Merge from mainline (154736:156693)
[official-gcc/graphite-test-results.git] / gcc / combine.c
blob36e9c12408e652e17e202c18fdce4883bad6b6e5
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each extended basic block in scanning order. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
347 struct undo
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
361 struct undobuf
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
368 static struct undobuf undobuf;
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
373 static int n_occurrences;
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
483 rtx ret;
484 unsigned int nregs;
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
509 switch (code)
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
536 return find_single_use_1 (dest, &SET_SRC (x));
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
542 default:
543 break;
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
567 else if (fmt[i] == 'E')
569 int j;
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
589 return result;
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
628 #endif
630 if (!REG_P (dest))
631 return 0;
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
643 if (link)
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
652 return 0;
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
661 static void
662 do_SUBST (rtx *into, rtx newval)
664 struct undo *buf;
665 rtx oldval = *into;
667 if (oldval == newval)
668 return;
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
705 buf->next = undobuf.undos, undobuf.undos = buf;
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
714 static void
715 do_SUBST_INT (int *into, int newval)
717 struct undo *buf;
718 int oldval = *into;
720 if (oldval == newval)
721 return;
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
733 buf->next = undobuf.undos, undobuf.undos = buf;
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
749 if (oldval == newval)
750 return;
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
762 buf->next = undobuf.undos, undobuf.undos = buf;
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
788 if (i1)
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
794 else
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
808 else
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
814 if (undobuf.other_insn)
816 int old_other_cost, new_other_cost;
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
825 else
826 old_cost = 0;
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
834 if (dump_file)
836 if (i1)
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
844 else
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
853 if (newi2pat)
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
862 return false;
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
871 return true;
875 /* Delete any insns that copy a register to itself. */
877 static void
878 delete_noop_moves (void)
880 rtx insn, next;
881 basic_block bb;
883 FOR_EACH_BB (bb)
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
893 delete_insn_and_edges (insn);
900 /* Fill in log links field for all insns. */
902 static void
903 create_log_links (void)
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
909 next_use = XCNEWVEC (rtx, max_reg_num ());
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
920 FOR_EACH_BB (bb)
922 FOR_BB_INSNS_REVERSE (bb, insn)
924 if (!NONDEBUG_INSN_P (insn))
925 continue;
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
936 if (!next_use[regno])
937 continue;
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
954 continue;
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
959 /* flow.c claimed:
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
981 next_use[regno] = NULL_RTX;
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
994 next_use[regno] = insn;
999 free (next_use);
1002 /* Clear LOG_LINKS fields of insns. */
1004 static void
1005 clear_log_links (void)
1007 rtx insn;
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1014 /* Main entry point for combiner. F is the first insn of the function.
1015 NREGS is the first unused pseudo-reg number.
1017 Return nonzero if the combiner has turned an indirect jump
1018 instruction into a direct jump. */
1019 static int
1020 combine_instructions (rtx f, unsigned int nregs)
1022 rtx insn, next;
1023 #ifdef HAVE_cc0
1024 rtx prev;
1025 #endif
1026 rtx links, nextlinks;
1027 rtx first;
1028 basic_block last_bb;
1030 int new_direct_jump_p = 0;
1032 for (first = f; first && !INSN_P (first); )
1033 first = NEXT_INSN (first);
1034 if (!first)
1035 return 0;
1037 combine_attempts = 0;
1038 combine_merges = 0;
1039 combine_extras = 0;
1040 combine_successes = 0;
1042 rtl_hooks = combine_rtl_hooks;
1044 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1046 init_recog_no_volatile ();
1048 /* Allocate array for insn info. */
1049 max_uid_known = get_max_uid ();
1050 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1051 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1053 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1055 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1056 problems when, for example, we have j <<= 1 in a loop. */
1058 nonzero_sign_valid = 0;
1059 label_tick = label_tick_ebb_start = 1;
1061 /* Scan all SETs and see if we can deduce anything about what
1062 bits are known to be zero for some registers and how many copies
1063 of the sign bit are known to exist for those registers.
1065 Also set any known values so that we can use it while searching
1066 for what bits are known to be set. */
1068 setup_incoming_promotions (first);
1069 /* Allow the entry block and the first block to fall into the same EBB.
1070 Conceptually the incoming promotions are assigned to the entry block. */
1071 last_bb = ENTRY_BLOCK_PTR;
1073 create_log_links ();
1074 FOR_EACH_BB (this_basic_block)
1076 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1080 label_tick++;
1081 if (!single_pred_p (this_basic_block)
1082 || single_pred (this_basic_block) != last_bb)
1083 label_tick_ebb_start = label_tick;
1084 last_bb = this_basic_block;
1086 FOR_BB_INSNS (this_basic_block, insn)
1087 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1089 subst_low_luid = DF_INSN_LUID (insn);
1090 subst_insn = insn;
1092 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1093 insn);
1094 record_dead_and_set_regs (insn);
1096 #ifdef AUTO_INC_DEC
1097 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1098 if (REG_NOTE_KIND (links) == REG_INC)
1099 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1100 insn);
1101 #endif
1103 /* Record the current insn_rtx_cost of this instruction. */
1104 if (NONJUMP_INSN_P (insn))
1105 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1106 optimize_this_for_speed_p);
1107 if (dump_file)
1108 fprintf(dump_file, "insn_cost %d: %d\n",
1109 INSN_UID (insn), INSN_COST (insn));
1113 nonzero_sign_valid = 1;
1115 /* Now scan all the insns in forward order. */
1116 label_tick = label_tick_ebb_start = 1;
1117 init_reg_last ();
1118 setup_incoming_promotions (first);
1119 last_bb = ENTRY_BLOCK_PTR;
1121 FOR_EACH_BB (this_basic_block)
1123 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1124 last_call_luid = 0;
1125 mem_last_set = -1;
1127 label_tick++;
1128 if (!single_pred_p (this_basic_block)
1129 || single_pred (this_basic_block) != last_bb)
1130 label_tick_ebb_start = label_tick;
1131 last_bb = this_basic_block;
1133 rtl_profile_for_bb (this_basic_block);
1134 for (insn = BB_HEAD (this_basic_block);
1135 insn != NEXT_INSN (BB_END (this_basic_block));
1136 insn = next ? next : NEXT_INSN (insn))
1138 next = 0;
1139 if (NONDEBUG_INSN_P (insn))
1141 /* See if we know about function return values before this
1142 insn based upon SUBREG flags. */
1143 check_promoted_subreg (insn, PATTERN (insn));
1145 /* See if we can find hardregs and subreg of pseudos in
1146 narrower modes. This could help turning TRUNCATEs
1147 into SUBREGs. */
1148 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1150 /* Try this insn with each insn it links back to. */
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 if ((next = try_combine (insn, XEXP (links, 0),
1154 NULL_RTX, &new_direct_jump_p)) != 0)
1155 goto retry;
1157 /* Try each sequence of three linked insns ending with this one. */
1159 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1161 rtx link = XEXP (links, 0);
1163 /* If the linked insn has been replaced by a note, then there
1164 is no point in pursuing this chain any further. */
1165 if (NOTE_P (link))
1166 continue;
1168 for (nextlinks = LOG_LINKS (link);
1169 nextlinks;
1170 nextlinks = XEXP (nextlinks, 1))
1171 if ((next = try_combine (insn, link,
1172 XEXP (nextlinks, 0),
1173 &new_direct_jump_p)) != 0)
1174 goto retry;
1177 #ifdef HAVE_cc0
1178 /* Try to combine a jump insn that uses CC0
1179 with a preceding insn that sets CC0, and maybe with its
1180 logical predecessor as well.
1181 This is how we make decrement-and-branch insns.
1182 We need this special code because data flow connections
1183 via CC0 do not get entered in LOG_LINKS. */
1185 if (JUMP_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev)))
1190 if ((next = try_combine (insn, prev,
1191 NULL_RTX, &new_direct_jump_p)) != 0)
1192 goto retry;
1194 for (nextlinks = LOG_LINKS (prev); nextlinks;
1195 nextlinks = XEXP (nextlinks, 1))
1196 if ((next = try_combine (insn, prev,
1197 XEXP (nextlinks, 0),
1198 &new_direct_jump_p)) != 0)
1199 goto retry;
1202 /* Do the same for an insn that explicitly references CC0. */
1203 if (NONJUMP_INSN_P (insn)
1204 && (prev = prev_nonnote_insn (insn)) != 0
1205 && NONJUMP_INSN_P (prev)
1206 && sets_cc0_p (PATTERN (prev))
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1210 if ((next = try_combine (insn, prev,
1211 NULL_RTX, &new_direct_jump_p)) != 0)
1212 goto retry;
1214 for (nextlinks = LOG_LINKS (prev); nextlinks;
1215 nextlinks = XEXP (nextlinks, 1))
1216 if ((next = try_combine (insn, prev,
1217 XEXP (nextlinks, 0),
1218 &new_direct_jump_p)) != 0)
1219 goto retry;
1222 /* Finally, see if any of the insns that this insn links to
1223 explicitly references CC0. If so, try this insn, that insn,
1224 and its predecessor if it sets CC0. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 if (NONJUMP_INSN_P (XEXP (links, 0))
1227 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1228 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1229 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1230 && NONJUMP_INSN_P (prev)
1231 && sets_cc0_p (PATTERN (prev))
1232 && (next = try_combine (insn, XEXP (links, 0),
1233 prev, &new_direct_jump_p)) != 0)
1234 goto retry;
1235 #endif
1237 /* Try combining an insn with two different insns whose results it
1238 uses. */
1239 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1240 for (nextlinks = XEXP (links, 1); nextlinks;
1241 nextlinks = XEXP (nextlinks, 1))
1242 if ((next = try_combine (insn, XEXP (links, 0),
1243 XEXP (nextlinks, 0),
1244 &new_direct_jump_p)) != 0)
1245 goto retry;
1247 /* Try this insn with each REG_EQUAL note it links back to. */
1248 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1250 rtx set, note;
1251 rtx temp = XEXP (links, 0);
1252 if ((set = single_set (temp)) != 0
1253 && (note = find_reg_equal_equiv_note (temp)) != 0
1254 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1255 /* Avoid using a register that may already been marked
1256 dead by an earlier instruction. */
1257 && ! unmentioned_reg_p (note, SET_SRC (set))
1258 && (GET_MODE (note) == VOIDmode
1259 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1260 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1262 /* Temporarily replace the set's source with the
1263 contents of the REG_EQUAL note. The insn will
1264 be deleted or recognized by try_combine. */
1265 rtx orig = SET_SRC (set);
1266 SET_SRC (set) = note;
1267 i2mod = temp;
1268 i2mod_old_rhs = copy_rtx (orig);
1269 i2mod_new_rhs = copy_rtx (note);
1270 next = try_combine (insn, i2mod, NULL_RTX,
1271 &new_direct_jump_p);
1272 i2mod = NULL_RTX;
1273 if (next)
1274 goto retry;
1275 SET_SRC (set) = orig;
1279 if (!NOTE_P (insn))
1280 record_dead_and_set_regs (insn);
1282 retry:
1288 default_rtl_profile ();
1289 clear_log_links ();
1290 clear_bb_flags ();
1291 new_direct_jump_p |= purge_all_dead_edges ();
1292 delete_noop_moves ();
1294 /* Clean up. */
1295 free (uid_log_links);
1296 free (uid_insn_cost);
1297 VEC_free (reg_stat_type, heap, reg_stat);
1300 struct undo *undo, *next;
1301 for (undo = undobuf.frees; undo; undo = next)
1303 next = undo->next;
1304 free (undo);
1306 undobuf.frees = 0;
1309 total_attempts += combine_attempts;
1310 total_merges += combine_merges;
1311 total_extras += combine_extras;
1312 total_successes += combine_successes;
1314 nonzero_sign_valid = 0;
1315 rtl_hooks = general_rtl_hooks;
1317 /* Make recognizer allow volatile MEMs again. */
1318 init_recog ();
1320 return new_direct_jump_p;
1323 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1325 static void
1326 init_reg_last (void)
1328 unsigned int i;
1329 reg_stat_type *p;
1331 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1332 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1335 /* Set up any promoted values for incoming argument registers. */
1337 static void
1338 setup_incoming_promotions (rtx first)
1340 tree arg;
1341 bool strictly_local = false;
1343 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1344 arg = TREE_CHAIN (arg))
1346 rtx x, reg = DECL_INCOMING_RTL (arg);
1347 int uns1, uns3;
1348 enum machine_mode mode1, mode2, mode3, mode4;
1350 /* Only continue if the incoming argument is in a register. */
1351 if (!REG_P (reg))
1352 continue;
1354 /* Determine, if possible, whether all call sites of the current
1355 function lie within the current compilation unit. (This does
1356 take into account the exporting of a function via taking its
1357 address, and so forth.) */
1358 strictly_local = cgraph_local_info (current_function_decl)->local;
1360 /* The mode and signedness of the argument before any promotions happen
1361 (equal to the mode of the pseudo holding it at that stage). */
1362 mode1 = TYPE_MODE (TREE_TYPE (arg));
1363 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1365 /* The mode and signedness of the argument after any source language and
1366 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1367 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1368 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1370 /* The mode and signedness of the argument as it is actually passed,
1371 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1372 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1373 TREE_TYPE (cfun->decl), 0);
1375 /* The mode of the register in which the argument is being passed. */
1376 mode4 = GET_MODE (reg);
1378 /* Eliminate sign extensions in the callee when:
1379 (a) A mode promotion has occurred; */
1380 if (mode1 == mode3)
1381 continue;
1382 /* (b) The mode of the register is the same as the mode of
1383 the argument as it is passed; */
1384 if (mode3 != mode4)
1385 continue;
1386 /* (c) There's no language level extension; */
1387 if (mode1 == mode2)
1389 /* (c.1) All callers are from the current compilation unit. If that's
1390 the case we don't have to rely on an ABI, we only have to know
1391 what we're generating right now, and we know that we will do the
1392 mode1 to mode2 promotion with the given sign. */
1393 else if (!strictly_local)
1394 continue;
1395 /* (c.2) The combination of the two promotions is useful. This is
1396 true when the signs match, or if the first promotion is unsigned.
1397 In the later case, (sign_extend (zero_extend x)) is the same as
1398 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1399 else if (uns1)
1400 uns3 = true;
1401 else if (uns3)
1402 continue;
1404 /* Record that the value was promoted from mode1 to mode3,
1405 so that any sign extension at the head of the current
1406 function may be eliminated. */
1407 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1408 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1409 record_value_for_reg (reg, first, x);
1413 /* Called via note_stores. If X is a pseudo that is narrower than
1414 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1416 If we are setting only a portion of X and we can't figure out what
1417 portion, assume all bits will be used since we don't know what will
1418 be happening.
1420 Similarly, set how many bits of X are known to be copies of the sign bit
1421 at all locations in the function. This is the smallest number implied
1422 by any set of X. */
1424 static void
1425 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1427 rtx insn = (rtx) data;
1428 unsigned int num;
1430 if (REG_P (x)
1431 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1432 /* If this register is undefined at the start of the file, we can't
1433 say what its contents were. */
1434 && ! REGNO_REG_SET_P
1435 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1436 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1438 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1440 if (set == 0 || GET_CODE (set) == CLOBBER)
1442 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1443 rsp->sign_bit_copies = 1;
1444 return;
1447 /* If this register is being initialized using itself, and the
1448 register is uninitialized in this basic block, and there are
1449 no LOG_LINKS which set the register, then part of the
1450 register is uninitialized. In that case we can't assume
1451 anything about the number of nonzero bits.
1453 ??? We could do better if we checked this in
1454 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1455 could avoid making assumptions about the insn which initially
1456 sets the register, while still using the information in other
1457 insns. We would have to be careful to check every insn
1458 involved in the combination. */
1460 if (insn
1461 && reg_referenced_p (x, PATTERN (insn))
1462 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1463 REGNO (x)))
1465 rtx link;
1467 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1469 if (dead_or_set_p (XEXP (link, 0), x))
1470 break;
1472 if (!link)
1474 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1475 rsp->sign_bit_copies = 1;
1476 return;
1480 /* If this is a complex assignment, see if we can convert it into a
1481 simple assignment. */
1482 set = expand_field_assignment (set);
1484 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1485 set what we know about X. */
1487 if (SET_DEST (set) == x
1488 || (GET_CODE (SET_DEST (set)) == SUBREG
1489 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1490 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1491 && SUBREG_REG (SET_DEST (set)) == x))
1493 rtx src = SET_SRC (set);
1495 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1496 /* If X is narrower than a word and SRC is a non-negative
1497 constant that would appear negative in the mode of X,
1498 sign-extend it for use in reg_stat[].nonzero_bits because some
1499 machines (maybe most) will actually do the sign-extension
1500 and this is the conservative approach.
1502 ??? For 2.5, try to tighten up the MD files in this regard
1503 instead of this kludge. */
1505 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1506 && CONST_INT_P (src)
1507 && INTVAL (src) > 0
1508 && 0 != (INTVAL (src)
1509 & ((HOST_WIDE_INT) 1
1510 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1511 src = GEN_INT (INTVAL (src)
1512 | ((HOST_WIDE_INT) (-1)
1513 << GET_MODE_BITSIZE (GET_MODE (x))));
1514 #endif
1516 /* Don't call nonzero_bits if it cannot change anything. */
1517 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1518 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1519 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1520 if (rsp->sign_bit_copies == 0
1521 || rsp->sign_bit_copies > num)
1522 rsp->sign_bit_copies = num;
1524 else
1526 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1527 rsp->sign_bit_copies = 1;
1532 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1533 insns that were previously combined into I3 or that will be combined
1534 into the merger of INSN and I3.
1536 Return 0 if the combination is not allowed for any reason.
1538 If the combination is allowed, *PDEST will be set to the single
1539 destination of INSN and *PSRC to the single source, and this function
1540 will return 1. */
1542 static int
1543 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1544 rtx *pdest, rtx *psrc)
1546 int i;
1547 const_rtx set = 0;
1548 rtx src, dest;
1549 rtx p;
1550 #ifdef AUTO_INC_DEC
1551 rtx link;
1552 #endif
1553 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1554 && next_active_insn (succ) == i3)
1555 : next_active_insn (insn) == i3);
1557 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1558 or a PARALLEL consisting of such a SET and CLOBBERs.
1560 If INSN has CLOBBER parallel parts, ignore them for our processing.
1561 By definition, these happen during the execution of the insn. When it
1562 is merged with another insn, all bets are off. If they are, in fact,
1563 needed and aren't also supplied in I3, they may be added by
1564 recog_for_combine. Otherwise, it won't match.
1566 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1567 note.
1569 Get the source and destination of INSN. If more than one, can't
1570 combine. */
1572 if (GET_CODE (PATTERN (insn)) == SET)
1573 set = PATTERN (insn);
1574 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1575 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1577 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1579 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1581 switch (GET_CODE (elt))
1583 /* This is important to combine floating point insns
1584 for the SH4 port. */
1585 case USE:
1586 /* Combining an isolated USE doesn't make sense.
1587 We depend here on combinable_i3pat to reject them. */
1588 /* The code below this loop only verifies that the inputs of
1589 the SET in INSN do not change. We call reg_set_between_p
1590 to verify that the REG in the USE does not change between
1591 I3 and INSN.
1592 If the USE in INSN was for a pseudo register, the matching
1593 insn pattern will likely match any register; combining this
1594 with any other USE would only be safe if we knew that the
1595 used registers have identical values, or if there was
1596 something to tell them apart, e.g. different modes. For
1597 now, we forgo such complicated tests and simply disallow
1598 combining of USES of pseudo registers with any other USE. */
1599 if (REG_P (XEXP (elt, 0))
1600 && GET_CODE (PATTERN (i3)) == PARALLEL)
1602 rtx i3pat = PATTERN (i3);
1603 int i = XVECLEN (i3pat, 0) - 1;
1604 unsigned int regno = REGNO (XEXP (elt, 0));
1608 rtx i3elt = XVECEXP (i3pat, 0, i);
1610 if (GET_CODE (i3elt) == USE
1611 && REG_P (XEXP (i3elt, 0))
1612 && (REGNO (XEXP (i3elt, 0)) == regno
1613 ? reg_set_between_p (XEXP (elt, 0),
1614 PREV_INSN (insn), i3)
1615 : regno >= FIRST_PSEUDO_REGISTER))
1616 return 0;
1618 while (--i >= 0);
1620 break;
1622 /* We can ignore CLOBBERs. */
1623 case CLOBBER:
1624 break;
1626 case SET:
1627 /* Ignore SETs whose result isn't used but not those that
1628 have side-effects. */
1629 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1630 && insn_nothrow_p (insn)
1631 && !side_effects_p (elt))
1632 break;
1634 /* If we have already found a SET, this is a second one and
1635 so we cannot combine with this insn. */
1636 if (set)
1637 return 0;
1639 set = elt;
1640 break;
1642 default:
1643 /* Anything else means we can't combine. */
1644 return 0;
1648 if (set == 0
1649 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1650 so don't do anything with it. */
1651 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1652 return 0;
1654 else
1655 return 0;
1657 if (set == 0)
1658 return 0;
1660 set = expand_field_assignment (set);
1661 src = SET_SRC (set), dest = SET_DEST (set);
1663 /* Don't eliminate a store in the stack pointer. */
1664 if (dest == stack_pointer_rtx
1665 /* Don't combine with an insn that sets a register to itself if it has
1666 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1667 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1668 /* Can't merge an ASM_OPERANDS. */
1669 || GET_CODE (src) == ASM_OPERANDS
1670 /* Can't merge a function call. */
1671 || GET_CODE (src) == CALL
1672 /* Don't eliminate a function call argument. */
1673 || (CALL_P (i3)
1674 && (find_reg_fusage (i3, USE, dest)
1675 || (REG_P (dest)
1676 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1677 && global_regs[REGNO (dest)])))
1678 /* Don't substitute into an incremented register. */
1679 || FIND_REG_INC_NOTE (i3, dest)
1680 || (succ && FIND_REG_INC_NOTE (succ, dest))
1681 /* Don't substitute into a non-local goto, this confuses CFG. */
1682 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1683 /* Make sure that DEST is not used after SUCC but before I3. */
1684 || (succ && ! all_adjacent
1685 && reg_used_between_p (dest, succ, i3))
1686 /* Make sure that the value that is to be substituted for the register
1687 does not use any registers whose values alter in between. However,
1688 If the insns are adjacent, a use can't cross a set even though we
1689 think it might (this can happen for a sequence of insns each setting
1690 the same destination; last_set of that register might point to
1691 a NOTE). If INSN has a REG_EQUIV note, the register is always
1692 equivalent to the memory so the substitution is valid even if there
1693 are intervening stores. Also, don't move a volatile asm or
1694 UNSPEC_VOLATILE across any other insns. */
1695 || (! all_adjacent
1696 && (((!MEM_P (src)
1697 || ! find_reg_note (insn, REG_EQUIV, src))
1698 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1699 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1700 || GET_CODE (src) == UNSPEC_VOLATILE))
1701 /* Don't combine across a CALL_INSN, because that would possibly
1702 change whether the life span of some REGs crosses calls or not,
1703 and it is a pain to update that information.
1704 Exception: if source is a constant, moving it later can't hurt.
1705 Accept that as a special case. */
1706 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1707 return 0;
1709 /* DEST must either be a REG or CC0. */
1710 if (REG_P (dest))
1712 /* If register alignment is being enforced for multi-word items in all
1713 cases except for parameters, it is possible to have a register copy
1714 insn referencing a hard register that is not allowed to contain the
1715 mode being copied and which would not be valid as an operand of most
1716 insns. Eliminate this problem by not combining with such an insn.
1718 Also, on some machines we don't want to extend the life of a hard
1719 register. */
1721 if (REG_P (src)
1722 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1723 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1724 /* Don't extend the life of a hard register unless it is
1725 user variable (if we have few registers) or it can't
1726 fit into the desired register (meaning something special
1727 is going on).
1728 Also avoid substituting a return register into I3, because
1729 reload can't handle a conflict with constraints of other
1730 inputs. */
1731 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1732 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1733 return 0;
1735 else if (GET_CODE (dest) != CC0)
1736 return 0;
1739 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1740 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1741 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1743 /* Don't substitute for a register intended as a clobberable
1744 operand. */
1745 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1746 if (rtx_equal_p (reg, dest))
1747 return 0;
1749 /* If the clobber represents an earlyclobber operand, we must not
1750 substitute an expression containing the clobbered register.
1751 As we do not analyze the constraint strings here, we have to
1752 make the conservative assumption. However, if the register is
1753 a fixed hard reg, the clobber cannot represent any operand;
1754 we leave it up to the machine description to either accept or
1755 reject use-and-clobber patterns. */
1756 if (!REG_P (reg)
1757 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1758 || !fixed_regs[REGNO (reg)])
1759 if (reg_overlap_mentioned_p (reg, src))
1760 return 0;
1763 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1764 or not), reject, unless nothing volatile comes between it and I3 */
1766 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1768 /* Make sure succ doesn't contain a volatile reference. */
1769 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1770 return 0;
1772 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1773 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1774 return 0;
1777 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1778 to be an explicit register variable, and was chosen for a reason. */
1780 if (GET_CODE (src) == ASM_OPERANDS
1781 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1782 return 0;
1784 /* If there are any volatile insns between INSN and I3, reject, because
1785 they might affect machine state. */
1787 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1788 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1789 return 0;
1791 /* If INSN contains an autoincrement or autodecrement, make sure that
1792 register is not used between there and I3, and not already used in
1793 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1794 Also insist that I3 not be a jump; if it were one
1795 and the incremented register were spilled, we would lose. */
1797 #ifdef AUTO_INC_DEC
1798 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1799 if (REG_NOTE_KIND (link) == REG_INC
1800 && (JUMP_P (i3)
1801 || reg_used_between_p (XEXP (link, 0), insn, i3)
1802 || (pred != NULL_RTX
1803 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1804 || (succ != NULL_RTX
1805 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1806 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1807 return 0;
1808 #endif
1810 #ifdef HAVE_cc0
1811 /* Don't combine an insn that follows a CC0-setting insn.
1812 An insn that uses CC0 must not be separated from the one that sets it.
1813 We do, however, allow I2 to follow a CC0-setting insn if that insn
1814 is passed as I1; in that case it will be deleted also.
1815 We also allow combining in this case if all the insns are adjacent
1816 because that would leave the two CC0 insns adjacent as well.
1817 It would be more logical to test whether CC0 occurs inside I1 or I2,
1818 but that would be much slower, and this ought to be equivalent. */
1820 p = prev_nonnote_insn (insn);
1821 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1822 && ! all_adjacent)
1823 return 0;
1824 #endif
1826 /* If we get here, we have passed all the tests and the combination is
1827 to be allowed. */
1829 *pdest = dest;
1830 *psrc = src;
1832 return 1;
1835 /* LOC is the location within I3 that contains its pattern or the component
1836 of a PARALLEL of the pattern. We validate that it is valid for combining.
1838 One problem is if I3 modifies its output, as opposed to replacing it
1839 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1840 so would produce an insn that is not equivalent to the original insns.
1842 Consider:
1844 (set (reg:DI 101) (reg:DI 100))
1845 (set (subreg:SI (reg:DI 101) 0) <foo>)
1847 This is NOT equivalent to:
1849 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1850 (set (reg:DI 101) (reg:DI 100))])
1852 Not only does this modify 100 (in which case it might still be valid
1853 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1855 We can also run into a problem if I2 sets a register that I1
1856 uses and I1 gets directly substituted into I3 (not via I2). In that
1857 case, we would be getting the wrong value of I2DEST into I3, so we
1858 must reject the combination. This case occurs when I2 and I1 both
1859 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1860 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1861 of a SET must prevent combination from occurring.
1863 Before doing the above check, we first try to expand a field assignment
1864 into a set of logical operations.
1866 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1867 we place a register that is both set and used within I3. If more than one
1868 such register is detected, we fail.
1870 Return 1 if the combination is valid, zero otherwise. */
1872 static int
1873 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1874 int i1_not_in_src, rtx *pi3dest_killed)
1876 rtx x = *loc;
1878 if (GET_CODE (x) == SET)
1880 rtx set = x ;
1881 rtx dest = SET_DEST (set);
1882 rtx src = SET_SRC (set);
1883 rtx inner_dest = dest;
1884 rtx subdest;
1886 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1887 || GET_CODE (inner_dest) == SUBREG
1888 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1889 inner_dest = XEXP (inner_dest, 0);
1891 /* Check for the case where I3 modifies its output, as discussed
1892 above. We don't want to prevent pseudos from being combined
1893 into the address of a MEM, so only prevent the combination if
1894 i1 or i2 set the same MEM. */
1895 if ((inner_dest != dest &&
1896 (!MEM_P (inner_dest)
1897 || rtx_equal_p (i2dest, inner_dest)
1898 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1899 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1900 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1902 /* This is the same test done in can_combine_p except we can't test
1903 all_adjacent; we don't have to, since this instruction will stay
1904 in place, thus we are not considering increasing the lifetime of
1905 INNER_DEST.
1907 Also, if this insn sets a function argument, combining it with
1908 something that might need a spill could clobber a previous
1909 function argument; the all_adjacent test in can_combine_p also
1910 checks this; here, we do a more specific test for this case. */
1912 || (REG_P (inner_dest)
1913 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1914 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1915 GET_MODE (inner_dest))))
1916 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1917 return 0;
1919 /* If DEST is used in I3, it is being killed in this insn, so
1920 record that for later. We have to consider paradoxical
1921 subregs here, since they kill the whole register, but we
1922 ignore partial subregs, STRICT_LOW_PART, etc.
1923 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1924 STACK_POINTER_REGNUM, since these are always considered to be
1925 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1926 subdest = dest;
1927 if (GET_CODE (subdest) == SUBREG
1928 && (GET_MODE_SIZE (GET_MODE (subdest))
1929 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1930 subdest = SUBREG_REG (subdest);
1931 if (pi3dest_killed
1932 && REG_P (subdest)
1933 && reg_referenced_p (subdest, PATTERN (i3))
1934 && REGNO (subdest) != FRAME_POINTER_REGNUM
1935 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1936 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1937 #endif
1938 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1939 && (REGNO (subdest) != ARG_POINTER_REGNUM
1940 || ! fixed_regs [REGNO (subdest)])
1941 #endif
1942 && REGNO (subdest) != STACK_POINTER_REGNUM)
1944 if (*pi3dest_killed)
1945 return 0;
1947 *pi3dest_killed = subdest;
1951 else if (GET_CODE (x) == PARALLEL)
1953 int i;
1955 for (i = 0; i < XVECLEN (x, 0); i++)
1956 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1957 i1_not_in_src, pi3dest_killed))
1958 return 0;
1961 return 1;
1964 /* Return 1 if X is an arithmetic expression that contains a multiplication
1965 and division. We don't count multiplications by powers of two here. */
1967 static int
1968 contains_muldiv (rtx x)
1970 switch (GET_CODE (x))
1972 case MOD: case DIV: case UMOD: case UDIV:
1973 return 1;
1975 case MULT:
1976 return ! (CONST_INT_P (XEXP (x, 1))
1977 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1978 default:
1979 if (BINARY_P (x))
1980 return contains_muldiv (XEXP (x, 0))
1981 || contains_muldiv (XEXP (x, 1));
1983 if (UNARY_P (x))
1984 return contains_muldiv (XEXP (x, 0));
1986 return 0;
1990 /* Determine whether INSN can be used in a combination. Return nonzero if
1991 not. This is used in try_combine to detect early some cases where we
1992 can't perform combinations. */
1994 static int
1995 cant_combine_insn_p (rtx insn)
1997 rtx set;
1998 rtx src, dest;
2000 /* If this isn't really an insn, we can't do anything.
2001 This can occur when flow deletes an insn that it has merged into an
2002 auto-increment address. */
2003 if (! INSN_P (insn))
2004 return 1;
2006 /* Never combine loads and stores involving hard regs that are likely
2007 to be spilled. The register allocator can usually handle such
2008 reg-reg moves by tying. If we allow the combiner to make
2009 substitutions of likely-spilled regs, reload might die.
2010 As an exception, we allow combinations involving fixed regs; these are
2011 not available to the register allocator so there's no risk involved. */
2013 set = single_set (insn);
2014 if (! set)
2015 return 0;
2016 src = SET_SRC (set);
2017 dest = SET_DEST (set);
2018 if (GET_CODE (src) == SUBREG)
2019 src = SUBREG_REG (src);
2020 if (GET_CODE (dest) == SUBREG)
2021 dest = SUBREG_REG (dest);
2022 if (REG_P (src) && REG_P (dest)
2023 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2024 && ! fixed_regs[REGNO (src)]
2025 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2026 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2027 && ! fixed_regs[REGNO (dest)]
2028 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2029 return 1;
2031 return 0;
2034 struct likely_spilled_retval_info
2036 unsigned regno, nregs;
2037 unsigned mask;
2040 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2041 hard registers that are known to be written to / clobbered in full. */
2042 static void
2043 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2045 struct likely_spilled_retval_info *const info =
2046 (struct likely_spilled_retval_info *) data;
2047 unsigned regno, nregs;
2048 unsigned new_mask;
2050 if (!REG_P (XEXP (set, 0)))
2051 return;
2052 regno = REGNO (x);
2053 if (regno >= info->regno + info->nregs)
2054 return;
2055 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2056 if (regno + nregs <= info->regno)
2057 return;
2058 new_mask = (2U << (nregs - 1)) - 1;
2059 if (regno < info->regno)
2060 new_mask >>= info->regno - regno;
2061 else
2062 new_mask <<= regno - info->regno;
2063 info->mask &= ~new_mask;
2066 /* Return nonzero iff part of the return value is live during INSN, and
2067 it is likely spilled. This can happen when more than one insn is needed
2068 to copy the return value, e.g. when we consider to combine into the
2069 second copy insn for a complex value. */
2071 static int
2072 likely_spilled_retval_p (rtx insn)
2074 rtx use = BB_END (this_basic_block);
2075 rtx reg, p;
2076 unsigned regno, nregs;
2077 /* We assume here that no machine mode needs more than
2078 32 hard registers when the value overlaps with a register
2079 for which FUNCTION_VALUE_REGNO_P is true. */
2080 unsigned mask;
2081 struct likely_spilled_retval_info info;
2083 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2084 return 0;
2085 reg = XEXP (PATTERN (use), 0);
2086 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2087 return 0;
2088 regno = REGNO (reg);
2089 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2090 if (nregs == 1)
2091 return 0;
2092 mask = (2U << (nregs - 1)) - 1;
2094 /* Disregard parts of the return value that are set later. */
2095 info.regno = regno;
2096 info.nregs = nregs;
2097 info.mask = mask;
2098 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2099 if (INSN_P (p))
2100 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2101 mask = info.mask;
2103 /* Check if any of the (probably) live return value registers is
2104 likely spilled. */
2105 nregs --;
2108 if ((mask & 1 << nregs)
2109 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2110 return 1;
2111 } while (nregs--);
2112 return 0;
2115 /* Adjust INSN after we made a change to its destination.
2117 Changing the destination can invalidate notes that say something about
2118 the results of the insn and a LOG_LINK pointing to the insn. */
2120 static void
2121 adjust_for_new_dest (rtx insn)
2123 /* For notes, be conservative and simply remove them. */
2124 remove_reg_equal_equiv_notes (insn);
2126 /* The new insn will have a destination that was previously the destination
2127 of an insn just above it. Call distribute_links to make a LOG_LINK from
2128 the next use of that destination. */
2129 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2131 df_insn_rescan (insn);
2134 /* Return TRUE if combine can reuse reg X in mode MODE.
2135 ADDED_SETS is nonzero if the original set is still required. */
2136 static bool
2137 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2139 unsigned int regno;
2141 if (!REG_P(x))
2142 return false;
2144 regno = REGNO (x);
2145 /* Allow hard registers if the new mode is legal, and occupies no more
2146 registers than the old mode. */
2147 if (regno < FIRST_PSEUDO_REGISTER)
2148 return (HARD_REGNO_MODE_OK (regno, mode)
2149 && (hard_regno_nregs[regno][GET_MODE (x)]
2150 >= hard_regno_nregs[regno][mode]));
2152 /* Or a pseudo that is only used once. */
2153 return (REG_N_SETS (regno) == 1 && !added_sets
2154 && !REG_USERVAR_P (x));
2158 /* Check whether X, the destination of a set, refers to part of
2159 the register specified by REG. */
2161 static bool
2162 reg_subword_p (rtx x, rtx reg)
2164 /* Check that reg is an integer mode register. */
2165 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2166 return false;
2168 if (GET_CODE (x) == STRICT_LOW_PART
2169 || GET_CODE (x) == ZERO_EXTRACT)
2170 x = XEXP (x, 0);
2172 return GET_CODE (x) == SUBREG
2173 && SUBREG_REG (x) == reg
2174 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2177 #ifdef AUTO_INC_DEC
2178 /* Replace auto-increment addressing modes with explicit operations to
2179 access the same addresses without modifying the corresponding
2180 registers. If AFTER holds, SRC is meant to be reused after the
2181 side effect, otherwise it is to be reused before that. */
2183 static rtx
2184 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2186 rtx x = src;
2187 const RTX_CODE code = GET_CODE (x);
2188 int i;
2189 const char *fmt;
2191 switch (code)
2193 case REG:
2194 case CONST_INT:
2195 case CONST_DOUBLE:
2196 case CONST_FIXED:
2197 case CONST_VECTOR:
2198 case SYMBOL_REF:
2199 case CODE_LABEL:
2200 case PC:
2201 case CC0:
2202 case SCRATCH:
2203 /* SCRATCH must be shared because they represent distinct values. */
2204 return x;
2205 case CLOBBER:
2206 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2207 return x;
2208 break;
2210 case CONST:
2211 if (shared_const_p (x))
2212 return x;
2213 break;
2215 case MEM:
2216 mem_mode = GET_MODE (x);
2217 break;
2219 case PRE_INC:
2220 case PRE_DEC:
2221 case POST_INC:
2222 case POST_DEC:
2223 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2224 if (after == (code == PRE_INC || code == PRE_DEC))
2225 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2226 else
2227 x = gen_rtx_PLUS (GET_MODE (x),
2228 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2229 GEN_INT ((code == PRE_INC || code == POST_INC)
2230 ? GET_MODE_SIZE (mem_mode)
2231 : -GET_MODE_SIZE (mem_mode)));
2232 return x;
2234 case PRE_MODIFY:
2235 case POST_MODIFY:
2236 if (after == (code == PRE_MODIFY))
2237 x = XEXP (x, 0);
2238 else
2239 x = XEXP (x, 1);
2240 return cleanup_auto_inc_dec (x, after, mem_mode);
2242 default:
2243 break;
2246 /* Copy the various flags, fields, and other information. We assume
2247 that all fields need copying, and then clear the fields that should
2248 not be copied. That is the sensible default behavior, and forces
2249 us to explicitly document why we are *not* copying a flag. */
2250 x = shallow_copy_rtx (x);
2252 /* We do not copy the USED flag, which is used as a mark bit during
2253 walks over the RTL. */
2254 RTX_FLAG (x, used) = 0;
2256 /* We do not copy FRAME_RELATED for INSNs. */
2257 if (INSN_P (x))
2258 RTX_FLAG (x, frame_related) = 0;
2260 fmt = GET_RTX_FORMAT (code);
2261 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2262 if (fmt[i] == 'e')
2263 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2264 else if (fmt[i] == 'E' || fmt[i] == 'V')
2266 int j;
2267 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2268 for (j = 0; j < XVECLEN (x, i); j++)
2269 XVECEXP (x, i, j)
2270 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2273 return x;
2276 /* Auxiliary data structure for propagate_for_debug_stmt. */
2278 struct rtx_subst_pair
2280 rtx to;
2281 bool adjusted;
2282 bool after;
2285 /* DATA points to an rtx_subst_pair. Return the value that should be
2286 substituted. */
2288 static rtx
2289 propagate_for_debug_subst (rtx from ATTRIBUTE_UNUSED, void *data)
2291 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2293 if (!pair->adjusted)
2295 pair->adjusted = true;
2296 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2297 return pair->to;
2299 return copy_rtx (pair->to);
2301 #endif
2303 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2304 and LAST. If MOVE holds, debug insns must also be moved past
2305 LAST. */
2307 static void
2308 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2310 rtx next, move_pos = move ? last : NULL_RTX, loc;
2312 #ifdef AUTO_INC_DEC
2313 struct rtx_subst_pair p;
2314 p.to = src;
2315 p.adjusted = false;
2316 p.after = move;
2317 #endif
2319 next = NEXT_INSN (insn);
2320 while (next != last)
2322 insn = next;
2323 next = NEXT_INSN (insn);
2324 if (DEBUG_INSN_P (insn))
2326 #ifdef AUTO_INC_DEC
2327 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2328 dest, propagate_for_debug_subst, &p);
2329 #else
2330 loc = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn), dest, src);
2331 #endif
2332 if (loc == INSN_VAR_LOCATION_LOC (insn))
2333 continue;
2334 INSN_VAR_LOCATION_LOC (insn) = loc;
2335 if (move_pos)
2337 remove_insn (insn);
2338 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2339 move_pos = emit_debug_insn_after (insn, move_pos);
2341 else
2342 df_insn_rescan (insn);
2347 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2348 Note that the INSN should be deleted *after* removing dead edges, so
2349 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2350 but not for a (set (pc) (label_ref FOO)). */
2352 static void
2353 update_cfg_for_uncondjump (rtx insn)
2355 basic_block bb = BLOCK_FOR_INSN (insn);
2356 bool at_end = (BB_END (bb) == insn);
2358 if (at_end)
2359 purge_dead_edges (bb);
2361 delete_insn (insn);
2362 if (at_end && EDGE_COUNT (bb->succs) == 1)
2363 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2367 /* Try to combine the insns I1 and I2 into I3.
2368 Here I1 and I2 appear earlier than I3.
2369 I1 can be zero; then we combine just I2 into I3.
2371 If we are combining three insns and the resulting insn is not recognized,
2372 try splitting it into two insns. If that happens, I2 and I3 are retained
2373 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2374 are pseudo-deleted.
2376 Return 0 if the combination does not work. Then nothing is changed.
2377 If we did the combination, return the insn at which combine should
2378 resume scanning.
2380 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2381 new direct jump instruction. */
2383 static rtx
2384 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2386 /* New patterns for I3 and I2, respectively. */
2387 rtx newpat, newi2pat = 0;
2388 rtvec newpat_vec_with_clobbers = 0;
2389 int substed_i2 = 0, substed_i1 = 0;
2390 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2391 int added_sets_1, added_sets_2;
2392 /* Total number of SETs to put into I3. */
2393 int total_sets;
2394 /* Nonzero if I2's body now appears in I3. */
2395 int i2_is_used;
2396 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2397 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2398 /* Contains I3 if the destination of I3 is used in its source, which means
2399 that the old life of I3 is being killed. If that usage is placed into
2400 I2 and not in I3, a REG_DEAD note must be made. */
2401 rtx i3dest_killed = 0;
2402 /* SET_DEST and SET_SRC of I2 and I1. */
2403 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0;
2404 /* Set if I2DEST was reused as a scratch register. */
2405 bool i2scratch = false;
2406 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2407 rtx i1pat = 0, i2pat = 0;
2408 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2409 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2410 int i2dest_killed = 0, i1dest_killed = 0;
2411 int i1_feeds_i3 = 0;
2412 /* Notes that must be added to REG_NOTES in I3 and I2. */
2413 rtx new_i3_notes, new_i2_notes;
2414 /* Notes that we substituted I3 into I2 instead of the normal case. */
2415 int i3_subst_into_i2 = 0;
2416 /* Notes that I1, I2 or I3 is a MULT operation. */
2417 int have_mult = 0;
2418 int swap_i2i3 = 0;
2419 int changed_i3_dest = 0;
2421 int maxreg;
2422 rtx temp;
2423 rtx link;
2424 rtx other_pat = 0;
2425 rtx new_other_notes;
2426 int i;
2428 /* Exit early if one of the insns involved can't be used for
2429 combinations. */
2430 if (cant_combine_insn_p (i3)
2431 || cant_combine_insn_p (i2)
2432 || (i1 && cant_combine_insn_p (i1))
2433 || likely_spilled_retval_p (i3))
2434 return 0;
2436 combine_attempts++;
2437 undobuf.other_insn = 0;
2439 /* Reset the hard register usage information. */
2440 CLEAR_HARD_REG_SET (newpat_used_regs);
2442 if (dump_file && (dump_flags & TDF_DETAILS))
2444 if (i1)
2445 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2446 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2447 else
2448 fprintf (dump_file, "\nTrying %d -> %d:\n",
2449 INSN_UID (i2), INSN_UID (i3));
2452 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2453 code below, set I1 to be the earlier of the two insns. */
2454 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2455 temp = i1, i1 = i2, i2 = temp;
2457 added_links_insn = 0;
2459 /* First check for one important special-case that the code below will
2460 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2461 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2462 we may be able to replace that destination with the destination of I3.
