Merge from mainline (154736:156693)
[official-gcc/graphite-test-results.git] / gcc / cp / init.c
blob1bd80ffa0f8656152230a574013d0f451396fc14
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 bool is_global = !building_stmt_tree ();
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75 return is_global;
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 finish_compound_stmt (compound_stmt);
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
88 gcc_assert (!building_stmt_tree () == is_global);
90 return stmt_expr;
93 /* Constructors */
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 tree base_ptr = TREE_VALUE ((tree) data);
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111 expand_virtual_init (binfo, base_ptr);
114 return NULL_TREE;
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
120 void
121 initialize_vtbl_ptrs (tree addr)
123 tree list;
124 tree type;
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 tree init = NULL_TREE;
153 /* [dcl.init]
155 To zero-initialize an object of type T means:
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
169 -- if T is a reference type, no initialization is performed. */
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173 if (type == error_mark_node)
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 if (value)
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2_loc (input_location,
223 MINUS_EXPR, TREE_TYPE (nelts),
224 nelts, integer_one_node);
225 else
226 max_index = array_type_nelts (type);
228 /* If we have an error_mark here, we should just return error mark
229 as we don't know the size of the array yet. */
230 if (max_index == error_mark_node)
231 return error_mark_node;
232 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
234 /* A zero-sized array, which is accepted as an extension, will
235 have an upper bound of -1. */
236 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
238 constructor_elt *ce;
240 v = VEC_alloc (constructor_elt, gc, 1);
241 ce = VEC_quick_push (constructor_elt, v, NULL);
243 /* If this is a one element array, we just use a regular init. */
244 if (tree_int_cst_equal (size_zero_node, max_index))
245 ce->index = size_zero_node;
246 else
247 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
248 max_index);
250 ce->value = build_zero_init (TREE_TYPE (type),
251 /*nelts=*/NULL_TREE,
252 static_storage_p);
255 /* Build a constructor to contain the initializations. */
256 init = build_constructor (type, v);
258 else if (TREE_CODE (type) == VECTOR_TYPE)
259 init = fold_convert (type, integer_zero_node);
260 else
261 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
263 /* In all cases, the initializer is a constant. */
264 if (init)
265 TREE_CONSTANT (init) = 1;
267 return init;
270 /* Return a suitable initializer for value-initializing an object of type
271 TYPE, as described in [dcl.init]. */
273 tree
274 build_value_init (tree type)
276 /* [dcl.init]
278 To value-initialize an object of type T means:
280 - if T is a class type (clause 9) with a user-provided constructor
281 (12.1), then the default constructor for T is called (and the
282 initialization is ill-formed if T has no accessible default
283 constructor);
285 - if T is a non-union class type without a user-provided constructor,
286 then every non-static data member and base-class component of T is
287 value-initialized;92)
289 - if T is an array type, then each element is value-initialized;
291 - otherwise, the object is zero-initialized.
293 A program that calls for default-initialization or
294 value-initialization of an entity of reference type is ill-formed.
296 92) Value-initialization for such a class object may be implemented by
297 zero-initializing the object and then calling the default
298 constructor. */
300 if (CLASS_TYPE_P (type))
302 if (type_has_user_provided_constructor (type))
303 return build_aggr_init_expr
304 (type,
305 build_special_member_call (NULL_TREE, complete_ctor_identifier,
306 NULL, type, LOOKUP_NORMAL,
307 tf_warning_or_error));
308 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
310 /* This is a class that needs constructing, but doesn't have
311 a user-provided constructor. So we need to zero-initialize
312 the object and then call the implicitly defined ctor.
313 This will be handled in simplify_aggr_init_expr. */
314 tree ctor = build_special_member_call
315 (NULL_TREE, complete_ctor_identifier,
316 NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
318 ctor = build_aggr_init_expr (type, ctor);
319 AGGR_INIT_ZERO_FIRST (ctor) = 1;
320 return ctor;
323 return build_value_init_noctor (type);
326 /* Like build_value_init, but don't call the constructor for TYPE. Used
327 for base initializers. */
329 tree
330 build_value_init_noctor (tree type)
332 if (CLASS_TYPE_P (type))
334 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
336 if (TREE_CODE (type) != UNION_TYPE)
338 tree field;
339 VEC(constructor_elt,gc) *v = NULL;
341 /* Iterate over the fields, building initializations. */
342 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
344 tree ftype, value;
346 if (TREE_CODE (field) != FIELD_DECL)
347 continue;
349 ftype = TREE_TYPE (field);
351 if (TREE_CODE (ftype) == REFERENCE_TYPE)
352 error ("value-initialization of reference");
354 /* We could skip vfields and fields of types with
355 user-defined constructors, but I think that won't improve
356 performance at all; it should be simpler in general just
357 to zero out the entire object than try to only zero the
358 bits that actually need it. */
360 /* Note that for class types there will be FIELD_DECLs
361 corresponding to base classes as well. Thus, iterating
362 over TYPE_FIELDs will result in correct initialization of
363 all of the subobjects. */
364 value = build_value_init (ftype);
366 if (value)
367 CONSTRUCTOR_APPEND_ELT(v, field, value);
370 /* Build a constructor to contain the zero- initializations. */
371 return build_constructor (type, v);
374 else if (TREE_CODE (type) == ARRAY_TYPE)
376 VEC(constructor_elt,gc) *v = NULL;
378 /* Iterate over the array elements, building initializations. */
379 tree max_index = array_type_nelts (type);
381 /* If we have an error_mark here, we should just return error mark
382 as we don't know the size of the array yet. */
383 if (max_index == error_mark_node)
384 return error_mark_node;
385 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
387 /* A zero-sized array, which is accepted as an extension, will
388 have an upper bound of -1. */
389 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
391 constructor_elt *ce;
393 v = VEC_alloc (constructor_elt, gc, 1);
394 ce = VEC_quick_push (constructor_elt, v, NULL);
396 /* If this is a one element array, we just use a regular init. */
397 if (tree_int_cst_equal (size_zero_node, max_index))
398 ce->index = size_zero_node;
399 else
400 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
401 max_index);
403 ce->value = build_value_init (TREE_TYPE (type));
405 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
406 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
407 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
410 /* Build a constructor to contain the initializations. */
411 return build_constructor (type, v);
414 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
417 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
418 arguments. If TREE_LIST is void_type_node, an empty initializer
419 list was given; if NULL_TREE no initializer was given. */
421 static void
422 perform_member_init (tree member, tree init)
424 tree decl;
425 tree type = TREE_TYPE (member);
427 /* Effective C++ rule 12 requires that all data members be
428 initialized. */
429 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
430 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
431 "%qD should be initialized in the member initialization list",
432 member);
434 /* Get an lvalue for the data member. */
435 decl = build_class_member_access_expr (current_class_ref, member,
436 /*access_path=*/NULL_TREE,
437 /*preserve_reference=*/true,
438 tf_warning_or_error);
439 if (decl == error_mark_node)
440 return;
442 if (init == void_type_node)
444 /* mem() means value-initialization. */
445 if (TREE_CODE (type) == ARRAY_TYPE)
447 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
448 /*explicit_value_init_p=*/true,
449 /* from_array=*/0,
450 tf_warning_or_error);
451 finish_expr_stmt (init);
453 else
455 if (TREE_CODE (type) == REFERENCE_TYPE)
456 permerror (DECL_SOURCE_LOCATION (current_function_decl),
457 "value-initialization of %q#D, which has reference type",
458 member);
459 else
461 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
462 finish_expr_stmt (init);
466 /* Deal with this here, as we will get confused if we try to call the
467 assignment op for an anonymous union. This can happen in a
468 synthesized copy constructor. */
469 else if (ANON_AGGR_TYPE_P (type))
471 if (init)
473 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
474 finish_expr_stmt (init);
477 else if (TYPE_NEEDS_CONSTRUCTING (type))
479 if (init != NULL_TREE
480 && TREE_CODE (type) == ARRAY_TYPE
481 && TREE_CHAIN (init) == NULL_TREE
482 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
484 /* Initialization of one array from another. */
485 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
486 /*explicit_value_init_p=*/false,
487 /* from_array=*/1,
488 tf_warning_or_error));
490 else
492 if (CP_TYPE_CONST_P (type)
493 && init == NULL_TREE
494 && !type_has_user_provided_default_constructor (type))
495 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
496 vtable; still give this diagnostic. */
497 permerror (DECL_SOURCE_LOCATION (current_function_decl),
498 "uninitialized member %qD with %<const%> type %qT",
499 member, type);
500 finish_expr_stmt (build_aggr_init (decl, init, 0,
501 tf_warning_or_error));
504 else
506 if (init == NULL_TREE)
508 /* member traversal: note it leaves init NULL */
509 if (TREE_CODE (type) == REFERENCE_TYPE)
510 permerror (DECL_SOURCE_LOCATION (current_function_decl),
511 "uninitialized reference member %qD",
512 member);
513 else if (CP_TYPE_CONST_P (type))
514 permerror (DECL_SOURCE_LOCATION (current_function_decl),
515 "uninitialized member %qD with %<const%> type %qT",
516 member, type);
518 else if (TREE_CODE (init) == TREE_LIST)
519 /* There was an explicit member initialization. Do some work
520 in that case. */
521 init = build_x_compound_expr_from_list (init, "member initializer");
523 if (init)
524 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
525 tf_warning_or_error));
528 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
530 tree expr;
532 expr = build_class_member_access_expr (current_class_ref, member,
533 /*access_path=*/NULL_TREE,
534 /*preserve_reference=*/false,
535 tf_warning_or_error);
536 expr = build_delete (type, expr, sfk_complete_destructor,
537 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
539 if (expr != error_mark_node)
540 finish_eh_cleanup (expr);
544 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
545 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
547 static tree
548 build_field_list (tree t, tree list, int *uses_unions_p)
550 tree fields;
552 *uses_unions_p = 0;
554 /* Note whether or not T is a union. */
555 if (TREE_CODE (t) == UNION_TYPE)
556 *uses_unions_p = 1;
558 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
560 /* Skip CONST_DECLs for enumeration constants and so forth. */
561 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
562 continue;
564 /* Keep track of whether or not any fields are unions. */
565 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
566 *uses_unions_p = 1;
568 /* For an anonymous struct or union, we must recursively
569 consider the fields of the anonymous type. They can be
570 directly initialized from the constructor. */
571 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
573 /* Add this field itself. Synthesized copy constructors
574 initialize the entire aggregate. */
575 list = tree_cons (fields, NULL_TREE, list);
576 /* And now add the fields in the anonymous aggregate. */
577 list = build_field_list (TREE_TYPE (fields), list,
578 uses_unions_p);
580 /* Add this field. */
581 else if (DECL_NAME (fields))
582 list = tree_cons (fields, NULL_TREE, list);
585 return list;
588 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
589 a FIELD_DECL or BINFO in T that needs initialization. The
590 TREE_VALUE gives the initializer, or list of initializer arguments.
592 Return a TREE_LIST containing all of the initializations required
593 for T, in the order in which they should be performed. The output
594 list has the same format as the input. */
596 static tree
597 sort_mem_initializers (tree t, tree mem_inits)
599 tree init;
600 tree base, binfo, base_binfo;
601 tree sorted_inits;
602 tree next_subobject;
603 VEC(tree,gc) *vbases;
604 int i;
605 int uses_unions_p;
607 /* Build up a list of initializations. The TREE_PURPOSE of entry
608 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
609 TREE_VALUE will be the constructor arguments, or NULL if no
610 explicit initialization was provided. */
611 sorted_inits = NULL_TREE;
613 /* Process the virtual bases. */
614 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
615 VEC_iterate (tree, vbases, i, base); i++)
616 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
618 /* Process the direct bases. */
619 for (binfo = TYPE_BINFO (t), i = 0;
620 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
621 if (!BINFO_VIRTUAL_P (base_binfo))
622 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
624 /* Process the non-static data members. */
625 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
626 /* Reverse the entire list of initializations, so that they are in
627 the order that they will actually be performed. */
628 sorted_inits = nreverse (sorted_inits);
630 /* If the user presented the initializers in an order different from
631 that in which they will actually occur, we issue a warning. Keep
632 track of the next subobject which can be explicitly initialized
633 without issuing a warning. */
634 next_subobject = sorted_inits;
636 /* Go through the explicit initializers, filling in TREE_PURPOSE in
637 the SORTED_INITS. */
638 for (init = mem_inits; init; init = TREE_CHAIN (init))
640 tree subobject;
641 tree subobject_init;
643 subobject = TREE_PURPOSE (init);
645 /* If the explicit initializers are in sorted order, then
646 SUBOBJECT will be NEXT_SUBOBJECT, or something following
647 it. */
648 for (subobject_init = next_subobject;
649 subobject_init;
650 subobject_init = TREE_CHAIN (subobject_init))
651 if (TREE_PURPOSE (subobject_init) == subobject)
652 break;
654 /* Issue a warning if the explicit initializer order does not
655 match that which will actually occur.
