Merge from mainline (154736:156693)
[official-gcc/graphite-test-results.git] / gcc / cp / search.c
blob772ae3b1fbe8074ce2cdea083aee301d46fe7241
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "intl.h"
33 #include "obstack.h"
34 #include "flags.h"
35 #include "rtl.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "target.h"
40 static int is_subobject_of_p (tree, tree);
41 static tree dfs_lookup_base (tree, void *);
42 static tree dfs_dcast_hint_pre (tree, void *);
43 static tree dfs_dcast_hint_post (tree, void *);
44 static tree dfs_debug_mark (tree, void *);
45 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
46 tree (*post_fn) (tree, void *), void *data);
47 static void dfs_unmark_r (tree);
48 static int check_hidden_convs (tree, int, int, tree, tree, tree);
49 static tree split_conversions (tree, tree, tree, tree);
50 static int lookup_conversions_r (tree, int, int,
51 tree, tree, tree, tree, tree *, tree *);
52 static int look_for_overrides_r (tree, tree);
53 static tree lookup_field_r (tree, void *);
54 static tree dfs_accessible_post (tree, void *);
55 static tree dfs_walk_once_accessible_r (tree, bool, bool,
56 tree (*pre_fn) (tree, void *),
57 tree (*post_fn) (tree, void *),
58 void *data);
59 static tree dfs_walk_once_accessible (tree, bool,
60 tree (*pre_fn) (tree, void *),
61 tree (*post_fn) (tree, void *),
62 void *data);
63 static tree dfs_access_in_type (tree, void *);
64 static access_kind access_in_type (tree, tree);
65 static int protected_accessible_p (tree, tree, tree);
66 static int friend_accessible_p (tree, tree, tree);
67 static tree dfs_get_pure_virtuals (tree, void *);
70 /* Variables for gathering statistics. */
71 #ifdef GATHER_STATISTICS
72 static int n_fields_searched;
73 static int n_calls_lookup_field, n_calls_lookup_field_1;
74 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
75 static int n_calls_get_base_type;
76 static int n_outer_fields_searched;
77 static int n_contexts_saved;
78 #endif /* GATHER_STATISTICS */
81 /* Data for lookup_base and its workers. */
83 struct lookup_base_data_s
85 tree t; /* type being searched. */
86 tree base; /* The base type we're looking for. */
87 tree binfo; /* Found binfo. */
88 bool via_virtual; /* Found via a virtual path. */
89 bool ambiguous; /* Found multiply ambiguous */
90 bool repeated_base; /* Whether there are repeated bases in the
91 hierarchy. */
92 bool want_any; /* Whether we want any matching binfo. */
95 /* Worker function for lookup_base. See if we've found the desired
96 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
98 static tree
99 dfs_lookup_base (tree binfo, void *data_)
101 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
103 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
105 if (!data->binfo)
107 data->binfo = binfo;
108 data->via_virtual
109 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
111 if (!data->repeated_base)
112 /* If there are no repeated bases, we can stop now. */
113 return binfo;
115 if (data->want_any && !data->via_virtual)
116 /* If this is a non-virtual base, then we can't do
117 better. */
118 return binfo;
120 return dfs_skip_bases;
122 else
124 gcc_assert (binfo != data->binfo);
126 /* We've found more than one matching binfo. */
127 if (!data->want_any)
129 /* This is immediately ambiguous. */
130 data->binfo = NULL_TREE;
131 data->ambiguous = true;
132 return error_mark_node;
135 /* Prefer one via a non-virtual path. */
136 if (!binfo_via_virtual (binfo, data->t))
138 data->binfo = binfo;
139 data->via_virtual = false;
140 return binfo;
143 /* There must be repeated bases, otherwise we'd have stopped
144 on the first base we found. */
145 return dfs_skip_bases;
149 return NULL_TREE;
152 /* Returns true if type BASE is accessible in T. (BASE is known to be
153 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
154 true, consider any special access of the current scope, or access
155 bestowed by friendship. */
157 bool
158 accessible_base_p (tree t, tree base, bool consider_local_p)
160 tree decl;
162 /* [class.access.base]
164 A base class is said to be accessible if an invented public
165 member of the base class is accessible.
167 If BASE is a non-proper base, this condition is trivially
168 true. */
169 if (same_type_p (t, base))
170 return true;
171 /* Rather than inventing a public member, we use the implicit
172 public typedef created in the scope of every class. */
173 decl = TYPE_FIELDS (base);
174 while (!DECL_SELF_REFERENCE_P (decl))
175 decl = TREE_CHAIN (decl);
176 while (ANON_AGGR_TYPE_P (t))
177 t = TYPE_CONTEXT (t);
178 return accessible_p (t, decl, consider_local_p);
181 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
182 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
183 non-NULL, fill with information about what kind of base we
184 discovered.
186 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
187 not set in ACCESS, then an error is issued and error_mark_node is
188 returned. If the ba_quiet bit is set, then no error is issued and
189 NULL_TREE is returned. */
191 tree
192 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
194 tree binfo;
195 tree t_binfo;
196 base_kind bk;
198 if (t == error_mark_node || base == error_mark_node)
200 if (kind_ptr)
201 *kind_ptr = bk_not_base;
202 return error_mark_node;
204 gcc_assert (TYPE_P (base));
206 if (!TYPE_P (t))
208 t_binfo = t;
209 t = BINFO_TYPE (t);
211 else
213 t = complete_type (TYPE_MAIN_VARIANT (t));
214 t_binfo = TYPE_BINFO (t);
217 base = TYPE_MAIN_VARIANT (base);
219 /* If BASE is incomplete, it can't be a base of T--and instantiating it
220 might cause an error. */
221 if (t_binfo && CLASS_TYPE_P (base)
222 && (COMPLETE_TYPE_P (base) || TYPE_BEING_DEFINED (base)))
224 struct lookup_base_data_s data;
226 data.t = t;
227 data.base = base;
228 data.binfo = NULL_TREE;
229 data.ambiguous = data.via_virtual = false;
230 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
231 data.want_any = access == ba_any;
233 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
234 binfo = data.binfo;
236 if (!binfo)
237 bk = data.ambiguous ? bk_ambig : bk_not_base;
238 else if (binfo == t_binfo)
239 bk = bk_same_type;
240 else if (data.via_virtual)
241 bk = bk_via_virtual;
242 else
243 bk = bk_proper_base;
245 else
247 binfo = NULL_TREE;
248 bk = bk_not_base;
251 /* Check that the base is unambiguous and accessible. */
252 if (access != ba_any)
253 switch (bk)
255 case bk_not_base:
256 break;
258 case bk_ambig:
259 if (!(access & ba_quiet))
261 error ("%qT is an ambiguous base of %qT", base, t);
262 binfo = error_mark_node;
264 break;
266 default:
267 if ((access & ba_check_bit)
268 /* If BASE is incomplete, then BASE and TYPE are probably
269 the same, in which case BASE is accessible. If they
270 are not the same, then TYPE is invalid. In that case,
271 there's no need to issue another error here, and
272 there's no implicit typedef to use in the code that
273 follows, so we skip the check. */
274 && COMPLETE_TYPE_P (base)
275 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
277 if (!(access & ba_quiet))
279 error ("%qT is an inaccessible base of %qT", base, t);
280 binfo = error_mark_node;
282 else
283 binfo = NULL_TREE;
284 bk = bk_inaccessible;
286 break;
289 if (kind_ptr)
290 *kind_ptr = bk;
292 return binfo;
295 /* Data for dcast_base_hint walker. */
297 struct dcast_data_s
299 tree subtype; /* The base type we're looking for. */
300 int virt_depth; /* Number of virtual bases encountered from most
301 derived. */
302 tree offset; /* Best hint offset discovered so far. */
303 bool repeated_base; /* Whether there are repeated bases in the
304 hierarchy. */
307 /* Worker for dcast_base_hint. Search for the base type being cast
308 from. */
310 static tree
311 dfs_dcast_hint_pre (tree binfo, void *data_)
313 struct dcast_data_s *data = (struct dcast_data_s *) data_;
315 if (BINFO_VIRTUAL_P (binfo))
316 data->virt_depth++;
318 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
320 if (data->virt_depth)
322 data->offset = ssize_int (-1);
323 return data->offset;
325 if (data->offset)
326 data->offset = ssize_int (-3);
327 else
328 data->offset = BINFO_OFFSET (binfo);
330 return data->repeated_base ? dfs_skip_bases : data->offset;
333 return NULL_TREE;
336 /* Worker for dcast_base_hint. Track the virtual depth. */
338 static tree
339 dfs_dcast_hint_post (tree binfo, void *data_)
341 struct dcast_data_s *data = (struct dcast_data_s *) data_;
343 if (BINFO_VIRTUAL_P (binfo))
344 data->virt_depth--;
346 return NULL_TREE;
349 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
350 started from is related to the required TARGET type, in order to optimize
351 the inheritance graph search. This information is independent of the
352 current context, and ignores private paths, hence get_base_distance is
353 inappropriate. Return a TREE specifying the base offset, BOFF.
