible.
6054 Error_Msg_N ("equality operator appears too late", Eq_Op);
6055 end if;
6056 end if;
6057 end Check_Untagged_Equality;
6059 -----------------------------
6060 -- Find_Corresponding_Spec --
6061 -----------------------------
6063 function Find_Corresponding_Spec
6064 (N : Node_Id;
6065 Post_Error : Boolean := True) return Entity_Id
6067 Spec : constant Node_Id := Specification (N);
6068 Designator : constant Entity_Id := Defining_Entity (Spec);
6070 E : Entity_Id;
6072 begin
6073 E := Current_Entity (Designator);
6074 while Present (E) loop
6076 -- We are looking for a matching spec. It must have the same scope,
6077 -- and the same name, and either be type conformant, or be the case
6078 -- of a library procedure spec and its body (which belong to one
6079 -- another regardless of whether they are type conformant or not).
6081 if Scope (E) = Current_Scope then
6082 if Current_Scope = Standard_Standard
6083 or else (Ekind (E) = Ekind (Designator)
6084 and then Type_Conformant (E, Designator))
6085 then
6086 -- Within an instantiation, we know that spec and body are
6087 -- subtype conformant, because they were subtype conformant
6088 -- in the generic. We choose the subtype-conformant entity
6089 -- here as well, to resolve spurious ambiguities in the
6090 -- instance that were not present in the generic (i.e. when
6091 -- two different types are given the same actual). If we are
6092 -- looking for a spec to match a body, full conformance is
6093 -- expected.
6095 if In_Instance then
6096 Set_Convention (Designator, Convention (E));
6098 if Nkind (N) = N_Subprogram_Body
6099 and then Present (Homonym (E))
6100 and then not Fully_Conformant (E, Designator)
6101 then
6102 goto Next_Entity;
6104 elsif not Subtype_Conformant (E, Designator) then
6105 goto Next_Entity;
6106 end if;
6107 end if;
6109 if not Has_Completion (E) then
6110 if Nkind (N) /= N_Subprogram_Body_Stub then
6111 Set_Corresponding_Spec (N, E);
6112 end if;
6114 Set_Has_Completion (E);
6115 return E;
6117 elsif Nkind (Parent (N)) = N_Subunit then
6119 -- If this is the proper body of a subunit, the completion
6120 -- flag is set when analyzing the stub.
6122 return E;
6124 -- If E is an internal function with a controlling result
6125 -- that was created for an operation inherited by a null
6126 -- extension, it may be overridden by a body without a previous
6127 -- spec (one more reason why these should be shunned). In that
6128 -- case remove the generated body if present, because the
6129 -- current one is the explicit overriding.
6131 elsif Ekind (E) = E_Function
6132 and then Ada_Version >= Ada_2005
6133 and then not Comes_From_Source (E)
6134 and then Has_Controlling_Result (E)
6135 and then Is_Null_Extension (Etype (E))
6136 and then Comes_From_Source (Spec)
6137 then
6138 Set_Has_Completion (E, False);
6140 if Expander_Active
6141 and then Nkind (Parent (E)) = N_Function_Specification
6142 then
6143 Remove
6144 (Unit_Declaration_Node
6145 (Corresponding_Body (Unit_Declaration_Node (E))));
6147 return E;
6149 -- If expansion is disabled, or if the wrapper function has
6150 -- not been generated yet, this a late body overriding an
6151 -- inherited operation, or it is an overriding by some other
6152 -- declaration before the controlling result is frozen. In
6153 -- either case this is a declaration of a new entity.
6155 else
6156 return Empty;
6157 end if;
6159 -- If the body already exists, then this is an error unless
6160 -- the previous declaration is the implicit declaration of a
6161 -- derived subprogram, or this is a spurious overloading in an
6162 -- instance.
6164 elsif No (Alias (E))
6165 and then not Is_Intrinsic_Subprogram (E)
6166 and then not In_Instance
6167 and then Post_Error
6168 then
6169 Error_Msg_Sloc := Sloc (E);
6171 if Is_Imported (E) then
6172 Error_Msg_NE
6173 ("body not allowed for imported subprogram & declared#",
6174 N, E);
6175 else
6176 Error_Msg_NE ("duplicate body for & declared#", N, E);
6177 end if;
6178 end if;
6180 -- Child units cannot be overloaded, so a conformance mismatch
6181 -- between body and a previous spec is an error.
6183 elsif Is_Child_Unit (E)
6184 and then
6185 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
6186 and then
6187 Nkind (Parent (Unit_Declaration_Node (Designator))) =
6188 N_Compilation_Unit
6189 and then Post_Error
6190 then
6191 Error_Msg_N
6192 ("body of child unit does not match previous declaration", N);
6193 end if;
6194 end if;
6196 <<Next_Entity>>
6197 E := Homonym (E);
6198 end loop;
6200 -- On exit, we know that no previous declaration of subprogram exists
6202 return Empty;
6203 end Find_Corresponding_Spec;
6205 ----------------------
6206 -- Fully_Conformant --
6207 ----------------------
6209 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6210 Result : Boolean;
6211 begin
6212 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
6213 return Result;
6214 end Fully_Conformant;
6216 ----------------------------------
6217 -- Fully_Conformant_Expressions --
6218 ----------------------------------
6220 function Fully_Conformant_Expressions
6221 (Given_E1 : Node_Id;
6222 Given_E2 : Node_Id) return Boolean
6224 E1 : constant Node_Id := Original_Node (Given_E1);
6225 E2 : constant Node_Id := Original_Node (Given_E2);
6226 -- We always test conformance on original nodes, since it is possible
6227 -- for analysis and/or expansion to make things look as though they
6228 -- conform when they do not, e.g. by converting 1+2 into 3.
6230 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
6231 renames Fully_Conformant_Expressions;
6233 function FCL (L1, L2 : List_Id) return Boolean;
6234 -- Compare elements of two lists for conformance. Elements have to
6235 -- be conformant, and actuals inserted as default parameters do not
6236 -- match explicit actuals with the same value.
6238 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
6239 -- Compare an operator node with a function call
6241 ---------
6242 -- FCL --
6243 ---------
6245 function FCL (L1, L2 : List_Id) return Boolean is
6246 N1, N2 : Node_Id;
6248 begin
6249 if L1 = No_List then
6250 N1 := Empty;
6251 else
6252 N1 := First (L1);
6253 end if;
6255 if L2 = No_List then
6256 N2 := Empty;
6257 else
6258 N2 := First (L2);
6259 end if;
6261 -- Compare two lists, skipping rewrite insertions (we want to
6262 -- compare the original trees, not the expanded versions!)
6264 loop
6265 if Is_Rewrite_Insertion (N1) then
6266 Next (N1);
6267 elsif Is_Rewrite_Insertion (N2) then
6268 Next (N2);
6269 elsif No (N1) then
6270 return No (N2);
6271 elsif No (N2) then
6272 return False;
6273 elsif not FCE (N1, N2) then
6274 return False;
6275 else
6276 Next (N1);
6277 Next (N2);
6278 end if;
6279 end loop;
6280 end FCL;
6282 ---------
6283 -- FCO --
6284 ---------
6286 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
6287 Actuals : constant List_Id := Parameter_Associations (Call_Node);
6288 Act : Node_Id;
6290 begin
6291 if No (Actuals)
6292 or else Entity (Op_Node) /= Entity (Name (Call_Node))
6293 then
6294 return False;
6296 else
6297 Act := First (Actuals);
6299 if Nkind (Op_Node) in N_Binary_Op then
6300 if not FCE (Left_Opnd (Op_Node), Act) then
6301 return False;
6302 end if;
6304 Next (Act);
6305 end if;
6307 return Present (Act)
6308 and then FCE (Right_Opnd (Op_Node), Act)
6309 and then No (Next (Act));
6310 end if;
6311 end FCO;
6313 -- Start of processing for Fully_Conformant_Expressions
6315 begin
6316 -- Non-conformant if paren count does not match. Note: if some idiot
6317 -- complains that we don't do this right for more than 3 levels of
6318 -- parentheses, they will be treated with the respect they deserve!
6320 if Paren_Count (E1) /= Paren_Count (E2) then
6321 return False;
6323 -- If same entities are referenced, then they are conformant even if
6324 -- they have different forms (RM 8.3.1(19-20)).
6326 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
6327 if Present (Entity (E1)) then
6328 return Entity (E1) = Entity (E2)
6329 or else (Chars (Entity (E1)) = Chars (Entity (E2))
6330 and then Ekind (Entity (E1)) = E_Discriminant
6331 and then Ekind (Entity (E2)) = E_In_Parameter);
6333 elsif Nkind (E1) = N_Expanded_Name
6334 and then Nkind (E2) = N_Expanded_Name
6335 and then Nkind (Selector_Name (E1)) = N_Character_Literal
6336 and then Nkind (Selector_Name (E2)) = N_Character_Literal
6337 then
6338 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
6340 else
6341 -- Identifiers in component associations don't always have
6342 -- entities, but their names must conform.
6344 return Nkind (E1) = N_Identifier
6345 and then Nkind (E2) = N_Identifier
6346 and then Chars (E1) = Chars (E2);
6347 end if;
6349 elsif Nkind (E1) = N_Character_Literal
6350 and then Nkind (E2) = N_Expanded_Name
6351 then
6352 return Nkind (Selector_Name (E2)) = N_Character_Literal
6353 and then Chars (E1) = Chars (Selector_Name (E2));
6355 elsif Nkind (E2) = N_Character_Literal
6356 and then Nkind (E1) = N_Expanded_Name
6357 then
6358 return Nkind (Selector_Name (E1)) = N_Character_Literal
6359 and then Chars (E2) = Chars (Selector_Name (E1));
6361 elsif Nkind (E1) in N_Op
6362 and then Nkind (E2) = N_Function_Call
6363 then
6364 return FCO (E1, E2);
6366 elsif Nkind (E2) in N_Op
6367 and then Nkind (E1) = N_Function_Call
6368 then
6369 return FCO (E2, E1);
6371 -- Otherwise we must have the same syntactic entity
6373 elsif Nkind (E1) /= Nkind (E2) then
6374 return False;
6376 -- At this point, we specialize by node type
6378 else
6379 case Nkind (E1) is
6381 when N_Aggregate =>
6382 return
6383 FCL (Expressions (E1), Expressions (E2))
6384 and then
6385 FCL (Component_Associations (E1),
6386 Component_Associations (E2));
6388 when N_Allocator =>
6389 if Nkind (Expression (E1)) = N_Qualified_Expression
6390 or else
6391 Nkind (Expression (E2)) = N_Qualified_Expression
6392 then
6393 return FCE (Expression (E1), Expression (E2));
6395 -- Check that the subtype marks and any constraints
6396 -- are conformant
6398 else
6399 declare
6400 Indic1 : constant Node_Id := Expression (E1);
6401 Indic2 : constant Node_Id := Expression (E2);
6402 Elt1 : Node_Id;
6403 Elt2 : Node_Id;
6405 begin
6406 if Nkind (Indic1) /= N_Subtype_Indication then
6407 return
6408 Nkind (Indic2) /= N_Subtype_Indication
6409 and then Entity (Indic1) = Entity (Indic2);
6411 elsif Nkind (Indic2) /= N_Subtype_Indication then
6412 return
6413 Nkind (Indic1) /= N_Subtype_Indication
6414 and then Entity (Indic1) = Entity (Indic2);
6416 else
6417 if Entity (Subtype_Mark (Indic1)) /=
6418 Entity (Subtype_Mark (Indic2))
6419 then
6420 return False;
6421 end if;
6423 Elt1 := First (Constraints (Constraint (Indic1)));
6424 Elt2 := First (Constraints (Constraint (Indic2)));
6425 while Present (Elt1) and then Present (Elt2) loop
6426 if not FCE (Elt1, Elt2) then
6427 return False;
6428 end if;
6430 Next (Elt1);
6431 Next (Elt2);
6432 end loop;
6434 return True;
6435 end if;
6436 end;
6437 end if;
6439 when N_Attribute_Reference =>
6440 return
6441 Attribute_Name (E1) = Attribute_Name (E2)
6442 and then FCL (Expressions (E1), Expressions (E2));
6444 when N_Binary_Op =>
6445 return
6446 Entity (E1) = Entity (E2)
6447 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
6448 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6450 when N_Short_Circuit | N_Membership_Test =>
6451 return
6452 FCE (Left_Opnd (E1), Left_Opnd (E2))
6453 and then
6454 FCE (Right_Opnd (E1), Right_Opnd (E2));
6456 when N_Case_Expression =>
6457 declare
6458 Alt1 : Node_Id;
6459 Alt2 : Node_Id;
6461 begin
6462 if not FCE (Expression (E1), Expression (E2)) then
6463 return False;
6465 else
6466 Alt1 := First (Alternatives (E1));
6467 Alt2 := First (Alternatives (E2));
6468 loop
6469 if Present (Alt1) /= Present (Alt2) then
6470 return False;
6471 elsif No (Alt1) then
6472 return True;
6473 end if;
6475 if not FCE (Expression (Alt1), Expression (Alt2))
6476 or else not FCL (Discrete_Choices (Alt1),
6477 Discrete_Choices (Alt2))
6478 then
6479 return False;
6480 end if;
6482 Next (Alt1);
6483 Next (Alt2);
6484 end loop;
6485 end if;
6486 end;
6488 when N_Character_Literal =>
6489 return
6490 Char_Literal_Value (E1) = Char_Literal_Value (E2);
6492 when N_Component_Association =>
6493 return
6494 FCL (Choices (E1), Choices (E2))
6495 and then
6496 FCE (Expression (E1), Expression (E2));
6498 when N_Conditional_Expression =>
6499 return
6500 FCL (Expressions (E1), Expressions (E2));
6502 when N_Explicit_Dereference =>
6503 return
6504 FCE (Prefix (E1), Prefix (E2));
6506 when N_Extension_Aggregate =>
6507 return
6508 FCL (Expressions (E1), Expressions (E2))
6509 and then Null_Record_Present (E1) =
6510 Null_Record_Present (E2)
6511 and then FCL (Component_Associations (E1),
6512 Component_Associations (E2));
6514 when N_Function_Call =>
6515 return
6516 FCE (Name (E1), Name (E2))
6517 and then
6518 FCL (Parameter_Associations (E1),
6519 Parameter_Associations (E2));
6521 when N_Indexed_Component =>
6522 return
6523 FCE (Prefix (E1), Prefix (E2))
6524 and then
6525 FCL (Expressions (E1), Expressions (E2));
6527 when N_Integer_Literal =>
6528 return (Intval (E1) = Intval (E2));
6530 when N_Null =>
6531 return True;
6533 when N_Operator_Symbol =>
6534 return
6535 Chars (E1) = Chars (E2);
6537 when N_Others_Choice =>
6538 return True;
6540 when N_Parameter_Association =>
6541 return
6542 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
6543 and then FCE (Explicit_Actual_Parameter (E1),
6544 Explicit_Actual_Parameter (E2));
6546 when N_Qualified_Expression =>
6547 return
6548 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6549 and then
6550 FCE (Expression (E1), Expression (E2));
6552 when N_Range =>
6553 return
6554 FCE (Low_Bound (E1), Low_Bound (E2))
6555 and then
6556 FCE (High_Bound (E1), High_Bound (E2));
6558 when N_Real_Literal =>
6559 return (Realval (E1) = Realval (E2));
6561 when N_Selected_Component =>
6562 return
6563 FCE (Prefix (E1), Prefix (E2))
6564 and then
6565 FCE (Selector_Name (E1), Selector_Name (E2));
6567 when N_Slice =>
6568 return
6569 FCE (Prefix (E1), Prefix (E2))
6570 and then
6571 FCE (Discrete_Range (E1), Discrete_Range (E2));
6573 when N_String_Literal =>
6574 declare
6575 S1 : constant String_Id := Strval (E1);
6576 S2 : constant String_Id := Strval (E2);
6577 L1 : constant Nat := String_Length (S1);
6578 L2 : constant Nat := String_Length (S2);
6580 begin
6581 if L1 /= L2 then
6582 return False;
6584 else
6585 for J in 1 .. L1 loop
6586 if Get_String_Char (S1, J) /=
6587 Get_String_Char (S2, J)
6588 then
6589 return False;
6590 end if;
6591 end loop;
6593 return True;
6594 end if;
6595 end;
6597 when N_Type_Conversion =>
6598 return
6599 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6600 and then
6601 FCE (Expression (E1), Expression (E2));
6603 when N_Unary_Op =>
6604 return
6605 Entity (E1) = Entity (E2)
6606 and then
6607 FCE (Right_Opnd (E1), Right_Opnd (E2));
6609 when N_Unchecked_Type_Conversion =>
6610 return
6611 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6612 and then
6613 FCE (Expression (E1), Expression (E2));
6615 -- All other node types cannot appear in this context. Strictly
6616 -- we should raise a fatal internal error. Instead we just ignore
6617 -- the nodes. This means that if anyone makes a mistake in the
6618 -- expander and mucks an expression tree irretrievably, the
6619 -- result will be a failure to detect a (probably very obscure)
6620 -- case of non-conformance, which is better than bombing on some
6621 -- case where two expressions do in fact conform.