656 ??? Are all these on the correct lines? */
657 if (warn_reorder && !subobject_init)
659 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
660 warning (OPT_Wreorder, "%q+D will be initialized after",
661 TREE_PURPOSE (next_subobject));
662 else
663 warning (OPT_Wreorder, "base %qT will be initialized after",
664 TREE_PURPOSE (next_subobject));
665 if (TREE_CODE (subobject) == FIELD_DECL)
666 warning (OPT_Wreorder, " %q+#D", subobject);
667 else
668 warning (OPT_Wreorder, " base %qT", subobject);
669 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
670 OPT_Wreorder, " when initialized here");
673 /* Look again, from the beginning of the list. */
674 if (!subobject_init)
676 subobject_init = sorted_inits;
677 while (TREE_PURPOSE (subobject_init) != subobject)
678 subobject_init = TREE_CHAIN (subobject_init);
681 /* It is invalid to initialize the same subobject more than
682 once. */
683 if (TREE_VALUE (subobject_init))
685 if (TREE_CODE (subobject) == FIELD_DECL)
686 error_at (DECL_SOURCE_LOCATION (current_function_decl),
687 "multiple initializations given for %qD",
688 subobject);
689 else
690 error_at (DECL_SOURCE_LOCATION (current_function_decl),
691 "multiple initializations given for base %qT",
692 subobject);
695 /* Record the initialization. */
696 TREE_VALUE (subobject_init) = TREE_VALUE (init);
697 next_subobject = subobject_init;
700 /* [class.base.init]
702 If a ctor-initializer specifies more than one mem-initializer for
703 multiple members of the same union (including members of
704 anonymous unions), the ctor-initializer is ill-formed. */
705 if (uses_unions_p)
707 tree last_field = NULL_TREE;
708 for (init = sorted_inits; init; init = TREE_CHAIN (init))
710 tree field;
711 tree field_type;
712 int done;
714 /* Skip uninitialized members and base classes. */
715 if (!TREE_VALUE (init)
716 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
717 continue;
718 /* See if this field is a member of a union, or a member of a
719 structure contained in a union, etc. */
720 field = TREE_PURPOSE (init);
721 for (field_type = DECL_CONTEXT (field);
722 !same_type_p (field_type, t);
723 field_type = TYPE_CONTEXT (field_type))
724 if (TREE_CODE (field_type) == UNION_TYPE)
725 break;
726 /* If this field is not a member of a union, skip it. */
727 if (TREE_CODE (field_type) != UNION_TYPE)
728 continue;
730 /* It's only an error if we have two initializers for the same
731 union type. */
732 if (!last_field)
734 last_field = field;
735 continue;
738 /* See if LAST_FIELD and the field initialized by INIT are
739 members of the same union. If so, there's a problem,
740 unless they're actually members of the same structure
741 which is itself a member of a union. For example, given:
743 union { struct { int i; int j; }; };
745 initializing both `i' and `j' makes sense. */
746 field_type = DECL_CONTEXT (field);
747 done = 0;
750 tree last_field_type;
752 last_field_type = DECL_CONTEXT (last_field);
753 while (1)
755 if (same_type_p (last_field_type, field_type))
757 if (TREE_CODE (field_type) == UNION_TYPE)
758 error_at (DECL_SOURCE_LOCATION (current_function_decl),
759 "initializations for multiple members of %qT",
760 last_field_type);
761 done = 1;
762 break;
765 if (same_type_p (last_field_type, t))
766 break;
768 last_field_type = TYPE_CONTEXT (last_field_type);
771 /* If we've reached the outermost class, then we're
772 done. */
773 if (same_type_p (field_type, t))
774 break;
776 field_type = TYPE_CONTEXT (field_type);
778 while (!done);
780 last_field = field;
784 return sorted_inits;
787 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
788 is a TREE_LIST giving the explicit mem-initializer-list for the
789 constructor. The TREE_PURPOSE of each entry is a subobject (a
790 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
791 is a TREE_LIST giving the arguments to the constructor or
792 void_type_node for an empty list of arguments. */
794 void
795 emit_mem_initializers (tree mem_inits)
797 /* We will already have issued an error message about the fact that
798 the type is incomplete. */
799 if (!COMPLETE_TYPE_P (current_class_type))
800 return;
802 /* Sort the mem-initializers into the order in which the
803 initializations should be performed. */
804 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
806 in_base_initializer = 1;
808 /* Initialize base classes. */
809 while (mem_inits
810 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
812 tree subobject = TREE_PURPOSE (mem_inits);
813 tree arguments = TREE_VALUE (mem_inits);
815 /* If these initializations are taking place in a copy constructor,
816 the base class should probably be explicitly initialized if there
817 is a user-defined constructor in the base class (other than the
818 default constructor, which will be called anyway). */
819 if (extra_warnings && !arguments
820 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
821 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
822 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
823 "base class %q#T should be explicitly initialized in the "
824 "copy constructor",
825 BINFO_TYPE (subobject));
827 /* Initialize the base. */
828 if (BINFO_VIRTUAL_P (subobject))
829 construct_virtual_base (subobject, arguments);
830 else
832 tree base_addr;
834 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
835 subobject, 1);
836 expand_aggr_init_1 (subobject, NULL_TREE,
837 cp_build_indirect_ref (base_addr, RO_NULL,
838 tf_warning_or_error),
839 arguments,
840 LOOKUP_NORMAL,
841 tf_warning_or_error);
842 expand_cleanup_for_base (subobject, NULL_TREE);
845 mem_inits = TREE_CHAIN (mem_inits);
847 in_base_initializer = 0;
849 /* Initialize the vptrs. */
850 initialize_vtbl_ptrs (current_class_ptr);
852 /* Initialize the data members. */
853 while (mem_inits)
855 perform_member_init (TREE_PURPOSE (mem_inits),
856 TREE_VALUE (mem_inits));
857 mem_inits = TREE_CHAIN (mem_inits);
861 /* Returns the address of the vtable (i.e., the value that should be
862 assigned to the vptr) for BINFO. */
864 static tree
865 build_vtbl_address (tree binfo)
867 tree binfo_for = binfo;
868 tree vtbl;
870 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
871 /* If this is a virtual primary base, then the vtable we want to store
872 is that for the base this is being used as the primary base of. We
873 can't simply skip the initialization, because we may be expanding the
874 inits of a subobject constructor where the virtual base layout
875 can be different. */
876 while (BINFO_PRIMARY_P (binfo_for))
877 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
879 /* Figure out what vtable BINFO's vtable is based on, and mark it as
880 used. */
881 vtbl = get_vtbl_decl_for_binfo (binfo_for);
882 TREE_USED (vtbl) = 1;
884 /* Now compute the address to use when initializing the vptr. */
885 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
886 if (TREE_CODE (vtbl) == VAR_DECL)
887 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
889 return vtbl;
892 /* This code sets up the virtual function tables appropriate for
893 the pointer DECL. It is a one-ply initialization.
895 BINFO is the exact type that DECL is supposed to be. In
896 multiple inheritance, this might mean "C's A" if C : A, B. */
898 static void
899 expand_virtual_init (tree binfo, tree decl)
901 tree vtbl, vtbl_ptr;
902 tree vtt_index;
904 /* Compute the initializer for vptr. */
905 vtbl = build_vtbl_address (binfo);
907 /* We may get this vptr from a VTT, if this is a subobject
908 constructor or subobject destructor. */
909 vtt_index = BINFO_VPTR_INDEX (binfo);
910 if (vtt_index)
912 tree vtbl2;
913 tree vtt_parm;
915 /* Compute the value to use, when there's a VTT. */
916 vtt_parm = current_vtt_parm;
917 vtbl2 = build2 (POINTER_PLUS_EXPR,
918 TREE_TYPE (vtt_parm),
919 vtt_parm,
920 vtt_index);
921 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
922 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
924 /* The actual initializer is the VTT value only in the subobject
925 constructor. In maybe_clone_body we'll substitute NULL for
926 the vtt_parm in the case of the non-subobject constructor. */
927 vtbl = build3 (COND_EXPR,
928 TREE_TYPE (vtbl),
929 build2 (EQ_EXPR, boolean_type_node,
930 current_in_charge_parm, integer_zero_node),
931 vtbl2,
932 vtbl);
935 /* Compute the location of the vtpr. */
936 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
937 tf_warning_or_error),
938 TREE_TYPE (binfo));
939 gcc_assert (vtbl_ptr != error_mark_node);
941 /* Assign the vtable to the vptr. */
942 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
943 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
944 tf_warning_or_error));
947 /* If an exception is thrown in a constructor, those base classes already
948 constructed must be destroyed. This function creates the cleanup
949 for BINFO, which has just been constructed. If FLAG is non-NULL,
950 it is a DECL which is nonzero when this base needs to be
951 destroyed. */
953 static void
954 expand_cleanup_for_base (tree binfo, tree flag)
956 tree expr;
958 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
959 return;
961 /* Call the destructor. */
962 expr = build_special_member_call (current_class_ref,
963 base_dtor_identifier,
964 NULL,
965 binfo,
966 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
967 tf_warning_or_error);
968 if (flag)
969 expr = fold_build3_loc (input_location,
970 COND_EXPR, void_type_node,
971 c_common_truthvalue_conversion (input_location, flag),
972 expr, integer_zero_node);
974 finish_eh_cleanup (expr);
977 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
978 constructor. */
980 static void
981 construct_virtual_base (tree vbase, tree arguments)
983 tree inner_if_stmt;
984 tree exp;
985 tree flag;
987 /* If there are virtual base classes with destructors, we need to
988 emit cleanups to destroy them if an exception is thrown during
989 the construction process. These exception regions (i.e., the
990 period during which the cleanups must occur) begin from the time
991 the construction is complete to the end of the function. If we
992 create a conditional block in which to initialize the
993 base-classes, then the cleanup region for the virtual base begins
994 inside a block, and ends outside of that block. This situation
995 confuses the sjlj exception-handling code. Therefore, we do not
996 create a single conditional block, but one for each
997 initialization. (That way the cleanup regions always begin
998 in the outer block.) We trust the back end to figure out
999 that the FLAG will not change across initializations, and
1000 avoid doing multiple tests. */
1001 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1002 inner_if_stmt = begin_if_stmt ();
1003 finish_if_stmt_cond (flag, inner_if_stmt);
1005 /* Compute the location of the virtual base. If we're
1006 constructing virtual bases, then we must be the most derived
1007 class. Therefore, we don't have to look up the virtual base;
1008 we already know where it is. */
1009 exp = convert_to_base_statically (current_class_ref, vbase);
1011 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1012 LOOKUP_COMPLAIN, tf_warning_or_error);
1013 finish_then_clause (inner_if_stmt);
1014 finish_if_stmt (inner_if_stmt);
1016 expand_cleanup_for_base (vbase, flag);
1019 /* Find the context in which this FIELD can be initialized. */
1021 static tree
1022 initializing_context (tree field)
1024 tree t = DECL_CONTEXT (field);
1026 /* Anonymous union members can be initialized in the first enclosing
1027 non-anonymous union context. */
1028 while (t && ANON_AGGR_TYPE_P (t))
1029 t = TYPE_CONTEXT (t);
1030 return t;
1033 /* Function to give error message if member initialization specification
1034 is erroneous. FIELD is the member we decided to initialize.