354 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
355 and there are no public virtual SUBTYPE bases.
356 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
357 BOFF == -2, SUBTYPE is not a public base.
358 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
360 tree
361 dcast_base_hint (tree subtype, tree target)
363 struct dcast_data_s data;
365 data.subtype = subtype;
366 data.virt_depth = 0;
367 data.offset = NULL_TREE;
368 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
370 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
371 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
372 return data.offset ? data.offset : ssize_int (-2);
375 /* Search for a member with name NAME in a multiple inheritance
376 lattice specified by TYPE. If it does not exist, return NULL_TREE.
377 If the member is ambiguously referenced, return `error_mark_node'.
378 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
379 true, type declarations are preferred. */
381 /* Do a 1-level search for NAME as a member of TYPE. The caller must
382 figure out whether it can access this field. (Since it is only one
383 level, this is reasonable.) */
385 tree
386 lookup_field_1 (tree type, tree name, bool want_type)
388 tree field;
390 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
391 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
392 || TREE_CODE (type) == TYPENAME_TYPE)
393 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
394 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
395 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
396 the code often worked even when we treated the index as a list
397 of fields!)
398 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
399 return NULL_TREE;
401 if (CLASSTYPE_SORTED_FIELDS (type))
403 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
404 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
405 int i;
407 while (lo < hi)
409 i = (lo + hi) / 2;
411 #ifdef GATHER_STATISTICS
412 n_fields_searched++;
413 #endif /* GATHER_STATISTICS */
415 if (DECL_NAME (fields[i]) > name)
416 hi = i;
417 else if (DECL_NAME (fields[i]) < name)
418 lo = i + 1;
419 else
421 field = NULL_TREE;
423 /* We might have a nested class and a field with the
424 same name; we sorted them appropriately via
425 field_decl_cmp, so just look for the first or last
426 field with this name. */
427 if (want_type)
430 field = fields[i--];
431 while (i >= lo && DECL_NAME (fields[i]) == name);
432 if (TREE_CODE (field) != TYPE_DECL
433 && !DECL_CLASS_TEMPLATE_P (field))
434 field = NULL_TREE;
436 else
439 field = fields[i++];
440 while (i < hi && DECL_NAME (fields[i]) == name);
442 return field;
445 return NULL_TREE;
448 field = TYPE_FIELDS (type);
450 #ifdef GATHER_STATISTICS
451 n_calls_lookup_field_1++;
452 #endif /* GATHER_STATISTICS */
453 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
455 #ifdef GATHER_STATISTICS
456 n_fields_searched++;
457 #endif /* GATHER_STATISTICS */
458 gcc_assert (DECL_P (field));
459 if (DECL_NAME (field) == NULL_TREE
460 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
462 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
463 if (temp)
464 return temp;
466 if (TREE_CODE (field) == USING_DECL)
468 /* We generally treat class-scope using-declarations as
469 ARM-style access specifications, because support for the
470 ISO semantics has not been implemented. So, in general,
471 there's no reason to return a USING_DECL, and the rest of
472 the compiler cannot handle that. Once the class is
473 defined, USING_DECLs are purged from TYPE_FIELDS; see
474 handle_using_decl. However, we make special efforts to
475 make using-declarations in class templates and class
476 template partial specializations work correctly. */
477 if (!DECL_DEPENDENT_P (field))
478 continue;
481 if (DECL_NAME (field) == name
482 && (!want_type
483 || TREE_CODE (field) == TYPE_DECL
484 || DECL_CLASS_TEMPLATE_P (field)))
485 return field;
487 /* Not found. */
488 if (name == vptr_identifier)
490 /* Give the user what s/he thinks s/he wants. */
491 if (TYPE_POLYMORPHIC_P (type))
492 return TYPE_VFIELD (type);
494 return NULL_TREE;
497 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
498 NAMESPACE_DECL corresponding to the innermost non-block scope. */
500 tree
501 current_scope (void)
503 /* There are a number of cases we need to be aware of here:
504 current_class_type current_function_decl
505 global NULL NULL
506 fn-local NULL SET
507 class-local SET NULL
508 class->fn SET SET
509 fn->class SET SET
511 Those last two make life interesting. If we're in a function which is
512 itself inside a class, we need decls to go into the fn's decls (our
513 second case below). But if we're in a class and the class itself is
514 inside a function, we need decls to go into the decls for the class. To
515 achieve this last goal, we must see if, when both current_class_ptr and
516 current_function_decl are set, the class was declared inside that
517 function. If so, we know to put the decls into the class's scope. */
518 if (current_function_decl && current_class_type
519 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
520 && same_type_p (DECL_CONTEXT (current_function_decl),
521 current_class_type))
522 || (DECL_FRIEND_CONTEXT (current_function_decl)
523 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
524 current_class_type))))
525 return current_function_decl;
526 if (current_class_type)
527 return current_class_type;
528 if (current_function_decl)
529 return current_function_decl;
530 return current_namespace;
533 /* Returns nonzero if we are currently in a function scope. Note
534 that this function returns zero if we are within a local class, but
535 not within a member function body of the local class. */
538 at_function_scope_p (void)
540 tree cs = current_scope ();
541 return cs && TREE_CODE (cs) == FUNCTION_DECL;
544 /* Returns true if the innermost active scope is a class scope. */
546 bool
547 at_class_scope_p (void)
549 tree cs = current_scope ();
550 return cs && TYPE_P (cs);
553 /* Returns true if the innermost active scope is a namespace scope. */
555 bool
556 at_namespace_scope_p (void)
558 tree cs = current_scope ();
559 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
562 /* Return the scope of DECL, as appropriate when doing name-lookup. */
564 tree
565 context_for_name_lookup (tree decl)
567 /* [class.union]
569 For the purposes of name lookup, after the anonymous union
570 definition, the members of the anonymous union are considered to
571 have been defined in the scope in which the anonymous union is
572 declared. */
573 tree context = DECL_CONTEXT (decl);
575 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
576 context = TYPE_CONTEXT (context);
577 if (!context)
578 context = global_namespace;
580 return context;
583 /* The accessibility routines use BINFO_ACCESS for scratch space
584 during the computation of the accessibility of some declaration. */
586 #define BINFO_ACCESS(NODE) \
587 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
589 /* Set the access associated with NODE to ACCESS. */
591 #define SET_BINFO_ACCESS(NODE, ACCESS) \
592 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
593 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
595 /* Called from access_in_type via dfs_walk. Calculate the access to
596 DATA (which is really a DECL) in BINFO. */
598 static tree
599 dfs_access_in_type (tree binfo, void *data)
601 tree decl = (tree) data;
602 tree type = BINFO_TYPE (binfo);
603 access_kind access = ak_none;
605 if (context_for_name_lookup (decl) == type)
607 /* If we have descended to the scope of DECL, just note the
608 appropriate access. */
609 if (TREE_PRIVATE (decl))
610 access = ak_private;
611 else if (TREE_PROTECTED (decl))
612 access = ak_protected;
613 else
614 access = ak_public;
616 else
618 /* First, check for an access-declaration that gives us more
619 access to the DECL. The CONST_DECL for an enumeration
620 constant will not have DECL_LANG_SPECIFIC, and thus no
621 DECL_ACCESS. */
622 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
624 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
626 if (decl_access)
628 decl_access = TREE_VALUE (decl_access);
630 if (decl_access == access_public_node)
631 access = ak_public;
632 else if (decl_access == access_protected_node)
633 access = ak_protected;
634 else if (decl_access == access_private_node)
635 access = ak_private;
636 else
637 gcc_unreachable ();
641 if (!access)
643 int i;
644 tree base_binfo;
645 VEC(tree,gc) *accesses;
647 /* Otherwise, scan our baseclasses, and pick the most favorable
648 access. */
649 accesses = BINFO_BASE_ACCESSES (binfo);
650 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
652 tree base_access = VEC_index (tree, accesses, i);
653 access_kind base_access_now = BINFO_ACCESS (base_binfo);
655 if (base_access_now == ak_none || base_access_now == ak_private)
656 /* If it was not accessible in the base, or only
657 accessible as a private member, we can't access it
658 all. */
659 base_access_now = ak_none;
660 else if (base_access == access_protected_node)
661 /* Public and protected members in the base become
662 protected here. */
663 base_access_now = ak_protected;
664 else if (base_access == access_private_node)
665 /* Public and protected members in the base become
666 private here. */
667 base_access_now = ak_private;
669 /* See if the new access, via this base, gives more
670 access than our previous best access. */
671 if (base_access_now != ak_none
672 && (access == ak_none || base_access_now < access))
674 access = base_access_now;
676 /* If the new access is public, we can't do better. */
677 if (access == ak_public)
678 break;
684 /* Note the access to DECL in TYPE. */
685 SET_BINFO_ACCESS (binfo, access);
687 return NULL_TREE;
690 /* Return the access to DECL in TYPE. */
692 static access_kind
693 access_in_type (tree type, tree decl)
695 tree binfo = TYPE_BINFO (type);
697 /* We must take into account
699 [class.paths]
701 If a name can be reached by several paths through a multiple
702 inheritance graph, the access is that of the path that gives
703 most access.
