Merge from mainline (154736:156693)
[official-gcc/graphite-test-results.git] / gcc / ada / sem_ch4.adb
blob899b1a05878e19f6218c88040311b44b6d7a1701
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Util; use Exp_Util;
32 with Fname; use Fname;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_SCIL; use Sem_SCIL;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Sem_Type; use Sem_Type;
57 with Stand; use Stand;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Tbuild; use Tbuild;
62 package body Sem_Ch4 is
64 -----------------------
65 -- Local Subprograms --
66 -----------------------
68 procedure Analyze_Concatenation_Rest (N : Node_Id);
69 -- Does the "rest" of the work of Analyze_Concatenation, after the left
70 -- operand has been analyzed. See Analyze_Concatenation for details.
72 procedure Analyze_Expression (N : Node_Id);
73 -- For expressions that are not names, this is just a call to analyze.
74 -- If the expression is a name, it may be a call to a parameterless
75 -- function, and if so must be converted into an explicit call node
76 -- and analyzed as such. This deproceduring must be done during the first
77 -- pass of overload resolution, because otherwise a procedure call with
78 -- overloaded actuals may fail to resolve.
80 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
81 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
82 -- is an operator name or an expanded name whose selector is an operator
83 -- name, and one possible interpretation is as a predefined operator.
85 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
86 -- If the prefix of a selected_component is overloaded, the proper
87 -- interpretation that yields a record type with the proper selector
88 -- name must be selected.
90 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
91 -- Procedure to analyze a user defined binary operator, which is resolved
92 -- like a function, but instead of a list of actuals it is presented
93 -- with the left and right operands of an operator node.
95 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
96 -- Procedure to analyze a user defined unary operator, which is resolved
97 -- like a function, but instead of a list of actuals, it is presented with
98 -- the operand of the operator node.
100 procedure Ambiguous_Operands (N : Node_Id);
101 -- for equality, membership, and comparison operators with overloaded
102 -- arguments, list possible interpretations.
104 procedure Analyze_One_Call
105 (N : Node_Id;
106 Nam : Entity_Id;
107 Report : Boolean;
108 Success : out Boolean;
109 Skip_First : Boolean := False);
110 -- Check one interpretation of an overloaded subprogram name for
111 -- compatibility with the types of the actuals in a call. If there is a
112 -- single interpretation which does not match, post error if Report is
113 -- set to True.
115 -- Nam is the entity that provides the formals against which the actuals
116 -- are checked. Nam is either the name of a subprogram, or the internal
117 -- subprogram type constructed for an access_to_subprogram. If the actuals
118 -- are compatible with Nam, then Nam is added to the list of candidate
119 -- interpretations for N, and Success is set to True.
121 -- The flag Skip_First is used when analyzing a call that was rewritten
122 -- from object notation. In this case the first actual may have to receive
123 -- an explicit dereference, depending on the first formal of the operation
124 -- being called. The caller will have verified that the object is legal
125 -- for the call. If the remaining parameters match, the first parameter
126 -- will rewritten as a dereference if needed, prior to completing analysis.
128 procedure Check_Misspelled_Selector
129 (Prefix : Entity_Id;
130 Sel : Node_Id);
131 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
132 -- spelling of one of the selectors of the Prefix. This is called by
133 -- Analyze_Selected_Component after producing an invalid selector error
134 -- message.
136 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
137 -- Verify that type T is declared in scope S. Used to find interpretations
138 -- for operators given by expanded names. This is abstracted as a separate
139 -- function to handle extensions to System, where S is System, but T is
140 -- declared in the extension.
142 procedure Find_Arithmetic_Types
143 (L, R : Node_Id;
144 Op_Id : Entity_Id;
145 N : Node_Id);
146 -- L and R are the operands of an arithmetic operator. Find
147 -- consistent pairs of interpretations for L and R that have a
148 -- numeric type consistent with the semantics of the operator.
150 procedure Find_Comparison_Types
151 (L, R : Node_Id;
152 Op_Id : Entity_Id;
153 N : Node_Id);
154 -- L and R are operands of a comparison operator. Find consistent
155 -- pairs of interpretations for L and R.
157 procedure Find_Concatenation_Types
158 (L, R : Node_Id;
159 Op_Id : Entity_Id;
160 N : Node_Id);
161 -- For the four varieties of concatenation
163 procedure Find_Equality_Types
164 (L, R : Node_Id;
165 Op_Id : Entity_Id;
166 N : Node_Id);
167 -- Ditto for equality operators
169 procedure Find_Boolean_Types
170 (L, R : Node_Id;
171 Op_Id : Entity_Id;
172 N : Node_Id);
173 -- Ditto for binary logical operations
175 procedure Find_Negation_Types
176 (R : Node_Id;
177 Op_Id : Entity_Id;
178 N : Node_Id);
179 -- Find consistent interpretation for operand of negation operator
181 procedure Find_Non_Universal_Interpretations
182 (N : Node_Id;
183 R : Node_Id;
184 Op_Id : Entity_Id;
185 T1 : Entity_Id);
186 -- For equality and comparison operators, the result is always boolean,
187 -- and the legality of the operation is determined from the visibility
188 -- of the operand types. If one of the operands has a universal interpre-
189 -- tation, the legality check uses some compatible non-universal
190 -- interpretation of the other operand. N can be an operator node, or
191 -- a function call whose name is an operator designator.
193 function Find_Primitive_Operation (N : Node_Id) return Boolean;
194 -- Find candidate interpretations for the name Obj.Proc when it appears
195 -- in a subprogram renaming declaration.
197 procedure Find_Unary_Types
198 (R : Node_Id;
199 Op_Id : Entity_Id;
200 N : Node_Id);
201 -- Unary arithmetic types: plus, minus, abs
203 procedure Check_Arithmetic_Pair
204 (T1, T2 : Entity_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
207 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
208 -- types for left and right operand. Determine whether they constitute
209 -- a valid pair for the given operator, and record the corresponding
210 -- interpretation of the operator node. The node N may be an operator
211 -- node (the usual case) or a function call whose prefix is an operator
212 -- designator. In both cases Op_Id is the operator name itself.
214 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
215 -- Give detailed information on overloaded call where none of the
216 -- interpretations match. N is the call node, Nam the designator for
217 -- the overloaded entity being called.
219 function Junk_Operand (N : Node_Id) return Boolean;
220 -- Test for an operand that is an inappropriate entity (e.g. a package
221 -- name or a label). If so, issue an error message and return True. If
222 -- the operand is not an inappropriate entity kind, return False.
224 procedure Operator_Check (N : Node_Id);
225 -- Verify that an operator has received some valid interpretation. If none
226 -- was found, determine whether a use clause would make the operation
227 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
228 -- every type compatible with the operator, even if the operator for the
229 -- type is not directly visible. The routine uses this type to emit a more
230 -- informative message.
232 function Process_Implicit_Dereference_Prefix
233 (E : Entity_Id;
234 P : Node_Id) return Entity_Id;
235 -- Called when P is the prefix of an implicit dereference, denoting an
236 -- object E. The function returns the designated type of the prefix, taking
237 -- into account that the designated type of an anonymous access type may be
238 -- a limited view, when the non-limited view is visible.
239 -- If in semantics only mode (-gnatc or generic), the function also records
240 -- that the prefix is a reference to E, if any. Normally, such a reference
241 -- is generated only when the implicit dereference is expanded into an
242 -- explicit one, but for consistency we must generate the reference when
243 -- expansion is disabled as well.
245 procedure Remove_Abstract_Operations (N : Node_Id);
246 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
247 -- operation is not a candidate interpretation.
249 function Try_Indexed_Call
250 (N : Node_Id;
251 Nam : Entity_Id;
252 Typ : Entity_Id;
253 Skip_First : Boolean) return Boolean;
254 -- If a function has defaults for all its actuals, a call to it may in fact
255 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
256 -- interpretation as an indexing, prior to analysis as a call. If both are
257 -- possible, the node is overloaded with both interpretations (same symbol
258 -- but two different types). If the call is written in prefix form, the
259 -- prefix becomes the first parameter in the call, and only the remaining
260 -- actuals must be checked for the presence of defaults.
262 function Try_Indirect_Call
263 (N : Node_Id;
264 Nam : Entity_Id;
265 Typ : Entity_Id) return Boolean;
266 -- Similarly, a function F that needs no actuals can return an access to a
267 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
268 -- the call may be overloaded with both interpretations.
270 function Try_Object_Operation (N : Node_Id) return Boolean;
271 -- Ada 2005 (AI-252): Support the object.operation notation
273 procedure wpo (T : Entity_Id);
274 pragma Warnings (Off, wpo);
275 -- Used for debugging: obtain list of primitive operations even if
276 -- type is not frozen and dispatch table is not built yet.
278 ------------------------
279 -- Ambiguous_Operands --
280 ------------------------
282 procedure Ambiguous_Operands (N : Node_Id) is
283 procedure List_Operand_Interps (Opnd : Node_Id);
285 --------------------------
286 -- List_Operand_Interps --
287 --------------------------
289 procedure List_Operand_Interps (Opnd : Node_Id) is
290 Nam : Node_Id;
291 Err : Node_Id := N;
293 begin
294 if Is_Overloaded (Opnd) then
295 if Nkind (Opnd) in N_Op then
296 Nam := Opnd;
297 elsif Nkind (Opnd) = N_Function_Call then
298 Nam := Name (Opnd);
299 else
300 return;
301 end if;
303 else
304 return;
305 end if;
307 if Opnd = Left_Opnd (N) then
308 Error_Msg_N
309 ("\left operand has the following interpretations", N);
310 else
311 Error_Msg_N
312 ("\right operand has the following interpretations", N);
313 Err := Opnd;
314 end if;
316 List_Interps (Nam, Err);
317 end List_Operand_Interps;
319 -- Start of processing for Ambiguous_Operands
321 begin
322 if Nkind (N) in N_Membership_Test then
323 Error_Msg_N ("ambiguous operands for membership", N);
325 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
326 Error_Msg_N ("ambiguous operands for equality", N);
328 else
329 Error_Msg_N ("ambiguous operands for comparison", N);
330 end if;
332 if All_Errors_Mode then
333 List_Operand_Interps (Left_Opnd (N));
334 List_Operand_Interps (Right_Opnd (N));
335 else
336 Error_Msg_N ("\use -gnatf switch for details", N);
337 end if;
338 end Ambiguous_Operands;
340 -----------------------
341 -- Analyze_Aggregate --
342 -----------------------
344 -- Most of the analysis of Aggregates requires that the type be known,
345 -- and is therefore put off until resolution.
347 procedure Analyze_Aggregate (N : Node_Id) is
348 begin
349 if No (Etype (N)) then
350 Set_Etype (N, Any_Composite);
351 end if;
352 end Analyze_Aggregate;
354 -----------------------
355 -- Analyze_Allocator --
356 -----------------------
358 procedure Analyze_Allocator (N : Node_Id) is
359 Loc : constant Source_Ptr := Sloc (N);
360 Sav_Errs : constant Nat := Serious_Errors_Detected;
361 E : Node_Id := Expression (N);
362 Acc_Type : Entity_Id;
363 Type_Id : Entity_Id;
365 begin
366 -- In accordance with H.4(7), the No_Allocators restriction only applies
367 -- to user-written allocators.
369 if Comes_From_Source (N) then
370 Check_Restriction (No_Allocators, N);
371 end if;
373 if Nkind (E) = N_Qualified_Expression then
374 Acc_Type := Create_Itype (E_Allocator_Type, N);
375 Set_Etype (Acc_Type, Acc_Type);
376 Find_Type (Subtype_Mark (E));
378 -- Analyze the qualified expression, and apply the name resolution
379 -- rule given in 4.7 (3).
381 Analyze (E);
382 Type_Id := Etype (E);
383 Set_Directly_Designated_Type (Acc_Type, Type_Id);
385 Resolve (Expression (E), Type_Id);
387 if Is_Limited_Type (Type_Id)
388 and then Comes_From_Source (N)
389 and then not In_Instance_Body
390 then
391 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
392 Error_Msg_N ("initialization not allowed for limited types", N);
393 Explain_Limited_Type (Type_Id, N);
394 end if;
395 end if;
397 -- A qualified expression requires an exact match of the type,
398 -- class-wide matching is not allowed.
400 -- if Is_Class_Wide_Type (Type_Id)
401 -- and then Base_Type
402 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
403 -- then
404 -- Wrong_Type (Expression (E), Type_Id);
405 -- end if;
407 Check_Non_Static_Context (Expression (E));
409 -- We don't analyze the qualified expression itself because it's
410 -- part of the allocator
412 Set_Etype (E, Type_Id);
414 -- Case where allocator has a subtype indication
416 else
417 declare
418 Def_Id : Entity_Id;
419 Base_Typ : Entity_Id;
421 begin
422 -- If the allocator includes a N_Subtype_Indication then a
423 -- constraint is present, otherwise the node is a subtype mark.
424 -- Introduce an explicit subtype declaration into the tree
425 -- defining some anonymous subtype and rewrite the allocator to
426 -- use this subtype rather than the subtype indication.
428 -- It is important to introduce the explicit subtype declaration
429 -- so that the bounds of the subtype indication are attached to
430 -- the tree in case the allocator is inside a generic unit.
432 if Nkind (E) = N_Subtype_Indication then
434 -- A constraint is only allowed for a composite type in Ada
435 -- 95. In Ada 83, a constraint is also allowed for an
436 -- access-to-composite type, but the constraint is ignored.
438 Find_Type (Subtype_Mark (E));
439 Base_Typ := Entity (Subtype_Mark (E));
441 if Is_Elementary_Type (Base_Typ) then
442 if not (Ada_Version = Ada_83
443 and then Is_Access_Type (Base_Typ))
444 then
445 Error_Msg_N ("constraint not allowed here", E);
447 if Nkind (Constraint (E)) =
448 N_Index_Or_Discriminant_Constraint
449 then
450 Error_Msg_N -- CODEFIX
451 ("\if qualified expression was meant, " &
452 "use apostrophe", Constraint (E));
453 end if;
454 end if;
456 -- Get rid of the bogus constraint:
458 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
459 Analyze_Allocator (N);
460 return;
462 -- Ada 2005, AI-363: if the designated type has a constrained
463 -- partial view, it cannot receive a discriminant constraint,
464 -- and the allocated object is unconstrained.