6623 when others =>
6624 return True;
6626 end case;
6627 end if;
6628 end Fully_Conformant_Expressions;
6630 ----------------------------------------
6631 -- Fully_Conformant_Discrete_Subtypes --
6632 ----------------------------------------
6634 function Fully_Conformant_Discrete_Subtypes
6635 (Given_S1 : Node_Id;
6636 Given_S2 : Node_Id) return Boolean
6638 S1 : constant Node_Id := Original_Node (Given_S1);
6639 S2 : constant Node_Id := Original_Node (Given_S2);
6641 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
6642 -- Special-case for a bound given by a discriminant, which in the body
6643 -- is replaced with the discriminal of the enclosing type.
6645 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
6646 -- Check both bounds
6648 -----------------------
6649 -- Conforming_Bounds --
6650 -----------------------
6652 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
6653 begin
6654 if Is_Entity_Name (B1)
6655 and then Is_Entity_Name (B2)
6656 and then Ekind (Entity (B1)) = E_Discriminant
6657 then
6658 return Chars (B1) = Chars (B2);
6660 else
6661 return Fully_Conformant_Expressions (B1, B2);
6662 end if;
6663 end Conforming_Bounds;
6665 -----------------------
6666 -- Conforming_Ranges --
6667 -----------------------
6669 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
6670 begin
6671 return
6672 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
6673 and then
6674 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
6675 end Conforming_Ranges;
6677 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6679 begin
6680 if Nkind (S1) /= Nkind (S2) then
6681 return False;
6683 elsif Is_Entity_Name (S1) then
6684 return Entity (S1) = Entity (S2);
6686 elsif Nkind (S1) = N_Range then
6687 return Conforming_Ranges (S1, S2);
6689 elsif Nkind (S1) = N_Subtype_Indication then
6690 return
6691 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
6692 and then
6693 Conforming_Ranges
6694 (Range_Expression (Constraint (S1)),
6695 Range_Expression (Constraint (S2)));
6696 else
6697 return True;
6698 end if;
6699 end Fully_Conformant_Discrete_Subtypes;
6701 --------------------
6702 -- Install_Entity --
6703 --------------------
6705 procedure Install_Entity (E : Entity_Id) is
6706 Prev : constant Entity_Id := Current_Entity (E);
6707 begin
6708 Set_Is_Immediately_Visible (E);
6709 Set_Current_Entity (E);
6710 Set_Homonym (E, Prev);
6711 end Install_Entity;
6713 ---------------------
6714 -- Install_Formals --
6715 ---------------------
6717 procedure Install_Formals (Id : Entity_Id) is
6718 F : Entity_Id;
6719 begin
6720 F := First_Formal (Id);
6721 while Present (F) loop
6722 Install_Entity (F);
6723 Next_Formal (F);
6724 end loop;
6725 end Install_Formals;
6727 -----------------------------
6728 -- Is_Interface_Conformant --
6729 -----------------------------
6731 function Is_Interface_Conformant
6732 (Tagged_Type : Entity_Id;
6733 Iface_Prim : Entity_Id;
6734 Prim : Entity_Id) return Boolean
6736 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
6737 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
6739 begin
6740 pragma Assert (Is_Subprogram (Iface_Prim)
6741 and then Is_Subprogram (Prim)
6742 and then Is_Dispatching_Operation (Iface_Prim)
6743 and then Is_Dispatching_Operation (Prim));
6745 pragma Assert (Is_Interface (Iface)
6746 or else (Present (Alias (Iface_Prim))
6747 and then
6748 Is_Interface
6749 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
6751 if Prim = Iface_Prim
6752 or else not Is_Subprogram (Prim)
6753 or else Ekind (Prim) /= Ekind (Iface_Prim)
6754 or else not Is_Dispatching_Operation (Prim)
6755 or else Scope (Prim) /= Scope (Tagged_Type)
6756 or else No (Typ)
6757 or else Base_Type (Typ) /= Tagged_Type
6758 or else not Primitive_Names_Match (Iface_Prim, Prim)
6759 then
6760 return False;
6762 -- Case of a procedure, or a function that does not have a controlling
6763 -- result (I or access I).
6765 elsif Ekind (Iface_Prim) = E_Procedure
6766 or else Etype (Prim) = Etype (Iface_Prim)
6767 or else not Has_Controlling_Result (Prim)
6768 then
6769 return Type_Conformant
6770 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
6772 -- Case of a function returning an interface, or an access to one.
6773 -- Check that the return types correspond.
6775 elsif Implements_Interface (Typ, Iface) then
6776 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
6778 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
6779 then
6780 return False;
6781 else
6782 return
6783 Type_Conformant (Prim, Iface_Prim,
6784 Skip_Controlling_Formals => True);
6785 end if;
6787 else
6788 return False;
6789 end if;
6790 end Is_Interface_Conformant;
6792 ---------------------------------
6793 -- Is_Non_Overriding_Operation --
6794 ---------------------------------
6796 function Is_Non_Overriding_Operation
6797 (Prev_E : Entity_Id;
6798 New_E : Entity_Id) return Boolean
6800 Formal : Entity_Id;
6801 F_Typ : Entity_Id;
6802 G_Typ : Entity_Id := Empty;
6804 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
6805 -- If F_Type is a derived type associated with a generic actual subtype,
6806 -- then return its Generic_Parent_Type attribute, else return Empty.
6808 function Types_Correspond
6809 (P_Type : Entity_Id;
6810 N_Type : Entity_Id) return Boolean;
6811 -- Returns true if and only if the types (or designated types in the
6812 -- case of anonymous access types) are the same or N_Type is derived
6813 -- directly or indirectly from P_Type.
6815 -----------------------------
6816 -- Get_Generic_Parent_Type --
6817 -----------------------------
6819 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
6820 G_Typ : Entity_Id;
6821 Indic : Node_Id;
6823 begin
6824 if Is_Derived_Type (F_Typ)
6825 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
6826 then
6827 -- The tree must be traversed to determine the parent subtype in
6828 -- the generic unit, which unfortunately isn't always available
6829 -- via semantic attributes. ??? (Note: The use of Original_Node
6830 -- is needed for cases where a full derived type has been
6831 -- rewritten.)
6833 Indic := Subtype_Indication
6834 (Type_Definition (Original_Node (Parent (F_Typ))));
6836 if Nkind (Indic) = N_Subtype_Indication then
6837 G_Typ := Entity (Subtype_Mark (Indic));
6838 else
6839 G_Typ := Entity (Indic);
6840 end if;
6842 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
6843 and then Present (Generic_Parent_Type (Parent (G_Typ)))
6844 then
6845 return Generic_Parent_Type (Parent (G_Typ));
6846 end if;
6847 end if;
6849 return Empty;
6850 end Get_Generic_Parent_Type;
6852 ----------------------
6853 -- Types_Correspond --
6854 ----------------------
6856 function Types_Correspond
6857 (P_Type : Entity_Id;
6858 N_Type : Entity_Id) return Boolean
6860 Prev_Type : Entity_Id := Base_Type (P_Type);
6861 New_Type : Entity_Id := Base_Type (N_Type);
6863 begin
6864 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
6865 Prev_Type := Designated_Type (Prev_Type);
6866 end if;
6868 if Ekind (New_Type) = E_Anonymous_Access_Type then
6869 New_Type := Designated_Type (New_Type);
6870 end if;
6872 if Prev_Type = New_Type then
6873 return True;
6875 elsif not Is_Class_Wide_Type (New_Type) then
6876 while Etype (New_Type) /= New_Type loop
6877 New_Type := Etype (New_Type);
6878 if New_Type = Prev_Type then
6879 return True;
6880 end if;
6881 end loop;
6882 end if;
6883 return False;
6884 end Types_Correspond;
6886 -- Start of processing for Is_Non_Overriding_Operation
6888 begin
6889 -- In the case where both operations are implicit derived subprograms
6890 -- then neither overrides the other. This can only occur in certain
6891 -- obscure cases (e.g., derivation from homographs created in a generic
6892 -- instantiation).
6894 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
6895 return True;
6897 elsif Ekind (Current_Scope) = E_Package
6898 and then Is_Generic_Instance (Current_Scope)
6899 and then In_Private_Part (Current_Scope)
6900 and then Comes_From_Source (New_E)
6901 then
6902 -- We examine the formals and result subtype of the inherited
6903 -- operation, to determine whether their type is derived from (the
6904 -- instance of) a generic type.
6906 Formal := First_Formal (Prev_E);
6907 while Present (Formal) loop
6908 F_Typ := Base_Type (Etype (Formal));
6910 if Ekind (F_Typ) = E_Anonymous_Access_Type then
6911 F_Typ := Designated_Type (F_Typ);
6912 end if;
6914 G_Typ := Get_Generic_Parent_Type (F_Typ);
6916 Next_Formal (Formal);
6917 end loop;
6919 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
6920 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
6921 end if;
6923 if No (G_Typ) then
6924 return False;
6925 end if;
6927 -- If the generic type is a private type, then the original operation
6928 -- was not overriding in the generic, because there was no primitive
6929 -- operation to override.
6931 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
6932 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
6933 N_Formal_Private_Type_Definition
6934 then
6935 return True;
6937 -- The generic parent type is the ancestor of a formal derived
6938 -- type declaration. We need to check whether it has a primitive
6939 -- operation that should be overridden by New_E in the generic.
6941 else
6942 declare
6943 P_Formal : Entity_Id;
6944 N_Formal : Entity_Id;
6945 P_Typ : Entity_Id;
6946 N_Typ : Entity_Id;
6947 P_Prim : Entity_Id;
6948 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
6950 begin
6951 while Present (Prim_Elt) loop
6952 P_Prim := Node (Prim_Elt);
6954 if Chars (P_Prim) = Chars (New_E)
6955 and then Ekind (P_Prim) = Ekind (New_E)
6956 then
6957 P_Formal := First_Formal (P_Prim);
6958 N_Formal := First_Formal (New_E);
6959 while Present (P_Formal) and then Present (N_Formal) loop
6960 P_Typ := Etype (P_Formal);
6961 N_Typ := Etype (N_Formal);
6963 if not Types_Correspond (P_Typ, N_Typ) then
6964 exit;
6965 end if;
6967 Next_Entity (P_Formal);
6968 Next_Entity (N_Formal);
6969 end loop;
6971 -- Found a matching primitive operation belonging to the
6972 -- formal ancestor type, so the new subprogram is
6973 -- overriding.
6975 if No (P_Formal)
6976 and then No (N_Formal)
6977 and then (Ekind (New_E) /= E_Function
6978 or else
6979 Types_Correspond
6980 (Etype (P_Prim), Etype (New_E)))
6981 then
6982 return False;
6983 end if;
6984 end if;
6986 Next_Elmt (Prim_Elt);
6987 end loop;
6989 -- If no match found, then the new subprogram does not
6990 -- override in the generic (nor in the instance).