705 The algorithm we use is to make a post-order depth-first traversal
706 of the base-class hierarchy. As we come up the tree, we annotate
707 each node with the most lenient access. */
708 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
710 return BINFO_ACCESS (binfo);
713 /* Returns nonzero if it is OK to access DECL through an object
714 indicated by BINFO in the context of DERIVED. */
716 static int
717 protected_accessible_p (tree decl, tree derived, tree binfo)
719 access_kind access;
721 /* We're checking this clause from [class.access.base]
723 m as a member of N is protected, and the reference occurs in a
724 member or friend of class N, or in a member or friend of a
725 class P derived from N, where m as a member of P is public, private
726 or protected.
728 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
730 /* If DERIVED isn't derived from N, then it can't be a P. */
731 if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
732 return 0;
734 access = access_in_type (derived, decl);
736 /* If m is inaccessible in DERIVED, then it's not a P. */
737 if (access == ak_none)
738 return 0;
740 /* [class.protected]
742 When a friend or a member function of a derived class references
743 a protected nonstatic member of a base class, an access check
744 applies in addition to those described earlier in clause
745 _class.access_) Except when forming a pointer to member
746 (_expr.unary.op_), the access must be through a pointer to,
747 reference to, or object of the derived class itself (or any class
748 derived from that class) (_expr.ref_). If the access is to form
749 a pointer to member, the nested-name-specifier shall name the
750 derived class (or any class derived from that class). */
751 if (DECL_NONSTATIC_MEMBER_P (decl))
753 /* We can tell through what the reference is occurring by
754 chasing BINFO up to the root. */
755 tree t = binfo;
756 while (BINFO_INHERITANCE_CHAIN (t))
757 t = BINFO_INHERITANCE_CHAIN (t);
759 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
760 return 0;
763 return 1;
766 /* Returns nonzero if SCOPE is a friend of a type which would be able
767 to access DECL through the object indicated by BINFO. */
769 static int
770 friend_accessible_p (tree scope, tree decl, tree binfo)
772 tree befriending_classes;
773 tree t;
775 if (!scope)
776 return 0;
778 if (TREE_CODE (scope) == FUNCTION_DECL
779 || DECL_FUNCTION_TEMPLATE_P (scope))
780 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
781 else if (TYPE_P (scope))
782 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
783 else
784 return 0;
786 for (t = befriending_classes; t; t = TREE_CHAIN (t))
787 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
788 return 1;
790 /* Nested classes have the same access as their enclosing types, as
791 per DR 45 (this is a change from the standard). */
792 if (TYPE_P (scope))
793 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
794 if (protected_accessible_p (decl, t, binfo))
795 return 1;
797 if (TREE_CODE (scope) == FUNCTION_DECL
798 || DECL_FUNCTION_TEMPLATE_P (scope))
800 /* Perhaps this SCOPE is a member of a class which is a
801 friend. */
802 if (DECL_CLASS_SCOPE_P (scope)
803 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
804 return 1;
806 /* Or an instantiation of something which is a friend. */
807 if (DECL_TEMPLATE_INFO (scope))
809 int ret;
810 /* Increment processing_template_decl to make sure that
811 dependent_type_p works correctly. */
812 ++processing_template_decl;
813 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
814 --processing_template_decl;
815 return ret;
819 return 0;
822 /* Called via dfs_walk_once_accessible from accessible_p */
824 static tree
825 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
827 if (BINFO_ACCESS (binfo) != ak_none)
829 tree scope = current_scope ();
830 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
831 && is_friend (BINFO_TYPE (binfo), scope))
832 return binfo;
835 return NULL_TREE;
838 /* DECL is a declaration from a base class of TYPE, which was the
839 class used to name DECL. Return nonzero if, in the current
840 context, DECL is accessible. If TYPE is actually a BINFO node,
841 then we can tell in what context the access is occurring by looking
842 at the most derived class along the path indicated by BINFO. If
843 CONSIDER_LOCAL is true, do consider special access the current
844 scope or friendship thereof we might have. */
847 accessible_p (tree type, tree decl, bool consider_local_p)
849 tree binfo;
850 tree scope;
851 access_kind access;
853 /* Nonzero if it's OK to access DECL if it has protected
854 accessibility in TYPE. */
855 int protected_ok = 0;
857 /* If this declaration is in a block or namespace scope, there's no
858 access control. */
859 if (!TYPE_P (context_for_name_lookup (decl)))
860 return 1;
862 /* There is no need to perform access checks inside a thunk. */
863 scope = current_scope ();
864 if (scope && DECL_THUNK_P (scope))
865 return 1;
867 /* In a template declaration, we cannot be sure whether the
868 particular specialization that is instantiated will be a friend
869 or not. Therefore, all access checks are deferred until
870 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
871 parameter list for a template (because we may see dependent types
872 in default arguments for template parameters), and access
873 checking should be performed in the outermost parameter list. */
874 if (processing_template_decl
875 && (!processing_template_parmlist || processing_template_decl > 1))
876 return 1;
878 if (!TYPE_P (type))
880 binfo = type;
881 type = BINFO_TYPE (type);
883 else
884 binfo = TYPE_BINFO (type);
886 /* [class.access.base]
888 A member m is accessible when named in class N if
890 --m as a member of N is public, or
892 --m as a member of N is private, and the reference occurs in a
893 member or friend of class N, or
895 --m as a member of N is protected, and the reference occurs in a
896 member or friend of class N, or in a member or friend of a
897 class P derived from N, where m as a member of P is private or
898 protected, or
900 --there exists a base class B of N that is accessible at the point
901 of reference, and m is accessible when named in class B.
903 We walk the base class hierarchy, checking these conditions. */
905 if (consider_local_p)
907 /* Figure out where the reference is occurring. Check to see if
908 DECL is private or protected in this scope, since that will
909 determine whether protected access is allowed. */
910 if (current_class_type)
911 protected_ok = protected_accessible_p (decl,
912 current_class_type, binfo);
914 /* Now, loop through the classes of which we are a friend. */
915 if (!protected_ok)
916 protected_ok = friend_accessible_p (scope, decl, binfo);
919 /* Standardize the binfo that access_in_type will use. We don't
920 need to know what path was chosen from this point onwards. */
921 binfo = TYPE_BINFO (type);
923 /* Compute the accessibility of DECL in the class hierarchy
924 dominated by type. */
925 access = access_in_type (type, decl);
926 if (access == ak_public
927 || (access == ak_protected && protected_ok))
928 return 1;
930 if (!consider_local_p)
931 return 0;
933 /* Walk the hierarchy again, looking for a base class that allows
934 access. */
935 return dfs_walk_once_accessible (binfo, /*friends=*/true,
936 NULL, dfs_accessible_post, NULL)
937 != NULL_TREE;
940 struct lookup_field_info {
941 /* The type in which we're looking. */
942 tree type;
943 /* The name of the field for which we're looking. */
944 tree name;
945 /* If non-NULL, the current result of the lookup. */
946 tree rval;
947 /* The path to RVAL. */
948 tree rval_binfo;
949 /* If non-NULL, the lookup was ambiguous, and this is a list of the
950 candidates. */
951 tree ambiguous;
952 /* If nonzero, we are looking for types, not data members. */
953 int want_type;
954 /* If something went wrong, a message indicating what. */
955 const char *errstr;
958 /* Nonzero for a class member means that it is shared between all objects
959 of that class.