466 elsif Ada_Version >= Ada_05
467 and then Has_Constrained_Partial_View (Base_Typ)
468 then
469 Error_Msg_N
470 ("constraint no allowed when type " &
471 "has a constrained partial view", Constraint (E));
472 end if;
474 if Expander_Active then
475 Def_Id :=
476 Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
478 Insert_Action (E,
479 Make_Subtype_Declaration (Loc,
480 Defining_Identifier => Def_Id,
481 Subtype_Indication => Relocate_Node (E)));
483 if Sav_Errs /= Serious_Errors_Detected
484 and then Nkind (Constraint (E)) =
485 N_Index_Or_Discriminant_Constraint
486 then
487 Error_Msg_N -- CODEFIX
488 ("if qualified expression was meant, " &
489 "use apostrophe!", Constraint (E));
490 end if;
492 E := New_Occurrence_Of (Def_Id, Loc);
493 Rewrite (Expression (N), E);
494 end if;
495 end if;
497 Type_Id := Process_Subtype (E, N);
498 Acc_Type := Create_Itype (E_Allocator_Type, N);
499 Set_Etype (Acc_Type, Acc_Type);
500 Set_Directly_Designated_Type (Acc_Type, Type_Id);
501 Check_Fully_Declared (Type_Id, N);
503 -- Ada 2005 (AI-231): If the designated type is itself an access
504 -- type that excludes null, its default initialization will
505 -- be a null object, and we can insert an unconditional raise
506 -- before the allocator.
508 if Can_Never_Be_Null (Type_Id) then
509 declare
510 Not_Null_Check : constant Node_Id :=
511 Make_Raise_Constraint_Error (Sloc (E),
512 Reason => CE_Null_Not_Allowed);
513 begin
514 if Expander_Active then
515 Insert_Action (N, Not_Null_Check);
516 Analyze (Not_Null_Check);
517 else
518 Error_Msg_N ("null value not allowed here?", E);
519 end if;
520 end;
521 end if;
523 -- Check restriction against dynamically allocated protected
524 -- objects. Note that when limited aggregates are supported,
525 -- a similar test should be applied to an allocator with a
526 -- qualified expression ???
528 if Is_Protected_Type (Type_Id) then
529 Check_Restriction (No_Protected_Type_Allocators, N);
530 end if;
532 -- Check for missing initialization. Skip this check if we already
533 -- had errors on analyzing the allocator, since in that case these
534 -- are probably cascaded errors.
536 if Is_Indefinite_Subtype (Type_Id)
537 and then Serious_Errors_Detected = Sav_Errs
538 then
539 if Is_Class_Wide_Type (Type_Id) then
540 Error_Msg_N
541 ("initialization required in class-wide allocation", N);
542 else
543 if Ada_Version < Ada_05
544 and then Is_Limited_Type (Type_Id)
545 then
546 Error_Msg_N ("unconstrained allocation not allowed", N);
548 if Is_Array_Type (Type_Id) then
549 Error_Msg_N
550 ("\constraint with array bounds required", N);
552 elsif Has_Unknown_Discriminants (Type_Id) then
553 null;
555 else pragma Assert (Has_Discriminants (Type_Id));
556 Error_Msg_N
557 ("\constraint with discriminant values required", N);
558 end if;
560 -- Limited Ada 2005 and general non-limited case
562 else
563 Error_Msg_N
564 ("uninitialized unconstrained allocation not allowed",
567 if Is_Array_Type (Type_Id) then
568 Error_Msg_N
569 ("\qualified expression or constraint with " &
570 "array bounds required", N);
572 elsif Has_Unknown_Discriminants (Type_Id) then
573 Error_Msg_N ("\qualified expression required", N);
575 else pragma Assert (Has_Discriminants (Type_Id));
576 Error_Msg_N
577 ("\qualified expression or constraint with " &
578 "discriminant values required", N);
579 end if;
580 end if;
581 end if;
582 end if;
583 end;
584 end if;
586 if Is_Abstract_Type (Type_Id) then
587 Error_Msg_N ("cannot allocate abstract object", E);
588 end if;
590 if Has_Task (Designated_Type (Acc_Type)) then
591 Check_Restriction (No_Tasking, N);
592 Check_Restriction (Max_Tasks, N);
593 Check_Restriction (No_Task_Allocators, N);
594 end if;
596 -- If the No_Streams restriction is set, check that the type of the
597 -- object is not, and does not contain, any subtype derived from
598 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
599 -- Has_Stream just for efficiency reasons. There is no point in
600 -- spending time on a Has_Stream check if the restriction is not set.
602 if Restrictions.Set (No_Streams) then
603 if Has_Stream (Designated_Type (Acc_Type)) then
604 Check_Restriction (No_Streams, N);
605 end if;
606 end if;
608 Set_Etype (N, Acc_Type);
610 if not Is_Library_Level_Entity (Acc_Type) then
611 Check_Restriction (No_Local_Allocators, N);
612 end if;
614 if Serious_Errors_Detected > Sav_Errs then
615 Set_Error_Posted (N);
616 Set_Etype (N, Any_Type);
617 end if;
618 end Analyze_Allocator;
620 ---------------------------
621 -- Analyze_Arithmetic_Op --
622 ---------------------------
624 procedure Analyze_Arithmetic_Op (N : Node_Id) is
625 L : constant Node_Id := Left_Opnd (N);
626 R : constant Node_Id := Right_Opnd (N);
627 Op_Id : Entity_Id;
629 begin
630 Candidate_Type := Empty;
631 Analyze_Expression (L);
632 Analyze_Expression (R);
634 -- If the entity is already set, the node is the instantiation of a
635 -- generic node with a non-local reference, or was manufactured by a
636 -- call to Make_Op_xxx. In either case the entity is known to be valid,
637 -- and we do not need to collect interpretations, instead we just get
638 -- the single possible interpretation.
640 Op_Id := Entity (N);
642 if Present (Op_Id) then
643 if Ekind (Op_Id) = E_Operator then
645 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
646 and then Treat_Fixed_As_Integer (N)
647 then
648 null;
649 else
650 Set_Etype (N, Any_Type);
651 Find_Arithmetic_Types (L, R, Op_Id, N);
652 end if;
654 else
655 Set_Etype (N, Any_Type);
656 Add_One_Interp (N, Op_Id, Etype (Op_Id));
657 end if;
659 -- Entity is not already set, so we do need to collect interpretations
661 else
662 Op_Id := Get_Name_Entity_Id (Chars (N));
663 Set_Etype (N, Any_Type);
665 while Present (Op_Id) loop
666 if Ekind (Op_Id) = E_Operator
667 and then Present (Next_Entity (First_Entity (Op_Id)))
668 then
669 Find_Arithmetic_Types (L, R, Op_Id, N);
671 -- The following may seem superfluous, because an operator cannot
672 -- be generic, but this ignores the cleverness of the author of
673 -- ACVC bc1013a.
675 elsif Is_Overloadable (Op_Id) then
676 Analyze_User_Defined_Binary_Op (N, Op_Id);
677 end if;
679 Op_Id := Homonym (Op_Id);
680 end loop;
681 end if;
683 Operator_Check (N);
684 end Analyze_Arithmetic_Op;
686 ------------------
687 -- Analyze_Call --
688 ------------------
690 -- Function, procedure, and entry calls are checked here. The Name in
691 -- the call may be overloaded. The actuals have been analyzed and may
692 -- themselves be overloaded. On exit from this procedure, the node N
693 -- may have zero, one or more interpretations. In the first case an
694 -- error message is produced. In the last case, the node is flagged
695 -- as overloaded and the interpretations are collected in All_Interp.
697 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
698 -- the type-checking is similar to that of other calls.
700 procedure Analyze_Call (N : Node_Id) is
701 Actuals : constant List_Id := Parameter_Associations (N);
702 Nam : Node_Id;
703 X : Interp_Index;
704 It : Interp;
705 Nam_Ent : Entity_Id;
706 Success : Boolean := False;
708 Deref : Boolean := False;
709 -- Flag indicates whether an interpretation of the prefix is a
710 -- parameterless call that returns an access_to_subprogram.
712 function Name_Denotes_Function return Boolean;
713 -- If the type of the name is an access to subprogram, this may be the
714 -- type of a name, or the return type of the function being called. If
715 -- the name is not an entity then it can denote a protected function.
716 -- Until we distinguish Etype from Return_Type, we must use this routine
717 -- to resolve the meaning of the name in the call.
719 procedure No_Interpretation;
720 -- Output error message when no valid interpretation exists
722 ---------------------------
723 -- Name_Denotes_Function --
724 ---------------------------
726 function Name_Denotes_Function return Boolean is
727 begin
728 if Is_Entity_Name (Nam) then
729 return Ekind (Entity (Nam)) = E_Function;
731 elsif Nkind (Nam) = N_Selected_Component then
732 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
734 else
735 return False;
736 end if;
737 end Name_Denotes_Function;
739 -----------------------
740 -- No_Interpretation --
741 -----------------------
743 procedure No_Interpretation is
744 L : constant Boolean := Is_List_Member (N);
745 K : constant Node_Kind := Nkind (Parent (N));
747 begin
748 -- If the node is in a list whose parent is not an expression then it
749 -- must be an attempted procedure call.
751 if L and then K not in N_Subexpr then
752 if Ekind (Entity (Nam)) = E_Generic_Procedure then
753 Error_Msg_NE
754 ("must instantiate generic procedure& before call",
755 Nam, Entity (Nam));
756 else
757 Error_Msg_N
758 ("procedure or entry name expected", Nam);
759 end if;
761 -- Check for tasking cases where only an entry call will do
763 elsif not L
764 and then Nkind_In (K, N_Entry_Call_Alternative,
765 N_Triggering_Alternative)
766 then
767 Error_Msg_N ("entry name expected", Nam);
769 -- Otherwise give general error message
771 else
772 Error_Msg_N ("invalid prefix in call", Nam);
773 end if;
774 end No_Interpretation;
776 -- Start of processing for Analyze_Call
778 begin
779 -- Initialize the type of the result of the call to the error type,
780 -- which will be reset if the type is successfully resolved.
782 Set_Etype (N, Any_Type);
784 Nam := Name (N);
786 if not Is_Overloaded (Nam) then
788 -- Only one interpretation to check
790 if Ekind (Etype (Nam)) = E_Subprogram_Type then
791 Nam_Ent := Etype (Nam);
793 -- If the prefix is an access_to_subprogram, this may be an indirect
794 -- call. This is the case if the name in the call is not an entity
795 -- name, or if it is a function name in the context of a procedure
796 -- call. In this latter case, we have a call to a parameterless
797 -- function that returns a pointer_to_procedure which is the entity
798 -- being called. Finally, F (X) may be a call to a parameterless
799 -- function that returns a pointer to a function with parameters.
801 elsif Is_Access_Type (Etype (Nam))
802 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
803 and then
804 (not Name_Denotes_Function
805 or else Nkind (N) = N_Procedure_Call_Statement
806 or else
807 (Nkind (Parent (N)) /= N_Explicit_Dereference
808 and then Is_Entity_Name (Nam)
809 and then No (First_Formal (Entity (Nam)))
810 and then Present (Actuals)))
811 then
812 Nam_Ent := Designated_Type (Etype (Nam));
813 Insert_Explicit_Dereference (Nam);
815 -- Selected component case. Simple entry or protected operation,
816 -- where the entry name is given by the selector name.
818 elsif Nkind (Nam) = N_Selected_Component then
819 Nam_Ent := Entity (Selector_Name (Nam));
821 if Ekind (Nam_Ent) /= E_Entry
822 and then Ekind (Nam_Ent) /= E_Entry_Family
823 and then Ekind (Nam_Ent) /= E_Function
824 and then Ekind (Nam_Ent) /= E_Procedure
825 then
826 Error_Msg_N ("name in call is not a callable entity", Nam);
827 Set_Etype (N, Any_Type);
828 return;
829 end if;
831 -- If the name is an Indexed component, it can be a call to a member
832 -- of an entry family. The prefix must be a selected component whose
833 -- selector is the entry. Analyze_Procedure_Call normalizes several
834 -- kinds of call into this form.
836 elsif Nkind (Nam) = N_Indexed_Component then
837 if Nkind (Prefix (Nam)) = N_Selected_Component then
838 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
839 else
840 Error_Msg_N ("name in call is not a callable entity", Nam);
841 Set_Etype (N, Any_Type);
842 return;
843 end if;
845 elsif not Is_Entity_Name (Nam) then
846 Error_Msg_N ("name in call is not a callable entity", Nam);
847 Set_Etype (N, Any_Type);
848 return;
850 else
851 Nam_Ent := Entity (Nam);
853 -- If no interpretations, give error message
855 if not Is_Overloadable (Nam_Ent) then
856 No_Interpretation;
857 return;
858 end if;
859 end if;
861 -- Operations generated for RACW stub types are called only through
862 -- dispatching, and can never be the static interpretation of a call.
864 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
865 No_Interpretation;
866 return;
867 end if;
869 Analyze_One_Call (N, Nam_Ent, True, Success);
871 -- If this is an indirect call, the return type of the access_to
872 -- subprogram may be an incomplete type. At the point of the call,
873 -- use the full type if available, and at the same time update
874 -- the return type of the access_to_subprogram.
876 if Success
877 and then Nkind (Nam) = N_Explicit_Dereference
878 and then Ekind (Etype (N)) = E_Incomplete_Type
879 and then Present (Full_View (Etype (N)))
880 then
881 Set_Etype (N, Full_View (Etype (N)));
882 Set_Etype (Nam_Ent, Etype (N));
883 end if;
885 else
886 -- An overloaded selected component must denote overloaded operations
887 -- of a concurrent type. The interpretations are attached to the
888 -- simple name of those operations.