2463 This occurs in the common code where we compute both a quotient and
2464 remainder into a structure, in which case we want to do the computation
2465 directly into the structure to avoid register-register copies.
2467 Note that this case handles both multiple sets in I2 and also
2468 cases where I2 has a number of CLOBBER or PARALLELs.
2470 We make very conservative checks below and only try to handle the
2471 most common cases of this. For example, we only handle the case
2472 where I2 and I3 are adjacent to avoid making difficult register
2473 usage tests. */
2475 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2476 && REG_P (SET_SRC (PATTERN (i3)))
2477 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2478 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2479 && GET_CODE (PATTERN (i2)) == PARALLEL
2480 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2481 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2482 below would need to check what is inside (and reg_overlap_mentioned_p
2483 doesn't support those codes anyway). Don't allow those destinations;
2484 the resulting insn isn't likely to be recognized anyway. */
2485 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2486 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2487 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2488 SET_DEST (PATTERN (i3)))
2489 && next_active_insn (i2) == i3)
2491 rtx p2 = PATTERN (i2);
2493 /* Make sure that the destination of I3,
2494 which we are going to substitute into one output of I2,
2495 is not used within another output of I2. We must avoid making this:
2496 (parallel [(set (mem (reg 69)) ...)
2497 (set (reg 69) ...)])
2498 which is not well-defined as to order of actions.
2499 (Besides, reload can't handle output reloads for this.)
2501 The problem can also happen if the dest of I3 is a memory ref,
2502 if another dest in I2 is an indirect memory ref. */
2503 for (i = 0; i < XVECLEN (p2, 0); i++)
2504 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2505 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2506 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2507 SET_DEST (XVECEXP (p2, 0, i))))
2508 break;
2510 if (i == XVECLEN (p2, 0))
2511 for (i = 0; i < XVECLEN (p2, 0); i++)
2512 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2513 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2514 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2516 combine_merges++;
2518 subst_insn = i3;
2519 subst_low_luid = DF_INSN_LUID (i2);
2521 added_sets_2 = added_sets_1 = 0;
2522 i2src = SET_DEST (PATTERN (i3));
2523 i2dest = SET_SRC (PATTERN (i3));
2524 i2dest_killed = dead_or_set_p (i2, i2dest);
2526 /* Replace the dest in I2 with our dest and make the resulting
2527 insn the new pattern for I3. Then skip to where we
2528 validate the pattern. Everything was set up above. */
2529 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2530 SET_DEST (PATTERN (i3)));
2532 newpat = p2;
2533 i3_subst_into_i2 = 1;
2534 goto validate_replacement;
2538 /* If I2 is setting a pseudo to a constant and I3 is setting some
2539 sub-part of it to another constant, merge them by making a new
2540 constant. */
2541 if (i1 == 0
2542 && (temp = single_set (i2)) != 0
2543 && (CONST_INT_P (SET_SRC (temp))
2544 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2545 && GET_CODE (PATTERN (i3)) == SET
2546 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2547 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2548 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2550 rtx dest = SET_DEST (PATTERN (i3));
2551 int offset = -1;
2552 int width = 0;
2554 if (GET_CODE (dest) == ZERO_EXTRACT)
2556 if (CONST_INT_P (XEXP (dest, 1))
2557 && CONST_INT_P (XEXP (dest, 2)))
2559 width = INTVAL (XEXP (dest, 1));
2560 offset = INTVAL (XEXP (dest, 2));
2561 dest = XEXP (dest, 0);
2562 if (BITS_BIG_ENDIAN)
2563 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2566 else
2568 if (GET_CODE (dest) == STRICT_LOW_PART)
2569 dest = XEXP (dest, 0);
2570 width = GET_MODE_BITSIZE (GET_MODE (dest));
2571 offset = 0;
2574 if (offset >= 0)
2576 /* If this is the low part, we're done. */
2577 if (subreg_lowpart_p (dest))
2579 /* Handle the case where inner is twice the size of outer. */
2580 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2581 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2582 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2583 /* Otherwise give up for now. */
2584 else
2585 offset = -1;
2588 if (offset >= 0
2589 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2590 <= HOST_BITS_PER_WIDE_INT * 2))
2592 HOST_WIDE_INT mhi, ohi, ihi;
2593 HOST_WIDE_INT mlo, olo, ilo;
2594 rtx inner = SET_SRC (PATTERN (i3));
2595 rtx outer = SET_SRC (temp);
2597 if (CONST_INT_P (outer))
2599 olo = INTVAL (outer);
2600 ohi = olo < 0 ? -1 : 0;
2602 else
2604 olo = CONST_DOUBLE_LOW (outer);
2605 ohi = CONST_DOUBLE_HIGH (outer);
2608 if (CONST_INT_P (inner))
2610 ilo = INTVAL (inner);
2611 ihi = ilo < 0 ? -1 : 0;
2613 else
2615 ilo = CONST_DOUBLE_LOW (inner);
2616 ihi = CONST_DOUBLE_HIGH (inner);
2619 if (width < HOST_BITS_PER_WIDE_INT)
2621 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2622 mhi = 0;
2624 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2626 mhi = ((unsigned HOST_WIDE_INT) 1
2627 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2628 mlo = -1;
2630 else
2632 mlo = -1;
2633 mhi = -1;
2636 ilo &= mlo;
2637 ihi &= mhi;
2639 if (offset >= HOST_BITS_PER_WIDE_INT)
2641 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2642 mlo = 0;
2643 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2644 ilo = 0;
2646 else if (offset > 0)
2648 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2649 >> (HOST_BITS_PER_WIDE_INT - offset));
2650 mlo = mlo << offset;
2651 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2652 >> (HOST_BITS_PER_WIDE_INT - offset));
2653 ilo = ilo << offset;
2656 olo = (olo & ~mlo) | ilo;
2657 ohi = (ohi & ~mhi) | ihi;
2659 combine_merges++;
2660 subst_insn = i3;
2661 subst_low_luid = DF_INSN_LUID (i2);
2662 added_sets_2 = added_sets_1 = 0;
2663 i2dest = SET_DEST (temp);
2664 i2dest_killed = dead_or_set_p (i2, i2dest);
2666 /* Replace the source in I2 with the new constant and make the
2667 resulting insn the new pattern for I3. Then skip to where we
2668 validate the pattern. Everything was set up above. */
2669 SUBST (SET_SRC (temp),
2670 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2672 newpat = PATTERN (i2);
2674 /* The dest of I3 has been replaced with the dest of I2. */
2675 changed_i3_dest = 1;
2676 goto validate_replacement;
2680 #ifndef HAVE_cc0
2681 /* If we have no I1 and I2 looks like:
2682 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2683 (set Y OP)])
2684 make up a dummy I1 that is
2685 (set Y OP)
2686 and change I2 to be
2687 (set (reg:CC X) (compare:CC Y (const_int 0)))
2689 (We can ignore any trailing CLOBBERs.)
2691 This undoes a previous combination and allows us to match a branch-and-
2692 decrement insn. */
2694 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2695 && XVECLEN (PATTERN (i2), 0) >= 2
2696 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2697 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2698 == MODE_CC)
2699 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2700 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2701 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2702 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2703 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2704 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2706 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2707 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2708 break;
2710 if (i == 1)
2712 /* We make I1 with the same INSN_UID as I2. This gives it
2713 the same DF_INSN_LUID for value tracking. Our fake I1 will
2714 never appear in the insn stream so giving it the same INSN_UID
2715 as I2 will not cause a problem. */
2717 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2718 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2719 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2721 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2722 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2723 SET_DEST (PATTERN (i1)));
2726 #endif
2728 /* Verify that I2 and I1 are valid for combining. */
2729 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2730 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2732 undo_all ();
2733 return 0;
2736 /* Record whether I2DEST is used in I2SRC and similarly for the other
2737 cases. Knowing this will help in register status updating below. */
2738 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2739 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2740 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2741 i2dest_killed = dead_or_set_p (i2, i2dest);
2742 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2744 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2745 in I2SRC. */
2746 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2748 /* Ensure that I3's pattern can be the destination of combines. */
2749 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2750 i1 && i2dest_in_i1src && i1_feeds_i3,
2751 &i3dest_killed))
2753 undo_all ();
2754 return 0;
2757 /* See if any of the insns is a MULT operation. Unless one is, we will
2758 reject a combination that is, since it must be slower. Be conservative
2759 here. */
2760 if (GET_CODE (i2src) == MULT
2761 || (i1 != 0 && GET_CODE (i1src) == MULT)
2762 || (GET_CODE (PATTERN (i3)) == SET
2763 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2764 have_mult = 1;
2766 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2767 We used to do this EXCEPT in one case: I3 has a post-inc in an
2768 output operand. However, that exception can give rise to insns like
2769 mov r3,(r3)+
2770 which is a famous insn on the PDP-11 where the value of r3 used as the
2771 source was model-dependent. Avoid this sort of thing. */
2773 #if 0
2774 if (!(GET_CODE (PATTERN (i3)) == SET
2775 && REG_P (SET_SRC (PATTERN (i3)))
2776 && MEM_P (SET_DEST (PATTERN (i3)))
2777 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2778 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2779 /* It's not the exception. */
2780 #endif
2781 #ifdef AUTO_INC_DEC
2782 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2783 if (REG_NOTE_KIND (link) == REG_INC
2784 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2785 || (i1 != 0
2786 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2788 undo_all ();
2789 return 0;
2791 #endif
2793 /* See if the SETs in I1 or I2 need to be kept around in the merged
2794 instruction: whenever the value set there is still needed past I3.
2795 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2797 For the SET in I1, we have two cases: If I1 and I2 independently
2798 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2799 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2800 in I1 needs to be kept around unless I1DEST dies or is set in either
2801 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2802 I1DEST. If so, we know I1 feeds into I2. */
2804 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2806 added_sets_1
2807 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2808 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2810 /* If the set in I2 needs to be kept around, we must make a copy of
2811 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2812 PATTERN (I2), we are only substituting for the original I1DEST, not into
2813 an already-substituted copy. This also prevents making self-referential
2814 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2815 I2DEST. */
2817 if (added_sets_2)
2819 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2820 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2821 else
2822 i2pat = copy_rtx (PATTERN (i2));
2825 if (added_sets_1)
2827 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2828 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2829 else
2830 i1pat = copy_rtx (PATTERN (i1));
2833 combine_merges++;
2835 /* Substitute in the latest insn for the regs set by the earlier ones. */
2837 maxreg = max_reg_num ();
2839 subst_insn = i3;
2841 #ifndef HAVE_cc0
2842 /* Many machines that don't use CC0 have insns that can both perform an
2843 arithmetic operation and set the condition code. These operations will
2844 be represented as a PARALLEL with the first element of the vector
2845 being a COMPARE of an arithmetic operation with the constant zero.
2846 The second element of the vector will set some pseudo to the result
2847 of the same arithmetic operation. If we simplify the COMPARE, we won't
2848 match such a pattern and so will generate an extra insn. Here we test
2849 for this case, where both the comparison and the operation result are
2850 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2851 I2SRC. Later we will make the PARALLEL that contains I2. */
2853 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2854 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2855 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2856 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2858 #ifdef SELECT_CC_MODE
2859 rtx *cc_use;
2860 enum machine_mode compare_mode;
2861 #endif
2863 newpat = PATTERN (i3);
2864 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2866 i2_is_used = 1;
2868 #ifdef SELECT_CC_MODE
2869 /* See if a COMPARE with the operand we substituted in should be done
2870 with the mode that is currently being used. If not, do the same
2871 processing we do in `subst' for a SET; namely, if the destination
2872 is used only once, try to replace it with a register of the proper
2873 mode and also replace the COMPARE. */
2874 if (undobuf.other_insn == 0
2875 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2876 &undobuf.other_insn))
2877 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2878 i2src, const0_rtx))
2879 != GET_MODE (SET_DEST (newpat))))
2881 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2882 compare_mode))
2884 unsigned int regno = REGNO (SET_DEST (newpat));
2885 rtx new_dest;
2887 if (regno < FIRST_PSEUDO_REGISTER)
2888 new_dest = gen_rtx_REG (compare_mode, regno);
2889 else
2891 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2892 new_dest = regno_reg_rtx[regno];
2895 SUBST (SET_DEST (newpat), new_dest);
2896 SUBST (XEXP (*cc_use, 0), new_dest);
2897 SUBST (SET_SRC (newpat),
2898 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2900 else
2901 undobuf.other_insn = 0;
2903 #endif
2905 else
2906 #endif
2908 /* It is possible that the source of I2 or I1 may be performing
2909 an unneeded operation, such as a ZERO_EXTEND of something
2910 that is known to have the high part zero. Handle that case
2911 by letting subst look at the innermost one of them.
2913 Another way to do this would be to have a function that tries
2914 to simplify a single insn instead of merging two or more
2915 insns. We don't do this because of the potential of infinite
2916 loops and because of the potential extra memory required.
2917 However, doing it the way we are is a bit of a kludge and
2918 doesn't catch all cases.
2920 But only do this if -fexpensive-optimizations since it slows
2921 things down and doesn't usually win.
2923 This is not done in the COMPARE case above because the
2924 unmodified I2PAT is used in the PARALLEL and so a pattern
2925 with a modified I2SRC would not match. */
2927 if (flag_expensive_optimizations)
2929 /* Pass pc_rtx so no substitutions are done, just
2930 simplifications. */
2931 if (i1)
2933 subst_low_luid = DF_INSN_LUID (i1);
2934 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2936 else
2938 subst_low_luid = DF_INSN_LUID (i2);
2939 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2943 n_occurrences = 0; /* `subst' counts here */
2945 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2946 need to make a unique copy of I2SRC each time we substitute it
2947 to avoid self-referential rtl. */
2949 subst_low_luid = DF_INSN_LUID (i2);
2950 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2951 ! i1_feeds_i3 && i1dest_in_i1src);
2952 substed_i2 = 1;
2954 /* Record whether i2's body now appears within i3's body. */
2955 i2_is_used = n_occurrences;
2958 /* If we already got a failure, don't try to do more. Otherwise,
2959 try to substitute in I1 if we have it. */
2961 if (i1 && GET_CODE (newpat) != CLOBBER)
2963 /* Check that an autoincrement side-effect on I1 has not been lost.
2964 This happens if I1DEST is mentioned in I2 and dies there, and
2965 has disappeared from the new pattern. */
2966 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2967 && !i1_feeds_i3
2968 && dead_or_set_p (i2, i1dest)
2969 && !reg_overlap_mentioned_p (i1dest, newpat))
2970 /* Before we can do this substitution, we must redo the test done
2971 above (see detailed comments there) that ensures that I1DEST
2972 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2973 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2975 undo_all ();
2976 return 0;
2979 n_occurrences = 0;
2980 subst_low_luid = DF_INSN_LUID (i1);
2981 newpat = subst (newpat, i1dest, i1src, 0, 0);
2982 substed_i1 = 1;
2985 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2986 to count all the ways that I2SRC and I1SRC can be used. */
2987 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2988 && i2_is_used + added_sets_2 > 1)
2989 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2990 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2991 > 1))
2992 /* Fail if we tried to make a new register. */
2993 || max_reg_num () != maxreg
2994 /* Fail if we couldn't do something and have a CLOBBER. */
2995 || GET_CODE (newpat) == CLOBBER
2996 /* Fail if this new pattern is a MULT and we didn't have one before
2997 at the outer level. */
2998 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2999 && ! have_mult))
3001 undo_all ();
3002 return 0;
3005 /* If the actions of the earlier insns must be kept
3006 in addition to substituting them into the latest one,
3007 we must make a new PARALLEL for the latest insn
3008 to hold additional the SETs. */
3010 if (added_sets_1 || added_sets_2)
3012 combine_extras++;
3014 if (GET_CODE (newpat) == PARALLEL)
3016 rtvec old = XVEC (newpat, 0);
3017 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
3018 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3019 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3020 sizeof (old->elem[0]) * old->num_elem);
3022 else
3024 rtx old = newpat;
3025 total_sets = 1 + added_sets_1 + added_sets_2;
3026 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3027 XVECEXP (newpat, 0, 0) = old;
3030 if (added_sets_1)
3031 XVECEXP (newpat, 0, --total_sets) = i1pat;
3033 if (added_sets_2)
3035 /* If there is no I1, use I2's body as is. We used to also not do
3036 the subst call below if I2 was substituted into I3,
3037 but that could lose a simplification. */
3038 if (i1 == 0)
3039 XVECEXP (newpat, 0, --total_sets) = i2pat;
3040 else
3041 /* See comment where i2pat is assigned. */
3042 XVECEXP (newpat, 0, --total_sets)
3043 = subst (i2pat, i1dest, i1src, 0, 0);
3047 validate_replacement:
3049 /* Note which hard regs this insn has as inputs. */
3050 mark_used_regs_combine (newpat);
3052 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3053 consider splitting this pattern, we might need these clobbers. */
3054 if (i1 && GET_CODE (newpat) == PARALLEL
3055 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3057 int len = XVECLEN (newpat, 0);
3059 newpat_vec_with_clobbers = rtvec_alloc (len);
3060 for (i = 0; i < len; i++)
3061 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3064 /* Is the result of combination a valid instruction? */
3065 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3067 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3068 the second SET's destination is a register that is unused and isn't
3069 marked as an instruction that might trap in an EH region. In that case,
3070 we just need the first SET. This can occur when simplifying a divmod
3071 insn. We *must* test for this case here because the code below that
3072 splits two independent SETs doesn't handle this case correctly when it
3073 updates the register status.
3075 It's pointless doing this if we originally had two sets, one from
3076 i3, and one from i2. Combining then splitting the parallel results
3077 in the original i2 again plus an invalid insn (which we delete).
3078 The net effect is only to move instructions around, which makes
3079 debug info less accurate.
3081 Also check the case where the first SET's destination is unused.
3082 That would not cause incorrect code, but does cause an unneeded
3083 insn to remain. */
3085 if (insn_code_number < 0
3086 && !(added_sets_2 && i1 == 0)
3087 && GET_CODE (newpat) == PARALLEL
3088 && XVECLEN (newpat, 0) == 2
3089 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3090 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3091 && asm_noperands (newpat) < 0)
3093 rtx set0 = XVECEXP (newpat, 0, 0);
3094 rtx set1 = XVECEXP (newpat, 0, 1);
3096 if (((REG_P (SET_DEST (set1))
3097 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3098 || (GET_CODE (SET_DEST (set1)) == SUBREG
3099 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3100 && insn_nothrow_p (i3)
3101 && !side_effects_p (SET_SRC (set1)))
3103 newpat = set0;
3104 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3107 else if (((REG_P (SET_DEST (set0))
3108 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3109 || (GET_CODE (SET_DEST (set0)) == SUBREG
3110 && find_reg_note (i3, REG_UNUSED,
3111 SUBREG_REG (SET_DEST (set0)))))
3112 && insn_nothrow_p (i3)
3113 && !side_effects_p (SET_SRC (set0)))
3115 newpat = set1;
3116 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3118 if (insn_code_number >= 0)
3119 changed_i3_dest = 1;
3123 /* If we were combining three insns and the result is a simple SET
3124 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3125 insns. There are two ways to do this. It can be split using a
3126 machine-specific method (like when you have an addition of a large
3127 constant) or by combine in the function find_split_point. */
3129 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3130 && asm_noperands (newpat) < 0)
3132 rtx parallel, m_split, *split;
3134 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3135 use I2DEST as a scratch register will help. In the latter case,
3136 convert I2DEST to the mode of the source of NEWPAT if we can. */
3138 m_split = combine_split_insns (newpat, i3);
3140 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3141 inputs of NEWPAT. */
3143 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3144 possible to try that as a scratch reg. This would require adding
3145 more code to make it work though. */
3147 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3149 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3151 /* First try to split using the original register as a
3152 scratch register. */
3153 parallel = gen_rtx_PARALLEL (VOIDmode,
3154 gen_rtvec (2, newpat,
3155 gen_rtx_CLOBBER (VOIDmode,
3156 i2dest)));
3157 m_split = combine_split_insns (parallel, i3);
3159 /* If that didn't work, try changing the mode of I2DEST if
3160 we can. */
3161 if (m_split == 0
3162 && new_mode != GET_MODE (i2dest)
3163 && new_mode != VOIDmode
3164 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3166 enum machine_mode old_mode = GET_MODE (i2dest);
3167 rtx ni2dest;
3169 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3170 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3171 else
3173 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3174 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3177 parallel = (gen_rtx_PARALLEL
3178 (VOIDmode,
3179 gen_rtvec (2, newpat,
3180 gen_rtx_CLOBBER (VOIDmode,
3181 ni2dest))));
3182 m_split = combine_split_insns (parallel, i3);
3184 if (m_split == 0
3185 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3187 struct undo *buf;
3189 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3190 buf = undobuf.undos;
3191 undobuf.undos = buf->next;
3192 buf->next = undobuf.frees;
3193 undobuf.frees = buf;
3197 i2scratch = m_split != 0;
3200 /* If recog_for_combine has discarded clobbers, try to use them
3201 again for the split. */
3202 if (m_split == 0 && newpat_vec_with_clobbers)
3204 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3205 m_split = combine_split_insns (parallel, i3);
3208 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3210 m_split = PATTERN (m_split);
3211 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3212 if (insn_code_number >= 0)
3213 newpat = m_split;
3215 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3216 && (next_real_insn (i2) == i3
3217 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3219 rtx i2set, i3set;
3220 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3221 newi2pat = PATTERN (m_split);
3223 i3set = single_set (NEXT_INSN (m_split));
3224 i2set = single_set (m_split);
3226 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3228 /* If I2 or I3 has multiple SETs, we won't know how to track
3229 register status, so don't use these insns. If I2's destination
3230 is used between I2 and I3, we also can't use these insns. */
3232 if (i2_code_number >= 0 && i2set && i3set
3233 && (next_real_insn (i2) == i3
3234 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3235 insn_code_number = recog_for_combine (&newi3pat, i3,
3236 &new_i3_notes);
3237 if (insn_code_number >= 0)
3238 newpat = newi3pat;
3240 /* It is possible that both insns now set the destination of I3.
3241 If so, we must show an extra use of it. */
3243 if (insn_code_number >= 0)
3245 rtx new_i3_dest = SET_DEST (i3set);
3246 rtx new_i2_dest = SET_DEST (i2set);
3248 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3249 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3250 || GET_CODE (new_i3_dest) == SUBREG)
3251 new_i3_dest = XEXP (new_i3_dest, 0);
3253 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3254 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3255 || GET_CODE (new_i2_dest) == SUBREG)
3256 new_i2_dest = XEXP (new_i2_dest, 0);
3258 if (REG_P (new_i3_dest)
3259 && REG_P (new_i2_dest)
3260 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3261 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3265 /* If we can split it and use I2DEST, go ahead and see if that
3266 helps things be recognized. Verify that none of the registers
3267 are set between I2 and I3. */
3268 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3269 #ifdef HAVE_cc0
3270 && REG_P (i2dest)
3271 #endif
3272 /* We need I2DEST in the proper mode. If it is a hard register
3273 or the only use of a pseudo, we can change its mode.
3274 Make sure we don't change a hard register to have a mode that
3275 isn't valid for it, or change the number of registers. */
3276 && (GET_MODE (*split) == GET_MODE (i2dest)
3277 || GET_MODE (*split) == VOIDmode
3278 || can_change_dest_mode (i2dest, added_sets_2,
3279 GET_MODE (*split)))
3280 && (next_real_insn (i2) == i3
3281 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3282 /* We can't overwrite I2DEST if its value is still used by
3283 NEWPAT. */
3284 && ! reg_referenced_p (i2dest, newpat))
3286 rtx newdest = i2dest;
3287 enum rtx_code split_code = GET_CODE (*split);
3288 enum machine_mode split_mode = GET_MODE (*split);
3289 bool subst_done = false;
3290 newi2pat = NULL_RTX;
3292 i2scratch = true;
3294 /* Get NEWDEST as a register in the proper mode. We have already
3295 validated that we can do this. */
3296 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3298 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3299 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3300 else
3302 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3303 newdest = regno_reg_rtx[REGNO (i2dest)];
3307 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3308 an ASHIFT. This can occur if it was inside a PLUS and hence
3309 appeared to be a memory address. This is a kludge. */
3310 if (split_code == MULT
3311 && CONST_INT_P (XEXP (*split, 1))
3312 && INTVAL (XEXP (*split, 1)) > 0
3313 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3315 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3316 XEXP (*split, 0), GEN_INT (i)));
3317 /* Update split_code because we may not have a multiply
3318 anymore. */
3319 split_code = GET_CODE (*split);
3322 #ifdef INSN_SCHEDULING
3323 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3324 be written as a ZERO_EXTEND. */
3325 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3327 #ifdef LOAD_EXTEND_OP
3328 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3329 what it really is. */
3330 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3331 == SIGN_EXTEND)
3332 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3333 SUBREG_REG (*split)));
3334 else
3335 #endif
3336 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3337 SUBREG_REG (*split)));
3339 #endif
3341 /* Attempt to split binary operators using arithmetic identities. */
3342 if (BINARY_P (SET_SRC (newpat))
3343 && split_mode == GET_MODE (SET_SRC (newpat))
3344 && ! side_effects_p (SET_SRC (newpat)))
3346 rtx setsrc = SET_SRC (newpat);
3347 enum machine_mode mode = GET_MODE (setsrc);
3348 enum rtx_code code = GET_CODE (setsrc);
3349 rtx src_op0 = XEXP (setsrc, 0);
3350 rtx src_op1 = XEXP (setsrc, 1);
3352 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3353 if (rtx_equal_p (src_op0, src_op1))
3355 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3356 SUBST (XEXP (setsrc, 0), newdest);
3357 SUBST (XEXP (setsrc, 1), newdest);
3358 subst_done = true;
3360 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3361 else if ((code == PLUS || code == MULT)
3362 && GET_CODE (src_op0) == code
3363 && GET_CODE (XEXP (src_op0, 0)) == code
3364 && (INTEGRAL_MODE_P (mode)
3365 || (FLOAT_MODE_P (mode)
3366 && flag_unsafe_math_optimizations)))
3368 rtx p = XEXP (XEXP (src_op0, 0), 0);
3369 rtx q = XEXP (XEXP (src_op0, 0), 1);
3370 rtx r = XEXP (src_op0, 1);
3371 rtx s = src_op1;
3373 /* Split both "((X op Y) op X) op Y" and
3374 "((X op Y) op Y) op X" as "T op T" where T is
3375 "X op Y". */
3376 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3377 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3379 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3380 XEXP (src_op0, 0));
3381 SUBST (XEXP (setsrc, 0), newdest);
3382 SUBST (XEXP (setsrc, 1), newdest);
3383 subst_done = true;
3385 /* Split "((X op X) op Y) op Y)" as "T op T" where
3386 T is "X op Y". */
3387 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3389 rtx tmp = simplify_gen_binary (code, mode, p, r);
3390 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3391 SUBST (XEXP (setsrc, 0), newdest);
3392 SUBST (XEXP (setsrc, 1), newdest);
3393 subst_done = true;
3398 if (!subst_done)
3400 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3401 SUBST (*split, newdest);
3404 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3406 /* recog_for_combine might have added CLOBBERs to newi2pat.
3407 Make sure NEWPAT does not depend on the clobbered regs. */
3408 if (GET_CODE (newi2pat) == PARALLEL)
3409 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3410 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3412 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3413 if (reg_overlap_mentioned_p (reg, newpat))
3415 undo_all ();
3416 return 0;
3420 /* If the split point was a MULT and we didn't have one before,
3421 don't use one now. */
3422 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3423 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3427 /* Check for a case where we loaded from memory in a narrow mode and
3428 then sign extended it, but we need both registers. In that case,
3429 we have a PARALLEL with both loads from the same memory location.
3430 We can split this into a load from memory followed by a register-register
3431 copy. This saves at least one insn, more if register allocation can
3432 eliminate the copy.
3434 We cannot do this if the destination of the first assignment is a
3435 condition code register or cc0. We eliminate this case by making sure
3436 the SET_DEST and SET_SRC have the same mode.
3438 We cannot do this if the destination of the second assignment is
3439 a register that we have already assumed is zero-extended. Similarly
3440 for a SUBREG of such a register. */
3442 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3443 && GET_CODE (newpat) == PARALLEL
3444 && XVECLEN (newpat, 0) == 2
3445 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3446 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3447 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3448 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3449 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3450 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3451 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3452 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3453 DF_INSN_LUID (i2))
3454 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3455 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3456 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3457 (REG_P (temp)
3458 && VEC_index (reg_stat_type, reg_stat,
3459 REGNO (temp))->nonzero_bits != 0
3460 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3461 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3462 && (VEC_index (reg_stat_type, reg_stat,
3463 REGNO (temp))->nonzero_bits
3464 != GET_MODE_MASK (word_mode))))
3465 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3466 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3467 (REG_P (temp)
3468 && VEC_index (reg_stat_type, reg_stat,
3469 REGNO (temp))->nonzero_bits != 0
3470 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3471 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3472 && (VEC_index (reg_stat_type, reg_stat,
3473 REGNO (temp))->nonzero_bits
3474 != GET_MODE_MASK (word_mode)))))
3475 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3476 SET_SRC (XVECEXP (newpat, 0, 1)))
3477 && ! find_reg_note (i3, REG_UNUSED,
3478 SET_DEST (XVECEXP (newpat, 0, 0))))
3480 rtx ni2dest;
3482 newi2pat = XVECEXP (newpat, 0, 0);
3483 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3484 newpat = XVECEXP (newpat, 0, 1);
3485 SUBST (SET_SRC (newpat),
3486 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3487 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3489 if (i2_code_number >= 0)
3490 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3492 if (insn_code_number >= 0)
3493 swap_i2i3 = 1;
3496 /* Similarly, check for a case where we have a PARALLEL of two independent
3497 SETs but we started with three insns. In this case, we can do the sets
3498 as two separate insns. This case occurs when some SET allows two
3499 other insns to combine, but the destination of that SET is still live. */
3501 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3502 && GET_CODE (newpat) == PARALLEL
3503 && XVECLEN (newpat, 0) == 2
3504 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3505 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3506 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3507 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3508 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3509 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3510 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3511 DF_INSN_LUID (i2))
3512 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3513 XVECEXP (newpat, 0, 0))
3514 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3515 XVECEXP (newpat, 0, 1))
3516 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3517 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3518 #ifdef HAVE_cc0
3519 /* We cannot split the parallel into two sets if both sets
3520 reference cc0. */
3521 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3522 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3523 #endif
3526 /* Normally, it doesn't matter which of the two is done first,
3527 but it does if one references cc0. In that case, it has to
3528 be first. */
3529 #ifdef HAVE_cc0
3530 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3532 newi2pat = XVECEXP (newpat, 0, 0);
3533 newpat = XVECEXP (newpat, 0, 1);
3535 else
3536 #endif
3538 newi2pat = XVECEXP (newpat, 0, 1);
3539 newpat = XVECEXP (newpat, 0, 0);
3542 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3544 if (i2_code_number >= 0)
3545 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3548 /* If it still isn't recognized, fail and change things back the way they
3549 were. */
3550 if ((insn_code_number < 0
3551 /* Is the result a reasonable ASM_OPERANDS? */
3552 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3554 undo_all ();
3555 return 0;
3558 /* If we had to change another insn, make sure it is valid also. */
3559 if (undobuf.other_insn)
3561 CLEAR_HARD_REG_SET (newpat_used_regs);
3563 other_pat = PATTERN (undobuf.other_insn);
3564 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3565 &new_other_notes);
3567 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3569 undo_all ();
3570 return 0;
3574 #ifdef HAVE_cc0
3575 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3576 they are adjacent to each other or not. */
3578 rtx p = prev_nonnote_insn (i3);
3579 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3580 && sets_cc0_p (newi2pat))
3582 undo_all ();
3583 return 0;
3586 #endif
3588 /* Only allow this combination if insn_rtx_costs reports that the
3589 replacement instructions are cheaper than the originals. */
3590 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3592 undo_all ();
3593 return 0;
3596 if (MAY_HAVE_DEBUG_INSNS)
3598 struct undo *undo;
3600 for (undo = undobuf.undos; undo; undo = undo->next)
3601 if (undo->kind == UNDO_MODE)
3603 rtx reg = *undo->where.r;
3604 enum machine_mode new_mode = GET_MODE (reg);
3605 enum machine_mode old_mode = undo->old_contents.m;
3607 /* Temporarily revert mode back. */
3608 adjust_reg_mode (reg, old_mode);
3610 if (reg == i2dest && i2scratch)
3612 /* If we used i2dest as a scratch register with a
3613 different mode, substitute it for the original
3614 i2src while its original mode is temporarily
3615 restored, and then clear i2scratch so that we don't
3616 do it again later. */
3617 propagate_for_debug (i2, i3, reg, i2src, false);
3618 i2scratch = false;
3619 /* Put back the new mode. */
3620 adjust_reg_mode (reg, new_mode);
3622 else
3624 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3625 rtx first, last;
3627 if (reg == i2dest)
3629 first = i2;
3630 last = i3;
3632 else
3634 first = i3;
3635 last = undobuf.other_insn;
3636 gcc_assert (last);
3639 /* We're dealing with a reg that changed mode but not
3640 meaning, so we want to turn it into a subreg for
3641 the new mode. However, because of REG sharing and
3642 because its mode had already changed, we have to do
3643 it in two steps. First, replace any debug uses of
3644 reg, with its original mode temporarily restored,
3645 with this copy we have created; then, replace the
3646 copy with the SUBREG of the original shared reg,
3647 once again changed to the new mode. */
3648 propagate_for_debug (first, last, reg, tempreg, false);
3649 adjust_reg_mode (reg, new_mode);
3650 propagate_for_debug (first, last, tempreg,
3651 lowpart_subreg (old_mode, reg, new_mode),
3652 false);
3657 /* If we will be able to accept this, we have made a
3658 change to the destination of I3. This requires us to
3659 do a few adjustments. */
3661 if (changed_i3_dest)
3663 PATTERN (i3) = newpat;
3664 adjust_for_new_dest (i3);
3667 /* We now know that we can do this combination. Merge the insns and
3668 update the status of registers and LOG_LINKS. */
3670 if (undobuf.other_insn)
3672 rtx note, next;
3674 PATTERN (undobuf.other_insn) = other_pat;
3676 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3677 are still valid. Then add any non-duplicate notes added by
3678 recog_for_combine. */
3679 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3681 next = XEXP (note, 1);
3683 if (REG_NOTE_KIND (note) == REG_UNUSED
3684 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3685 remove_note (undobuf.other_insn, note);
3688 distribute_notes (new_other_notes, undobuf.other_insn,
3689 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3692 if (swap_i2i3)
3694 rtx insn;
3695 rtx link;
3696 rtx ni2dest;
3698 /* I3 now uses what used to be its destination and which is now
3699 I2's destination. This requires us to do a few adjustments. */
3700 PATTERN (i3) = newpat;
3701 adjust_for_new_dest (i3);
3703 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3704 so we still will.
3706 However, some later insn might be using I2's dest and have
3707 a LOG_LINK pointing at I3. We must remove this link.
3708 The simplest way to remove the link is to point it at I1,
3709 which we know will be a NOTE. */
3711 /* newi2pat is usually a SET here; however, recog_for_combine might
3712 have added some clobbers. */
3713 if (GET_CODE (newi2pat) == PARALLEL)
3714 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3715 else
3716 ni2dest = SET_DEST (newi2pat);
3718 for (insn = NEXT_INSN (i3);
3719 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3720 || insn != BB_HEAD (this_basic_block->next_bb));
3721 insn = NEXT_INSN (insn))
3723 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3725 for (link = LOG_LINKS (insn); link;
3726 link = XEXP (link, 1))
3727 if (XEXP (link, 0) == i3)
3728 XEXP (link, 0) = i1;
3730 break;
3736 rtx i3notes, i2notes, i1notes = 0;
3737 rtx i3links, i2links, i1links = 0;
3738 rtx midnotes = 0;
3739 unsigned int regno;
3740 /* Compute which registers we expect to eliminate. newi2pat may be setting
3741 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3742 same as i3dest, in which case newi2pat may be setting i1dest. */
3743 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3744 || i2dest_in_i2src || i2dest_in_i1src
3745 || !i2dest_killed
3746 ? 0 : i2dest);
3747 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3748 || (newi2pat && reg_set_p (i1dest, newi2pat))
3749 || !i1dest_killed
3750 ? 0 : i1dest);
3752 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3753 clear them. */
3754 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3755 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3756 if (i1)
3757 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3759 /* Ensure that we do not have something that should not be shared but
3760 occurs multiple times in the new insns. Check this by first
3761 resetting all the `used' flags and then copying anything is shared. */
3763 reset_used_flags (i3notes);
3764 reset_used_flags (i2notes);
3765 reset_used_flags (i1notes);
3766 reset_used_flags (newpat);
3767 reset_used_flags (newi2pat);
3768 if (undobuf.other_insn)
3769 reset_used_flags (PATTERN (undobuf.other_insn));
3771 i3notes = copy_rtx_if_shared (i3notes);
3772 i2notes = copy_rtx_if_shared (i2notes);
3773 i1notes = copy_rtx_if_shared (i1notes);
3774 newpat = copy_rtx_if_shared (newpat);
3775 newi2pat = copy_rtx_if_shared (newi2pat);
3776 if (undobuf.other_insn)
3777 reset_used_flags (PATTERN (undobuf.other_insn));
3779 INSN_CODE (i3) = insn_code_number;
3780 PATTERN (i3) = newpat;
3782 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3784 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3786 reset_used_flags (call_usage);
3787 call_usage = copy_rtx (call_usage);
3789 if (substed_i2)
3790 replace_rtx (call_usage, i2dest, i2src);
3792 if (substed_i1)
3793 replace_rtx (call_usage, i1dest, i1src);
3795 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3798 if (undobuf.other_insn)
3799 INSN_CODE (undobuf.other_insn) = other_code_number;
3801 /* We had one special case above where I2 had more than one set and
3802 we replaced a destination of one of those sets with the destination
3803 of I3. In that case, we have to update LOG_LINKS of insns later
3804 in this basic block. Note that this (expensive) case is rare.
3806 Also, in this case, we must pretend that all REG_NOTEs for I2
3807 actually came from I3, so that REG_UNUSED notes from I2 will be
3808 properly handled. */
3810 if (i3_subst_into_i2)
3812 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3813 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3814 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3815 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3816 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3817 && ! find_reg_note (i2, REG_UNUSED,
3818 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3819 for (temp = NEXT_INSN (i2);
3820 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3821 || BB_HEAD (this_basic_block) != temp);
3822 temp = NEXT_INSN (temp))
3823 if (temp != i3 && INSN_P (temp))
3824 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3825 if (XEXP (link, 0) == i2)
3826 XEXP (link, 0) = i3;
3828 if (i3notes)
3830 rtx link = i3notes;
3831 while (XEXP (link, 1))
3832 link = XEXP (link, 1);
3833 XEXP (link, 1) = i2notes;
3835 else
3836 i3notes = i2notes;
3837 i2notes = 0;
3840 LOG_LINKS (i3) = 0;
3841 REG_NOTES (i3) = 0;
3842 LOG_LINKS (i2) = 0;
3843 REG_NOTES (i2) = 0;
3845 if (newi2pat)
3847 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
3848 propagate_for_debug (i2, i3, i2dest, i2src, false);
3849 INSN_CODE (i2) = i2_code_number;
3850 PATTERN (i2) = newi2pat;
3852 else
3854 if (MAY_HAVE_DEBUG_INSNS && i2src)
3855 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
3856 SET_INSN_DELETED (i2);
3859 if (i1)
3861 LOG_LINKS (i1) = 0;
3862 REG_NOTES (i1) = 0;
3863 if (MAY_HAVE_DEBUG_INSNS)
3864 propagate_for_debug (i1, i3, i1dest, i1src, false);
3865 SET_INSN_DELETED (i1);
3868 /* Get death notes for everything that is now used in either I3 or
3869 I2 and used to die in a previous insn. If we built two new
3870 patterns, move from I1 to I2 then I2 to I3 so that we get the
3871 proper movement on registers that I2 modifies. */
3873 if (newi2pat)
3875 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3876 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3878 else
3879 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3880 i3, &midnotes);
3882 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3883 if (i3notes)
3884 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3885 elim_i2, elim_i1);
3886 if (i2notes)
3887 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3888 elim_i2, elim_i1);
3889 if (i1notes)
3890 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3891 elim_i2, elim_i1);
3892 if (midnotes)
3893 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3894 elim_i2, elim_i1);
3896 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3897 know these are REG_UNUSED and want them to go to the desired insn,
3898 so we always pass it as i3. */
3900 if (newi2pat && new_i2_notes)
3901 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3903 if (new_i3_notes)
3904 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3906 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3907 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3908 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3909 in that case, it might delete I2. Similarly for I2 and I1.