6992 return True;
6993 end;
6994 end if;
6995 else
6996 return False;
6997 end if;
6998 end Is_Non_Overriding_Operation;
7000 -------------------------------------
7001 -- List_Inherited_Pre_Post_Aspects --
7002 -------------------------------------
7004 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
7005 begin
7006 if Opt.List_Inherited_Aspects
7007 and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
7008 then
7009 declare
7010 Inherited : constant Subprogram_List :=
7011 Inherited_Subprograms (E);
7012 P : Node_Id;
7014 begin
7015 for J in Inherited'Range loop
7016 P := Spec_PPC_List (Inherited (J));
7017 while Present (P) loop
7018 Error_Msg_Sloc := Sloc (P);
7020 if Class_Present (P) and then not Split_PPC (P) then
7021 if Pragma_Name (P) = Name_Precondition then
7022 Error_Msg_N
7023 ("?info: & inherits `Pre''Class` aspect from #", E);
7024 else
7025 Error_Msg_N
7026 ("?info: & inherits `Post''Class` aspect from #", E);
7027 end if;
7028 end if;
7030 P := Next_Pragma (P);
7031 end loop;
7032 end loop;
7033 end;
7034 end if;
7035 end List_Inherited_Pre_Post_Aspects;
7037 ------------------------------
7038 -- Make_Inequality_Operator --
7039 ------------------------------
7041 -- S is the defining identifier of an equality operator. We build a
7042 -- subprogram declaration with the right signature. This operation is
7043 -- intrinsic, because it is always expanded as the negation of the
7044 -- call to the equality function.
7046 procedure Make_Inequality_Operator (S : Entity_Id) is
7047 Loc : constant Source_Ptr := Sloc (S);
7048 Decl : Node_Id;
7049 Formals : List_Id;
7050 Op_Name : Entity_Id;
7052 FF : constant Entity_Id := First_Formal (S);
7053 NF : constant Entity_Id := Next_Formal (FF);
7055 begin
7056 -- Check that equality was properly defined, ignore call if not
7058 if No (NF) then
7059 return;
7060 end if;
7062 declare
7063 A : constant Entity_Id :=
7064 Make_Defining_Identifier (Sloc (FF),
7065 Chars => Chars (FF));
7067 B : constant Entity_Id :=
7068 Make_Defining_Identifier (Sloc (NF),
7069 Chars => Chars (NF));
7071 begin
7072 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
7074 Formals := New_List (
7075 Make_Parameter_Specification (Loc,
7076 Defining_Identifier => A,
7077 Parameter_Type =>
7078 New_Reference_To (Etype (First_Formal (S)),
7079 Sloc (Etype (First_Formal (S))))),
7081 Make_Parameter_Specification (Loc,
7082 Defining_Identifier => B,
7083 Parameter_Type =>
7084 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
7085 Sloc (Etype (Next_Formal (First_Formal (S)))))));
7087 Decl :=
7088 Make_Subprogram_Declaration (Loc,
7089 Specification =>
7090 Make_Function_Specification (Loc,
7091 Defining_Unit_Name => Op_Name,
7092 Parameter_Specifications => Formals,
7093 Result_Definition =>
7094 New_Reference_To (Standard_Boolean, Loc)));
7096 -- Insert inequality right after equality if it is explicit or after
7097 -- the derived type when implicit. These entities are created only
7098 -- for visibility purposes, and eventually replaced in the course of
7099 -- expansion, so they do not need to be attached to the tree and seen
7100 -- by the back-end. Keeping them internal also avoids spurious
7101 -- freezing problems. The declaration is inserted in the tree for
7102 -- analysis, and removed afterwards. If the equality operator comes
7103 -- from an explicit declaration, attach the inequality immediately
7104 -- after. Else the equality is inherited from a derived type
7105 -- declaration, so insert inequality after that declaration.
7107 if No (Alias (S)) then
7108 Insert_After (Unit_Declaration_Node (S), Decl);
7109 elsif Is_List_Member (Parent (S)) then
7110 Insert_After (Parent (S), Decl);
7111 else
7112 Insert_After (Parent (Etype (First_Formal (S))), Decl);
7113 end if;
7115 Mark_Rewrite_Insertion (Decl);
7116 Set_Is_Intrinsic_Subprogram (Op_Name);
7117 Analyze (Decl);
7118 Remove (Decl);
7119 Set_Has_Completion (Op_Name);
7120 Set_Corresponding_Equality (Op_Name, S);
7121 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
7122 end;
7123 end Make_Inequality_Operator;
7125 ----------------------
7126 -- May_Need_Actuals --
7127 ----------------------
7129 procedure May_Need_Actuals (Fun : Entity_Id) is
7130 F : Entity_Id;
7131 B : Boolean;
7133 begin
7134 F := First_Formal (Fun);
7135 B := True;
7136 while Present (F) loop
7137 if No (Default_Value (F)) then
7138 B := False;
7139 exit;
7140 end if;
7142 Next_Formal (F);
7143 end loop;
7145 Set_Needs_No_Actuals (Fun, B);
7146 end May_Need_Actuals;
7148 ---------------------
7149 -- Mode_Conformant --
7150 ---------------------
7152 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7153 Result : Boolean;
7154 begin
7155 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
7156 return Result;
7157 end Mode_Conformant;
7159 ---------------------------
7160 -- New_Overloaded_Entity --
7161 ---------------------------
7163 procedure New_Overloaded_Entity
7164 (S : Entity_Id;
7165 Derived_Type : Entity_Id := Empty)
7167 Overridden_Subp : Entity_Id := Empty;
7168 -- Set if the current scope has an operation that is type-conformant
7169 -- with S, and becomes hidden by S.
7171 Is_Primitive_Subp : Boolean;
7172 -- Set to True if the new subprogram is primitive
7174 E : Entity_Id;
7175 -- Entity that S overrides
7177 Prev_Vis : Entity_Id := Empty;
7178 -- Predecessor of E in Homonym chain
7180 procedure Check_For_Primitive_Subprogram
7181 (Is_Primitive : out Boolean;
7182 Is_Overriding : Boolean := False);
7183 -- If the subprogram being analyzed is a primitive operation of the type
7184 -- of a formal or result, set the Has_Primitive_Operations flag on the
7185 -- type, and set Is_Primitive to True (otherwise set to False). Set the
7186 -- corresponding flag on the entity itself for later use.
7188 procedure Check_Synchronized_Overriding
7189 (Def_Id : Entity_Id;
7190 Overridden_Subp : out Entity_Id);
7191 -- First determine if Def_Id is an entry or a subprogram either defined
7192 -- in the scope of a task or protected type, or is a primitive of such
7193 -- a type. Check whether Def_Id overrides a subprogram of an interface
7194 -- implemented by the synchronized type, return the overridden entity
7195 -- or Empty.
7197 function Is_Private_Declaration (E : Entity_Id) return Boolean;
7198 -- Check that E is declared in the private part of the current package,
7199 -- or in the package body, where it may hide a previous declaration.
7200 -- We can't use In_Private_Part by itself because this flag is also
7201 -- set when freezing entities, so we must examine the place of the
7202 -- declaration in the tree, and recognize wrapper packages as well.
7204 function Is_Overriding_Alias
7205 (Old_E : Entity_Id;
7206 New_E : Entity_Id) return Boolean;
7207 -- Check whether new subprogram and old subprogram are both inherited
7208 -- from subprograms that have distinct dispatch table entries. This can
7209 -- occur with derivations from instances with accidental homonyms.
7210 -- The function is conservative given that the converse is only true
7211 -- within instances that contain accidental overloadings.
7213 ------------------------------------
7214 -- Check_For_Primitive_Subprogram --
7215 ------------------------------------
7217 procedure Check_For_Primitive_Subprogram
7218 (Is_Primitive : out Boolean;
7219 Is_Overriding : Boolean := False)
7221 Formal : Entity_Id;
7222 F_Typ : Entity_Id;
7223 B_Typ : Entity_Id;
7225 function Visible_Part_Type (T : Entity_Id) return Boolean;
7226 -- Returns true if T is declared in the visible part of the current
7227 -- package scope; otherwise returns false. Assumes that T is declared
7228 -- in a package.
7230 procedure Check_Private_Overriding (T : Entity_Id);
7231 -- Checks that if a primitive abstract subprogram of a visible
7232 -- abstract type is declared in a private part, then it must override
7233 -- an abstract subprogram declared in the visible part. Also checks
7234 -- that if a primitive function with a controlling result is declared
7235 -- in a private part, then it must override a function declared in
7236 -- the visible part.
7238 ------------------------------
7239 -- Check_Private_Overriding --
7240 ------------------------------
7242 procedure Check_Private_Overriding (T : Entity_Id) is
7243 begin
7244 if Is_Package_Or_Generic_Package (Current_Scope)
7245 and then In_Private_Part (Current_Scope)
7246 and then Visible_Part_Type (T)
7247 and then not In_Instance
7248 then
7249 if Is_Abstract_Type (T)
7250 and then Is_Abstract_Subprogram (S)
7251 and then (not Is_Overriding
7252 or else not Is_Abstract_Subprogram (E))
7253 then
7254 Error_Msg_N
7255 ("abstract subprograms must be visible "
7256 & "(RM 3.9.3(10))!", S);
7258 elsif Ekind (S) = E_Function
7259 and then not Is_Overriding
7260 then
7261 if Is_Tagged_Type (T)
7262 and then T = Base_Type (Etype (S))
7263 then
7264 Error_Msg_N
7265 ("private function with tagged result must"
7266 & " override visible-part function", S);
7267 Error_Msg_N
7268 ("\move subprogram to the visible part"
7269 & " (RM 3.9.3(10))", S);
7271 -- AI05-0073: extend this test to the case of a function
7272 -- with a controlling access result.
7274 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
7275 and then Is_Tagged_Type (Designated_Type (Etype (S)))
7276 and then
7277 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
7278 and then Ada_Version >= Ada_2012
7279 then
7280 Error_Msg_N
7281 ("private function with controlling access result "
7282 & "must override visible-part function", S);
7283 Error_Msg_N
7284 ("\move subprogram to the visible part"
7285 & " (RM 3.9.3(10))", S);
7286 end if;
7287 end if;
7288 end if;
7289 end Check_Private_Overriding;
7291 -----------------------
7292 -- Visible_Part_Type --
7293 -----------------------
7295 function Visible_Part_Type (T : Entity_Id) return Boolean is
7296 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
7297 N : Node_Id;
7299 begin
7300 -- If the entity is a private type, then it must be declared in a
7301 -- visible part.
7303 if Ekind (T) in Private_Kind then
7304 return True;
7305 end if;
7307 -- Otherwise, we traverse the visible part looking for its
7308 -- corresponding declaration. We cannot use the declaration
7309 -- node directly because in the private part the entity of a
7310 -- private type is the one in the full view, which does not
7311 -- indicate that it is the completion of something visible.
7313 N := First (Visible_Declarations (Specification (P)));
7314 while Present (N) loop
7315 if Nkind (N) = N_Full_Type_Declaration
7316 and then Present (Defining_Identifier (N))
7317 and then T = Defining_Identifier (N)
7318 then
7319 return True;
7321 elsif Nkind_In (N, N_Private_Type_Declaration,
7322 N_Private_Extension_Declaration)
7323 and then Present (Defining_Identifier (N))
7324 and then T = Full_View (Defining_Identifier (N))
7325 then
7326 return True;
7327 end if;
7329 Next (N);
7330 end loop;
7332 return False;
7333 end Visible_Part_Type;
7335 -- Start of processing for Check_For_Primitive_Subprogram
7337 begin
7338 Is_Primitive := False;
7340 if not Comes_From_Source (S) then
7341 null;
7343 -- If subprogram is at library level, it is not primitive operation
7345 elsif Current_Scope = Standard_Standard then
7346 null;
7348 elsif (Is_Package_Or_Generic_Package (Current_Scope)
7349 and then not In_Package_Body (Current_Scope))
7350 or else Is_Overriding
7351 then
7352 -- For function, check return type
7354 if Ekind (S) = E_Function then
7355 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
7356 F_Typ := Designated_Type (Etype (S));
7357 else
7358 F_Typ := Etype (S);
7359 end if;
7361 B_Typ := Base_Type (F_Typ);
7363 if Scope (B_Typ) = Current_Scope
7364 and then not Is_Class_Wide_Type (B_Typ)
7365 and then not Is_Generic_Type (B_Typ)
7366 then
7367 Is_Primitive := True;
7368 Set_Has_Primitive_Operations (B_Typ);
7369 Set_Is_Primitive (S);
7370 Check_Private_Overriding (B_Typ);
7371 end if;
7372 end if;
7374 -- For all subprograms, check formals
7376 Formal := First_Formal (S);
7377 while Present (Formal) loop
7378 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
7379 F_Typ := Designated_Type (Etype (Formal));
7380 else
7381 F_Typ := Etype (Formal);
7382 end if;
7384 B_Typ := Base_Type (F_Typ);
7386 if Ekind (B_Typ) = E_Access_Subtype then
7387 B_Typ := Base_Type (B_Typ);
7388 end if;
7390 if Scope (B_Typ) = Current_Scope
7391 and then not Is_Class_Wide_Type (B_Typ)
7392 and then not Is_Generic_Type (B_Typ)
7393 then
7394 Is_Primitive := True;
7395 Set_Is_Primitive (S);
7396 Set_Has_Primitive_Operations (B_Typ);
7397 Check_Private_Overriding (B_Typ);
7398 end if;
7400 Next_Formal (Formal);
7401 end loop;
7402 end if;
7403 end Check_For_Primitive_Subprogram;
7405 -----------------------------------
7406 -- Check_Synchronized_Overriding --
7407 -----------------------------------
7409 procedure Check_Synchronized_Overriding
7410 (Def_Id : Entity_Id;
7411 Overridden_Subp : out Entity_Id)
7413 Ifaces_List : Elist_Id;
7414 In_Scope : Boolean;
7415 Typ : Entity_Id;
7417 function Matches_Prefixed_View_Profile
7418 (Prim_Params : List_Id;
7419 Iface_Params : List_Id) return Boolean;
7420 -- Determine whether a subprogram's parameter profile Prim_Params
7421 -- matches that of a potentially overridden interface subprogram
7422 -- Iface_Params. Also determine if the type of first parameter of
7423 -- Iface_Params is an implemented interface.