890 if Nkind (Nam) = N_Selected_Component then
891 Nam := Selector_Name (Nam);
892 end if;
894 Get_First_Interp (Nam, X, It);
896 while Present (It.Nam) loop
897 Nam_Ent := It.Nam;
898 Deref := False;
900 -- Name may be call that returns an access to subprogram, or more
901 -- generally an overloaded expression one of whose interpretations
902 -- yields an access to subprogram. If the name is an entity, we
903 -- do not dereference, because the node is a call that returns
904 -- the access type: note difference between f(x), where the call
905 -- may return an access subprogram type, and f(x)(y), where the
906 -- type returned by the call to f is implicitly dereferenced to
907 -- analyze the outer call.
909 if Is_Access_Type (Nam_Ent) then
910 Nam_Ent := Designated_Type (Nam_Ent);
912 elsif Is_Access_Type (Etype (Nam_Ent))
913 and then
914 (not Is_Entity_Name (Nam)
915 or else Nkind (N) = N_Procedure_Call_Statement)
916 and then Ekind (Designated_Type (Etype (Nam_Ent)))
917 = E_Subprogram_Type
918 then
919 Nam_Ent := Designated_Type (Etype (Nam_Ent));
921 if Is_Entity_Name (Nam) then
922 Deref := True;
923 end if;
924 end if;
926 Analyze_One_Call (N, Nam_Ent, False, Success);
928 -- If the interpretation succeeds, mark the proper type of the
929 -- prefix (any valid candidate will do). If not, remove the
930 -- candidate interpretation. This only needs to be done for
931 -- overloaded protected operations, for other entities disambi-
932 -- guation is done directly in Resolve.
934 if Success then
935 if Deref
936 and then Nkind (Parent (N)) /= N_Explicit_Dereference
937 then
938 Set_Entity (Nam, It.Nam);
939 Insert_Explicit_Dereference (Nam);
940 Set_Etype (Nam, Nam_Ent);
942 else
943 Set_Etype (Nam, It.Typ);
944 end if;
946 elsif Nkind_In (Name (N), N_Selected_Component,
947 N_Function_Call)
948 then
949 Remove_Interp (X);
950 end if;
952 Get_Next_Interp (X, It);
953 end loop;
955 -- If the name is the result of a function call, it can only
956 -- be a call to a function returning an access to subprogram.
957 -- Insert explicit dereference.
959 if Nkind (Nam) = N_Function_Call then
960 Insert_Explicit_Dereference (Nam);
961 end if;
963 if Etype (N) = Any_Type then
965 -- None of the interpretations is compatible with the actuals
967 Diagnose_Call (N, Nam);
969 -- Special checks for uninstantiated put routines
971 if Nkind (N) = N_Procedure_Call_Statement
972 and then Is_Entity_Name (Nam)
973 and then Chars (Nam) = Name_Put
974 and then List_Length (Actuals) = 1
975 then
976 declare
977 Arg : constant Node_Id := First (Actuals);
978 Typ : Entity_Id;
980 begin
981 if Nkind (Arg) = N_Parameter_Association then
982 Typ := Etype (Explicit_Actual_Parameter (Arg));
983 else
984 Typ := Etype (Arg);
985 end if;
987 if Is_Signed_Integer_Type (Typ) then
988 Error_Msg_N
989 ("possible missing instantiation of " &
990 "'Text_'I'O.'Integer_'I'O!", Nam);
992 elsif Is_Modular_Integer_Type (Typ) then
993 Error_Msg_N
994 ("possible missing instantiation of " &
995 "'Text_'I'O.'Modular_'I'O!", Nam);
997 elsif Is_Floating_Point_Type (Typ) then
998 Error_Msg_N
999 ("possible missing instantiation of " &
1000 "'Text_'I'O.'Float_'I'O!", Nam);
1002 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1003 Error_Msg_N
1004 ("possible missing instantiation of " &
1005 "'Text_'I'O.'Fixed_'I'O!", Nam);
1007 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1008 Error_Msg_N
1009 ("possible missing instantiation of " &
1010 "'Text_'I'O.'Decimal_'I'O!", Nam);
1012 elsif Is_Enumeration_Type (Typ) then
1013 Error_Msg_N
1014 ("possible missing instantiation of " &
1015 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1016 end if;
1017 end;
1018 end if;
1020 elsif not Is_Overloaded (N)
1021 and then Is_Entity_Name (Nam)
1022 then
1023 -- Resolution yields a single interpretation. Verify that the
1024 -- reference has capitalization consistent with the declaration.
1026 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1027 Generate_Reference (Entity (Nam), Nam);
1029 Set_Etype (Nam, Etype (Entity (Nam)));
1030 else
1031 Remove_Abstract_Operations (N);
1032 end if;
1034 End_Interp_List;
1035 end if;
1036 end Analyze_Call;
1038 ---------------------------
1039 -- Analyze_Comparison_Op --
1040 ---------------------------
1042 procedure Analyze_Comparison_Op (N : Node_Id) is
1043 L : constant Node_Id := Left_Opnd (N);
1044 R : constant Node_Id := Right_Opnd (N);
1045 Op_Id : Entity_Id := Entity (N);
1047 begin
1048 Set_Etype (N, Any_Type);
1049 Candidate_Type := Empty;
1051 Analyze_Expression (L);
1052 Analyze_Expression (R);
1054 if Present (Op_Id) then
1055 if Ekind (Op_Id) = E_Operator then
1056 Find_Comparison_Types (L, R, Op_Id, N);
1057 else
1058 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1059 end if;
1061 if Is_Overloaded (L) then
1062 Set_Etype (L, Intersect_Types (L, R));
1063 end if;
1065 else
1066 Op_Id := Get_Name_Entity_Id (Chars (N));
1067 while Present (Op_Id) loop
1068 if Ekind (Op_Id) = E_Operator then
1069 Find_Comparison_Types (L, R, Op_Id, N);
1070 else
1071 Analyze_User_Defined_Binary_Op (N, Op_Id);
1072 end if;
1074 Op_Id := Homonym (Op_Id);
1075 end loop;
1076 end if;
1078 Operator_Check (N);
1079 end Analyze_Comparison_Op;
1081 ---------------------------
1082 -- Analyze_Concatenation --
1083 ---------------------------
1085 procedure Analyze_Concatenation (N : Node_Id) is
1087 -- We wish to avoid deep recursion, because concatenations are often
1088 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1089 -- operands nonrecursively until we find something that is not a
1090 -- concatenation (A in this case), or has already been analyzed. We
1091 -- analyze that, and then walk back up the tree following Parent
1092 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1093 -- work at each level. The Parent pointers allow us to avoid recursion,
1094 -- and thus avoid running out of memory.
1096 NN : Node_Id := N;
1097 L : Node_Id;
1099 begin
1100 Candidate_Type := Empty;
1102 -- The following code is equivalent to:
1104 -- Set_Etype (N, Any_Type);
1105 -- Analyze_Expression (Left_Opnd (N));
1106 -- Analyze_Concatenation_Rest (N);
1108 -- where the Analyze_Expression call recurses back here if the left
1109 -- operand is a concatenation.
1111 -- Walk down left operands
1113 loop
1114 Set_Etype (NN, Any_Type);
1115 L := Left_Opnd (NN);
1116 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1117 NN := L;
1118 end loop;
1120 -- Now (given the above example) NN is A&B and L is A
1122 -- First analyze L ...
1124 Analyze_Expression (L);
1126 -- ... then walk NN back up until we reach N (where we started), calling
1127 -- Analyze_Concatenation_Rest along the way.
1129 loop
1130 Analyze_Concatenation_Rest (NN);
1131 exit when NN = N;
1132 NN := Parent (NN);
1133 end loop;
1134 end Analyze_Concatenation;
1136 --------------------------------
1137 -- Analyze_Concatenation_Rest --
1138 --------------------------------
1140 -- If the only one-dimensional array type in scope is String,
1141 -- this is the resulting type of the operation. Otherwise there
1142 -- will be a concatenation operation defined for each user-defined
1143 -- one-dimensional array.
1145 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1146 L : constant Node_Id := Left_Opnd (N);
1147 R : constant Node_Id := Right_Opnd (N);
1148 Op_Id : Entity_Id := Entity (N);
1149 LT : Entity_Id;
1150 RT : Entity_Id;
1152 begin
1153 Analyze_Expression (R);
1155 -- If the entity is present, the node appears in an instance, and
1156 -- denotes a predefined concatenation operation. The resulting type is
1157 -- obtained from the arguments when possible. If the arguments are
1158 -- aggregates, the array type and the concatenation type must be
1159 -- visible.
1161 if Present (Op_Id) then
1162 if Ekind (Op_Id) = E_Operator then
1164 LT := Base_Type (Etype (L));
1165 RT := Base_Type (Etype (R));
1167 if Is_Array_Type (LT)
1168 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1169 then
1170 Add_One_Interp (N, Op_Id, LT);
1172 elsif Is_Array_Type (RT)
1173 and then LT = Base_Type (Component_Type (RT))
1174 then
1175 Add_One_Interp (N, Op_Id, RT);
1177 -- If one operand is a string type or a user-defined array type,
1178 -- and the other is a literal, result is of the specific type.
1180 elsif
1181 (Root_Type (LT) = Standard_String
1182 or else Scope (LT) /= Standard_Standard)
1183 and then Etype (R) = Any_String
1184 then
1185 Add_One_Interp (N, Op_Id, LT);
1187 elsif
1188 (Root_Type (RT) = Standard_String
1189 or else Scope (RT) /= Standard_Standard)
1190 and then Etype (L) = Any_String
1191 then
1192 Add_One_Interp (N, Op_Id, RT);
1194 elsif not Is_Generic_Type (Etype (Op_Id)) then
1195 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1197 else
1198 -- Type and its operations must be visible
1200 Set_Entity (N, Empty);
1201 Analyze_Concatenation (N);
1202 end if;
1204 else
1205 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1206 end if;
1208 else
1209 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1210 while Present (Op_Id) loop
1211 if Ekind (Op_Id) = E_Operator then
1213 -- Do not consider operators declared in dead code, they can
1214 -- not be part of the resolution.
1216 if Is_Eliminated (Op_Id) then
1217 null;
1218 else
1219 Find_Concatenation_Types (L, R, Op_Id, N);
1220 end if;
1222 else
1223 Analyze_User_Defined_Binary_Op (N, Op_Id);
1224 end if;
1226 Op_Id := Homonym (Op_Id);
1227 end loop;
1228 end if;
1230 Operator_Check (N);
1231 end Analyze_Concatenation_Rest;
1233 ------------------------------------
1234 -- Analyze_Conditional_Expression --
1235 ------------------------------------
1237 procedure Analyze_Conditional_Expression (N : Node_Id) is
1238 Condition : constant Node_Id := First (Expressions (N));
1239 Then_Expr : constant Node_Id := Next (Condition);
1240 Else_Expr : constant Node_Id := Next (Then_Expr);
1242 begin
1243 if Comes_From_Source (N) then
1244 Check_Compiler_Unit (N);
1245 end if;
1247 Analyze_Expression (Condition);
1248 Analyze_Expression (Then_Expr);
1250 if Present (Else_Expr) then
1251 Analyze_Expression (Else_Expr);
1252 end if;
1254 if not Is_Overloaded (Then_Expr) then
1255 Set_Etype (N, Etype (Then_Expr));
1256 else
1257 declare
1258 I : Interp_Index;
1259 It : Interp;
1261 begin
1262 Set_Etype (N, Any_Type);
1263 Get_First_Interp (Then_Expr, I, It);
1264 while Present (It.Nam) loop
1265 if Has_Compatible_Type (Else_Expr, It.Typ) then
1266 Add_One_Interp (N, It.Typ, It.Typ);
1267 end if;
1269 Get_Next_Interp (I, It);
1270 end loop;
1271 end;
1272 end if;
1273 end Analyze_Conditional_Expression;
1275 -------------------------
1276 -- Analyze_Equality_Op --
1277 -------------------------
1279 procedure Analyze_Equality_Op (N : Node_Id) is
1280 Loc : constant Source_Ptr := Sloc (N);
1281 L : constant Node_Id := Left_Opnd (N);
1282 R : constant Node_Id := Right_Opnd (N);
1283 Op_Id : Entity_Id;
1285 begin
1286 Set_Etype (N, Any_Type);
1287 Candidate_Type := Empty;
1289 Analyze_Expression (L);
1290 Analyze_Expression (R);
1292 -- If the entity is set, the node is a generic instance with a non-local
1293 -- reference to the predefined operator or to a user-defined function.
1294 -- It can also be an inequality that is expanded into the negation of a
1295 -- call to a user-defined equality operator.
1297 -- For the predefined case, the result is Boolean, regardless of the
1298 -- type of the operands. The operands may even be limited, if they are
1299 -- generic actuals. If they are overloaded, label the left argument with
1300 -- the common type that must be present, or with the type of the formal
1301 -- of the user-defined function.
1303 if Present (Entity (N)) then
1304 Op_Id := Entity (N);
1306 if Ekind (Op_Id) = E_Operator then
1307 Add_One_Interp (N, Op_Id, Standard_Boolean);
1308 else
1309 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1310 end if;
1312 if Is_Overloaded (L) then
1313 if Ekind (Op_Id) = E_Operator then
1314 Set_Etype (L, Intersect_Types (L, R));
1315 else
1316 Set_Etype (L, Etype (First_Formal (Op_Id)));
1317 end if;
1318 end if;
1320 else
1321 Op_Id := Get_Name_Entity_Id (Chars (N));
1322 while Present (Op_Id) loop
1323 if Ekind (Op_Id) = E_Operator then
1324 Find_Equality_Types (L, R, Op_Id, N);
1325 else
1326 Analyze_User_Defined_Binary_Op (N, Op_Id);
1327 end if;
1329 Op_Id := Homonym (Op_Id);
1330 end loop;
1331 end if;
1333 -- If there was no match, and the operator is inequality, this may
1334 -- be a case where inequality has not been made explicit, as for
1335 -- tagged types. Analyze the node as the negation of an equality
1336 -- operation. This cannot be done earlier, because before analysis
1337 -- we cannot rule out the presence of an explicit inequality.