3910 Show an additional death due to the REG_DEAD note we make here. If
3911 we discard it in distribute_notes, we will decrement it again. */
3913 if (i3dest_killed)
3915 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3916 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3917 NULL_RTX),
3918 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3919 else
3920 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3921 NULL_RTX),
3922 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3923 elim_i2, elim_i1);
3926 if (i2dest_in_i2src)
3928 if (newi2pat && reg_set_p (i2dest, newi2pat))
3929 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3930 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3931 else
3932 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3933 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3934 NULL_RTX, NULL_RTX);
3937 if (i1dest_in_i1src)
3939 if (newi2pat && reg_set_p (i1dest, newi2pat))
3940 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3941 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3942 else
3943 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3944 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3945 NULL_RTX, NULL_RTX);
3948 distribute_links (i3links);
3949 distribute_links (i2links);
3950 distribute_links (i1links);
3952 if (REG_P (i2dest))
3954 rtx link;
3955 rtx i2_insn = 0, i2_val = 0, set;
3957 /* The insn that used to set this register doesn't exist, and
3958 this life of the register may not exist either. See if one of
3959 I3's links points to an insn that sets I2DEST. If it does,
3960 that is now the last known value for I2DEST. If we don't update
3961 this and I2 set the register to a value that depended on its old
3962 contents, we will get confused. If this insn is used, thing
3963 will be set correctly in combine_instructions. */
3965 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3966 if ((set = single_set (XEXP (link, 0))) != 0
3967 && rtx_equal_p (i2dest, SET_DEST (set)))
3968 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3970 record_value_for_reg (i2dest, i2_insn, i2_val);
3972 /* If the reg formerly set in I2 died only once and that was in I3,
3973 zero its use count so it won't make `reload' do any work. */
3974 if (! added_sets_2
3975 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3976 && ! i2dest_in_i2src)
3978 regno = REGNO (i2dest);
3979 INC_REG_N_SETS (regno, -1);
3983 if (i1 && REG_P (i1dest))
3985 rtx link;
3986 rtx i1_insn = 0, i1_val = 0, set;
3988 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3989 if ((set = single_set (XEXP (link, 0))) != 0
3990 && rtx_equal_p (i1dest, SET_DEST (set)))
3991 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3993 record_value_for_reg (i1dest, i1_insn, i1_val);
3995 regno = REGNO (i1dest);
3996 if (! added_sets_1 && ! i1dest_in_i1src)
3997 INC_REG_N_SETS (regno, -1);
4000 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4001 been made to this insn. The order of
4002 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4003 can affect nonzero_bits of newpat */
4004 if (newi2pat)
4005 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4006 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4009 if (undobuf.other_insn != NULL_RTX)
4011 if (dump_file)
4013 fprintf (dump_file, "modifying other_insn ");
4014 dump_insn_slim (dump_file, undobuf.other_insn);
4016 df_insn_rescan (undobuf.other_insn);
4019 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4021 if (dump_file)
4023 fprintf (dump_file, "modifying insn i1 ");
4024 dump_insn_slim (dump_file, i1);
4026 df_insn_rescan (i1);
4029 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4031 if (dump_file)
4033 fprintf (dump_file, "modifying insn i2 ");
4034 dump_insn_slim (dump_file, i2);
4036 df_insn_rescan (i2);
4039 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4041 if (dump_file)
4043 fprintf (dump_file, "modifying insn i3 ");
4044 dump_insn_slim (dump_file, i3);
4046 df_insn_rescan (i3);
4049 /* Set new_direct_jump_p if a new return or simple jump instruction
4050 has been created. Adjust the CFG accordingly. */
4052 if (returnjump_p (i3) || any_uncondjump_p (i3))
4054 *new_direct_jump_p = 1;
4055 mark_jump_label (PATTERN (i3), i3, 0);
4056 update_cfg_for_uncondjump (i3);
4059 if (undobuf.other_insn != NULL_RTX
4060 && (returnjump_p (undobuf.other_insn)
4061 || any_uncondjump_p (undobuf.other_insn)))
4063 *new_direct_jump_p = 1;
4064 update_cfg_for_uncondjump (undobuf.other_insn);
4067 /* A noop might also need cleaning up of CFG, if it comes from the
4068 simplification of a jump. */
4069 if (GET_CODE (newpat) == SET
4070 && SET_SRC (newpat) == pc_rtx
4071 && SET_DEST (newpat) == pc_rtx)
4073 *new_direct_jump_p = 1;
4074 update_cfg_for_uncondjump (i3);
4077 combine_successes++;
4078 undo_commit ();
4080 if (added_links_insn
4081 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4082 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4083 return added_links_insn;
4084 else
4085 return newi2pat ? i2 : i3;
4088 /* Undo all the modifications recorded in undobuf. */
4090 static void
4091 undo_all (void)
4093 struct undo *undo, *next;
4095 for (undo = undobuf.undos; undo; undo = next)
4097 next = undo->next;
4098 switch (undo->kind)
4100 case UNDO_RTX:
4101 *undo->where.r = undo->old_contents.r;
4102 break;
4103 case UNDO_INT:
4104 *undo->where.i = undo->old_contents.i;
4105 break;
4106 case UNDO_MODE:
4107 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4108 break;
4109 default:
4110 gcc_unreachable ();
4113 undo->next = undobuf.frees;
4114 undobuf.frees = undo;
4117 undobuf.undos = 0;
4120 /* We've committed to accepting the changes we made. Move all
4121 of the undos to the free list. */
4123 static void
4124 undo_commit (void)
4126 struct undo *undo, *next;
4128 for (undo = undobuf.undos; undo; undo = next)
4130 next = undo->next;
4131 undo->next = undobuf.frees;
4132 undobuf.frees = undo;
4134 undobuf.undos = 0;
4137 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4138 where we have an arithmetic expression and return that point. LOC will
4139 be inside INSN.
4141 try_combine will call this function to see if an insn can be split into
4142 two insns. */
4144 static rtx *
4145 find_split_point (rtx *loc, rtx insn)
4147 rtx x = *loc;
4148 enum rtx_code code = GET_CODE (x);
4149 rtx *split;
4150 unsigned HOST_WIDE_INT len = 0;
4151 HOST_WIDE_INT pos = 0;
4152 int unsignedp = 0;
4153 rtx inner = NULL_RTX;
4155 /* First special-case some codes. */
4156 switch (code)
4158 case SUBREG:
4159 #ifdef INSN_SCHEDULING
4160 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4161 point. */
4162 if (MEM_P (SUBREG_REG (x)))
4163 return loc;
4164 #endif
4165 return find_split_point (&SUBREG_REG (x), insn);
4167 case MEM:
4168 #ifdef HAVE_lo_sum
4169 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4170 using LO_SUM and HIGH. */
4171 if (GET_CODE (XEXP (x, 0)) == CONST
4172 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4174 enum machine_mode address_mode
4175 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4177 SUBST (XEXP (x, 0),
4178 gen_rtx_LO_SUM (address_mode,
4179 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4180 XEXP (x, 0)));
4181 return &XEXP (XEXP (x, 0), 0);
4183 #endif
4185 /* If we have a PLUS whose second operand is a constant and the
4186 address is not valid, perhaps will can split it up using
4187 the machine-specific way to split large constants. We use
4188 the first pseudo-reg (one of the virtual regs) as a placeholder;
4189 it will not remain in the result. */
4190 if (GET_CODE (XEXP (x, 0)) == PLUS
4191 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4192 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4193 MEM_ADDR_SPACE (x)))
4195 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4196 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4197 XEXP (x, 0)),
4198 subst_insn);
4200 /* This should have produced two insns, each of which sets our
4201 placeholder. If the source of the second is a valid address,
4202 we can make put both sources together and make a split point
4203 in the middle. */
4205 if (seq
4206 && NEXT_INSN (seq) != NULL_RTX
4207 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4208 && NONJUMP_INSN_P (seq)
4209 && GET_CODE (PATTERN (seq)) == SET
4210 && SET_DEST (PATTERN (seq)) == reg
4211 && ! reg_mentioned_p (reg,
4212 SET_SRC (PATTERN (seq)))
4213 && NONJUMP_INSN_P (NEXT_INSN (seq))
4214 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4215 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4216 && memory_address_addr_space_p
4217 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4218 MEM_ADDR_SPACE (x)))
4220 rtx src1 = SET_SRC (PATTERN (seq));
4221 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4223 /* Replace the placeholder in SRC2 with SRC1. If we can
4224 find where in SRC2 it was placed, that can become our
4225 split point and we can replace this address with SRC2.
4226 Just try two obvious places. */
4228 src2 = replace_rtx (src2, reg, src1);
4229 split = 0;
4230 if (XEXP (src2, 0) == src1)
4231 split = &XEXP (src2, 0);
4232 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4233 && XEXP (XEXP (src2, 0), 0) == src1)
4234 split = &XEXP (XEXP (src2, 0), 0);
4236 if (split)
4238 SUBST (XEXP (x, 0), src2);
4239 return split;
4243 /* If that didn't work, perhaps the first operand is complex and
4244 needs to be computed separately, so make a split point there.
4245 This will occur on machines that just support REG + CONST
4246 and have a constant moved through some previous computation. */
4248 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4249 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4250 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4251 return &XEXP (XEXP (x, 0), 0);
4254 /* If we have a PLUS whose first operand is complex, try computing it
4255 separately by making a split there. */
4256 if (GET_CODE (XEXP (x, 0)) == PLUS
4257 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4258 MEM_ADDR_SPACE (x))
4259 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4260 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4261 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4262 return &XEXP (XEXP (x, 0), 0);
4263 break;
4265 case SET:
4266 #ifdef HAVE_cc0
4267 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4268 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4269 we need to put the operand into a register. So split at that
4270 point. */
4272 if (SET_DEST (x) == cc0_rtx
4273 && GET_CODE (SET_SRC (x)) != COMPARE
4274 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4275 && !OBJECT_P (SET_SRC (x))
4276 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4277 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4278 return &SET_SRC (x);
4279 #endif
4281 /* See if we can split SET_SRC as it stands. */
4282 split = find_split_point (&SET_SRC (x), insn);
4283 if (split && split != &SET_SRC (x))
4284 return split;
4286 /* See if we can split SET_DEST as it stands. */
4287 split = find_split_point (&SET_DEST (x), insn);
4288 if (split && split != &SET_DEST (x))
4289 return split;
4291 /* See if this is a bitfield assignment with everything constant. If
4292 so, this is an IOR of an AND, so split it into that. */
4293 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4294 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4295 <= HOST_BITS_PER_WIDE_INT)
4296 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4297 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4298 && CONST_INT_P (SET_SRC (x))
4299 && ((INTVAL (XEXP (SET_DEST (x), 1))
4300 + INTVAL (XEXP (SET_DEST (x), 2)))
4301 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4302 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4304 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4305 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4306 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4307 rtx dest = XEXP (SET_DEST (x), 0);
4308 enum machine_mode mode = GET_MODE (dest);
4309 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4310 rtx or_mask;
4312 if (BITS_BIG_ENDIAN)
4313 pos = GET_MODE_BITSIZE (mode) - len - pos;
4315 or_mask = gen_int_mode (src << pos, mode);
4316 if (src == mask)
4317 SUBST (SET_SRC (x),
4318 simplify_gen_binary (IOR, mode, dest, or_mask));
4319 else
4321 rtx negmask = gen_int_mode (~(mask << pos), mode);
4322 SUBST (SET_SRC (x),
4323 simplify_gen_binary (IOR, mode,
4324 simplify_gen_binary (AND, mode,
4325 dest, negmask),
4326 or_mask));
4329 SUBST (SET_DEST (x), dest);
4331 split = find_split_point (&SET_SRC (x), insn);
4332 if (split && split != &SET_SRC (x))
4333 return split;
4336 /* Otherwise, see if this is an operation that we can split into two.
4337 If so, try to split that. */
4338 code = GET_CODE (SET_SRC (x));
4340 switch (code)
4342 case AND:
4343 /* If we are AND'ing with a large constant that is only a single
4344 bit and the result is only being used in a context where we
4345 need to know if it is zero or nonzero, replace it with a bit
4346 extraction. This will avoid the large constant, which might
4347 have taken more than one insn to make. If the constant were
4348 not a valid argument to the AND but took only one insn to make,
4349 this is no worse, but if it took more than one insn, it will
4350 be better. */
4352 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4353 && REG_P (XEXP (SET_SRC (x), 0))
4354 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4355 && REG_P (SET_DEST (x))
4356 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4357 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4358 && XEXP (*split, 0) == SET_DEST (x)
4359 && XEXP (*split, 1) == const0_rtx)
4361 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4362 XEXP (SET_SRC (x), 0),
4363 pos, NULL_RTX, 1, 1, 0, 0);
4364 if (extraction != 0)
4366 SUBST (SET_SRC (x), extraction);
4367 return find_split_point (loc, insn);
4370 break;
4372 case NE:
4373 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4374 is known to be on, this can be converted into a NEG of a shift. */
4375 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4376 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4377 && 1 <= (pos = exact_log2
4378 (nonzero_bits (XEXP (SET_SRC (x), 0),
4379 GET_MODE (XEXP (SET_SRC (x), 0))))))
4381 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4383 SUBST (SET_SRC (x),
4384 gen_rtx_NEG (mode,
4385 gen_rtx_LSHIFTRT (mode,
4386 XEXP (SET_SRC (x), 0),
4387 GEN_INT (pos))));
4389 split = find_split_point (&SET_SRC (x), insn);
4390 if (split && split != &SET_SRC (x))
4391 return split;
4393 break;
4395 case SIGN_EXTEND:
4396 inner = XEXP (SET_SRC (x), 0);
4398 /* We can't optimize if either mode is a partial integer
4399 mode as we don't know how many bits are significant
4400 in those modes. */
4401 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4402 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4403 break;
4405 pos = 0;
4406 len = GET_MODE_BITSIZE (GET_MODE (inner));
4407 unsignedp = 0;
4408 break;
4410 case SIGN_EXTRACT:
4411 case ZERO_EXTRACT:
4412 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4413 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4415 inner = XEXP (SET_SRC (x), 0);
4416 len = INTVAL (XEXP (SET_SRC (x), 1));
4417 pos = INTVAL (XEXP (SET_SRC (x), 2));
4419 if (BITS_BIG_ENDIAN)
4420 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4421 unsignedp = (code == ZERO_EXTRACT);
4423 break;
4425 default:
4426 break;
4429 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4431 enum machine_mode mode = GET_MODE (SET_SRC (x));
4433 /* For unsigned, we have a choice of a shift followed by an
4434 AND or two shifts. Use two shifts for field sizes where the
4435 constant might be too large. We assume here that we can
4436 always at least get 8-bit constants in an AND insn, which is
4437 true for every current RISC. */
4439 if (unsignedp && len <= 8)
4441 SUBST (SET_SRC (x),
4442 gen_rtx_AND (mode,
4443 gen_rtx_LSHIFTRT
4444 (mode, gen_lowpart (mode, inner),
4445 GEN_INT (pos)),
4446 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4448 split = find_split_point (&SET_SRC (x), insn);
4449 if (split && split != &SET_SRC (x))
4450 return split;
4452 else
4454 SUBST (SET_SRC (x),
4455 gen_rtx_fmt_ee
4456 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4457 gen_rtx_ASHIFT (mode,
4458 gen_lowpart (mode, inner),
4459 GEN_INT (GET_MODE_BITSIZE (mode)
4460 - len - pos)),
4461 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4463 split = find_split_point (&SET_SRC (x), insn);
4464 if (split && split != &SET_SRC (x))
4465 return split;
4469 /* See if this is a simple operation with a constant as the second
4470 operand. It might be that this constant is out of range and hence
4471 could be used as a split point. */
4472 if (BINARY_P (SET_SRC (x))
4473 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4474 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4475 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4476 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4477 return &XEXP (SET_SRC (x), 1);
4479 /* Finally, see if this is a simple operation with its first operand
4480 not in a register. The operation might require this operand in a
4481 register, so return it as a split point. We can always do this
4482 because if the first operand were another operation, we would have
4483 already found it as a split point. */
4484 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4485 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4486 return &XEXP (SET_SRC (x), 0);
4488 return 0;
4490 case AND:
4491 case IOR:
4492 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4493 it is better to write this as (not (ior A B)) so we can split it.
4494 Similarly for IOR. */
4495 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4497 SUBST (*loc,
4498 gen_rtx_NOT (GET_MODE (x),
4499 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4500 GET_MODE (x),
4501 XEXP (XEXP (x, 0), 0),
4502 XEXP (XEXP (x, 1), 0))));
4503 return find_split_point (loc, insn);
4506 /* Many RISC machines have a large set of logical insns. If the
4507 second operand is a NOT, put it first so we will try to split the
4508 other operand first. */
4509 if (GET_CODE (XEXP (x, 1)) == NOT)
4511 rtx tem = XEXP (x, 0);
4512 SUBST (XEXP (x, 0), XEXP (x, 1));
4513 SUBST (XEXP (x, 1), tem);
4515 break;
4517 default:
4518 break;
4521 /* Otherwise, select our actions depending on our rtx class. */
4522 switch (GET_RTX_CLASS (code))
4524 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4525 case RTX_TERNARY:
4526 split = find_split_point (&XEXP (x, 2), insn);
4527 if (split)
4528 return split;
4529 /* ... fall through ... */
4530 case RTX_BIN_ARITH:
4531 case RTX_COMM_ARITH:
4532 case RTX_COMPARE:
4533 case RTX_COMM_COMPARE:
4534 split = find_split_point (&XEXP (x, 1), insn);
4535 if (split)
4536 return split;
4537 /* ... fall through ... */
4538 case RTX_UNARY:
4539 /* Some machines have (and (shift ...) ...) insns. If X is not
4540 an AND, but XEXP (X, 0) is, use it as our split point. */
4541 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4542 return &XEXP (x, 0);
4544 split = find_split_point (&XEXP (x, 0), insn);
4545 if (split)
4546 return split;
4547 return loc;
4549 default:
4550 /* Otherwise, we don't have a split point. */
4551 return 0;
4555 /* Throughout X, replace FROM with TO, and return the result.
4556 The result is TO if X is FROM;
4557 otherwise the result is X, but its contents may have been modified.
4558 If they were modified, a record was made in undobuf so that
4559 undo_all will (among other things) return X to its original state.
4561 If the number of changes necessary is too much to record to undo,
4562 the excess changes are not made, so the result is invalid.
4563 The changes already made can still be undone.
4564 undobuf.num_undo is incremented for such changes, so by testing that
4565 the caller can tell whether the result is valid.
4567 `n_occurrences' is incremented each time FROM is replaced.
4569 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4571 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4572 by copying if `n_occurrences' is nonzero. */
4574 static rtx
4575 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4577 enum rtx_code code = GET_CODE (x);
4578 enum machine_mode op0_mode = VOIDmode;
4579 const char *fmt;
4580 int len, i;
4581 rtx new_rtx;
4583 /* Two expressions are equal if they are identical copies of a shared
4584 RTX or if they are both registers with the same register number
4585 and mode. */
4587 #define COMBINE_RTX_EQUAL_P(X,Y) \
4588 ((X) == (Y) \
4589 || (REG_P (X) && REG_P (Y) \
4590 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4592 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4594 n_occurrences++;
4595 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4598 /* If X and FROM are the same register but different modes, they
4599 will not have been seen as equal above. However, the log links code
4600 will make a LOG_LINKS entry for that case. If we do nothing, we
4601 will try to rerecognize our original insn and, when it succeeds,
4602 we will delete the feeding insn, which is incorrect.
4604 So force this insn not to match in this (rare) case. */
4605 if (! in_dest && code == REG && REG_P (from)
4606 && reg_overlap_mentioned_p (x, from))
4607 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4609 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4610 of which may contain things that can be combined. */
4611 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4612 return x;
4614 /* It is possible to have a subexpression appear twice in the insn.
4615 Suppose that FROM is a register that appears within TO.
4616 Then, after that subexpression has been scanned once by `subst',
4617 the second time it is scanned, TO may be found. If we were
4618 to scan TO here, we would find FROM within it and create a
4619 self-referent rtl structure which is completely wrong. */
4620 if (COMBINE_RTX_EQUAL_P (x, to))
4621 return to;
4623 /* Parallel asm_operands need special attention because all of the
4624 inputs are shared across the arms. Furthermore, unsharing the
4625 rtl results in recognition failures. Failure to handle this case
4626 specially can result in circular rtl.
4628 Solve this by doing a normal pass across the first entry of the
4629 parallel, and only processing the SET_DESTs of the subsequent
4630 entries. Ug. */
4632 if (code == PARALLEL
4633 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4634 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4636 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4638 /* If this substitution failed, this whole thing fails. */
4639 if (GET_CODE (new_rtx) == CLOBBER
4640 && XEXP (new_rtx, 0) == const0_rtx)
4641 return new_rtx;
4643 SUBST (XVECEXP (x, 0, 0), new_rtx);
4645 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4647 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4649 if (!REG_P (dest)
4650 && GET_CODE (dest) != CC0
4651 && GET_CODE (dest) != PC)
4653 new_rtx = subst (dest, from, to, 0, unique_copy);
4655 /* If this substitution failed, this whole thing fails. */
4656 if (GET_CODE (new_rtx) == CLOBBER
4657 && XEXP (new_rtx, 0) == const0_rtx)
4658 return new_rtx;
4660 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4664 else
4666 len = GET_RTX_LENGTH (code);
4667 fmt = GET_RTX_FORMAT (code);
4669 /* We don't need to process a SET_DEST that is a register, CC0,
4670 or PC, so set up to skip this common case. All other cases
4671 where we want to suppress replacing something inside a
4672 SET_SRC are handled via the IN_DEST operand. */
4673 if (code == SET
4674 && (REG_P (SET_DEST (x))
4675 || GET_CODE (SET_DEST (x)) == CC0
4676 || GET_CODE (SET_DEST (x)) == PC))
4677 fmt = "ie";
4679 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4680 constant. */
4681 if (fmt[0] == 'e')
4682 op0_mode = GET_MODE (XEXP (x, 0));
4684 for (i = 0; i < len; i++)
4686 if (fmt[i] == 'E')
4688 int j;
4689 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4691 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4693 new_rtx = (unique_copy && n_occurrences
4694 ? copy_rtx (to) : to);
4695 n_occurrences++;
4697 else
4699 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4700 unique_copy);
4702 /* If this substitution failed, this whole thing
4703 fails. */
4704 if (GET_CODE (new_rtx) == CLOBBER
4705 && XEXP (new_rtx, 0) == const0_rtx)
4706 return new_rtx;
4709 SUBST (XVECEXP (x, i, j), new_rtx);
4712 else if (fmt[i] == 'e')
4714 /* If this is a register being set, ignore it. */
4715 new_rtx = XEXP (x, i);
4716 if (in_dest
4717 && i == 0
4718 && (((code == SUBREG || code == ZERO_EXTRACT)
4719 && REG_P (new_rtx))
4720 || code == STRICT_LOW_PART))
4723 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4725 /* In general, don't install a subreg involving two
4726 modes not tieable. It can worsen register
4727 allocation, and can even make invalid reload
4728 insns, since the reg inside may need to be copied
4729 from in the outside mode, and that may be invalid
4730 if it is an fp reg copied in integer mode.
4732 We allow two exceptions to this: It is valid if
4733 it is inside another SUBREG and the mode of that
4734 SUBREG and the mode of the inside of TO is
4735 tieable and it is valid if X is a SET that copies
4736 FROM to CC0. */
4738 if (GET_CODE (to) == SUBREG
4739 && ! MODES_TIEABLE_P (GET_MODE (to),
4740 GET_MODE (SUBREG_REG (to)))
4741 && ! (code == SUBREG
4742 && MODES_TIEABLE_P (GET_MODE (x),
4743 GET_MODE (SUBREG_REG (to))))
4744 #ifdef HAVE_cc0
4745 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4746 #endif
4748 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4750 #ifdef CANNOT_CHANGE_MODE_CLASS
4751 if (code == SUBREG
4752 && REG_P (to)
4753 && REGNO (to) < FIRST_PSEUDO_REGISTER
4754 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4755 GET_MODE (to),
4756 GET_MODE (x)))
4757 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4758 #endif
4760 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4761 n_occurrences++;
4763 else
4764 /* If we are in a SET_DEST, suppress most cases unless we
4765 have gone inside a MEM, in which case we want to
4766 simplify the address. We assume here that things that
4767 are actually part of the destination have their inner
4768 parts in the first expression. This is true for SUBREG,
4769 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4770 things aside from REG and MEM that should appear in a
4771 SET_DEST. */
4772 new_rtx = subst (XEXP (x, i), from, to,
4773 (((in_dest
4774 && (code == SUBREG || code == STRICT_LOW_PART
4775 || code == ZERO_EXTRACT))
4776 || code == SET)
4777 && i == 0), unique_copy);
4779 /* If we found that we will have to reject this combination,
4780 indicate that by returning the CLOBBER ourselves, rather than
4781 an expression containing it. This will speed things up as
4782 well as prevent accidents where two CLOBBERs are considered
4783 to be equal, thus producing an incorrect simplification. */
4785 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4786 return new_rtx;
4788 if (GET_CODE (x) == SUBREG
4789 && (CONST_INT_P (new_rtx)
4790 || GET_CODE (new_rtx) == CONST_DOUBLE))
4792 enum machine_mode mode = GET_MODE (x);
4794 x = simplify_subreg (GET_MODE (x), new_rtx,
4795 GET_MODE (SUBREG_REG (x)),
4796 SUBREG_BYTE (x));
4797 if (! x)
4798 x = gen_rtx_CLOBBER (mode, const0_rtx);
4800 else if (CONST_INT_P (new_rtx)
4801 && GET_CODE (x) == ZERO_EXTEND)
4803 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4804 new_rtx, GET_MODE (XEXP (x, 0)));
4805 gcc_assert (x);
4807 else
4808 SUBST (XEXP (x, i), new_rtx);
4813 /* Check if we are loading something from the constant pool via float
4814 extension; in this case we would undo compress_float_constant
4815 optimization and degenerate constant load to an immediate value. */
4816 if (GET_CODE (x) == FLOAT_EXTEND
4817 && MEM_P (XEXP (x, 0))
4818 && MEM_READONLY_P (XEXP (x, 0)))
4820 rtx tmp = avoid_constant_pool_reference (x);
4821 if (x != tmp)
4822 return x;
4825 /* Try to simplify X. If the simplification changed the code, it is likely
4826 that further simplification will help, so loop, but limit the number
4827 of repetitions that will be performed. */
4829 for (i = 0; i < 4; i++)
4831 /* If X is sufficiently simple, don't bother trying to do anything
4832 with it. */
4833 if (code != CONST_INT && code != REG && code != CLOBBER)
4834 x = combine_simplify_rtx (x, op0_mode, in_dest);
4836 if (GET_CODE (x) == code)
4837 break;
4839 code = GET_CODE (x);
4841 /* We no longer know the original mode of operand 0 since we
4842 have changed the form of X) */
4843 op0_mode = VOIDmode;
4846 return x;
4849 /* Simplify X, a piece of RTL. We just operate on the expression at the
4850 outer level; call `subst' to simplify recursively. Return the new
4851 expression.
4853 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4854 if we are inside a SET_DEST. */
4856 static rtx
4857 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4859 enum rtx_code code = GET_CODE (x);
4860 enum machine_mode mode = GET_MODE (x);
4861 rtx temp;
4862 int i;
4864 /* If this is a commutative operation, put a constant last and a complex
4865 expression first. We don't need to do this for comparisons here. */
4866 if (COMMUTATIVE_ARITH_P (x)
4867 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4869 temp = XEXP (x, 0);
4870 SUBST (XEXP (x, 0), XEXP (x, 1));
4871 SUBST (XEXP (x, 1), temp);
4874 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4875 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4876 things. Check for cases where both arms are testing the same
4877 condition.
4879 Don't do anything if all operands are very simple. */
4881 if ((BINARY_P (x)
4882 && ((!OBJECT_P (XEXP (x, 0))
4883 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4884 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4885 || (!OBJECT_P (XEXP (x, 1))
4886 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4887 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4888 || (UNARY_P (x)
4889 && (!OBJECT_P (XEXP (x, 0))
4890 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4891 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4893 rtx cond, true_rtx, false_rtx;
4895 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4896 if (cond != 0
4897 /* If everything is a comparison, what we have is highly unlikely
4898 to be simpler, so don't use it. */
4899 && ! (COMPARISON_P (x)
4900 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4902 rtx cop1 = const0_rtx;
4903 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4905 if (cond_code == NE && COMPARISON_P (cond))
4906 return x;
4908 /* Simplify the alternative arms; this may collapse the true and
4909 false arms to store-flag values. Be careful to use copy_rtx
4910 here since true_rtx or false_rtx might share RTL with x as a
4911 result of the if_then_else_cond call above. */
4912 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4913 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4915 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4916 is unlikely to be simpler. */
4917 if (general_operand (true_rtx, VOIDmode)
4918 && general_operand (false_rtx, VOIDmode))
4920 enum rtx_code reversed;
4922 /* Restarting if we generate a store-flag expression will cause
4923 us to loop. Just drop through in this case. */
4925 /* If the result values are STORE_FLAG_VALUE and zero, we can
4926 just make the comparison operation. */
4927 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4928 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4929 cond, cop1);
4930 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4931 && ((reversed = reversed_comparison_code_parts
4932 (cond_code, cond, cop1, NULL))
4933 != UNKNOWN))
4934 x = simplify_gen_relational (reversed, mode, VOIDmode,
4935 cond, cop1);
4937 /* Likewise, we can make the negate of a comparison operation
4938 if the result values are - STORE_FLAG_VALUE and zero. */
4939 else if (CONST_INT_P (true_rtx)
4940 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4941 && false_rtx == const0_rtx)
4942 x = simplify_gen_unary (NEG, mode,
4943 simplify_gen_relational (cond_code,
4944 mode, VOIDmode,
4945 cond, cop1),
4946 mode);
4947 else if (CONST_INT_P (false_rtx)
4948 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4949 && true_rtx == const0_rtx
4950 && ((reversed = reversed_comparison_code_parts
4951 (cond_code, cond, cop1, NULL))
4952 != UNKNOWN))
4953 x = simplify_gen_unary (NEG, mode,
4954 simplify_gen_relational (reversed,
4955 mode, VOIDmode,
4956 cond, cop1),
4957 mode);
4958 else
4959 return gen_rtx_IF_THEN_ELSE (mode,
4960 simplify_gen_relational (cond_code,
4961 mode,
4962 VOIDmode,
4963 cond,
4964 cop1),
4965 true_rtx, false_rtx);
4967 code = GET_CODE (x);
4968 op0_mode = VOIDmode;
4973 /* Try to fold this expression in case we have constants that weren't
4974 present before. */
4975 temp = 0;
4976 switch (GET_RTX_CLASS (code))
4978 case RTX_UNARY:
4979 if (op0_mode == VOIDmode)
4980 op0_mode = GET_MODE (XEXP (x, 0));
4981 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4982 break;
4983 case RTX_COMPARE:
4984 case RTX_COMM_COMPARE:
4986 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4987 if (cmp_mode == VOIDmode)
4989 cmp_mode = GET_MODE (XEXP (x, 1));
4990 if (cmp_mode == VOIDmode)
4991 cmp_mode = op0_mode;
4993 temp = simplify_relational_operation (code, mode, cmp_mode,
4994 XEXP (x, 0), XEXP (x, 1));
4996 break;
4997 case RTX_COMM_ARITH:
4998 case RTX_BIN_ARITH:
4999 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5000 break;
5001 case RTX_BITFIELD_OPS:
5002 case RTX_TERNARY:
5003 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5004 XEXP (x, 1), XEXP (x, 2));
5005 break;
5006 default:
5007 break;
5010 if (temp)
5012 x = temp;
5013 code = GET_CODE (temp);
5014 op0_mode = VOIDmode;
5015 mode = GET_MODE (temp);
5018 /* First see if we can apply the inverse distributive law. */
5019 if (code == PLUS || code == MINUS
5020 || code == AND || code == IOR || code == XOR)
5022 x = apply_distributive_law (x);
5023 code = GET_CODE (x);
5024 op0_mode = VOIDmode;
5027 /* If CODE is an associative operation not otherwise handled, see if we
5028 can associate some operands. This can win if they are constants or
5029 if they are logically related (i.e. (a & b) & a). */
5030 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5031 || code == AND || code == IOR || code == XOR
5032 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5033 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5034 || (flag_associative_math && FLOAT_MODE_P (mode))))
5036 if (GET_CODE (XEXP (x, 0)) == code)
5038 rtx other = XEXP (XEXP (x, 0), 0);
5039 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5040 rtx inner_op1 = XEXP (x, 1);
5041 rtx inner;
5043 /* Make sure we pass the constant operand if any as the second
5044 one if this is a commutative operation. */
5045 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5047 rtx tem = inner_op0;
5048 inner_op0 = inner_op1;
5049 inner_op1 = tem;
5051 inner = simplify_binary_operation (code == MINUS ? PLUS
5052 : code == DIV ? MULT
5053 : code,
5054 mode, inner_op0, inner_op1);
5056 /* For commutative operations, try the other pair if that one
5057 didn't simplify. */
5058 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5060 other = XEXP (XEXP (x, 0), 1);
5061 inner = simplify_binary_operation (code, mode,
5062 XEXP (XEXP (x, 0), 0),
5063 XEXP (x, 1));
5066 if (inner)
5067 return simplify_gen_binary (code, mode, other, inner);
5071 /* A little bit of algebraic simplification here. */
5072 switch (code)
5074 case MEM:
5075 /* Ensure that our address has any ASHIFTs converted to MULT in case
5076 address-recognizing predicates are called later. */
5077 temp = make_compound_operation (XEXP (x, 0), MEM);
5078 SUBST (XEXP (x, 0), temp);
5079 break;
5081 case SUBREG:
5082 if (op0_mode == VOIDmode)
5083 op0_mode = GET_MODE (SUBREG_REG (x));
5085 /* See if this can be moved to simplify_subreg. */
5086 if (CONSTANT_P (SUBREG_REG (x))
5087 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5088 /* Don't call gen_lowpart if the inner mode
5089 is VOIDmode and we cannot simplify it, as SUBREG without
5090 inner mode is invalid. */
5091 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5092 || gen_lowpart_common (mode, SUBREG_REG (x))))
5093 return gen_lowpart (mode, SUBREG_REG (x));
5095 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5096 break;
5098 rtx temp;
5099 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5100 SUBREG_BYTE (x));
5101 if (temp)
5102 return temp;
5105 /* Don't change the mode of the MEM if that would change the meaning
5106 of the address. */
5107 if (MEM_P (SUBREG_REG (x))
5108 && (MEM_VOLATILE_P (SUBREG_REG (x))
5109 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5110 return gen_rtx_CLOBBER (mode, const0_rtx);
5112 /* Note that we cannot do any narrowing for non-constants since
5113 we might have been counting on using the fact that some bits were
5114 zero. We now do this in the SET. */
5116 break;
5118 case NEG:
5119 temp = expand_compound_operation (XEXP (x, 0));
5121 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5122 replaced by (lshiftrt X C). This will convert
5123 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5125 if (GET_CODE (temp) == ASHIFTRT
5126 && CONST_INT_P (XEXP (temp, 1))
5127 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5128 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5129 INTVAL (XEXP (temp, 1)));
5131 /* If X has only a single bit that might be nonzero, say, bit I, convert
5132 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5133 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5134 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5135 or a SUBREG of one since we'd be making the expression more
5136 complex if it was just a register. */
5138 if (!REG_P (temp)
5139 && ! (GET_CODE (temp) == SUBREG
5140 && REG_P (SUBREG_REG (temp)))
5141 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5143 rtx temp1 = simplify_shift_const
5144 (NULL_RTX, ASHIFTRT, mode,
5145 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5146 GET_MODE_BITSIZE (mode) - 1 - i),
5147 GET_MODE_BITSIZE (mode) - 1 - i);
5149 /* If all we did was surround TEMP with the two shifts, we
5150 haven't improved anything, so don't use it. Otherwise,
5151 we are better off with TEMP1. */
5152 if (GET_CODE (temp1) != ASHIFTRT
5153 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5154 || XEXP (XEXP (temp1, 0), 0) != temp)
5155 return temp1;
5157 break;
5159 case TRUNCATE:
5160 /* We can't handle truncation to a partial integer mode here
5161 because we don't know the real bitsize of the partial
5162 integer mode. */
5163 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5164 break;
5166 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5167 SUBST (XEXP (x, 0),
5168 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5169 GET_MODE_MASK (mode), 0));
5171 /* We can truncate a constant value and return it. */
5172 if (CONST_INT_P (XEXP (x, 0)))
5173 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5175 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5176 whose value is a comparison can be replaced with a subreg if
5177 STORE_FLAG_VALUE permits. */
5178 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5179 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5180 && (temp = get_last_value (XEXP (x, 0)))
5181 && COMPARISON_P (temp))
5182 return gen_lowpart (mode, XEXP (x, 0));
5183 break;
5185 case CONST:
5186 /* (const (const X)) can become (const X). Do it this way rather than
5187 returning the inner CONST since CONST can be shared with a
5188 REG_EQUAL note. */
5189 if (GET_CODE (XEXP (x, 0)) == CONST)
5190 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5191 break;
5193 #ifdef HAVE_lo_sum
5194 case LO_SUM:
5195 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5196 can add in an offset. find_split_point will split this address up
5197 again if it doesn't match. */
5198 if (GET_CODE (XEXP (x, 0)) == HIGH
5199 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5200 return XEXP (x, 1);
5201 break;
5202 #endif
5204 case PLUS:
5205 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5206 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5207 bit-field and can be replaced by either a sign_extend or a
5208 sign_extract. The `and' may be a zero_extend and the two
5209 <c>, -<c> constants may be reversed. */
5210 if (GET_CODE (XEXP (x, 0)) == XOR
5211 && CONST_INT_P (XEXP (x, 1))
5212 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5213 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5214 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5215 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5216 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5217 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5218 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5219 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5220 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5221 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5222 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5223 == (unsigned int) i + 1))))
5224 return simplify_shift_const
5225 (NULL_RTX, ASHIFTRT, mode,
5226 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5227 XEXP (XEXP (XEXP (x, 0), 0), 0),
5228 GET_MODE_BITSIZE (mode) - (i + 1)),
5229 GET_MODE_BITSIZE (mode) - (i + 1));
5231 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5232 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5233 the bitsize of the mode - 1. This allows simplification of
5234 "a = (b & 8) == 0;" */
5235 if (XEXP (x, 1) == constm1_rtx
5236 && !REG_P (XEXP (x, 0))
5237 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5238 && REG_P (SUBREG_REG (XEXP (x, 0))))
5239 && nonzero_bits (XEXP (x, 0), mode) == 1)
5240 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5241 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5242 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5243 GET_MODE_BITSIZE (mode) - 1),
5244 GET_MODE_BITSIZE (mode) - 1);
5246 /* If we are adding two things that have no bits in common, convert
5247 the addition into an IOR. This will often be further simplified,
5248 for example in cases like ((a & 1) + (a & 2)), which can
5249 become a & 3. */
5251 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5252 && (nonzero_bits (XEXP (x, 0), mode)
5253 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5255 /* Try to simplify the expression further. */
5256 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5257 temp = combine_simplify_rtx (tor, mode, in_dest);
5259 /* If we could, great. If not, do not go ahead with the IOR
5260 replacement, since PLUS appears in many special purpose
5261 address arithmetic instructions. */
5262 if (GET_CODE (temp) != CLOBBER && temp != tor)
5263 return temp;
5265 break;
5267 case MINUS:
5268 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5269 (and <foo> (const_int pow2-1)) */
5270 if (GET_CODE (XEXP (x, 1)) == AND
5271 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5272 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5273 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5274 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5275 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5276 break;
5278 case MULT:
5279 /* If we have (mult (plus A B) C), apply the distributive law and then
5280 the inverse distributive law to see if things simplify. This
5281 occurs mostly in addresses, often when unrolling loops. */
5283 if (GET_CODE (XEXP (x, 0)) == PLUS)
5285 rtx result = distribute_and_simplify_rtx (x, 0);
5286 if (result)
5287 return result;
5290 /* Try simplify a*(b/c) as (a*b)/c. */
5291 if (FLOAT_MODE_P (mode) && flag_associative_math
5292 && GET_CODE (XEXP (x, 0)) == DIV)
5294 rtx tem = simplify_binary_operation (MULT, mode,
5295 XEXP (XEXP (x, 0), 0),
5296 XEXP (x, 1));
5297 if (tem)
5298 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5300 break;
5302 case UDIV:
5303 /* If this is a divide by a power of two, treat it as a shift if
5304 its first operand is a shift. */
5305 if (CONST_INT_P (XEXP (x, 1))
5306 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5307 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5308 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5309 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5310 || GET_CODE (XEXP (x, 0)) == ROTATE
5311 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5312 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5313 break;
5315 case EQ: case NE:
5316 case GT: case GTU: case GE: case GEU:
5317 case LT: case LTU: case LE: case LEU:
5318 case UNEQ: case LTGT:
5319 case UNGT: case UNGE:
5320 case UNLT: case UNLE:
5321 case UNORDERED: case ORDERED:
5322 /* If the first operand is a condition code, we can't do anything
5323 with it. */
5324 if (GET_CODE (XEXP (x, 0)) == COMPARE
5325 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5326 && ! CC0_P (XEXP (x, 0))))
5328 rtx op0 = XEXP (x, 0);
5329 rtx op1 = XEXP (x, 1);
5330 enum rtx_code new_code;
5332 if (GET_CODE (op0) == COMPARE)
5333 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5335 /* Simplify our comparison, if possible. */
5336 new_code = simplify_comparison (code, &op0, &op1);
5338 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5339 if only the low-order bit is possibly nonzero in X (such as when
5340 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5341 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5342 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5343 (plus X 1).
5345 Remove any ZERO_EXTRACT we made when thinking this was a
5346 comparison. It may now be simpler to use, e.g., an AND. If a
5347 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5348 the call to make_compound_operation in the SET case. */
5350 if (STORE_FLAG_VALUE == 1
5351 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5352 && op1 == const0_rtx
5353 && mode == GET_MODE (op0)
5354 && nonzero_bits (op0, mode) == 1)
5355 return gen_lowpart (mode,
5356 expand_compound_operation (op0));
5358 else if (STORE_FLAG_VALUE == 1
5359 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5360 && op1 == const0_rtx
5361 && mode == GET_MODE (op0)
5362 && (num_sign_bit_copies (op0, mode)
5363 == GET_MODE_BITSIZE (mode)))
5365 op0 = expand_compound_operation (op0);
5366 return simplify_gen_unary (NEG, mode,
5367 gen_lowpart (mode, op0),
5368 mode);
5371 else if (STORE_FLAG_VALUE == 1
5372 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5373 && op1 == const0_rtx
5374 && mode == GET_MODE (op0)
5375 && nonzero_bits (op0, mode) == 1)
5377 op0 = expand_compound_operation (op0);
5378 return simplify_gen_binary (XOR, mode,
5379 gen_lowpart (mode, op0),
5380 const1_rtx);
5383 else if (STORE_FLAG_VALUE == 1
5384 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5385 && op1 == const0_rtx
5386 && mode == GET_MODE (op0)
5387 && (num_sign_bit_copies (op0, mode)
5388 == GET_MODE_BITSIZE (mode)))
5390 op0 = expand_compound_operation (op0);
5391 return plus_constant (gen_lowpart (mode, op0), 1);
5394 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5395 those above. */
5396 if (STORE_FLAG_VALUE == -1
5397 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5398 && op1 == const0_rtx
5399 && (num_sign_bit_copies (op0, mode)
5400 == GET_MODE_BITSIZE (mode)))
5401 return gen_lowpart (mode,
5402 expand_compound_operation (op0));
5404 else if (STORE_FLAG_VALUE == -1
5405 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5406 && op1 == const0_rtx
5407 && mode == GET_MODE (op0)
5408 && nonzero_bits (op0, mode) == 1)
5410 op0 = expand_compound_operation (op0);
5411 return simplify_gen_unary (NEG, mode,
5412 gen_lowpart (mode, op0),
5413 mode);
5416 else if (STORE_FLAG_VALUE == -1
5417 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5418 && op1 == const0_rtx
5419 && mode == GET_MODE (op0)
5420 && (num_sign_bit_copies (op0, mode)
5421 == GET_MODE_BITSIZE (mode)))
5423 op0 = expand_compound_operation (op0);
5424 return simplify_gen_unary (NOT, mode,
5425 gen_lowpart (mode, op0),
5426 mode);
5429 /* If X is 0/1, (eq X 0) is X-1. */
5430 else if (STORE_FLAG_VALUE == -1
5431 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5432 && op1 == const0_rtx
5433 && mode == GET_MODE (op0)
5434 && nonzero_bits (op0, mode) == 1)
5436 op0 = expand_compound_operation (op0);
5437 return plus_constant (gen_lowpart (mode, op0), -1);
5440 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5441 one bit that might be nonzero, we can convert (ne x 0) to
5442 (ashift x c) where C puts the bit in the sign bit. Remove any
5443 AND with STORE_FLAG_VALUE when we are done, since we are only
5444 going to test the sign bit. */
5445 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5446 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5447 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5448 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5449 && op1 == const0_rtx
5450 && mode == GET_MODE (op0)
5451 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5453 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5454 expand_compound_operation (op0),
5455 GET_MODE_BITSIZE (mode) - 1 - i);
5456 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5457 return XEXP (x, 0);
5458 else
5459 return x;
5462 /* If the code changed, return a whole new comparison. */
5463 if (new_code != code)
5464 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5466 /* Otherwise, keep this operation, but maybe change its operands.