7425 -----------------------------------
7426 -- Matches_Prefixed_View_Profile --
7427 -----------------------------------
7429 function Matches_Prefixed_View_Profile
7430 (Prim_Params : List_Id;
7431 Iface_Params : List_Id) return Boolean
7433 Iface_Id : Entity_Id;
7434 Iface_Param : Node_Id;
7435 Iface_Typ : Entity_Id;
7436 Prim_Id : Entity_Id;
7437 Prim_Param : Node_Id;
7438 Prim_Typ : Entity_Id;
7440 function Is_Implemented
7441 (Ifaces_List : Elist_Id;
7442 Iface : Entity_Id) return Boolean;
7443 -- Determine if Iface is implemented by the current task or
7444 -- protected type.
7446 --------------------
7447 -- Is_Implemented --
7448 --------------------
7450 function Is_Implemented
7451 (Ifaces_List : Elist_Id;
7452 Iface : Entity_Id) return Boolean
7454 Iface_Elmt : Elmt_Id;
7456 begin
7457 Iface_Elmt := First_Elmt (Ifaces_List);
7458 while Present (Iface_Elmt) loop
7459 if Node (Iface_Elmt) = Iface then
7460 return True;
7461 end if;
7463 Next_Elmt (Iface_Elmt);
7464 end loop;
7466 return False;
7467 end Is_Implemented;
7469 -- Start of processing for Matches_Prefixed_View_Profile
7471 begin
7472 Iface_Param := First (Iface_Params);
7473 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7475 if Is_Access_Type (Iface_Typ) then
7476 Iface_Typ := Designated_Type (Iface_Typ);
7477 end if;
7479 Prim_Param := First (Prim_Params);
7481 -- The first parameter of the potentially overridden subprogram
7482 -- must be an interface implemented by Prim.
7484 if not Is_Interface (Iface_Typ)
7485 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7486 then
7487 return False;
7488 end if;
7490 -- The checks on the object parameters are done, move onto the
7491 -- rest of the parameters.
7493 if not In_Scope then
7494 Prim_Param := Next (Prim_Param);
7495 end if;
7497 Iface_Param := Next (Iface_Param);
7498 while Present (Iface_Param) and then Present (Prim_Param) loop
7499 Iface_Id := Defining_Identifier (Iface_Param);
7500 Iface_Typ := Find_Parameter_Type (Iface_Param);
7502 Prim_Id := Defining_Identifier (Prim_Param);
7503 Prim_Typ := Find_Parameter_Type (Prim_Param);
7505 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7506 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7507 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7508 then
7509 Iface_Typ := Designated_Type (Iface_Typ);
7510 Prim_Typ := Designated_Type (Prim_Typ);
7511 end if;
7513 -- Case of multiple interface types inside a parameter profile
7515 -- (Obj_Param : in out Iface; ...; Param : Iface)
7517 -- If the interface type is implemented, then the matching type
7518 -- in the primitive should be the implementing record type.
7520 if Ekind (Iface_Typ) = E_Record_Type
7521 and then Is_Interface (Iface_Typ)
7522 and then Is_Implemented (Ifaces_List, Iface_Typ)
7523 then
7524 if Prim_Typ /= Typ then
7525 return False;
7526 end if;
7528 -- The two parameters must be both mode and subtype conformant
7530 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7531 or else not
7532 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7533 then
7534 return False;
7535 end if;
7537 Next (Iface_Param);
7538 Next (Prim_Param);
7539 end loop;
7541 -- One of the two lists contains more parameters than the other
7543 if Present (Iface_Param) or else Present (Prim_Param) then
7544 return False;
7545 end if;
7547 return True;
7548 end Matches_Prefixed_View_Profile;
7550 -- Start of processing for Check_Synchronized_Overriding
7552 begin
7553 Overridden_Subp := Empty;
7555 -- Def_Id must be an entry or a subprogram. We should skip predefined
7556 -- primitives internally generated by the frontend; however at this
7557 -- stage predefined primitives are still not fully decorated. As a
7558 -- minor optimization we skip here internally generated subprograms.
7560 if (Ekind (Def_Id) /= E_Entry
7561 and then Ekind (Def_Id) /= E_Function
7562 and then Ekind (Def_Id) /= E_Procedure)
7563 or else not Comes_From_Source (Def_Id)
7564 then
7565 return;
7566 end if;
7568 -- Search for the concurrent declaration since it contains the list
7569 -- of all implemented interfaces. In this case, the subprogram is
7570 -- declared within the scope of a protected or a task type.
7572 if Present (Scope (Def_Id))
7573 and then Is_Concurrent_Type (Scope (Def_Id))
7574 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7575 then
7576 Typ := Scope (Def_Id);
7577 In_Scope := True;
7579 -- The enclosing scope is not a synchronized type and the subprogram
7580 -- has no formals.
7582 elsif No (First_Formal (Def_Id)) then
7583 return;
7585 -- The subprogram has formals and hence it may be a primitive of a
7586 -- concurrent type.
7588 else
7589 Typ := Etype (First_Formal (Def_Id));
7591 if Is_Access_Type (Typ) then
7592 Typ := Directly_Designated_Type (Typ);
7593 end if;
7595 if Is_Concurrent_Type (Typ)
7596 and then not Is_Generic_Actual_Type (Typ)
7597 then
7598 In_Scope := False;
7600 -- This case occurs when the concurrent type is declared within
7601 -- a generic unit. As a result the corresponding record has been
7602 -- built and used as the type of the first formal, we just have
7603 -- to retrieve the corresponding concurrent type.
7605 elsif Is_Concurrent_Record_Type (Typ)
7606 and then Present (Corresponding_Concurrent_Type (Typ))
7607 then
7608 Typ := Corresponding_Concurrent_Type (Typ);
7609 In_Scope := False;
7611 else
7612 return;
7613 end if;
7614 end if;
7616 -- There is no overriding to check if is an inherited operation in a
7617 -- type derivation on for a generic actual.
7619 Collect_Interfaces (Typ, Ifaces_List);
7621 if Is_Empty_Elmt_List (Ifaces_List) then
7622 return;
7623 end if;
7625 -- Determine whether entry or subprogram Def_Id overrides a primitive
7626 -- operation that belongs to one of the interfaces in Ifaces_List.
7628 declare
7629 Candidate : Entity_Id := Empty;
7630 Hom : Entity_Id := Empty;
7631 Iface_Typ : Entity_Id;
7632 Subp : Entity_Id := Empty;
7634 begin
7635 -- Traverse the homonym chain, looking for a potentially
7636 -- overridden subprogram that belongs to an implemented
7637 -- interface.
7639 Hom := Current_Entity_In_Scope (Def_Id);
7640 while Present (Hom) loop
7641 Subp := Hom;
7643 if Subp = Def_Id
7644 or else not Is_Overloadable (Subp)
7645 or else not Is_Primitive (Subp)
7646 or else not Is_Dispatching_Operation (Subp)
7647 or else not Present (Find_Dispatching_Type (Subp))
7648 or else not Is_Interface (Find_Dispatching_Type (Subp))
7649 then
7650 null;
7652 -- Entries and procedures can override abstract or null
7653 -- interface procedures.
7655 elsif (Ekind (Def_Id) = E_Procedure
7656 or else Ekind (Def_Id) = E_Entry)
7657 and then Ekind (Subp) = E_Procedure
7658 and then Matches_Prefixed_View_Profile
7659 (Parameter_Specifications (Parent (Def_Id)),
7660 Parameter_Specifications (Parent (Subp)))
7661 then
7662 Candidate := Subp;
7664 -- For an overridden subprogram Subp, check whether the mode
7665 -- of its first parameter is correct depending on the kind
7666 -- of synchronized type.
7668 declare
7669 Formal : constant Node_Id := First_Formal (Candidate);
7671 begin
7672 -- In order for an entry or a protected procedure to
7673 -- override, the first parameter of the overridden
7674 -- routine must be of mode "out", "in out" or
7675 -- access-to-variable.
7677 if (Ekind (Candidate) = E_Entry
7678 or else Ekind (Candidate) = E_Procedure)
7679 and then Is_Protected_Type (Typ)
7680 and then Ekind (Formal) /= E_In_Out_Parameter
7681 and then Ekind (Formal) /= E_Out_Parameter
7682 and then Nkind (Parameter_Type (Parent (Formal)))
7683 /= N_Access_Definition
7684 then
7685 null;
7687 -- All other cases are OK since a task entry or routine
7688 -- does not have a restriction on the mode of the first
7689 -- parameter of the overridden interface routine.
7691 else
7692 Overridden_Subp := Candidate;
7693 return;
7694 end if;
7695 end;
7697 -- Functions can override abstract interface functions
7699 elsif Ekind (Def_Id) = E_Function
7700 and then Ekind (Subp) = E_Function
7701 and then Matches_Prefixed_View_Profile
7702 (Parameter_Specifications (Parent (Def_Id)),
7703 Parameter_Specifications (Parent (Subp)))
7704 and then Etype (Result_Definition (Parent (Def_Id))) =
7705 Etype (Result_Definition (Parent (Subp)))
7706 then
7707 Overridden_Subp := Subp;
7708 return;
7709 end if;
7711 Hom := Homonym (Hom);
7712 end loop;
7714 -- After examining all candidates for overriding, we are left with
7715 -- the best match which is a mode incompatible interface routine.
7716 -- Do not emit an error if the Expander is active since this error
7717 -- will be detected later on after all concurrent types are
7718 -- expanded and all wrappers are built. This check is meant for
7719 -- spec-only compilations.
7721 if Present (Candidate) and then not Expander_Active then
7722 Iface_Typ :=
7723 Find_Parameter_Type (Parent (First_Formal (Candidate)));
7725 -- Def_Id is primitive of a protected type, declared inside the
7726 -- type, and the candidate is primitive of a limited or
7727 -- synchronized interface.
7729 if In_Scope
7730 and then Is_Protected_Type (Typ)
7731 and then
7732 (Is_Limited_Interface (Iface_Typ)
7733 or else Is_Protected_Interface (Iface_Typ)
7734 or else Is_Synchronized_Interface (Iface_Typ)
7735 or else Is_Task_Interface (Iface_Typ))
7736 then
7737 Error_Msg_NE
7738 ("first formal of & must be of mode `OUT`, `IN OUT`"
7739 & " or access-to-variable", Typ, Candidate);
7740 Error_Msg_N
7741 ("\in order to be overridden by protected procedure or "
7742 & "entry (RM 9.4(11.9/2))", Typ);
7743 end if;
7744 end if;
7746 Overridden_Subp := Candidate;
7747 return;
7748 end;
7749 end Check_Synchronized_Overriding;
7751 ----------------------------
7752 -- Is_Private_Declaration --
7753 ----------------------------
7755 function Is_Private_Declaration (E : Entity_Id) return Boolean is
7756 Priv_Decls : List_Id;
7757 Decl : constant Node_Id := Unit_Declaration_Node (E);
7759 begin
7760 if Is_Package_Or_Generic_Package (Current_Scope)
7761 and then In_Private_Part (Current_Scope)
7762 then
7763 Priv_Decls :=
7764 Private_Declarations (
7765 Specification (Unit_Declaration_Node (Current_Scope)));
7767 return In_Package_Body (Current_Scope)
7768 or else
7769 (Is_List_Member (Decl)
7770 and then List_Containing (Decl) = Priv_Decls)
7771 or else (Nkind (Parent (Decl)) = N_Package_Specification
7772 and then not
7773 Is_Compilation_Unit
7774 (Defining_Entity (Parent (Decl)))
7775 and then List_Containing (Parent (Parent (Decl)))
7776 = Priv_Decls);
7777 else
7778 return False;
7779 end if;
7780 end Is_Private_Declaration;
7782 --------------------------
7783 -- Is_Overriding_Alias --
7784 --------------------------
7786 function Is_Overriding_Alias
7787 (Old_E : Entity_Id;
7788 New_E : Entity_Id) return Boolean
7790 AO : constant Entity_Id := Alias (Old_E);
7791 AN : constant Entity_Id := Alias (New_E);
7793 begin
7794 return Scope (AO) /= Scope (AN)
7795 or else No (DTC_Entity (AO))
7796 or else No (DTC_Entity (AN))
7797 or else DT_Position (AO) = DT_Position (AN);
7798 end Is_Overriding_Alias;
7800 -- Start of processing for New_Overloaded_Entity
7802 begin
7803 -- We need to look for an entity that S may override. This must be a
7804 -- homonym in the current scope, so we look for the first homonym of
7805 -- S in the current scope as the starting point for the search.
7807 E := Current_Entity_In_Scope (S);
7809 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
7810 -- They are directly added to the list of primitive operations of
7811 -- Derived_Type, unless this is a rederivation in the private part
7812 -- of an operation that was already derived in the visible part of
7813 -- the current package.
7815 if Ada_Version >= Ada_2005
7816 and then Present (Derived_Type)
7817 and then Present (Alias (S))
7818 and then Is_Dispatching_Operation (Alias (S))
7819 and then Present (Find_Dispatching_Type (Alias (S)))
7820 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
7821 then
7822 -- For private types, when the full-view is processed we propagate to
7823 -- the full view the non-overridden entities whose attribute "alias"
7824 -- references an interface primitive. These entities were added by
7825 -- Derive_Subprograms to ensure that interface primitives are
7826 -- covered.