1339 if Etype (N) = Any_Type
1340 and then Nkind (N) = N_Op_Ne
1341 then
1342 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1343 while Present (Op_Id) loop
1344 if Ekind (Op_Id) = E_Operator then
1345 Find_Equality_Types (L, R, Op_Id, N);
1346 else
1347 Analyze_User_Defined_Binary_Op (N, Op_Id);
1348 end if;
1350 Op_Id := Homonym (Op_Id);
1351 end loop;
1353 if Etype (N) /= Any_Type then
1354 Op_Id := Entity (N);
1356 Rewrite (N,
1357 Make_Op_Not (Loc,
1358 Right_Opnd =>
1359 Make_Op_Eq (Loc,
1360 Left_Opnd => Left_Opnd (N),
1361 Right_Opnd => Right_Opnd (N))));
1363 Set_Entity (Right_Opnd (N), Op_Id);
1364 Analyze (N);
1365 end if;
1366 end if;
1368 Operator_Check (N);
1369 end Analyze_Equality_Op;
1371 ----------------------------------
1372 -- Analyze_Explicit_Dereference --
1373 ----------------------------------
1375 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1376 Loc : constant Source_Ptr := Sloc (N);
1377 P : constant Node_Id := Prefix (N);
1378 T : Entity_Id;
1379 I : Interp_Index;
1380 It : Interp;
1381 New_N : Node_Id;
1383 function Is_Function_Type return Boolean;
1384 -- Check whether node may be interpreted as an implicit function call
1386 ----------------------
1387 -- Is_Function_Type --
1388 ----------------------
1390 function Is_Function_Type return Boolean is
1391 I : Interp_Index;
1392 It : Interp;
1394 begin
1395 if not Is_Overloaded (N) then
1396 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1397 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1399 else
1400 Get_First_Interp (N, I, It);
1401 while Present (It.Nam) loop
1402 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1403 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1404 then
1405 return False;
1406 end if;
1408 Get_Next_Interp (I, It);
1409 end loop;
1411 return True;
1412 end if;
1413 end Is_Function_Type;
1415 -- Start of processing for Analyze_Explicit_Dereference
1417 begin
1418 Analyze (P);
1419 Set_Etype (N, Any_Type);
1421 -- Test for remote access to subprogram type, and if so return
1422 -- after rewriting the original tree.
1424 if Remote_AST_E_Dereference (P) then
1425 return;
1426 end if;
1428 -- Normal processing for other than remote access to subprogram type
1430 if not Is_Overloaded (P) then
1431 if Is_Access_Type (Etype (P)) then
1433 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1434 -- avoid other problems caused by the Private_Subtype and it is
1435 -- safe to go to the Base_Type because this is the same as
1436 -- converting the access value to its Base_Type.
1438 declare
1439 DT : Entity_Id := Designated_Type (Etype (P));
1441 begin
1442 if Ekind (DT) = E_Private_Subtype
1443 and then Is_For_Access_Subtype (DT)
1444 then
1445 DT := Base_Type (DT);
1446 end if;
1448 -- An explicit dereference is a legal occurrence of an
1449 -- incomplete type imported through a limited_with clause,
1450 -- if the full view is visible.
1452 if From_With_Type (DT)
1453 and then not From_With_Type (Scope (DT))
1454 and then
1455 (Is_Immediately_Visible (Scope (DT))
1456 or else
1457 (Is_Child_Unit (Scope (DT))
1458 and then Is_Visible_Child_Unit (Scope (DT))))
1459 then
1460 Set_Etype (N, Available_View (DT));
1462 else
1463 Set_Etype (N, DT);
1464 end if;
1465 end;
1467 elsif Etype (P) /= Any_Type then
1468 Error_Msg_N ("prefix of dereference must be an access type", N);
1469 return;
1470 end if;
1472 else
1473 Get_First_Interp (P, I, It);
1474 while Present (It.Nam) loop
1475 T := It.Typ;
1477 if Is_Access_Type (T) then
1478 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1479 end if;
1481 Get_Next_Interp (I, It);
1482 end loop;
1484 -- Error if no interpretation of the prefix has an access type
1486 if Etype (N) = Any_Type then
1487 Error_Msg_N
1488 ("access type required in prefix of explicit dereference", P);
1489 Set_Etype (N, Any_Type);
1490 return;
1491 end if;
1492 end if;
1494 if Is_Function_Type
1495 and then Nkind (Parent (N)) /= N_Indexed_Component
1497 and then (Nkind (Parent (N)) /= N_Function_Call
1498 or else N /= Name (Parent (N)))
1500 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1501 or else N /= Name (Parent (N)))
1503 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1504 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1505 or else
1506 (Attribute_Name (Parent (N)) /= Name_Address
1507 and then
1508 Attribute_Name (Parent (N)) /= Name_Access))
1509 then
1510 -- Name is a function call with no actuals, in a context that
1511 -- requires deproceduring (including as an actual in an enclosing
1512 -- function or procedure call). There are some pathological cases
1513 -- where the prefix might include functions that return access to
1514 -- subprograms and others that return a regular type. Disambiguation
1515 -- of those has to take place in Resolve.
1517 New_N :=
1518 Make_Function_Call (Loc,
1519 Name => Make_Explicit_Dereference (Loc, P),
1520 Parameter_Associations => New_List);
1522 -- If the prefix is overloaded, remove operations that have formals,
1523 -- we know that this is a parameterless call.
1525 if Is_Overloaded (P) then
1526 Get_First_Interp (P, I, It);
1527 while Present (It.Nam) loop
1528 T := It.Typ;
1530 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1531 Set_Etype (P, T);
1532 else
1533 Remove_Interp (I);
1534 end if;
1536 Get_Next_Interp (I, It);
1537 end loop;
1538 end if;
1540 Rewrite (N, New_N);
1541 Analyze (N);
1543 elsif not Is_Function_Type
1544 and then Is_Overloaded (N)
1545 then
1546 -- The prefix may include access to subprograms and other access
1547 -- types. If the context selects the interpretation that is a
1548 -- function call (not a procedure call) we cannot rewrite the node
1549 -- yet, but we include the result of the call interpretation.
1551 Get_First_Interp (N, I, It);
1552 while Present (It.Nam) loop
1553 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1554 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1555 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1556 then
1557 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1558 end if;
1560 Get_Next_Interp (I, It);
1561 end loop;
1562 end if;
1564 -- A value of remote access-to-class-wide must not be dereferenced
1565 -- (RM E.2.2(16)).
1567 Validate_Remote_Access_To_Class_Wide_Type (N);
1568 end Analyze_Explicit_Dereference;
1570 ------------------------
1571 -- Analyze_Expression --
1572 ------------------------
1574 procedure Analyze_Expression (N : Node_Id) is
1575 begin
1576 Analyze (N);
1577 Check_Parameterless_Call (N);
1578 end Analyze_Expression;
1580 ------------------------------------
1581 -- Analyze_Indexed_Component_Form --
1582 ------------------------------------
1584 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1585 P : constant Node_Id := Prefix (N);
1586 Exprs : constant List_Id := Expressions (N);
1587 Exp : Node_Id;
1588 P_T : Entity_Id;
1589 E : Node_Id;
1590 U_N : Entity_Id;
1592 procedure Process_Function_Call;
1593 -- Prefix in indexed component form is an overloadable entity,
1594 -- so the node is a function call. Reformat it as such.
1596 procedure Process_Indexed_Component;
1597 -- Prefix in indexed component form is actually an indexed component.
1598 -- This routine processes it, knowing that the prefix is already
1599 -- resolved.
1601 procedure Process_Indexed_Component_Or_Slice;
1602 -- An indexed component with a single index may designate a slice if
1603 -- the index is a subtype mark. This routine disambiguates these two
1604 -- cases by resolving the prefix to see if it is a subtype mark.
1606 procedure Process_Overloaded_Indexed_Component;
1607 -- If the prefix of an indexed component is overloaded, the proper
1608 -- interpretation is selected by the index types and the context.
1610 ---------------------------
1611 -- Process_Function_Call --
1612 ---------------------------
1614 procedure Process_Function_Call is
1615 Actual : Node_Id;
1617 begin
1618 Change_Node (N, N_Function_Call);
1619 Set_Name (N, P);
1620 Set_Parameter_Associations (N, Exprs);
1622 -- Analyze actuals prior to analyzing the call itself
1624 Actual := First (Parameter_Associations (N));
1625 while Present (Actual) loop
1626 Analyze (Actual);
1627 Check_Parameterless_Call (Actual);
1629 -- Move to next actual. Note that we use Next, not Next_Actual
1630 -- here. The reason for this is a bit subtle. If a function call
1631 -- includes named associations, the parser recognizes the node as
1632 -- a call, and it is analyzed as such. If all associations are
1633 -- positional, the parser builds an indexed_component node, and
1634 -- it is only after analysis of the prefix that the construct
1635 -- is recognized as a call, in which case Process_Function_Call
1636 -- rewrites the node and analyzes the actuals. If the list of
1637 -- actuals is malformed, the parser may leave the node as an
1638 -- indexed component (despite the presence of named associations).
1639 -- The iterator Next_Actual is equivalent to Next if the list is
1640 -- positional, but follows the normalized chain of actuals when
1641 -- named associations are present. In this case normalization has
1642 -- not taken place, and actuals remain unanalyzed, which leads to
1643 -- subsequent crashes or loops if there is an attempt to continue
1644 -- analysis of the program.
1646 Next (Actual);
1647 end loop;
1649 Analyze_Call (N);
1650 end Process_Function_Call;
1652 -------------------------------
1653 -- Process_Indexed_Component --
1654 -------------------------------
1656 procedure Process_Indexed_Component is
1657 Exp : Node_Id;
1658 Array_Type : Entity_Id;
1659 Index : Node_Id;
1660 Pent : Entity_Id := Empty;
1662 begin
1663 Exp := First (Exprs);
1665 if Is_Overloaded (P) then
1666 Process_Overloaded_Indexed_Component;
1668 else
1669 Array_Type := Etype (P);
1671 if Is_Entity_Name (P) then
1672 Pent := Entity (P);
1673 elsif Nkind (P) = N_Selected_Component
1674 and then Is_Entity_Name (Selector_Name (P))
1675 then
1676 Pent := Entity (Selector_Name (P));
1677 end if;
1679 -- Prefix must be appropriate for an array type, taking into
1680 -- account a possible implicit dereference.
1682 if Is_Access_Type (Array_Type) then
1683 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1684 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
1685 end if;
1687 if Is_Array_Type (Array_Type) then
1688 null;
1690 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
1691 Analyze (Exp);
1692 Set_Etype (N, Any_Type);
1694 if not Has_Compatible_Type
1695 (Exp, Entry_Index_Type (Pent))
1696 then
1697 Error_Msg_N ("invalid index type in entry name", N);
1699 elsif Present (Next (Exp)) then
1700 Error_Msg_N ("too many subscripts in entry reference", N);
1702 else
1703 Set_Etype (N, Etype (P));
1704 end if;
1706 return;
1708 elsif Is_Record_Type (Array_Type)
1709 and then Remote_AST_I_Dereference (P)
1710 then
1711 return;
1713 elsif Array_Type = Any_Type then
1714 Set_Etype (N, Any_Type);
1716 -- In most cases the analysis of the prefix will have emitted
1717 -- an error already, but if the prefix may be interpreted as a
1718 -- call in prefixed notation, the report is left to the caller.
1719 -- To prevent cascaded errors, report only if no previous ones.
1721 if Serious_Errors_Detected = 0 then
1722 Error_Msg_N ("invalid prefix in indexed component", P);
1724 if Nkind (P) = N_Expanded_Name then
1725 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
1726 end if;
1727 end if;
1729 return;
1731 -- Here we definitely have a bad indexing
1733 else
1734 if Nkind (Parent (N)) = N_Requeue_Statement
1735 and then Present (Pent) and then Ekind (Pent) = E_Entry
1736 then
1737 Error_Msg_N
1738 ("REQUEUE does not permit parameters", First (Exprs));
1740 elsif Is_Entity_Name (P)
1741 and then Etype (P) = Standard_Void_Type
1742 then
1743 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1745 else
1746 Error_Msg_N ("array type required in indexed component", P);
1747 end if;
1749 Set_Etype (N, Any_Type);
1750 return;
1751 end if;
1753 Index := First_Index (Array_Type);
1754 while Present (Index) and then Present (Exp) loop
1755 if not Has_Compatible_Type (Exp, Etype (Index)) then
1756 Wrong_Type (Exp, Etype (Index));
1757 Set_Etype (N, Any_Type);
1758 return;
1759 end if;
1761 Next_Index (Index);
1762 Next (Exp);
1763 end loop;
1765 Set_Etype (N, Component_Type (Array_Type));
1767 if Present (Index) then
1768 Error_Msg_N
1769 ("too few subscripts in array reference", First (Exprs));
1771 elsif Present (Exp) then
1772 Error_Msg_N ("too many subscripts in array reference", Exp);
1773 end if;
1774 end if;
1775 end Process_Indexed_Component;
1777 ----------------------------------------
1778 -- Process_Indexed_Component_Or_Slice --
1779 ----------------------------------------
1781 procedure Process_Indexed_Component_Or_Slice is
1782 begin
1783 Exp := First (Exprs);
1784 while Present (Exp) loop
1785 Analyze_Expression (Exp);
1786 Next (Exp);
1787 end loop;
1789 Exp := First (Exprs);
1791 -- If one index is present, and it is a subtype name, then the
1792 -- node denotes a slice (note that the case of an explicit range
1793 -- for a slice was already built as an N_Slice node in the first
1794 -- place, so that case is not handled here).
1796 -- We use a replace rather than a rewrite here because this is one
1797 -- of the cases in which the tree built by the parser is plain wrong.
1799 if No (Next (Exp))
1800 and then Is_Entity_Name (Exp)
1801 and then Is_Type (Entity (Exp))
1802 then
1803 Replace (N,
1804 Make_Slice (Sloc (N),
1805 Prefix => P,
1806 Discrete_Range => New_Copy (Exp)));
1807 Analyze (N);
1809 -- Otherwise (more than one index present, or single index is not
1810 -- a subtype name), then we have the indexed component case.