961 [class.member.lookup]:If the resulting set of declarations are not all
962 from sub-objects of the same type, or the set has a nonstatic member
963 and includes members from distinct sub-objects, there is an ambiguity
964 and the program is ill-formed.
966 This function checks that T contains no nonstatic members. */
969 shared_member_p (tree t)
971 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
972 || TREE_CODE (t) == CONST_DECL)
973 return 1;
974 if (is_overloaded_fn (t))
976 for (; t; t = OVL_NEXT (t))
978 tree fn = OVL_CURRENT (t);
979 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
980 return 0;
982 return 1;
984 return 0;
987 /* Routine to see if the sub-object denoted by the binfo PARENT can be
988 found as a base class and sub-object of the object denoted by
989 BINFO. */
991 static int
992 is_subobject_of_p (tree parent, tree binfo)
994 tree probe;
996 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
998 if (probe == binfo)
999 return 1;
1000 if (BINFO_VIRTUAL_P (probe))
1001 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1002 != NULL_TREE);
1004 return 0;
1007 /* DATA is really a struct lookup_field_info. Look for a field with
1008 the name indicated there in BINFO. If this function returns a
1009 non-NULL value it is the result of the lookup. Called from
1010 lookup_field via breadth_first_search. */
1012 static tree
1013 lookup_field_r (tree binfo, void *data)
1015 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1016 tree type = BINFO_TYPE (binfo);
1017 tree nval = NULL_TREE;
1019 /* If this is a dependent base, don't look in it. */
1020 if (BINFO_DEPENDENT_BASE_P (binfo))
1021 return NULL_TREE;
1023 /* If this base class is hidden by the best-known value so far, we
1024 don't need to look. */
1025 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1026 && !BINFO_VIRTUAL_P (binfo))
1027 return dfs_skip_bases;
1029 /* First, look for a function. There can't be a function and a data
1030 member with the same name, and if there's a function and a type
1031 with the same name, the type is hidden by the function. */
1032 if (!lfi->want_type)
1034 int idx = lookup_fnfields_1 (type, lfi->name);
1035 if (idx >= 0)
1036 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1039 if (!nval)
1040 /* Look for a data member or type. */
1041 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1043 /* If there is no declaration with the indicated name in this type,
1044 then there's nothing to do. */
1045 if (!nval)
1046 goto done;
1048 /* If we're looking up a type (as with an elaborated type specifier)
1049 we ignore all non-types we find. */
1050 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1051 && !DECL_CLASS_TEMPLATE_P (nval))
1053 if (lfi->name == TYPE_IDENTIFIER (type))
1055 /* If the aggregate has no user defined constructors, we allow
1056 it to have fields with the same name as the enclosing type.
1057 If we are looking for that name, find the corresponding
1058 TYPE_DECL. */
1059 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1060 if (DECL_NAME (nval) == lfi->name
1061 && TREE_CODE (nval) == TYPE_DECL)
1062 break;
1064 else
1065 nval = NULL_TREE;
1066 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1068 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1069 lfi->name);
1070 if (e != NULL)
1071 nval = TYPE_MAIN_DECL (e->type);
1072 else
1073 goto done;
1077 /* If the lookup already found a match, and the new value doesn't
1078 hide the old one, we might have an ambiguity. */
1079 if (lfi->rval_binfo
1080 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1083 if (nval == lfi->rval && shared_member_p (nval))
1084 /* The two things are really the same. */
1086 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1087 /* The previous value hides the new one. */
1089 else
1091 /* We have a real ambiguity. We keep a chain of all the
1092 candidates. */
1093 if (!lfi->ambiguous && lfi->rval)
1095 /* This is the first time we noticed an ambiguity. Add
1096 what we previously thought was a reasonable candidate
1097 to the list. */
1098 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1099 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1102 /* Add the new value. */
1103 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1104 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1105 lfi->errstr = G_("request for member %qD is ambiguous");
1108 else
1110 lfi->rval = nval;
1111 lfi->rval_binfo = binfo;
1114 done:
1115 /* Don't look for constructors or destructors in base classes. */
1116 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1117 return dfs_skip_bases;
1118 return NULL_TREE;
1121 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1122 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1123 FUNCTIONS, and OPTYPE respectively. */
1125 tree
1126 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1128 tree baselink;
1130 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1131 || TREE_CODE (functions) == TEMPLATE_DECL
1132 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1133 || TREE_CODE (functions) == OVERLOAD);
1134 gcc_assert (!optype || TYPE_P (optype));
1135 gcc_assert (TREE_TYPE (functions));
1137 baselink = make_node (BASELINK);
1138 TREE_TYPE (baselink) = TREE_TYPE (functions);
1139 BASELINK_BINFO (baselink) = binfo;
1140 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1141 BASELINK_FUNCTIONS (baselink) = functions;
1142 BASELINK_OPTYPE (baselink) = optype;
1144 return baselink;
1147 /* Look for a member named NAME in an inheritance lattice dominated by
1148 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1149 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1150 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1151 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1152 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1153 TREE_VALUEs are the list of ambiguous candidates.
1155 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1157 If nothing can be found return NULL_TREE and do not issue an error. */
1159 tree
1160 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1162 tree rval, rval_binfo = NULL_TREE;
1163 tree type = NULL_TREE, basetype_path = NULL_TREE;
1164 struct lookup_field_info lfi;
1166 /* rval_binfo is the binfo associated with the found member, note,
1167 this can be set with useful information, even when rval is not
1168 set, because it must deal with ALL members, not just non-function
1169 members. It is used for ambiguity checking and the hidden
1170 checks. Whereas rval is only set if a proper (not hidden)
1171 non-function member is found. */
1173 const char *errstr = 0;
1175 if (name == error_mark_node)
1176 return NULL_TREE;
1178 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1180 if (TREE_CODE (xbasetype) == TREE_BINFO)
1182 type = BINFO_TYPE (xbasetype);
1183 basetype_path = xbasetype;
1185 else
1187 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1188 return NULL_TREE;
1189 type = xbasetype;
1190 xbasetype = NULL_TREE;
1193 type = complete_type (type);
1194 if (!basetype_path)
1195 basetype_path = TYPE_BINFO (type);
1197 if (!basetype_path)
1198 return NULL_TREE;
1200 #ifdef GATHER_STATISTICS
1201 n_calls_lookup_field++;
1202 #endif /* GATHER_STATISTICS */
1204 memset (&lfi, 0, sizeof (lfi));
1205 lfi.type = type;
1206 lfi.name = name;
1207 lfi.want_type = want_type;
1208 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1209 rval = lfi.rval;
1210 rval_binfo = lfi.rval_binfo;
1211 if (rval_binfo)
1212 type = BINFO_TYPE (rval_binfo);
1213 errstr = lfi.errstr;
1215 /* If we are not interested in ambiguities, don't report them;
1216 just return NULL_TREE. */
1217 if (!protect && lfi.ambiguous)
1218 return NULL_TREE;
1220 if (protect == 2)
1222 if (lfi.ambiguous)
1223 return lfi.ambiguous;
1224 else
1225 protect = 0;
1228 /* [class.access]
1230 In the case of overloaded function names, access control is
1231 applied to the function selected by overloaded resolution.
1233 We cannot check here, even if RVAL is only a single non-static
1234 member function, since we do not know what the "this" pointer
1235 will be. For:
1237 class A { protected: void f(); };
1238 class B : public A {
1239 void g(A *p) {
1240 f(); // OK
1241 p->f(); // Not OK.