5467 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5468 SUBST (XEXP (x, 0), op0);
5469 SUBST (XEXP (x, 1), op1);
5471 break;
5473 case IF_THEN_ELSE:
5474 return simplify_if_then_else (x);
5476 case ZERO_EXTRACT:
5477 case SIGN_EXTRACT:
5478 case ZERO_EXTEND:
5479 case SIGN_EXTEND:
5480 /* If we are processing SET_DEST, we are done. */
5481 if (in_dest)
5482 return x;
5484 return expand_compound_operation (x);
5486 case SET:
5487 return simplify_set (x);
5489 case AND:
5490 case IOR:
5491 return simplify_logical (x);
5493 case ASHIFT:
5494 case LSHIFTRT:
5495 case ASHIFTRT:
5496 case ROTATE:
5497 case ROTATERT:
5498 /* If this is a shift by a constant amount, simplify it. */
5499 if (CONST_INT_P (XEXP (x, 1)))
5500 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5501 INTVAL (XEXP (x, 1)));
5503 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5504 SUBST (XEXP (x, 1),
5505 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5506 ((HOST_WIDE_INT) 1
5507 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5508 - 1,
5509 0));
5510 break;
5512 default:
5513 break;
5516 return x;
5519 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5521 static rtx
5522 simplify_if_then_else (rtx x)
5524 enum machine_mode mode = GET_MODE (x);
5525 rtx cond = XEXP (x, 0);
5526 rtx true_rtx = XEXP (x, 1);
5527 rtx false_rtx = XEXP (x, 2);
5528 enum rtx_code true_code = GET_CODE (cond);
5529 int comparison_p = COMPARISON_P (cond);
5530 rtx temp;
5531 int i;
5532 enum rtx_code false_code;
5533 rtx reversed;
5535 /* Simplify storing of the truth value. */
5536 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5537 return simplify_gen_relational (true_code, mode, VOIDmode,
5538 XEXP (cond, 0), XEXP (cond, 1));
5540 /* Also when the truth value has to be reversed. */
5541 if (comparison_p
5542 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5543 && (reversed = reversed_comparison (cond, mode)))
5544 return reversed;
5546 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5547 in it is being compared against certain values. Get the true and false
5548 comparisons and see if that says anything about the value of each arm. */
5550 if (comparison_p
5551 && ((false_code = reversed_comparison_code (cond, NULL))
5552 != UNKNOWN)
5553 && REG_P (XEXP (cond, 0)))
5555 HOST_WIDE_INT nzb;
5556 rtx from = XEXP (cond, 0);
5557 rtx true_val = XEXP (cond, 1);
5558 rtx false_val = true_val;
5559 int swapped = 0;
5561 /* If FALSE_CODE is EQ, swap the codes and arms. */
5563 if (false_code == EQ)
5565 swapped = 1, true_code = EQ, false_code = NE;
5566 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5569 /* If we are comparing against zero and the expression being tested has
5570 only a single bit that might be nonzero, that is its value when it is
5571 not equal to zero. Similarly if it is known to be -1 or 0. */
5573 if (true_code == EQ && true_val == const0_rtx
5574 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5576 false_code = EQ;
5577 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5579 else if (true_code == EQ && true_val == const0_rtx
5580 && (num_sign_bit_copies (from, GET_MODE (from))
5581 == GET_MODE_BITSIZE (GET_MODE (from))))
5583 false_code = EQ;
5584 false_val = constm1_rtx;
5587 /* Now simplify an arm if we know the value of the register in the
5588 branch and it is used in the arm. Be careful due to the potential
5589 of locally-shared RTL. */
5591 if (reg_mentioned_p (from, true_rtx))
5592 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5593 from, true_val),
5594 pc_rtx, pc_rtx, 0, 0);
5595 if (reg_mentioned_p (from, false_rtx))
5596 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5597 from, false_val),
5598 pc_rtx, pc_rtx, 0, 0);
5600 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5601 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5603 true_rtx = XEXP (x, 1);
5604 false_rtx = XEXP (x, 2);
5605 true_code = GET_CODE (cond);
5608 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5609 reversed, do so to avoid needing two sets of patterns for
5610 subtract-and-branch insns. Similarly if we have a constant in the true
5611 arm, the false arm is the same as the first operand of the comparison, or
5612 the false arm is more complicated than the true arm. */
5614 if (comparison_p
5615 && reversed_comparison_code (cond, NULL) != UNKNOWN
5616 && (true_rtx == pc_rtx
5617 || (CONSTANT_P (true_rtx)
5618 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5619 || true_rtx == const0_rtx
5620 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5621 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5622 && !OBJECT_P (false_rtx))
5623 || reg_mentioned_p (true_rtx, false_rtx)
5624 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5626 true_code = reversed_comparison_code (cond, NULL);
5627 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5628 SUBST (XEXP (x, 1), false_rtx);
5629 SUBST (XEXP (x, 2), true_rtx);
5631 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5632 cond = XEXP (x, 0);
5634 /* It is possible that the conditional has been simplified out. */
5635 true_code = GET_CODE (cond);
5636 comparison_p = COMPARISON_P (cond);
5639 /* If the two arms are identical, we don't need the comparison. */
5641 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5642 return true_rtx;
5644 /* Convert a == b ? b : a to "a". */
5645 if (true_code == EQ && ! side_effects_p (cond)
5646 && !HONOR_NANS (mode)
5647 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5648 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5649 return false_rtx;
5650 else if (true_code == NE && ! side_effects_p (cond)
5651 && !HONOR_NANS (mode)
5652 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5653 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5654 return true_rtx;
5656 /* Look for cases where we have (abs x) or (neg (abs X)). */
5658 if (GET_MODE_CLASS (mode) == MODE_INT
5659 && comparison_p
5660 && XEXP (cond, 1) == const0_rtx
5661 && GET_CODE (false_rtx) == NEG
5662 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5663 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5664 && ! side_effects_p (true_rtx))
5665 switch (true_code)
5667 case GT:
5668 case GE:
5669 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5670 case LT:
5671 case LE:
5672 return
5673 simplify_gen_unary (NEG, mode,
5674 simplify_gen_unary (ABS, mode, true_rtx, mode),
5675 mode);
5676 default:
5677 break;
5680 /* Look for MIN or MAX. */
5682 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5683 && comparison_p
5684 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5685 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5686 && ! side_effects_p (cond))
5687 switch (true_code)
5689 case GE:
5690 case GT:
5691 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5692 case LE:
5693 case LT:
5694 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5695 case GEU:
5696 case GTU:
5697 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5698 case LEU:
5699 case LTU:
5700 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5701 default:
5702 break;
5705 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5706 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5707 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5708 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5709 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5710 neither 1 or -1, but it isn't worth checking for. */
5712 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5713 && comparison_p
5714 && GET_MODE_CLASS (mode) == MODE_INT
5715 && ! side_effects_p (x))
5717 rtx t = make_compound_operation (true_rtx, SET);
5718 rtx f = make_compound_operation (false_rtx, SET);
5719 rtx cond_op0 = XEXP (cond, 0);
5720 rtx cond_op1 = XEXP (cond, 1);
5721 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5722 enum machine_mode m = mode;
5723 rtx z = 0, c1 = NULL_RTX;
5725 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5726 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5727 || GET_CODE (t) == ASHIFT
5728 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5729 && rtx_equal_p (XEXP (t, 0), f))
5730 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5732 /* If an identity-zero op is commutative, check whether there
5733 would be a match if we swapped the operands. */
5734 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5735 || GET_CODE (t) == XOR)
5736 && rtx_equal_p (XEXP (t, 1), f))
5737 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5738 else if (GET_CODE (t) == SIGN_EXTEND
5739 && (GET_CODE (XEXP (t, 0)) == PLUS
5740 || GET_CODE (XEXP (t, 0)) == MINUS
5741 || GET_CODE (XEXP (t, 0)) == IOR
5742 || GET_CODE (XEXP (t, 0)) == XOR
5743 || GET_CODE (XEXP (t, 0)) == ASHIFT
5744 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5745 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5746 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5747 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5748 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5749 && (num_sign_bit_copies (f, GET_MODE (f))
5750 > (unsigned int)
5751 (GET_MODE_BITSIZE (mode)
5752 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5754 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5755 extend_op = SIGN_EXTEND;
5756 m = GET_MODE (XEXP (t, 0));
5758 else if (GET_CODE (t) == SIGN_EXTEND
5759 && (GET_CODE (XEXP (t, 0)) == PLUS
5760 || GET_CODE (XEXP (t, 0)) == IOR
5761 || GET_CODE (XEXP (t, 0)) == XOR)
5762 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5763 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5764 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5765 && (num_sign_bit_copies (f, GET_MODE (f))
5766 > (unsigned int)
5767 (GET_MODE_BITSIZE (mode)
5768 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5770 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5771 extend_op = SIGN_EXTEND;
5772 m = GET_MODE (XEXP (t, 0));
5774 else if (GET_CODE (t) == ZERO_EXTEND
5775 && (GET_CODE (XEXP (t, 0)) == PLUS
5776 || GET_CODE (XEXP (t, 0)) == MINUS
5777 || GET_CODE (XEXP (t, 0)) == IOR
5778 || GET_CODE (XEXP (t, 0)) == XOR
5779 || GET_CODE (XEXP (t, 0)) == ASHIFT
5780 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5781 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5782 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5783 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5784 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5785 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5786 && ((nonzero_bits (f, GET_MODE (f))
5787 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5788 == 0))
5790 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5791 extend_op = ZERO_EXTEND;
5792 m = GET_MODE (XEXP (t, 0));
5794 else if (GET_CODE (t) == ZERO_EXTEND
5795 && (GET_CODE (XEXP (t, 0)) == PLUS
5796 || GET_CODE (XEXP (t, 0)) == IOR
5797 || GET_CODE (XEXP (t, 0)) == XOR)
5798 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5799 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5800 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5801 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5802 && ((nonzero_bits (f, GET_MODE (f))
5803 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5804 == 0))
5806 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5807 extend_op = ZERO_EXTEND;
5808 m = GET_MODE (XEXP (t, 0));
5811 if (z)
5813 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5814 cond_op0, cond_op1),
5815 pc_rtx, pc_rtx, 0, 0);
5816 temp = simplify_gen_binary (MULT, m, temp,
5817 simplify_gen_binary (MULT, m, c1,
5818 const_true_rtx));
5819 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5820 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5822 if (extend_op != UNKNOWN)
5823 temp = simplify_gen_unary (extend_op, mode, temp, m);
5825 return temp;
5829 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5830 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5831 negation of a single bit, we can convert this operation to a shift. We
5832 can actually do this more generally, but it doesn't seem worth it. */
5834 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5835 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5836 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5837 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5838 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5839 == GET_MODE_BITSIZE (mode))
5840 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5841 return
5842 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5843 gen_lowpart (mode, XEXP (cond, 0)), i);
5845 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5846 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5847 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5848 && GET_MODE (XEXP (cond, 0)) == mode
5849 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5850 == nonzero_bits (XEXP (cond, 0), mode)
5851 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5852 return XEXP (cond, 0);
5854 return x;
5857 /* Simplify X, a SET expression. Return the new expression. */
5859 static rtx
5860 simplify_set (rtx x)
5862 rtx src = SET_SRC (x);
5863 rtx dest = SET_DEST (x);
5864 enum machine_mode mode
5865 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5866 rtx other_insn;
5867 rtx *cc_use;
5869 /* (set (pc) (return)) gets written as (return). */
5870 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5871 return src;
5873 /* Now that we know for sure which bits of SRC we are using, see if we can
5874 simplify the expression for the object knowing that we only need the
5875 low-order bits. */
5877 if (GET_MODE_CLASS (mode) == MODE_INT
5878 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5880 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5881 SUBST (SET_SRC (x), src);
5884 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5885 the comparison result and try to simplify it unless we already have used
5886 undobuf.other_insn. */
5887 if ((GET_MODE_CLASS (mode) == MODE_CC
5888 || GET_CODE (src) == COMPARE
5889 || CC0_P (dest))
5890 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5891 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5892 && COMPARISON_P (*cc_use)
5893 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5895 enum rtx_code old_code = GET_CODE (*cc_use);
5896 enum rtx_code new_code;
5897 rtx op0, op1, tmp;
5898 int other_changed = 0;
5899 enum machine_mode compare_mode = GET_MODE (dest);
5901 if (GET_CODE (src) == COMPARE)
5902 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5903 else
5904 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5906 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5907 op0, op1);
5908 if (!tmp)
5909 new_code = old_code;
5910 else if (!CONSTANT_P (tmp))
5912 new_code = GET_CODE (tmp);
5913 op0 = XEXP (tmp, 0);
5914 op1 = XEXP (tmp, 1);
5916 else
5918 rtx pat = PATTERN (other_insn);
5919 undobuf.other_insn = other_insn;
5920 SUBST (*cc_use, tmp);
5922 /* Attempt to simplify CC user. */
5923 if (GET_CODE (pat) == SET)
5925 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5926 if (new_rtx != NULL_RTX)
5927 SUBST (SET_SRC (pat), new_rtx);
5930 /* Convert X into a no-op move. */
5931 SUBST (SET_DEST (x), pc_rtx);
5932 SUBST (SET_SRC (x), pc_rtx);
5933 return x;
5936 /* Simplify our comparison, if possible. */
5937 new_code = simplify_comparison (new_code, &op0, &op1);
5939 #ifdef SELECT_CC_MODE
5940 /* If this machine has CC modes other than CCmode, check to see if we
5941 need to use a different CC mode here. */
5942 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5943 compare_mode = GET_MODE (op0);
5944 else
5945 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5947 #ifndef HAVE_cc0
5948 /* If the mode changed, we have to change SET_DEST, the mode in the
5949 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5950 a hard register, just build new versions with the proper mode. If it
5951 is a pseudo, we lose unless it is only time we set the pseudo, in
5952 which case we can safely change its mode. */
5953 if (compare_mode != GET_MODE (dest))
5955 if (can_change_dest_mode (dest, 0, compare_mode))
5957 unsigned int regno = REGNO (dest);
5958 rtx new_dest;
5960 if (regno < FIRST_PSEUDO_REGISTER)
5961 new_dest = gen_rtx_REG (compare_mode, regno);
5962 else
5964 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5965 new_dest = regno_reg_rtx[regno];
5968 SUBST (SET_DEST (x), new_dest);
5969 SUBST (XEXP (*cc_use, 0), new_dest);
5970 other_changed = 1;
5972 dest = new_dest;
5975 #endif /* cc0 */
5976 #endif /* SELECT_CC_MODE */
5978 /* If the code changed, we have to build a new comparison in
5979 undobuf.other_insn. */
5980 if (new_code != old_code)
5982 int other_changed_previously = other_changed;
5983 unsigned HOST_WIDE_INT mask;
5984 rtx old_cc_use = *cc_use;
5986 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5987 dest, const0_rtx));
5988 other_changed = 1;
5990 /* If the only change we made was to change an EQ into an NE or
5991 vice versa, OP0 has only one bit that might be nonzero, and OP1
5992 is zero, check if changing the user of the condition code will
5993 produce a valid insn. If it won't, we can keep the original code
5994 in that insn by surrounding our operation with an XOR. */
5996 if (((old_code == NE && new_code == EQ)
5997 || (old_code == EQ && new_code == NE))
5998 && ! other_changed_previously && op1 == const0_rtx
5999 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6000 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6002 rtx pat = PATTERN (other_insn), note = 0;
6004 if ((recog_for_combine (&pat, other_insn, &note) < 0
6005 && ! check_asm_operands (pat)))
6007 *cc_use = old_cc_use;
6008 other_changed = 0;
6010 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6011 op0, GEN_INT (mask));
6016 if (other_changed)
6017 undobuf.other_insn = other_insn;
6019 /* Otherwise, if we didn't previously have a COMPARE in the
6020 correct mode, we need one. */
6021 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6023 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6024 src = SET_SRC (x);
6026 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6028 SUBST (SET_SRC (x), op0);
6029 src = SET_SRC (x);
6031 /* Otherwise, update the COMPARE if needed. */
6032 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6034 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6035 src = SET_SRC (x);
6038 else
6040 /* Get SET_SRC in a form where we have placed back any
6041 compound expressions. Then do the checks below. */
6042 src = make_compound_operation (src, SET);
6043 SUBST (SET_SRC (x), src);
6046 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6047 and X being a REG or (subreg (reg)), we may be able to convert this to
6048 (set (subreg:m2 x) (op)).
6050 We can always do this if M1 is narrower than M2 because that means that
6051 we only care about the low bits of the result.
6053 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6054 perform a narrower operation than requested since the high-order bits will
6055 be undefined. On machine where it is defined, this transformation is safe
6056 as long as M1 and M2 have the same number of words. */
6058 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6059 && !OBJECT_P (SUBREG_REG (src))
6060 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6061 / UNITS_PER_WORD)
6062 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6063 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6064 #ifndef WORD_REGISTER_OPERATIONS
6065 && (GET_MODE_SIZE (GET_MODE (src))
6066 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6067 #endif
6068 #ifdef CANNOT_CHANGE_MODE_CLASS
6069 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6070 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6071 GET_MODE (SUBREG_REG (src)),
6072 GET_MODE (src)))
6073 #endif
6074 && (REG_P (dest)
6075 || (GET_CODE (dest) == SUBREG
6076 && REG_P (SUBREG_REG (dest)))))
6078 SUBST (SET_DEST (x),
6079 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6080 dest));
6081 SUBST (SET_SRC (x), SUBREG_REG (src));
6083 src = SET_SRC (x), dest = SET_DEST (x);
6086 #ifdef HAVE_cc0
6087 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6088 in SRC. */
6089 if (dest == cc0_rtx
6090 && GET_CODE (src) == SUBREG
6091 && subreg_lowpart_p (src)
6092 && (GET_MODE_BITSIZE (GET_MODE (src))
6093 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6095 rtx inner = SUBREG_REG (src);
6096 enum machine_mode inner_mode = GET_MODE (inner);
6098 /* Here we make sure that we don't have a sign bit on. */
6099 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6100 && (nonzero_bits (inner, inner_mode)
6101 < ((unsigned HOST_WIDE_INT) 1
6102 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6104 SUBST (SET_SRC (x), inner);
6105 src = SET_SRC (x);
6108 #endif
6110 #ifdef LOAD_EXTEND_OP
6111 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6112 would require a paradoxical subreg. Replace the subreg with a
6113 zero_extend to avoid the reload that would otherwise be required. */
6115 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6116 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6117 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6118 && SUBREG_BYTE (src) == 0
6119 && (GET_MODE_SIZE (GET_MODE (src))
6120 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6121 && MEM_P (SUBREG_REG (src)))
6123 SUBST (SET_SRC (x),
6124 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6125 GET_MODE (src), SUBREG_REG (src)));
6127 src = SET_SRC (x);
6129 #endif
6131 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6132 are comparing an item known to be 0 or -1 against 0, use a logical
6133 operation instead. Check for one of the arms being an IOR of the other
6134 arm with some value. We compute three terms to be IOR'ed together. In
6135 practice, at most two will be nonzero. Then we do the IOR's. */
6137 if (GET_CODE (dest) != PC
6138 && GET_CODE (src) == IF_THEN_ELSE
6139 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6140 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6141 && XEXP (XEXP (src, 0), 1) == const0_rtx
6142 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6143 #ifdef HAVE_conditional_move
6144 && ! can_conditionally_move_p (GET_MODE (src))
6145 #endif
6146 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6147 GET_MODE (XEXP (XEXP (src, 0), 0)))
6148 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6149 && ! side_effects_p (src))
6151 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6152 ? XEXP (src, 1) : XEXP (src, 2));
6153 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6154 ? XEXP (src, 2) : XEXP (src, 1));
6155 rtx term1 = const0_rtx, term2, term3;
6157 if (GET_CODE (true_rtx) == IOR
6158 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6159 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6160 else if (GET_CODE (true_rtx) == IOR
6161 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6162 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6163 else if (GET_CODE (false_rtx) == IOR
6164 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6165 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6166 else if (GET_CODE (false_rtx) == IOR
6167 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6168 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6170 term2 = simplify_gen_binary (AND, GET_MODE (src),
6171 XEXP (XEXP (src, 0), 0), true_rtx);
6172 term3 = simplify_gen_binary (AND, GET_MODE (src),
6173 simplify_gen_unary (NOT, GET_MODE (src),
6174 XEXP (XEXP (src, 0), 0),
6175 GET_MODE (src)),
6176 false_rtx);
6178 SUBST (SET_SRC (x),
6179 simplify_gen_binary (IOR, GET_MODE (src),
6180 simplify_gen_binary (IOR, GET_MODE (src),
6181 term1, term2),
6182 term3));
6184 src = SET_SRC (x);
6187 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6188 whole thing fail. */
6189 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6190 return src;
6191 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6192 return dest;
6193 else
6194 /* Convert this into a field assignment operation, if possible. */
6195 return make_field_assignment (x);
6198 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6199 result. */
6201 static rtx
6202 simplify_logical (rtx x)
6204 enum machine_mode mode = GET_MODE (x);
6205 rtx op0 = XEXP (x, 0);
6206 rtx op1 = XEXP (x, 1);
6208 switch (GET_CODE (x))
6210 case AND:
6211 /* We can call simplify_and_const_int only if we don't lose
6212 any (sign) bits when converting INTVAL (op1) to
6213 "unsigned HOST_WIDE_INT". */
6214 if (CONST_INT_P (op1)
6215 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6216 || INTVAL (op1) > 0))
6218 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6219 if (GET_CODE (x) != AND)
6220 return x;
6222 op0 = XEXP (x, 0);
6223 op1 = XEXP (x, 1);
6226 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6227 apply the distributive law and then the inverse distributive
6228 law to see if things simplify. */
6229 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6231 rtx result = distribute_and_simplify_rtx (x, 0);
6232 if (result)
6233 return result;
6235 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6237 rtx result = distribute_and_simplify_rtx (x, 1);
6238 if (result)
6239 return result;
6241 break;
6243 case IOR:
6244 /* If we have (ior (and A B) C), apply the distributive law and then
6245 the inverse distributive law to see if things simplify. */
6247 if (GET_CODE (op0) == AND)
6249 rtx result = distribute_and_simplify_rtx (x, 0);
6250 if (result)
6251 return result;
6254 if (GET_CODE (op1) == AND)
6256 rtx result = distribute_and_simplify_rtx (x, 1);
6257 if (result)
6258 return result;
6260 break;
6262 default:
6263 gcc_unreachable ();
6266 return x;
6269 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6270 operations" because they can be replaced with two more basic operations.
6271 ZERO_EXTEND is also considered "compound" because it can be replaced with
6272 an AND operation, which is simpler, though only one operation.
6274 The function expand_compound_operation is called with an rtx expression
6275 and will convert it to the appropriate shifts and AND operations,
6276 simplifying at each stage.
6278 The function make_compound_operation is called to convert an expression
6279 consisting of shifts and ANDs into the equivalent compound expression.
6280 It is the inverse of this function, loosely speaking. */
6282 static rtx
6283 expand_compound_operation (rtx x)
6285 unsigned HOST_WIDE_INT pos = 0, len;
6286 int unsignedp = 0;
6287 unsigned int modewidth;
6288 rtx tem;
6290 switch (GET_CODE (x))
6292 case ZERO_EXTEND:
6293 unsignedp = 1;
6294 case SIGN_EXTEND:
6295 /* We can't necessarily use a const_int for a multiword mode;
6296 it depends on implicitly extending the value.
6297 Since we don't know the right way to extend it,
6298 we can't tell whether the implicit way is right.
6300 Even for a mode that is no wider than a const_int,
6301 we can't win, because we need to sign extend one of its bits through
6302 the rest of it, and we don't know which bit. */
6303 if (CONST_INT_P (XEXP (x, 0)))
6304 return x;
6306 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6307 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6308 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6309 reloaded. If not for that, MEM's would very rarely be safe.
6311 Reject MODEs bigger than a word, because we might not be able
6312 to reference a two-register group starting with an arbitrary register
6313 (and currently gen_lowpart might crash for a SUBREG). */
6315 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6316 return x;
6318 /* Reject MODEs that aren't scalar integers because turning vector
6319 or complex modes into shifts causes problems. */
6321 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6322 return x;
6324 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6325 /* If the inner object has VOIDmode (the only way this can happen
6326 is if it is an ASM_OPERANDS), we can't do anything since we don't
6327 know how much masking to do. */
6328 if (len == 0)
6329 return x;
6331 break;
6333 case ZERO_EXTRACT:
6334 unsignedp = 1;
6336 /* ... fall through ... */
6338 case SIGN_EXTRACT:
6339 /* If the operand is a CLOBBER, just return it. */
6340 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6341 return XEXP (x, 0);
6343 if (!CONST_INT_P (XEXP (x, 1))
6344 || !CONST_INT_P (XEXP (x, 2))
6345 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6346 return x;
6348 /* Reject MODEs that aren't scalar integers because turning vector
6349 or complex modes into shifts causes problems. */
6351 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6352 return x;
6354 len = INTVAL (XEXP (x, 1));
6355 pos = INTVAL (XEXP (x, 2));
6357 /* This should stay within the object being extracted, fail otherwise. */
6358 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6359 return x;
6361 if (BITS_BIG_ENDIAN)
6362 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6364 break;
6366 default:
6367 return x;
6369 /* Convert sign extension to zero extension, if we know that the high
6370 bit is not set, as this is easier to optimize. It will be converted
6371 back to cheaper alternative in make_extraction. */
6372 if (GET_CODE (x) == SIGN_EXTEND
6373 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6374 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6375 & ~(((unsigned HOST_WIDE_INT)
6376 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6377 >> 1))
6378 == 0)))
6380 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6381 rtx temp2 = expand_compound_operation (temp);
6383 /* Make sure this is a profitable operation. */
6384 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6385 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6386 return temp2;
6387 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6388 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6389 return temp;
6390 else
6391 return x;
6394 /* We can optimize some special cases of ZERO_EXTEND. */
6395 if (GET_CODE (x) == ZERO_EXTEND)
6397 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6398 know that the last value didn't have any inappropriate bits
6399 set. */
6400 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6401 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6402 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6403 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6404 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6405 return XEXP (XEXP (x, 0), 0);
6407 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6408 if (GET_CODE (XEXP (x, 0)) == SUBREG
6409 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6410 && subreg_lowpart_p (XEXP (x, 0))
6411 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6412 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6413 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6414 return SUBREG_REG (XEXP (x, 0));
6416 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6417 is a comparison and STORE_FLAG_VALUE permits. This is like
6418 the first case, but it works even when GET_MODE (x) is larger
6419 than HOST_WIDE_INT. */
6420 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6421 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6422 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6423 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6424 <= HOST_BITS_PER_WIDE_INT)
6425 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6426 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6427 return XEXP (XEXP (x, 0), 0);
6429 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6430 if (GET_CODE (XEXP (x, 0)) == SUBREG
6431 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6432 && subreg_lowpart_p (XEXP (x, 0))
6433 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6434 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6435 <= HOST_BITS_PER_WIDE_INT)
6436 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6437 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6438 return SUBREG_REG (XEXP (x, 0));
6442 /* If we reach here, we want to return a pair of shifts. The inner
6443 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6444 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6445 logical depending on the value of UNSIGNEDP.
6447 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6448 converted into an AND of a shift.
6450 We must check for the case where the left shift would have a negative
6451 count. This can happen in a case like (x >> 31) & 255 on machines
6452 that can't shift by a constant. On those machines, we would first
6453 combine the shift with the AND to produce a variable-position
6454 extraction. Then the constant of 31 would be substituted in to produce
6455 a such a position. */
6457 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6458 if (modewidth + len >= pos)
6460 enum machine_mode mode = GET_MODE (x);
6461 tem = gen_lowpart (mode, XEXP (x, 0));
6462 if (!tem || GET_CODE (tem) == CLOBBER)
6463 return x;
6464 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6465 tem, modewidth - pos - len);
6466 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6467 mode, tem, modewidth - len);
6469 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6470 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6471 simplify_shift_const (NULL_RTX, LSHIFTRT,
6472 GET_MODE (x),
6473 XEXP (x, 0), pos),
6474 ((HOST_WIDE_INT) 1 << len) - 1);
6475 else
6476 /* Any other cases we can't handle. */
6477 return x;
6479 /* If we couldn't do this for some reason, return the original
6480 expression. */
6481 if (GET_CODE (tem) == CLOBBER)
6482 return x;
6484 return tem;
6487 /* X is a SET which contains an assignment of one object into
6488 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6489 or certain SUBREGS). If possible, convert it into a series of
6490 logical operations.
6492 We half-heartedly support variable positions, but do not at all
6493 support variable lengths. */
6495 static const_rtx
6496 expand_field_assignment (const_rtx x)
6498 rtx inner;
6499 rtx pos; /* Always counts from low bit. */
6500 int len;
6501 rtx mask, cleared, masked;
6502 enum machine_mode compute_mode;
6504 /* Loop until we find something we can't simplify. */
6505 while (1)
6507 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6508 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6510 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6511 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6512 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6514 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6515 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6517 inner = XEXP (SET_DEST (x), 0);
6518 len = INTVAL (XEXP (SET_DEST (x), 1));
6519 pos = XEXP (SET_DEST (x), 2);
6521 /* A constant position should stay within the width of INNER. */
6522 if (CONST_INT_P (pos)
6523 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6524 break;
6526 if (BITS_BIG_ENDIAN)
6528 if (CONST_INT_P (pos))
6529 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6530 - INTVAL (pos));
6531 else if (GET_CODE (pos) == MINUS
6532 && CONST_INT_P (XEXP (pos, 1))
6533 && (INTVAL (XEXP (pos, 1))
6534 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6535 /* If position is ADJUST - X, new position is X. */
6536 pos = XEXP (pos, 0);
6537 else
6538 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6539 GEN_INT (GET_MODE_BITSIZE (
6540 GET_MODE (inner))
6541 - len),
6542 pos);
6546 /* A SUBREG between two modes that occupy the same numbers of words
6547 can be done by moving the SUBREG to the source. */
6548 else if (GET_CODE (SET_DEST (x)) == SUBREG
6549 /* We need SUBREGs to compute nonzero_bits properly. */
6550 && nonzero_sign_valid
6551 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6552 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6553 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6554 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6556 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6557 gen_lowpart
6558 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6559 SET_SRC (x)));
6560 continue;
6562 else
6563 break;
6565 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6566 inner = SUBREG_REG (inner);
6568 compute_mode = GET_MODE (inner);
6570 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6571 if (! SCALAR_INT_MODE_P (compute_mode))
6573 enum machine_mode imode;
6575 /* Don't do anything for vector or complex integral types. */
6576 if (! FLOAT_MODE_P (compute_mode))
6577 break;
6579 /* Try to find an integral mode to pun with. */
6580 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6581 if (imode == BLKmode)
6582 break;
6584 compute_mode = imode;
6585 inner = gen_lowpart (imode, inner);
6588 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6589 if (len >= HOST_BITS_PER_WIDE_INT)
6590 break;
6592 /* Now compute the equivalent expression. Make a copy of INNER
6593 for the SET_DEST in case it is a MEM into which we will substitute;
6594 we don't want shared RTL in that case. */
6595 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6596 cleared = simplify_gen_binary (AND, compute_mode,
6597 simplify_gen_unary (NOT, compute_mode,
6598 simplify_gen_binary (ASHIFT,
6599 compute_mode,
6600 mask, pos),
6601 compute_mode),
6602 inner);
6603 masked = simplify_gen_binary (ASHIFT, compute_mode,
6604 simplify_gen_binary (
6605 AND, compute_mode,
6606 gen_lowpart (compute_mode, SET_SRC (x)),
6607 mask),
6608 pos);
6610 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6611 simplify_gen_binary (IOR, compute_mode,
6612 cleared, masked));
6615 return x;
6618 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6619 it is an RTX that represents a variable starting position; otherwise,
6620 POS is the (constant) starting bit position (counted from the LSB).
6622 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6623 signed reference.
6625 IN_DEST is nonzero if this is a reference in the destination of a
6626 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6627 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6628 be used.
6630 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6631 ZERO_EXTRACT should be built even for bits starting at bit 0.
6633 MODE is the desired mode of the result (if IN_DEST == 0).
6635 The result is an RTX for the extraction or NULL_RTX if the target
6636 can't handle it. */
6638 static rtx
6639 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6640 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6641 int in_dest, int in_compare)
6643 /* This mode describes the size of the storage area
6644 to fetch the overall value from. Within that, we
6645 ignore the POS lowest bits, etc. */
6646 enum machine_mode is_mode = GET_MODE (inner);
6647 enum machine_mode inner_mode;
6648 enum machine_mode wanted_inner_mode;
6649 enum machine_mode wanted_inner_reg_mode = word_mode;
6650 enum machine_mode pos_mode = word_mode;
6651 enum machine_mode extraction_mode = word_mode;
6652 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6653 rtx new_rtx = 0;
6654 rtx orig_pos_rtx = pos_rtx;
6655 HOST_WIDE_INT orig_pos;
6657 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6659 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6660 consider just the QI as the memory to extract from.
6661 The subreg adds or removes high bits; its mode is
6662 irrelevant to the meaning of this extraction,
6663 since POS and LEN count from the lsb. */
6664 if (MEM_P (SUBREG_REG (inner)))
6665 is_mode = GET_MODE (SUBREG_REG (inner));
6666 inner = SUBREG_REG (inner);
6668 else if (GET_CODE (inner) == ASHIFT
6669 && CONST_INT_P (XEXP (inner, 1))
6670 && pos_rtx == 0 && pos == 0
6671 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6673 /* We're extracting the least significant bits of an rtx
6674 (ashift X (const_int C)), where LEN > C. Extract the
6675 least significant (LEN - C) bits of X, giving an rtx
6676 whose mode is MODE, then shift it left C times. */
6677 new_rtx = make_extraction (mode, XEXP (inner, 0),
6678 0, 0, len - INTVAL (XEXP (inner, 1)),
6679 unsignedp, in_dest, in_compare);
6680 if (new_rtx != 0)
6681 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6684 inner_mode = GET_MODE (inner);
6686 if (pos_rtx && CONST_INT_P (pos_rtx))
6687 pos = INTVAL (pos_rtx), pos_rtx = 0;
6689 /* See if this can be done without an extraction. We never can if the
6690 width of the field is not the same as that of some integer mode. For
6691 registers, we can only avoid the extraction if the position is at the
6692 low-order bit and this is either not in the destination or we have the
6693 appropriate STRICT_LOW_PART operation available.
6695 For MEM, we can avoid an extract if the field starts on an appropriate
6696 boundary and we can change the mode of the memory reference. */
6698 if (tmode != BLKmode
6699 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6700 && !MEM_P (inner)
6701 && (inner_mode == tmode
6702 || !REG_P (inner)
6703 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6704 GET_MODE_BITSIZE (inner_mode))
6705 || reg_truncated_to_mode (tmode, inner))
6706 && (! in_dest
6707 || (REG_P (inner)
6708 && have_insn_for (STRICT_LOW_PART, tmode))))
6709 || (MEM_P (inner) && pos_rtx == 0
6710 && (pos
6711 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6712 : BITS_PER_UNIT)) == 0
6713 /* We can't do this if we are widening INNER_MODE (it
6714 may not be aligned, for one thing). */
6715 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6716 && (inner_mode == tmode
6717 || (! mode_dependent_address_p (XEXP (inner, 0))
6718 && ! MEM_VOLATILE_P (inner))))))
6720 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6721 field. If the original and current mode are the same, we need not
6722 adjust the offset. Otherwise, we do if bytes big endian.
6724 If INNER is not a MEM, get a piece consisting of just the field
6725 of interest (in this case POS % BITS_PER_WORD must be 0). */
6727 if (MEM_P (inner))
6729 HOST_WIDE_INT offset;
6731 /* POS counts from lsb, but make OFFSET count in memory order. */
6732 if (BYTES_BIG_ENDIAN)
6733 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6734 else
6735 offset = pos / BITS_PER_UNIT;
6737 new_rtx = adjust_address_nv (inner, tmode, offset);
6739 else if (REG_P (inner))
6741 if (tmode != inner_mode)
6743 /* We can't call gen_lowpart in a DEST since we
6744 always want a SUBREG (see below) and it would sometimes
6745 return a new hard register. */
6746 if (pos || in_dest)
6748 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6750 if (WORDS_BIG_ENDIAN
6751 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6752 final_word = ((GET_MODE_SIZE (inner_mode)
6753 - GET_MODE_SIZE (tmode))
6754 / UNITS_PER_WORD) - final_word;
6756 final_word *= UNITS_PER_WORD;
6757 if (BYTES_BIG_ENDIAN &&
6758 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6759 final_word += (GET_MODE_SIZE (inner_mode)
6760 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6762 /* Avoid creating invalid subregs, for example when
6763 simplifying (x>>32)&255. */
6764 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6765 return NULL_RTX;
6767 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6769 else
6770 new_rtx = gen_lowpart (tmode, inner);
6772 else
6773 new_rtx = inner;
6775 else
6776 new_rtx = force_to_mode (inner, tmode,
6777 len >= HOST_BITS_PER_WIDE_INT
6778 ? ~(unsigned HOST_WIDE_INT) 0
6779 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6782 /* If this extraction is going into the destination of a SET,
6783 make a STRICT_LOW_PART unless we made a MEM. */
6785 if (in_dest)
6786 return (MEM_P (new_rtx) ? new_rtx
6787 : (GET_CODE (new_rtx) != SUBREG
6788 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6789 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6791 if (mode == tmode)
6792 return new_rtx;
6794 if (CONST_INT_P (new_rtx))
6795 return gen_int_mode (INTVAL (new_rtx), mode);
6797 /* If we know that no extraneous bits are set, and that the high
6798 bit is not set, convert the extraction to the cheaper of
6799 sign and zero extension, that are equivalent in these cases. */
6800 if (flag_expensive_optimizations
6801 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6802 && ((nonzero_bits (new_rtx, tmode)
6803 & ~(((unsigned HOST_WIDE_INT)
6804 GET_MODE_MASK (tmode))
6805 >> 1))
6806 == 0)))
6808 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6809 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6811 /* Prefer ZERO_EXTENSION, since it gives more information to
6812 backends. */
6813 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6814 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6815 return temp;
6816 return temp1;
6819 /* Otherwise, sign- or zero-extend unless we already are in the
6820 proper mode. */
6822 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6823 mode, new_rtx));
6826 /* Unless this is a COMPARE or we have a funny memory reference,
6827 don't do anything with zero-extending field extracts starting at
6828 the low-order bit since they are simple AND operations. */
6829 if (pos_rtx == 0 && pos == 0 && ! in_dest
6830 && ! in_compare && unsignedp)
6831 return 0;
6833 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6834 if the position is not a constant and the length is not 1. In all
6835 other cases, we would only be going outside our object in cases when
6836 an original shift would have been undefined. */
6837 if (MEM_P (inner)
6838 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6839 || (pos_rtx != 0 && len != 1)))
6840 return 0;
6842 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6843 and the mode for the result. */
6844 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6846 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6847 pos_mode = mode_for_extraction (EP_insv, 2);
6848 extraction_mode = mode_for_extraction (EP_insv, 3);
6851 if (! in_dest && unsignedp
6852 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6854 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6855 pos_mode = mode_for_extraction (EP_extzv, 3);
6856 extraction_mode = mode_for_extraction (EP_extzv, 0);
6859 if (! in_dest && ! unsignedp
6860 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6862 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6863 pos_mode = mode_for_extraction (EP_extv, 3);
6864 extraction_mode = mode_for_extraction (EP_extv, 0);
6867 /* Never narrow an object, since that might not be safe. */
6869 if (mode != VOIDmode
6870 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6871 extraction_mode = mode;
6873 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6874 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6875 pos_mode = GET_MODE (pos_rtx);
6877 /* If this is not from memory, the desired mode is the preferred mode
6878 for an extraction pattern's first input operand, or word_mode if there
6879 is none. */
6880 if (!MEM_P (inner))
6881 wanted_inner_mode = wanted_inner_reg_mode;
6882 else
6884 /* Be careful not to go beyond the extracted object and maintain the
6885 natural alignment of the memory. */
6886 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6887 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6888 > GET_MODE_BITSIZE (wanted_inner_mode))
6890 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6891 gcc_assert (wanted_inner_mode != VOIDmode);
6894 /* If we have to change the mode of memory and cannot, the desired mode
6895 is EXTRACTION_MODE. */
6896 if (inner_mode != wanted_inner_mode
6897 && (mode_dependent_address_p (XEXP (inner, 0))
6898 || MEM_VOLATILE_P (inner)
6899 || pos_rtx))
6900 wanted_inner_mode = extraction_mode;
6903 orig_pos = pos;
6905 if (BITS_BIG_ENDIAN)
6907 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6908 BITS_BIG_ENDIAN style. If position is constant, compute new
6909 position. Otherwise, build subtraction.
6910 Note that POS is relative to the mode of the original argument.
6911 If it's a MEM we need to recompute POS relative to that.
6912 However, if we're extracting from (or inserting into) a register,
6913 we want to recompute POS relative to wanted_inner_mode. */
6914 int width = (MEM_P (inner)
6915 ? GET_MODE_BITSIZE (is_mode)
6916 : GET_MODE_BITSIZE (wanted_inner_mode));
6918 if (pos_rtx == 0)
6919 pos = width - len - pos;
6920 else
6921 pos_rtx
6922 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6923 /* POS may be less than 0 now, but we check for that below.
6924 Note that it can only be less than 0 if !MEM_P (inner). */
6927 /* If INNER has a wider mode, and this is a constant extraction, try to
6928 make it smaller and adjust the byte to point to the byte containing
6929 the value. */
6930 if (wanted_inner_mode != VOIDmode
6931 && inner_mode != wanted_inner_mode
6932 && ! pos_rtx
6933 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6934 && MEM_P (inner)
6935 && ! mode_dependent_address_p (XEXP (inner, 0))
6936 && ! MEM_VOLATILE_P (inner))
6938 int offset = 0;
6940 /* The computations below will be correct if the machine is big
6941 endian in both bits and bytes or little endian in bits and bytes.