1812 else
1813 Process_Indexed_Component;
1814 end if;
1815 end Process_Indexed_Component_Or_Slice;
1817 ------------------------------------------
1818 -- Process_Overloaded_Indexed_Component --
1819 ------------------------------------------
1821 procedure Process_Overloaded_Indexed_Component is
1822 Exp : Node_Id;
1823 I : Interp_Index;
1824 It : Interp;
1825 Typ : Entity_Id;
1826 Index : Node_Id;
1827 Found : Boolean;
1829 begin
1830 Set_Etype (N, Any_Type);
1832 Get_First_Interp (P, I, It);
1833 while Present (It.Nam) loop
1834 Typ := It.Typ;
1836 if Is_Access_Type (Typ) then
1837 Typ := Designated_Type (Typ);
1838 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1839 end if;
1841 if Is_Array_Type (Typ) then
1843 -- Got a candidate: verify that index types are compatible
1845 Index := First_Index (Typ);
1846 Found := True;
1847 Exp := First (Exprs);
1848 while Present (Index) and then Present (Exp) loop
1849 if Has_Compatible_Type (Exp, Etype (Index)) then
1850 null;
1851 else
1852 Found := False;
1853 Remove_Interp (I);
1854 exit;
1855 end if;
1857 Next_Index (Index);
1858 Next (Exp);
1859 end loop;
1861 if Found and then No (Index) and then No (Exp) then
1862 Add_One_Interp (N,
1863 Etype (Component_Type (Typ)),
1864 Etype (Component_Type (Typ)));
1865 end if;
1866 end if;
1868 Get_Next_Interp (I, It);
1869 end loop;
1871 if Etype (N) = Any_Type then
1872 Error_Msg_N ("no legal interpretation for indexed component", N);
1873 Set_Is_Overloaded (N, False);
1874 end if;
1876 End_Interp_List;
1877 end Process_Overloaded_Indexed_Component;
1879 -- Start of processing for Analyze_Indexed_Component_Form
1881 begin
1882 -- Get name of array, function or type
1884 Analyze (P);
1886 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
1888 -- If P is an explicit dereference whose prefix is of a
1889 -- remote access-to-subprogram type, then N has already
1890 -- been rewritten as a subprogram call and analyzed.
1892 return;
1893 end if;
1895 pragma Assert (Nkind (N) = N_Indexed_Component);
1897 P_T := Base_Type (Etype (P));
1899 if Is_Entity_Name (P)
1900 or else Nkind (P) = N_Operator_Symbol
1901 then
1902 U_N := Entity (P);
1904 if Is_Type (U_N) then
1906 -- Reformat node as a type conversion
1908 E := Remove_Head (Exprs);
1910 if Present (First (Exprs)) then
1911 Error_Msg_N
1912 ("argument of type conversion must be single expression", N);
1913 end if;
1915 Change_Node (N, N_Type_Conversion);
1916 Set_Subtype_Mark (N, P);
1917 Set_Etype (N, U_N);
1918 Set_Expression (N, E);
1920 -- After changing the node, call for the specific Analysis
1921 -- routine directly, to avoid a double call to the expander.
1923 Analyze_Type_Conversion (N);
1924 return;
1925 end if;
1927 if Is_Overloadable (U_N) then
1928 Process_Function_Call;
1930 elsif Ekind (Etype (P)) = E_Subprogram_Type
1931 or else (Is_Access_Type (Etype (P))
1932 and then
1933 Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
1934 then
1935 -- Call to access_to-subprogram with possible implicit dereference
1937 Process_Function_Call;
1939 elsif Is_Generic_Subprogram (U_N) then
1941 -- A common beginner's (or C++ templates fan) error
1943 Error_Msg_N ("generic subprogram cannot be called", N);
1944 Set_Etype (N, Any_Type);
1945 return;
1947 else
1948 Process_Indexed_Component_Or_Slice;
1949 end if;
1951 -- If not an entity name, prefix is an expression that may denote
1952 -- an array or an access-to-subprogram.
1954 else
1955 if Ekind (P_T) = E_Subprogram_Type
1956 or else (Is_Access_Type (P_T)
1957 and then
1958 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
1959 then
1960 Process_Function_Call;
1962 elsif Nkind (P) = N_Selected_Component
1963 and then Is_Overloadable (Entity (Selector_Name (P)))
1964 then
1965 Process_Function_Call;
1967 else
1968 -- Indexed component, slice, or a call to a member of a family
1969 -- entry, which will be converted to an entry call later.
1971 Process_Indexed_Component_Or_Slice;
1972 end if;
1973 end if;
1974 end Analyze_Indexed_Component_Form;
1976 ------------------------
1977 -- Analyze_Logical_Op --
1978 ------------------------
1980 procedure Analyze_Logical_Op (N : Node_Id) is
1981 L : constant Node_Id := Left_Opnd (N);
1982 R : constant Node_Id := Right_Opnd (N);
1983 Op_Id : Entity_Id := Entity (N);
1985 begin
1986 Set_Etype (N, Any_Type);
1987 Candidate_Type := Empty;
1989 Analyze_Expression (L);
1990 Analyze_Expression (R);
1992 if Present (Op_Id) then
1994 if Ekind (Op_Id) = E_Operator then
1995 Find_Boolean_Types (L, R, Op_Id, N);
1996 else
1997 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1998 end if;
2000 else
2001 Op_Id := Get_Name_Entity_Id (Chars (N));
2002 while Present (Op_Id) loop
2003 if Ekind (Op_Id) = E_Operator then
2004 Find_Boolean_Types (L, R, Op_Id, N);
2005 else
2006 Analyze_User_Defined_Binary_Op (N, Op_Id);
2007 end if;
2009 Op_Id := Homonym (Op_Id);
2010 end loop;
2011 end if;
2013 Operator_Check (N);
2014 end Analyze_Logical_Op;
2016 ---------------------------
2017 -- Analyze_Membership_Op --
2018 ---------------------------
2020 procedure Analyze_Membership_Op (N : Node_Id) is
2021 L : constant Node_Id := Left_Opnd (N);
2022 R : constant Node_Id := Right_Opnd (N);
2024 Index : Interp_Index;
2025 It : Interp;
2026 Found : Boolean := False;
2027 I_F : Interp_Index;
2028 T_F : Entity_Id;
2030 procedure Try_One_Interp (T1 : Entity_Id);
2031 -- Routine to try one proposed interpretation. Note that the context
2032 -- of the operation plays no role in resolving the arguments, so that
2033 -- if there is more than one interpretation of the operands that is
2034 -- compatible with a membership test, the operation is ambiguous.
2036 --------------------
2037 -- Try_One_Interp --
2038 --------------------
2040 procedure Try_One_Interp (T1 : Entity_Id) is
2041 begin
2042 if Has_Compatible_Type (R, T1) then
2043 if Found
2044 and then Base_Type (T1) /= Base_Type (T_F)
2045 then
2046 It := Disambiguate (L, I_F, Index, Any_Type);
2048 if It = No_Interp then
2049 Ambiguous_Operands (N);
2050 Set_Etype (L, Any_Type);
2051 return;
2053 else
2054 T_F := It.Typ;
2055 end if;
2057 else
2058 Found := True;
2059 T_F := T1;
2060 I_F := Index;
2061 end if;
2063 Set_Etype (L, T_F);
2064 end if;
2065 end Try_One_Interp;
2067 procedure Analyze_Set_Membership;
2068 -- If a set of alternatives is present, analyze each and find the
2069 -- common type to which they must all resolve.
2071 ----------------------------
2072 -- Analyze_Set_Membership --
2073 ----------------------------
2075 procedure Analyze_Set_Membership is
2076 Alt : Node_Id;
2077 Index : Interp_Index;
2078 It : Interp;
2079 Candidate_Interps : Node_Id;
2080 Common_Type : Entity_Id := Empty;
2082 begin
2083 Analyze (L);
2084 Candidate_Interps := L;
2086 if not Is_Overloaded (L) then
2087 Common_Type := Etype (L);
2089 Alt := First (Alternatives (N));
2090 while Present (Alt) loop
2091 Analyze (Alt);
2093 if not Has_Compatible_Type (Alt, Common_Type) then
2094 Wrong_Type (Alt, Common_Type);
2095 end if;
2097 Next (Alt);
2098 end loop;
2100 else
2101 Alt := First (Alternatives (N));
2102 while Present (Alt) loop
2103 Analyze (Alt);
2104 if not Is_Overloaded (Alt) then
2105 Common_Type := Etype (Alt);
2107 else
2108 Get_First_Interp (Alt, Index, It);
2109 while Present (It.Typ) loop
2110 if not
2111 Has_Compatible_Type (Candidate_Interps, It.Typ)
2112 then
2113 Remove_Interp (Index);
2114 end if;
2116 Get_Next_Interp (Index, It);
2117 end loop;
2119 Get_First_Interp (Alt, Index, It);
2121 if No (It.Typ) then
2122 Error_Msg_N ("alternative has no legal type", Alt);
2123 return;
2124 end if;
2126 -- If alternative is not overloaded, we have a unique type
2127 -- for all of them.
2129 Set_Etype (Alt, It.Typ);
2130 Get_Next_Interp (Index, It);
2132 if No (It.Typ) then
2133 Set_Is_Overloaded (Alt, False);
2134 Common_Type := Etype (Alt);
2135 end if;
2137 Candidate_Interps := Alt;
2138 end if;
2140 Next (Alt);
2141 end loop;
2142 end if;
2144 Set_Etype (N, Standard_Boolean);
2146 if Present (Common_Type) then
2147 Set_Etype (L, Common_Type);
2148 Set_Is_Overloaded (L, False);
2150 else
2151 Error_Msg_N ("cannot resolve membership operation", N);
2152 end if;
2153 end Analyze_Set_Membership;
2155 -- Start of processing for Analyze_Membership_Op
2157 begin
2158 Analyze_Expression (L);
2160 if No (R)
2161 and then Extensions_Allowed
2162 then
2163 Analyze_Set_Membership;
2164 return;
2165 end if;
2167 if Nkind (R) = N_Range
2168 or else (Nkind (R) = N_Attribute_Reference
2169 and then Attribute_Name (R) = Name_Range)
2170 then
2171 Analyze (R);
2173 if not Is_Overloaded (L) then
2174 Try_One_Interp (Etype (L));
2176 else
2177 Get_First_Interp (L, Index, It);
2178 while Present (It.Typ) loop
2179 Try_One_Interp (It.Typ);
2180 Get_Next_Interp (Index, It);
2181 end loop;
2182 end if;
2184 -- If not a range, it can only be a subtype mark, or else there
2185 -- is a more basic error, to be diagnosed in Find_Type.
2187 else
2188 Find_Type (R);
2190 if Is_Entity_Name (R) then
2191 Check_Fully_Declared (Entity (R), R);
2192 end if;
2193 end if;
2195 -- Compatibility between expression and subtype mark or range is
2196 -- checked during resolution. The result of the operation is Boolean
2197 -- in any case.
2199 Set_Etype (N, Standard_Boolean);
2201 if Comes_From_Source (N)
2202 and then Present (Right_Opnd (N))
2203 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2204 then
2205 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2206 end if;
2207 end Analyze_Membership_Op;
2209 ----------------------
2210 -- Analyze_Negation --
2211 ----------------------
2213 procedure Analyze_Negation (N : Node_Id) is
2214 R : constant Node_Id := Right_Opnd (N);
2215 Op_Id : Entity_Id := Entity (N);
2217 begin
2218 Set_Etype (N, Any_Type);
2219 Candidate_Type := Empty;
2221 Analyze_Expression (R);
2223 if Present (Op_Id) then
2224 if Ekind (Op_Id) = E_Operator then
2225 Find_Negation_Types (R, Op_Id, N);
2226 else
2227 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2228 end if;
2230 else
2231 Op_Id := Get_Name_Entity_Id (Chars (N));
2232 while Present (Op_Id) loop
2233 if Ekind (Op_Id) = E_Operator then
2234 Find_Negation_Types (R, Op_Id, N);
2235 else
2236 Analyze_User_Defined_Unary_Op (N, Op_Id);
2237 end if;
2239 Op_Id := Homonym (Op_Id);
2240 end loop;
2241 end if;
2243 Operator_Check (N);
2244 end Analyze_Negation;
2246 ------------------
2247 -- Analyze_Null --
2248 ------------------
2250 procedure Analyze_Null (N : Node_Id) is
2251 begin
2252 Set_Etype (N, Any_Access);
2253 end Analyze_Null;
2255 ----------------------
2256 -- Analyze_One_Call --
2257 ----------------------
2259 procedure Analyze_One_Call
2260 (N : Node_Id;
2261 Nam : Entity_Id;
2262 Report : Boolean;
2263 Success : out Boolean;
2264 Skip_First : Boolean := False)
2266 Actuals : constant List_Id := Parameter_Associations (N);
2267 Prev_T : constant Entity_Id := Etype (N);
2269 Must_Skip : constant Boolean := Skip_First
2270 or else Nkind (Original_Node (N)) = N_Selected_Component
2271 or else
2272 (Nkind (Original_Node (N)) = N_Indexed_Component
2273 and then Nkind (Prefix (Original_Node (N)))
2274 = N_Selected_Component);
2275 -- The first formal must be omitted from the match when trying to find
2276 -- a primitive operation that is a possible interpretation, and also
2277 -- after the call has been rewritten, because the corresponding actual
2278 -- is already known to be compatible, and because this may be an
2279 -- indexing of a call with default parameters.
2281 Formal : Entity_Id;
2282 Actual : Node_Id;
2283 Is_Indexed : Boolean := False;
2284 Is_Indirect : Boolean := False;
2285 Subp_Type : constant Entity_Id := Etype (Nam);
2286 Norm_OK : Boolean;
2288 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2289 -- There may be a user-defined operator that hides the current
2290 -- interpretation. We must check for this independently of the
2291 -- analysis of the call with the user-defined operation, because
2292 -- the parameter names may be wrong and yet the hiding takes place.