1245 only the first call to "f" is valid. However, if the function is
1246 static, we can check. */
1247 if (rval && protect
1248 && !really_overloaded_fn (rval)
1249 && !(TREE_CODE (rval) == FUNCTION_DECL
1250 && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
1251 perform_or_defer_access_check (basetype_path, rval, rval);
1253 if (errstr && protect)
1255 error (errstr, name, type);
1256 if (lfi.ambiguous)
1257 print_candidates (lfi.ambiguous);
1258 rval = error_mark_node;
1261 if (rval && is_overloaded_fn (rval))
1262 rval = build_baselink (rval_binfo, basetype_path, rval,
1263 (IDENTIFIER_TYPENAME_P (name)
1264 ? TREE_TYPE (name): NULL_TREE));
1265 return rval;
1268 /* Like lookup_member, except that if we find a function member we
1269 return NULL_TREE. */
1271 tree
1272 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1274 tree rval = lookup_member (xbasetype, name, protect, want_type);
1276 /* Ignore functions, but propagate the ambiguity list. */
1277 if (!error_operand_p (rval)
1278 && (rval && BASELINK_P (rval)))
1279 return NULL_TREE;
1281 return rval;
1284 /* Like lookup_member, except that if we find a non-function member we
1285 return NULL_TREE. */
1287 tree
1288 lookup_fnfields (tree xbasetype, tree name, int protect)
1290 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1292 /* Ignore non-functions, but propagate the ambiguity list. */
1293 if (!error_operand_p (rval)
1294 && (rval && !BASELINK_P (rval)))
1295 return NULL_TREE;
1297 return rval;
1300 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1301 corresponding to "operator TYPE ()", or -1 if there is no such
1302 operator. Only CLASS_TYPE itself is searched; this routine does
1303 not scan the base classes of CLASS_TYPE. */
1305 static int
1306 lookup_conversion_operator (tree class_type, tree type)
1308 int tpl_slot = -1;
1310 if (TYPE_HAS_CONVERSION (class_type))
1312 int i;
1313 tree fn;
1314 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1316 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1317 VEC_iterate (tree, methods, i, fn); ++i)
1319 /* All the conversion operators come near the beginning of
1320 the class. Therefore, if FN is not a conversion
1321 operator, there is no matching conversion operator in
1322 CLASS_TYPE. */
1323 fn = OVL_CURRENT (fn);
1324 if (!DECL_CONV_FN_P (fn))
1325 break;
1327 if (TREE_CODE (fn) == TEMPLATE_DECL)
1328 /* All the templated conversion functions are on the same
1329 slot, so remember it. */
1330 tpl_slot = i;
1331 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1332 return i;
1336 return tpl_slot;
1339 /* TYPE is a class type. Return the index of the fields within
1340 the method vector with name NAME, or -1 is no such field exists. */
1343 lookup_fnfields_1 (tree type, tree name)
1345 VEC(tree,gc) *method_vec;
1346 tree fn;
1347 tree tmp;
1348 size_t i;
1350 if (!CLASS_TYPE_P (type))
1351 return -1;
1353 if (COMPLETE_TYPE_P (type))
1355 if ((name == ctor_identifier
1356 || name == base_ctor_identifier
1357 || name == complete_ctor_identifier))
1359 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1360 lazily_declare_fn (sfk_constructor, type);
1361 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1362 lazily_declare_fn (sfk_copy_constructor, type);
1363 if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1364 lazily_declare_fn (sfk_move_constructor, type);
1366 else if (name == ansi_assopname(NOP_EXPR)
1367 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1368 lazily_declare_fn (sfk_assignment_operator, type);
1369 else if ((name == dtor_identifier
1370 || name == base_dtor_identifier
1371 || name == complete_dtor_identifier
1372 || name == deleting_dtor_identifier)
1373 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1374 lazily_declare_fn (sfk_destructor, type);
1377 method_vec = CLASSTYPE_METHOD_VEC (type);
1378 if (!method_vec)
1379 return -1;
1381 #ifdef GATHER_STATISTICS
1382 n_calls_lookup_fnfields_1++;
1383 #endif /* GATHER_STATISTICS */
1385 /* Constructors are first... */
1386 if (name == ctor_identifier)
1388 fn = CLASSTYPE_CONSTRUCTORS (type);
1389 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1391 /* and destructors are second. */
1392 if (name == dtor_identifier)
1394 fn = CLASSTYPE_DESTRUCTORS (type);
1395 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1397 if (IDENTIFIER_TYPENAME_P (name))
1398 return lookup_conversion_operator (type, TREE_TYPE (name));
1400 /* Skip the conversion operators. */
1401 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1402 VEC_iterate (tree, method_vec, i, fn);
1403 ++i)
1404 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1405 break;
1407 /* If the type is complete, use binary search. */
1408 if (COMPLETE_TYPE_P (type))
1410 int lo;
1411 int hi;
1413 lo = i;
1414 hi = VEC_length (tree, method_vec);
1415 while (lo < hi)
1417 i = (lo + hi) / 2;
1419 #ifdef GATHER_STATISTICS
1420 n_outer_fields_searched++;
1421 #endif /* GATHER_STATISTICS */
1423 tmp = VEC_index (tree, method_vec, i);
1424 tmp = DECL_NAME (OVL_CURRENT (tmp));
1425 if (tmp > name)
1426 hi = i;
1427 else if (tmp < name)
1428 lo = i + 1;
1429 else
1430 return i;
1433 else
1434 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1436 #ifdef GATHER_STATISTICS
1437 n_outer_fields_searched++;
1438 #endif /* GATHER_STATISTICS */
1439 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1440 return i;
1443 return -1;
1446 /* Like lookup_fnfields_1, except that the name is extracted from
1447 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1450 class_method_index_for_fn (tree class_type, tree function)
1452 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1453 || DECL_FUNCTION_TEMPLATE_P (function));
1455 return lookup_fnfields_1 (class_type,
1456 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1457 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1458 DECL_NAME (function));
1462 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1463 the class or namespace used to qualify the name. CONTEXT_CLASS is
1464 the class corresponding to the object in which DECL will be used.
1465 Return a possibly modified version of DECL that takes into account
1466 the CONTEXT_CLASS.
1468 In particular, consider an expression like `B::m' in the context of
1469 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1470 then the most derived class indicated by the BASELINK_BINFO will be
1471 `B', not `D'. This function makes that adjustment. */
1473 tree
1474 adjust_result_of_qualified_name_lookup (tree decl,
1475 tree qualifying_scope,
1476 tree context_class)
1478 if (context_class && context_class != error_mark_node
1479 && CLASS_TYPE_P (context_class)
1480 && CLASS_TYPE_P (qualifying_scope)
1481 && DERIVED_FROM_P (qualifying_scope, context_class)
1482 && BASELINK_P (decl))
1484 tree base;
1486 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1487 Because we do not yet know which function will be chosen by
1488 overload resolution, we cannot yet check either accessibility
1489 or ambiguity -- in either case, the choice of a static member
1490 function might make the usage valid. */
1491 base = lookup_base (context_class, qualifying_scope,
1492 ba_unique | ba_quiet, NULL);
1493 if (base)
1495 BASELINK_ACCESS_BINFO (decl) = base;
1496 BASELINK_BINFO (decl)
1497 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1498 ba_unique | ba_quiet,
1499 NULL);
1503 return decl;
1507 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1508 PRE_FN is called in preorder, while POST_FN is called in postorder.