6942 If it is mixed, we must adjust. */
6944 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6945 adjust OFFSET to compensate. */
6946 if (BYTES_BIG_ENDIAN
6947 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6948 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6950 /* We can now move to the desired byte. */
6951 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6952 * GET_MODE_SIZE (wanted_inner_mode);
6953 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6955 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6956 && is_mode != wanted_inner_mode)
6957 offset = (GET_MODE_SIZE (is_mode)
6958 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6960 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6963 /* If INNER is not memory, get it into the proper mode. If we are changing
6964 its mode, POS must be a constant and smaller than the size of the new
6965 mode. */
6966 else if (!MEM_P (inner))
6968 /* On the LHS, don't create paradoxical subregs implicitely truncating
6969 the register unless TRULY_NOOP_TRUNCATION. */
6970 if (in_dest
6971 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6972 GET_MODE_BITSIZE (wanted_inner_mode)))
6973 return NULL_RTX;
6975 if (GET_MODE (inner) != wanted_inner_mode
6976 && (pos_rtx != 0
6977 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6978 return NULL_RTX;
6980 if (orig_pos < 0)
6981 return NULL_RTX;
6983 inner = force_to_mode (inner, wanted_inner_mode,
6984 pos_rtx
6985 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6986 ? ~(unsigned HOST_WIDE_INT) 0
6987 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6988 << orig_pos),
6992 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6993 have to zero extend. Otherwise, we can just use a SUBREG. */
6994 if (pos_rtx != 0
6995 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6997 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6999 /* If we know that no extraneous bits are set, and that the high
7000 bit is not set, convert extraction to cheaper one - either
7001 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7002 cases. */
7003 if (flag_expensive_optimizations
7004 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7005 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7006 & ~(((unsigned HOST_WIDE_INT)
7007 GET_MODE_MASK (GET_MODE (pos_rtx)))
7008 >> 1))
7009 == 0)))
7011 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7013 /* Prefer ZERO_EXTENSION, since it gives more information to
7014 backends. */
7015 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7016 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7017 temp = temp1;
7019 pos_rtx = temp;
7021 else if (pos_rtx != 0
7022 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7023 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7025 /* Make POS_RTX unless we already have it and it is correct. If we don't
7026 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7027 be a CONST_INT. */
7028 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7029 pos_rtx = orig_pos_rtx;
7031 else if (pos_rtx == 0)
7032 pos_rtx = GEN_INT (pos);
7034 /* Make the required operation. See if we can use existing rtx. */
7035 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7036 extraction_mode, inner, GEN_INT (len), pos_rtx);
7037 if (! in_dest)
7038 new_rtx = gen_lowpart (mode, new_rtx);
7040 return new_rtx;
7043 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7044 with any other operations in X. Return X without that shift if so. */
7046 static rtx
7047 extract_left_shift (rtx x, int count)
7049 enum rtx_code code = GET_CODE (x);
7050 enum machine_mode mode = GET_MODE (x);
7051 rtx tem;
7053 switch (code)
7055 case ASHIFT:
7056 /* This is the shift itself. If it is wide enough, we will return
7057 either the value being shifted if the shift count is equal to
7058 COUNT or a shift for the difference. */
7059 if (CONST_INT_P (XEXP (x, 1))
7060 && INTVAL (XEXP (x, 1)) >= count)
7061 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7062 INTVAL (XEXP (x, 1)) - count);
7063 break;
7065 case NEG: case NOT:
7066 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7067 return simplify_gen_unary (code, mode, tem, mode);
7069 break;
7071 case PLUS: case IOR: case XOR: case AND:
7072 /* If we can safely shift this constant and we find the inner shift,
7073 make a new operation. */
7074 if (CONST_INT_P (XEXP (x, 1))
7075 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7076 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7077 return simplify_gen_binary (code, mode, tem,
7078 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7080 break;
7082 default:
7083 break;
7086 return 0;
7089 /* Look at the expression rooted at X. Look for expressions
7090 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7091 Form these expressions.
7093 Return the new rtx, usually just X.
7095 Also, for machines like the VAX that don't have logical shift insns,
7096 try to convert logical to arithmetic shift operations in cases where
7097 they are equivalent. This undoes the canonicalizations to logical
7098 shifts done elsewhere.
7100 We try, as much as possible, to re-use rtl expressions to save memory.
7102 IN_CODE says what kind of expression we are processing. Normally, it is
7103 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7104 being kludges), it is MEM. When processing the arguments of a comparison
7105 or a COMPARE against zero, it is COMPARE. */
7107 static rtx
7108 make_compound_operation (rtx x, enum rtx_code in_code)
7110 enum rtx_code code = GET_CODE (x);
7111 enum machine_mode mode = GET_MODE (x);
7112 int mode_width = GET_MODE_BITSIZE (mode);
7113 rtx rhs, lhs;
7114 enum rtx_code next_code;
7115 int i, j;
7116 rtx new_rtx = 0;
7117 rtx tem;
7118 const char *fmt;
7120 /* Select the code to be used in recursive calls. Once we are inside an
7121 address, we stay there. If we have a comparison, set to COMPARE,
7122 but once inside, go back to our default of SET. */
7124 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
7125 : ((code == COMPARE || COMPARISON_P (x))
7126 && XEXP (x, 1) == const0_rtx) ? COMPARE
7127 : in_code == COMPARE ? SET : in_code);
7129 /* Process depending on the code of this operation. If NEW is set
7130 nonzero, it will be returned. */
7132 switch (code)
7134 case ASHIFT:
7135 /* Convert shifts by constants into multiplications if inside
7136 an address. */
7137 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7138 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7139 && INTVAL (XEXP (x, 1)) >= 0)
7141 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7142 new_rtx = gen_rtx_MULT (mode, new_rtx,
7143 GEN_INT ((HOST_WIDE_INT) 1
7144 << INTVAL (XEXP (x, 1))));
7146 break;
7148 case AND:
7149 /* If the second operand is not a constant, we can't do anything
7150 with it. */
7151 if (!CONST_INT_P (XEXP (x, 1)))
7152 break;
7154 /* If the constant is a power of two minus one and the first operand
7155 is a logical right shift, make an extraction. */
7156 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7157 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7159 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7160 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7161 0, in_code == COMPARE);
7164 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7165 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7166 && subreg_lowpart_p (XEXP (x, 0))
7167 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7168 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7170 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7171 next_code);
7172 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7173 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7174 0, in_code == COMPARE);
7176 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7177 else if ((GET_CODE (XEXP (x, 0)) == XOR
7178 || GET_CODE (XEXP (x, 0)) == IOR)
7179 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7180 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7181 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7183 /* Apply the distributive law, and then try to make extractions. */
7184 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7185 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7186 XEXP (x, 1)),
7187 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7188 XEXP (x, 1)));
7189 new_rtx = make_compound_operation (new_rtx, in_code);
7192 /* If we are have (and (rotate X C) M) and C is larger than the number
7193 of bits in M, this is an extraction. */
7195 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7196 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7197 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7198 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7200 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7201 new_rtx = make_extraction (mode, new_rtx,
7202 (GET_MODE_BITSIZE (mode)
7203 - INTVAL (XEXP (XEXP (x, 0), 1))),
7204 NULL_RTX, i, 1, 0, in_code == COMPARE);
7207 /* On machines without logical shifts, if the operand of the AND is
7208 a logical shift and our mask turns off all the propagated sign
7209 bits, we can replace the logical shift with an arithmetic shift. */
7210 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7211 && !have_insn_for (LSHIFTRT, mode)
7212 && have_insn_for (ASHIFTRT, mode)
7213 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7214 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7215 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7216 && mode_width <= HOST_BITS_PER_WIDE_INT)
7218 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7220 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7221 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7222 SUBST (XEXP (x, 0),
7223 gen_rtx_ASHIFTRT (mode,
7224 make_compound_operation
7225 (XEXP (XEXP (x, 0), 0), next_code),
7226 XEXP (XEXP (x, 0), 1)));
7229 /* If the constant is one less than a power of two, this might be
7230 representable by an extraction even if no shift is present.
7231 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7232 we are in a COMPARE. */
7233 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7234 new_rtx = make_extraction (mode,
7235 make_compound_operation (XEXP (x, 0),
7236 next_code),
7237 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7239 /* If we are in a comparison and this is an AND with a power of two,
7240 convert this into the appropriate bit extract. */
7241 else if (in_code == COMPARE
7242 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7243 new_rtx = make_extraction (mode,
7244 make_compound_operation (XEXP (x, 0),
7245 next_code),
7246 i, NULL_RTX, 1, 1, 0, 1);
7248 break;
7250 case LSHIFTRT:
7251 /* If the sign bit is known to be zero, replace this with an
7252 arithmetic shift. */
7253 if (have_insn_for (ASHIFTRT, mode)
7254 && ! have_insn_for (LSHIFTRT, mode)
7255 && mode_width <= HOST_BITS_PER_WIDE_INT
7256 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7258 new_rtx = gen_rtx_ASHIFTRT (mode,
7259 make_compound_operation (XEXP (x, 0),
7260 next_code),
7261 XEXP (x, 1));
7262 break;
7265 /* ... fall through ... */
7267 case ASHIFTRT:
7268 lhs = XEXP (x, 0);
7269 rhs = XEXP (x, 1);
7271 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7272 this is a SIGN_EXTRACT. */
7273 if (CONST_INT_P (rhs)
7274 && GET_CODE (lhs) == ASHIFT
7275 && CONST_INT_P (XEXP (lhs, 1))
7276 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7277 && INTVAL (rhs) < mode_width)
7279 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7280 new_rtx = make_extraction (mode, new_rtx,
7281 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7282 NULL_RTX, mode_width - INTVAL (rhs),
7283 code == LSHIFTRT, 0, in_code == COMPARE);
7284 break;
7287 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7288 If so, try to merge the shifts into a SIGN_EXTEND. We could
7289 also do this for some cases of SIGN_EXTRACT, but it doesn't
7290 seem worth the effort; the case checked for occurs on Alpha. */
7292 if (!OBJECT_P (lhs)
7293 && ! (GET_CODE (lhs) == SUBREG
7294 && (OBJECT_P (SUBREG_REG (lhs))))
7295 && CONST_INT_P (rhs)
7296 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7297 && INTVAL (rhs) < mode_width
7298 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7299 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7300 0, NULL_RTX, mode_width - INTVAL (rhs),
7301 code == LSHIFTRT, 0, in_code == COMPARE);
7303 break;
7305 case SUBREG:
7306 /* Call ourselves recursively on the inner expression. If we are
7307 narrowing the object and it has a different RTL code from
7308 what it originally did, do this SUBREG as a force_to_mode. */
7310 tem = make_compound_operation (SUBREG_REG (x), in_code);
7313 rtx simplified;
7314 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7315 SUBREG_BYTE (x));
7317 if (simplified)
7318 tem = simplified;
7320 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7321 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7322 && subreg_lowpart_p (x))
7324 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7327 /* If we have something other than a SUBREG, we might have
7328 done an expansion, so rerun ourselves. */
7329 if (GET_CODE (newer) != SUBREG)
7330 newer = make_compound_operation (newer, in_code);
7332 /* force_to_mode can expand compounds. If it just re-expanded the
7333 compound use gen_lowpart instead to convert to the desired
7334 mode. */
7335 if (rtx_equal_p (newer, x))
7336 return gen_lowpart (GET_MODE (x), tem);
7338 return newer;
7341 if (simplified)
7342 return tem;
7344 break;
7346 default:
7347 break;
7350 if (new_rtx)
7352 x = gen_lowpart (mode, new_rtx);
7353 code = GET_CODE (x);
7356 /* Now recursively process each operand of this operation. */
7357 fmt = GET_RTX_FORMAT (code);
7358 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7359 if (fmt[i] == 'e')
7361 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7362 SUBST (XEXP (x, i), new_rtx);
7364 else if (fmt[i] == 'E')
7365 for (j = 0; j < XVECLEN (x, i); j++)
7367 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7368 SUBST (XVECEXP (x, i, j), new_rtx);
7371 /* If this is a commutative operation, the changes to the operands
7372 may have made it noncanonical. */
7373 if (COMMUTATIVE_ARITH_P (x)
7374 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7376 tem = XEXP (x, 0);
7377 SUBST (XEXP (x, 0), XEXP (x, 1));
7378 SUBST (XEXP (x, 1), tem);
7381 return x;
7384 /* Given M see if it is a value that would select a field of bits
7385 within an item, but not the entire word. Return -1 if not.
7386 Otherwise, return the starting position of the field, where 0 is the
7387 low-order bit.
7389 *PLEN is set to the length of the field. */
7391 static int
7392 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7394 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7395 int pos = exact_log2 (m & -m);
7396 int len = 0;
7398 if (pos >= 0)
7399 /* Now shift off the low-order zero bits and see if we have a
7400 power of two minus 1. */
7401 len = exact_log2 ((m >> pos) + 1);
7403 if (len <= 0)
7404 pos = -1;
7406 *plen = len;
7407 return pos;
7410 /* If X refers to a register that equals REG in value, replace these
7411 references with REG. */
7412 static rtx
7413 canon_reg_for_combine (rtx x, rtx reg)
7415 rtx op0, op1, op2;
7416 const char *fmt;
7417 int i;
7418 bool copied;
7420 enum rtx_code code = GET_CODE (x);
7421 switch (GET_RTX_CLASS (code))
7423 case RTX_UNARY:
7424 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7425 if (op0 != XEXP (x, 0))
7426 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7427 GET_MODE (reg));
7428 break;
7430 case RTX_BIN_ARITH:
7431 case RTX_COMM_ARITH:
7432 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7433 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7434 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7435 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7436 break;
7438 case RTX_COMPARE:
7439 case RTX_COMM_COMPARE:
7440 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7441 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7442 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7443 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7444 GET_MODE (op0), op0, op1);
7445 break;
7447 case RTX_TERNARY:
7448 case RTX_BITFIELD_OPS:
7449 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7450 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7451 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7452 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7453 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7454 GET_MODE (op0), op0, op1, op2);
7456 case RTX_OBJ:
7457 if (REG_P (x))
7459 if (rtx_equal_p (get_last_value (reg), x)
7460 || rtx_equal_p (reg, get_last_value (x)))
7461 return reg;
7462 else
7463 break;
7466 /* fall through */
7468 default:
7469 fmt = GET_RTX_FORMAT (code);
7470 copied = false;
7471 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7472 if (fmt[i] == 'e')
7474 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7475 if (op != XEXP (x, i))
7477 if (!copied)
7479 copied = true;
7480 x = copy_rtx (x);
7482 XEXP (x, i) = op;
7485 else if (fmt[i] == 'E')
7487 int j;
7488 for (j = 0; j < XVECLEN (x, i); j++)
7490 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7491 if (op != XVECEXP (x, i, j))
7493 if (!copied)
7495 copied = true;
7496 x = copy_rtx (x);
7498 XVECEXP (x, i, j) = op;
7503 break;
7506 return x;
7509 /* Return X converted to MODE. If the value is already truncated to
7510 MODE we can just return a subreg even though in the general case we
7511 would need an explicit truncation. */
7513 static rtx
7514 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7516 if (!CONST_INT_P (x)
7517 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7518 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7519 GET_MODE_BITSIZE (GET_MODE (x)))
7520 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7522 /* Bit-cast X into an integer mode. */
7523 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7524 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7525 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7526 x, GET_MODE (x));
7529 return gen_lowpart (mode, x);
7532 /* See if X can be simplified knowing that we will only refer to it in
7533 MODE and will only refer to those bits that are nonzero in MASK.
7534 If other bits are being computed or if masking operations are done
7535 that select a superset of the bits in MASK, they can sometimes be
7536 ignored.
7538 Return a possibly simplified expression, but always convert X to
7539 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7541 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7542 are all off in X. This is used when X will be complemented, by either
7543 NOT, NEG, or XOR. */
7545 static rtx
7546 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7547 int just_select)
7549 enum rtx_code code = GET_CODE (x);
7550 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7551 enum machine_mode op_mode;
7552 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7553 rtx op0, op1, temp;
7555 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7556 code below will do the wrong thing since the mode of such an
7557 expression is VOIDmode.
7559 Also do nothing if X is a CLOBBER; this can happen if X was
7560 the return value from a call to gen_lowpart. */
7561 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7562 return x;
7564 /* We want to perform the operation is its present mode unless we know
7565 that the operation is valid in MODE, in which case we do the operation
7566 in MODE. */
7567 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7568 && have_insn_for (code, mode))
7569 ? mode : GET_MODE (x));
7571 /* It is not valid to do a right-shift in a narrower mode
7572 than the one it came in with. */
7573 if ((code == LSHIFTRT || code == ASHIFTRT)
7574 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7575 op_mode = GET_MODE (x);
7577 /* Truncate MASK to fit OP_MODE. */
7578 if (op_mode)
7579 mask &= GET_MODE_MASK (op_mode);
7581 /* When we have an arithmetic operation, or a shift whose count we
7582 do not know, we need to assume that all bits up to the highest-order
7583 bit in MASK will be needed. This is how we form such a mask. */
7584 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7585 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7586 else
7587 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7588 - 1);
7590 /* Determine what bits of X are guaranteed to be (non)zero. */
7591 nonzero = nonzero_bits (x, mode);
7593 /* If none of the bits in X are needed, return a zero. */
7594 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7595 x = const0_rtx;
7597 /* If X is a CONST_INT, return a new one. Do this here since the
7598 test below will fail. */
7599 if (CONST_INT_P (x))
7601 if (SCALAR_INT_MODE_P (mode))
7602 return gen_int_mode (INTVAL (x) & mask, mode);
7603 else
7605 x = GEN_INT (INTVAL (x) & mask);
7606 return gen_lowpart_common (mode, x);
7610 /* If X is narrower than MODE and we want all the bits in X's mode, just
7611 get X in the proper mode. */
7612 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7613 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7614 return gen_lowpart (mode, x);
7616 /* We can ignore the effect of a SUBREG if it narrows the mode or
7617 if the constant masks to zero all the bits the mode doesn't have. */
7618 if (GET_CODE (x) == SUBREG
7619 && subreg_lowpart_p (x)
7620 && ((GET_MODE_SIZE (GET_MODE (x))
7621 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7622 || (0 == (mask
7623 & GET_MODE_MASK (GET_MODE (x))
7624 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7625 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7627 /* The arithmetic simplifications here only work for scalar integer modes. */
7628 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7629 return gen_lowpart_or_truncate (mode, x);
7631 switch (code)
7633 case CLOBBER:
7634 /* If X is a (clobber (const_int)), return it since we know we are
7635 generating something that won't match. */
7636 return x;
7638 case SIGN_EXTEND:
7639 case ZERO_EXTEND:
7640 case ZERO_EXTRACT:
7641 case SIGN_EXTRACT:
7642 x = expand_compound_operation (x);
7643 if (GET_CODE (x) != code)
7644 return force_to_mode (x, mode, mask, next_select);
7645 break;
7647 case TRUNCATE:
7648 /* Similarly for a truncate. */
7649 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7651 case AND:
7652 /* If this is an AND with a constant, convert it into an AND
7653 whose constant is the AND of that constant with MASK. If it
7654 remains an AND of MASK, delete it since it is redundant. */
7656 if (CONST_INT_P (XEXP (x, 1)))
7658 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7659 mask & INTVAL (XEXP (x, 1)));
7661 /* If X is still an AND, see if it is an AND with a mask that
7662 is just some low-order bits. If so, and it is MASK, we don't
7663 need it. */
7665 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7666 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7667 == mask))
7668 x = XEXP (x, 0);
7670 /* If it remains an AND, try making another AND with the bits
7671 in the mode mask that aren't in MASK turned on. If the
7672 constant in the AND is wide enough, this might make a
7673 cheaper constant. */
7675 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7676 && GET_MODE_MASK (GET_MODE (x)) != mask
7677 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7679 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7680 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7681 int width = GET_MODE_BITSIZE (GET_MODE (x));
7682 rtx y;
7684 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7685 number, sign extend it. */
7686 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7687 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7688 cval |= (HOST_WIDE_INT) -1 << width;
7690 y = simplify_gen_binary (AND, GET_MODE (x),
7691 XEXP (x, 0), GEN_INT (cval));
7692 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7693 < rtx_cost (x, SET, optimize_this_for_speed_p))
7694 x = y;
7697 break;
7700 goto binop;
7702 case PLUS:
7703 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7704 low-order bits (as in an alignment operation) and FOO is already
7705 aligned to that boundary, mask C1 to that boundary as well.
7706 This may eliminate that PLUS and, later, the AND. */
7709 unsigned int width = GET_MODE_BITSIZE (mode);
7710 unsigned HOST_WIDE_INT smask = mask;
7712 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7713 number, sign extend it. */
7715 if (width < HOST_BITS_PER_WIDE_INT
7716 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7717 smask |= (HOST_WIDE_INT) -1 << width;
7719 if (CONST_INT_P (XEXP (x, 1))
7720 && exact_log2 (- smask) >= 0
7721 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7722 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7723 return force_to_mode (plus_constant (XEXP (x, 0),
7724 (INTVAL (XEXP (x, 1)) & smask)),
7725 mode, smask, next_select);
7728 /* ... fall through ... */
7730 case MULT:
7731 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7732 most significant bit in MASK since carries from those bits will
7733 affect the bits we are interested in. */
7734 mask = fuller_mask;
7735 goto binop;
7737 case MINUS:
7738 /* If X is (minus C Y) where C's least set bit is larger than any bit
7739 in the mask, then we may replace with (neg Y). */
7740 if (CONST_INT_P (XEXP (x, 0))
7741 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7742 & -INTVAL (XEXP (x, 0))))
7743 > mask))
7745 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7746 GET_MODE (x));
7747 return force_to_mode (x, mode, mask, next_select);
7750 /* Similarly, if C contains every bit in the fuller_mask, then we may
7751 replace with (not Y). */
7752 if (CONST_INT_P (XEXP (x, 0))
7753 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7754 == INTVAL (XEXP (x, 0))))
7756 x = simplify_gen_unary (NOT, GET_MODE (x),
7757 XEXP (x, 1), GET_MODE (x));
7758 return force_to_mode (x, mode, mask, next_select);
7761 mask = fuller_mask;
7762 goto binop;
7764 case IOR:
7765 case XOR:
7766 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7767 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7768 operation which may be a bitfield extraction. Ensure that the
7769 constant we form is not wider than the mode of X. */
7771 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7772 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7773 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7774 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7775 && CONST_INT_P (XEXP (x, 1))
7776 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7777 + floor_log2 (INTVAL (XEXP (x, 1))))
7778 < GET_MODE_BITSIZE (GET_MODE (x)))
7779 && (INTVAL (XEXP (x, 1))
7780 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7782 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7783 << INTVAL (XEXP (XEXP (x, 0), 1)));
7784 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7785 XEXP (XEXP (x, 0), 0), temp);
7786 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7787 XEXP (XEXP (x, 0), 1));
7788 return force_to_mode (x, mode, mask, next_select);
7791 binop:
7792 /* For most binary operations, just propagate into the operation and
7793 change the mode if we have an operation of that mode. */
7795 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7796 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7798 /* If we ended up truncating both operands, truncate the result of the
7799 operation instead. */
7800 if (GET_CODE (op0) == TRUNCATE
7801 && GET_CODE (op1) == TRUNCATE)
7803 op0 = XEXP (op0, 0);
7804 op1 = XEXP (op1, 0);
7807 op0 = gen_lowpart_or_truncate (op_mode, op0);
7808 op1 = gen_lowpart_or_truncate (op_mode, op1);
7810 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7811 x = simplify_gen_binary (code, op_mode, op0, op1);
7812 break;
7814 case ASHIFT:
7815 /* For left shifts, do the same, but just for the first operand.
7816 However, we cannot do anything with shifts where we cannot
7817 guarantee that the counts are smaller than the size of the mode
7818 because such a count will have a different meaning in a
7819 wider mode. */
7821 if (! (CONST_INT_P (XEXP (x, 1))
7822 && INTVAL (XEXP (x, 1)) >= 0
7823 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7824 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7825 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7826 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7827 break;
7829 /* If the shift count is a constant and we can do arithmetic in
7830 the mode of the shift, refine which bits we need. Otherwise, use the
7831 conservative form of the mask. */
7832 if (CONST_INT_P (XEXP (x, 1))
7833 && INTVAL (XEXP (x, 1)) >= 0
7834 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7835 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7836 mask >>= INTVAL (XEXP (x, 1));
7837 else
7838 mask = fuller_mask;
7840 op0 = gen_lowpart_or_truncate (op_mode,
7841 force_to_mode (XEXP (x, 0), op_mode,
7842 mask, next_select));
7844 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7845 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7846 break;
7848 case LSHIFTRT:
7849 /* Here we can only do something if the shift count is a constant,
7850 this shift constant is valid for the host, and we can do arithmetic
7851 in OP_MODE. */
7853 if (CONST_INT_P (XEXP (x, 1))
7854 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7855 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7857 rtx inner = XEXP (x, 0);
7858 unsigned HOST_WIDE_INT inner_mask;
7860 /* Select the mask of the bits we need for the shift operand. */
7861 inner_mask = mask << INTVAL (XEXP (x, 1));
7863 /* We can only change the mode of the shift if we can do arithmetic
7864 in the mode of the shift and INNER_MASK is no wider than the
7865 width of X's mode. */
7866 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7867 op_mode = GET_MODE (x);
7869 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7871 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7872 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7875 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7876 shift and AND produces only copies of the sign bit (C2 is one less
7877 than a power of two), we can do this with just a shift. */
7879 if (GET_CODE (x) == LSHIFTRT
7880 && CONST_INT_P (XEXP (x, 1))
7881 /* The shift puts one of the sign bit copies in the least significant
7882 bit. */
7883 && ((INTVAL (XEXP (x, 1))
7884 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7885 >= GET_MODE_BITSIZE (GET_MODE (x)))
7886 && exact_log2 (mask + 1) >= 0
7887 /* Number of bits left after the shift must be more than the mask
7888 needs. */
7889 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7890 <= GET_MODE_BITSIZE (GET_MODE (x)))
7891 /* Must be more sign bit copies than the mask needs. */
7892 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7893 >= exact_log2 (mask + 1)))
7894 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7895 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7896 - exact_log2 (mask + 1)));
7898 goto shiftrt;
7900 case ASHIFTRT:
7901 /* If we are just looking for the sign bit, we don't need this shift at
7902 all, even if it has a variable count. */
7903 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7904 && (mask == ((unsigned HOST_WIDE_INT) 1
7905 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7906 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7908 /* If this is a shift by a constant, get a mask that contains those bits
7909 that are not copies of the sign bit. We then have two cases: If
7910 MASK only includes those bits, this can be a logical shift, which may
7911 allow simplifications. If MASK is a single-bit field not within
7912 those bits, we are requesting a copy of the sign bit and hence can
7913 shift the sign bit to the appropriate location. */
7915 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7916 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7918 int i;
7920 /* If the considered data is wider than HOST_WIDE_INT, we can't
7921 represent a mask for all its bits in a single scalar.
7922 But we only care about the lower bits, so calculate these. */
7924 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7926 nonzero = ~(HOST_WIDE_INT) 0;
7928 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7929 is the number of bits a full-width mask would have set.
7930 We need only shift if these are fewer than nonzero can
7931 hold. If not, we must keep all bits set in nonzero. */
7933 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7934 < HOST_BITS_PER_WIDE_INT)
7935 nonzero >>= INTVAL (XEXP (x, 1))
7936 + HOST_BITS_PER_WIDE_INT
7937 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7939 else
7941 nonzero = GET_MODE_MASK (GET_MODE (x));
7942 nonzero >>= INTVAL (XEXP (x, 1));
7945 if ((mask & ~nonzero) == 0)
7947 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7948 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7949 if (GET_CODE (x) != ASHIFTRT)
7950 return force_to_mode (x, mode, mask, next_select);
7953 else if ((i = exact_log2 (mask)) >= 0)
7955 x = simplify_shift_const
7956 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7957 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7959 if (GET_CODE (x) != ASHIFTRT)
7960 return force_to_mode (x, mode, mask, next_select);
7964 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7965 even if the shift count isn't a constant. */
7966 if (mask == 1)
7967 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7968 XEXP (x, 0), XEXP (x, 1));
7970 shiftrt:
7972 /* If this is a zero- or sign-extension operation that just affects bits
7973 we don't care about, remove it. Be sure the call above returned
7974 something that is still a shift. */
7976 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7977 && CONST_INT_P (XEXP (x, 1))
7978 && INTVAL (XEXP (x, 1)) >= 0
7979 && (INTVAL (XEXP (x, 1))
7980 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7981 && GET_CODE (XEXP (x, 0)) == ASHIFT
7982 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7983 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7984 next_select);
7986 break;
7988 case ROTATE:
7989 case ROTATERT:
7990 /* If the shift count is constant and we can do computations
7991 in the mode of X, compute where the bits we care about are.
7992 Otherwise, we can't do anything. Don't change the mode of
7993 the shift or propagate MODE into the shift, though. */
7994 if (CONST_INT_P (XEXP (x, 1))
7995 && INTVAL (XEXP (x, 1)) >= 0)
7997 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7998 GET_MODE (x), GEN_INT (mask),
7999 XEXP (x, 1));
8000 if (temp && CONST_INT_P (temp))
8001 SUBST (XEXP (x, 0),
8002 force_to_mode (XEXP (x, 0), GET_MODE (x),
8003 INTVAL (temp), next_select));
8005 break;
8007 case NEG:
8008 /* If we just want the low-order bit, the NEG isn't needed since it
8009 won't change the low-order bit. */
8010 if (mask == 1)
8011 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8013 /* We need any bits less significant than the most significant bit in
8014 MASK since carries from those bits will affect the bits we are
8015 interested in. */
8016 mask = fuller_mask;
8017 goto unop;
8019 case NOT:
8020 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8021 same as the XOR case above. Ensure that the constant we form is not
8022 wider than the mode of X. */
8024 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8025 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8026 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8027 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8028 < GET_MODE_BITSIZE (GET_MODE (x)))
8029 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8031 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8032 GET_MODE (x));
8033 temp = simplify_gen_binary (XOR, GET_MODE (x),
8034 XEXP (XEXP (x, 0), 0), temp);
8035 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8036 temp, XEXP (XEXP (x, 0), 1));
8038 return force_to_mode (x, mode, mask, next_select);
8041 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8042 use the full mask inside the NOT. */
8043 mask = fuller_mask;
8045 unop:
8046 op0 = gen_lowpart_or_truncate (op_mode,
8047 force_to_mode (XEXP (x, 0), mode, mask,
8048 next_select));
8049 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8050 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8051 break;
8053 case NE:
8054 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8055 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8056 which is equal to STORE_FLAG_VALUE. */
8057 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8058 && GET_MODE (XEXP (x, 0)) == mode
8059 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8060 && (nonzero_bits (XEXP (x, 0), mode)
8061 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8062 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8064 break;
8066 case IF_THEN_ELSE:
8067 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8068 written in a narrower mode. We play it safe and do not do so. */
8070 SUBST (XEXP (x, 1),
8071 gen_lowpart_or_truncate (GET_MODE (x),
8072 force_to_mode (XEXP (x, 1), mode,
8073 mask, next_select)));
8074 SUBST (XEXP (x, 2),
8075 gen_lowpart_or_truncate (GET_MODE (x),
8076 force_to_mode (XEXP (x, 2), mode,
8077 mask, next_select)));
8078 break;
8080 default:
8081 break;
8084 /* Ensure we return a value of the proper mode. */
8085 return gen_lowpart_or_truncate (mode, x);
8088 /* Return nonzero if X is an expression that has one of two values depending on
8089 whether some other value is zero or nonzero. In that case, we return the
8090 value that is being tested, *PTRUE is set to the value if the rtx being
8091 returned has a nonzero value, and *PFALSE is set to the other alternative.
8093 If we return zero, we set *PTRUE and *PFALSE to X. */
8095 static rtx
8096 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8098 enum machine_mode mode = GET_MODE (x);
8099 enum rtx_code code = GET_CODE (x);
8100 rtx cond0, cond1, true0, true1, false0, false1;
8101 unsigned HOST_WIDE_INT nz;
8103 /* If we are comparing a value against zero, we are done. */
8104 if ((code == NE || code == EQ)
8105 && XEXP (x, 1) == const0_rtx)
8107 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8108 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8109 return XEXP (x, 0);
8112 /* If this is a unary operation whose operand has one of two values, apply
8113 our opcode to compute those values. */
8114 else if (UNARY_P (x)
8115 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8117 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8118 *pfalse = simplify_gen_unary (code, mode, false0,
8119 GET_MODE (XEXP (x, 0)));
8120 return cond0;
8123 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8124 make can't possibly match and would suppress other optimizations. */
8125 else if (code == COMPARE)
8128 /* If this is a binary operation, see if either side has only one of two
8129 values. If either one does or if both do and they are conditional on
8130 the same value, compute the new true and false values. */
8131 else if (BINARY_P (x))
8133 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8134 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8136 if ((cond0 != 0 || cond1 != 0)
8137 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8139 /* If if_then_else_cond returned zero, then true/false are the
8140 same rtl. We must copy one of them to prevent invalid rtl
8141 sharing. */
8142 if (cond0 == 0)
8143 true0 = copy_rtx (true0);
8144 else if (cond1 == 0)
8145 true1 = copy_rtx (true1);
8147 if (COMPARISON_P (x))
8149 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8150 true0, true1);
8151 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8152 false0, false1);
8154 else
8156 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8157 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8160 return cond0 ? cond0 : cond1;
8163 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8164 operands is zero when the other is nonzero, and vice-versa,
8165 and STORE_FLAG_VALUE is 1 or -1. */
8167 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8168 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8169 || code == UMAX)
8170 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8172 rtx op0 = XEXP (XEXP (x, 0), 1);
8173 rtx op1 = XEXP (XEXP (x, 1), 1);
8175 cond0 = XEXP (XEXP (x, 0), 0);
8176 cond1 = XEXP (XEXP (x, 1), 0);
8178 if (COMPARISON_P (cond0)
8179 && COMPARISON_P (cond1)
8180 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8181 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8182 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8183 || ((swap_condition (GET_CODE (cond0))
8184 == reversed_comparison_code (cond1, NULL))
8185 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8186 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8187 && ! side_effects_p (x))
8189 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8190 *pfalse = simplify_gen_binary (MULT, mode,
8191 (code == MINUS
8192 ? simplify_gen_unary (NEG, mode,
8193 op1, mode)
8194 : op1),
8195 const_true_rtx);
8196 return cond0;
8200 /* Similarly for MULT, AND and UMIN, except that for these the result
8201 is always zero. */
8202 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8203 && (code == MULT || code == AND || code == UMIN)
8204 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8206 cond0 = XEXP (XEXP (x, 0), 0);
8207 cond1 = XEXP (XEXP (x, 1), 0);
8209 if (COMPARISON_P (cond0)
8210 && COMPARISON_P (cond1)
8211 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8212 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8213 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8214 || ((swap_condition (GET_CODE (cond0))
8215 == reversed_comparison_code (cond1, NULL))
8216 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8217 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8218 && ! side_effects_p (x))
8220 *ptrue = *pfalse = const0_rtx;
8221 return cond0;
8226 else if (code == IF_THEN_ELSE)
8228 /* If we have IF_THEN_ELSE already, extract the condition and
8229 canonicalize it if it is NE or EQ. */
8230 cond0 = XEXP (x, 0);
8231 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8232 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8233 return XEXP (cond0, 0);
8234 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8236 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8237 return XEXP (cond0, 0);
8239 else
8240 return cond0;
8243 /* If X is a SUBREG, we can narrow both the true and false values
8244 if the inner expression, if there is a condition. */
8245 else if (code == SUBREG
8246 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8247 &true0, &false0)))
8249 true0 = simplify_gen_subreg (mode, true0,
8250 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8251 false0 = simplify_gen_subreg (mode, false0,
8252 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8253 if (true0 && false0)
8255 *ptrue = true0;
8256 *pfalse = false0;
8257 return cond0;
8261 /* If X is a constant, this isn't special and will cause confusions
8262 if we treat it as such. Likewise if it is equivalent to a constant. */
8263 else if (CONSTANT_P (x)
8264 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8267 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8268 will be least confusing to the rest of the compiler. */
8269 else if (mode == BImode)
8271 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8272 return x;
8275 /* If X is known to be either 0 or -1, those are the true and
8276 false values when testing X. */
8277 else if (x == constm1_rtx || x == const0_rtx
8278 || (mode != VOIDmode
8279 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8281 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8282 return x;
8285 /* Likewise for 0 or a single bit. */
8286 else if (SCALAR_INT_MODE_P (mode)
8287 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8288 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8290 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8291 return x;
8294 /* Otherwise fail; show no condition with true and false values the same. */
8295 *ptrue = *pfalse = x;
8296 return 0;
8299 /* Return the value of expression X given the fact that condition COND
8300 is known to be true when applied to REG as its first operand and VAL
8301 as its second. X is known to not be shared and so can be modified in
8302 place.
8304 We only handle the simplest cases, and specifically those cases that
8305 arise with IF_THEN_ELSE expressions. */
8307 static rtx
8308 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8310 enum rtx_code code = GET_CODE (x);
8311 rtx temp;
8312 const char *fmt;
8313 int i, j;
8315 if (side_effects_p (x))
8316 return x;
8318 /* If either operand of the condition is a floating point value,
8319 then we have to avoid collapsing an EQ comparison. */
8320 if (cond == EQ
8321 && rtx_equal_p (x, reg)
8322 && ! FLOAT_MODE_P (GET_MODE (x))
8323 && ! FLOAT_MODE_P (GET_MODE (val)))
8324 return val;
8326 if (cond == UNEQ && rtx_equal_p (x, reg))
8327 return val;
8329 /* If X is (abs REG) and we know something about REG's relationship
8330 with zero, we may be able to simplify this. */
8332 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8333 switch (cond)
8335 case GE: case GT: case EQ:
8336 return XEXP (x, 0);
8337 case LT: case LE:
8338 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8339 XEXP (x, 0),
8340 GET_MODE (XEXP (x, 0)));
8341 default:
8342 break;
8345 /* The only other cases we handle are MIN, MAX, and comparisons if the
8346 operands are the same as REG and VAL. */
8348 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8350 if (rtx_equal_p (XEXP (x, 0), val))
8351 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8353 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8355 if (COMPARISON_P (x))
8357 if (comparison_dominates_p (cond, code))
8358 return const_true_rtx;
8360 code = reversed_comparison_code (x, NULL);
8361 if (code != UNKNOWN
8362 && comparison_dominates_p (cond, code))
8363 return const0_rtx;
8364 else
8365 return x;
8367 else if (code == SMAX || code == SMIN
8368 || code == UMIN || code == UMAX)
8370 int unsignedp = (code == UMIN || code == UMAX);
8372 /* Do not reverse the condition when it is NE or EQ.
8373 This is because we cannot conclude anything about
8374 the value of 'SMAX (x, y)' when x is not equal to y,
8375 but we can when x equals y. */
8376 if ((code == SMAX || code == UMAX)
8377 && ! (cond == EQ || cond == NE))
8378 cond = reverse_condition (cond);
8380 switch (cond)
8382 case GE: case GT:
8383 return unsignedp ? x : XEXP (x, 1);
8384 case LE: case LT:
8385 return unsignedp ? x : XEXP (x, 0);
8386 case GEU: case GTU:
8387 return unsignedp ? XEXP (x, 1) : x;
8388 case LEU: case LTU:
8389 return unsignedp ? XEXP (x, 0) : x;
8390 default:
8391 break;
8396 else if (code == SUBREG)
8398 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8399 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8401 if (SUBREG_REG (x) != r)
8403 /* We must simplify subreg here, before we lose track of the
8404 original inner_mode. */
8405 new_rtx = simplify_subreg (GET_MODE (x), r,
8406 inner_mode, SUBREG_BYTE (x));
8407 if (new_rtx)
8408 return new_rtx;
8409 else
8410 SUBST (SUBREG_REG (x), r);
8413 return x;
8415 /* We don't have to handle SIGN_EXTEND here, because even in the
8416 case of replacing something with a modeless CONST_INT, a
8417 CONST_INT is already (supposed to be) a valid sign extension for
8418 its narrower mode, which implies it's already properly
8419 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8420 story is different. */
8421 else if (code == ZERO_EXTEND)
8423 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8424 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8426 if (XEXP (x, 0) != r)
8428 /* We must simplify the zero_extend here, before we lose
8429 track of the original inner_mode. */
8430 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8431 r, inner_mode);
8432 if (new_rtx)
8433 return new_rtx;
8434 else
8435 SUBST (XEXP (x, 0), r);
8438 return x;
8441 fmt = GET_RTX_FORMAT (code);
8442 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8444 if (fmt[i] == 'e')
8445 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8446 else if (fmt[i] == 'E')
8447 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8448 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8449 cond, reg, val));
8452 return x;
8455 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8456 assignment as a field assignment. */
8458 static int
8459 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8461 if (x == y || rtx_equal_p (x, y))
8462 return 1;
8464 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8465 return 0;
8467 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8468 Note that all SUBREGs of MEM are paradoxical; otherwise they
8469 would have been rewritten. */
8470 if (MEM_P (x) && GET_CODE (y) == SUBREG
8471 && MEM_P (SUBREG_REG (y))
8472 && rtx_equal_p (SUBREG_REG (y),
8473 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8474 return 1;
8476 if (MEM_P (y) && GET_CODE (x) == SUBREG
8477 && MEM_P (SUBREG_REG (x))
8478 && rtx_equal_p (SUBREG_REG (x),
8479 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8480 return 1;
8482 /* We used to see if get_last_value of X and Y were the same but that's
8483 not correct. In one direction, we'll cause the assignment to have
8484 the wrong destination and in the case, we'll import a register into this
8485 insn that might have already have been dead. So fail if none of the
8486 above cases are true. */
8487 return 0;
8490 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8491 Return that assignment if so.
8493 We only handle the most common cases. */
8495 static rtx
8496 make_field_assignment (rtx x)
8498 rtx dest = SET_DEST (x);
8499 rtx src = SET_SRC (x);
8500 rtx assign;
8501 rtx rhs, lhs;
8502 HOST_WIDE_INT c1;
8503 HOST_WIDE_INT pos;
8504 unsigned HOST_WIDE_INT len;
8505 rtx other;
8506 enum machine_mode mode;
8508 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8509 a clear of a one-bit field. We will have changed it to
8510 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8511 for a SUBREG. */
8513 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8514 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8515 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8516 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8518 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8519 1, 1, 1, 0);
8520 if (assign != 0)
8521 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8522 return x;
8525 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8526 && subreg_lowpart_p (XEXP (src, 0))
8527 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8528 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8529 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8530 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8531 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8532 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8534 assign = make_extraction (VOIDmode, dest, 0,
8535 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8536 1, 1, 1, 0);
8537 if (assign != 0)
8538 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8539 return x;
8542 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8543 one-bit field. */
8544 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8545 && XEXP (XEXP (src, 0), 0) == const1_rtx
8546 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8548 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8549 1, 1, 1, 0);
8550 if (assign != 0)
8551 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8552 return x;
8555 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8556 SRC is an AND with all bits of that field set, then we can discard
8557 the AND. */
8558 if (GET_CODE (dest) == ZERO_EXTRACT
8559 && CONST_INT_P (XEXP (dest, 1))
8560 && GET_CODE (src) == AND
8561 && CONST_INT_P (XEXP (src, 1)))
8563 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8564 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8565 unsigned HOST_WIDE_INT ze_mask;
8567 if (width >= HOST_BITS_PER_WIDE_INT)
8568 ze_mask = -1;
8569 else
8570 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8572 /* Complete overlap. We can remove the source AND. */
8573 if ((and_mask & ze_mask) == ze_mask)
8574 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8576 /* Partial overlap. We can reduce the source AND. */
8577 if ((and_mask & ze_mask) != and_mask)
8579 mode = GET_MODE (src);
8580 src = gen_rtx_AND (mode, XEXP (src, 0),
8581 gen_int_mode (and_mask & ze_mask, mode));
8582 return gen_rtx_SET (VOIDmode, dest, src);
8586 /* The other case we handle is assignments into a constant-position
8587 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8588 a mask that has all one bits except for a group of zero bits and
8589 OTHER is known to have zeros where C1 has ones, this is such an
8590 assignment. Compute the position and length from C1. Shift OTHER
8591 to the appropriate position, force it to the required mode, and
8592 make the extraction. Check for the AND in both operands. */
8594 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8595 return x;
8597 rhs = expand_compound_operation (XEXP (src, 0));
8598 lhs = expand_compound_operation (XEXP (src, 1));
8600 if (GET_CODE (rhs) == AND
8601 && CONST_INT_P (XEXP (rhs, 1))
8602 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8603 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8604 else if (GET_CODE (lhs) == AND
8605 && CONST_INT_P (XEXP (lhs, 1))
8606 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8607 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8608 else
8609 return x;
8611 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8612 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8613 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8614 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8615 return x;
8617 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8618 if (assign == 0)
8619 return x;
8621 /* The mode to use for the source is the mode of the assignment, or of
8622 what is inside a possible STRICT_LOW_PART. */
8623 mode = (GET_CODE (assign) == STRICT_LOW_PART
8624 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8626 /* Shift OTHER right POS places and make it the source, restricting it
8627 to the proper length and mode. */
8629 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8630 GET_MODE (src),
8631 other, pos),
8632 dest);
8633 src = force_to_mode (src, mode,
8634 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8635 ? ~(unsigned HOST_WIDE_INT) 0
8636 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8639 /* If SRC is masked by an AND that does not make a difference in
8640 the value being stored, strip it. */
8641 if (GET_CODE (assign) == ZERO_EXTRACT
8642 && CONST_INT_P (XEXP (assign, 1))
8643 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8644 && GET_CODE (src) == AND
8645 && CONST_INT_P (XEXP (src, 1))
8646 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8647 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8648 src = XEXP (src, 0);
8650 return gen_rtx_SET (VOIDmode, assign, src);
8653 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8654 if so. */
8656 static rtx
8657 apply_distributive_law (rtx x)
8659 enum rtx_code code = GET_CODE (x);
8660 enum rtx_code inner_code;
8661 rtx lhs, rhs, other;
8662 rtx tem;
8664 /* Distributivity is not true for floating point as it can change the
8665 value. So we don't do it unless -funsafe-math-optimizations. */
8666 if (FLOAT_MODE_P (GET_MODE (x))
8667 && ! flag_unsafe_math_optimizations)
8668 return x;
8670 /* The outer operation can only be one of the following: */
8671 if (code != IOR && code != AND && code != XOR
8672 && code != PLUS && code != MINUS)
8673 return x;
8675 lhs = XEXP (x, 0);
8676 rhs = XEXP (x, 1);
8678 /* If either operand is a primitive we can't do anything, so get out
8679 fast. */
8680 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8681 return x;
8683 lhs = expand_compound_operation (lhs);
8684 rhs = expand_compound_operation (rhs);
8685 inner_code = GET_CODE (lhs);
8686 if (inner_code != GET_CODE (rhs))
8687 return x;
8689 /* See if the inner and outer operations distribute. */
8690 switch (inner_code)
8692 case LSHIFTRT:
8693 case ASHIFTRT:
8694 case AND:
8695 case IOR:
8696 /* These all distribute except over PLUS. */
8697 if (code == PLUS || code == MINUS)
8698 return x;
8699 break;
8701 case MULT:
8702 if (code != PLUS && code != MINUS)
8703 return x;
8704 break;
8706 case ASHIFT:
8707 /* This is also a multiply, so it distributes over everything. */
8708 break;
8710 case SUBREG:
8711 /* Non-paradoxical SUBREGs distributes over all operations,
8712 provided the inner modes and byte offsets are the same, this
8713 is an extraction of a low-order part, we don't convert an fp
8714 operation to int or vice versa, this is not a vector mode,
8715 and we would not be converting a single-word operation into a
8716 multi-word operation. The latter test is not required, but
8717 it prevents generating unneeded multi-word operations. Some
8718 of the previous tests are redundant given the latter test,
8719 but are retained because they are required for correctness.