2293 -- This fixes a problem with ACATS test B34014O.
2295 -- When the type Address is a visible integer type, and the DEC
2296 -- system extension is visible, the predefined operator may be
2297 -- hidden as well, by one of the address operations in auxdec.
2298 -- Finally, The abstract operations on address do not hide the
2299 -- predefined operator (this is the purpose of making them abstract).
2301 procedure Indicate_Name_And_Type;
2302 -- If candidate interpretation matches, indicate name and type of
2303 -- result on call node.
2305 ----------------------------
2306 -- Indicate_Name_And_Type --
2307 ----------------------------
2309 procedure Indicate_Name_And_Type is
2310 begin
2311 Add_One_Interp (N, Nam, Etype (Nam));
2312 Success := True;
2314 -- If the prefix of the call is a name, indicate the entity
2315 -- being called. If it is not a name, it is an expression that
2316 -- denotes an access to subprogram or else an entry or family. In
2317 -- the latter case, the name is a selected component, and the entity
2318 -- being called is noted on the selector.
2320 if not Is_Type (Nam) then
2321 if Is_Entity_Name (Name (N))
2322 or else Nkind (Name (N)) = N_Operator_Symbol
2323 then
2324 Set_Entity (Name (N), Nam);
2326 elsif Nkind (Name (N)) = N_Selected_Component then
2327 Set_Entity (Selector_Name (Name (N)), Nam);
2328 end if;
2329 end if;
2331 if Debug_Flag_E and not Report then
2332 Write_Str (" Overloaded call ");
2333 Write_Int (Int (N));
2334 Write_Str (" compatible with ");
2335 Write_Int (Int (Nam));
2336 Write_Eol;
2337 end if;
2338 end Indicate_Name_And_Type;
2340 ------------------------
2341 -- Operator_Hidden_By --
2342 ------------------------
2344 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2345 Act1 : constant Node_Id := First_Actual (N);
2346 Act2 : constant Node_Id := Next_Actual (Act1);
2347 Form1 : constant Entity_Id := First_Formal (Fun);
2348 Form2 : constant Entity_Id := Next_Formal (Form1);
2350 begin
2351 if Ekind (Fun) /= E_Function
2352 or else Is_Abstract_Subprogram (Fun)
2353 then
2354 return False;
2356 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2357 return False;
2359 elsif Present (Form2) then
2361 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2362 then
2363 return False;
2364 end if;
2366 elsif Present (Act2) then
2367 return False;
2368 end if;
2370 -- Now we know that the arity of the operator matches the function,
2371 -- and the function call is a valid interpretation. The function
2372 -- hides the operator if it has the right signature, or if one of
2373 -- its operands is a non-abstract operation on Address when this is
2374 -- a visible integer type.
2376 return Hides_Op (Fun, Nam)
2377 or else Is_Descendent_Of_Address (Etype (Form1))
2378 or else
2379 (Present (Form2)
2380 and then Is_Descendent_Of_Address (Etype (Form2)));
2381 end Operator_Hidden_By;
2383 -- Start of processing for Analyze_One_Call
2385 begin
2386 Success := False;
2388 -- If the subprogram has no formals or if all the formals have defaults,
2389 -- and the return type is an array type, the node may denote an indexing
2390 -- of the result of a parameterless call. In Ada 2005, the subprogram
2391 -- may have one non-defaulted formal, and the call may have been written
2392 -- in prefix notation, so that the rebuilt parameter list has more than
2393 -- one actual.
2395 if not Is_Overloadable (Nam)
2396 and then Ekind (Nam) /= E_Subprogram_Type
2397 and then Ekind (Nam) /= E_Entry_Family
2398 then
2399 return;
2400 end if;
2402 -- An indexing requires at least one actual
2404 if not Is_Empty_List (Actuals)
2405 and then
2406 (Needs_No_Actuals (Nam)
2407 or else
2408 (Needs_One_Actual (Nam)
2409 and then Present (Next_Actual (First (Actuals)))))
2410 then
2411 if Is_Array_Type (Subp_Type) then
2412 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2414 elsif Is_Access_Type (Subp_Type)
2415 and then Is_Array_Type (Designated_Type (Subp_Type))
2416 then
2417 Is_Indexed :=
2418 Try_Indexed_Call
2419 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2421 -- The prefix can also be a parameterless function that returns an
2422 -- access to subprogram, in which case this is an indirect call.
2423 -- If this succeeds, an explicit dereference is added later on,
2424 -- in Analyze_Call or Resolve_Call.
2426 elsif Is_Access_Type (Subp_Type)
2427 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2428 then
2429 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2430 end if;
2432 end if;
2434 -- If the call has been transformed into a slice, it is of the form
2435 -- F (Subtype) where F is parameterless. The node has been rewritten in
2436 -- Try_Indexed_Call and there is nothing else to do.
2438 if Is_Indexed
2439 and then Nkind (N) = N_Slice
2440 then
2441 return;
2442 end if;
2444 Normalize_Actuals
2445 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2447 if not Norm_OK then
2449 -- If an indirect call is a possible interpretation, indicate
2450 -- success to the caller.
2452 if Is_Indirect then
2453 Success := True;
2454 return;
2456 -- Mismatch in number or names of parameters
2458 elsif Debug_Flag_E then
2459 Write_Str (" normalization fails in call ");
2460 Write_Int (Int (N));
2461 Write_Str (" with subprogram ");
2462 Write_Int (Int (Nam));
2463 Write_Eol;
2464 end if;
2466 -- If the context expects a function call, discard any interpretation
2467 -- that is a procedure. If the node is not overloaded, leave as is for
2468 -- better error reporting when type mismatch is found.
2470 elsif Nkind (N) = N_Function_Call
2471 and then Is_Overloaded (Name (N))
2472 and then Ekind (Nam) = E_Procedure
2473 then
2474 return;
2476 -- Ditto for function calls in a procedure context
2478 elsif Nkind (N) = N_Procedure_Call_Statement
2479 and then Is_Overloaded (Name (N))
2480 and then Etype (Nam) /= Standard_Void_Type
2481 then
2482 return;
2484 elsif No (Actuals) then
2486 -- If Normalize succeeds, then there are default parameters for
2487 -- all formals.
2489 Indicate_Name_And_Type;
2491 elsif Ekind (Nam) = E_Operator then
2492 if Nkind (N) = N_Procedure_Call_Statement then
2493 return;
2494 end if;
2496 -- This can occur when the prefix of the call is an operator
2497 -- name or an expanded name whose selector is an operator name.
2499 Analyze_Operator_Call (N, Nam);
2501 if Etype (N) /= Prev_T then
2503 -- Check that operator is not hidden by a function interpretation
2505 if Is_Overloaded (Name (N)) then
2506 declare
2507 I : Interp_Index;
2508 It : Interp;
2510 begin
2511 Get_First_Interp (Name (N), I, It);
2512 while Present (It.Nam) loop
2513 if Operator_Hidden_By (It.Nam) then
2514 Set_Etype (N, Prev_T);
2515 return;
2516 end if;
2518 Get_Next_Interp (I, It);
2519 end loop;
2520 end;
2521 end if;
2523 -- If operator matches formals, record its name on the call.
2524 -- If the operator is overloaded, Resolve will select the
2525 -- correct one from the list of interpretations. The call
2526 -- node itself carries the first candidate.
2528 Set_Entity (Name (N), Nam);
2529 Success := True;
2531 elsif Report and then Etype (N) = Any_Type then
2532 Error_Msg_N ("incompatible arguments for operator", N);
2533 end if;
2535 else
2536 -- Normalize_Actuals has chained the named associations in the
2537 -- correct order of the formals.
2539 Actual := First_Actual (N);
2540 Formal := First_Formal (Nam);
2542 -- If we are analyzing a call rewritten from object notation,
2543 -- skip first actual, which may be rewritten later as an
2544 -- explicit dereference.
2546 if Must_Skip then
2547 Next_Actual (Actual);
2548 Next_Formal (Formal);
2549 end if;
2551 while Present (Actual) and then Present (Formal) loop
2552 if Nkind (Parent (Actual)) /= N_Parameter_Association
2553 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2554 then
2555 -- The actual can be compatible with the formal, but we must
2556 -- also check that the context is not an address type that is
2557 -- visibly an integer type, as is the case in VMS_64. In this
2558 -- case the use of literals is illegal, except in the body of
2559 -- descendents of system, where arithmetic operations on
2560 -- address are of course used.
2562 if Has_Compatible_Type (Actual, Etype (Formal))
2563 and then
2564 (Etype (Actual) /= Universal_Integer
2565 or else not Is_Descendent_Of_Address (Etype (Formal))
2566 or else
2567 Is_Predefined_File_Name
2568 (Unit_File_Name (Get_Source_Unit (N))))
2569 then
2570 Next_Actual (Actual);
2571 Next_Formal (Formal);
2573 else
2574 if Debug_Flag_E then
2575 Write_Str (" type checking fails in call ");
2576 Write_Int (Int (N));
2577 Write_Str (" with formal ");
2578 Write_Int (Int (Formal));
2579 Write_Str (" in subprogram ");
2580 Write_Int (Int (Nam));
2581 Write_Eol;
2582 end if;
2584 if Report and not Is_Indexed and not Is_Indirect then
2586 -- Ada 2005 (AI-251): Complete the error notification
2587 -- to help new Ada 2005 users.
2589 if Is_Class_Wide_Type (Etype (Formal))
2590 and then Is_Interface (Etype (Etype (Formal)))
2591 and then not Interface_Present_In_Ancestor
2592 (Typ => Etype (Actual),
2593 Iface => Etype (Etype (Formal)))
2594 then
2595 Error_Msg_NE
2596 ("(Ada 2005) does not implement interface }",
2597 Actual, Etype (Etype (Formal)));
2598 end if;
2600 Wrong_Type (Actual, Etype (Formal));
2602 if Nkind (Actual) = N_Op_Eq
2603 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2604 then
2605 Formal := First_Formal (Nam);
2606 while Present (Formal) loop
2607 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2608 Error_Msg_N -- CODEFIX
2609 ("possible misspelling of `='>`!", Actual);
2610 exit;
2611 end if;
2613 Next_Formal (Formal);
2614 end loop;
2615 end if;
2617 if All_Errors_Mode then
2618 Error_Msg_Sloc := Sloc (Nam);
2620 if Is_Overloadable (Nam)
2621 and then Present (Alias (Nam))
2622 and then not Comes_From_Source (Nam)
2623 then
2624 Error_Msg_NE
2625 ("\\ =='> in call to inherited operation & #!",
2626 Actual, Nam);
2628 elsif Ekind (Nam) = E_Subprogram_Type then
2629 declare
2630 Access_To_Subprogram_Typ :
2631 constant Entity_Id :=
2632 Defining_Identifier
2633 (Associated_Node_For_Itype (Nam));
2634 begin
2635 Error_Msg_NE (
2636 "\\ =='> in call to dereference of &#!",
2637 Actual, Access_To_Subprogram_Typ);
2638 end;
2640 else
2641 Error_Msg_NE
2642 ("\\ =='> in call to &#!", Actual, Nam);
2644 end if;
2645 end if;
2646 end if;
2648 return;
2649 end if;
2651 else
2652 -- Normalize_Actuals has verified that a default value exists
2653 -- for this formal. Current actual names a subsequent formal.
2655 Next_Formal (Formal);
2656 end if;
2657 end loop;
2659 -- On exit, all actuals match
2661 Indicate_Name_And_Type;
2662 end if;
2663 end Analyze_One_Call;
2665 ---------------------------
2666 -- Analyze_Operator_Call --
2667 ---------------------------
2669 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2670 Op_Name : constant Name_Id := Chars (Op_Id);
2671 Act1 : constant Node_Id := First_Actual (N);
2672 Act2 : constant Node_Id := Next_Actual (Act1);
2674 begin
2675 -- Binary operator case
2677 if Present (Act2) then
2679 -- If more than two operands, then not binary operator after all
2681 if Present (Next_Actual (Act2)) then
2682 return;
2684 elsif Op_Name = Name_Op_Add
2685 or else Op_Name = Name_Op_Subtract
2686 or else Op_Name = Name_Op_Multiply
2687 or else Op_Name = Name_Op_Divide
2688 or else Op_Name = Name_Op_Mod
2689 or else Op_Name = Name_Op_Rem
2690 or else Op_Name = Name_Op_Expon
2691 then
2692 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2694 elsif Op_Name = Name_Op_And
2695 or else Op_Name = Name_Op_Or
2696 or else Op_Name = Name_Op_Xor
2697 then
2698 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2700 elsif Op_Name = Name_Op_Lt
2701 or else Op_Name = Name_Op_Le
2702 or else Op_Name = Name_Op_Gt
2703 or else Op_Name = Name_Op_Ge
2704 then
2705 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2707 elsif Op_Name = Name_Op_Eq
2708 or else Op_Name = Name_Op_Ne
2709 then
2710 Find_Equality_Types (Act1, Act2, Op_Id, N);
2712 elsif Op_Name = Name_Op_Concat then
2713 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2715 -- Is this else null correct, or should it be an abort???
2717 else
2718 null;
2719 end if;
2721 -- Unary operator case
2723 else
2724 if Op_Name = Name_Op_Subtract or else
2725 Op_Name = Name_Op_Add or else
2726 Op_Name = Name_Op_Abs
2727 then
2728 Find_Unary_Types (Act1, Op_Id, N);
2730 elsif
2731 Op_Name = Name_Op_Not
2732 then
2733 Find_Negation_Types (Act1, Op_Id, N);
2735 -- Is this else null correct, or should it be an abort???