1035 TYPE is the type for which the initialization is being performed.
1036 FIELD must be a member of TYPE.
1038 MEMBER_NAME is the name of the member. */
1040 static int
1041 member_init_ok_or_else (tree field, tree type, tree member_name)
1043 if (field == error_mark_node)
1044 return 0;
1045 if (!field)
1047 error ("class %qT does not have any field named %qD", type,
1048 member_name);
1049 return 0;
1051 if (TREE_CODE (field) == VAR_DECL)
1053 error ("%q#D is a static data member; it can only be "
1054 "initialized at its definition",
1055 field);
1056 return 0;
1058 if (TREE_CODE (field) != FIELD_DECL)
1060 error ("%q#D is not a non-static data member of %qT",
1061 field, type);
1062 return 0;
1064 if (initializing_context (field) != type)
1066 error ("class %qT does not have any field named %qD", type,
1067 member_name);
1068 return 0;
1071 return 1;
1074 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1075 is a _TYPE node or TYPE_DECL which names a base for that type.
1076 Check the validity of NAME, and return either the base _TYPE, base
1077 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1078 NULL_TREE and issue a diagnostic.
1080 An old style unnamed direct single base construction is permitted,
1081 where NAME is NULL. */
1083 tree
1084 expand_member_init (tree name)
1086 tree basetype;
1087 tree field;
1089 if (!current_class_ref)
1090 return NULL_TREE;
1092 if (!name)
1094 /* This is an obsolete unnamed base class initializer. The
1095 parser will already have warned about its use. */
1096 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1098 case 0:
1099 error ("unnamed initializer for %qT, which has no base classes",
1100 current_class_type);
1101 return NULL_TREE;
1102 case 1:
1103 basetype = BINFO_TYPE
1104 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1105 break;
1106 default:
1107 error ("unnamed initializer for %qT, which uses multiple inheritance",
1108 current_class_type);
1109 return NULL_TREE;
1112 else if (TYPE_P (name))
1114 basetype = TYPE_MAIN_VARIANT (name);
1115 name = TYPE_NAME (name);
1117 else if (TREE_CODE (name) == TYPE_DECL)
1118 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1119 else
1120 basetype = NULL_TREE;
1122 if (basetype)
1124 tree class_binfo;
1125 tree direct_binfo;
1126 tree virtual_binfo;
1127 int i;
1129 if (current_template_parms)
1130 return basetype;
1132 class_binfo = TYPE_BINFO (current_class_type);
1133 direct_binfo = NULL_TREE;
1134 virtual_binfo = NULL_TREE;
1136 /* Look for a direct base. */
1137 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1138 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1139 break;
1141 /* Look for a virtual base -- unless the direct base is itself
1142 virtual. */
1143 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1144 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1146 /* [class.base.init]
1148 If a mem-initializer-id is ambiguous because it designates
1149 both a direct non-virtual base class and an inherited virtual
1150 base class, the mem-initializer is ill-formed. */
1151 if (direct_binfo && virtual_binfo)
1153 error ("%qD is both a direct base and an indirect virtual base",
1154 basetype);
1155 return NULL_TREE;
1158 if (!direct_binfo && !virtual_binfo)
1160 if (CLASSTYPE_VBASECLASSES (current_class_type))
1161 error ("type %qT is not a direct or virtual base of %qT",
1162 basetype, current_class_type);
1163 else
1164 error ("type %qT is not a direct base of %qT",
1165 basetype, current_class_type);
1166 return NULL_TREE;
1169 return direct_binfo ? direct_binfo : virtual_binfo;
1171 else
1173 if (TREE_CODE (name) == IDENTIFIER_NODE)
1174 field = lookup_field (current_class_type, name, 1, false);
1175 else
1176 field = name;
1178 if (member_init_ok_or_else (field, current_class_type, name))
1179 return field;
1182 return NULL_TREE;
1185 /* This is like `expand_member_init', only it stores one aggregate
1186 value into another.
1188 INIT comes in two flavors: it is either a value which
1189 is to be stored in EXP, or it is a parameter list
1190 to go to a constructor, which will operate on EXP.
1191 If INIT is not a parameter list for a constructor, then set
1192 LOOKUP_ONLYCONVERTING.
1193 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1194 the initializer, if FLAGS is 0, then it is the (init) form.
1195 If `init' is a CONSTRUCTOR, then we emit a warning message,
1196 explaining that such initializations are invalid.
1198 If INIT resolves to a CALL_EXPR which happens to return
1199 something of the type we are looking for, then we know
1200 that we can safely use that call to perform the
1201 initialization.
1203 The virtual function table pointer cannot be set up here, because
1204 we do not really know its type.
1206 This never calls operator=().
1208 When initializing, nothing is CONST.
1210 A default copy constructor may have to be used to perform the
1211 initialization.
1213 A constructor or a conversion operator may have to be used to
1214 perform the initialization, but not both, as it would be ambiguous. */
1216 tree
1217 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1219 tree stmt_expr;
1220 tree compound_stmt;
1221 int destroy_temps;
1222 tree type = TREE_TYPE (exp);
1223 int was_const = TREE_READONLY (exp);
1224 int was_volatile = TREE_THIS_VOLATILE (exp);
1225 int is_global;
1227 if (init == error_mark_node)
1228 return error_mark_node;
1230 TREE_READONLY (exp) = 0;
1231 TREE_THIS_VOLATILE (exp) = 0;
1233 if (init && TREE_CODE (init) != TREE_LIST)
1234 flags |= LOOKUP_ONLYCONVERTING;
1236 if (TREE_CODE (type) == ARRAY_TYPE)
1238 tree itype;
1240 /* An array may not be initialized use the parenthesized
1241 initialization form -- unless the initializer is "()". */
1242 if (init && TREE_CODE (init) == TREE_LIST)
1244 if (complain & tf_error)
1245 error ("bad array initializer");
1246 return error_mark_node;
1248 /* Must arrange to initialize each element of EXP
1249 from elements of INIT. */
1250 itype = init ? TREE_TYPE (init) : NULL_TREE;
1251 if (cv_qualified_p (type))
1252 TREE_TYPE (exp) = cv_unqualified (type);
1253 if (itype && cv_qualified_p (itype))
1254 TREE_TYPE (init) = cv_unqualified (itype);
1255 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1256 /*explicit_value_init_p=*/false,
1257 itype && same_type_p (TREE_TYPE (init),
1258 TREE_TYPE (exp)),
1259 complain);
1260 TREE_READONLY (exp) = was_const;
1261 TREE_THIS_VOLATILE (exp) = was_volatile;
1262 TREE_TYPE (exp) = type;
1263 if (init)
1264 TREE_TYPE (init) = itype;
1265 return stmt_expr;
1268 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1269 /* Just know that we've seen something for this node. */
1270 TREE_USED (exp) = 1;
1272 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1273 destroy_temps = stmts_are_full_exprs_p ();
1274 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1275 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1276 init, LOOKUP_NORMAL|flags, complain);
1277 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1278 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1279 TREE_READONLY (exp) = was_const;
1280 TREE_THIS_VOLATILE (exp) = was_volatile;
1282 return stmt_expr;
1285 static void
1286 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1287 tsubst_flags_t complain)
1289 tree type = TREE_TYPE (exp);
1290 tree ctor_name;
1292 /* It fails because there may not be a constructor which takes
1293 its own type as the first (or only parameter), but which does
1294 take other types via a conversion. So, if the thing initializing
1295 the expression is a unit element of type X, first try X(X&),
1296 followed by initialization by X. If neither of these work
1297 out, then look hard. */
1298 tree rval;
1299 VEC(tree,gc) *parms;
1301 if (init && TREE_CODE (init) != TREE_LIST
1302 && (flags & LOOKUP_ONLYCONVERTING))
1304 /* Base subobjects should only get direct-initialization. */
1305 gcc_assert (true_exp == exp);
1307 if (flags & DIRECT_BIND)
1308 /* Do nothing. We hit this in two cases: Reference initialization,
1309 where we aren't initializing a real variable, so we don't want
1310 to run a new constructor; and catching an exception, where we
1311 have already built up the constructor call so we could wrap it
1312 in an exception region. */;
1313 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1314 && CP_AGGREGATE_TYPE_P (type))
1316 /* A brace-enclosed initializer for an aggregate. */
1317 init = digest_init (type, init);
1319 else
1320 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1322 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1323 /* We need to protect the initialization of a catch parm with a
1324 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1325 around the TARGET_EXPR for the copy constructor. See
1326 initialize_handler_parm. */
1328 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1329 TREE_OPERAND (init, 0));
1330 TREE_TYPE (init) = void_type_node;
1332 else
1333 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1334 TREE_SIDE_EFFECTS (init) = 1;
1335 finish_expr_stmt (init);
1336 return;
1339 if (init == NULL_TREE)
1340 parms = NULL;
1341 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1343 parms = make_tree_vector ();
1344 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1345 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1347 else
1348 parms = make_tree_vector_single (init);
1350 if (true_exp == exp)
1351 ctor_name = complete_ctor_identifier;
1352 else
1353 ctor_name = base_ctor_identifier;
1355 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1356 complain);
1358 if (parms != NULL)
1359 release_tree_vector (parms);
1361 if (TREE_SIDE_EFFECTS (rval))
1362 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1365 /* This function is responsible for initializing EXP with INIT
1366 (if any).
1368 BINFO is the binfo of the type for who we are performing the
1369 initialization. For example, if W is a virtual base class of A and B,
1370 and C : A, B.
1371 If we are initializing B, then W must contain B's W vtable, whereas
1372 were we initializing C, W must contain C's W vtable.