8721 We produce the result slightly differently in this case. */
8723 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8724 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8725 || ! subreg_lowpart_p (lhs)
8726 || (GET_MODE_CLASS (GET_MODE (lhs))
8727 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8728 || (GET_MODE_SIZE (GET_MODE (lhs))
8729 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8730 || VECTOR_MODE_P (GET_MODE (lhs))
8731 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8732 /* Result might need to be truncated. Don't change mode if
8733 explicit truncation is needed. */
8734 || !TRULY_NOOP_TRUNCATION
8735 (GET_MODE_BITSIZE (GET_MODE (x)),
8736 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8737 return x;
8739 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8740 SUBREG_REG (lhs), SUBREG_REG (rhs));
8741 return gen_lowpart (GET_MODE (x), tem);
8743 default:
8744 return x;
8747 /* Set LHS and RHS to the inner operands (A and B in the example
8748 above) and set OTHER to the common operand (C in the example).
8749 There is only one way to do this unless the inner operation is
8750 commutative. */
8751 if (COMMUTATIVE_ARITH_P (lhs)
8752 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8753 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8754 else if (COMMUTATIVE_ARITH_P (lhs)
8755 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8756 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8757 else if (COMMUTATIVE_ARITH_P (lhs)
8758 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8759 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8760 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8761 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8762 else
8763 return x;
8765 /* Form the new inner operation, seeing if it simplifies first. */
8766 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8768 /* There is one exception to the general way of distributing:
8769 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8770 if (code == XOR && inner_code == IOR)
8772 inner_code = AND;
8773 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8776 /* We may be able to continuing distributing the result, so call
8777 ourselves recursively on the inner operation before forming the
8778 outer operation, which we return. */
8779 return simplify_gen_binary (inner_code, GET_MODE (x),
8780 apply_distributive_law (tem), other);
8783 /* See if X is of the form (* (+ A B) C), and if so convert to
8784 (+ (* A C) (* B C)) and try to simplify.
8786 Most of the time, this results in no change. However, if some of
8787 the operands are the same or inverses of each other, simplifications
8788 will result.
8790 For example, (and (ior A B) (not B)) can occur as the result of
8791 expanding a bit field assignment. When we apply the distributive
8792 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8793 which then simplifies to (and (A (not B))).
8795 Note that no checks happen on the validity of applying the inverse
8796 distributive law. This is pointless since we can do it in the
8797 few places where this routine is called.
8799 N is the index of the term that is decomposed (the arithmetic operation,
8800 i.e. (+ A B) in the first example above). !N is the index of the term that
8801 is distributed, i.e. of C in the first example above. */
8802 static rtx
8803 distribute_and_simplify_rtx (rtx x, int n)
8805 enum machine_mode mode;
8806 enum rtx_code outer_code, inner_code;
8807 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8809 /* Distributivity is not true for floating point as it can change the
8810 value. So we don't do it unless -funsafe-math-optimizations. */
8811 if (FLOAT_MODE_P (GET_MODE (x))
8812 && ! flag_unsafe_math_optimizations)
8813 return NULL_RTX;
8815 decomposed = XEXP (x, n);
8816 if (!ARITHMETIC_P (decomposed))
8817 return NULL_RTX;
8819 mode = GET_MODE (x);
8820 outer_code = GET_CODE (x);
8821 distributed = XEXP (x, !n);
8823 inner_code = GET_CODE (decomposed);
8824 inner_op0 = XEXP (decomposed, 0);
8825 inner_op1 = XEXP (decomposed, 1);
8827 /* Special case (and (xor B C) (not A)), which is equivalent to
8828 (xor (ior A B) (ior A C)) */
8829 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8831 distributed = XEXP (distributed, 0);
8832 outer_code = IOR;
8835 if (n == 0)
8837 /* Distribute the second term. */
8838 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8839 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8841 else
8843 /* Distribute the first term. */
8844 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8845 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8848 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8849 new_op0, new_op1));
8850 if (GET_CODE (tmp) != outer_code
8851 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8852 < rtx_cost (x, SET, optimize_this_for_speed_p))
8853 return tmp;
8855 return NULL_RTX;
8858 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8859 in MODE. Return an equivalent form, if different from (and VAROP
8860 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8862 static rtx
8863 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8864 unsigned HOST_WIDE_INT constop)
8866 unsigned HOST_WIDE_INT nonzero;
8867 unsigned HOST_WIDE_INT orig_constop;
8868 rtx orig_varop;
8869 int i;
8871 orig_varop = varop;
8872 orig_constop = constop;
8873 if (GET_CODE (varop) == CLOBBER)
8874 return NULL_RTX;
8876 /* Simplify VAROP knowing that we will be only looking at some of the
8877 bits in it.
8879 Note by passing in CONSTOP, we guarantee that the bits not set in
8880 CONSTOP are not significant and will never be examined. We must
8881 ensure that is the case by explicitly masking out those bits
8882 before returning. */
8883 varop = force_to_mode (varop, mode, constop, 0);
8885 /* If VAROP is a CLOBBER, we will fail so return it. */
8886 if (GET_CODE (varop) == CLOBBER)
8887 return varop;
8889 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8890 to VAROP and return the new constant. */
8891 if (CONST_INT_P (varop))
8892 return gen_int_mode (INTVAL (varop) & constop, mode);
8894 /* See what bits may be nonzero in VAROP. Unlike the general case of
8895 a call to nonzero_bits, here we don't care about bits outside
8896 MODE. */
8898 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8900 /* Turn off all bits in the constant that are known to already be zero.
8901 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8902 which is tested below. */
8904 constop &= nonzero;
8906 /* If we don't have any bits left, return zero. */
8907 if (constop == 0)
8908 return const0_rtx;
8910 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8911 a power of two, we can replace this with an ASHIFT. */
8912 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8913 && (i = exact_log2 (constop)) >= 0)
8914 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8916 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8917 or XOR, then try to apply the distributive law. This may eliminate
8918 operations if either branch can be simplified because of the AND.
8919 It may also make some cases more complex, but those cases probably
8920 won't match a pattern either with or without this. */
8922 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8923 return
8924 gen_lowpart
8925 (mode,
8926 apply_distributive_law
8927 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8928 simplify_and_const_int (NULL_RTX,
8929 GET_MODE (varop),
8930 XEXP (varop, 0),
8931 constop),
8932 simplify_and_const_int (NULL_RTX,
8933 GET_MODE (varop),
8934 XEXP (varop, 1),
8935 constop))));
8937 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8938 the AND and see if one of the operands simplifies to zero. If so, we
8939 may eliminate it. */
8941 if (GET_CODE (varop) == PLUS
8942 && exact_log2 (constop + 1) >= 0)
8944 rtx o0, o1;
8946 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8947 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8948 if (o0 == const0_rtx)
8949 return o1;
8950 if (o1 == const0_rtx)
8951 return o0;
8954 /* Make a SUBREG if necessary. If we can't make it, fail. */
8955 varop = gen_lowpart (mode, varop);
8956 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8957 return NULL_RTX;
8959 /* If we are only masking insignificant bits, return VAROP. */
8960 if (constop == nonzero)
8961 return varop;
8963 if (varop == orig_varop && constop == orig_constop)
8964 return NULL_RTX;
8966 /* Otherwise, return an AND. */
8967 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8971 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8972 in MODE.
8974 Return an equivalent form, if different from X. Otherwise, return X. If
8975 X is zero, we are to always construct the equivalent form. */
8977 static rtx
8978 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8979 unsigned HOST_WIDE_INT constop)
8981 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8982 if (tem)
8983 return tem;
8985 if (!x)
8986 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8987 gen_int_mode (constop, mode));
8988 if (GET_MODE (x) != mode)
8989 x = gen_lowpart (mode, x);
8990 return x;
8993 /* Given a REG, X, compute which bits in X can be nonzero.
8994 We don't care about bits outside of those defined in MODE.
8996 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8997 a shift, AND, or zero_extract, we can do better. */
8999 static rtx
9000 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9001 const_rtx known_x ATTRIBUTE_UNUSED,
9002 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9003 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9004 unsigned HOST_WIDE_INT *nonzero)
9006 rtx tem;
9007 reg_stat_type *rsp;
9009 /* If X is a register whose nonzero bits value is current, use it.
9010 Otherwise, if X is a register whose value we can find, use that
9011 value. Otherwise, use the previously-computed global nonzero bits
9012 for this register. */
9014 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9015 if (rsp->last_set_value != 0
9016 && (rsp->last_set_mode == mode
9017 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9018 && GET_MODE_CLASS (mode) == MODE_INT))
9019 && ((rsp->last_set_label >= label_tick_ebb_start
9020 && rsp->last_set_label < label_tick)
9021 || (rsp->last_set_label == label_tick
9022 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9023 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9024 && REG_N_SETS (REGNO (x)) == 1
9025 && !REGNO_REG_SET_P
9026 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9028 *nonzero &= rsp->last_set_nonzero_bits;
9029 return NULL;
9032 tem = get_last_value (x);
9034 if (tem)
9036 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9037 /* If X is narrower than MODE and TEM is a non-negative
9038 constant that would appear negative in the mode of X,
9039 sign-extend it for use in reg_nonzero_bits because some
9040 machines (maybe most) will actually do the sign-extension
9041 and this is the conservative approach.
9043 ??? For 2.5, try to tighten up the MD files in this regard
9044 instead of this kludge. */
9046 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9047 && CONST_INT_P (tem)
9048 && INTVAL (tem) > 0
9049 && 0 != (INTVAL (tem)
9050 & ((HOST_WIDE_INT) 1
9051 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9052 tem = GEN_INT (INTVAL (tem)
9053 | ((HOST_WIDE_INT) (-1)
9054 << GET_MODE_BITSIZE (GET_MODE (x))));
9055 #endif
9056 return tem;
9058 else if (nonzero_sign_valid && rsp->nonzero_bits)
9060 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9062 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9063 /* We don't know anything about the upper bits. */
9064 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9065 *nonzero &= mask;
9068 return NULL;
9071 /* Return the number of bits at the high-order end of X that are known to
9072 be equal to the sign bit. X will be used in mode MODE; if MODE is
9073 VOIDmode, X will be used in its own mode. The returned value will always
9074 be between 1 and the number of bits in MODE. */
9076 static rtx
9077 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9078 const_rtx known_x ATTRIBUTE_UNUSED,
9079 enum machine_mode known_mode
9080 ATTRIBUTE_UNUSED,
9081 unsigned int known_ret ATTRIBUTE_UNUSED,
9082 unsigned int *result)
9084 rtx tem;
9085 reg_stat_type *rsp;
9087 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9088 if (rsp->last_set_value != 0
9089 && rsp->last_set_mode == mode
9090 && ((rsp->last_set_label >= label_tick_ebb_start
9091 && rsp->last_set_label < label_tick)
9092 || (rsp->last_set_label == label_tick
9093 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9094 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9095 && REG_N_SETS (REGNO (x)) == 1
9096 && !REGNO_REG_SET_P
9097 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9099 *result = rsp->last_set_sign_bit_copies;
9100 return NULL;
9103 tem = get_last_value (x);
9104 if (tem != 0)
9105 return tem;
9107 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9108 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9109 *result = rsp->sign_bit_copies;
9111 return NULL;
9114 /* Return the number of "extended" bits there are in X, when interpreted
9115 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9116 unsigned quantities, this is the number of high-order zero bits.
9117 For signed quantities, this is the number of copies of the sign bit
9118 minus 1. In both case, this function returns the number of "spare"
9119 bits. For example, if two quantities for which this function returns
9120 at least 1 are added, the addition is known not to overflow.
9122 This function will always return 0 unless called during combine, which
9123 implies that it must be called from a define_split. */
9125 unsigned int
9126 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9128 if (nonzero_sign_valid == 0)
9129 return 0;
9131 return (unsignedp
9132 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9133 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9134 - floor_log2 (nonzero_bits (x, mode)))
9135 : 0)
9136 : num_sign_bit_copies (x, mode) - 1);
9139 /* This function is called from `simplify_shift_const' to merge two
9140 outer operations. Specifically, we have already found that we need
9141 to perform operation *POP0 with constant *PCONST0 at the outermost
9142 position. We would now like to also perform OP1 with constant CONST1
9143 (with *POP0 being done last).
9145 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9146 the resulting operation. *PCOMP_P is set to 1 if we would need to
9147 complement the innermost operand, otherwise it is unchanged.
9149 MODE is the mode in which the operation will be done. No bits outside
9150 the width of this mode matter. It is assumed that the width of this mode
9151 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9153 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9154 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9155 result is simply *PCONST0.
9157 If the resulting operation cannot be expressed as one operation, we
9158 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9160 static int
9161 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9163 enum rtx_code op0 = *pop0;
9164 HOST_WIDE_INT const0 = *pconst0;
9166 const0 &= GET_MODE_MASK (mode);
9167 const1 &= GET_MODE_MASK (mode);
9169 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9170 if (op0 == AND)
9171 const1 &= const0;
9173 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9174 if OP0 is SET. */
9176 if (op1 == UNKNOWN || op0 == SET)
9177 return 1;
9179 else if (op0 == UNKNOWN)
9180 op0 = op1, const0 = const1;
9182 else if (op0 == op1)
9184 switch (op0)
9186 case AND:
9187 const0 &= const1;
9188 break;
9189 case IOR:
9190 const0 |= const1;
9191 break;
9192 case XOR:
9193 const0 ^= const1;
9194 break;
9195 case PLUS:
9196 const0 += const1;
9197 break;
9198 case NEG:
9199 op0 = UNKNOWN;
9200 break;
9201 default:
9202 break;
9206 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9207 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9208 return 0;
9210 /* If the two constants aren't the same, we can't do anything. The
9211 remaining six cases can all be done. */
9212 else if (const0 != const1)
9213 return 0;
9215 else
9216 switch (op0)
9218 case IOR:
9219 if (op1 == AND)
9220 /* (a & b) | b == b */
9221 op0 = SET;
9222 else /* op1 == XOR */
9223 /* (a ^ b) | b == a | b */
9225 break;
9227 case XOR:
9228 if (op1 == AND)
9229 /* (a & b) ^ b == (~a) & b */
9230 op0 = AND, *pcomp_p = 1;
9231 else /* op1 == IOR */
9232 /* (a | b) ^ b == a & ~b */
9233 op0 = AND, const0 = ~const0;
9234 break;
9236 case AND:
9237 if (op1 == IOR)
9238 /* (a | b) & b == b */
9239 op0 = SET;
9240 else /* op1 == XOR */
9241 /* (a ^ b) & b) == (~a) & b */
9242 *pcomp_p = 1;
9243 break;
9244 default:
9245 break;
9248 /* Check for NO-OP cases. */
9249 const0 &= GET_MODE_MASK (mode);
9250 if (const0 == 0
9251 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9252 op0 = UNKNOWN;
9253 else if (const0 == 0 && op0 == AND)
9254 op0 = SET;
9255 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9256 && op0 == AND)
9257 op0 = UNKNOWN;
9259 *pop0 = op0;
9261 /* ??? Slightly redundant with the above mask, but not entirely.
9262 Moving this above means we'd have to sign-extend the mode mask
9263 for the final test. */
9264 if (op0 != UNKNOWN && op0 != NEG)
9265 *pconst0 = trunc_int_for_mode (const0, mode);
9267 return 1;
9270 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9271 the shift in. The original shift operation CODE is performed on OP in
9272 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9273 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9274 result of the shift is subject to operation OUTER_CODE with operand
9275 OUTER_CONST. */
9277 static enum machine_mode
9278 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9279 enum machine_mode orig_mode, enum machine_mode mode,
9280 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9282 if (orig_mode == mode)
9283 return mode;
9284 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9286 /* In general we can't perform in wider mode for right shift and rotate. */
9287 switch (code)
9289 case ASHIFTRT:
9290 /* We can still widen if the bits brought in from the left are identical
9291 to the sign bit of ORIG_MODE. */
9292 if (num_sign_bit_copies (op, mode)
9293 > (unsigned) (GET_MODE_BITSIZE (mode)
9294 - GET_MODE_BITSIZE (orig_mode)))
9295 return mode;
9296 return orig_mode;
9298 case LSHIFTRT:
9299 /* Similarly here but with zero bits. */
9300 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9301 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9302 return mode;
9304 /* We can also widen if the bits brought in will be masked off. This
9305 operation is performed in ORIG_MODE. */
9306 if (outer_code == AND)
9308 int care_bits = low_bitmask_len (orig_mode, outer_const);
9310 if (care_bits >= 0
9311 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9312 return mode;
9314 /* fall through */
9316 case ROTATE:
9317 return orig_mode;
9319 case ROTATERT:
9320 gcc_unreachable ();
9322 default:
9323 return mode;
9327 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9328 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9329 simplify it. Otherwise, return a simplified value.
9331 The shift is normally computed in the widest mode we find in VAROP, as
9332 long as it isn't a different number of words than RESULT_MODE. Exceptions
9333 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9335 static rtx
9336 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9337 rtx varop, int orig_count)
9339 enum rtx_code orig_code = code;
9340 rtx orig_varop = varop;
9341 int count;
9342 enum machine_mode mode = result_mode;
9343 enum machine_mode shift_mode, tmode;
9344 unsigned int mode_words
9345 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9346 /* We form (outer_op (code varop count) (outer_const)). */
9347 enum rtx_code outer_op = UNKNOWN;
9348 HOST_WIDE_INT outer_const = 0;
9349 int complement_p = 0;
9350 rtx new_rtx, x;
9352 /* Make sure and truncate the "natural" shift on the way in. We don't
9353 want to do this inside the loop as it makes it more difficult to
9354 combine shifts. */
9355 if (SHIFT_COUNT_TRUNCATED)
9356 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9358 /* If we were given an invalid count, don't do anything except exactly
9359 what was requested. */
9361 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9362 return NULL_RTX;
9364 count = orig_count;
9366 /* Unless one of the branches of the `if' in this loop does a `continue',
9367 we will `break' the loop after the `if'. */
9369 while (count != 0)
9371 /* If we have an operand of (clobber (const_int 0)), fail. */
9372 if (GET_CODE (varop) == CLOBBER)
9373 return NULL_RTX;
9375 /* Convert ROTATERT to ROTATE. */
9376 if (code == ROTATERT)
9378 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9379 code = ROTATE;
9380 if (VECTOR_MODE_P (result_mode))
9381 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9382 else
9383 count = bitsize - count;
9386 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9387 mode, outer_op, outer_const);
9389 /* Handle cases where the count is greater than the size of the mode
9390 minus 1. For ASHIFT, use the size minus one as the count (this can
9391 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9392 take the count modulo the size. For other shifts, the result is
9393 zero.
9395 Since these shifts are being produced by the compiler by combining
9396 multiple operations, each of which are defined, we know what the
9397 result is supposed to be. */
9399 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9401 if (code == ASHIFTRT)
9402 count = GET_MODE_BITSIZE (shift_mode) - 1;
9403 else if (code == ROTATE || code == ROTATERT)
9404 count %= GET_MODE_BITSIZE (shift_mode);
9405 else
9407 /* We can't simply return zero because there may be an
9408 outer op. */
9409 varop = const0_rtx;
9410 count = 0;
9411 break;
9415 /* If we discovered we had to complement VAROP, leave. Making a NOT
9416 here would cause an infinite loop. */
9417 if (complement_p)
9418 break;
9420 /* An arithmetic right shift of a quantity known to be -1 or 0
9421 is a no-op. */
9422 if (code == ASHIFTRT
9423 && (num_sign_bit_copies (varop, shift_mode)
9424 == GET_MODE_BITSIZE (shift_mode)))
9426 count = 0;
9427 break;
9430 /* If we are doing an arithmetic right shift and discarding all but
9431 the sign bit copies, this is equivalent to doing a shift by the
9432 bitsize minus one. Convert it into that shift because it will often
9433 allow other simplifications. */
9435 if (code == ASHIFTRT
9436 && (count + num_sign_bit_copies (varop, shift_mode)
9437 >= GET_MODE_BITSIZE (shift_mode)))
9438 count = GET_MODE_BITSIZE (shift_mode) - 1;
9440 /* We simplify the tests below and elsewhere by converting
9441 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9442 `make_compound_operation' will convert it to an ASHIFTRT for
9443 those machines (such as VAX) that don't have an LSHIFTRT. */
9444 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9445 && code == ASHIFTRT
9446 && ((nonzero_bits (varop, shift_mode)
9447 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9448 == 0))
9449 code = LSHIFTRT;
9451 if (((code == LSHIFTRT
9452 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9453 && !(nonzero_bits (varop, shift_mode) >> count))
9454 || (code == ASHIFT
9455 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9456 && !((nonzero_bits (varop, shift_mode) << count)
9457 & GET_MODE_MASK (shift_mode))))
9458 && !side_effects_p (varop))
9459 varop = const0_rtx;
9461 switch (GET_CODE (varop))
9463 case SIGN_EXTEND:
9464 case ZERO_EXTEND:
9465 case SIGN_EXTRACT:
9466 case ZERO_EXTRACT:
9467 new_rtx = expand_compound_operation (varop);
9468 if (new_rtx != varop)
9470 varop = new_rtx;
9471 continue;
9473 break;
9475 case MEM:
9476 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9477 minus the width of a smaller mode, we can do this with a
9478 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9479 if ((code == ASHIFTRT || code == LSHIFTRT)
9480 && ! mode_dependent_address_p (XEXP (varop, 0))
9481 && ! MEM_VOLATILE_P (varop)
9482 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9483 MODE_INT, 1)) != BLKmode)
9485 new_rtx = adjust_address_nv (varop, tmode,
9486 BYTES_BIG_ENDIAN ? 0
9487 : count / BITS_PER_UNIT);
9489 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9490 : ZERO_EXTEND, mode, new_rtx);
9491 count = 0;
9492 continue;
9494 break;
9496 case SUBREG:
9497 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9498 the same number of words as what we've seen so far. Then store
9499 the widest mode in MODE. */
9500 if (subreg_lowpart_p (varop)
9501 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9502 > GET_MODE_SIZE (GET_MODE (varop)))
9503 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9504 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9505 == mode_words)
9507 varop = SUBREG_REG (varop);
9508 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9509 mode = GET_MODE (varop);
9510 continue;
9512 break;
9514 case MULT:
9515 /* Some machines use MULT instead of ASHIFT because MULT
9516 is cheaper. But it is still better on those machines to
9517 merge two shifts into one. */
9518 if (CONST_INT_P (XEXP (varop, 1))
9519 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9521 varop
9522 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9523 XEXP (varop, 0),
9524 GEN_INT (exact_log2 (
9525 INTVAL (XEXP (varop, 1)))));
9526 continue;
9528 break;
9530 case UDIV:
9531 /* Similar, for when divides are cheaper. */
9532 if (CONST_INT_P (XEXP (varop, 1))
9533 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9535 varop
9536 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9537 XEXP (varop, 0),
9538 GEN_INT (exact_log2 (
9539 INTVAL (XEXP (varop, 1)))));
9540 continue;
9542 break;
9544 case ASHIFTRT:
9545 /* If we are extracting just the sign bit of an arithmetic
9546 right shift, that shift is not needed. However, the sign
9547 bit of a wider mode may be different from what would be
9548 interpreted as the sign bit in a narrower mode, so, if
9549 the result is narrower, don't discard the shift. */
9550 if (code == LSHIFTRT
9551 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9552 && (GET_MODE_BITSIZE (result_mode)
9553 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9555 varop = XEXP (varop, 0);
9556 continue;
9559 /* ... fall through ... */
9561 case LSHIFTRT:
9562 case ASHIFT:
9563 case ROTATE:
9564 /* Here we have two nested shifts. The result is usually the
9565 AND of a new shift with a mask. We compute the result below. */
9566 if (CONST_INT_P (XEXP (varop, 1))
9567 && INTVAL (XEXP (varop, 1)) >= 0
9568 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9569 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9570 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9571 && !VECTOR_MODE_P (result_mode))
9573 enum rtx_code first_code = GET_CODE (varop);
9574 unsigned int first_count = INTVAL (XEXP (varop, 1));
9575 unsigned HOST_WIDE_INT mask;
9576 rtx mask_rtx;
9578 /* We have one common special case. We can't do any merging if
9579 the inner code is an ASHIFTRT of a smaller mode. However, if
9580 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9581 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9582 we can convert it to
9583 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9584 This simplifies certain SIGN_EXTEND operations. */
9585 if (code == ASHIFT && first_code == ASHIFTRT
9586 && count == (GET_MODE_BITSIZE (result_mode)
9587 - GET_MODE_BITSIZE (GET_MODE (varop))))
9589 /* C3 has the low-order C1 bits zero. */
9591 mask = (GET_MODE_MASK (mode)
9592 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9594 varop = simplify_and_const_int (NULL_RTX, result_mode,
9595 XEXP (varop, 0), mask);
9596 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9597 varop, count);
9598 count = first_count;
9599 code = ASHIFTRT;
9600 continue;
9603 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9604 than C1 high-order bits equal to the sign bit, we can convert
9605 this to either an ASHIFT or an ASHIFTRT depending on the
9606 two counts.
9608 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9610 if (code == ASHIFTRT && first_code == ASHIFT
9611 && GET_MODE (varop) == shift_mode
9612 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9613 > first_count))
9615 varop = XEXP (varop, 0);
9616 count -= first_count;
9617 if (count < 0)
9619 count = -count;
9620 code = ASHIFT;
9623 continue;
9626 /* There are some cases we can't do. If CODE is ASHIFTRT,
9627 we can only do this if FIRST_CODE is also ASHIFTRT.
9629 We can't do the case when CODE is ROTATE and FIRST_CODE is
9630 ASHIFTRT.
9632 If the mode of this shift is not the mode of the outer shift,
9633 we can't do this if either shift is a right shift or ROTATE.
9635 Finally, we can't do any of these if the mode is too wide
9636 unless the codes are the same.
9638 Handle the case where the shift codes are the same
9639 first. */
9641 if (code == first_code)
9643 if (GET_MODE (varop) != result_mode
9644 && (code == ASHIFTRT || code == LSHIFTRT
9645 || code == ROTATE))
9646 break;
9648 count += first_count;
9649 varop = XEXP (varop, 0);
9650 continue;
9653 if (code == ASHIFTRT
9654 || (code == ROTATE && first_code == ASHIFTRT)
9655 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9656 || (GET_MODE (varop) != result_mode
9657 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9658 || first_code == ROTATE
9659 || code == ROTATE)))
9660 break;
9662 /* To compute the mask to apply after the shift, shift the
9663 nonzero bits of the inner shift the same way the
9664 outer shift will. */
9666 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9668 mask_rtx
9669 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9670 GEN_INT (count));
9672 /* Give up if we can't compute an outer operation to use. */
9673 if (mask_rtx == 0
9674 || !CONST_INT_P (mask_rtx)
9675 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9676 INTVAL (mask_rtx),
9677 result_mode, &complement_p))
9678 break;
9680 /* If the shifts are in the same direction, we add the
9681 counts. Otherwise, we subtract them. */
9682 if ((code == ASHIFTRT || code == LSHIFTRT)
9683 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9684 count += first_count;
9685 else
9686 count -= first_count;
9688 /* If COUNT is positive, the new shift is usually CODE,
9689 except for the two exceptions below, in which case it is
9690 FIRST_CODE. If the count is negative, FIRST_CODE should
9691 always be used */
9692 if (count > 0
9693 && ((first_code == ROTATE && code == ASHIFT)
9694 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9695 code = first_code;
9696 else if (count < 0)
9697 code = first_code, count = -count;
9699 varop = XEXP (varop, 0);
9700 continue;
9703 /* If we have (A << B << C) for any shift, we can convert this to
9704 (A << C << B). This wins if A is a constant. Only try this if
9705 B is not a constant. */
9707 else if (GET_CODE (varop) == code
9708 && CONST_INT_P (XEXP (varop, 0))
9709 && !CONST_INT_P (XEXP (varop, 1)))
9711 rtx new_rtx = simplify_const_binary_operation (code, mode,
9712 XEXP (varop, 0),
9713 GEN_INT (count));
9714 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9715 count = 0;
9716 continue;
9718 break;
9720 case NOT:
9721 if (VECTOR_MODE_P (mode))
9722 break;
9724 /* Make this fit the case below. */
9725 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9726 GEN_INT (GET_MODE_MASK (mode)));
9727 continue;
9729 case IOR:
9730 case AND:
9731 case XOR:
9732 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9733 with C the size of VAROP - 1 and the shift is logical if
9734 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9735 we have an (le X 0) operation. If we have an arithmetic shift
9736 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9737 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9739 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9740 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9741 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9742 && (code == LSHIFTRT || code == ASHIFTRT)
9743 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9744 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9746 count = 0;
9747 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9748 const0_rtx);
9750 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9751 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9753 continue;
9756 /* If we have (shift (logical)), move the logical to the outside
9757 to allow it to possibly combine with another logical and the
9758 shift to combine with another shift. This also canonicalizes to
9759 what a ZERO_EXTRACT looks like. Also, some machines have
9760 (and (shift)) insns. */
9762 if (CONST_INT_P (XEXP (varop, 1))
9763 /* We can't do this if we have (ashiftrt (xor)) and the
9764 constant has its sign bit set in shift_mode. */
9765 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9766 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9767 shift_mode))
9768 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9769 XEXP (varop, 1),
9770 GEN_INT (count))) != 0
9771 && CONST_INT_P (new_rtx)
9772 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9773 INTVAL (new_rtx), result_mode, &complement_p))
9775 varop = XEXP (varop, 0);
9776 continue;
9779 /* If we can't do that, try to simplify the shift in each arm of the
9780 logical expression, make a new logical expression, and apply
9781 the inverse distributive law. This also can't be done
9782 for some (ashiftrt (xor)). */
9783 if (CONST_INT_P (XEXP (varop, 1))
9784 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9785 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9786 shift_mode)))
9788 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9789 XEXP (varop, 0), count);
9790 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9791 XEXP (varop, 1), count);
9793 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9794 lhs, rhs);
9795 varop = apply_distributive_law (varop);
9797 count = 0;
9798 continue;
9800 break;
9802 case EQ:
9803 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9804 says that the sign bit can be tested, FOO has mode MODE, C is
9805 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9806 that may be nonzero. */
9807 if (code == LSHIFTRT
9808 && XEXP (varop, 1) == const0_rtx
9809 && GET_MODE (XEXP (varop, 0)) == result_mode
9810 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9811 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9812 && STORE_FLAG_VALUE == -1
9813 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9814 && merge_outer_ops (&outer_op, &outer_const, XOR,
9815 (HOST_WIDE_INT) 1, result_mode,
9816 &complement_p))
9818 varop = XEXP (varop, 0);
9819 count = 0;
9820 continue;
9822 break;
9824 case NEG:
9825 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9826 than the number of bits in the mode is equivalent to A. */
9827 if (code == LSHIFTRT
9828 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9829 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9831 varop = XEXP (varop, 0);
9832 count = 0;
9833 continue;
9836 /* NEG commutes with ASHIFT since it is multiplication. Move the
9837 NEG outside to allow shifts to combine. */
9838 if (code == ASHIFT
9839 && merge_outer_ops (&outer_op, &outer_const, NEG,
9840 (HOST_WIDE_INT) 0, result_mode,
9841 &complement_p))
9843 varop = XEXP (varop, 0);
9844 continue;
9846 break;
9848 case PLUS:
9849 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9850 is one less than the number of bits in the mode is
9851 equivalent to (xor A 1). */
9852 if (code == LSHIFTRT
9853 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9854 && XEXP (varop, 1) == constm1_rtx
9855 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9856 && merge_outer_ops (&outer_op, &outer_const, XOR,
9857 (HOST_WIDE_INT) 1, result_mode,
9858 &complement_p))
9860 count = 0;
9861 varop = XEXP (varop, 0);
9862 continue;
9865 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9866 that might be nonzero in BAR are those being shifted out and those
9867 bits are known zero in FOO, we can replace the PLUS with FOO.
9868 Similarly in the other operand order. This code occurs when
9869 we are computing the size of a variable-size array. */
9871 if ((code == ASHIFTRT || code == LSHIFTRT)
9872 && count < HOST_BITS_PER_WIDE_INT
9873 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9874 && (nonzero_bits (XEXP (varop, 1), result_mode)
9875 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9877 varop = XEXP (varop, 0);
9878 continue;
9880 else if ((code == ASHIFTRT || code == LSHIFTRT)
9881 && count < HOST_BITS_PER_WIDE_INT
9882 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9883 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9884 >> count)
9885 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9886 & nonzero_bits (XEXP (varop, 1),
9887 result_mode)))
9889 varop = XEXP (varop, 1);
9890 continue;
9893 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9894 if (code == ASHIFT
9895 && CONST_INT_P (XEXP (varop, 1))
9896 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9897 XEXP (varop, 1),
9898 GEN_INT (count))) != 0
9899 && CONST_INT_P (new_rtx)
9900 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9901 INTVAL (new_rtx), result_mode, &complement_p))
9903 varop = XEXP (varop, 0);
9904 continue;
9907 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9908 signbit', and attempt to change the PLUS to an XOR and move it to
9909 the outer operation as is done above in the AND/IOR/XOR case
9910 leg for shift(logical). See details in logical handling above
9911 for reasoning in doing so. */
9912 if (code == LSHIFTRT
9913 && CONST_INT_P (XEXP (varop, 1))
9914 && mode_signbit_p (result_mode, XEXP (varop, 1))
9915 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9916 XEXP (varop, 1),
9917 GEN_INT (count))) != 0
9918 && CONST_INT_P (new_rtx)
9919 && merge_outer_ops (&outer_op, &outer_const, XOR,
9920 INTVAL (new_rtx), result_mode, &complement_p))
9922 varop = XEXP (varop, 0);
9923 continue;
9926 break;
9928 case MINUS:
9929 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9930 with C the size of VAROP - 1 and the shift is logical if
9931 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9932 we have a (gt X 0) operation. If the shift is arithmetic with
9933 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9934 we have a (neg (gt X 0)) operation. */
9936 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9937 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9938 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9939 && (code == LSHIFTRT || code == ASHIFTRT)
9940 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9941 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9942 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9944 count = 0;
9945 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9946 const0_rtx);
9948 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9949 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9951 continue;
9953 break;
9955 case TRUNCATE:
9956 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9957 if the truncate does not affect the value. */
9958 if (code == LSHIFTRT
9959 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9960 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9961 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9962 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9963 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9965 rtx varop_inner = XEXP (varop, 0);
9967 varop_inner
9968 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9969 XEXP (varop_inner, 0),
9970 GEN_INT
9971 (count + INTVAL (XEXP (varop_inner, 1))));
9972 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9973 count = 0;
9974 continue;
9976 break;
9978 default:
9979 break;
9982 break;
9985 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9986 outer_op, outer_const);
9988 /* We have now finished analyzing the shift. The result should be
9989 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9990 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9991 to the result of the shift. OUTER_CONST is the relevant constant,
9992 but we must turn off all bits turned off in the shift. */
9994 if (outer_op == UNKNOWN
9995 && orig_code == code && orig_count == count
9996 && varop == orig_varop
9997 && shift_mode == GET_MODE (varop))
9998 return NULL_RTX;
10000 /* Make a SUBREG if necessary. If we can't make it, fail. */
10001 varop = gen_lowpart (shift_mode, varop);
10002 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10003 return NULL_RTX;
10005 /* If we have an outer operation and we just made a shift, it is
10006 possible that we could have simplified the shift were it not
10007 for the outer operation. So try to do the simplification
10008 recursively. */
10010 if (outer_op != UNKNOWN)
10011 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10012 else
10013 x = NULL_RTX;
10015 if (x == NULL_RTX)
10016 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10018 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10019 turn off all the bits that the shift would have turned off. */
10020 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10021 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10022 GET_MODE_MASK (result_mode) >> orig_count);
10024 /* Do the remainder of the processing in RESULT_MODE. */
10025 x = gen_lowpart_or_truncate (result_mode, x);
10027 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10028 operation. */
10029 if (complement_p)
10030 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10032 if (outer_op != UNKNOWN)
10034 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10035 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10036 outer_const = trunc_int_for_mode (outer_const, result_mode);
10038 if (outer_op == AND)
10039 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10040 else if (outer_op == SET)
10042 /* This means that we have determined that the result is
10043 equivalent to a constant. This should be rare. */
10044 if (!side_effects_p (x))
10045 x = GEN_INT (outer_const);
10047 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10048 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10049 else
10050 x = simplify_gen_binary (outer_op, result_mode, x,
10051 GEN_INT (outer_const));
10054 return x;
10057 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10058 The result of the shift is RESULT_MODE. If we cannot simplify it,
10059 return X or, if it is NULL, synthesize the expression with
10060 simplify_gen_binary. Otherwise, return a simplified value.
10062 The shift is normally computed in the widest mode we find in VAROP, as
10063 long as it isn't a different number of words than RESULT_MODE. Exceptions
10064 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10066 static rtx
10067 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10068 rtx varop, int count)
10070 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10071 if (tem)
10072 return tem;
10074 if (!x)
10075 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10076 if (GET_MODE (x) != result_mode)
10077 x = gen_lowpart (result_mode, x);
10078 return x;
10082 /* Like recog, but we receive the address of a pointer to a new pattern.
10083 We try to match the rtx that the pointer points to.
10084 If that fails, we may try to modify or replace the pattern,
10085 storing the replacement into the same pointer object.
10087 Modifications include deletion or addition of CLOBBERs.
10089 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10090 the CLOBBERs are placed.
10092 The value is the final insn code from the pattern ultimately matched,
10093 or -1. */
10095 static int
10096 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10098 rtx pat = *pnewpat;
10099 int insn_code_number;
10100 int num_clobbers_to_add = 0;
10101 int i;
10102 rtx notes = 0;
10103 rtx old_notes, old_pat;
10105 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10106 we use to indicate that something didn't match. If we find such a
10107 thing, force rejection. */
10108 if (GET_CODE (pat) == PARALLEL)
10109 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10110 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10111 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10112 return -1;
10114 old_pat = PATTERN (insn);
10115 old_notes = REG_NOTES (insn);
10116 PATTERN (insn) = pat;
10117 REG_NOTES (insn) = 0;
10119 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10120 if (dump_file && (dump_flags & TDF_DETAILS))
10122 if (insn_code_number < 0)
10123 fputs ("Failed to match this instruction:\n", dump_file);
10124 else
10125 fputs ("Successfully matched this instruction:\n", dump_file);
10126 print_rtl_single (dump_file, pat);
10129 /* If it isn't, there is the possibility that we previously had an insn
10130 that clobbered some register as a side effect, but the combined
10131 insn doesn't need to do that. So try once more without the clobbers
10132 unless this represents an ASM insn. */
10134 if (insn_code_number < 0 && ! check_asm_operands (pat)
10135 && GET_CODE (pat) == PARALLEL)
10137 int pos;
10139 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10140 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10142 if (i != pos)
10143 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10144 pos++;
10147 SUBST_INT (XVECLEN (pat, 0), pos);
10149 if (pos == 1)
10150 pat = XVECEXP (pat, 0, 0);
10152 PATTERN (insn) = pat;
10153 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10154 if (dump_file && (dump_flags & TDF_DETAILS))
10156 if (insn_code_number < 0)
10157 fputs ("Failed to match this instruction:\n", dump_file);
10158 else
10159 fputs ("Successfully matched this instruction:\n", dump_file);
10160 print_rtl_single (dump_file, pat);
10163 PATTERN (insn) = old_pat;
10164 REG_NOTES (insn) = old_notes;
10166 /* Recognize all noop sets, these will be killed by followup pass. */
10167 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10168 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10170 /* If we had any clobbers to add, make a new pattern than contains
10171 them. Then check to make sure that all of them are dead. */
10172 if (num_clobbers_to_add)
10174 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10175 rtvec_alloc (GET_CODE (pat) == PARALLEL
10176 ? (XVECLEN (pat, 0)
10177 + num_clobbers_to_add)
10178 : num_clobbers_to_add + 1));
10180 if (GET_CODE (pat) == PARALLEL)
10181 for (i = 0; i < XVECLEN (pat, 0); i++)
10182 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10183 else
10184 XVECEXP (newpat, 0, 0) = pat;
10186 add_clobbers (newpat, insn_code_number);
10188 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10189 i < XVECLEN (newpat, 0); i++)
10191 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10192 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10193 return -1;
10194 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10196 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10197 notes = alloc_reg_note (REG_UNUSED,
10198 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10201 pat = newpat;
10204 *pnewpat = pat;
10205 *pnotes = notes;
10207 return insn_code_number;
10210 /* Like gen_lowpart_general but for use by combine. In combine it
10211 is not possible to create any new pseudoregs. However, it is
10212 safe to create invalid memory addresses, because combine will
10213 try to recognize them and all they will do is make the combine
10214 attempt fail.
10216 If for some reason this cannot do its job, an rtx
10217 (clobber (const_int 0)) is returned.