2737 else
2738 null;
2739 end if;
2740 end if;
2741 end Analyze_Operator_Call;
2743 -------------------------------------------
2744 -- Analyze_Overloaded_Selected_Component --
2745 -------------------------------------------
2747 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2748 Nam : constant Node_Id := Prefix (N);
2749 Sel : constant Node_Id := Selector_Name (N);
2750 Comp : Entity_Id;
2751 I : Interp_Index;
2752 It : Interp;
2753 T : Entity_Id;
2755 begin
2756 Set_Etype (Sel, Any_Type);
2758 Get_First_Interp (Nam, I, It);
2759 while Present (It.Typ) loop
2760 if Is_Access_Type (It.Typ) then
2761 T := Designated_Type (It.Typ);
2762 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2763 else
2764 T := It.Typ;
2765 end if;
2767 if Is_Record_Type (T) then
2769 -- If the prefix is a class-wide type, the visible components are
2770 -- those of the base type.
2772 if Is_Class_Wide_Type (T) then
2773 T := Etype (T);
2774 end if;
2776 Comp := First_Entity (T);
2777 while Present (Comp) loop
2778 if Chars (Comp) = Chars (Sel)
2779 and then Is_Visible_Component (Comp)
2780 then
2782 -- AI05-105: if the context is an object renaming with
2783 -- an anonymous access type, the expected type of the
2784 -- object must be anonymous. This is a name resolution rule.
2786 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
2787 or else No (Access_Definition (Parent (N)))
2788 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
2789 or else
2790 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
2791 then
2792 Set_Entity (Sel, Comp);
2793 Set_Etype (Sel, Etype (Comp));
2794 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2796 -- This also specifies a candidate to resolve the name.
2797 -- Further overloading will be resolved from context.
2798 -- The selector name itself does not carry overloading
2799 -- information.
2801 Set_Etype (Nam, It.Typ);
2803 else
2804 -- Named access type in the context of a renaming
2805 -- declaration with an access definition. Remove
2806 -- inapplicable candidate.
2808 Remove_Interp (I);
2809 end if;
2810 end if;
2812 Next_Entity (Comp);
2813 end loop;
2815 elsif Is_Concurrent_Type (T) then
2816 Comp := First_Entity (T);
2817 while Present (Comp)
2818 and then Comp /= First_Private_Entity (T)
2819 loop
2820 if Chars (Comp) = Chars (Sel) then
2821 if Is_Overloadable (Comp) then
2822 Add_One_Interp (Sel, Comp, Etype (Comp));
2823 else
2824 Set_Entity_With_Style_Check (Sel, Comp);
2825 Generate_Reference (Comp, Sel);
2826 end if;
2828 Set_Etype (Sel, Etype (Comp));
2829 Set_Etype (N, Etype (Comp));
2830 Set_Etype (Nam, It.Typ);
2832 -- For access type case, introduce explicit dereference for
2833 -- more uniform treatment of entry calls. Do this only once
2834 -- if several interpretations yield an access type.
2836 if Is_Access_Type (Etype (Nam))
2837 and then Nkind (Nam) /= N_Explicit_Dereference
2838 then
2839 Insert_Explicit_Dereference (Nam);
2840 Error_Msg_NW
2841 (Warn_On_Dereference, "?implicit dereference", N);
2842 end if;
2843 end if;
2845 Next_Entity (Comp);
2846 end loop;
2848 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2849 end if;
2851 Get_Next_Interp (I, It);
2852 end loop;
2854 if Etype (N) = Any_Type
2855 and then not Try_Object_Operation (N)
2856 then
2857 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
2858 Set_Entity (Sel, Any_Id);
2859 Set_Etype (Sel, Any_Type);
2860 end if;
2861 end Analyze_Overloaded_Selected_Component;
2863 ----------------------------------
2864 -- Analyze_Qualified_Expression --
2865 ----------------------------------
2867 procedure Analyze_Qualified_Expression (N : Node_Id) is
2868 Mark : constant Entity_Id := Subtype_Mark (N);
2869 Expr : constant Node_Id := Expression (N);
2870 I : Interp_Index;
2871 It : Interp;
2872 T : Entity_Id;
2874 begin
2875 Analyze_Expression (Expr);
2877 Set_Etype (N, Any_Type);
2878 Find_Type (Mark);
2879 T := Entity (Mark);
2880 Set_Etype (N, T);
2882 if T = Any_Type then
2883 return;
2884 end if;
2886 Check_Fully_Declared (T, N);
2888 -- If expected type is class-wide, check for exact match before
2889 -- expansion, because if the expression is a dispatching call it
2890 -- may be rewritten as explicit dereference with class-wide result.
2891 -- If expression is overloaded, retain only interpretations that
2892 -- will yield exact matches.
2894 if Is_Class_Wide_Type (T) then
2895 if not Is_Overloaded (Expr) then
2896 if Base_Type (Etype (Expr)) /= Base_Type (T) then
2897 if Nkind (Expr) = N_Aggregate then
2898 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
2899 else
2900 Wrong_Type (Expr, T);
2901 end if;
2902 end if;
2904 else
2905 Get_First_Interp (Expr, I, It);
2907 while Present (It.Nam) loop
2908 if Base_Type (It.Typ) /= Base_Type (T) then
2909 Remove_Interp (I);
2910 end if;
2912 Get_Next_Interp (I, It);
2913 end loop;
2914 end if;
2915 end if;
2917 Set_Etype (N, T);
2918 end Analyze_Qualified_Expression;
2920 -------------------
2921 -- Analyze_Range --
2922 -------------------
2924 procedure Analyze_Range (N : Node_Id) is
2925 L : constant Node_Id := Low_Bound (N);
2926 H : constant Node_Id := High_Bound (N);
2927 I1, I2 : Interp_Index;
2928 It1, It2 : Interp;
2930 procedure Check_Common_Type (T1, T2 : Entity_Id);
2931 -- Verify the compatibility of two types, and choose the
2932 -- non universal one if the other is universal.
2934 procedure Check_High_Bound (T : Entity_Id);
2935 -- Test one interpretation of the low bound against all those
2936 -- of the high bound.
2938 procedure Check_Universal_Expression (N : Node_Id);
2939 -- In Ada83, reject bounds of a universal range that are not
2940 -- literals or entity names.
2942 -----------------------
2943 -- Check_Common_Type --
2944 -----------------------
2946 procedure Check_Common_Type (T1, T2 : Entity_Id) is
2947 begin
2948 if Covers (T1 => T1, T2 => T2)
2949 or else
2950 Covers (T1 => T2, T2 => T1)
2951 then
2952 if T1 = Universal_Integer
2953 or else T1 = Universal_Real
2954 or else T1 = Any_Character
2955 then
2956 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
2958 elsif T1 = T2 then
2959 Add_One_Interp (N, T1, T1);
2961 else
2962 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
2963 end if;
2964 end if;
2965 end Check_Common_Type;
2967 ----------------------
2968 -- Check_High_Bound --
2969 ----------------------
2971 procedure Check_High_Bound (T : Entity_Id) is
2972 begin
2973 if not Is_Overloaded (H) then
2974 Check_Common_Type (T, Etype (H));
2975 else
2976 Get_First_Interp (H, I2, It2);
2977 while Present (It2.Typ) loop
2978 Check_Common_Type (T, It2.Typ);
2979 Get_Next_Interp (I2, It2);
2980 end loop;
2981 end if;
2982 end Check_High_Bound;
2984 -----------------------------
2985 -- Is_Universal_Expression --
2986 -----------------------------
2988 procedure Check_Universal_Expression (N : Node_Id) is
2989 begin
2990 if Etype (N) = Universal_Integer
2991 and then Nkind (N) /= N_Integer_Literal
2992 and then not Is_Entity_Name (N)
2993 and then Nkind (N) /= N_Attribute_Reference
2994 then
2995 Error_Msg_N ("illegal bound in discrete range", N);
2996 end if;
2997 end Check_Universal_Expression;
2999 -- Start of processing for Analyze_Range
3001 begin
3002 Set_Etype (N, Any_Type);
3003 Analyze_Expression (L);
3004 Analyze_Expression (H);
3006 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3007 return;
3009 else
3010 if not Is_Overloaded (L) then
3011 Check_High_Bound (Etype (L));
3012 else
3013 Get_First_Interp (L, I1, It1);
3014 while Present (It1.Typ) loop
3015 Check_High_Bound (It1.Typ);
3016 Get_Next_Interp (I1, It1);
3017 end loop;
3018 end if;
3020 -- If result is Any_Type, then we did not find a compatible pair
3022 if Etype (N) = Any_Type then
3023 Error_Msg_N ("incompatible types in range ", N);
3024 end if;
3025 end if;
3027 if Ada_Version = Ada_83
3028 and then
3029 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3030 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3031 then
3032 Check_Universal_Expression (L);
3033 Check_Universal_Expression (H);
3034 end if;
3035 end Analyze_Range;
3037 -----------------------
3038 -- Analyze_Reference --
3039 -----------------------
3041 procedure Analyze_Reference (N : Node_Id) is
3042 P : constant Node_Id := Prefix (N);
3043 E : Entity_Id;
3044 T : Entity_Id;
3045 Acc_Type : Entity_Id;
3047 begin
3048 Analyze (P);
3050 -- An interesting error check, if we take the 'Reference of an object
3051 -- for which a pragma Atomic or Volatile has been given, and the type
3052 -- of the object is not Atomic or Volatile, then we are in trouble. The
3053 -- problem is that no trace of the atomic/volatile status will remain
3054 -- for the backend to respect when it deals with the resulting pointer,
3055 -- since the pointer type will not be marked atomic (it is a pointer to
3056 -- the base type of the object).
3058 -- It is not clear if that can ever occur, but in case it does, we will
3059 -- generate an error message. Not clear if this message can ever be
3060 -- generated, and pretty clear that it represents a bug if it is, still
3061 -- seems worth checking!
3063 T := Etype (P);
3065 if Is_Entity_Name (P)
3066 and then Is_Object_Reference (P)
3067 then
3068 E := Entity (P);
3069 T := Etype (P);
3071 if (Has_Atomic_Components (E)
3072 and then not Has_Atomic_Components (T))
3073 or else
3074 (Has_Volatile_Components (E)
3075 and then not Has_Volatile_Components (T))
3076 or else (Is_Atomic (E) and then not Is_Atomic (T))
3077 or else (Is_Volatile (E) and then not Is_Volatile (T))
3078 then
3079 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3080 end if;
3081 end if;
3083 -- Carry on with normal processing
3085 Acc_Type := Create_Itype (E_Allocator_Type, N);
3086 Set_Etype (Acc_Type, Acc_Type);
3087 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3088 Set_Etype (N, Acc_Type);
3089 end Analyze_Reference;
3091 --------------------------------
3092 -- Analyze_Selected_Component --
3093 --------------------------------
3095 -- Prefix is a record type or a task or protected type. In the
3096 -- later case, the selector must denote a visible entry.
3098 procedure Analyze_Selected_Component (N : Node_Id) is
3099 Name : constant Node_Id := Prefix (N);
3100 Sel : constant Node_Id := Selector_Name (N);
3101 Act_Decl : Node_Id;
3102 Comp : Entity_Id;
3103 Has_Candidate : Boolean := False;
3104 In_Scope : Boolean;
3105 Parent_N : Node_Id;
3106 Pent : Entity_Id := Empty;
3107 Prefix_Type : Entity_Id;
3109 Type_To_Use : Entity_Id;
3110 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3111 -- a class-wide type, we use its root type, whose components are
3112 -- present in the class-wide type.
3114 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3115 -- It is known that the parent of N denotes a subprogram call. Comp
3116 -- is an overloadable component of the concurrent type of the prefix.
3117 -- Determine whether all formals of the parent of N and Comp are mode
3118 -- conformant. If the parent node is not analyzed yet it may be an
3119 -- indexed component rather than a function call.
3121 ------------------------------
3122 -- Has_Mode_Conformant_Spec --
3123 ------------------------------
3125 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3126 Comp_Param : Entity_Id;
3127 Param : Node_Id;
3128 Param_Typ : Entity_Id;
3130 begin
3131 Comp_Param := First_Formal (Comp);
3133 if Nkind (Parent (N)) = N_Indexed_Component then
3134 Param := First (Expressions (Parent (N)));
3135 else
3136 Param := First (Parameter_Associations (Parent (N)));
3137 end if;
3139 while Present (Comp_Param)
3140 and then Present (Param)
3141 loop
3142 Param_Typ := Find_Parameter_Type (Param);
3144 if Present (Param_Typ)
3145 and then
3146 not Conforming_Types
3147 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3148 then
3149 return False;
3150 end if;
3152 Next_Formal (Comp_Param);
3153 Next (Param);
3154 end loop;
3156 -- One of the specs has additional formals
3158 if Present (Comp_Param) or else Present (Param) then
3159 return False;
3160 end if;
3162 return True;
3163 end Has_Mode_Conformant_Spec;
3165 -- Start of processing for Analyze_Selected_Component
3167 begin
3168 Set_Etype (N, Any_Type);
3170 if Is_Overloaded (Name) then
3171 Analyze_Overloaded_Selected_Component (N);
3172 return;
3174 elsif Etype (Name) = Any_Type then
3175 Set_Entity (Sel, Any_Id);
3176 Set_Etype (Sel, Any_Type);
3177 return;
3179 else
3180 Prefix_Type := Etype (Name);
3181 end if;
3183 if Is_Access_Type (Prefix_Type) then
3185 -- A RACW object can never be used as prefix of a selected
3186 -- component since that means it is dereferenced without
3187 -- being a controlling operand of a dispatching operation
3188 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3189 -- whether this is actually a dispatching call in prefix form.
3191 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3192 and then Comes_From_Source (N)
3193 then
3194 if Try_Object_Operation (N) then
3195 return;
3196 else
3197 Error_Msg_N
3198 ("invalid dereference of a remote access-to-class-wide value",
3200 end if;
3202 -- Normal case of selected component applied to access type
3204 else
3205 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3207 if Is_Entity_Name (Name) then
3208 Pent := Entity (Name);
3209 elsif Nkind (Name) = N_Selected_Component
3210 and then Is_Entity_Name (Selector_Name (Name))
3211 then
3212 Pent := Entity (Selector_Name (Name));
3213 end if;
3215 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3216 end if;
3218 -- If we have an explicit dereference of a remote access-to-class-wide
3219 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3220 -- have to check for the case of a prefix that is a controlling operand
3221 -- of a prefixed dispatching call, as the dereference is legal in that
3222 -- case. Normally this condition is checked in Validate_Remote_Access_
3223 -- To_Class_Wide_Type, but we have to defer the checking for selected
3224 -- component prefixes because of the prefixed dispatching call case.