1374 TRUE_EXP is nonzero if it is the true expression being initialized.
1375 In this case, it may be EXP, or may just contain EXP. The reason we
1376 need this is because if EXP is a base element of TRUE_EXP, we
1377 don't necessarily know by looking at EXP where its virtual
1378 baseclass fields should really be pointing. But we do know
1379 from TRUE_EXP. In constructors, we don't know anything about
1380 the value being initialized.
1382 FLAGS is just passed to `build_new_method_call'. See that function
1383 for its description. */
1385 static void
1386 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1387 tsubst_flags_t complain)
1389 tree type = TREE_TYPE (exp);
1391 gcc_assert (init != error_mark_node && type != error_mark_node);
1392 gcc_assert (building_stmt_tree ());
1394 /* Use a function returning the desired type to initialize EXP for us.
1395 If the function is a constructor, and its first argument is
1396 NULL_TREE, know that it was meant for us--just slide exp on
1397 in and expand the constructor. Constructors now come
1398 as TARGET_EXPRs. */
1400 if (init && TREE_CODE (exp) == VAR_DECL
1401 && COMPOUND_LITERAL_P (init))
1403 /* If store_init_value returns NULL_TREE, the INIT has been
1404 recorded as the DECL_INITIAL for EXP. That means there's
1405 nothing more we have to do. */
1406 init = store_init_value (exp, init, flags);
1407 if (init)
1408 finish_expr_stmt (init);
1409 return;
1412 /* If an explicit -- but empty -- initializer list was present,
1413 that's value-initialization. */
1414 if (init == void_type_node)
1416 /* If there's a user-provided constructor, we just call that. */
1417 if (type_has_user_provided_constructor (type))
1418 /* Fall through. */;
1419 /* If there isn't, but we still need to call the constructor,
1420 zero out the object first. */
1421 else if (TYPE_NEEDS_CONSTRUCTING (type))
1423 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1424 init = build2 (INIT_EXPR, type, exp, init);
1425 finish_expr_stmt (init);
1426 /* And then call the constructor. */
1428 /* If we don't need to mess with the constructor at all,
1429 then just zero out the object and we're done. */
1430 else
1432 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1433 finish_expr_stmt (init);
1434 return;
1436 init = NULL_TREE;
1439 /* We know that expand_default_init can handle everything we want
1440 at this point. */
1441 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1444 /* Report an error if TYPE is not a user-defined, class type. If
1445 OR_ELSE is nonzero, give an error message. */
1448 is_class_type (tree type, int or_else)
1450 if (type == error_mark_node)
1451 return 0;
1453 if (! CLASS_TYPE_P (type))
1455 if (or_else)
1456 error ("%qT is not a class type", type);
1457 return 0;
1459 return 1;
1462 tree
1463 get_type_value (tree name)
1465 if (name == error_mark_node)
1466 return NULL_TREE;
1468 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1469 return IDENTIFIER_TYPE_VALUE (name);
1470 else
1471 return NULL_TREE;
1474 /* Build a reference to a member of an aggregate. This is not a C++
1475 `&', but really something which can have its address taken, and
1476 then act as a pointer to member, for example TYPE :: FIELD can have
1477 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1478 this expression is the operand of "&".
1480 @@ Prints out lousy diagnostics for operator <typename>
1481 @@ fields.
1483 @@ This function should be rewritten and placed in search.c. */
1485 tree
1486 build_offset_ref (tree type, tree member, bool address_p)
1488 tree decl;
1489 tree basebinfo = NULL_TREE;
1491 /* class templates can come in as TEMPLATE_DECLs here. */
1492 if (TREE_CODE (member) == TEMPLATE_DECL)
1493 return member;
1495 if (dependent_type_p (type) || type_dependent_expression_p (member))
1496 return build_qualified_name (NULL_TREE, type, member,
1497 /*template_p=*/false);
1499 gcc_assert (TYPE_P (type));
1500 if (! is_class_type (type, 1))
1501 return error_mark_node;
1503 gcc_assert (DECL_P (member) || BASELINK_P (member));
1504 /* Callers should call mark_used before this point. */
1505 gcc_assert (!DECL_P (member) || TREE_USED (member));
1507 if (!COMPLETE_TYPE_P (complete_type (type))
1508 && !TYPE_BEING_DEFINED (type))
1510 error ("incomplete type %qT does not have member %qD", type, member);
1511 return error_mark_node;
1514 /* Entities other than non-static members need no further
1515 processing. */
1516 if (TREE_CODE (member) == TYPE_DECL)
1517 return member;
1518 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1519 return convert_from_reference (member);
1521 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1523 error ("invalid pointer to bit-field %qD", member);
1524 return error_mark_node;
1527 /* Set up BASEBINFO for member lookup. */
1528 decl = maybe_dummy_object (type, &basebinfo);
1530 /* A lot of this logic is now handled in lookup_member. */
1531 if (BASELINK_P (member))
1533 /* Go from the TREE_BASELINK to the member function info. */
1534 tree t = BASELINK_FUNCTIONS (member);
1536 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1538 /* Get rid of a potential OVERLOAD around it. */
1539 t = OVL_CURRENT (t);
1541 /* Unique functions are handled easily. */
1543 /* For non-static member of base class, we need a special rule
1544 for access checking [class.protected]:
1546 If the access is to form a pointer to member, the
1547 nested-name-specifier shall name the derived class
1548 (or any class derived from that class). */
1549 if (address_p && DECL_P (t)
1550 && DECL_NONSTATIC_MEMBER_P (t))
1551 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1552 else
1553 perform_or_defer_access_check (basebinfo, t, t);
1555 if (DECL_STATIC_FUNCTION_P (t))
1556 return t;
1557 member = t;
1559 else
1560 TREE_TYPE (member) = unknown_type_node;
1562 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1563 /* We need additional test besides the one in
1564 check_accessibility_of_qualified_id in case it is
1565 a pointer to non-static member. */
1566 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1568 if (!address_p)
1570 /* If MEMBER is non-static, then the program has fallen afoul of
1571 [expr.prim]:
1573 An id-expression that denotes a nonstatic data member or
1574 nonstatic member function of a class can only be used:
1576 -- as part of a class member access (_expr.ref_) in which the
1577 object-expression refers to the member's class or a class
1578 derived from that class, or
1580 -- to form a pointer to member (_expr.unary.op_), or
1582 -- in the body of a nonstatic member function of that class or
1583 of a class derived from that class (_class.mfct.nonstatic_), or
1585 -- in a mem-initializer for a constructor for that class or for
1586 a class derived from that class (_class.base.init_). */
1587 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1589 /* Build a representation of the qualified name suitable
1590 for use as the operand to "&" -- even though the "&" is
1591 not actually present. */
1592 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1593 /* In Microsoft mode, treat a non-static member function as if
1594 it were a pointer-to-member. */
1595 if (flag_ms_extensions)
1597 PTRMEM_OK_P (member) = 1;
1598 return cp_build_unary_op (ADDR_EXPR, member, 0,
1599 tf_warning_or_error);
1601 error ("invalid use of non-static member function %qD",
1602 TREE_OPERAND (member, 1));
1603 return error_mark_node;
1605 else if (TREE_CODE (member) == FIELD_DECL)
1607 error ("invalid use of non-static data member %qD", member);
1608 return error_mark_node;
1610 return member;
1613 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1614 PTRMEM_OK_P (member) = 1;
1615 return member;
1618 /* If DECL is a scalar enumeration constant or variable with a
1619 constant initializer, return the initializer (or, its initializers,
1620 recursively); otherwise, return DECL. If INTEGRAL_P, the
1621 initializer is only returned if DECL is an integral
1622 constant-expression. */
1624 static tree
1625 constant_value_1 (tree decl, bool integral_p)
1627 while (TREE_CODE (decl) == CONST_DECL
1628 || (integral_p
1629 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1630 : (TREE_CODE (decl) == VAR_DECL
1631 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1633 tree init;
1634 /* Static data members in template classes may have
1635 non-dependent initializers. References to such non-static
1636 data members are not value-dependent, so we must retrieve the
1637 initializer here. The DECL_INITIAL will have the right type,
1638 but will not have been folded because that would prevent us
1639 from performing all appropriate semantic checks at
1640 instantiation time. */
1641 if (DECL_CLASS_SCOPE_P (decl)
1642 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1643 && uses_template_parms (CLASSTYPE_TI_ARGS
1644 (DECL_CONTEXT (decl))))
1646 ++processing_template_decl;
1647 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1648 --processing_template_decl;
1650 else
1652 /* If DECL is a static data member in a template
1653 specialization, we must instantiate it here. The
1654 initializer for the static data member is not processed
1655 until needed; we need it now. */
1656 mark_used (decl);
1657 init = DECL_INITIAL (decl);
1659 if (init == error_mark_node)
1660 return decl;
1661 /* Initializers in templates are generally expanded during
1662 instantiation, so before that for const int i(2)
1663 INIT is a TREE_LIST with the actual initializer as
1664 TREE_VALUE. */
1665 if (processing_template_decl
1666 && init
1667 && TREE_CODE (init) == TREE_LIST
1668 && TREE_CHAIN (init) == NULL_TREE)
1669 init = TREE_VALUE (init);
1670 if (!init
1671 || !TREE_TYPE (init)
1672 || (integral_p
1673 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1674 : (!TREE_CONSTANT (init)
1675 /* Do not return an aggregate constant (of which
1676 string literals are a special case), as we do not
1677 want to make inadvertent copies of such entities,
1678 and we must be sure that their addresses are the
1679 same everywhere. */
1680 || TREE_CODE (init) == CONSTRUCTOR
1681 || TREE_CODE (init) == STRING_CST)))
1682 break;
1683 decl = unshare_expr (init);
1685 return decl;
1688 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1689 constant of integral or enumeration type, then return that value.
1690 These are those variables permitted in constant expressions by
1691 [5.19/1]. */
1693 tree
1694 integral_constant_value (tree decl)
1696 return constant_value_1 (decl, /*integral_p=*/true);
1699 /* A more relaxed version of integral_constant_value, used by the
1700 common C/C++ code and by the C++ front end for optimization
1701 purposes. */
1703 tree
1704 decl_constant_value (tree decl)
1706 return constant_value_1 (decl,
1707 /*integral_p=*/processing_template_decl);
1710 /* Common subroutines of build_new and build_vec_delete. */
1712 /* Call the global __builtin_delete to delete ADDR. */
1714 static tree
1715 build_builtin_delete_call (tree addr)
1717 mark_used (global_delete_fndecl);
1718 return build_call_n (global_delete_fndecl, 1, addr);
1721 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1722 the type of the object being allocated; otherwise, it's just TYPE.