1509 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1510 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1511 that value is immediately returned and the walk is terminated. One
1512 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1513 POST_FN are passed the binfo to examine and the caller's DATA
1514 value. All paths are walked, thus virtual and morally virtual
1515 binfos can be multiply walked. */
1517 tree
1518 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1519 tree (*post_fn) (tree, void *), void *data)
1521 tree rval;
1522 unsigned ix;
1523 tree base_binfo;
1525 /* Call the pre-order walking function. */
1526 if (pre_fn)
1528 rval = pre_fn (binfo, data);
1529 if (rval)
1531 if (rval == dfs_skip_bases)
1532 goto skip_bases;
1533 return rval;
1537 /* Find the next child binfo to walk. */
1538 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1540 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1541 if (rval)
1542 return rval;
1545 skip_bases:
1546 /* Call the post-order walking function. */
1547 if (post_fn)
1549 rval = post_fn (binfo, data);
1550 gcc_assert (rval != dfs_skip_bases);
1551 return rval;
1554 return NULL_TREE;
1557 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1558 that binfos are walked at most once. */
1560 static tree
1561 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1562 tree (*post_fn) (tree, void *), void *data)
1564 tree rval;
1565 unsigned ix;
1566 tree base_binfo;
1568 /* Call the pre-order walking function. */
1569 if (pre_fn)
1571 rval = pre_fn (binfo, data);
1572 if (rval)
1574 if (rval == dfs_skip_bases)
1575 goto skip_bases;
1577 return rval;
1581 /* Find the next child binfo to walk. */
1582 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1584 if (BINFO_VIRTUAL_P (base_binfo))
1586 if (BINFO_MARKED (base_binfo))
1587 continue;
1588 BINFO_MARKED (base_binfo) = 1;
1591 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1592 if (rval)
1593 return rval;
1596 skip_bases:
1597 /* Call the post-order walking function. */
1598 if (post_fn)
1600 rval = post_fn (binfo, data);
1601 gcc_assert (rval != dfs_skip_bases);
1602 return rval;
1605 return NULL_TREE;
1608 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1609 BINFO. */
1611 static void
1612 dfs_unmark_r (tree binfo)
1614 unsigned ix;
1615 tree base_binfo;
1617 /* Process the basetypes. */
1618 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1620 if (BINFO_VIRTUAL_P (base_binfo))
1622 if (!BINFO_MARKED (base_binfo))
1623 continue;
1624 BINFO_MARKED (base_binfo) = 0;
1626 /* Only walk, if it can contain more virtual bases. */
1627 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1628 dfs_unmark_r (base_binfo);
1632 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1633 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1634 For diamond shaped hierarchies we must mark the virtual bases, to
1635 avoid multiple walks. */
1637 tree
1638 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1639 tree (*post_fn) (tree, void *), void *data)
1641 static int active = 0; /* We must not be called recursively. */
1642 tree rval;
1644 gcc_assert (pre_fn || post_fn);
1645 gcc_assert (!active);
1646 active++;
1648 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1649 /* We are not diamond shaped, and therefore cannot encounter the
1650 same binfo twice. */
1651 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1652 else
1654 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1655 if (!BINFO_INHERITANCE_CHAIN (binfo))
1657 /* We are at the top of the hierarchy, and can use the
1658 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1659 bases. */
1660 VEC(tree,gc) *vbases;
1661 unsigned ix;
1662 tree base_binfo;
1664 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1665 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1666 BINFO_MARKED (base_binfo) = 0;
1668 else
1669 dfs_unmark_r (binfo);
1672 active--;
1674 return rval;
1677 /* Worker function for dfs_walk_once_accessible. Behaves like
1678 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1679 access given by the current context should be considered, (b) ONCE
1680 indicates whether bases should be marked during traversal. */
1682 static tree
1683 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1684 tree (*pre_fn) (tree, void *),
1685 tree (*post_fn) (tree, void *), void *data)
1687 tree rval = NULL_TREE;
1688 unsigned ix;
1689 tree base_binfo;
1691 /* Call the pre-order walking function. */
1692 if (pre_fn)
1694 rval = pre_fn (binfo, data);
1695 if (rval)
1697 if (rval == dfs_skip_bases)
1698 goto skip_bases;
1700 return rval;
1704 /* Find the next child binfo to walk. */
1705 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1707 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1709 if (mark && BINFO_MARKED (base_binfo))
1710 continue;
1712 /* If the base is inherited via private or protected
1713 inheritance, then we can't see it, unless we are a friend of
1714 the current binfo. */
1715 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1717 tree scope;
1718 if (!friends_p)
1719 continue;
1720 scope = current_scope ();
1721 if (!scope
1722 || TREE_CODE (scope) == NAMESPACE_DECL
1723 || !is_friend (BINFO_TYPE (binfo), scope))
1724 continue;
1727 if (mark)
1728 BINFO_MARKED (base_binfo) = 1;
1730 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1731 pre_fn, post_fn, data);
1732 if (rval)
1733 return rval;
1736 skip_bases:
1737 /* Call the post-order walking function. */
1738 if (post_fn)
1740 rval = post_fn (binfo, data);
1741 gcc_assert (rval != dfs_skip_bases);
1742 return rval;
1745 return NULL_TREE;
1748 /* Like dfs_walk_once except that only accessible bases are walked.
1749 FRIENDS_P indicates whether friendship of the local context
1750 should be considered when determining accessibility. */
1752 static tree
1753 dfs_walk_once_accessible (tree binfo, bool friends_p,
1754 tree (*pre_fn) (tree, void *),
1755 tree (*post_fn) (tree, void *), void *data)
1757 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1758 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1759 pre_fn, post_fn, data);
1761 if (diamond_shaped)
1763 if (!BINFO_INHERITANCE_CHAIN (binfo))
1765 /* We are at the top of the hierarchy, and can use the
1766 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1767 bases. */
1768 VEC(tree,gc) *vbases;
1769 unsigned ix;
1770 tree base_binfo;
1772 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1773 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1774 BINFO_MARKED (base_binfo) = 0;
1776 else
1777 dfs_unmark_r (binfo);
1779 return rval;
1782 /* Check that virtual overrider OVERRIDER is acceptable for base function
1783 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1785 static int
1786 check_final_overrider (tree overrider, tree basefn)
1788 tree over_type = TREE_TYPE (overrider);
1789 tree base_type = TREE_TYPE (basefn);
1790 tree over_return = TREE_TYPE (over_type);
1791 tree base_return = TREE_TYPE (base_type);
1792 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1793 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1794 int fail = 0;
1796 if (DECL_INVALID_OVERRIDER_P (overrider))
1797 return 0;
1799 if (same_type_p (base_return, over_return))
1800 /* OK */;
1801 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1802 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1803 && POINTER_TYPE_P (base_return)))
1805 /* Potentially covariant. */
1806 unsigned base_quals, over_quals;
1808 fail = !POINTER_TYPE_P (base_return);
1809 if (!fail)
1811 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1813 base_return = TREE_TYPE (base_return);
1814 over_return = TREE_TYPE (over_return);
1816 base_quals = cp_type_quals (base_return);
1817 over_quals = cp_type_quals (over_return);
1819 if ((base_quals & over_quals) != over_quals)
1820 fail = 1;
1822 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1824 tree binfo = lookup_base (over_return, base_return,
1825 ba_check | ba_quiet, NULL);
1827 if (!binfo)
1828 fail = 1;
1830 else if (!pedantic
1831 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1832 /* GNU extension, allow trivial pointer conversions such as
1833 converting to void *, or qualification conversion. */
1835 /* can_convert will permit user defined conversion from a
1836 (reference to) class type. We must reject them. */
1837 over_return = non_reference (TREE_TYPE (over_type));
1838 if (CLASS_TYPE_P (over_return))
1839 fail = 2;
1840 else
1842 warning (0, "deprecated covariant return type for %q+#D",
1843 overrider);
1844 warning (0, " overriding %q+#D", basefn);
1847 else
1848 fail = 2;
1850 else
1851 fail = 2;
1852 if (!fail)
1853 /* OK */;
1854 else
1856 if (fail == 1)
1858 error ("invalid covariant return type for %q+#D", overrider);
1859 error (" overriding %q+#D", basefn);
1861 else
1863 error ("conflicting return type specified for %q+#D", overrider);
1864 error (" overriding %q+#D", basefn);
1866 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1867 return 0;
1870 /* Check throw specifier is at least as strict. */
1871 if (!comp_except_specs (base_throw, over_throw, 0))
1873 error ("looser throw specifier for %q+#F", overrider);
1874 error (" overriding %q+#F", basefn);
1875 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1876 return 0;
1879 /* Check for conflicting type attributes. */
1880 if (!targetm.comp_type_attributes (over_type, base_type))
1882 error ("conflicting type attributes specified for %q+#D", overrider);
1883 error (" overriding %q+#D", basefn);
1884 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1885 return 0;
1888 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1890 if (DECL_DELETED_FN (overrider))
1892 error ("deleted function %q+D", overrider);
1893 error ("overriding non-deleted function %q+D", basefn);
1895 else
1897 error ("non-deleted function %q+D", overrider);
1898 error ("overriding deleted function %q+D", basefn);
1900 return 0;
1902 return 1;
1905 /* Given a class TYPE, and a function decl FNDECL, look for
1906 virtual functions in TYPE's hierarchy which FNDECL overrides.
1907 We do not look in TYPE itself, only its bases.
1909 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1910 find that it overrides anything.