10218 An insn containing that will not be recognized. */
10220 static rtx
10221 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10223 enum machine_mode imode = GET_MODE (x);
10224 unsigned int osize = GET_MODE_SIZE (omode);
10225 unsigned int isize = GET_MODE_SIZE (imode);
10226 rtx result;
10228 if (omode == imode)
10229 return x;
10231 /* Return identity if this is a CONST or symbolic reference. */
10232 if (omode == Pmode
10233 && (GET_CODE (x) == CONST
10234 || GET_CODE (x) == SYMBOL_REF
10235 || GET_CODE (x) == LABEL_REF))
10236 return x;
10238 /* We can only support MODE being wider than a word if X is a
10239 constant integer or has a mode the same size. */
10240 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10241 && ! ((imode == VOIDmode
10242 && (CONST_INT_P (x)
10243 || GET_CODE (x) == CONST_DOUBLE))
10244 || isize == osize))
10245 goto fail;
10247 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10248 won't know what to do. So we will strip off the SUBREG here and
10249 process normally. */
10250 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10252 x = SUBREG_REG (x);
10254 /* For use in case we fall down into the address adjustments
10255 further below, we need to adjust the known mode and size of
10256 x; imode and isize, since we just adjusted x. */
10257 imode = GET_MODE (x);
10259 if (imode == omode)
10260 return x;
10262 isize = GET_MODE_SIZE (imode);
10265 result = gen_lowpart_common (omode, x);
10267 if (result)
10268 return result;
10270 if (MEM_P (x))
10272 int offset = 0;
10274 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10275 address. */
10276 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10277 goto fail;
10279 /* If we want to refer to something bigger than the original memref,
10280 generate a paradoxical subreg instead. That will force a reload
10281 of the original memref X. */
10282 if (isize < osize)
10283 return gen_rtx_SUBREG (omode, x, 0);
10285 if (WORDS_BIG_ENDIAN)
10286 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10288 /* Adjust the address so that the address-after-the-data is
10289 unchanged. */
10290 if (BYTES_BIG_ENDIAN)
10291 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10293 return adjust_address_nv (x, omode, offset);
10296 /* If X is a comparison operator, rewrite it in a new mode. This
10297 probably won't match, but may allow further simplifications. */
10298 else if (COMPARISON_P (x))
10299 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10301 /* If we couldn't simplify X any other way, just enclose it in a
10302 SUBREG. Normally, this SUBREG won't match, but some patterns may
10303 include an explicit SUBREG or we may simplify it further in combine. */
10304 else
10306 int offset = 0;
10307 rtx res;
10309 offset = subreg_lowpart_offset (omode, imode);
10310 if (imode == VOIDmode)
10312 imode = int_mode_for_mode (omode);
10313 x = gen_lowpart_common (imode, x);
10314 if (x == NULL)
10315 goto fail;
10317 res = simplify_gen_subreg (omode, x, imode, offset);
10318 if (res)
10319 return res;
10322 fail:
10323 return gen_rtx_CLOBBER (omode, const0_rtx);
10326 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10327 comparison code that will be tested.
10329 The result is a possibly different comparison code to use. *POP0 and
10330 *POP1 may be updated.
10332 It is possible that we might detect that a comparison is either always
10333 true or always false. However, we do not perform general constant
10334 folding in combine, so this knowledge isn't useful. Such tautologies
10335 should have been detected earlier. Hence we ignore all such cases. */
10337 static enum rtx_code
10338 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10340 rtx op0 = *pop0;
10341 rtx op1 = *pop1;
10342 rtx tem, tem1;
10343 int i;
10344 enum machine_mode mode, tmode;
10346 /* Try a few ways of applying the same transformation to both operands. */
10347 while (1)
10349 #ifndef WORD_REGISTER_OPERATIONS
10350 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10351 so check specially. */
10352 if (code != GTU && code != GEU && code != LTU && code != LEU
10353 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10354 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10355 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10356 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10357 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10358 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10359 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10360 && CONST_INT_P (XEXP (op0, 1))
10361 && XEXP (op0, 1) == XEXP (op1, 1)
10362 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10363 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10364 && (INTVAL (XEXP (op0, 1))
10365 == (GET_MODE_BITSIZE (GET_MODE (op0))
10366 - (GET_MODE_BITSIZE
10367 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10369 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10370 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10372 #endif
10374 /* If both operands are the same constant shift, see if we can ignore the
10375 shift. We can if the shift is a rotate or if the bits shifted out of
10376 this shift are known to be zero for both inputs and if the type of
10377 comparison is compatible with the shift. */
10378 if (GET_CODE (op0) == GET_CODE (op1)
10379 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10380 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10381 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10382 && (code != GT && code != LT && code != GE && code != LE))
10383 || (GET_CODE (op0) == ASHIFTRT
10384 && (code != GTU && code != LTU
10385 && code != GEU && code != LEU)))
10386 && CONST_INT_P (XEXP (op0, 1))
10387 && INTVAL (XEXP (op0, 1)) >= 0
10388 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10389 && XEXP (op0, 1) == XEXP (op1, 1))
10391 enum machine_mode mode = GET_MODE (op0);
10392 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10393 int shift_count = INTVAL (XEXP (op0, 1));
10395 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10396 mask &= (mask >> shift_count) << shift_count;
10397 else if (GET_CODE (op0) == ASHIFT)
10398 mask = (mask & (mask << shift_count)) >> shift_count;
10400 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10401 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10402 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10403 else
10404 break;
10407 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10408 SUBREGs are of the same mode, and, in both cases, the AND would
10409 be redundant if the comparison was done in the narrower mode,
10410 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10411 and the operand's possibly nonzero bits are 0xffffff01; in that case
10412 if we only care about QImode, we don't need the AND). This case
10413 occurs if the output mode of an scc insn is not SImode and
10414 STORE_FLAG_VALUE == 1 (e.g., the 386).
10416 Similarly, check for a case where the AND's are ZERO_EXTEND
10417 operations from some narrower mode even though a SUBREG is not
10418 present. */
10420 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10421 && CONST_INT_P (XEXP (op0, 1))
10422 && CONST_INT_P (XEXP (op1, 1)))
10424 rtx inner_op0 = XEXP (op0, 0);
10425 rtx inner_op1 = XEXP (op1, 0);
10426 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10427 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10428 int changed = 0;
10430 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10431 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10432 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10433 && (GET_MODE (SUBREG_REG (inner_op0))
10434 == GET_MODE (SUBREG_REG (inner_op1)))
10435 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10436 <= HOST_BITS_PER_WIDE_INT)
10437 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10438 GET_MODE (SUBREG_REG (inner_op0)))))
10439 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10440 GET_MODE (SUBREG_REG (inner_op1))))))
10442 op0 = SUBREG_REG (inner_op0);
10443 op1 = SUBREG_REG (inner_op1);
10445 /* The resulting comparison is always unsigned since we masked
10446 off the original sign bit. */
10447 code = unsigned_condition (code);
10449 changed = 1;
10452 else if (c0 == c1)
10453 for (tmode = GET_CLASS_NARROWEST_MODE
10454 (GET_MODE_CLASS (GET_MODE (op0)));
10455 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10456 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10458 op0 = gen_lowpart (tmode, inner_op0);
10459 op1 = gen_lowpart (tmode, inner_op1);
10460 code = unsigned_condition (code);
10461 changed = 1;
10462 break;
10465 if (! changed)
10466 break;
10469 /* If both operands are NOT, we can strip off the outer operation
10470 and adjust the comparison code for swapped operands; similarly for
10471 NEG, except that this must be an equality comparison. */
10472 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10473 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10474 && (code == EQ || code == NE)))
10475 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10477 else
10478 break;
10481 /* If the first operand is a constant, swap the operands and adjust the
10482 comparison code appropriately, but don't do this if the second operand
10483 is already a constant integer. */
10484 if (swap_commutative_operands_p (op0, op1))
10486 tem = op0, op0 = op1, op1 = tem;
10487 code = swap_condition (code);
10490 /* We now enter a loop during which we will try to simplify the comparison.
10491 For the most part, we only are concerned with comparisons with zero,
10492 but some things may really be comparisons with zero but not start
10493 out looking that way. */
10495 while (CONST_INT_P (op1))
10497 enum machine_mode mode = GET_MODE (op0);
10498 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10499 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10500 int equality_comparison_p;
10501 int sign_bit_comparison_p;
10502 int unsigned_comparison_p;
10503 HOST_WIDE_INT const_op;
10505 /* We only want to handle integral modes. This catches VOIDmode,
10506 CCmode, and the floating-point modes. An exception is that we
10507 can handle VOIDmode if OP0 is a COMPARE or a comparison
10508 operation. */
10510 if (GET_MODE_CLASS (mode) != MODE_INT
10511 && ! (mode == VOIDmode
10512 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10513 break;
10515 /* Get the constant we are comparing against and turn off all bits
10516 not on in our mode. */
10517 const_op = INTVAL (op1);
10518 if (mode != VOIDmode)
10519 const_op = trunc_int_for_mode (const_op, mode);
10520 op1 = GEN_INT (const_op);
10522 /* If we are comparing against a constant power of two and the value
10523 being compared can only have that single bit nonzero (e.g., it was
10524 `and'ed with that bit), we can replace this with a comparison
10525 with zero. */
10526 if (const_op
10527 && (code == EQ || code == NE || code == GE || code == GEU
10528 || code == LT || code == LTU)
10529 && mode_width <= HOST_BITS_PER_WIDE_INT
10530 && exact_log2 (const_op) >= 0
10531 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10533 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10534 op1 = const0_rtx, const_op = 0;
10537 /* Similarly, if we are comparing a value known to be either -1 or
10538 0 with -1, change it to the opposite comparison against zero. */
10540 if (const_op == -1
10541 && (code == EQ || code == NE || code == GT || code == LE
10542 || code == GEU || code == LTU)
10543 && num_sign_bit_copies (op0, mode) == mode_width)
10545 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10546 op1 = const0_rtx, const_op = 0;
10549 /* Do some canonicalizations based on the comparison code. We prefer
10550 comparisons against zero and then prefer equality comparisons.
10551 If we can reduce the size of a constant, we will do that too. */
10553 switch (code)
10555 case LT:
10556 /* < C is equivalent to <= (C - 1) */
10557 if (const_op > 0)
10559 const_op -= 1;
10560 op1 = GEN_INT (const_op);
10561 code = LE;
10562 /* ... fall through to LE case below. */
10564 else
10565 break;
10567 case LE:
10568 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10569 if (const_op < 0)
10571 const_op += 1;
10572 op1 = GEN_INT (const_op);
10573 code = LT;
10576 /* If we are doing a <= 0 comparison on a value known to have
10577 a zero sign bit, we can replace this with == 0. */
10578 else if (const_op == 0
10579 && mode_width <= HOST_BITS_PER_WIDE_INT
10580 && (nonzero_bits (op0, mode)
10581 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10582 code = EQ;
10583 break;
10585 case GE:
10586 /* >= C is equivalent to > (C - 1). */
10587 if (const_op > 0)
10589 const_op -= 1;
10590 op1 = GEN_INT (const_op);
10591 code = GT;
10592 /* ... fall through to GT below. */
10594 else
10595 break;
10597 case GT:
10598 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10599 if (const_op < 0)
10601 const_op += 1;
10602 op1 = GEN_INT (const_op);
10603 code = GE;
10606 /* If we are doing a > 0 comparison on a value known to have
10607 a zero sign bit, we can replace this with != 0. */
10608 else if (const_op == 0
10609 && mode_width <= HOST_BITS_PER_WIDE_INT
10610 && (nonzero_bits (op0, mode)
10611 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10612 code = NE;
10613 break;
10615 case LTU:
10616 /* < C is equivalent to <= (C - 1). */
10617 if (const_op > 0)
10619 const_op -= 1;
10620 op1 = GEN_INT (const_op);
10621 code = LEU;
10622 /* ... fall through ... */
10625 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10626 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10627 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10629 const_op = 0, op1 = const0_rtx;
10630 code = GE;
10631 break;
10633 else
10634 break;
10636 case LEU:
10637 /* unsigned <= 0 is equivalent to == 0 */
10638 if (const_op == 0)
10639 code = EQ;
10641 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10642 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10643 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10645 const_op = 0, op1 = const0_rtx;
10646 code = GE;
10648 break;
10650 case GEU:
10651 /* >= C is equivalent to > (C - 1). */
10652 if (const_op > 1)
10654 const_op -= 1;
10655 op1 = GEN_INT (const_op);
10656 code = GTU;
10657 /* ... fall through ... */
10660 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10661 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10662 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10664 const_op = 0, op1 = const0_rtx;
10665 code = LT;
10666 break;
10668 else
10669 break;
10671 case GTU:
10672 /* unsigned > 0 is equivalent to != 0 */
10673 if (const_op == 0)
10674 code = NE;
10676 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10677 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10678 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10680 const_op = 0, op1 = const0_rtx;
10681 code = LT;
10683 break;
10685 default:
10686 break;
10689 /* Compute some predicates to simplify code below. */
10691 equality_comparison_p = (code == EQ || code == NE);
10692 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10693 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10694 || code == GEU);
10696 /* If this is a sign bit comparison and we can do arithmetic in
10697 MODE, say that we will only be needing the sign bit of OP0. */
10698 if (sign_bit_comparison_p
10699 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10700 op0 = force_to_mode (op0, mode,
10701 ((HOST_WIDE_INT) 1
10702 << (GET_MODE_BITSIZE (mode) - 1)),
10705 /* Now try cases based on the opcode of OP0. If none of the cases
10706 does a "continue", we exit this loop immediately after the
10707 switch. */
10709 switch (GET_CODE (op0))
10711 case ZERO_EXTRACT:
10712 /* If we are extracting a single bit from a variable position in
10713 a constant that has only a single bit set and are comparing it
10714 with zero, we can convert this into an equality comparison
10715 between the position and the location of the single bit. */
10716 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10717 have already reduced the shift count modulo the word size. */
10718 if (!SHIFT_COUNT_TRUNCATED
10719 && CONST_INT_P (XEXP (op0, 0))
10720 && XEXP (op0, 1) == const1_rtx
10721 && equality_comparison_p && const_op == 0
10722 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10724 if (BITS_BIG_ENDIAN)
10726 enum machine_mode new_mode
10727 = mode_for_extraction (EP_extzv, 1);
10728 if (new_mode == MAX_MACHINE_MODE)
10729 i = BITS_PER_WORD - 1 - i;
10730 else
10732 mode = new_mode;
10733 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10737 op0 = XEXP (op0, 2);
10738 op1 = GEN_INT (i);
10739 const_op = i;
10741 /* Result is nonzero iff shift count is equal to I. */
10742 code = reverse_condition (code);
10743 continue;
10746 /* ... fall through ... */
10748 case SIGN_EXTRACT:
10749 tem = expand_compound_operation (op0);
10750 if (tem != op0)
10752 op0 = tem;
10753 continue;
10755 break;
10757 case NOT:
10758 /* If testing for equality, we can take the NOT of the constant. */
10759 if (equality_comparison_p
10760 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10762 op0 = XEXP (op0, 0);
10763 op1 = tem;
10764 continue;
10767 /* If just looking at the sign bit, reverse the sense of the
10768 comparison. */
10769 if (sign_bit_comparison_p)
10771 op0 = XEXP (op0, 0);
10772 code = (code == GE ? LT : GE);
10773 continue;
10775 break;
10777 case NEG:
10778 /* If testing for equality, we can take the NEG of the constant. */
10779 if (equality_comparison_p
10780 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10782 op0 = XEXP (op0, 0);
10783 op1 = tem;
10784 continue;
10787 /* The remaining cases only apply to comparisons with zero. */
10788 if (const_op != 0)
10789 break;
10791 /* When X is ABS or is known positive,
10792 (neg X) is < 0 if and only if X != 0. */
10794 if (sign_bit_comparison_p
10795 && (GET_CODE (XEXP (op0, 0)) == ABS
10796 || (mode_width <= HOST_BITS_PER_WIDE_INT
10797 && (nonzero_bits (XEXP (op0, 0), mode)
10798 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10800 op0 = XEXP (op0, 0);
10801 code = (code == LT ? NE : EQ);
10802 continue;
10805 /* If we have NEG of something whose two high-order bits are the
10806 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10807 if (num_sign_bit_copies (op0, mode) >= 2)
10809 op0 = XEXP (op0, 0);
10810 code = swap_condition (code);
10811 continue;
10813 break;
10815 case ROTATE:
10816 /* If we are testing equality and our count is a constant, we
10817 can perform the inverse operation on our RHS. */
10818 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10819 && (tem = simplify_binary_operation (ROTATERT, mode,
10820 op1, XEXP (op0, 1))) != 0)
10822 op0 = XEXP (op0, 0);
10823 op1 = tem;
10824 continue;
10827 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10828 a particular bit. Convert it to an AND of a constant of that
10829 bit. This will be converted into a ZERO_EXTRACT. */
10830 if (const_op == 0 && sign_bit_comparison_p
10831 && CONST_INT_P (XEXP (op0, 1))
10832 && mode_width <= HOST_BITS_PER_WIDE_INT)
10834 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10835 ((HOST_WIDE_INT) 1
10836 << (mode_width - 1
10837 - INTVAL (XEXP (op0, 1)))));
10838 code = (code == LT ? NE : EQ);
10839 continue;
10842 /* Fall through. */
10844 case ABS:
10845 /* ABS is ignorable inside an equality comparison with zero. */
10846 if (const_op == 0 && equality_comparison_p)
10848 op0 = XEXP (op0, 0);
10849 continue;
10851 break;
10853 case SIGN_EXTEND:
10854 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10855 (compare FOO CONST) if CONST fits in FOO's mode and we
10856 are either testing inequality or have an unsigned
10857 comparison with ZERO_EXTEND or a signed comparison with
10858 SIGN_EXTEND. But don't do it if we don't have a compare
10859 insn of the given mode, since we'd have to revert it
10860 later on, and then we wouldn't know whether to sign- or
10861 zero-extend. */
10862 mode = GET_MODE (XEXP (op0, 0));
10863 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10864 && ! unsigned_comparison_p
10865 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10866 && ((unsigned HOST_WIDE_INT) const_op
10867 < (((unsigned HOST_WIDE_INT) 1
10868 << (GET_MODE_BITSIZE (mode) - 1))))
10869 && have_insn_for (COMPARE, mode))
10871 op0 = XEXP (op0, 0);
10872 continue;
10874 break;
10876 case SUBREG:
10877 /* Check for the case where we are comparing A - C1 with C2, that is
10879 (subreg:MODE (plus (A) (-C1))) op (C2)
10881 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10882 comparison in the wider mode. One of the following two conditions
10883 must be true in order for this to be valid:
10885 1. The mode extension results in the same bit pattern being added
10886 on both sides and the comparison is equality or unsigned. As
10887 C2 has been truncated to fit in MODE, the pattern can only be
10888 all 0s or all 1s.
10890 2. The mode extension results in the sign bit being copied on
10891 each side.
10893 The difficulty here is that we have predicates for A but not for
10894 (A - C1) so we need to check that C1 is within proper bounds so
10895 as to perturbate A as little as possible. */
10897 if (mode_width <= HOST_BITS_PER_WIDE_INT
10898 && subreg_lowpart_p (op0)
10899 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10900 && GET_CODE (SUBREG_REG (op0)) == PLUS
10901 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10903 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10904 rtx a = XEXP (SUBREG_REG (op0), 0);
10905 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10907 if ((c1 > 0
10908 && (unsigned HOST_WIDE_INT) c1
10909 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10910 && (equality_comparison_p || unsigned_comparison_p)
10911 /* (A - C1) zero-extends if it is positive and sign-extends
10912 if it is negative, C2 both zero- and sign-extends. */
10913 && ((0 == (nonzero_bits (a, inner_mode)
10914 & ~GET_MODE_MASK (mode))
10915 && const_op >= 0)
10916 /* (A - C1) sign-extends if it is positive and 1-extends
10917 if it is negative, C2 both sign- and 1-extends. */
10918 || (num_sign_bit_copies (a, inner_mode)
10919 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10920 - mode_width)
10921 && const_op < 0)))
10922 || ((unsigned HOST_WIDE_INT) c1
10923 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10924 /* (A - C1) always sign-extends, like C2. */
10925 && num_sign_bit_copies (a, inner_mode)
10926 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10927 - (mode_width - 1))))
10929 op0 = SUBREG_REG (op0);
10930 continue;
10934 /* If the inner mode is narrower and we are extracting the low part,
10935 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10936 if (subreg_lowpart_p (op0)
10937 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10938 /* Fall through */ ;
10939 else
10940 break;
10942 /* ... fall through ... */
10944 case ZERO_EXTEND:
10945 mode = GET_MODE (XEXP (op0, 0));
10946 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10947 && (unsigned_comparison_p || equality_comparison_p)
10948 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10949 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10950 && have_insn_for (COMPARE, mode))
10952 op0 = XEXP (op0, 0);
10953 continue;
10955 break;
10957 case PLUS:
10958 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10959 this for equality comparisons due to pathological cases involving
10960 overflows. */
10961 if (equality_comparison_p
10962 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10963 op1, XEXP (op0, 1))))
10965 op0 = XEXP (op0, 0);
10966 op1 = tem;
10967 continue;
10970 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10971 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10972 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10974 op0 = XEXP (XEXP (op0, 0), 0);
10975 code = (code == LT ? EQ : NE);
10976 continue;
10978 break;
10980 case MINUS:
10981 /* We used to optimize signed comparisons against zero, but that
10982 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10983 arrive here as equality comparisons, or (GEU, LTU) are
10984 optimized away. No need to special-case them. */
10986 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10987 (eq B (minus A C)), whichever simplifies. We can only do
10988 this for equality comparisons due to pathological cases involving
10989 overflows. */
10990 if (equality_comparison_p
10991 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10992 XEXP (op0, 1), op1)))
10994 op0 = XEXP (op0, 0);
10995 op1 = tem;
10996 continue;
10999 if (equality_comparison_p
11000 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11001 XEXP (op0, 0), op1)))
11003 op0 = XEXP (op0, 1);
11004 op1 = tem;
11005 continue;
11008 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11009 of bits in X minus 1, is one iff X > 0. */
11010 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11011 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11012 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11013 == mode_width - 1
11014 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11016 op0 = XEXP (op0, 1);
11017 code = (code == GE ? LE : GT);
11018 continue;
11020 break;
11022 case XOR:
11023 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11024 if C is zero or B is a constant. */
11025 if (equality_comparison_p
11026 && 0 != (tem = simplify_binary_operation (XOR, mode,
11027 XEXP (op0, 1), op1)))
11029 op0 = XEXP (op0, 0);
11030 op1 = tem;
11031 continue;
11033 break;
11035 case EQ: case NE:
11036 case UNEQ: case LTGT:
11037 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11038 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11039 case UNORDERED: case ORDERED:
11040 /* We can't do anything if OP0 is a condition code value, rather
11041 than an actual data value. */
11042 if (const_op != 0
11043 || CC0_P (XEXP (op0, 0))
11044 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11045 break;
11047 /* Get the two operands being compared. */
11048 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11049 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11050 else
11051 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11053 /* Check for the cases where we simply want the result of the
11054 earlier test or the opposite of that result. */
11055 if (code == NE || code == EQ
11056 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11057 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11058 && (STORE_FLAG_VALUE
11059 & (((HOST_WIDE_INT) 1
11060 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11061 && (code == LT || code == GE)))
11063 enum rtx_code new_code;
11064 if (code == LT || code == NE)
11065 new_code = GET_CODE (op0);
11066 else
11067 new_code = reversed_comparison_code (op0, NULL);
11069 if (new_code != UNKNOWN)
11071 code = new_code;
11072 op0 = tem;
11073 op1 = tem1;
11074 continue;
11077 break;
11079 case IOR:
11080 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11081 iff X <= 0. */
11082 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11083 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11084 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11086 op0 = XEXP (op0, 1);
11087 code = (code == GE ? GT : LE);
11088 continue;
11090 break;
11092 case AND:
11093 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11094 will be converted to a ZERO_EXTRACT later. */
11095 if (const_op == 0 && equality_comparison_p
11096 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11097 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11099 op0 = simplify_and_const_int
11100 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11101 XEXP (op0, 1),
11102 XEXP (XEXP (op0, 0), 1)),
11103 (HOST_WIDE_INT) 1);
11104 continue;
11107 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11108 zero and X is a comparison and C1 and C2 describe only bits set
11109 in STORE_FLAG_VALUE, we can compare with X. */
11110 if (const_op == 0 && equality_comparison_p
11111 && mode_width <= HOST_BITS_PER_WIDE_INT
11112 && CONST_INT_P (XEXP (op0, 1))
11113 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11114 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11115 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11116 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11118 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11119 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11120 if ((~STORE_FLAG_VALUE & mask) == 0
11121 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11122 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11123 && COMPARISON_P (tem))))
11125 op0 = XEXP (XEXP (op0, 0), 0);
11126 continue;
11130 /* If we are doing an equality comparison of an AND of a bit equal
11131 to the sign bit, replace this with a LT or GE comparison of
11132 the underlying value. */
11133 if (equality_comparison_p
11134 && const_op == 0
11135 && CONST_INT_P (XEXP (op0, 1))
11136 && mode_width <= HOST_BITS_PER_WIDE_INT
11137 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11138 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11140 op0 = XEXP (op0, 0);
11141 code = (code == EQ ? GE : LT);
11142 continue;
11145 /* If this AND operation is really a ZERO_EXTEND from a narrower
11146 mode, the constant fits within that mode, and this is either an
11147 equality or unsigned comparison, try to do this comparison in
11148 the narrower mode.
11150 Note that in:
11152 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11153 -> (ne:DI (reg:SI 4) (const_int 0))
11155 unless TRULY_NOOP_TRUNCATION allows it or the register is
11156 known to hold a value of the required mode the
11157 transformation is invalid. */
11158 if ((equality_comparison_p || unsigned_comparison_p)
11159 && CONST_INT_P (XEXP (op0, 1))
11160 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11161 & GET_MODE_MASK (mode))
11162 + 1)) >= 0
11163 && const_op >> i == 0
11164 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11165 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11166 GET_MODE_BITSIZE (GET_MODE (op0)))
11167 || (REG_P (XEXP (op0, 0))
11168 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11170 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11171 continue;
11174 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11175 fits in both M1 and M2 and the SUBREG is either paradoxical
11176 or represents the low part, permute the SUBREG and the AND
11177 and try again. */
11178 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11180 unsigned HOST_WIDE_INT c1;
11181 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11182 /* Require an integral mode, to avoid creating something like
11183 (AND:SF ...). */
11184 if (SCALAR_INT_MODE_P (tmode)
11185 /* It is unsafe to commute the AND into the SUBREG if the
11186 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11187 not defined. As originally written the upper bits
11188 have a defined value due to the AND operation.
11189 However, if we commute the AND inside the SUBREG then
11190 they no longer have defined values and the meaning of
11191 the code has been changed. */
11192 && (0
11193 #ifdef WORD_REGISTER_OPERATIONS
11194 || (mode_width > GET_MODE_BITSIZE (tmode)
11195 && mode_width <= BITS_PER_WORD)
11196 #endif
11197 || (mode_width <= GET_MODE_BITSIZE (tmode)
11198 && subreg_lowpart_p (XEXP (op0, 0))))
11199 && CONST_INT_P (XEXP (op0, 1))
11200 && mode_width <= HOST_BITS_PER_WIDE_INT
11201 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11202 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11203 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11204 && c1 != mask
11205 && c1 != GET_MODE_MASK (tmode))
11207 op0 = simplify_gen_binary (AND, tmode,
11208 SUBREG_REG (XEXP (op0, 0)),
11209 gen_int_mode (c1, tmode));
11210 op0 = gen_lowpart (mode, op0);
11211 continue;
11215 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11216 if (const_op == 0 && equality_comparison_p
11217 && XEXP (op0, 1) == const1_rtx
11218 && GET_CODE (XEXP (op0, 0)) == NOT)
11220 op0 = simplify_and_const_int
11221 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11222 code = (code == NE ? EQ : NE);
11223 continue;
11226 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11227 (eq (and (lshiftrt X) 1) 0).
11228 Also handle the case where (not X) is expressed using xor. */
11229 if (const_op == 0 && equality_comparison_p
11230 && XEXP (op0, 1) == const1_rtx
11231 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11233 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11234 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11236 if (GET_CODE (shift_op) == NOT
11237 || (GET_CODE (shift_op) == XOR
11238 && CONST_INT_P (XEXP (shift_op, 1))
11239 && CONST_INT_P (shift_count)
11240 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11241 && (INTVAL (XEXP (shift_op, 1))
11242 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11244 op0 = simplify_and_const_int
11245 (NULL_RTX, mode,
11246 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11247 (HOST_WIDE_INT) 1);
11248 code = (code == NE ? EQ : NE);
11249 continue;
11252 break;
11254 case ASHIFT:
11255 /* If we have (compare (ashift FOO N) (const_int C)) and
11256 the high order N bits of FOO (N+1 if an inequality comparison)
11257 are known to be zero, we can do this by comparing FOO with C
11258 shifted right N bits so long as the low-order N bits of C are
11259 zero. */
11260 if (CONST_INT_P (XEXP (op0, 1))
11261 && INTVAL (XEXP (op0, 1)) >= 0
11262 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11263 < HOST_BITS_PER_WIDE_INT)
11264 && ((const_op
11265 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11266 && mode_width <= HOST_BITS_PER_WIDE_INT
11267 && (nonzero_bits (XEXP (op0, 0), mode)
11268 & ~(mask >> (INTVAL (XEXP (op0, 1))
11269 + ! equality_comparison_p))) == 0)
11271 /* We must perform a logical shift, not an arithmetic one,
11272 as we want the top N bits of C to be zero. */
11273 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11275 temp >>= INTVAL (XEXP (op0, 1));
11276 op1 = gen_int_mode (temp, mode);
11277 op0 = XEXP (op0, 0);
11278 continue;
11281 /* If we are doing a sign bit comparison, it means we are testing
11282 a particular bit. Convert it to the appropriate AND. */
11283 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11284 && mode_width <= HOST_BITS_PER_WIDE_INT)
11286 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11287 ((HOST_WIDE_INT) 1
11288 << (mode_width - 1
11289 - INTVAL (XEXP (op0, 1)))));
11290 code = (code == LT ? NE : EQ);
11291 continue;
11294 /* If this an equality comparison with zero and we are shifting
11295 the low bit to the sign bit, we can convert this to an AND of the
11296 low-order bit. */
11297 if (const_op == 0 && equality_comparison_p
11298 && CONST_INT_P (XEXP (op0, 1))
11299 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11300 == mode_width - 1)
11302 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11303 (HOST_WIDE_INT) 1);
11304 continue;
11306 break;
11308 case ASHIFTRT:
11309 /* If this is an equality comparison with zero, we can do this
11310 as a logical shift, which might be much simpler. */
11311 if (equality_comparison_p && const_op == 0
11312 && CONST_INT_P (XEXP (op0, 1)))
11314 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11315 XEXP (op0, 0),
11316 INTVAL (XEXP (op0, 1)));
11317 continue;
11320 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11321 do the comparison in a narrower mode. */
11322 if (! unsigned_comparison_p
11323 && CONST_INT_P (XEXP (op0, 1))
11324 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11325 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11326 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11327 MODE_INT, 1)) != BLKmode
11328 && (((unsigned HOST_WIDE_INT) const_op
11329 + (GET_MODE_MASK (tmode) >> 1) + 1)
11330 <= GET_MODE_MASK (tmode)))
11332 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11333 continue;
11336 /* Likewise if OP0 is a PLUS of a sign extension with a
11337 constant, which is usually represented with the PLUS
11338 between the shifts. */
11339 if (! unsigned_comparison_p
11340 && CONST_INT_P (XEXP (op0, 1))
11341 && GET_CODE (XEXP (op0, 0)) == PLUS
11342 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11343 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11344 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11345 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11346 MODE_INT, 1)) != BLKmode
11347 && (((unsigned HOST_WIDE_INT) const_op
11348 + (GET_MODE_MASK (tmode) >> 1) + 1)
11349 <= GET_MODE_MASK (tmode)))
11351 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11352 rtx add_const = XEXP (XEXP (op0, 0), 1);
11353 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11354 add_const, XEXP (op0, 1));
11356 op0 = simplify_gen_binary (PLUS, tmode,
11357 gen_lowpart (tmode, inner),
11358 new_const);
11359 continue;
11362 /* ... fall through ... */
11363 case LSHIFTRT:
11364 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11365 the low order N bits of FOO are known to be zero, we can do this
11366 by comparing FOO with C shifted left N bits so long as no
11367 overflow occurs. */
11368 if (CONST_INT_P (XEXP (op0, 1))
11369 && INTVAL (XEXP (op0, 1)) >= 0
11370 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11371 && mode_width <= HOST_BITS_PER_WIDE_INT
11372 && (nonzero_bits (XEXP (op0, 0), mode)
11373 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11374 && (((unsigned HOST_WIDE_INT) const_op
11375 + (GET_CODE (op0) != LSHIFTRT
11376 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11377 + 1)
11378 : 0))
11379 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11381 /* If the shift was logical, then we must make the condition
11382 unsigned. */
11383 if (GET_CODE (op0) == LSHIFTRT)
11384 code = unsigned_condition (code);
11386 const_op <<= INTVAL (XEXP (op0, 1));
11387 op1 = GEN_INT (const_op);
11388 op0 = XEXP (op0, 0);
11389 continue;
11392 /* If we are using this shift to extract just the sign bit, we
11393 can replace this with an LT or GE comparison. */
11394 if (const_op == 0
11395 && (equality_comparison_p || sign_bit_comparison_p)
11396 && CONST_INT_P (XEXP (op0, 1))
11397 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11398 == mode_width - 1)
11400 op0 = XEXP (op0, 0);
11401 code = (code == NE || code == GT ? LT : GE);
11402 continue;
11404 break;
11406 default:
11407 break;
11410 break;
11413 /* Now make any compound operations involved in this comparison. Then,
11414 check for an outmost SUBREG on OP0 that is not doing anything or is
11415 paradoxical. The latter transformation must only be performed when
11416 it is known that the "extra" bits will be the same in op0 and op1 or
11417 that they don't matter. There are three cases to consider:
11419 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11420 care bits and we can assume they have any convenient value. So
11421 making the transformation is safe.
11423 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11424 In this case the upper bits of op0 are undefined. We should not make
11425 the simplification in that case as we do not know the contents of
11426 those bits.
11428 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11429 UNKNOWN. In that case we know those bits are zeros or ones. We must
11430 also be sure that they are the same as the upper bits of op1.
11432 We can never remove a SUBREG for a non-equality comparison because
11433 the sign bit is in a different place in the underlying object. */
11435 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11436 op1 = make_compound_operation (op1, SET);
11438 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11439 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11440 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11441 && (code == NE || code == EQ))
11443 if (GET_MODE_SIZE (GET_MODE (op0))
11444 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11446 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11447 implemented. */
11448 if (REG_P (SUBREG_REG (op0)))
11450 op0 = SUBREG_REG (op0);
11451 op1 = gen_lowpart (GET_MODE (op0), op1);
11454 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11455 <= HOST_BITS_PER_WIDE_INT)
11456 && (nonzero_bits (SUBREG_REG (op0),
11457 GET_MODE (SUBREG_REG (op0)))
11458 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11460 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11462 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11463 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11464 op0 = SUBREG_REG (op0), op1 = tem;
11468 /* We now do the opposite procedure: Some machines don't have compare
11469 insns in all modes. If OP0's mode is an integer mode smaller than a
11470 word and we can't do a compare in that mode, see if there is a larger
11471 mode for which we can do the compare. There are a number of cases in
11472 which we can use the wider mode. */
11474 mode = GET_MODE (op0);
11475 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11476 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11477 && ! have_insn_for (COMPARE, mode))
11478 for (tmode = GET_MODE_WIDER_MODE (mode);
11479 (tmode != VOIDmode
11480 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11481 tmode = GET_MODE_WIDER_MODE (tmode))
11482 if (have_insn_for (COMPARE, tmode))
11484 int zero_extended;
11486 /* If this is a test for negative, we can make an explicit
11487 test of the sign bit. Test this first so we can use
11488 a paradoxical subreg to extend OP0. */
11490 if (op1 == const0_rtx && (code == LT || code == GE)
11491 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11493 op0 = simplify_gen_binary (AND, tmode,
11494 gen_lowpart (tmode, op0),
11495 GEN_INT ((HOST_WIDE_INT) 1
11496 << (GET_MODE_BITSIZE (mode)
11497 - 1)));
11498 code = (code == LT) ? NE : EQ;
11499 break;
11502 /* If the only nonzero bits in OP0 and OP1 are those in the
11503 narrower mode and this is an equality or unsigned comparison,
11504 we can use the wider mode. Similarly for sign-extended
11505 values, in which case it is true for all comparisons. */
11506 zero_extended = ((code == EQ || code == NE
11507 || code == GEU || code == GTU
11508 || code == LEU || code == LTU)
11509 && (nonzero_bits (op0, tmode)
11510 & ~GET_MODE_MASK (mode)) == 0
11511 && ((CONST_INT_P (op1)
11512 || (nonzero_bits (op1, tmode)
11513 & ~GET_MODE_MASK (mode)) == 0)));
11515 if (zero_extended
11516 || ((num_sign_bit_copies (op0, tmode)
11517 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11518 - GET_MODE_BITSIZE (mode)))
11519 && (num_sign_bit_copies (op1, tmode)
11520 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11521 - GET_MODE_BITSIZE (mode)))))
11523 /* If OP0 is an AND and we don't have an AND in MODE either,
11524 make a new AND in the proper mode. */
11525 if (GET_CODE (op0) == AND
11526 && !have_insn_for (AND, mode))
11527 op0 = simplify_gen_binary (AND, tmode,
11528 gen_lowpart (tmode,
11529 XEXP (op0, 0)),
11530 gen_lowpart (tmode,
11531 XEXP (op0, 1)));
11532 else
11534 if (zero_extended)
11536 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11537 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11539 else
11541 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11542 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11544 break;
11549 #ifdef CANONICALIZE_COMPARISON
11550 /* If this machine only supports a subset of valid comparisons, see if we
11551 can convert an unsupported one into a supported one. */
11552 CANONICALIZE_COMPARISON (code, op0, op1);
11553 #endif
11555 *pop0 = op0;
11556 *pop1 = op1;
11558 return code;
11561 /* Utility function for record_value_for_reg. Count number of
11562 rtxs in X. */
11563 static int
11564 count_rtxs (rtx x)
11566 enum rtx_code code = GET_CODE (x);
11567 const char *fmt;
11568 int i, j, ret = 1;
11570 if (GET_RTX_CLASS (code) == '2'
11571 || GET_RTX_CLASS (code) == 'c')
11573 rtx x0 = XEXP (x, 0);
11574 rtx x1 = XEXP (x, 1);
11576 if (x0 == x1)
11577 return 1 + 2 * count_rtxs (x0);
11579 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11580 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11581 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11582 return 2 + 2 * count_rtxs (x0)
11583 + count_rtxs (x == XEXP (x1, 0)
11584 ? XEXP (x1, 1) : XEXP (x1, 0));
11586 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11587 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11588 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11589 return 2 + 2 * count_rtxs (x1)
11590 + count_rtxs (x == XEXP (x0, 0)
11591 ? XEXP (x0, 1) : XEXP (x0, 0));
11594 fmt = GET_RTX_FORMAT (code);
11595 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11596 if (fmt[i] == 'e')
11597 ret += count_rtxs (XEXP (x, i));
11598 else if (fmt[i] == 'E')
11599 for (j = 0; j < XVECLEN (x, i); j++)
11600 ret += count_rtxs (XVECEXP (x, i, j));
11602 return ret;
11605 /* Utility function for following routine. Called when X is part of a value
11606 being stored into last_set_value. Sets last_set_table_tick
11607 for each register mentioned. Similar to mention_regs in cse.c */
11609 static void
11610 update_table_tick (rtx x)
11612 enum rtx_code code = GET_CODE (x);
11613 const char *fmt = GET_RTX_FORMAT (code);
11614 int i, j;
11616 if (code == REG)
11618 unsigned int regno = REGNO (x);
11619 unsigned int endregno = END_REGNO (x);
11620 unsigned int r;
11622 for (r = regno; r < endregno; r++)
11624 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11625 rsp->last_set_table_tick = label_tick;
11628 return;
11631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11632 if (fmt[i] == 'e')
11634 /* Check for identical subexpressions. If x contains
11635 identical subexpression we only have to traverse one of
11636 them. */
11637 if (i == 0 && ARITHMETIC_P (x))
11639 /* Note that at this point x1 has already been
11640 processed. */
11641 rtx x0 = XEXP (x, 0);
11642 rtx x1 = XEXP (x, 1);
11644 /* If x0 and x1 are identical then there is no need to
11645 process x0. */
11646 if (x0 == x1)
11647 break;
11649 /* If x0 is identical to a subexpression of x1 then while
11650 processing x1, x0 has already been processed. Thus we
11651 are done with x. */
11652 if (ARITHMETIC_P (x1)
11653 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11654 break;
11656 /* If x1 is identical to a subexpression of x0 then we
11657 still have to process the rest of x0. */
11658 if (ARITHMETIC_P (x0)
11659 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11661 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11662 break;
11666 update_table_tick (XEXP (x, i));
11668 else if (fmt[i] == 'E')
11669 for (j = 0; j < XVECLEN (x, i); j++)
11670 update_table_tick (XVECEXP (x, i, j));
11673 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11674 are saying that the register is clobbered and we no longer know its
11675 value. If INSN is zero, don't update reg_stat[].last_set; this is
11676 only permitted with VALUE also zero and is used to invalidate the
11677 register. */
11679 static void
11680 record_value_for_reg (rtx reg, rtx insn, rtx value)
11682 unsigned int regno = REGNO (reg);
11683 unsigned int endregno = END_REGNO (reg);
11684 unsigned int i;
11685 reg_stat_type *rsp;
11687 /* If VALUE contains REG and we have a previous value for REG, substitute
11688 the previous value. */
11689 if (value && insn && reg_overlap_mentioned_p (reg, value))
11691 rtx tem;
11693 /* Set things up so get_last_value is allowed to see anything set up to
11694 our insn. */
11695 subst_low_luid = DF_INSN_LUID (insn);
11696 tem = get_last_value (reg);
11698 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11699 it isn't going to be useful and will take a lot of time to process,
11700 so just use the CLOBBER. */
11702 if (tem)
11704 if (ARITHMETIC_P (tem)
11705 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11706 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11707 tem = XEXP (tem, 0);
11708 else if (count_occurrences (value, reg, 1) >= 2)
11710 /* If there are two or more occurrences of REG in VALUE,
11711 prevent the value from growing too much. */
11712 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11713 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11716 value = replace_rtx (copy_rtx (value), reg, tem);
11720 /* For each register modified, show we don't know its value, that
11721 we don't know about its bitwise content, that its value has been
11722 updated, and that we don't know the location of the death of the
11723 register. */
11724 for (i = regno; i < endregno; i++)
11726 rsp = VEC_index (reg_stat_type, reg_stat, i);
11728 if (insn)
11729 rsp->last_set = insn;
11731 rsp->last_set_value = 0;
11732 rsp->last_set_mode = VOIDmode;
11733 rsp->last_set_nonzero_bits = 0;
11734 rsp->last_set_sign_bit_copies = 0;
11735 rsp->last_death = 0;
11736 rsp->truncated_to_mode = VOIDmode;
11739 /* Mark registers that are being referenced in this value. */
11740 if (value)
11741 update_table_tick (value);
11743 /* Now update the status of each register being set.