1723 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1724 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1725 a vector of arguments to be provided as arguments to a placement
1726 new operator. This routine performs no semantic checks; it just
1727 creates and returns a NEW_EXPR. */
1729 static tree
1730 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1731 VEC(tree,gc) *init, int use_global_new)
1733 tree init_list;
1734 tree new_expr;
1736 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1737 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1738 permits us to distinguish the case of a missing initializer "new
1739 int" from an empty initializer "new int()". */
1740 if (init == NULL)
1741 init_list = NULL_TREE;
1742 else if (VEC_empty (tree, init))
1743 init_list = void_zero_node;
1744 else
1745 init_list = build_tree_list_vec (init);
1747 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1748 build_tree_list_vec (placement), type, nelts,
1749 init_list);
1750 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1751 TREE_SIDE_EFFECTS (new_expr) = 1;
1753 return new_expr;
1756 /* Generate code for a new-expression, including calling the "operator
1757 new" function, initializing the object, and, if an exception occurs
1758 during construction, cleaning up. The arguments are as for
1759 build_raw_new_expr. This may change PLACEMENT and INIT. */
1761 static tree
1762 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1763 VEC(tree,gc) **init, bool globally_qualified_p,
1764 tsubst_flags_t complain)
1766 tree size, rval;
1767 /* True iff this is a call to "operator new[]" instead of just
1768 "operator new". */
1769 bool array_p = false;
1770 /* If ARRAY_P is true, the element type of the array. This is never
1771 an ARRAY_TYPE; for something like "new int[3][4]", the
1772 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1773 TYPE. */
1774 tree elt_type;
1775 /* The type of the new-expression. (This type is always a pointer
1776 type.) */
1777 tree pointer_type;
1778 tree non_const_pointer_type;
1779 tree outer_nelts = NULL_TREE;
1780 tree alloc_call, alloc_expr;
1781 /* The address returned by the call to "operator new". This node is
1782 a VAR_DECL and is therefore reusable. */
1783 tree alloc_node;
1784 tree alloc_fn;
1785 tree cookie_expr, init_expr;
1786 int nothrow, check_new;
1787 int use_java_new = 0;
1788 /* If non-NULL, the number of extra bytes to allocate at the
1789 beginning of the storage allocated for an array-new expression in
1790 order to store the number of elements. */
1791 tree cookie_size = NULL_TREE;
1792 tree placement_first;
1793 tree placement_expr = NULL_TREE;
1794 /* True if the function we are calling is a placement allocation
1795 function. */
1796 bool placement_allocation_fn_p;
1797 /* True if the storage must be initialized, either by a constructor
1798 or due to an explicit new-initializer. */
1799 bool is_initialized;
1800 /* The address of the thing allocated, not including any cookie. In
1801 particular, if an array cookie is in use, DATA_ADDR is the
1802 address of the first array element. This node is a VAR_DECL, and
1803 is therefore reusable. */
1804 tree data_addr;
1805 tree init_preeval_expr = NULL_TREE;
1807 if (nelts)
1809 outer_nelts = nelts;
1810 array_p = true;
1812 else if (TREE_CODE (type) == ARRAY_TYPE)
1814 array_p = true;
1815 nelts = array_type_nelts_top (type);
1816 outer_nelts = nelts;
1817 type = TREE_TYPE (type);
1820 /* If our base type is an array, then make sure we know how many elements
1821 it has. */
1822 for (elt_type = type;
1823 TREE_CODE (elt_type) == ARRAY_TYPE;
1824 elt_type = TREE_TYPE (elt_type))
1825 nelts = cp_build_binary_op (input_location,
1826 MULT_EXPR, nelts,
1827 array_type_nelts_top (elt_type),
1828 complain);
1830 if (TREE_CODE (elt_type) == VOID_TYPE)
1832 if (complain & tf_error)
1833 error ("invalid type %<void%> for new");
1834 return error_mark_node;
1837 if (abstract_virtuals_error (NULL_TREE, elt_type))
1838 return error_mark_node;
1840 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1842 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
1843 && !type_has_user_provided_default_constructor (elt_type))
1845 if (complain & tf_error)
1846 error ("uninitialized const in %<new%> of %q#T", elt_type);
1847 return error_mark_node;
1850 size = size_in_bytes (elt_type);
1851 if (array_p)
1852 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1854 alloc_fn = NULL_TREE;
1856 /* If PLACEMENT is a single simple pointer type not passed by
1857 reference, prepare to capture it in a temporary variable. Do
1858 this now, since PLACEMENT will change in the calls below. */
1859 placement_first = NULL_TREE;
1860 if (VEC_length (tree, *placement) == 1
1861 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
1862 == POINTER_TYPE))
1863 placement_first = VEC_index (tree, *placement, 0);
1865 /* Allocate the object. */
1866 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
1868 tree class_addr;
1869 tree class_decl = build_java_class_ref (elt_type);
1870 static const char alloc_name[] = "_Jv_AllocObject";
1872 if (class_decl == error_mark_node)
1873 return error_mark_node;
1875 use_java_new = 1;
1876 if (!get_global_value_if_present (get_identifier (alloc_name),
1877 &alloc_fn))
1879 if (complain & tf_error)
1880 error ("call to Java constructor with %qs undefined", alloc_name);
1881 return error_mark_node;
1883 else if (really_overloaded_fn (alloc_fn))
1885 if (complain & tf_error)
1886 error ("%qD should never be overloaded", alloc_fn);
1887 return error_mark_node;
1889 alloc_fn = OVL_CURRENT (alloc_fn);
1890 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1891 alloc_call = (cp_build_function_call
1892 (alloc_fn,
1893 build_tree_list (NULL_TREE, class_addr),
1894 complain));
1896 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1898 error ("Java class %q#T object allocated using placement new", elt_type);
1899 return error_mark_node;
1901 else
1903 tree fnname;
1904 tree fns;
1906 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1908 if (!globally_qualified_p
1909 && CLASS_TYPE_P (elt_type)
1910 && (array_p
1911 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1912 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1914 /* Use a class-specific operator new. */
1915 /* If a cookie is required, add some extra space. */
1916 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1918 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1919 size = size_binop (PLUS_EXPR, size, cookie_size);
1921 /* Create the argument list. */
1922 VEC_safe_insert (tree, gc, *placement, 0, size);
1923 /* Do name-lookup to find the appropriate operator. */
1924 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1925 if (fns == NULL_TREE)
1927 if (complain & tf_error)
1928 error ("no suitable %qD found in class %qT", fnname, elt_type);
1929 return error_mark_node;
1931 if (TREE_CODE (fns) == TREE_LIST)
1933 if (complain & tf_error)
1935 error ("request for member %qD is ambiguous", fnname);
1936 print_candidates (fns);
1938 return error_mark_node;
1940 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1941 fns, placement,
1942 /*conversion_path=*/NULL_TREE,
1943 LOOKUP_NORMAL,
1944 &alloc_fn,
1945 complain);
1947 else
1949 /* Use a global operator new. */
1950 /* See if a cookie might be required. */
1951 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1952 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1953 else
1954 cookie_size = NULL_TREE;
1956 alloc_call = build_operator_new_call (fnname, placement,
1957 &size, &cookie_size,
1958 &alloc_fn);
1962 if (alloc_call == error_mark_node)
1963 return error_mark_node;
1965 gcc_assert (alloc_fn != NULL_TREE);
1967 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
1968 into a temporary variable. */
1969 if (!processing_template_decl
1970 && placement_first != NULL_TREE
1971 && TREE_CODE (alloc_call) == CALL_EXPR
1972 && call_expr_nargs (alloc_call) == 2
1973 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
1974 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
1976 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
1978 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
1979 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
1981 placement_expr = get_target_expr (placement_first);
1982 CALL_EXPR_ARG (alloc_call, 1)
1983 = convert (TREE_TYPE (placement_arg), placement_expr);
1987 /* In the simple case, we can stop now. */
1988 pointer_type = build_pointer_type (type);
1989 if (!cookie_size && !is_initialized)
1990 return build_nop (pointer_type, alloc_call);
1992 /* Store the result of the allocation call in a variable so that we can
1993 use it more than once. */
1994 alloc_expr = get_target_expr (alloc_call);
1995 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1997 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1998 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1999 alloc_call = TREE_OPERAND (alloc_call, 1);
2001 /* Now, check to see if this function is actually a placement
2002 allocation function. This can happen even when PLACEMENT is NULL
2003 because we might have something like:
2005 struct S { void* operator new (size_t, int i = 0); };
2007 A call to `new S' will get this allocation function, even though
2008 there is no explicit placement argument. If there is more than
2009 one argument, or there are variable arguments, then this is a
2010 placement allocation function. */
2011 placement_allocation_fn_p
2012 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2013 || varargs_function_p (alloc_fn));
2015 /* Preevaluate the placement args so that we don't reevaluate them for a
2016 placement delete. */
2017 if (placement_allocation_fn_p)
2019 tree inits;
2020 stabilize_call (alloc_call, &inits);
2021 if (inits)
2022 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2023 alloc_expr);
2026 /* unless an allocation function is declared with an empty excep-
2027 tion-specification (_except.spec_), throw(), it indicates failure to
2028 allocate storage by throwing a bad_alloc exception (clause _except_,
2029 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2030 cation function is declared with an empty exception-specification,
2031 throw(), it returns null to indicate failure to allocate storage and a
2032 non-null pointer otherwise.
2034 So check for a null exception spec on the op new we just called. */
2036 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2037 check_new = (flag_check_new || nothrow) && ! use_java_new;
2039 if (cookie_size)
2041 tree cookie;
2042 tree cookie_ptr;
2043 tree size_ptr_type;
2045 /* Adjust so we're pointing to the start of the object. */
2046 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2047 alloc_node, cookie_size);
2049 /* Store the number of bytes allocated so that we can know how
2050 many elements to destroy later. We use the last sizeof
2051 (size_t) bytes to store the number of elements. */
2052 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2053 cookie_ptr = fold_build2_loc (input_location,
2054 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2055 alloc_node, cookie_ptr);
2056 size_ptr_type = build_pointer_type (sizetype);
2057 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2058 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2060 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2062 if (targetm.cxx.cookie_has_size ())
2064 /* Also store the element size. */
2065 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2066 fold_build1_loc (input_location,
2067 NEGATE_EXPR, sizetype,
2068 size_in_bytes (sizetype)));
2070 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2071 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2072 size_in_bytes (elt_type));
2073 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2074 cookie, cookie_expr);
2077 else
2079 cookie_expr = NULL_TREE;
2080 data_addr = alloc_node;
2083 /* Now use a pointer to the type we've actually allocated. */
2085 /* But we want to operate on a non-const version to start with,
2086 since we'll be modifying the elements. */
2087 non_const_pointer_type = build_pointer_type
2088 (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
2090 data_addr = fold_convert (non_const_pointer_type, data_addr);
2091 /* Any further uses of alloc_node will want this type, too. */
2092 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2094 /* Now initialize the allocated object. Note that we preevaluate the
2095 initialization expression, apart from the actual constructor call or
2096 assignment--we do this because we want to delay the allocation as long
2097 as possible in order to minimize the size of the exception region for
2098 placement delete. */
2099 if (is_initialized)
2101 bool stable;
2102 bool explicit_value_init_p = false;
2104 if (*init != NULL && VEC_empty (tree, *init))
2106 *init = NULL;
2107 explicit_value_init_p = true;
2110 if (array_p)
2112 tree vecinit = NULL_TREE;
2113 if (*init && VEC_length (tree, *init) == 1
2114 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2115 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2117 tree arraytype, domain;
2118 vecinit = VEC_index (tree, *init, 0);
2119 if (TREE_CONSTANT (nelts))
2120 domain = compute_array_index_type (NULL_TREE, nelts);
2121 else
2123 domain = NULL_TREE;
2124 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2125 warning (0, "non-constant array size in new, unable to "
2126 "verify length of initializer-list");
2128 arraytype = build_cplus_array_type (type, domain);
2129 vecinit = digest_init (arraytype, vecinit);
2131 else if (*init)
2133 if (complain & tf_error)
2134 permerror (input_location, "ISO C++ forbids initialization in array new");
2135 else
2136 return error_mark_node;
2137 vecinit = build_tree_list_vec (*init);
2139 init_expr
2140 = build_vec_init (data_addr,
2141 cp_build_binary_op (input_location,
2142 MINUS_EXPR, outer_nelts,
2143 integer_one_node,
2144 complain),
2145 vecinit,
2146 explicit_value_init_p,
2147 /*from_array=*/0,
2148 complain);
2150 /* An array initialization is stable because the initialization
2151 of each element is a full-expression, so the temporaries don't
2152 leak out. */
2153 stable = true;
2155 else
2157 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2159 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2161 init_expr = build_special_member_call (init_expr,
2162 complete_ctor_identifier,
2163 init, elt_type,
2164 LOOKUP_NORMAL,
2165 complain);
2167 else if (explicit_value_init_p)
2169 /* Something like `new int()'. */
2170 init_expr = build2 (INIT_EXPR, type,
2171 init_expr, build_value_init (type));
2173 else
2175 tree ie;
2177 /* We are processing something like `new int (10)', which
2178 means allocate an int, and initialize it with 10. */
2180 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2181 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2182 complain);
2184 stable = stabilize_init (init_expr, &init_preeval_expr);
2187 if (init_expr == error_mark_node)
2188 return error_mark_node;
2190 /* If any part of the object initialization terminates by throwing an
2191 exception and a suitable deallocation function can be found, the
2192 deallocation function is called to free the memory in which the
2193 object was being constructed, after which the exception continues
2194 to propagate in the context of the new-expression. If no
2195 unambiguous matching deallocation function can be found,
2196 propagating the exception does not cause the object's memory to be
2197 freed. */
2198 if (flag_exceptions && ! use_java_new)
2200 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2201 tree cleanup;
2203 /* The Standard is unclear here, but the right thing to do
2204 is to use the same method for finding deallocation
2205 functions that we use for finding allocation functions. */
2206 cleanup = (build_op_delete_call
2207 (dcode,
2208 alloc_node,
2209 size,
2210 globally_qualified_p,
2211 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2212 alloc_fn));
2214 if (!cleanup)
2215 /* We're done. */;
2216 else if (stable)
2217 /* This is much simpler if we were able to preevaluate all of
2218 the arguments to the constructor call. */
2220 /* CLEANUP is compiler-generated, so no diagnostics. */
2221 TREE_NO_WARNING (cleanup) = true;
2222 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2223 init_expr, cleanup);
2224 /* Likewise, this try-catch is compiler-generated. */
2225 TREE_NO_WARNING (init_expr) = true;
2227 else
2228 /* Ack! First we allocate the memory. Then we set our sentry
2229 variable to true, and expand a cleanup that deletes the
2230 memory if sentry is true. Then we run the constructor, and
2231 finally clear the sentry.