7828 -- Inside_Freeze_Actions is non zero when S corresponds with an
7829 -- internal entity that links an interface primitive with its
7830 -- covering primitive through attribute Interface_Alias (see
7831 -- Add_Internal_Interface_Entities).
7833 if Inside_Freezing_Actions = 0
7834 and then Is_Package_Or_Generic_Package (Current_Scope)
7835 and then In_Private_Part (Current_Scope)
7836 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
7837 and then Nkind (Parent (S)) = N_Full_Type_Declaration
7838 and then Full_View (Defining_Identifier (Parent (E)))
7839 = Defining_Identifier (Parent (S))
7840 and then Alias (E) = Alias (S)
7841 then
7842 Check_Operation_From_Private_View (S, E);
7843 Set_Is_Dispatching_Operation (S);
7845 -- Common case
7847 else
7848 Enter_Overloaded_Entity (S);
7849 Check_Dispatching_Operation (S, Empty);
7850 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7851 end if;
7853 return;
7854 end if;
7856 -- If there is no homonym then this is definitely not overriding
7858 if No (E) then
7859 Enter_Overloaded_Entity (S);
7860 Check_Dispatching_Operation (S, Empty);
7861 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7863 -- If subprogram has an explicit declaration, check whether it
7864 -- has an overriding indicator.
7866 if Comes_From_Source (S) then
7867 Check_Synchronized_Overriding (S, Overridden_Subp);
7869 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
7870 -- it may have overridden some hidden inherited primitive. Update
7871 -- Overridden_Subp to avoid spurious errors when checking the
7872 -- overriding indicator.
7874 if Ada_Version >= Ada_2012
7875 and then No (Overridden_Subp)
7876 and then Is_Dispatching_Operation (S)
7877 and then Present (Overridden_Operation (S))
7878 then
7879 Overridden_Subp := Overridden_Operation (S);
7880 end if;
7882 Check_Overriding_Indicator
7883 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7884 end if;
7886 -- If there is a homonym that is not overloadable, then we have an
7887 -- error, except for the special cases checked explicitly below.
7889 elsif not Is_Overloadable (E) then
7891 -- Check for spurious conflict produced by a subprogram that has the
7892 -- same name as that of the enclosing generic package. The conflict
7893 -- occurs within an instance, between the subprogram and the renaming
7894 -- declaration for the package. After the subprogram, the package
7895 -- renaming declaration becomes hidden.
7897 if Ekind (E) = E_Package
7898 and then Present (Renamed_Object (E))
7899 and then Renamed_Object (E) = Current_Scope
7900 and then Nkind (Parent (Renamed_Object (E))) =
7901 N_Package_Specification
7902 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
7903 then
7904 Set_Is_Hidden (E);
7905 Set_Is_Immediately_Visible (E, False);
7906 Enter_Overloaded_Entity (S);
7907 Set_Homonym (S, Homonym (E));
7908 Check_Dispatching_Operation (S, Empty);
7909 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
7911 -- If the subprogram is implicit it is hidden by the previous
7912 -- declaration. However if it is dispatching, it must appear in the
7913 -- dispatch table anyway, because it can be dispatched to even if it
7914 -- cannot be called directly.
7916 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
7917 Set_Scope (S, Current_Scope);
7919 if Is_Dispatching_Operation (Alias (S)) then
7920 Check_Dispatching_Operation (S, Empty);
7921 end if;
7923 return;
7925 else
7926 Error_Msg_Sloc := Sloc (E);
7928 -- Generate message, with useful additional warning if in generic
7930 if Is_Generic_Unit (E) then
7931 Error_Msg_N ("previous generic unit cannot be overloaded", S);
7932 Error_Msg_N ("\& conflicts with declaration#", S);
7933 else
7934 Error_Msg_N ("& conflicts with declaration#", S);
7935 end if;
7937 return;
7938 end if;
7940 -- E exists and is overloadable
7942 else
7943 Check_Synchronized_Overriding (S, Overridden_Subp);
7945 -- Loop through E and its homonyms to determine if any of them is
7946 -- the candidate for overriding by S.
7948 while Present (E) loop
7950 -- Definitely not interesting if not in the current scope
7952 if Scope (E) /= Current_Scope then
7953 null;
7955 -- Check if we have type conformance
7957 elsif Type_Conformant (E, S) then
7959 -- If the old and new entities have the same profile and one
7960 -- is not the body of the other, then this is an error, unless
7961 -- one of them is implicitly declared.
7963 -- There are some cases when both can be implicit, for example
7964 -- when both a literal and a function that overrides it are
7965 -- inherited in a derivation, or when an inherited operation
7966 -- of a tagged full type overrides the inherited operation of
7967 -- a private extension. Ada 83 had a special rule for the
7968 -- literal case. In Ada95, the later implicit operation hides
7969 -- the former, and the literal is always the former. In the
7970 -- odd case where both are derived operations declared at the
7971 -- same point, both operations should be declared, and in that
7972 -- case we bypass the following test and proceed to the next
7973 -- part. This can only occur for certain obscure cases in
7974 -- instances, when an operation on a type derived from a formal
7975 -- private type does not override a homograph inherited from
7976 -- the actual. In subsequent derivations of such a type, the
7977 -- DT positions of these operations remain distinct, if they
7978 -- have been set.
7980 if Present (Alias (S))
7981 and then (No (Alias (E))
7982 or else Comes_From_Source (E)
7983 or else Is_Abstract_Subprogram (S)
7984 or else
7985 (Is_Dispatching_Operation (E)
7986 and then Is_Overriding_Alias (E, S)))
7987 and then Ekind (E) /= E_Enumeration_Literal
7988 then
7989 -- When an derived operation is overloaded it may be due to
7990 -- the fact that the full view of a private extension
7991 -- re-inherits. It has to be dealt with.
7993 if Is_Package_Or_Generic_Package (Current_Scope)
7994 and then In_Private_Part (Current_Scope)
7995 then
7996 Check_Operation_From_Private_View (S, E);
7997 end if;
7999 -- In any case the implicit operation remains hidden by the
8000 -- existing declaration, which is overriding. Indicate that
8001 -- E overrides the operation from which S is inherited.
8003 if Present (Alias (S)) then
8004 Set_Overridden_Operation (E, Alias (S));
8005 else
8006 Set_Overridden_Operation (E, S);
8007 end if;
8009 if Comes_From_Source (E) then
8010 Check_Overriding_Indicator (E, S, Is_Primitive => False);
8011 end if;
8013 return;
8015 -- Within an instance, the renaming declarations for actual
8016 -- subprograms may become ambiguous, but they do not hide each
8017 -- other.
8019 elsif Ekind (E) /= E_Entry
8020 and then not Comes_From_Source (E)
8021 and then not Is_Generic_Instance (E)
8022 and then (Present (Alias (E))
8023 or else Is_Intrinsic_Subprogram (E))
8024 and then (not In_Instance
8025 or else No (Parent (E))
8026 or else Nkind (Unit_Declaration_Node (E)) /=
8027 N_Subprogram_Renaming_Declaration)
8028 then
8029 -- A subprogram child unit is not allowed to override an
8030 -- inherited subprogram (10.1.1(20)).
8032 if Is_Child_Unit (S) then
8033 Error_Msg_N
8034 ("child unit overrides inherited subprogram in parent",
8036 return;
8037 end if;
8039 if Is_Non_Overriding_Operation (E, S) then
8040 Enter_Overloaded_Entity (S);
8042 if No (Derived_Type)
8043 or else Is_Tagged_Type (Derived_Type)
8044 then
8045 Check_Dispatching_Operation (S, Empty);
8046 end if;
8048 return;
8049 end if;
8051 -- E is a derived operation or an internal operator which
8052 -- is being overridden. Remove E from further visibility.
8053 -- Furthermore, if E is a dispatching operation, it must be
8054 -- replaced in the list of primitive operations of its type
8055 -- (see Override_Dispatching_Operation).
8057 Overridden_Subp := E;
8059 declare
8060 Prev : Entity_Id;
8062 begin
8063 Prev := First_Entity (Current_Scope);
8064 while Present (Prev)
8065 and then Next_Entity (Prev) /= E
8066 loop
8067 Next_Entity (Prev);
8068 end loop;
8070 -- It is possible for E to be in the current scope and
8071 -- yet not in the entity chain. This can only occur in a
8072 -- generic context where E is an implicit concatenation
8073 -- in the formal part, because in a generic body the
8074 -- entity chain starts with the formals.
8076 pragma Assert
8077 (Present (Prev) or else Chars (E) = Name_Op_Concat);
8079 -- E must be removed both from the entity_list of the
8080 -- current scope, and from the visibility chain
8082 if Debug_Flag_E then
8083 Write_Str ("Override implicit operation ");
8084 Write_Int (Int (E));
8085 Write_Eol;
8086 end if;
8088 -- If E is a predefined concatenation, it stands for four
8089 -- different operations. As a result, a single explicit
8090 -- declaration does not hide it. In a possible ambiguous
8091 -- situation, Disambiguate chooses the user-defined op,
8092 -- so it is correct to retain the previous internal one.
8094 if Chars (E) /= Name_Op_Concat
8095 or else Ekind (E) /= E_Operator
8096 then
8097 -- For nondispatching derived operations that are
8098 -- overridden by a subprogram declared in the private
8099 -- part of a package, we retain the derived subprogram
8100 -- but mark it as not immediately visible. If the
8101 -- derived operation was declared in the visible part
8102 -- then this ensures that it will still be visible
8103 -- outside the package with the proper signature
8104 -- (calls from outside must also be directed to this
8105 -- version rather than the overriding one, unlike the
8106 -- dispatching case). Calls from inside the package
8107 -- will still resolve to the overriding subprogram
8108 -- since the derived one is marked as not visible
8109 -- within the package.
8111 -- If the private operation is dispatching, we achieve
8112 -- the overriding by keeping the implicit operation
8113 -- but setting its alias to be the overriding one. In
8114 -- this fashion the proper body is executed in all
8115 -- cases, but the original signature is used outside
8116 -- of the package.
8118 -- If the overriding is not in the private part, we
8119 -- remove the implicit operation altogether.
8121 if Is_Private_Declaration (S) then
8122 if not Is_Dispatching_Operation (E) then
8123 Set_Is_Immediately_Visible (E, False);
8124 else
8125 -- Work done in Override_Dispatching_Operation,
8126 -- so nothing else need to be done here.
8128 null;
8129 end if;
8131 else
8132 -- Find predecessor of E in Homonym chain
8134 if E = Current_Entity (E) then
8135 Prev_Vis := Empty;
8136 else
8137 Prev_Vis := Current_Entity (E);
8138 while Homonym (Prev_Vis) /= E loop
8139 Prev_Vis := Homonym (Prev_Vis);
8140 end loop;
8141 end if;
8143 if Prev_Vis /= Empty then
8145 -- Skip E in the visibility chain
8147 Set_Homonym (Prev_Vis, Homonym (E));
8149 else
8150 Set_Name_Entity_Id (Chars (E), Homonym (E));
8151 end if;
8153 Set_Next_Entity (Prev, Next_Entity (E));
8155 if No (Next_Entity (Prev)) then
8156 Set_Last_Entity (Current_Scope, Prev);
8157 end if;
8158 end if;
8159 end if;
8161 Enter_Overloaded_Entity (S);
8163 -- For entities generated by Derive_Subprograms the
8164 -- overridden operation is the inherited primitive
8165 -- (which is available through the attribute alias).
8167 if not (Comes_From_Source (E))
8168 and then Is_Dispatching_Operation (E)
8169 and then Find_Dispatching_Type (E) =
8170 Find_Dispatching_Type (S)
8171 and then Present (Alias (E))
8172 and then Comes_From_Source (Alias (E))
8173 then
8174 Set_Overridden_Operation (S, Alias (E));
8175 else
8176 Set_Overridden_Operation (S, E);
8177 end if;
8179 Check_Overriding_Indicator (S, E, Is_Primitive => True);
8181 -- If S is a user-defined subprogram or a null procedure
8182 -- expanded to override an inherited null procedure, or a
8183 -- predefined dispatching primitive then indicate that E
8184 -- overrides the operation from which S is inherited.
8186 if Comes_From_Source (S)
8187 or else
8188 (Present (Parent (S))
8189 and then
8190 Nkind (Parent (S)) = N_Procedure_Specification
8191 and then
8192 Null_Present (Parent (S)))
8193 or else
8194 (Present (Alias (E))
8195 and then
8196 Is_Predefined_Dispatching_Operation (Alias (E)))
8197 then
8198 if Present (Alias (E)) then
8199 Set_Overridden_Operation (S, Alias (E));
8200 end if;
8201 end if;
8203 if Is_Dispatching_Operation (E) then
8205 -- An overriding dispatching subprogram inherits the
8206 -- convention of the overridden subprogram (AI-117).
8208 Set_Convention (S, Convention (E));
8209 Check_Dispatching_Operation (S, E);
8211 else
8212 Check_Dispatching_Operation (S, Empty);
8213 end if;
8215 Check_For_Primitive_Subprogram
8216 (Is_Primitive_Subp, Is_Overriding => True);
8217 goto Check_Inequality;
8218 end;
8220 -- Apparent redeclarations in instances can occur when two
8221 -- formal types get the same actual type. The subprograms in
8222 -- in the instance are legal, even if not callable from the
8223 -- outside. Calls from within are disambiguated elsewhere.
8224 -- For dispatching operations in the visible part, the usual
8225 -- rules apply, and operations with the same profile are not
8226 -- legal (B830001).
8228 elsif (In_Instance_Visible_Part
8229 and then not Is_Dispatching_Operation (E))
8230 or else In_Instance_Not_Visible
8231 then
8232 null;
8234 -- Here we have a real error (identical profile)
8236 else
8237 Error_Msg_Sloc := Sloc (E);
8239 -- Avoid cascaded errors if the entity appears in
8240 -- subsequent calls.
8242 Set_Scope (S, Current_Scope);
8244 -- Generate error, with extra useful warning for the case
8245 -- of a generic instance with no completion.