1912 We check that every function which is overridden, is correctly
1913 overridden. */
1916 look_for_overrides (tree type, tree fndecl)
1918 tree binfo = TYPE_BINFO (type);
1919 tree base_binfo;
1920 int ix;
1921 int found = 0;
1923 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1925 tree basetype = BINFO_TYPE (base_binfo);
1927 if (TYPE_POLYMORPHIC_P (basetype))
1928 found += look_for_overrides_r (basetype, fndecl);
1930 return found;
1933 /* Look in TYPE for virtual functions with the same signature as
1934 FNDECL. */
1936 tree
1937 look_for_overrides_here (tree type, tree fndecl)
1939 int ix;
1941 /* If there are no methods in TYPE (meaning that only implicitly
1942 declared methods will ever be provided for TYPE), then there are
1943 no virtual functions. */
1944 if (!CLASSTYPE_METHOD_VEC (type))
1945 return NULL_TREE;
1947 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1948 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1949 else
1950 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1951 if (ix >= 0)
1953 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1955 for (; fns; fns = OVL_NEXT (fns))
1957 tree fn = OVL_CURRENT (fns);
1959 if (!DECL_VIRTUAL_P (fn))
1960 /* Not a virtual. */;
1961 else if (DECL_CONTEXT (fn) != type)
1962 /* Introduced with a using declaration. */;
1963 else if (DECL_STATIC_FUNCTION_P (fndecl))
1965 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1966 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1967 if (compparms (TREE_CHAIN (btypes), dtypes))
1968 return fn;
1970 else if (same_signature_p (fndecl, fn))
1971 return fn;
1974 return NULL_TREE;
1977 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1978 TYPE itself and its bases. */
1980 static int
1981 look_for_overrides_r (tree type, tree fndecl)
1983 tree fn = look_for_overrides_here (type, fndecl);
1984 if (fn)
1986 if (DECL_STATIC_FUNCTION_P (fndecl))
1988 /* A static member function cannot match an inherited
1989 virtual member function. */
1990 error ("%q+#D cannot be declared", fndecl);
1991 error (" since %q+#D declared in base class", fn);
1993 else
1995 /* It's definitely virtual, even if not explicitly set. */
1996 DECL_VIRTUAL_P (fndecl) = 1;
1997 check_final_overrider (fndecl, fn);
1999 return 1;
2002 /* We failed to find one declared in this class. Look in its bases. */
2003 return look_for_overrides (type, fndecl);
2006 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2008 static tree
2009 dfs_get_pure_virtuals (tree binfo, void *data)
2011 tree type = (tree) data;
2013 /* We're not interested in primary base classes; the derived class
2014 of which they are a primary base will contain the information we
2015 need. */
2016 if (!BINFO_PRIMARY_P (binfo))
2018 tree virtuals;
2020 for (virtuals = BINFO_VIRTUALS (binfo);
2021 virtuals;
2022 virtuals = TREE_CHAIN (virtuals))
2023 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2024 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2025 BV_FN (virtuals));
2028 return NULL_TREE;
2031 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2033 void
2034 get_pure_virtuals (tree type)
2036 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2037 is going to be overridden. */
2038 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2039 /* Now, run through all the bases which are not primary bases, and
2040 collect the pure virtual functions. We look at the vtable in
2041 each class to determine what pure virtual functions are present.
2042 (A primary base is not interesting because the derived class of
2043 which it is a primary base will contain vtable entries for the
2044 pure virtuals in the base class. */
2045 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2048 /* Debug info for C++ classes can get very large; try to avoid
2049 emitting it everywhere.
2051 Note that this optimization wins even when the target supports
2052 BINCL (if only slightly), and reduces the amount of work for the
2053 linker. */
2055 void
2056 maybe_suppress_debug_info (tree t)
2058 if (write_symbols == NO_DEBUG)
2059 return;
2061 /* We might have set this earlier in cp_finish_decl. */
2062 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2064 /* Always emit the information for each class every time. */
2065 if (flag_emit_class_debug_always)
2066 return;
2068 /* If we already know how we're handling this class, handle debug info
2069 the same way. */
2070 if (CLASSTYPE_INTERFACE_KNOWN (t))
2072 if (CLASSTYPE_INTERFACE_ONLY (t))
2073 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2074 /* else don't set it. */
2076 /* If the class has a vtable, write out the debug info along with
2077 the vtable. */
2078 else if (TYPE_CONTAINS_VPTR_P (t))
2079 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2081 /* Otherwise, just emit the debug info normally. */
2084 /* Note that we want debugging information for a base class of a class
2085 whose vtable is being emitted. Normally, this would happen because
2086 calling the constructor for a derived class implies calling the
2087 constructors for all bases, which involve initializing the
2088 appropriate vptr with the vtable for the base class; but in the
2089 presence of optimization, this initialization may be optimized
2090 away, so we tell finish_vtable_vardecl that we want the debugging
2091 information anyway. */
2093 static tree
2094 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2096 tree t = BINFO_TYPE (binfo);
2098 if (CLASSTYPE_DEBUG_REQUESTED (t))
2099 return dfs_skip_bases;
2101 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2103 return NULL_TREE;
2106 /* Write out the debugging information for TYPE, whose vtable is being
2107 emitted. Also walk through our bases and note that we want to
2108 write out information for them. This avoids the problem of not
2109 writing any debug info for intermediate basetypes whose
2110 constructors, and thus the references to their vtables, and thus
2111 the vtables themselves, were optimized away. */
2113 void
2114 note_debug_info_needed (tree type)
2116 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2118 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2119 rest_of_type_compilation (type, toplevel_bindings_p ());
2122 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2125 void
2126 print_search_statistics (void)
2128 #ifdef GATHER_STATISTICS
2129 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2130 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2131 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2132 n_outer_fields_searched, n_calls_lookup_fnfields);
2133 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2134 #else /* GATHER_STATISTICS */
2135 fprintf (stderr, "no search statistics\n");
2136 #endif /* GATHER_STATISTICS */
2139 void
2140 reinit_search_statistics (void)
2142 #ifdef GATHER_STATISTICS
2143 n_fields_searched = 0;
2144 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2145 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2146 n_calls_get_base_type = 0;
2147 n_outer_fields_searched = 0;
2148 n_contexts_saved = 0;
2149 #endif /* GATHER_STATISTICS */
2152 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2153 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2154 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2155 bases have been encountered already in the tree walk. PARENT_CONVS
2156 is the list of lists of conversion functions that could hide CONV
2157 and OTHER_CONVS is the list of lists of conversion functions that
2158 could hide or be hidden by CONV, should virtualness be involved in
2159 the hierarchy. Merely checking the conversion op's name is not
2160 enough because two conversion operators to the same type can have
2161 different names. Return nonzero if we are visible. */
2163 static int
2164 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2165 tree to_type, tree parent_convs, tree other_convs)
2167 tree level, probe;
2169 /* See if we are hidden by a parent conversion. */
2170 for (level = parent_convs; level; level = TREE_CHAIN (level))
2171 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2172 if (same_type_p (to_type, TREE_TYPE (probe)))
2173 return 0;
2175 if (virtual_depth || virtualness)
2177 /* In a virtual hierarchy, we could be hidden, or could hide a
2178 conversion function on the other_convs list. */
2179 for (level = other_convs; level; level = TREE_CHAIN (level))
2181 int we_hide_them;
2182 int they_hide_us;
2183 tree *prev, other;
2185 if (!(virtual_depth || TREE_STATIC (level)))
2186 /* Neither is morally virtual, so cannot hide each other. */
2187 continue;
2189 if (!TREE_VALUE (level))
2190 /* They evaporated away already. */
2191 continue;
2193 they_hide_us = (virtual_depth
2194 && original_binfo (binfo, TREE_PURPOSE (level)));
2195 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2196 && original_binfo (TREE_PURPOSE (level), binfo));
2198 if (!(we_hide_them || they_hide_us))
2199 /* Neither is within the other, so no hiding can occur. */
2200 continue;
2202 for (prev = &TREE_VALUE (level), other = *prev; other;)
2204 if (same_type_p (to_type, TREE_TYPE (other)))
2206 if (they_hide_us)
2207 /* We are hidden. */
2208 return 0;
2210 if (we_hide_them)
2212 /* We hide the other one. */
2213 other = TREE_CHAIN (other);
2214 *prev = other;
2215 continue;
2218 prev = &TREE_CHAIN (other);
2219 other = *prev;
2223 return 1;
2226 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2227 of conversion functions, the first slot will be for the current
2228 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2229 of conversion functions from children of the current binfo,
2230 concatenated with conversions from elsewhere in the hierarchy --
2231 that list begins with OTHER_CONVS. Return a single list of lists
2232 containing only conversions from the current binfo and its
2233 children. */
2235 static tree
2236 split_conversions (tree my_convs, tree parent_convs,
2237 tree child_convs, tree other_convs)
2239 tree t;
2240 tree prev;
2242 /* Remove the original other_convs portion from child_convs. */
2243 for (prev = NULL, t = child_convs;
2244 t != other_convs; prev = t, t = TREE_CHAIN (t))
2245 continue;
2247 if (prev)
2248 TREE_CHAIN (prev) = NULL_TREE;
2249 else
2250 child_convs = NULL_TREE;
2252 /* Attach the child convs to any we had at this level. */
2253 if (my_convs)
2255 my_convs = parent_convs;
2256 TREE_CHAIN (my_convs) = child_convs;
2258 else
2259 my_convs = child_convs;
2261 return my_convs;
2264 /* Worker for lookup_conversions. Lookup conversion functions in
2265 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2266 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2267 encountered virtual bases already in the tree walk. PARENT_CONVS &
2268 PARENT_TPL_CONVS are lists of list of conversions within parent
2269 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2270 elsewhere in the tree. Return the conversions found within this
2271 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2272 encountered virtualness. We keep template and non-template
2273 conversions separate, to avoid unnecessary type comparisons.