11744 If someone is using this register in this block, set this register
11745 to invalid since we will get confused between the two lives in this
11746 basic block. This makes using this register always invalid. In cse, we
11747 scan the table to invalidate all entries using this register, but this
11748 is too much work for us. */
11750 for (i = regno; i < endregno; i++)
11752 rsp = VEC_index (reg_stat_type, reg_stat, i);
11753 rsp->last_set_label = label_tick;
11754 if (!insn
11755 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11756 rsp->last_set_invalid = 1;
11757 else
11758 rsp->last_set_invalid = 0;
11761 /* The value being assigned might refer to X (like in "x++;"). In that
11762 case, we must replace it with (clobber (const_int 0)) to prevent
11763 infinite loops. */
11764 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11765 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
11767 value = copy_rtx (value);
11768 if (!get_last_value_validate (&value, insn, label_tick, 1))
11769 value = 0;
11772 /* For the main register being modified, update the value, the mode, the
11773 nonzero bits, and the number of sign bit copies. */
11775 rsp->last_set_value = value;
11777 if (value)
11779 enum machine_mode mode = GET_MODE (reg);
11780 subst_low_luid = DF_INSN_LUID (insn);
11781 rsp->last_set_mode = mode;
11782 if (GET_MODE_CLASS (mode) == MODE_INT
11783 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11784 mode = nonzero_bits_mode;
11785 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11786 rsp->last_set_sign_bit_copies
11787 = num_sign_bit_copies (value, GET_MODE (reg));
11791 /* Called via note_stores from record_dead_and_set_regs to handle one
11792 SET or CLOBBER in an insn. DATA is the instruction in which the
11793 set is occurring. */
11795 static void
11796 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11798 rtx record_dead_insn = (rtx) data;
11800 if (GET_CODE (dest) == SUBREG)
11801 dest = SUBREG_REG (dest);
11803 if (!record_dead_insn)
11805 if (REG_P (dest))
11806 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11807 return;
11810 if (REG_P (dest))
11812 /* If we are setting the whole register, we know its value. Otherwise
11813 show that we don't know the value. We can handle SUBREG in
11814 some cases. */
11815 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11816 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11817 else if (GET_CODE (setter) == SET
11818 && GET_CODE (SET_DEST (setter)) == SUBREG
11819 && SUBREG_REG (SET_DEST (setter)) == dest
11820 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11821 && subreg_lowpart_p (SET_DEST (setter)))
11822 record_value_for_reg (dest, record_dead_insn,
11823 gen_lowpart (GET_MODE (dest),
11824 SET_SRC (setter)));
11825 else
11826 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11828 else if (MEM_P (dest)
11829 /* Ignore pushes, they clobber nothing. */
11830 && ! push_operand (dest, GET_MODE (dest)))
11831 mem_last_set = DF_INSN_LUID (record_dead_insn);
11834 /* Update the records of when each REG was most recently set or killed
11835 for the things done by INSN. This is the last thing done in processing
11836 INSN in the combiner loop.
11838 We update reg_stat[], in particular fields last_set, last_set_value,
11839 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11840 last_death, and also the similar information mem_last_set (which insn
11841 most recently modified memory) and last_call_luid (which insn was the
11842 most recent subroutine call). */
11844 static void
11845 record_dead_and_set_regs (rtx insn)
11847 rtx link;
11848 unsigned int i;
11850 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11852 if (REG_NOTE_KIND (link) == REG_DEAD
11853 && REG_P (XEXP (link, 0)))
11855 unsigned int regno = REGNO (XEXP (link, 0));
11856 unsigned int endregno = END_REGNO (XEXP (link, 0));
11858 for (i = regno; i < endregno; i++)
11860 reg_stat_type *rsp;
11862 rsp = VEC_index (reg_stat_type, reg_stat, i);
11863 rsp->last_death = insn;
11866 else if (REG_NOTE_KIND (link) == REG_INC)
11867 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11870 if (CALL_P (insn))
11872 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11873 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11875 reg_stat_type *rsp;
11877 rsp = VEC_index (reg_stat_type, reg_stat, i);
11878 rsp->last_set_invalid = 1;
11879 rsp->last_set = insn;
11880 rsp->last_set_value = 0;
11881 rsp->last_set_mode = VOIDmode;
11882 rsp->last_set_nonzero_bits = 0;
11883 rsp->last_set_sign_bit_copies = 0;
11884 rsp->last_death = 0;
11885 rsp->truncated_to_mode = VOIDmode;
11888 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11890 /* We can't combine into a call pattern. Remember, though, that
11891 the return value register is set at this LUID. We could
11892 still replace a register with the return value from the
11893 wrong subroutine call! */
11894 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11896 else
11897 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11900 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11901 register present in the SUBREG, so for each such SUBREG go back and
11902 adjust nonzero and sign bit information of the registers that are
11903 known to have some zero/sign bits set.
11905 This is needed because when combine blows the SUBREGs away, the
11906 information on zero/sign bits is lost and further combines can be
11907 missed because of that. */
11909 static void
11910 record_promoted_value (rtx insn, rtx subreg)
11912 rtx links, set;
11913 unsigned int regno = REGNO (SUBREG_REG (subreg));
11914 enum machine_mode mode = GET_MODE (subreg);
11916 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11917 return;
11919 for (links = LOG_LINKS (insn); links;)
11921 reg_stat_type *rsp;
11923 insn = XEXP (links, 0);
11924 set = single_set (insn);
11926 if (! set || !REG_P (SET_DEST (set))
11927 || REGNO (SET_DEST (set)) != regno
11928 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11930 links = XEXP (links, 1);
11931 continue;
11934 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11935 if (rsp->last_set == insn)
11937 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11938 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11941 if (REG_P (SET_SRC (set)))
11943 regno = REGNO (SET_SRC (set));
11944 links = LOG_LINKS (insn);
11946 else
11947 break;
11951 /* Check if X, a register, is known to contain a value already
11952 truncated to MODE. In this case we can use a subreg to refer to
11953 the truncated value even though in the generic case we would need
11954 an explicit truncation. */
11956 static bool
11957 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11959 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11960 enum machine_mode truncated = rsp->truncated_to_mode;
11962 if (truncated == 0
11963 || rsp->truncation_label < label_tick_ebb_start)
11964 return false;
11965 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11966 return true;
11967 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11968 GET_MODE_BITSIZE (truncated)))
11969 return true;
11970 return false;
11973 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11974 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11975 might be able to turn a truncate into a subreg using this information.
11976 Return -1 if traversing *P is complete or 0 otherwise. */
11978 static int
11979 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11981 rtx x = *p;
11982 enum machine_mode truncated_mode;
11983 reg_stat_type *rsp;
11985 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11987 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11988 truncated_mode = GET_MODE (x);
11990 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11991 return -1;
11993 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11994 GET_MODE_BITSIZE (original_mode)))
11995 return -1;
11997 x = SUBREG_REG (x);
11999 /* ??? For hard-regs we now record everything. We might be able to
12000 optimize this using last_set_mode. */
12001 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12002 truncated_mode = GET_MODE (x);
12003 else
12004 return 0;
12006 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12007 if (rsp->truncated_to_mode == 0
12008 || rsp->truncation_label < label_tick_ebb_start
12009 || (GET_MODE_SIZE (truncated_mode)
12010 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12012 rsp->truncated_to_mode = truncated_mode;
12013 rsp->truncation_label = label_tick;
12016 return -1;
12019 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12020 the modes they are used in. This can help truning TRUNCATEs into
12021 SUBREGs. */
12023 static void
12024 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12026 for_each_rtx (x, record_truncated_value, NULL);
12029 /* Scan X for promoted SUBREGs. For each one found,
12030 note what it implies to the registers used in it. */
12032 static void
12033 check_promoted_subreg (rtx insn, rtx x)
12035 if (GET_CODE (x) == SUBREG
12036 && SUBREG_PROMOTED_VAR_P (x)
12037 && REG_P (SUBREG_REG (x)))
12038 record_promoted_value (insn, x);
12039 else
12041 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12042 int i, j;
12044 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12045 switch (format[i])
12047 case 'e':
12048 check_promoted_subreg (insn, XEXP (x, i));
12049 break;
12050 case 'V':
12051 case 'E':
12052 if (XVEC (x, i) != 0)
12053 for (j = 0; j < XVECLEN (x, i); j++)
12054 check_promoted_subreg (insn, XVECEXP (x, i, j));
12055 break;
12060 /* Verify that all the registers and memory references mentioned in *LOC are
12061 still valid. *LOC was part of a value set in INSN when label_tick was
12062 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12063 the invalid references with (clobber (const_int 0)) and return 1. This
12064 replacement is useful because we often can get useful information about
12065 the form of a value (e.g., if it was produced by a shift that always
12066 produces -1 or 0) even though we don't know exactly what registers it
12067 was produced from. */
12069 static int
12070 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12072 rtx x = *loc;
12073 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12074 int len = GET_RTX_LENGTH (GET_CODE (x));
12075 int i, j;
12077 if (REG_P (x))
12079 unsigned int regno = REGNO (x);
12080 unsigned int endregno = END_REGNO (x);
12081 unsigned int j;
12083 for (j = regno; j < endregno; j++)
12085 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12086 if (rsp->last_set_invalid
12087 /* If this is a pseudo-register that was only set once and not
12088 live at the beginning of the function, it is always valid. */
12089 || (! (regno >= FIRST_PSEUDO_REGISTER
12090 && REG_N_SETS (regno) == 1
12091 && (!REGNO_REG_SET_P
12092 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12093 && rsp->last_set_label > tick))
12095 if (replace)
12096 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12097 return replace;
12101 return 1;
12103 /* If this is a memory reference, make sure that there were no stores after
12104 it that might have clobbered the value. We don't have alias info, so we
12105 assume any store invalidates it. Moreover, we only have local UIDs, so
12106 we also assume that there were stores in the intervening basic blocks. */
12107 else if (MEM_P (x) && !MEM_READONLY_P (x)
12108 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12110 if (replace)
12111 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12112 return replace;
12115 for (i = 0; i < len; i++)
12117 if (fmt[i] == 'e')
12119 /* Check for identical subexpressions. If x contains
12120 identical subexpression we only have to traverse one of
12121 them. */
12122 if (i == 1 && ARITHMETIC_P (x))
12124 /* Note that at this point x0 has already been checked
12125 and found valid. */
12126 rtx x0 = XEXP (x, 0);
12127 rtx x1 = XEXP (x, 1);
12129 /* If x0 and x1 are identical then x is also valid. */
12130 if (x0 == x1)
12131 return 1;
12133 /* If x1 is identical to a subexpression of x0 then
12134 while checking x0, x1 has already been checked. Thus
12135 it is valid and so as x. */
12136 if (ARITHMETIC_P (x0)
12137 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12138 return 1;
12140 /* If x0 is identical to a subexpression of x1 then x is
12141 valid iff the rest of x1 is valid. */
12142 if (ARITHMETIC_P (x1)
12143 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12144 return
12145 get_last_value_validate (&XEXP (x1,
12146 x0 == XEXP (x1, 0) ? 1 : 0),
12147 insn, tick, replace);
12150 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12151 replace) == 0)
12152 return 0;
12154 else if (fmt[i] == 'E')
12155 for (j = 0; j < XVECLEN (x, i); j++)
12156 if (get_last_value_validate (&XVECEXP (x, i, j),
12157 insn, tick, replace) == 0)
12158 return 0;
12161 /* If we haven't found a reason for it to be invalid, it is valid. */
12162 return 1;
12165 /* Get the last value assigned to X, if known. Some registers
12166 in the value may be replaced with (clobber (const_int 0)) if their value
12167 is known longer known reliably. */
12169 static rtx
12170 get_last_value (const_rtx x)
12172 unsigned int regno;
12173 rtx value;
12174 reg_stat_type *rsp;
12176 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12177 then convert it to the desired mode. If this is a paradoxical SUBREG,
12178 we cannot predict what values the "extra" bits might have. */
12179 if (GET_CODE (x) == SUBREG
12180 && subreg_lowpart_p (x)
12181 && (GET_MODE_SIZE (GET_MODE (x))
12182 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12183 && (value = get_last_value (SUBREG_REG (x))) != 0)
12184 return gen_lowpart (GET_MODE (x), value);
12186 if (!REG_P (x))
12187 return 0;
12189 regno = REGNO (x);
12190 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12191 value = rsp->last_set_value;
12193 /* If we don't have a value, or if it isn't for this basic block and
12194 it's either a hard register, set more than once, or it's a live
12195 at the beginning of the function, return 0.
12197 Because if it's not live at the beginning of the function then the reg
12198 is always set before being used (is never used without being set).
12199 And, if it's set only once, and it's always set before use, then all
12200 uses must have the same last value, even if it's not from this basic
12201 block. */
12203 if (value == 0
12204 || (rsp->last_set_label < label_tick_ebb_start
12205 && (regno < FIRST_PSEUDO_REGISTER
12206 || REG_N_SETS (regno) != 1
12207 || REGNO_REG_SET_P
12208 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12209 return 0;
12211 /* If the value was set in a later insn than the ones we are processing,
12212 we can't use it even if the register was only set once. */
12213 if (rsp->last_set_label == label_tick
12214 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12215 return 0;
12217 /* If the value has all its registers valid, return it. */
12218 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12219 return value;
12221 /* Otherwise, make a copy and replace any invalid register with
12222 (clobber (const_int 0)). If that fails for some reason, return 0. */
12224 value = copy_rtx (value);
12225 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12226 return value;
12228 return 0;
12231 /* Return nonzero if expression X refers to a REG or to memory
12232 that is set in an instruction more recent than FROM_LUID. */
12234 static int
12235 use_crosses_set_p (const_rtx x, int from_luid)
12237 const char *fmt;
12238 int i;
12239 enum rtx_code code = GET_CODE (x);
12241 if (code == REG)
12243 unsigned int regno = REGNO (x);
12244 unsigned endreg = END_REGNO (x);
12246 #ifdef PUSH_ROUNDING
12247 /* Don't allow uses of the stack pointer to be moved,
12248 because we don't know whether the move crosses a push insn. */
12249 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12250 return 1;
12251 #endif
12252 for (; regno < endreg; regno++)
12254 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12255 if (rsp->last_set
12256 && rsp->last_set_label == label_tick
12257 && DF_INSN_LUID (rsp->last_set) > from_luid)
12258 return 1;
12260 return 0;
12263 if (code == MEM && mem_last_set > from_luid)
12264 return 1;
12266 fmt = GET_RTX_FORMAT (code);
12268 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12270 if (fmt[i] == 'E')
12272 int j;
12273 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12274 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12275 return 1;
12277 else if (fmt[i] == 'e'
12278 && use_crosses_set_p (XEXP (x, i), from_luid))
12279 return 1;
12281 return 0;
12284 /* Define three variables used for communication between the following
12285 routines. */
12287 static unsigned int reg_dead_regno, reg_dead_endregno;
12288 static int reg_dead_flag;
12290 /* Function called via note_stores from reg_dead_at_p.
12292 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12293 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12295 static void
12296 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12298 unsigned int regno, endregno;
12300 if (!REG_P (dest))
12301 return;
12303 regno = REGNO (dest);
12304 endregno = END_REGNO (dest);
12305 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12306 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12309 /* Return nonzero if REG is known to be dead at INSN.
12311 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12312 referencing REG, it is dead. If we hit a SET referencing REG, it is
12313 live. Otherwise, see if it is live or dead at the start of the basic
12314 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12315 must be assumed to be always live. */
12317 static int
12318 reg_dead_at_p (rtx reg, rtx insn)
12320 basic_block block;
12321 unsigned int i;
12323 /* Set variables for reg_dead_at_p_1. */
12324 reg_dead_regno = REGNO (reg);
12325 reg_dead_endregno = END_REGNO (reg);
12327 reg_dead_flag = 0;
12329 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12330 we allow the machine description to decide whether use-and-clobber
12331 patterns are OK. */
12332 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12334 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12335 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12336 return 0;
12339 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12340 beginning of basic block. */
12341 block = BLOCK_FOR_INSN (insn);
12342 for (;;)
12344 if (INSN_P (insn))
12346 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12347 if (reg_dead_flag)
12348 return reg_dead_flag == 1 ? 1 : 0;
12350 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12351 return 1;
12354 if (insn == BB_HEAD (block))
12355 break;
12357 insn = PREV_INSN (insn);
12360 /* Look at live-in sets for the basic block that we were in. */
12361 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12362 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12363 return 0;
12365 return 1;
12368 /* Note hard registers in X that are used. */
12370 static void
12371 mark_used_regs_combine (rtx x)
12373 RTX_CODE code = GET_CODE (x);
12374 unsigned int regno;
12375 int i;
12377 switch (code)
12379 case LABEL_REF:
12380 case SYMBOL_REF:
12381 case CONST_INT:
12382 case CONST:
12383 case CONST_DOUBLE:
12384 case CONST_VECTOR:
12385 case PC:
12386 case ADDR_VEC:
12387 case ADDR_DIFF_VEC:
12388 case ASM_INPUT:
12389 #ifdef HAVE_cc0
12390 /* CC0 must die in the insn after it is set, so we don't need to take
12391 special note of it here. */
12392 case CC0:
12393 #endif
12394 return;
12396 case CLOBBER:
12397 /* If we are clobbering a MEM, mark any hard registers inside the
12398 address as used. */
12399 if (MEM_P (XEXP (x, 0)))
12400 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12401 return;
12403 case REG:
12404 regno = REGNO (x);
12405 /* A hard reg in a wide mode may really be multiple registers.
12406 If so, mark all of them just like the first. */
12407 if (regno < FIRST_PSEUDO_REGISTER)
12409 /* None of this applies to the stack, frame or arg pointers. */
12410 if (regno == STACK_POINTER_REGNUM
12411 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12412 || regno == HARD_FRAME_POINTER_REGNUM
12413 #endif
12414 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12415 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12416 #endif
12417 || regno == FRAME_POINTER_REGNUM)
12418 return;
12420 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12422 return;
12424 case SET:
12426 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12427 the address. */
12428 rtx testreg = SET_DEST (x);
12430 while (GET_CODE (testreg) == SUBREG
12431 || GET_CODE (testreg) == ZERO_EXTRACT
12432 || GET_CODE (testreg) == STRICT_LOW_PART)
12433 testreg = XEXP (testreg, 0);
12435 if (MEM_P (testreg))
12436 mark_used_regs_combine (XEXP (testreg, 0));
12438 mark_used_regs_combine (SET_SRC (x));
12440 return;
12442 default:
12443 break;
12446 /* Recursively scan the operands of this expression. */
12449 const char *fmt = GET_RTX_FORMAT (code);
12451 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12453 if (fmt[i] == 'e')
12454 mark_used_regs_combine (XEXP (x, i));
12455 else if (fmt[i] == 'E')
12457 int j;
12459 for (j = 0; j < XVECLEN (x, i); j++)
12460 mark_used_regs_combine (XVECEXP (x, i, j));
12466 /* Remove register number REGNO from the dead registers list of INSN.
12468 Return the note used to record the death, if there was one. */
12471 remove_death (unsigned int regno, rtx insn)
12473 rtx note = find_regno_note (insn, REG_DEAD, regno);
12475 if (note)
12476 remove_note (insn, note);
12478 return note;
12481 /* For each register (hardware or pseudo) used within expression X, if its
12482 death is in an instruction with luid between FROM_LUID (inclusive) and
12483 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12484 list headed by PNOTES.
12486 That said, don't move registers killed by maybe_kill_insn.
12488 This is done when X is being merged by combination into TO_INSN. These
12489 notes will then be distributed as needed. */
12491 static void
12492 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12493 rtx *pnotes)
12495 const char *fmt;
12496 int len, i;
12497 enum rtx_code code = GET_CODE (x);
12499 if (code == REG)
12501 unsigned int regno = REGNO (x);
12502 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12504 /* Don't move the register if it gets killed in between from and to. */
12505 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12506 && ! reg_referenced_p (x, maybe_kill_insn))
12507 return;
12509 if (where_dead
12510 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12511 && DF_INSN_LUID (where_dead) >= from_luid
12512 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12514 rtx note = remove_death (regno, where_dead);
12516 /* It is possible for the call above to return 0. This can occur
12517 when last_death points to I2 or I1 that we combined with.
12518 In that case make a new note.
12520 We must also check for the case where X is a hard register
12521 and NOTE is a death note for a range of hard registers
12522 including X. In that case, we must put REG_DEAD notes for
12523 the remaining registers in place of NOTE. */
12525 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12526 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12527 > GET_MODE_SIZE (GET_MODE (x))))
12529 unsigned int deadregno = REGNO (XEXP (note, 0));
12530 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12531 unsigned int ourend = END_HARD_REGNO (x);
12532 unsigned int i;
12534 for (i = deadregno; i < deadend; i++)
12535 if (i < regno || i >= ourend)
12536 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12539 /* If we didn't find any note, or if we found a REG_DEAD note that
12540 covers only part of the given reg, and we have a multi-reg hard
12541 register, then to be safe we must check for REG_DEAD notes
12542 for each register other than the first. They could have
12543 their own REG_DEAD notes lying around. */
12544 else if ((note == 0
12545 || (note != 0
12546 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12547 < GET_MODE_SIZE (GET_MODE (x)))))
12548 && regno < FIRST_PSEUDO_REGISTER
12549 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12551 unsigned int ourend = END_HARD_REGNO (x);
12552 unsigned int i, offset;
12553 rtx oldnotes = 0;
12555 if (note)
12556 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12557 else
12558 offset = 1;
12560 for (i = regno + offset; i < ourend; i++)
12561 move_deaths (regno_reg_rtx[i],
12562 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12565 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12567 XEXP (note, 1) = *pnotes;
12568 *pnotes = note;
12570 else
12571 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12574 return;
12577 else if (GET_CODE (x) == SET)
12579 rtx dest = SET_DEST (x);
12581 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12583 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12584 that accesses one word of a multi-word item, some
12585 piece of everything register in the expression is used by
12586 this insn, so remove any old death. */
12587 /* ??? So why do we test for equality of the sizes? */
12589 if (GET_CODE (dest) == ZERO_EXTRACT
12590 || GET_CODE (dest) == STRICT_LOW_PART
12591 || (GET_CODE (dest) == SUBREG
12592 && (((GET_MODE_SIZE (GET_MODE (dest))
12593 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12594 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12595 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12597 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12598 return;
12601 /* If this is some other SUBREG, we know it replaces the entire
12602 value, so use that as the destination. */
12603 if (GET_CODE (dest) == SUBREG)
12604 dest = SUBREG_REG (dest);
12606 /* If this is a MEM, adjust deaths of anything used in the address.
12607 For a REG (the only other possibility), the entire value is
12608 being replaced so the old value is not used in this insn. */
12610 if (MEM_P (dest))
12611 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12612 to_insn, pnotes);
12613 return;
12616 else if (GET_CODE (x) == CLOBBER)
12617 return;
12619 len = GET_RTX_LENGTH (code);
12620 fmt = GET_RTX_FORMAT (code);
12622 for (i = 0; i < len; i++)
12624 if (fmt[i] == 'E')
12626 int j;
12627 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12628 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12629 to_insn, pnotes);
12631 else if (fmt[i] == 'e')
12632 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12636 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12637 pattern of an insn. X must be a REG. */
12639 static int
12640 reg_bitfield_target_p (rtx x, rtx body)
12642 int i;
12644 if (GET_CODE (body) == SET)
12646 rtx dest = SET_DEST (body);
12647 rtx target;
12648 unsigned int regno, tregno, endregno, endtregno;
12650 if (GET_CODE (dest) == ZERO_EXTRACT)
12651 target = XEXP (dest, 0);
12652 else if (GET_CODE (dest) == STRICT_LOW_PART)
12653 target = SUBREG_REG (XEXP (dest, 0));
12654 else
12655 return 0;
12657 if (GET_CODE (target) == SUBREG)
12658 target = SUBREG_REG (target);
12660 if (!REG_P (target))
12661 return 0;
12663 tregno = REGNO (target), regno = REGNO (x);
12664 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12665 return target == x;
12667 endtregno = end_hard_regno (GET_MODE (target), tregno);
12668 endregno = end_hard_regno (GET_MODE (x), regno);
12670 return endregno > tregno && regno < endtregno;
12673 else if (GET_CODE (body) == PARALLEL)
12674 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12675 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12676 return 1;
12678 return 0;
12681 /* Return the next insn after INSN that is neither a NOTE nor a
12682 DEBUG_INSN. This routine does not look inside SEQUENCEs. */
12684 static rtx
12685 next_nonnote_nondebug_insn (rtx insn)
12687 while (insn)
12689 insn = NEXT_INSN (insn);
12690 if (insn == 0)
12691 break;
12692 if (NOTE_P (insn))
12693 continue;
12694 if (DEBUG_INSN_P (insn))
12695 continue;
12696 break;
12699 return insn;
12704 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12705 as appropriate. I3 and I2 are the insns resulting from the combination
12706 insns including FROM (I2 may be zero).
12708 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12709 not need REG_DEAD notes because they are being substituted for. This
12710 saves searching in the most common cases.
12712 Each note in the list is either ignored or placed on some insns, depending
12713 on the type of note. */
12715 static void
12716 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12717 rtx elim_i1)
12719 rtx note, next_note;
12720 rtx tem;
12722 for (note = notes; note; note = next_note)
12724 rtx place = 0, place2 = 0;
12726 next_note = XEXP (note, 1);
12727 switch (REG_NOTE_KIND (note))
12729 case REG_BR_PROB:
12730 case REG_BR_PRED:
12731 /* Doesn't matter much where we put this, as long as it's somewhere.
12732 It is preferable to keep these notes on branches, which is most
12733 likely to be i3. */
12734 place = i3;
12735 break;
12737 case REG_VALUE_PROFILE:
12738 /* Just get rid of this note, as it is unused later anyway. */
12739 break;
12741 case REG_NON_LOCAL_GOTO:
12742 if (JUMP_P (i3))
12743 place = i3;
12744 else
12746 gcc_assert (i2 && JUMP_P (i2));
12747 place = i2;
12749 break;
12751 case REG_EH_REGION:
12752 /* These notes must remain with the call or trapping instruction. */
12753 if (CALL_P (i3))
12754 place = i3;
12755 else if (i2 && CALL_P (i2))
12756 place = i2;
12757 else
12759 gcc_assert (flag_non_call_exceptions);
12760 if (may_trap_p (i3))
12761 place = i3;
12762 else if (i2 && may_trap_p (i2))
12763 place = i2;
12764 /* ??? Otherwise assume we've combined things such that we
12765 can now prove that the instructions can't trap. Drop the
12766 note in this case. */
12768 break;
12770 case REG_NORETURN:
12771 case REG_SETJMP:
12772 /* These notes must remain with the call. It should not be
12773 possible for both I2 and I3 to be a call. */
12774 if (CALL_P (i3))
12775 place = i3;
12776 else
12778 gcc_assert (i2 && CALL_P (i2));
12779 place = i2;
12781 break;
12783 case REG_UNUSED:
12784 /* Any clobbers for i3 may still exist, and so we must process
12785 REG_UNUSED notes from that insn.
12787 Any clobbers from i2 or i1 can only exist if they were added by
12788 recog_for_combine. In that case, recog_for_combine created the
12789 necessary REG_UNUSED notes. Trying to keep any original
12790 REG_UNUSED notes from these insns can cause incorrect output
12791 if it is for the same register as the original i3 dest.
12792 In that case, we will notice that the register is set in i3,
12793 and then add a REG_UNUSED note for the destination of i3, which
12794 is wrong. However, it is possible to have REG_UNUSED notes from
12795 i2 or i1 for register which were both used and clobbered, so
12796 we keep notes from i2 or i1 if they will turn into REG_DEAD
12797 notes. */
12799 /* If this register is set or clobbered in I3, put the note there
12800 unless there is one already. */
12801 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12803 if (from_insn != i3)
12804 break;
12806 if (! (REG_P (XEXP (note, 0))
12807 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12808 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12809 place = i3;
12811 /* Otherwise, if this register is used by I3, then this register
12812 now dies here, so we must put a REG_DEAD note here unless there
12813 is one already. */
12814 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12815 && ! (REG_P (XEXP (note, 0))
12816 ? find_regno_note (i3, REG_DEAD,
12817 REGNO (XEXP (note, 0)))
12818 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12820 PUT_REG_NOTE_KIND (note, REG_DEAD);
12821 place = i3;
12823 break;
12825 case REG_EQUAL:
12826 case REG_EQUIV:
12827 case REG_NOALIAS:
12828 /* These notes say something about results of an insn. We can
12829 only support them if they used to be on I3 in which case they
12830 remain on I3. Otherwise they are ignored.
12832 If the note refers to an expression that is not a constant, we
12833 must also ignore the note since we cannot tell whether the
12834 equivalence is still true. It might be possible to do
12835 slightly better than this (we only have a problem if I2DEST
12836 or I1DEST is present in the expression), but it doesn't
12837 seem worth the trouble. */
12839 if (from_insn == i3
12840 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12841 place = i3;
12842 break;
12844 case REG_INC:
12845 /* These notes say something about how a register is used. They must
12846 be present on any use of the register in I2 or I3. */
12847 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12848 place = i3;
12850 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12852 if (place)
12853 place2 = i2;
12854 else
12855 place = i2;
12857 break;
12859 case REG_LABEL_TARGET:
12860 case REG_LABEL_OPERAND:
12861 /* This can show up in several ways -- either directly in the
12862 pattern, or hidden off in the constant pool with (or without?)
12863 a REG_EQUAL note. */
12864 /* ??? Ignore the without-reg_equal-note problem for now. */
12865 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12866 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12867 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12868 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12869 place = i3;
12871 if (i2
12872 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12873 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12874 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12875 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12877 if (place)
12878 place2 = i2;
12879 else
12880 place = i2;
12883 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12884 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12885 there. */
12886 if (place && JUMP_P (place)
12887 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12888 && (JUMP_LABEL (place) == NULL
12889 || JUMP_LABEL (place) == XEXP (note, 0)))
12891 rtx label = JUMP_LABEL (place);
12893 if (!label)
12894 JUMP_LABEL (place) = XEXP (note, 0);
12895 else if (LABEL_P (label))
12896 LABEL_NUSES (label)--;
12899 if (place2 && JUMP_P (place2)
12900 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12901 && (JUMP_LABEL (place2) == NULL
12902 || JUMP_LABEL (place2) == XEXP (note, 0)))
12904 rtx label = JUMP_LABEL (place2);
12906 if (!label)
12907 JUMP_LABEL (place2) = XEXP (note, 0);
12908 else if (LABEL_P (label))
12909 LABEL_NUSES (label)--;
12910 place2 = 0;
12912 break;
12914 case REG_NONNEG:
12915 /* This note says something about the value of a register prior
12916 to the execution of an insn. It is too much trouble to see
12917 if the note is still correct in all situations. It is better
12918 to simply delete it. */
12919 break;
12921 case REG_DEAD:
12922 /* If we replaced the right hand side of FROM_INSN with a
12923 REG_EQUAL note, the original use of the dying register
12924 will not have been combined into I3 and I2. In such cases,
12925 FROM_INSN is guaranteed to be the first of the combined
12926 instructions, so we simply need to search back before
12927 FROM_INSN for the previous use or set of this register,
12928 then alter the notes there appropriately.
12930 If the register is used as an input in I3, it dies there.
12931 Similarly for I2, if it is nonzero and adjacent to I3.
12933 If the register is not used as an input in either I3 or I2
12934 and it is not one of the registers we were supposed to eliminate,
12935 there are two possibilities. We might have a non-adjacent I2
12936 or we might have somehow eliminated an additional register
12937 from a computation. For example, we might have had A & B where
12938 we discover that B will always be zero. In this case we will
12939 eliminate the reference to A.
12941 In both cases, we must search to see if we can find a previous
12942 use of A and put the death note there. */
12944 if (from_insn
12945 && from_insn == i2mod
12946 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12947 tem = from_insn;
12948 else
12950 if (from_insn
12951 && CALL_P (from_insn)
12952 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12953 place = from_insn;
12954 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12955 place = i3;
12956 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
12957 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12958 place = i2;
12959 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12960 && !(i2mod
12961 && reg_overlap_mentioned_p (XEXP (note, 0),
12962 i2mod_old_rhs)))
12963 || rtx_equal_p (XEXP (note, 0), elim_i1))
12964 break;
12965 tem = i3;
12968 if (place == 0)
12970 basic_block bb = this_basic_block;
12972 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12974 if (!NONDEBUG_INSN_P (tem))
12976 if (tem == BB_HEAD (bb))
12977 break;
12978 continue;
12981 /* If the register is being set at TEM, see if that is all
12982 TEM is doing. If so, delete TEM. Otherwise, make this
12983 into a REG_UNUSED note instead. Don't delete sets to
12984 global register vars. */
12985 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12986 || !global_regs[REGNO (XEXP (note, 0))])
12987 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12989 rtx set = single_set (tem);
12990 rtx inner_dest = 0;
12991 #ifdef HAVE_cc0
12992 rtx cc0_setter = NULL_RTX;
12993 #endif
12995 if (set != 0)
12996 for (inner_dest = SET_DEST (set);
12997 (GET_CODE (inner_dest) == STRICT_LOW_PART
12998 || GET_CODE (inner_dest) == SUBREG
12999 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13000 inner_dest = XEXP (inner_dest, 0))
13003 /* Verify that it was the set, and not a clobber that
13004 modified the register.
13006 CC0 targets must be careful to maintain setter/user
13007 pairs. If we cannot delete the setter due to side
13008 effects, mark the user with an UNUSED note instead
13009 of deleting it. */
13011 if (set != 0 && ! side_effects_p (SET_SRC (set))
13012 && rtx_equal_p (XEXP (note, 0), inner_dest)
13013 #ifdef HAVE_cc0
13014 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13015 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13016 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13017 #endif
13020 /* Move the notes and links of TEM elsewhere.
13021 This might delete other dead insns recursively.
13022 First set the pattern to something that won't use
13023 any register. */
13024 rtx old_notes = REG_NOTES (tem);
13026 PATTERN (tem) = pc_rtx;
13027 REG_NOTES (tem) = NULL;
13029 distribute_notes (old_notes, tem, tem, NULL_RTX,
13030 NULL_RTX, NULL_RTX);
13031 distribute_links (LOG_LINKS (tem));
13033 SET_INSN_DELETED (tem);
13034 if (tem == i2)
13035 i2 = NULL_RTX;
13037 #ifdef HAVE_cc0
13038 /* Delete the setter too. */
13039 if (cc0_setter)
13041 PATTERN (cc0_setter) = pc_rtx;
13042 old_notes = REG_NOTES (cc0_setter);
13043 REG_NOTES (cc0_setter) = NULL;
13045 distribute_notes (old_notes, cc0_setter,
13046 cc0_setter, NULL_RTX,
13047 NULL_RTX, NULL_RTX);
13048 distribute_links (LOG_LINKS (cc0_setter));
13050 SET_INSN_DELETED (cc0_setter);
13051 if (cc0_setter == i2)
13052 i2 = NULL_RTX;
13054 #endif
13056 else
13058 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13060 /* If there isn't already a REG_UNUSED note, put one
13061 here. Do not place a REG_DEAD note, even if
13062 the register is also used here; that would not
13063 match the algorithm used in lifetime analysis
13064 and can cause the consistency check in the
13065 scheduler to fail. */
13066 if (! find_regno_note (tem, REG_UNUSED,
13067 REGNO (XEXP (note, 0))))
13068 place = tem;
13069 break;
13072 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13073 || (CALL_P (tem)
13074 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13076 place = tem;
13078 /* If we are doing a 3->2 combination, and we have a
13079 register which formerly died in i3 and was not used
13080 by i2, which now no longer dies in i3 and is used in
13081 i2 but does not die in i2, and place is between i2
13082 and i3, then we may need to move a link from place to
13083 i2. */
13084 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13085 && from_insn
13086 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13087 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13089 rtx links = LOG_LINKS (place);
13090 LOG_LINKS (place) = 0;
13091 distribute_links (links);
13093 break;
13096 if (tem == BB_HEAD (bb))
13097 break;
13102 /* If the register is set or already dead at PLACE, we needn't do
13103 anything with this note if it is still a REG_DEAD note.
13104 We check here if it is set at all, not if is it totally replaced,
13105 which is what `dead_or_set_p' checks, so also check for it being
13106 set partially. */
13108 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13110 unsigned int regno = REGNO (XEXP (note, 0));
13111 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13113 if (dead_or_set_p (place, XEXP (note, 0))
13114 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13116 /* Unless the register previously died in PLACE, clear
13117 last_death. [I no longer understand why this is
13118 being done.] */
13119 if (rsp->last_death != place)
13120 rsp->last_death = 0;
13121 place = 0;
13123 else
13124 rsp->last_death = place;
13126 /* If this is a death note for a hard reg that is occupying
13127 multiple registers, ensure that we are still using all
13128 parts of the object. If we find a piece of the object
13129 that is unused, we must arrange for an appropriate REG_DEAD
13130 note to be added for it. However, we can't just emit a USE
13131 and tag the note to it, since the register might actually
13132 be dead; so we recourse, and the recursive call then finds
13133 the previous insn that used this register. */
13135 if (place && regno < FIRST_PSEUDO_REGISTER
13136 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13138 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13139 int all_used = 1;
13140 unsigned int i;
13142 for (i = regno; i < endregno; i++)
13143 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13144 && ! find_regno_fusage (place, USE, i))
13145 || dead_or_set_regno_p (place, i))
13146 all_used = 0;
13148 if (! all_used)
13150 /* Put only REG_DEAD notes for pieces that are
13151 not already dead or set. */
13153 for (i = regno; i < endregno;
13154 i += hard_regno_nregs[i][reg_raw_mode[i]])
13156 rtx piece = regno_reg_rtx[i];
13157 basic_block bb = this_basic_block;
13159 if (! dead_or_set_p (place, piece)
13160 && ! reg_bitfield_target_p (piece,
13161 PATTERN (place)))
13163 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13164 NULL_RTX);
13166 distribute_notes (new_note, place, place,
13167 NULL_RTX, NULL_RTX, NULL_RTX);
13169 else if (! refers_to_regno_p (i, i + 1,
13170 PATTERN (place), 0)
13171 && ! find_regno_fusage (place, USE, i))
13172 for (tem = PREV_INSN (place); ;
13173 tem = PREV_INSN (tem))
13175 if (!NONDEBUG_INSN_P (tem))
13177 if (tem == BB_HEAD (bb))
13178 break;
13179 continue;
13181 if (dead_or_set_p (tem, piece)
13182 || reg_bitfield_target_p (piece,
13183 PATTERN (tem)))
13185 add_reg_note (tem, REG_UNUSED, piece);
13186 break;
13192 place = 0;
13196 break;
13198 default:
13199 /* Any other notes should not be present at this point in the
13200 compilation. */
13201 gcc_unreachable ();
13204 if (place)
13206 XEXP (note, 1) = REG_NOTES (place);
13207 REG_NOTES (place) = note;
13210 if (place2)
13211 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13215 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13216 I3, I2, and I1 to new locations. This is also called to add a link
13217 pointing at I3 when I3's destination is changed. */
13219 static void
13220 distribute_links (rtx links)
13222 rtx link, next_link;
13224 for (link = links; link; link = next_link)
13226 rtx place = 0;
13227 rtx insn;
13228 rtx set, reg;
13230 next_link = XEXP (link, 1);
13232 /* If the insn that this link points to is a NOTE or isn't a single
13233 set, ignore it. In the latter case, it isn't clear what we
13234 can do other than ignore the link, since we can't tell which
13235 register it was for. Such links wouldn't be used by combine
13236 anyway.
13238 It is not possible for the destination of the target of the link to
13239 have been changed by combine. The only potential of this is if we
13240 replace I3, I2, and I1 by I3 and I2. But in that case the
13241 destination of I2 also remains unchanged. */
13243 if (NOTE_P (XEXP (link, 0))
13244 || (set = single_set (XEXP (link, 0))) == 0)
13245 continue;
13247 reg = SET_DEST (set);
13248 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13249 || GET_CODE (reg) == STRICT_LOW_PART)
13250 reg = XEXP (reg, 0);
13252 /* A LOG_LINK is defined as being placed on the first insn that uses
13253 a register and points to the insn that sets the register. Start
13254 searching at the next insn after the target of the link and stop
13255 when we reach a set of the register or the end of the basic block.
13257 Note that this correctly handles the link that used to point from
13258 I3 to I2. Also note that not much searching is typically done here
13259 since most links don't point very far away. */
13261 for (insn = NEXT_INSN (XEXP (link, 0));
13262 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13263 || BB_HEAD (this_basic_block->next_bb) != insn));
13264 insn = NEXT_INSN (insn))
13265 if (DEBUG_INSN_P (insn))
13266 continue;
13267 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13269 if (reg_referenced_p (reg, PATTERN (insn)))
13270 place = insn;
13271 break;
13273 else if (CALL_P (insn)
13274 && find_reg_fusage (insn, USE, reg))
13276 place = insn;
13277 break;
13279 else if (INSN_P (insn) && reg_set_p (reg, insn))
13280 break;
13282 /* If we found a place to put the link, place it there unless there
13283 is already a link to the same insn as LINK at that point. */
13285 if (place)
13287 rtx link2;
13289 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13290 if (XEXP (link2, 0) == XEXP (link, 0))
13291 break;
13293 if (link2 == 0)
13295 XEXP (link, 1) = LOG_LINKS (place);
13296 LOG_LINKS (place) = link;
13298 /* Set added_links_insn to the earliest insn we added a
13299 link to. */
13300 if (added_links_insn == 0
13301 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13302 added_links_insn = place;
13308 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13309 Check whether the expression pointer to by LOC is a register or
13310 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13311 Otherwise return zero. */
13313 static int
13314 unmentioned_reg_p_1 (rtx *loc, void *expr)
13316 rtx x = *loc;
13318 if (x != NULL_RTX
13319 && (REG_P (x) || MEM_P (x))
13320 && ! reg_mentioned_p (x, (rtx) expr))
13321 return 1;
13322 return 0;
13325 /* Check for any register or memory mentioned in EQUIV that is not
13326 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13327 of EXPR where some registers may have been replaced by constants. */
13329 static bool
13330 unmentioned_reg_p (rtx equiv, rtx expr)
13332 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13335 void
13336 dump_combine_stats (FILE *file)
13338 fprintf
13339 (file,
13340 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13341 combine_attempts, combine_merges, combine_extras, combine_successes);
13344 void
13345 dump_combine_total_stats (FILE *file)
13347 fprintf
13348 (file,
13349 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13350 total_attempts, total_merges, total_extras, total_successes);
13353 static bool
13354 gate_handle_combine (void)
13356 return (optimize > 0);
13359 /* Try combining insns through substitution. */
13360 static unsigned int
13361 rest_of_handle_combine (void)
13363 int rebuild_jump_labels_after_combine;
13365 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13366 df_note_add_problem ();
13367 df_analyze ();
13369 regstat_init_n_sets_and_refs ();
13371 rebuild_jump_labels_after_combine
13372 = combine_instructions (get_insns (), max_reg_num ());
13374 /* Combining insns may have turned an indirect jump into a
13375 direct jump. Rebuild the JUMP_LABEL fields of jumping
13376 instructions. */
13377 if (rebuild_jump_labels_after_combine)
13379 timevar_push (TV_JUMP);
13380 rebuild_jump_labels (get_insns ());
13381 cleanup_cfg (0);
13382 timevar_pop (TV_JUMP);
13385 regstat_free_n_sets_and_refs ();
13386 return 0;
13389 struct rtl_opt_pass pass_combine =
13392 RTL_PASS,
13393 "combine", /* name */
13394 gate_handle_combine, /* gate */
13395 rest_of_handle_combine, /* execute */
13396 NULL, /* sub */
13397 NULL, /* next */
13398 0, /* static_pass_number */
13399 TV_COMBINE, /* tv_id */
13400 PROP_cfglayout, /* properties_required */
13401 0, /* properties_provided */
13402 0, /* properties_destroyed */
13403 0, /* todo_flags_start */
13404 TODO_dump_func |
13405 TODO_df_finish | TODO_verify_rtl_sharing |
13406 TODO_ggc_collect, /* todo_flags_finish */