8247 if Is_Generic_Instance (S)
8248 and then not Has_Completion (E)
8249 then
8250 Error_Msg_N
8251 ("instantiation cannot provide body for&", S);
8252 Error_Msg_N ("\& conflicts with declaration#", S);
8253 else
8254 Error_Msg_N ("& conflicts with declaration#", S);
8255 end if;
8257 return;
8258 end if;
8260 else
8261 -- If one subprogram has an access parameter and the other
8262 -- a parameter of an access type, calls to either might be
8263 -- ambiguous. Verify that parameters match except for the
8264 -- access parameter.
8266 if May_Hide_Profile then
8267 declare
8268 F1 : Entity_Id;
8269 F2 : Entity_Id;
8271 begin
8272 F1 := First_Formal (S);
8273 F2 := First_Formal (E);
8274 while Present (F1) and then Present (F2) loop
8275 if Is_Access_Type (Etype (F1)) then
8276 if not Is_Access_Type (Etype (F2))
8277 or else not Conforming_Types
8278 (Designated_Type (Etype (F1)),
8279 Designated_Type (Etype (F2)),
8280 Type_Conformant)
8281 then
8282 May_Hide_Profile := False;
8283 end if;
8285 elsif
8286 not Conforming_Types
8287 (Etype (F1), Etype (F2), Type_Conformant)
8288 then
8289 May_Hide_Profile := False;
8290 end if;
8292 Next_Formal (F1);
8293 Next_Formal (F2);
8294 end loop;
8296 if May_Hide_Profile
8297 and then No (F1)
8298 and then No (F2)
8299 then
8300 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
8301 end if;
8302 end;
8303 end if;
8304 end if;
8306 E := Homonym (E);
8307 end loop;
8309 -- On exit, we know that S is a new entity
8311 Enter_Overloaded_Entity (S);
8312 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8313 Check_Overriding_Indicator
8314 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
8316 -- If S is a derived operation for an untagged type then by
8317 -- definition it's not a dispatching operation (even if the parent
8318 -- operation was dispatching), so we don't call
8319 -- Check_Dispatching_Operation in that case.
8321 if No (Derived_Type)
8322 or else Is_Tagged_Type (Derived_Type)
8323 then
8324 Check_Dispatching_Operation (S, Empty);
8325 end if;
8326 end if;
8328 -- If this is a user-defined equality operator that is not a derived
8329 -- subprogram, create the corresponding inequality. If the operation is
8330 -- dispatching, the expansion is done elsewhere, and we do not create
8331 -- an explicit inequality operation.
8333 <<Check_Inequality>>
8334 if Chars (S) = Name_Op_Eq
8335 and then Etype (S) = Standard_Boolean
8336 and then Present (Parent (S))
8337 and then not Is_Dispatching_Operation (S)
8338 then
8339 Make_Inequality_Operator (S);
8341 if Ada_Version >= Ada_2012 then
8342 Check_Untagged_Equality (S);
8343 end if;
8344 end if;
8345 end New_Overloaded_Entity;
8347 ---------------------
8348 -- Process_Formals --
8349 ---------------------
8351 procedure Process_Formals
8352 (T : List_Id;
8353 Related_Nod : Node_Id)
8355 Param_Spec : Node_Id;
8356 Formal : Entity_Id;
8357 Formal_Type : Entity_Id;
8358 Default : Node_Id;
8359 Ptype : Entity_Id;
8361 Num_Out_Params : Nat := 0;
8362 First_Out_Param : Entity_Id := Empty;
8363 -- Used for setting Is_Only_Out_Parameter
8365 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
8366 -- Determine whether an access type designates a type coming from a
8367 -- limited view.
8369 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
8370 -- Check whether the default has a class-wide type. After analysis the
8371 -- default has the type of the formal, so we must also check explicitly
8372 -- for an access attribute.
8374 -------------------------------
8375 -- Designates_From_With_Type --
8376 -------------------------------
8378 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
8379 Desig : Entity_Id := Typ;
8381 begin
8382 if Is_Access_Type (Desig) then
8383 Desig := Directly_Designated_Type (Desig);
8384 end if;
8386 if Is_Class_Wide_Type (Desig) then
8387 Desig := Root_Type (Desig);
8388 end if;
8390 return
8391 Ekind (Desig) = E_Incomplete_Type
8392 and then From_With_Type (Desig);
8393 end Designates_From_With_Type;
8395 ---------------------------
8396 -- Is_Class_Wide_Default --
8397 ---------------------------
8399 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
8400 begin
8401 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
8402 or else (Nkind (D) = N_Attribute_Reference
8403 and then Attribute_Name (D) = Name_Access
8404 and then Is_Class_Wide_Type (Etype (Prefix (D))));
8405 end Is_Class_Wide_Default;
8407 -- Start of processing for Process_Formals
8409 begin
8410 -- In order to prevent premature use of the formals in the same formal
8411 -- part, the Ekind is left undefined until all default expressions are
8412 -- analyzed. The Ekind is established in a separate loop at the end.
8414 Param_Spec := First (T);
8415 while Present (Param_Spec) loop
8416 Formal := Defining_Identifier (Param_Spec);
8417 Set_Never_Set_In_Source (Formal, True);
8418 Enter_Name (Formal);
8420 -- Case of ordinary parameters
8422 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
8423 Find_Type (Parameter_Type (Param_Spec));
8424 Ptype := Parameter_Type (Param_Spec);
8426 if Ptype = Error then
8427 goto Continue;
8428 end if;
8430 Formal_Type := Entity (Ptype);
8432 if Is_Incomplete_Type (Formal_Type)
8433 or else
8434 (Is_Class_Wide_Type (Formal_Type)
8435 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
8436 then
8437 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
8438 -- primitive operations, as long as their completion is
8439 -- in the same declarative part. If in the private part
8440 -- this means that the type cannot be a Taft-amendment type.
8441 -- Check is done on package exit. For access to subprograms,
8442 -- the use is legal for Taft-amendment types.
8444 if Is_Tagged_Type (Formal_Type) then
8445 if Ekind (Scope (Current_Scope)) = E_Package
8446 and then In_Private_Part (Scope (Current_Scope))
8447 and then not From_With_Type (Formal_Type)
8448 and then not Is_Class_Wide_Type (Formal_Type)
8449 then
8450 if not Nkind_In
8451 (Parent (T), N_Access_Function_Definition,
8452 N_Access_Procedure_Definition)
8453 then
8454 Append_Elmt
8455 (Current_Scope,
8456 Private_Dependents (Base_Type (Formal_Type)));
8457 end if;
8458 end if;
8460 -- Special handling of Value_Type for CIL case
8462 elsif Is_Value_Type (Formal_Type) then
8463 null;
8465 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
8466 N_Access_Procedure_Definition)
8467 then
8469 -- AI05-0151: Tagged incomplete types are allowed in all
8470 -- formal parts. Untagged incomplete types are not allowed
8471 -- in bodies.
8473 if Ada_Version >= Ada_2012 then
8474 if Is_Tagged_Type (Formal_Type) then
8475 null;
8477 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
8478 N_Entry_Body,
8479 N_Subprogram_Body)
8480 then
8481 Error_Msg_NE
8482 ("invalid use of untagged incomplete type&",
8483 Ptype, Formal_Type);
8484 end if;
8486 else
8487 Error_Msg_NE
8488 ("invalid use of incomplete type&",
8489 Param_Spec, Formal_Type);
8491 -- Further checks on the legality of incomplete types
8492 -- in formal parts are delayed until the freeze point
8493 -- of the enclosing subprogram or access to subprogram.
8494 end if;
8495 end if;
8497 elsif Ekind (Formal_Type) = E_Void then
8498 Error_Msg_NE
8499 ("premature use of&",
8500 Parameter_Type (Param_Spec), Formal_Type);
8501 end if;
8503 -- Ada 2005 (AI-231): Create and decorate an internal subtype
8504 -- declaration corresponding to the null-excluding type of the
8505 -- formal in the enclosing scope. Finally, replace the parameter
8506 -- type of the formal with the internal subtype.
8508 if Ada_Version >= Ada_2005
8509 and then Null_Exclusion_Present (Param_Spec)
8510 then
8511 if not Is_Access_Type (Formal_Type) then
8512 Error_Msg_N
8513 ("`NOT NULL` allowed only for an access type", Param_Spec);
8515 else
8516 if Can_Never_Be_Null (Formal_Type)
8517 and then Comes_From_Source (Related_Nod)
8518 then
8519 Error_Msg_NE
8520 ("`NOT NULL` not allowed (& already excludes null)",
8521 Param_Spec, Formal_Type);
8522 end if;
8524 Formal_Type :=
8525 Create_Null_Excluding_Itype
8526 (T => Formal_Type,
8527 Related_Nod => Related_Nod,
8528 Scope_Id => Scope (Current_Scope));
8530 -- If the designated type of the itype is an itype we
8531 -- decorate it with the Has_Delayed_Freeze attribute to
8532 -- avoid problems with the backend.
8534 -- Example:
8535 -- type T is access procedure;
8536 -- procedure Op (O : not null T);
8538 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
8539 Set_Has_Delayed_Freeze (Formal_Type);
8540 end if;
8541 end if;
8542 end if;
8544 -- An access formal type
8546 else
8547 Formal_Type :=
8548 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
8550 -- No need to continue if we already notified errors
8552 if not Present (Formal_Type) then
8553 return;
8554 end if;
8556 -- Ada 2005 (AI-254)
8558 declare
8559 AD : constant Node_Id :=
8560 Access_To_Subprogram_Definition
8561 (Parameter_Type (Param_Spec));
8562 begin
8563 if Present (AD) and then Protected_Present (AD) then
8564 Formal_Type :=
8565 Replace_Anonymous_Access_To_Protected_Subprogram
8566 (Param_Spec);
8567 end if;
8568 end;
8569 end if;
8571 Set_Etype (Formal, Formal_Type);
8572 Default := Expression (Param_Spec);
8574 if Present (Default) then
8575 if Out_Present (Param_Spec) then
8576 Error_Msg_N
8577 ("default initialization only allowed for IN parameters",
8578 Param_Spec);
8579 end if;
8581 -- Do the special preanalysis of the expression (see section on
8582 -- "Handling of Default Expressions" in the spec of package Sem).
8584 Preanalyze_Spec_Expression (Default, Formal_Type);
8586 -- An access to constant cannot be the default for
8587 -- an access parameter that is an access to variable.
8589 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8590 and then not Is_Access_Constant (Formal_Type)
8591 and then Is_Access_Type (Etype (Default))
8592 and then Is_Access_Constant (Etype (Default))
8593 then
8594 Error_Msg_N
8595 ("formal that is access to variable cannot be initialized " &
8596 "with an access-to-constant expression", Default);
8597 end if;
8599 -- Check that the designated type of an access parameter's default
8600 -- is not a class-wide type unless the parameter's designated type
8601 -- is also class-wide.
8603 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8604 and then not Designates_From_With_Type (Formal_Type)
8605 and then Is_Class_Wide_Default (Default)
8606 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
8607 then
8608 Error_Msg_N
8609 ("access to class-wide expression not allowed here", Default);
8610 end if;
8612 -- Check incorrect use of dynamically tagged expressions
8614 if Is_Tagged_Type (Formal_Type) then
8615 Check_Dynamically_Tagged_Expression
8616 (Expr => Default,
8617 Typ => Formal_Type,
8618 Related_Nod => Default);
8619 end if;
8620 end if;
8622 -- Ada 2005 (AI-231): Static checks
8624 if Ada_Version >= Ada_2005
8625 and then Is_Access_Type (Etype (Formal))
8626 and then Can_Never_Be_Null (Etype (Formal))
8627 then
8628 Null_Exclusion_Static_Checks (Param_Spec);
8629 end if;
8631 <<Continue>>
8632 Next (Param_Spec);
8633 end loop;
8635 -- If this is the formal part of a function specification, analyze the
8636 -- subtype mark in the context where the formals are visible but not
8637 -- yet usable, and may hide outer homographs.
8639 if Nkind (Related_Nod) = N_Function_Specification then
8640 Analyze_Return_Type (Related_Nod);
8641 end if;
8643 -- Now set the kind (mode) of each formal
8645 Param_Spec := First (T);
8646 while Present (Param_Spec) loop
8647 Formal := Defining_Identifier (Param_Spec);
8648 Set_Formal_Mode (Formal);
8650 if Ekind (Formal) = E_In_Parameter then
8651 Set_Default_Value (Formal, Expression (Param_Spec));
8653 if Present (Expression (Param_Spec)) then
8654 Default := Expression (Param_Spec);
8656 if Is_Scalar_Type (Etype (Default)) then
8657 if Nkind
8658 (Parameter_Type (Param_Spec)) /= N_Access_Definition
8659 then
8660 Formal_Type := Entity (Parameter_Type (Param_Spec));
8662 else
8663 Formal_Type := Access_Definition
8664 (Related_Nod, Parameter_Type (Param_Spec));
8665 end if;
8667 Apply_Scalar_Range_Check (Default, Formal_Type);
8668 end if;
8669 end if;
8671 elsif Ekind (Formal) = E_Out_Parameter then
8672 Num_Out_Params := Num_Out_Params + 1;
8674 if Num_Out_Params = 1 then
8675 First_Out_Param := Formal;
8676 end if;
8678 elsif Ekind (Formal) = E_In_Out_Parameter then
8679 Num_Out_Params := Num_Out_Params + 1;
8680 end if;
8682 Next (Param_Spec);
8683 end loop;
8685 if Present (First_Out_Param) and then Num_Out_Params = 1 then
8686 Set_Is_Only_Out_Parameter (First_Out_Param);
8687 end if;
8688 end Process_Formals;
8690 ------------------
8691 -- Process_PPCs --
8692 ------------------
8694 procedure Process_PPCs
8695 (N : Node_Id;
8696 Spec_Id : Entity_Id;
8697 Body_Id : Entity_Id)
8699 Loc : constant Source_Ptr := Sloc (N);
8700 Prag : Node_Id;
8701 Parms : List_Id;
8703 Designator : Entity_Id;
8704 -- Subprogram designator, set from Spec_Id if present, else Body_Id
8706 Precond : Node_Id := Empty;
8707 -- Set non-Empty if we prepend precondition to the declarations. This
8708 -- is used to hook up inherited preconditions (adding the condition
8709 -- expression with OR ELSE, and adding the message).