2233 We need to do this because we allocate the space first, so
2234 if there are any temporaries with cleanups in the
2235 constructor args and we weren't able to preevaluate them, we
2236 need this EH region to extend until end of full-expression
2237 to preserve nesting. */
2239 tree end, sentry, begin;
2241 begin = get_target_expr (boolean_true_node);
2242 CLEANUP_EH_ONLY (begin) = 1;
2244 sentry = TARGET_EXPR_SLOT (begin);
2246 /* CLEANUP is compiler-generated, so no diagnostics. */
2247 TREE_NO_WARNING (cleanup) = true;
2249 TARGET_EXPR_CLEANUP (begin)
2250 = build3 (COND_EXPR, void_type_node, sentry,
2251 cleanup, void_zero_node);
2253 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2254 sentry, boolean_false_node);
2256 init_expr
2257 = build2 (COMPOUND_EXPR, void_type_node, begin,
2258 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2259 end));
2260 /* Likewise, this is compiler-generated. */
2261 TREE_NO_WARNING (init_expr) = true;
2265 else
2266 init_expr = NULL_TREE;
2268 /* Now build up the return value in reverse order. */
2270 rval = data_addr;
2272 if (init_expr)
2273 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2274 if (cookie_expr)
2275 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2277 if (rval == data_addr)
2278 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2279 and return the call (which doesn't need to be adjusted). */
2280 rval = TARGET_EXPR_INITIAL (alloc_expr);
2281 else
2283 if (check_new)
2285 tree ifexp = cp_build_binary_op (input_location,
2286 NE_EXPR, alloc_node,
2287 integer_zero_node,
2288 complain);
2289 rval = build_conditional_expr (ifexp, rval, alloc_node,
2290 complain);
2293 /* Perform the allocation before anything else, so that ALLOC_NODE
2294 has been initialized before we start using it. */
2295 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2298 if (init_preeval_expr)
2299 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2301 /* A new-expression is never an lvalue. */
2302 gcc_assert (!lvalue_p (rval));
2304 return convert (pointer_type, rval);
2307 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2308 is a vector of placement-new arguments (or NULL if none). If NELTS
2309 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2310 is not NULL, then this is an array-new allocation; TYPE is the type
2311 of the elements in the array and NELTS is the number of elements in
2312 the array. *INIT, if non-NULL, is the initializer for the new
2313 object, or an empty vector to indicate an initializer of "()". If
2314 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2315 rather than just "new". This may change PLACEMENT and INIT. */
2317 tree
2318 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2319 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2321 tree rval;
2322 VEC(tree,gc) *orig_placement = NULL;
2323 tree orig_nelts = NULL_TREE;
2324 VEC(tree,gc) *orig_init = NULL;
2326 if (type == error_mark_node)
2327 return error_mark_node;
2329 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2331 tree auto_node = type_uses_auto (type);
2332 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2333 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2336 if (processing_template_decl)
2338 if (dependent_type_p (type)
2339 || any_type_dependent_arguments_p (*placement)
2340 || (nelts && type_dependent_expression_p (nelts))
2341 || any_type_dependent_arguments_p (*init))
2342 return build_raw_new_expr (*placement, type, nelts, *init,
2343 use_global_new);
2345 orig_placement = make_tree_vector_copy (*placement);
2346 orig_nelts = nelts;
2347 orig_init = make_tree_vector_copy (*init);
2349 make_args_non_dependent (*placement);
2350 if (nelts)
2351 nelts = build_non_dependent_expr (nelts);
2352 make_args_non_dependent (*init);
2355 if (nelts)
2357 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2359 if (complain & tf_error)
2360 permerror (input_location, "size in array new must have integral type");
2361 else
2362 return error_mark_node;
2364 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2367 /* ``A reference cannot be created by the new operator. A reference
2368 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2369 returned by new.'' ARM 5.3.3 */
2370 if (TREE_CODE (type) == REFERENCE_TYPE)
2372 if (complain & tf_error)
2373 error ("new cannot be applied to a reference type");
2374 else
2375 return error_mark_node;
2376 type = TREE_TYPE (type);
2379 if (TREE_CODE (type) == FUNCTION_TYPE)
2381 if (complain & tf_error)
2382 error ("new cannot be applied to a function type");
2383 return error_mark_node;
2386 /* The type allocated must be complete. If the new-type-id was
2387 "T[N]" then we are just checking that "T" is complete here, but
2388 that is equivalent, since the value of "N" doesn't matter. */
2389 if (!complete_type_or_else (type, NULL_TREE))
2390 return error_mark_node;
2392 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2393 if (rval == error_mark_node)
2394 return error_mark_node;
2396 if (processing_template_decl)
2398 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2399 orig_init, use_global_new);
2400 release_tree_vector (orig_placement);
2401 release_tree_vector (orig_init);
2402 return ret;
2405 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2406 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2407 TREE_NO_WARNING (rval) = 1;
2409 return rval;
2412 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2414 tree
2415 build_java_class_ref (tree type)
2417 tree name = NULL_TREE, class_decl;
2418 static tree CL_suffix = NULL_TREE;
2419 if (CL_suffix == NULL_TREE)
2420 CL_suffix = get_identifier("class$");
2421 if (jclass_node == NULL_TREE)
2423 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2424 if (jclass_node == NULL_TREE)
2426 error ("call to Java constructor, while %<jclass%> undefined");
2427 return error_mark_node;
2429 jclass_node = TREE_TYPE (jclass_node);
2432 /* Mangle the class$ field. */
2434 tree field;
2435 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2436 if (DECL_NAME (field) == CL_suffix)
2438 mangle_decl (field);
2439 name = DECL_ASSEMBLER_NAME (field);
2440 break;
2442 if (!field)
2444 error ("can't find %<class$%> in %qT", type);
2445 return error_mark_node;
2449 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2450 if (class_decl == NULL_TREE)
2452 class_decl = build_decl (input_location,
2453 VAR_DECL, name, TREE_TYPE (jclass_node));
2454 TREE_STATIC (class_decl) = 1;
2455 DECL_EXTERNAL (class_decl) = 1;
2456 TREE_PUBLIC (class_decl) = 1;
2457 DECL_ARTIFICIAL (class_decl) = 1;
2458 DECL_IGNORED_P (class_decl) = 1;
2459 pushdecl_top_level (class_decl);
2460 make_decl_rtl (class_decl);
2462 return class_decl;
2465 static tree
2466 build_vec_delete_1 (tree base, tree maxindex, tree type,
2467 special_function_kind auto_delete_vec, int use_global_delete)
2469 tree virtual_size;
2470 tree ptype = build_pointer_type (type = complete_type (type));
2471 tree size_exp = size_in_bytes (type);
2473 /* Temporary variables used by the loop. */
2474 tree tbase, tbase_init;
2476 /* This is the body of the loop that implements the deletion of a
2477 single element, and moves temp variables to next elements. */
2478 tree body;
2480 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2481 tree loop = 0;
2483 /* This is the thing that governs what to do after the loop has run. */
2484 tree deallocate_expr = 0;
2486 /* This is the BIND_EXPR which holds the outermost iterator of the
2487 loop. It is convenient to set this variable up and test it before
2488 executing any other code in the loop.