2275 The located conversion functions are held in lists of lists. The
2276 TREE_VALUE of the outer list is the list of conversion functions
2277 found in a particular binfo. The TREE_PURPOSE of both the outer
2278 and inner lists is the binfo at which those conversions were
2279 found. TREE_STATIC is set for those lists within of morally
2280 virtual binfos. The TREE_VALUE of the inner list is the conversion
2281 function or overload itself. The TREE_TYPE of each inner list node
2282 is the converted-to type. */
2284 static int
2285 lookup_conversions_r (tree binfo,
2286 int virtual_depth, int virtualness,
2287 tree parent_convs, tree parent_tpl_convs,
2288 tree other_convs, tree other_tpl_convs,
2289 tree *convs, tree *tpl_convs)
2291 int my_virtualness = 0;
2292 tree my_convs = NULL_TREE;
2293 tree my_tpl_convs = NULL_TREE;
2294 tree child_convs = NULL_TREE;
2295 tree child_tpl_convs = NULL_TREE;
2296 unsigned i;
2297 tree base_binfo;
2298 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2299 tree conv;
2301 /* If we have no conversion operators, then don't look. */
2302 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2304 *convs = *tpl_convs = NULL_TREE;
2306 return 0;
2309 if (BINFO_VIRTUAL_P (binfo))
2310 virtual_depth++;
2312 /* First, locate the unhidden ones at this level. */
2313 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2314 VEC_iterate (tree, method_vec, i, conv);
2315 ++i)
2317 tree cur = OVL_CURRENT (conv);
2319 if (!DECL_CONV_FN_P (cur))
2320 break;
2322 if (TREE_CODE (cur) == TEMPLATE_DECL)
2324 /* Only template conversions can be overloaded, and we must
2325 flatten them out and check each one individually. */
2326 tree tpls;
2328 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2330 tree tpl = OVL_CURRENT (tpls);
2331 tree type = DECL_CONV_FN_TYPE (tpl);
2333 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2334 type, parent_tpl_convs, other_tpl_convs))
2336 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2337 TREE_TYPE (my_tpl_convs) = type;
2338 if (virtual_depth)
2340 TREE_STATIC (my_tpl_convs) = 1;
2341 my_virtualness = 1;
2346 else
2348 tree name = DECL_NAME (cur);
2350 if (!IDENTIFIER_MARKED (name))
2352 tree type = DECL_CONV_FN_TYPE (cur);
2354 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2355 type, parent_convs, other_convs))
2357 my_convs = tree_cons (binfo, conv, my_convs);
2358 TREE_TYPE (my_convs) = type;
2359 if (virtual_depth)
2361 TREE_STATIC (my_convs) = 1;
2362 my_virtualness = 1;
2364 IDENTIFIER_MARKED (name) = 1;
2370 if (my_convs)
2372 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2373 if (virtual_depth)
2374 TREE_STATIC (parent_convs) = 1;
2377 if (my_tpl_convs)
2379 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2380 if (virtual_depth)
2381 TREE_STATIC (parent_tpl_convs) = 1;
2384 child_convs = other_convs;
2385 child_tpl_convs = other_tpl_convs;
2387 /* Now iterate over each base, looking for more conversions. */
2388 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2390 tree base_convs, base_tpl_convs;
2391 unsigned base_virtualness;
2393 base_virtualness = lookup_conversions_r (base_binfo,
2394 virtual_depth, virtualness,
2395 parent_convs, parent_tpl_convs,
2396 child_convs, child_tpl_convs,
2397 &base_convs, &base_tpl_convs);
2398 if (base_virtualness)
2399 my_virtualness = virtualness = 1;
2400 child_convs = chainon (base_convs, child_convs);
2401 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2404 /* Unmark the conversions found at this level */
2405 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2406 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2408 *convs = split_conversions (my_convs, parent_convs,
2409 child_convs, other_convs);
2410 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2411 child_tpl_convs, other_tpl_convs);
2413 return my_virtualness;
2416 /* Return a TREE_LIST containing all the non-hidden user-defined
2417 conversion functions for TYPE (and its base-classes). The
2418 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2419 function. The TREE_PURPOSE is the BINFO from which the conversion
2420 functions in this node were selected. This function is effectively
2421 performing a set of member lookups as lookup_fnfield does, but
2422 using the type being converted to as the unique key, rather than the
2423 field name.
2424 If LOOKUP_TEMPLATE_CONVS_P is TRUE, the returned TREE_LIST contains
2425 the non-hidden user-defined template conversion functions too. */
2427 tree
2428 lookup_conversions (tree type,
2429 bool lookup_template_convs_p)
2431 tree convs, tpl_convs;
2432 tree list = NULL_TREE;
2434 complete_type (type);
2435 if (!TYPE_BINFO (type))
2436 return NULL_TREE;
2438 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2439 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2440 &convs, &tpl_convs);
2442 /* Flatten the list-of-lists */
2443 for (; convs; convs = TREE_CHAIN (convs))
2445 tree probe, next;
2447 for (probe = TREE_VALUE (convs); probe; probe = next)
2449 next = TREE_CHAIN (probe);
2451 TREE_CHAIN (probe) = list;
2452 list = probe;
2456 if (lookup_template_convs_p == false)
2457 tpl_convs = NULL_TREE;
2459 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2461 tree probe, next;
2463 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2465 next = TREE_CHAIN (probe);
2467 TREE_CHAIN (probe) = list;
2468 list = probe;
2472 return list;
2475 /* Returns the binfo of the first direct or indirect virtual base derived
2476 from BINFO, or NULL if binfo is not via virtual. */
2478 tree
2479 binfo_from_vbase (tree binfo)
2481 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2483 if (BINFO_VIRTUAL_P (binfo))
2484 return binfo;
2486 return NULL_TREE;
2489 /* Returns the binfo of the first direct or indirect virtual base derived
2490 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2491 via virtual. */
2493 tree
2494 binfo_via_virtual (tree binfo, tree limit)
2496 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2497 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2498 return NULL_TREE;
2500 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2501 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2503 if (BINFO_VIRTUAL_P (binfo))
2504 return binfo;
2506 return NULL_TREE;
2509 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2510 Find the equivalent binfo within whatever graph HERE is located.
2511 This is the inverse of original_binfo. */
2513 tree
2514 copied_binfo (tree binfo, tree here)
2516 tree result = NULL_TREE;
2518 if (BINFO_VIRTUAL_P (binfo))
2520 tree t;
2522 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2523 t = BINFO_INHERITANCE_CHAIN (t))
2524 continue;
2526 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2528 else if (BINFO_INHERITANCE_CHAIN (binfo))
2530 tree cbinfo;
2531 tree base_binfo;
2532 int ix;
2534 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2535 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2536 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2538 result = base_binfo;
2539 break;
2542 else
2544 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2545 result = here;
2548 gcc_assert (result);
2549 return result;
2552 tree
2553 binfo_for_vbase (tree base, tree t)
2555 unsigned ix;
2556 tree binfo;
2557 VEC(tree,gc) *vbases;
2559 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2560 VEC_iterate (tree, vbases, ix, binfo); ix++)
2561 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2562 return binfo;
2563 return NULL;
2566 /* BINFO is some base binfo of HERE, within some other
2567 hierarchy. Return the equivalent binfo, but in the hierarchy
2568 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2569 is not a base binfo of HERE, returns NULL_TREE. */
2571 tree
2572 original_binfo (tree binfo, tree here)
2574 tree result = NULL;
2576 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2577 result = here;
2578 else if (BINFO_VIRTUAL_P (binfo))
2579 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2580 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2581 : NULL_TREE);
2582 else if (BINFO_INHERITANCE_CHAIN (binfo))
2584 tree base_binfos;
2586 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2587 if (base_binfos)
2589 int ix;
2590 tree base_binfo;
2592 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2593 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2594 BINFO_TYPE (binfo)))
2596 result = base_binfo;
2597 break;
2602 return result;