8711 Inherited_Precond : Node_Id;
8712 -- Precondition inherited from parent subprogram
8714 Inherited : constant Subprogram_List :=
8715 Inherited_Subprograms (Spec_Id);
8716 -- List of subprograms inherited by this subprogram
8718 Plist : List_Id := No_List;
8719 -- List of generated postconditions
8721 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
8722 -- Prag contains an analyzed precondition or postcondition pragma. This
8723 -- function copies the pragma, changes it to the corresponding Check
8724 -- pragma and returns the Check pragma as the result. If Pspec is non-
8725 -- empty, this is the case of inheriting a PPC, where we must change
8726 -- references to parameters of the inherited subprogram to point to the
8727 -- corresponding parameters of the current subprogram.
8729 function Invariants_Or_Predicates_Present return Boolean;
8730 -- Determines if any invariants or predicates are present for any OUT
8731 -- or IN OUT parameters of the subprogram, or (for a function) if the
8732 -- return value has an invariant.
8734 --------------
8735 -- Grab_PPC --
8736 --------------
8738 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
8739 Nam : constant Name_Id := Pragma_Name (Prag);
8740 Map : Elist_Id;
8741 CP : Node_Id;
8743 begin
8744 -- Prepare map if this is the case where we have to map entities of
8745 -- arguments in the overridden subprogram to corresponding entities
8746 -- of the current subprogram.
8748 if No (Pspec) then
8749 Map := No_Elist;
8751 else
8752 declare
8753 PF : Entity_Id;
8754 CF : Entity_Id;
8756 begin
8757 Map := New_Elmt_List;
8758 PF := First_Formal (Pspec);
8759 CF := First_Formal (Designator);
8760 while Present (PF) loop
8761 Append_Elmt (PF, Map);
8762 Append_Elmt (CF, Map);
8763 Next_Formal (PF);
8764 Next_Formal (CF);
8765 end loop;
8766 end;
8767 end if;
8769 -- Now we can copy the tree, doing any required substitutions
8771 CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);
8773 -- Set Analyzed to false, since we want to reanalyze the check
8774 -- procedure. Note that it is only at the outer level that we
8775 -- do this fiddling, for the spec cases, the already preanalyzed
8776 -- parameters are not affected.
8778 Set_Analyzed (CP, False);
8780 -- We also make sure Comes_From_Source is False for the copy
8782 Set_Comes_From_Source (CP, False);
8784 -- For a postcondition pragma within a generic, preserve the pragma
8785 -- for later expansion.
8787 if Nam = Name_Postcondition
8788 and then not Expander_Active
8789 then
8790 return CP;
8791 end if;
8793 -- Change copy of pragma into corresponding pragma Check
8795 Prepend_To (Pragma_Argument_Associations (CP),
8796 Make_Pragma_Argument_Association (Sloc (Prag),
8797 Expression => Make_Identifier (Loc, Nam)));
8798 Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));
8800 -- If this is inherited case and the current message starts with
8801 -- "failed p", we change it to "failed inherited p...".
8803 if Present (Pspec) then
8804 declare
8805 Msg : constant Node_Id :=
8806 Last (Pragma_Argument_Associations (CP));
8808 begin
8809 if Chars (Msg) = Name_Message then
8810 String_To_Name_Buffer (Strval (Expression (Msg)));
8812 if Name_Buffer (1 .. 8) = "failed p" then
8813 Insert_Str_In_Name_Buffer ("inherited ", 8);
8814 Set_Strval
8815 (Expression (Last (Pragma_Argument_Associations (CP))),
8816 String_From_Name_Buffer);
8817 end if;
8818 end if;
8819 end;
8820 end if;
8822 -- Return the check pragma
8824 return CP;
8825 end Grab_PPC;
8827 --------------------------------------
8828 -- Invariants_Or_Predicates_Present --
8829 --------------------------------------
8831 function Invariants_Or_Predicates_Present return Boolean is
8832 Formal : Entity_Id;
8834 begin
8835 -- Check function return result
8837 if Ekind (Designator) /= E_Procedure
8838 and then Has_Invariants (Etype (Designator))
8839 then
8840 return True;
8841 end if;
8843 -- Check parameters
8845 Formal := First_Formal (Designator);
8846 while Present (Formal) loop
8847 if Ekind (Formal) /= E_In_Parameter
8848 and then
8849 (Has_Invariants (Etype (Formal))
8850 or else Present (Predicate_Function (Etype (Formal))))
8851 then
8852 return True;
8853 end if;
8855 Next_Formal (Formal);
8856 end loop;
8858 return False;
8859 end Invariants_Or_Predicates_Present;
8861 -- Start of processing for Process_PPCs
8863 begin
8864 -- Capture designator from spec if present, else from body
8866 if Present (Spec_Id) then
8867 Designator := Spec_Id;
8868 else
8869 Designator := Body_Id;
8870 end if;
8872 -- Grab preconditions from spec
8874 if Present (Spec_Id) then
8876 -- Loop through PPC pragmas from spec. Note that preconditions from
8877 -- the body will be analyzed and converted when we scan the body
8878 -- declarations below.
8880 Prag := Spec_PPC_List (Spec_Id);
8881 while Present (Prag) loop
8882 if Pragma_Name (Prag) = Name_Precondition then
8884 -- For Pre (or Precondition pragma), we simply prepend the
8885 -- pragma to the list of declarations right away so that it
8886 -- will be executed at the start of the procedure. Note that
8887 -- this processing reverses the order of the list, which is
8888 -- what we want since new entries were chained to the head of
8889 -- the list. There can be more then one precondition when we
8890 -- use pragma Precondition
8892 if not Class_Present (Prag) then
8893 Prepend (Grab_PPC, Declarations (N));
8895 -- For Pre'Class there can only be one pragma, and we save
8896 -- it in Precond for now. We will add inherited Pre'Class
8897 -- stuff before inserting this pragma in the declarations.
8898 else
8899 Precond := Grab_PPC;
8900 end if;
8901 end if;
8903 Prag := Next_Pragma (Prag);
8904 end loop;
8906 -- Now deal with inherited preconditions
8908 for J in Inherited'Range loop
8909 Prag := Spec_PPC_List (Inherited (J));
8911 while Present (Prag) loop
8912 if Pragma_Name (Prag) = Name_Precondition
8913 and then Class_Present (Prag)
8914 then
8915 Inherited_Precond := Grab_PPC (Inherited (J));
8917 -- No precondition so far, so establish this as the first
8919 if No (Precond) then
8920 Precond := Inherited_Precond;
8922 -- Here we already have a precondition, add inherited one
8924 else
8925 -- Add new precondition to old one using OR ELSE
8927 declare
8928 New_Expr : constant Node_Id :=
8929 Get_Pragma_Arg
8930 (Next
8931 (First
8932 (Pragma_Argument_Associations
8933 (Inherited_Precond))));
8934 Old_Expr : constant Node_Id :=
8935 Get_Pragma_Arg
8936 (Next
8937 (First
8938 (Pragma_Argument_Associations
8939 (Precond))));
8941 begin
8942 if Paren_Count (Old_Expr) = 0 then
8943 Set_Paren_Count (Old_Expr, 1);
8944 end if;
8946 if Paren_Count (New_Expr) = 0 then
8947 Set_Paren_Count (New_Expr, 1);
8948 end if;
8950 Rewrite (Old_Expr,
8951 Make_Or_Else (Sloc (Old_Expr),
8952 Left_Opnd => Relocate_Node (Old_Expr),
8953 Right_Opnd => New_Expr));
8954 end;
8956 -- Add new message in the form:
8958 -- failed precondition from bla
8959 -- also failed inherited precondition from bla
8960 -- ...
8962 -- Skip this if exception locations are suppressed
8964 if not Exception_Locations_Suppressed then
8965 declare
8966 New_Msg : constant Node_Id :=
8967 Get_Pragma_Arg
8968 (Last
8969 (Pragma_Argument_Associations
8970 (Inherited_Precond)));
8971 Old_Msg : constant Node_Id :=
8972 Get_Pragma_Arg
8973 (Last
8974 (Pragma_Argument_Associations
8975 (Precond)));
8976 begin
8977 Start_String (Strval (Old_Msg));
8978 Store_String_Chars (ASCII.LF & " also ");
8979 Store_String_Chars (Strval (New_Msg));
8980 Set_Strval (Old_Msg, End_String);
8981 end;
8982 end if;
8983 end if;
8984 end if;
8986 Prag := Next_Pragma (Prag);
8987 end loop;
8988 end loop;
8990 -- If we have built a precondition for Pre'Class (including any
8991 -- Pre'Class aspects inherited from parent subprograms), then we
8992 -- insert this composite precondition at this stage.
8994 if Present (Precond) then
8995 Prepend (Precond, Declarations (N));
8996 end if;
8997 end if;
8999 -- Build postconditions procedure if needed and prepend the following
9000 -- declaration to the start of the declarations for the subprogram.
9002 -- procedure _postconditions [(_Result : resulttype)] is
9003 -- begin
9004 -- pragma Check (Postcondition, condition [,message]);
9005 -- pragma Check (Postcondition, condition [,message]);
9006 -- ...
9007 -- Invariant_Procedure (_Result) ...
9008 -- Invariant_Procedure (Arg1)
9009 -- ...
9010 -- end;
9012 -- First we deal with the postconditions in the body
9014 if Is_Non_Empty_List (Declarations (N)) then
9016 -- Loop through declarations
9018 Prag := First (Declarations (N));
9019 while Present (Prag) loop
9020 if Nkind (Prag) = N_Pragma then
9022 -- If pragma, capture if enabled postcondition, else ignore
9024 if Pragma_Name (Prag) = Name_Postcondition
9025 and then Check_Enabled (Name_Postcondition)
9026 then
9027 if Plist = No_List then
9028 Plist := Empty_List;
9029 end if;
9031 Analyze (Prag);
9033 -- If expansion is disabled, as in a generic unit, save
9034 -- pragma for later expansion.
9036 if not Expander_Active then
9037 Prepend (Grab_PPC, Declarations (N));
9038 else
9039 Append (Grab_PPC, Plist);
9040 end if;
9041 end if;
9043 Next (Prag);
9045 -- Not a pragma, if comes from source, then end scan
9047 elsif Comes_From_Source (Prag) then
9048 exit;
9050 -- Skip stuff not coming from source
9052 else
9053 Next (Prag);
9054 end if;
9055 end loop;
9056 end if;
9058 -- Now deal with any postconditions from the spec
9060 if Present (Spec_Id) then
9061 Spec_Postconditions : declare
9062 procedure Process_Post_Conditions
9063 (Spec : Node_Id;
9064 Class : Boolean);
9065 -- This processes the Spec_PPC_List from Spec, processing any
9066 -- postconditions from the list. If Class is True, then only
9067 -- postconditions marked with Class_Present are considered.
9068 -- The caller has checked that Spec_PPC_List is non-Empty.
9070 -----------------------------
9071 -- Process_Post_Conditions --
9072 -----------------------------
9074 procedure Process_Post_Conditions
9075 (Spec : Node_Id;
9076 Class : Boolean)
9078 Pspec : Node_Id;
9080 begin
9081 if Class then
9082 Pspec := Spec;
9083 else
9084 Pspec := Empty;
9085 end if;
9087 -- Loop through PPC pragmas from spec
9089 Prag := Spec_PPC_List (Spec);
9090 loop
9091 if Pragma_Name (Prag) = Name_Postcondition
9092 and then (not Class or else Class_Present (Prag))
9093 then
9094 if Plist = No_List then
9095 Plist := Empty_List;
9096 end if;
9098 if not Expander_Active then
9099 Prepend
9100 (Grab_PPC (Pspec), Declarations (N));
9101 else
9102 Append (Grab_PPC (Pspec), Plist);
9103 end if;
9104 end if;
9106 Prag := Next_Pragma (Prag);
9107 exit when No (Prag);
9108 end loop;
9109 end Process_Post_Conditions;
9111 -- Start of processing for Spec_Postconditions
9113 begin
9114 if Present (Spec_PPC_List (Spec_Id)) then
9115 Process_Post_Conditions (Spec_Id, Class => False);
9116 end if;
9118 -- Process inherited postconditions
9120 for J in Inherited'Range loop
9121 if Present (Spec_PPC_List (Inherited (J))) then
9122 Process_Post_Conditions (Inherited (J), Class => True);
9123 end if;
9124 end loop;
9125 end Spec_Postconditions;
9126 end if;
9128 -- If we had any postconditions and expansion is enabled, or if the
9129 -- procedure has invariants, then build the _Postconditions procedure.
9131 if (Present (Plist) or else Invariants_Or_Predicates_Present)
9132 and then Expander_Active
9133 then
9134 if No (Plist) then
9135 Plist := Empty_List;
9136 end if;
9138 -- Special processing for function case
9140 if Ekind (Designator) /= E_Procedure then
9141 declare
9142 Rent : constant Entity_Id :=
9143 Make_Defining_Identifier (Loc,
9144 Chars => Name_uResult);
9145 Ftyp : constant Entity_Id := Etype (Designator);
9147 begin
9148 Set_Etype (Rent, Ftyp);
9150 -- Add argument for return
9152 Parms :=
9153 New_List (
9154 Make_Parameter_Specification (Loc,
9155 Parameter_Type => New_Occurrence_Of (Ftyp, Loc),
9156 Defining_Identifier => Rent));
9158 -- Add invariant call if returning type with invariants
9160 if Has_Invariants (Etype (Rent))
9161 and then Present (Invariant_Procedure (Etype (Rent)))
9162 then
9163 Append_To (Plist,
9164 Make_Invariant_Call (New_Occurrence_Of (Rent, Loc)));
9165 end if;
9166 end;
9168 -- Procedure rather than a function
9170 else
9171 Parms := No_List;
9172 end if;
9174 -- Add invariant calls and predicate calls for parameters. Note that
9175 -- this is done for functions as well, since in Ada 2012 they can
9176 -- have IN OUT args.