2489 This is also the containing expression returned by this function. */
2490 tree controller = NULL_TREE;
2491 tree tmp;
2493 /* We should only have 1-D arrays here. */
2494 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2496 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2497 goto no_destructor;
2499 /* The below is short by the cookie size. */
2500 virtual_size = size_binop (MULT_EXPR, size_exp,
2501 convert (sizetype, maxindex));
2503 tbase = create_temporary_var (ptype);
2504 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2505 fold_build2_loc (input_location,
2506 POINTER_PLUS_EXPR, ptype,
2507 fold_convert (ptype, base),
2508 virtual_size),
2509 tf_warning_or_error);
2510 controller = build3 (BIND_EXPR, void_type_node, tbase,
2511 NULL_TREE, NULL_TREE);
2512 TREE_SIDE_EFFECTS (controller) = 1;
2514 body = build1 (EXIT_EXPR, void_type_node,
2515 build2 (EQ_EXPR, boolean_type_node, tbase,
2516 fold_convert (ptype, base)));
2517 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2518 body = build_compound_expr
2519 (input_location,
2520 body, cp_build_modify_expr (tbase, NOP_EXPR,
2521 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2522 tf_warning_or_error));
2523 body = build_compound_expr
2524 (input_location,
2525 body, build_delete (ptype, tbase, sfk_complete_destructor,
2526 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2528 loop = build1 (LOOP_EXPR, void_type_node, body);
2529 loop = build_compound_expr (input_location, tbase_init, loop);
2531 no_destructor:
2532 /* If the delete flag is one, or anything else with the low bit set,
2533 delete the storage. */
2534 if (auto_delete_vec != sfk_base_destructor)
2536 tree base_tbd;
2538 /* The below is short by the cookie size. */
2539 virtual_size = size_binop (MULT_EXPR, size_exp,
2540 convert (sizetype, maxindex));
2542 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2543 /* no header */
2544 base_tbd = base;
2545 else
2547 tree cookie_size;
2549 cookie_size = targetm.cxx.get_cookie_size (type);
2550 base_tbd
2551 = cp_convert (ptype,
2552 cp_build_binary_op (input_location,
2553 MINUS_EXPR,
2554 cp_convert (string_type_node,
2555 base),
2556 cookie_size,
2557 tf_warning_or_error));
2558 /* True size with header. */
2559 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2562 if (auto_delete_vec == sfk_deleting_destructor)
2563 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2564 base_tbd, virtual_size,
2565 use_global_delete & 1,
2566 /*placement=*/NULL_TREE,
2567 /*alloc_fn=*/NULL_TREE);
2570 body = loop;
2571 if (!deallocate_expr)
2573 else if (!body)
2574 body = deallocate_expr;
2575 else
2576 body = build_compound_expr (input_location, body, deallocate_expr);
2578 if (!body)
2579 body = integer_zero_node;
2581 /* Outermost wrapper: If pointer is null, punt. */
2582 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2583 fold_build2_loc (input_location,
2584 NE_EXPR, boolean_type_node, base,
2585 convert (TREE_TYPE (base),
2586 integer_zero_node)),
2587 body, integer_zero_node);
2588 body = build1 (NOP_EXPR, void_type_node, body);
2590 if (controller)
2592 TREE_OPERAND (controller, 1) = body;
2593 body = controller;
2596 if (TREE_CODE (base) == SAVE_EXPR)
2597 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2598 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2600 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2603 /* Create an unnamed variable of the indicated TYPE. */
2605 tree
2606 create_temporary_var (tree type)
2608 tree decl;
2610 decl = build_decl (input_location,
2611 VAR_DECL, NULL_TREE, type);
2612 TREE_USED (decl) = 1;
2613 DECL_ARTIFICIAL (decl) = 1;
2614 DECL_IGNORED_P (decl) = 1;
2615 DECL_CONTEXT (decl) = current_function_decl;
2617 return decl;
2620 /* Create a new temporary variable of the indicated TYPE, initialized
2621 to INIT.
2623 It is not entered into current_binding_level, because that breaks
2624 things when it comes time to do final cleanups (which take place
2625 "outside" the binding contour of the function). */
2627 static tree
2628 get_temp_regvar (tree type, tree init)
2630 tree decl;
2632 decl = create_temporary_var (type);
2633 add_decl_expr (decl);
2635 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2636 tf_warning_or_error));
2638 return decl;
2641 /* `build_vec_init' returns tree structure that performs
2642 initialization of a vector of aggregate types.
2644 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2645 to the first element, of POINTER_TYPE.
2646 MAXINDEX is the maximum index of the array (one less than the
2647 number of elements). It is only used if BASE is a pointer or
2648 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2650 INIT is the (possibly NULL) initializer.
2652 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2653 elements in the array are value-initialized.
2655 FROM_ARRAY is 0 if we should init everything with INIT
2656 (i.e., every element initialized from INIT).
2657 FROM_ARRAY is 1 if we should index into INIT in parallel
2658 with initialization of DECL.
2659 FROM_ARRAY is 2 if we should index into INIT in parallel,
2660 but use assignment instead of initialization. */
2662 tree
2663 build_vec_init (tree base, tree maxindex, tree init,
2664 bool explicit_value_init_p,
2665 int from_array, tsubst_flags_t complain)
2667 tree rval;
2668 tree base2 = NULL_TREE;
2669 tree itype = NULL_TREE;
2670 tree iterator;
2671 /* The type of BASE. */
2672 tree atype = TREE_TYPE (base);
2673 /* The type of an element in the array. */
2674 tree type = TREE_TYPE (atype);
2675 /* The element type reached after removing all outer array
2676 types. */
2677 tree inner_elt_type;
2678 /* The type of a pointer to an element in the array. */
2679 tree ptype;
2680 tree stmt_expr;
2681 tree compound_stmt;
2682 int destroy_temps;
2683 tree try_block = NULL_TREE;
2684 int num_initialized_elts = 0;
2685 bool is_global;
2687 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2688 maxindex = array_type_nelts (atype);
2690 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2691 return error_mark_node;
2693 if (explicit_value_init_p)
2694 gcc_assert (!init);
2696 inner_elt_type = strip_array_types (type);
2698 /* Look through the TARGET_EXPR around a compound literal. */
2699 if (init && TREE_CODE (init) == TARGET_EXPR
2700 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2701 && from_array != 2)
2702 init = TARGET_EXPR_INITIAL (init);
2704 if (init
2705 && TREE_CODE (atype) == ARRAY_TYPE
2706 && (from_array == 2
2707 ? (!CLASS_TYPE_P (inner_elt_type)
2708 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2709 : !TYPE_NEEDS_CONSTRUCTING (type))
2710 && ((TREE_CODE (init) == CONSTRUCTOR
2711 /* Don't do this if the CONSTRUCTOR might contain something
2712 that might throw and require us to clean up. */
2713 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2714 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2715 || from_array))
2717 /* Do non-default initialization of trivial arrays resulting from
2718 brace-enclosed initializers. In this case, digest_init and
2719 store_constructor will handle the semantics for us. */
2721 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2722 return stmt_expr;
2725 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2726 if (TREE_CODE (atype) == ARRAY_TYPE)
2728 ptype = build_pointer_type (type);
2729 base = cp_convert (ptype, decay_conversion (base));
2731 else
2732 ptype = atype;
2734 /* The code we are generating looks like:
2736 T* t1 = (T*) base;
2737 T* rval = t1;
2738 ptrdiff_t iterator = maxindex;
2739 try {
2740 for (; iterator != -1; --iterator) {
2741 ... initialize *t1 ...
2742 ++t1;
2744 } catch (...) {
2745 ... destroy elements that were constructed ...
2747 rval;
2750 We can omit the try and catch blocks if we know that the
2751 initialization will never throw an exception, or if the array
2752 elements do not have destructors. We can omit the loop completely if
2753 the elements of the array do not have constructors.
2755 We actually wrap the entire body of the above in a STMT_EXPR, for
2756 tidiness.
2758 When copying from array to another, when the array elements have
2759 only trivial copy constructors, we should use __builtin_memcpy
2760 rather than generating a loop. That way, we could take advantage
2761 of whatever cleverness the back end has for dealing with copies
2762 of blocks of memory. */
2764 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2765 destroy_temps = stmts_are_full_exprs_p ();
2766 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2767 rval = get_temp_regvar (ptype, base);
2768 base = get_temp_regvar (ptype, rval);
2769 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2771 /* If initializing one array from another, initialize element by
2772 element. We rely upon the below calls to do the argument
2773 checking. Evaluate the initializer before entering the try block. */
2774 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2776 base2 = decay_conversion (init);
2777 itype = TREE_TYPE (base2);
2778 base2 = get_temp_regvar (itype, base2);
2779 itype = TREE_TYPE (itype);
2782 /* Protect the entire array initialization so that we can destroy
2783 the partially constructed array if an exception is thrown.
2784 But don't do this if we're assigning. */
2785 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2786 && from_array != 2)
2788 try_block = begin_try_block ();
2791 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2793 /* Do non-default initialization of non-trivial arrays resulting from
2794 brace-enclosed initializers. */
2795 unsigned HOST_WIDE_INT idx;
2796 tree elt;
2797 from_array = 0;
2799 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2801 tree baseref = build1 (INDIRECT_REF, type, base);
2803 num_initialized_elts++;
2805 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2806 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2807 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2808 else
2809 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2810 elt, complain));
2811 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2813 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2814 complain));
2815 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2816 complain));
2819 /* Clear out INIT so that we don't get confused below. */
2820 init = NULL_TREE;
2822 else if (from_array)
2824 if (init)
2825 /* OK, we set base2 above. */;
2826 else if (TYPE_LANG_SPECIFIC (type)
2827 && TYPE_NEEDS_CONSTRUCTING (type)
2828 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2830 if (complain & tf_error)
2831 error ("initializer ends prematurely");
2832 return error_mark_node;
2836 /* Now, default-initialize any remaining elements. We don't need to
2837 do that if a) the type does not need constructing, or b) we've
2838 already initialized all the elements.
2840 We do need to keep going if we're copying an array. */
2842 if (from_array
2843 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2844 && ! (host_integerp (maxindex, 0)
2845 && (num_initialized_elts
2846 == tree_low_cst (maxindex, 0) + 1))))
2848 /* If the ITERATOR is equal to -1, then we don't have to loop;
2849 we've already initialized all the elements. */
2850 tree for_stmt;
2851 tree elt_init;
2852 tree to;
2854 for_stmt = begin_for_stmt ();
2855 finish_for_init_stmt (for_stmt);
2856 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2857 build_int_cst (TREE_TYPE (iterator), -1)),
2858 for_stmt);
2859 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2860 complain),
2861 for_stmt);
2863 to = build1 (INDIRECT_REF, type, base);
2865 if (from_array)
2867 tree from;
2869 if (base2)
2870 from = build1 (INDIRECT_REF, itype, base2);
2871 else
2872 from = NULL_TREE;
2874 if (from_array == 2)
2875 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2876 complain);
2877 else if (TYPE_NEEDS_CONSTRUCTING (type))
2878 elt_init = build_aggr_init (to, from, 0, complain);
2879 else if (from)
2880 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2881 complain);
2882 else
2883 gcc_unreachable ();
2885 else if (TREE_CODE (type) == ARRAY_TYPE)
2887 if (init != 0)
2888 sorry
2889 ("cannot initialize multi-dimensional array with initializer");
2890 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2891 0, 0,
2892 explicit_value_init_p,
2893 0, complain);
2895 else if (explicit_value_init_p)
2896 elt_init = build2 (INIT_EXPR, type, to,
2897 build_value_init (type));
2898 else
2900 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
2901 elt_init = build_aggr_init (to, init, 0, complain);
2904 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2905 finish_expr_stmt (elt_init);
2906 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2908 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2909 complain));
2910 if (base2)
2911 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
2912 complain));
2914 finish_for_stmt (for_stmt);
2917 /* Make sure to cleanup any partially constructed elements. */
2918 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2919 && from_array != 2)
2921 tree e;
2922 tree m = cp_build_binary_op (input_location,
2923 MINUS_EXPR, maxindex, iterator,
2924 complain);
2926 /* Flatten multi-dimensional array since build_vec_delete only
2927 expects one-dimensional array. */
2928 if (TREE_CODE (type) == ARRAY_TYPE)
2929 m = cp_build_binary_op (input_location,
2930 MULT_EXPR, m,
2931 array_type_nelts_total (type),
2932 complain);
2934 finish_cleanup_try_block (try_block);
2935 e = build_vec_delete_1 (rval, m,
2936 inner_elt_type, sfk_base_destructor,
2937 /*use_global_delete=*/0);
2938 finish_cleanup (e, try_block);
2941 /* The value of the array initialization is the array itself, RVAL
2942 is a pointer to the first element. */
2943 finish_stmt_expr_expr (rval, stmt_expr);
2945 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2947 /* Now make the result have the correct type. */
2948 if (TREE_CODE (atype) == ARRAY_TYPE)
2950 atype = build_pointer_type (atype);
2951 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2952 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
2953 TREE_NO_WARNING (stmt_expr) = 1;
2956 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2957 return stmt_expr;
2960 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2961 build_delete. */
2963 static tree
2964 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2966 tree name;
2967 tree fn;
2968 switch (dtor_kind)
2970 case sfk_complete_destructor:
2971 name = complete_dtor_identifier;
2972 break;
2974 case sfk_base_destructor:
2975 name = base_dtor_identifier;
2976 break;
2978 case sfk_deleting_destructor:
2979 name = deleting_dtor_identifier;
2980 break;
2982 default:
2983 gcc_unreachable ();
2985 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2986 return build_new_method_call (exp, fn,
2987 /*args=*/NULL,
2988 /*conversion_path=*/NULL_TREE,
2989 flags,
2990 /*fn_p=*/NULL,
2991 tf_warning_or_error);
2994 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2995 ADDR is an expression which yields the store to be destroyed.