9178 declare
9179 Formal : Entity_Id;
9180 Ftype : Entity_Id;
9182 begin
9183 Formal := First_Formal (Designator);
9184 while Present (Formal) loop
9185 if Ekind (Formal) /= E_In_Parameter then
9186 Ftype := Etype (Formal);
9188 if Has_Invariants (Ftype)
9189 and then Present (Invariant_Procedure (Ftype))
9190 then
9191 Append_To (Plist,
9192 Make_Invariant_Call
9193 (New_Occurrence_Of (Formal, Loc)));
9194 end if;
9196 if Present (Predicate_Function (Ftype)) then
9197 Append_To (Plist,
9198 Make_Predicate_Check
9199 (Ftype, New_Occurrence_Of (Formal, Loc)));
9200 end if;
9201 end if;
9203 Next_Formal (Formal);
9204 end loop;
9205 end;
9207 -- Build and insert postcondition procedure
9209 declare
9210 Post_Proc : constant Entity_Id :=
9211 Make_Defining_Identifier (Loc,
9212 Chars => Name_uPostconditions);
9213 -- The entity for the _Postconditions procedure
9215 begin
9216 Prepend_To (Declarations (N),
9217 Make_Subprogram_Body (Loc,
9218 Specification =>
9219 Make_Procedure_Specification (Loc,
9220 Defining_Unit_Name => Post_Proc,
9221 Parameter_Specifications => Parms),
9223 Declarations => Empty_List,
9225 Handled_Statement_Sequence =>
9226 Make_Handled_Sequence_Of_Statements (Loc,
9227 Statements => Plist)));
9229 -- If this is a procedure, set the Postcondition_Proc attribute on
9230 -- the proper defining entity for the subprogram.
9232 if Ekind (Designator) = E_Procedure then
9233 Set_Postcondition_Proc (Designator, Post_Proc);
9234 end if;
9235 end;
9237 Set_Has_Postconditions (Designator);
9238 end if;
9239 end Process_PPCs;
9241 ----------------------------
9242 -- Reference_Body_Formals --
9243 ----------------------------
9245 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
9246 Fs : Entity_Id;
9247 Fb : Entity_Id;
9249 begin
9250 if Error_Posted (Spec) then
9251 return;
9252 end if;
9254 -- Iterate over both lists. They may be of different lengths if the two
9255 -- specs are not conformant.
9257 Fs := First_Formal (Spec);
9258 Fb := First_Formal (Bod);
9259 while Present (Fs) and then Present (Fb) loop
9260 Generate_Reference (Fs, Fb, 'b');
9262 if Style_Check then
9263 Style.Check_Identifier (Fb, Fs);
9264 end if;
9266 Set_Spec_Entity (Fb, Fs);
9267 Set_Referenced (Fs, False);
9268 Next_Formal (Fs);
9269 Next_Formal (Fb);
9270 end loop;
9271 end Reference_Body_Formals;
9273 -------------------------
9274 -- Set_Actual_Subtypes --
9275 -------------------------
9277 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
9278 Decl : Node_Id;
9279 Formal : Entity_Id;
9280 T : Entity_Id;
9281 First_Stmt : Node_Id := Empty;
9282 AS_Needed : Boolean;
9284 begin
9285 -- If this is an empty initialization procedure, no need to create
9286 -- actual subtypes (small optimization).
9288 if Ekind (Subp) = E_Procedure
9289 and then Is_Null_Init_Proc (Subp)
9290 then
9291 return;
9292 end if;
9294 Formal := First_Formal (Subp);
9295 while Present (Formal) loop
9296 T := Etype (Formal);
9298 -- We never need an actual subtype for a constrained formal
9300 if Is_Constrained (T) then
9301 AS_Needed := False;
9303 -- If we have unknown discriminants, then we do not need an actual
9304 -- subtype, or more accurately we cannot figure it out! Note that
9305 -- all class-wide types have unknown discriminants.
9307 elsif Has_Unknown_Discriminants (T) then
9308 AS_Needed := False;
9310 -- At this stage we have an unconstrained type that may need an
9311 -- actual subtype. For sure the actual subtype is needed if we have
9312 -- an unconstrained array type.
9314 elsif Is_Array_Type (T) then
9315 AS_Needed := True;
9317 -- The only other case needing an actual subtype is an unconstrained
9318 -- record type which is an IN parameter (we cannot generate actual
9319 -- subtypes for the OUT or IN OUT case, since an assignment can
9320 -- change the discriminant values. However we exclude the case of
9321 -- initialization procedures, since discriminants are handled very
9322 -- specially in this context, see the section entitled "Handling of
9323 -- Discriminants" in Einfo.
9325 -- We also exclude the case of Discrim_SO_Functions (functions used
9326 -- in front end layout mode for size/offset values), since in such
9327 -- functions only discriminants are referenced, and not only are such
9328 -- subtypes not needed, but they cannot always be generated, because
9329 -- of order of elaboration issues.
9331 elsif Is_Record_Type (T)
9332 and then Ekind (Formal) = E_In_Parameter
9333 and then Chars (Formal) /= Name_uInit
9334 and then not Is_Unchecked_Union (T)
9335 and then not Is_Discrim_SO_Function (Subp)
9336 then
9337 AS_Needed := True;
9339 -- All other cases do not need an actual subtype
9341 else
9342 AS_Needed := False;
9343 end if;
9345 -- Generate actual subtypes for unconstrained arrays and
9346 -- unconstrained discriminated records.
9348 if AS_Needed then
9349 if Nkind (N) = N_Accept_Statement then
9351 -- If expansion is active, The formal is replaced by a local
9352 -- variable that renames the corresponding entry of the
9353 -- parameter block, and it is this local variable that may
9354 -- require an actual subtype.
9356 if Expander_Active then
9357 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
9358 else
9359 Decl := Build_Actual_Subtype (T, Formal);
9360 end if;
9362 if Present (Handled_Statement_Sequence (N)) then
9363 First_Stmt :=
9364 First (Statements (Handled_Statement_Sequence (N)));
9365 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
9366 Mark_Rewrite_Insertion (Decl);
9367 else
9368 -- If the accept statement has no body, there will be no
9369 -- reference to the actuals, so no need to compute actual
9370 -- subtypes.
9372 return;
9373 end if;
9375 else
9376 Decl := Build_Actual_Subtype (T, Formal);
9377 Prepend (Decl, Declarations (N));
9378 Mark_Rewrite_Insertion (Decl);
9379 end if;
9381 -- The declaration uses the bounds of an existing object, and
9382 -- therefore needs no constraint checks.
9384 Analyze (Decl, Suppress => All_Checks);
9386 -- We need to freeze manually the generated type when it is
9387 -- inserted anywhere else than in a declarative part.
9389 if Present (First_Stmt) then
9390 Insert_List_Before_And_Analyze (First_Stmt,
9391 Freeze_Entity (Defining_Identifier (Decl), N));
9392 end if;
9394 if Nkind (N) = N_Accept_Statement
9395 and then Expander_Active
9396 then
9397 Set_Actual_Subtype (Renamed_Object (Formal),
9398 Defining_Identifier (Decl));
9399 else
9400 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
9401 end if;
9402 end if;
9404 Next_Formal (Formal);
9405 end loop;
9406 end Set_Actual_Subtypes;
9408 ---------------------
9409 -- Set_Formal_Mode --
9410 ---------------------
9412 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
9413 Spec : constant Node_Id := Parent (Formal_Id);
9415 begin
9416 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
9417 -- since we ensure that corresponding actuals are always valid at the
9418 -- point of the call.
9420 if Out_Present (Spec) then
9421 if Ekind (Scope (Formal_Id)) = E_Function
9422 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
9423 then
9424 -- [IN] OUT parameters allowed for functions in Ada 2012
9426 if Ada_Version >= Ada_2012 then
9427 if In_Present (Spec) then
9428 Set_Ekind (Formal_Id, E_In_Out_Parameter);
9429 else
9430 Set_Ekind (Formal_Id, E_Out_Parameter);
9431 end if;
9433 -- But not in earlier versions of Ada
9435 else
9436 Error_Msg_N ("functions can only have IN parameters", Spec);
9437 Set_Ekind (Formal_Id, E_In_Parameter);
9438 end if;
9440 elsif In_Present (Spec) then
9441 Set_Ekind (Formal_Id, E_In_Out_Parameter);
9443 else
9444 Set_Ekind (Formal_Id, E_Out_Parameter);
9445 Set_Never_Set_In_Source (Formal_Id, True);
9446 Set_Is_True_Constant (Formal_Id, False);
9447 Set_Current_Value (Formal_Id, Empty);
9448 end if;
9450 else
9451 Set_Ekind (Formal_Id, E_In_Parameter);
9452 end if;
9454 -- Set Is_Known_Non_Null for access parameters since the language
9455 -- guarantees that access parameters are always non-null. We also set
9456 -- Can_Never_Be_Null, since there is no way to change the value.
9458 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
9460 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
9461 -- null; In Ada 2005, only if then null_exclusion is explicit.
9463 if Ada_Version < Ada_2005
9464 or else Can_Never_Be_Null (Etype (Formal_Id))
9465 then
9466 Set_Is_Known_Non_Null (Formal_Id);
9467 Set_Can_Never_Be_Null (Formal_Id);
9468 end if;
9470 -- Ada 2005 (AI-231): Null-exclusion access subtype
9472 elsif Is_Access_Type (Etype (Formal_Id))
9473 and then Can_Never_Be_Null (Etype (Formal_Id))
9474 then
9475 Set_Is_Known_Non_Null (Formal_Id);
9476 end if;
9478 Set_Mechanism (Formal_Id, Default_Mechanism);
9479 Set_Formal_Validity (Formal_Id);
9480 end Set_Formal_Mode;
9482 -------------------------
9483 -- Set_Formal_Validity --
9484 -------------------------
9486 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
9487 begin
9488 -- If no validity checking, then we cannot assume anything about the
9489 -- validity of parameters, since we do not know there is any checking
9490 -- of the validity on the call side.
9492 if not Validity_Checks_On then
9493 return;
9495 -- If validity checking for parameters is enabled, this means we are
9496 -- not supposed to make any assumptions about argument values.
9498 elsif Validity_Check_Parameters then
9499 return;
9501 -- If we are checking in parameters, we will assume that the caller is
9502 -- also checking parameters, so we can assume the parameter is valid.
9504 elsif Ekind (Formal_Id) = E_In_Parameter
9505 and then Validity_Check_In_Params
9506 then
9507 Set_Is_Known_Valid (Formal_Id, True);
9509 -- Similar treatment for IN OUT parameters
9511 elsif Ekind (Formal_Id) = E_In_Out_Parameter
9512 and then Validity_Check_In_Out_Params
9513 then
9514 Set_Is_Known_Valid (Formal_Id, True);
9515 end if;
9516 end Set_Formal_Validity;
9518 ------------------------
9519 -- Subtype_Conformant --
9520 ------------------------
9522 function Subtype_Conformant
9523 (New_Id : Entity_Id;
9524 Old_Id : Entity_Id;
9525 Skip_Controlling_Formals : Boolean := False) return Boolean
9527 Result : Boolean;
9528 begin
9529 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
9530 Skip_Controlling_Formals => Skip_Controlling_Formals);
9531 return Result;
9532 end Subtype_Conformant;
9534 ---------------------
9535 -- Type_Conformant --
9536 ---------------------
9538 function Type_Conformant
9539 (New_Id : Entity_Id;
9540 Old_Id : Entity_Id;
9541 Skip_Controlling_Formals : Boolean := False) return Boolean
9543 Result : Boolean;
9544 begin
9545 May_Hide_Profile := False;
9547 Check_Conformance
9548 (New_Id, Old_Id, Type_Conformant, False, Result,
9549 Skip_Controlling_Formals => Skip_Controlling_Formals);
9550 return Result;
9551 end Type_Conformant;
9553 -------------------------------
9554 -- Valid_Operator_Definition --
9555 -------------------------------
9557 procedure Valid_Operator_Definition (Designator : Entity_Id) is
9558 N : Integer := 0;
9559 F : Entity_Id;
9560 Id : constant Name_Id := Chars (Designator);
9561 N_OK : Boolean;
9563 begin
9564 F := First_Formal (Designator);
9565 while Present (F) loop
9566 N := N + 1;
9568 if Present (Default_Value (F)) then
9569 Error_Msg_N
9570 ("default values not allowed for operator parameters",
9571 Parent (F));
9572 end if;
9574 Next_Formal (F);
9575 end loop;
9577 -- Verify that user-defined operators have proper number of arguments
9578 -- First case of operators which can only be unary
9580 if Id = Name_Op_Not
9581 or else Id = Name_Op_Abs
9582 then
9583 N_OK := (N = 1);
9585 -- Case of operators which can be unary or binary
9587 elsif Id = Name_Op_Add
9588 or Id = Name_Op_Subtract
9589 then
9590 N_OK := (N in 1 .. 2);
9592 -- All other operators can only be binary
9594 else
9595 N_OK := (N = 2);
9596 end if;
9598 if not N_OK then
9599 Error_Msg_N
9600 ("incorrect number of arguments for operator", Designator);
9601 end if;
9603 if Id = Name_Op_Ne
9604 and then Base_Type (Etype (Designator)) = Standard_Boolean
9605 and then not Is_Intrinsic_Subprogram (Designator)
9606 then
9607 Error_Msg_N
9608 ("explicit definition of inequality not allowed", Designator);
9609 end if;
9610 end Valid_Operator_Definition;
9612 end Sem_Ch6;