2996 AUTO_DELETE is the name of the destructor to call, i.e., either
2997 sfk_complete_destructor, sfk_base_destructor, or
2998 sfk_deleting_destructor.
3000 FLAGS is the logical disjunction of zero or more LOOKUP_
3001 flags. See cp-tree.h for more info. */
3003 tree
3004 build_delete (tree type, tree addr, special_function_kind auto_delete,
3005 int flags, int use_global_delete)
3007 tree expr;
3009 if (addr == error_mark_node)
3010 return error_mark_node;
3012 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3013 set to `error_mark_node' before it gets properly cleaned up. */
3014 if (type == error_mark_node)
3015 return error_mark_node;
3017 type = TYPE_MAIN_VARIANT (type);
3019 if (TREE_CODE (type) == POINTER_TYPE)
3021 bool complete_p = true;
3023 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3024 if (TREE_CODE (type) == ARRAY_TYPE)
3025 goto handle_array;
3027 /* We don't want to warn about delete of void*, only other
3028 incomplete types. Deleting other incomplete types
3029 invokes undefined behavior, but it is not ill-formed, so
3030 compile to something that would even do The Right Thing
3031 (TM) should the type have a trivial dtor and no delete
3032 operator. */
3033 if (!VOID_TYPE_P (type))
3035 complete_type (type);
3036 if (!COMPLETE_TYPE_P (type))
3038 if (warning (0, "possible problem detected in invocation of "
3039 "delete operator:"))
3041 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3042 inform (input_location, "neither the destructor nor the class-specific "
3043 "operator delete will be called, even if they are "
3044 "declared when the class is defined.");
3046 complete_p = false;
3049 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3050 /* Call the builtin operator delete. */
3051 return build_builtin_delete_call (addr);
3052 if (TREE_SIDE_EFFECTS (addr))
3053 addr = save_expr (addr);
3055 /* Throw away const and volatile on target type of addr. */
3056 addr = convert_force (build_pointer_type (type), addr, 0);
3058 else if (TREE_CODE (type) == ARRAY_TYPE)
3060 handle_array:
3062 if (TYPE_DOMAIN (type) == NULL_TREE)
3064 error ("unknown array size in delete");
3065 return error_mark_node;
3067 return build_vec_delete (addr, array_type_nelts (type),
3068 auto_delete, use_global_delete);
3070 else
3072 /* Don't check PROTECT here; leave that decision to the
3073 destructor. If the destructor is accessible, call it,
3074 else report error. */
3075 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3076 if (TREE_SIDE_EFFECTS (addr))
3077 addr = save_expr (addr);
3079 addr = convert_force (build_pointer_type (type), addr, 0);
3082 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3084 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3086 if (auto_delete != sfk_deleting_destructor)
3087 return void_zero_node;
3089 return build_op_delete_call (DELETE_EXPR, addr,
3090 cxx_sizeof_nowarn (type),
3091 use_global_delete,
3092 /*placement=*/NULL_TREE,
3093 /*alloc_fn=*/NULL_TREE);
3095 else
3097 tree head = NULL_TREE;
3098 tree do_delete = NULL_TREE;
3099 tree ifexp;
3101 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3102 lazily_declare_fn (sfk_destructor, type);
3104 /* For `::delete x', we must not use the deleting destructor
3105 since then we would not be sure to get the global `operator
3106 delete'. */
3107 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3109 /* We will use ADDR multiple times so we must save it. */
3110 addr = save_expr (addr);
3111 head = get_target_expr (build_headof (addr));
3112 /* Delete the object. */
3113 do_delete = build_builtin_delete_call (head);
3114 /* Otherwise, treat this like a complete object destructor
3115 call. */
3116 auto_delete = sfk_complete_destructor;
3118 /* If the destructor is non-virtual, there is no deleting
3119 variant. Instead, we must explicitly call the appropriate
3120 `operator delete' here. */
3121 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3122 && auto_delete == sfk_deleting_destructor)
3124 /* We will use ADDR multiple times so we must save it. */
3125 addr = save_expr (addr);
3126 /* Build the call. */
3127 do_delete = build_op_delete_call (DELETE_EXPR,
3128 addr,
3129 cxx_sizeof_nowarn (type),
3130 /*global_p=*/false,
3131 /*placement=*/NULL_TREE,
3132 /*alloc_fn=*/NULL_TREE);
3133 /* Call the complete object destructor. */
3134 auto_delete = sfk_complete_destructor;
3136 else if (auto_delete == sfk_deleting_destructor
3137 && TYPE_GETS_REG_DELETE (type))
3139 /* Make sure we have access to the member op delete, even though
3140 we'll actually be calling it from the destructor. */
3141 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3142 /*global_p=*/false,
3143 /*placement=*/NULL_TREE,
3144 /*alloc_fn=*/NULL_TREE);
3147 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3148 tf_warning_or_error),
3149 auto_delete, flags);
3150 if (do_delete)
3151 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3153 /* We need to calculate this before the dtor changes the vptr. */
3154 if (head)
3155 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3157 if (flags & LOOKUP_DESTRUCTOR)
3158 /* Explicit destructor call; don't check for null pointer. */
3159 ifexp = integer_one_node;
3160 else
3161 /* Handle deleting a null pointer. */
3162 ifexp = fold (cp_build_binary_op (input_location,
3163 NE_EXPR, addr, integer_zero_node,
3164 tf_warning_or_error));
3166 if (ifexp != integer_one_node)
3167 expr = build3 (COND_EXPR, void_type_node,
3168 ifexp, expr, void_zero_node);
3170 return expr;
3174 /* At the beginning of a destructor, push cleanups that will call the
3175 destructors for our base classes and members.
3177 Called from begin_destructor_body. */
3179 void
3180 push_base_cleanups (void)
3182 tree binfo, base_binfo;
3183 int i;
3184 tree member;
3185 tree expr;
3186 VEC(tree,gc) *vbases;
3188 /* Run destructors for all virtual baseclasses. */
3189 if (CLASSTYPE_VBASECLASSES (current_class_type))
3191 tree cond = (condition_conversion
3192 (build2 (BIT_AND_EXPR, integer_type_node,
3193 current_in_charge_parm,
3194 integer_two_node)));
3196 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3197 order, which is also the right order for pushing cleanups. */
3198 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3199 VEC_iterate (tree, vbases, i, base_binfo); i++)
3201 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3203 expr = build_special_member_call (current_class_ref,
3204 base_dtor_identifier,
3205 NULL,
3206 base_binfo,
3207 (LOOKUP_NORMAL
3208 | LOOKUP_NONVIRTUAL),
3209 tf_warning_or_error);
3210 expr = build3 (COND_EXPR, void_type_node, cond,
3211 expr, void_zero_node);
3212 finish_decl_cleanup (NULL_TREE, expr);
3217 /* Take care of the remaining baseclasses. */
3218 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3219 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3221 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3222 || BINFO_VIRTUAL_P (base_binfo))
3223 continue;
3225 expr = build_special_member_call (current_class_ref,
3226 base_dtor_identifier,
3227 NULL, base_binfo,
3228 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3229 tf_warning_or_error);
3230 finish_decl_cleanup (NULL_TREE, expr);
3233 for (member = TYPE_FIELDS (current_class_type); member;
3234 member = TREE_CHAIN (member))
3236 if (TREE_TYPE (member) == error_mark_node
3237 || TREE_CODE (member) != FIELD_DECL
3238 || DECL_ARTIFICIAL (member))
3239 continue;
3240 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3242 tree this_member = (build_class_member_access_expr
3243 (current_class_ref, member,
3244 /*access_path=*/NULL_TREE,
3245 /*preserve_reference=*/false,
3246 tf_warning_or_error));
3247 tree this_type = TREE_TYPE (member);
3248 expr = build_delete (this_type, this_member,
3249 sfk_complete_destructor,
3250 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3252 finish_decl_cleanup (NULL_TREE, expr);
3257 /* Build a C++ vector delete expression.
3258 MAXINDEX is the number of elements to be deleted.
3259 ELT_SIZE is the nominal size of each element in the vector.
3260 BASE is the expression that should yield the store to be deleted.
3261 This function expands (or synthesizes) these calls itself.
3262 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3264 This also calls delete for virtual baseclasses of elements of the vector.
3266 Update: MAXINDEX is no longer needed. The size can be extracted from the
3267 start of the vector for pointers, and from the type for arrays. We still
3268 use MAXINDEX for arrays because it happens to already have one of the
3269 values we'd have to extract. (We could use MAXINDEX with pointers to
3270 confirm the size, and trap if the numbers differ; not clear that it'd
3271 be worth bothering.) */
3273 tree
3274 build_vec_delete (tree base, tree maxindex,
3275 special_function_kind auto_delete_vec, int use_global_delete)
3277 tree type;
3278 tree rval;
3279 tree base_init = NULL_TREE;
3281 type = TREE_TYPE (base);
3283 if (TREE_CODE (type) == POINTER_TYPE)
3285 /* Step back one from start of vector, and read dimension. */
3286 tree cookie_addr;
3287 tree size_ptr_type = build_pointer_type (sizetype);
3289 if (TREE_SIDE_EFFECTS (base))
3291 base_init = get_target_expr (base);
3292 base = TARGET_EXPR_SLOT (base_init);
3294 type = strip_array_types (TREE_TYPE (type));
3295 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3296 sizetype, TYPE_SIZE_UNIT (sizetype));
3297 cookie_addr = build2 (POINTER_PLUS_EXPR,
3298 size_ptr_type,
3299 fold_convert (size_ptr_type, base),
3300 cookie_addr);
3301 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3303 else if (TREE_CODE (type) == ARRAY_TYPE)
3305 /* Get the total number of things in the array, maxindex is a
3306 bad name. */
3307 maxindex = array_type_nelts_total (type);
3308 type = strip_array_types (type);
3309 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3310 if (TREE_SIDE_EFFECTS (base))
3312 base_init = get_target_expr (base);
3313 base = TARGET_EXPR_SLOT (base_init);
3316 else
3318 if (base != error_mark_node)
3319 error ("type to vector delete is neither pointer or array type");
3320 return error_mark_node;
3323 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3324 use_global_delete);
3325 if (base_init)
3326 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3328 return rval;