3225 -- Note that implicit dereferences are checked for this just above.
3227 elsif Nkind (Name) = N_Explicit_Dereference
3228 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3229 and then Comes_From_Source (N)
3230 then
3231 if Try_Object_Operation (N) then
3232 return;
3233 else
3234 Error_Msg_N
3235 ("invalid dereference of a remote access-to-class-wide value",
3237 end if;
3238 end if;
3240 -- (Ada 2005): if the prefix is the limited view of a type, and
3241 -- the context already includes the full view, use the full view
3242 -- in what follows, either to retrieve a component of to find
3243 -- a primitive operation. If the prefix is an explicit dereference,
3244 -- set the type of the prefix to reflect this transformation.
3245 -- If the non-limited view is itself an incomplete type, get the
3246 -- full view if available.
3248 if Is_Incomplete_Type (Prefix_Type)
3249 and then From_With_Type (Prefix_Type)
3250 and then Present (Non_Limited_View (Prefix_Type))
3251 then
3252 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3254 if Nkind (N) = N_Explicit_Dereference then
3255 Set_Etype (Prefix (N), Prefix_Type);
3256 end if;
3258 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3259 and then From_With_Type (Prefix_Type)
3260 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3261 then
3262 Prefix_Type :=
3263 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3265 if Nkind (N) = N_Explicit_Dereference then
3266 Set_Etype (Prefix (N), Prefix_Type);
3267 end if;
3268 end if;
3270 if Ekind (Prefix_Type) = E_Private_Subtype then
3271 Prefix_Type := Base_Type (Prefix_Type);
3272 end if;
3274 Type_To_Use := Prefix_Type;
3276 -- For class-wide types, use the entity list of the root type. This
3277 -- indirection is specially important for private extensions because
3278 -- only the root type get switched (not the class-wide type).
3280 if Is_Class_Wide_Type (Prefix_Type) then
3281 Type_To_Use := Root_Type (Prefix_Type);
3282 end if;
3284 Comp := First_Entity (Type_To_Use);
3286 -- If the selector has an original discriminant, the node appears in
3287 -- an instance. Replace the discriminant with the corresponding one
3288 -- in the current discriminated type. For nested generics, this must
3289 -- be done transitively, so note the new original discriminant.
3291 if Nkind (Sel) = N_Identifier
3292 and then Present (Original_Discriminant (Sel))
3293 then
3294 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3296 -- Mark entity before rewriting, for completeness and because
3297 -- subsequent semantic checks might examine the original node.
3299 Set_Entity (Sel, Comp);
3300 Rewrite (Selector_Name (N),
3301 New_Occurrence_Of (Comp, Sloc (N)));
3302 Set_Original_Discriminant (Selector_Name (N), Comp);
3303 Set_Etype (N, Etype (Comp));
3305 if Is_Access_Type (Etype (Name)) then
3306 Insert_Explicit_Dereference (Name);
3307 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3308 end if;
3310 elsif Is_Record_Type (Prefix_Type) then
3312 -- Find component with given name
3314 while Present (Comp) loop
3315 if Chars (Comp) = Chars (Sel)
3316 and then Is_Visible_Component (Comp)
3317 then
3318 Set_Entity_With_Style_Check (Sel, Comp);
3319 Set_Etype (Sel, Etype (Comp));
3321 if Ekind (Comp) = E_Discriminant then
3322 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3323 Error_Msg_N
3324 ("cannot reference discriminant of Unchecked_Union",
3325 Sel);
3326 end if;
3328 if Is_Generic_Type (Prefix_Type)
3329 or else
3330 Is_Generic_Type (Root_Type (Prefix_Type))
3331 then
3332 Set_Original_Discriminant (Sel, Comp);
3333 end if;
3334 end if;
3336 -- Resolve the prefix early otherwise it is not possible to
3337 -- build the actual subtype of the component: it may need
3338 -- to duplicate this prefix and duplication is only allowed
3339 -- on fully resolved expressions.
3341 Resolve (Name);
3343 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3344 -- subtypes in a package specification.
3345 -- Example:
3347 -- limited with Pkg;
3348 -- package Pkg is
3349 -- type Acc_Inc is access Pkg.T;
3350 -- X : Acc_Inc;
3351 -- N : Natural := X.all.Comp; -- ERROR, limited view
3352 -- end Pkg; -- Comp is not visible
3354 if Nkind (Name) = N_Explicit_Dereference
3355 and then From_With_Type (Etype (Prefix (Name)))
3356 and then not Is_Potentially_Use_Visible (Etype (Name))
3357 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3358 N_Package_Specification
3359 then
3360 Error_Msg_NE
3361 ("premature usage of incomplete}", Prefix (Name),
3362 Etype (Prefix (Name)));
3363 end if;
3365 -- We never need an actual subtype for the case of a selection
3366 -- for a indexed component of a non-packed array, since in
3367 -- this case gigi generates all the checks and can find the
3368 -- necessary bounds information.
3370 -- We also do not need an actual subtype for the case of
3371 -- a first, last, length, or range attribute applied to a
3372 -- non-packed array, since gigi can again get the bounds in
3373 -- these cases (gigi cannot handle the packed case, since it
3374 -- has the bounds of the packed array type, not the original
3375 -- bounds of the type). However, if the prefix is itself a
3376 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3377 -- as a dynamic-sized temporary, so we do generate an actual
3378 -- subtype for this case.
3380 Parent_N := Parent (N);
3382 if not Is_Packed (Etype (Comp))
3383 and then
3384 ((Nkind (Parent_N) = N_Indexed_Component
3385 and then Nkind (Name) /= N_Selected_Component)
3386 or else
3387 (Nkind (Parent_N) = N_Attribute_Reference
3388 and then (Attribute_Name (Parent_N) = Name_First
3389 or else
3390 Attribute_Name (Parent_N) = Name_Last
3391 or else
3392 Attribute_Name (Parent_N) = Name_Length
3393 or else
3394 Attribute_Name (Parent_N) = Name_Range)))
3395 then
3396 Set_Etype (N, Etype (Comp));
3398 -- If full analysis is not enabled, we do not generate an
3399 -- actual subtype, because in the absence of expansion
3400 -- reference to a formal of a protected type, for example,
3401 -- will not be properly transformed, and will lead to
3402 -- out-of-scope references in gigi.
3404 -- In all other cases, we currently build an actual subtype.
3405 -- It seems likely that many of these cases can be avoided,
3406 -- but right now, the front end makes direct references to the
3407 -- bounds (e.g. in generating a length check), and if we do
3408 -- not make an actual subtype, we end up getting a direct
3409 -- reference to a discriminant, which will not do.
3411 elsif Full_Analysis then
3412 Act_Decl :=
3413 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3414 Insert_Action (N, Act_Decl);
3416 if No (Act_Decl) then
3417 Set_Etype (N, Etype (Comp));
3419 else
3420 -- Component type depends on discriminants. Enter the
3421 -- main attributes of the subtype.
3423 declare
3424 Subt : constant Entity_Id :=
3425 Defining_Identifier (Act_Decl);
3427 begin
3428 Set_Etype (Subt, Base_Type (Etype (Comp)));
3429 Set_Ekind (Subt, Ekind (Etype (Comp)));
3430 Set_Etype (N, Subt);
3431 end;
3432 end if;
3434 -- If Full_Analysis not enabled, just set the Etype
3436 else
3437 Set_Etype (N, Etype (Comp));
3438 end if;
3440 return;
3441 end if;
3443 -- If the prefix is a private extension, check only the visible
3444 -- components of the partial view. This must include the tag,
3445 -- which can appear in expanded code in a tag check.
3447 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3448 and then Chars (Selector_Name (N)) /= Name_uTag
3449 then
3450 exit when Comp = Last_Entity (Type_To_Use);
3451 end if;
3453 Next_Entity (Comp);
3454 end loop;
3456 -- Ada 2005 (AI-252): The selected component can be interpreted as
3457 -- a prefixed view of a subprogram. Depending on the context, this is
3458 -- either a name that can appear in a renaming declaration, or part
3459 -- of an enclosing call given in prefix form.
3461 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3462 -- selected component should resolve to a name.
3464 if Ada_Version >= Ada_05
3465 and then Is_Tagged_Type (Prefix_Type)
3466 and then not Is_Concurrent_Type (Prefix_Type)
3467 then
3468 if Nkind (Parent (N)) = N_Generic_Association
3469 or else Nkind (Parent (N)) = N_Requeue_Statement
3470 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3471 then
3472 if Find_Primitive_Operation (N) then
3473 return;
3474 end if;
3476 elsif Try_Object_Operation (N) then
3477 return;
3478 end if;
3480 -- If the transformation fails, it will be necessary to redo the
3481 -- analysis with all errors enabled, to indicate candidate
3482 -- interpretations and reasons for each failure ???
3484 end if;
3486 elsif Is_Private_Type (Prefix_Type) then
3488 -- Allow access only to discriminants of the type. If the type has
3489 -- no full view, gigi uses the parent type for the components, so we
3490 -- do the same here.
3492 if No (Full_View (Prefix_Type)) then
3493 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3494 Comp := First_Entity (Type_To_Use);
3495 end if;
3497 while Present (Comp) loop
3498 if Chars (Comp) = Chars (Sel) then
3499 if Ekind (Comp) = E_Discriminant then
3500 Set_Entity_With_Style_Check (Sel, Comp);
3501 Generate_Reference (Comp, Sel);
3503 Set_Etype (Sel, Etype (Comp));
3504 Set_Etype (N, Etype (Comp));
3506 if Is_Generic_Type (Prefix_Type)
3507 or else Is_Generic_Type (Root_Type (Prefix_Type))
3508 then
3509 Set_Original_Discriminant (Sel, Comp);
3510 end if;
3512 -- Before declaring an error, check whether this is tagged
3513 -- private type and a call to a primitive operation.
3515 elsif Ada_Version >= Ada_05
3516 and then Is_Tagged_Type (Prefix_Type)
3517 and then Try_Object_Operation (N)
3518 then
3519 return;
3521 else
3522 Error_Msg_NE
3523 ("invisible selector for }",
3524 N, First_Subtype (Prefix_Type));
3525 Set_Entity (Sel, Any_Id);
3526 Set_Etype (N, Any_Type);
3527 end if;
3529 return;
3530 end if;
3532 Next_Entity (Comp);
3533 end loop;
3535 elsif Is_Concurrent_Type (Prefix_Type) then
3537 -- Find visible operation with given name. For a protected type,
3538 -- the possible candidates are discriminants, entries or protected
3539 -- procedures. For a task type, the set can only include entries or
3540 -- discriminants if the task type is not an enclosing scope. If it
3541 -- is an enclosing scope (e.g. in an inner task) then all entities
3542 -- are visible, but the prefix must denote the enclosing scope, i.e.
3543 -- can only be a direct name or an expanded name.
3545 Set_Etype (Sel, Any_Type);
3546 In_Scope := In_Open_Scopes (Prefix_Type);
3548 while Present (Comp) loop
3549 if Chars (Comp) = Chars (Sel) then
3550 if Is_Overloadable (Comp) then
3551 Add_One_Interp (Sel, Comp, Etype (Comp));
3553 -- If the prefix is tagged, the correct interpretation may
3554 -- lie in the primitive or class-wide operations of the
3555 -- type. Perform a simple conformance check to determine
3556 -- whether Try_Object_Operation should be invoked even if
3557 -- a visible entity is found.
3559 if Is_Tagged_Type (Prefix_Type)
3560 and then
3561 Nkind_In (Parent (N), N_Procedure_Call_Statement,
3562 N_Function_Call,
3563 N_Indexed_Component)
3564 and then Has_Mode_Conformant_Spec (Comp)
3565 then
3566 Has_Candidate := True;
3567 end if;
3569 elsif Ekind (Comp) = E_Discriminant
3570 or else Ekind (Comp) = E_Entry_Family
3571 or else (In_Scope
3572 and then Is_Entity_Name (Name))
3573 then
3574 Set_Entity_With_Style_Check (Sel, Comp);
3575 Generate_Reference (Comp, Sel);
3577 else
3578 goto Next_Comp;
3579 end if;
3581 Set_Etype (Sel, Etype (Comp));
3582 Set_Etype (N, Etype (Comp));
3584 if Ekind (Comp) = E_Discriminant then
3585 Set_Original_Discriminant (Sel, Comp);
3586 end if;
3588 -- For access type case, introduce explicit dereference for
3589 -- more uniform treatment of entry calls.
3591 if Is_Access_Type (Etype (Name)) then
3592 Insert_Explicit_Dereference (Name);
3593 Error_Msg_NW
3594 (Warn_On_Dereference, "?implicit dereference", N);
3595 end if;
3596 end if;
3598 <<Next_Comp>>
3599 Next_Entity (Comp);
3600 exit when not In_Scope
3601 and then
3602 Comp = First_Private_Entity (Base_Type (Prefix_Type));
3603 end loop;
3605 -- If there is no visible entity with the given name or none of the
3606 -- visible entities are plausible interpretations, check whether
3607 -- there is some other primitive operation with that name.
3609 if Ada_Version >= Ada_05
3610 and then Is_Tagged_Type (Prefix_Type)
3611 then
3612 if (Etype (N) = Any_Type
3613 or else not Has_Candidate)
3614 and then Try_Object_Operation (N)
3615 then
3616 return;
3618 -- If the context is not syntactically a procedure call, it
3619 -- may be a call to a primitive function declared outside of
3620 -- the synchronized type.
3622 -- If the context is a procedure call, there might still be
3623 -- an overloading between an entry and a primitive procedure
3624 -- declared outside of the synchronized type, called in prefix
3625 -- notation. This is harder to disambiguate because in one case
3626 -- the controlling formal is implicit ???
3628 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
3629 and then Nkind (Parent (N)) /= N_Indexed_Component
3630 and then Try_Object_Operation (N)
3631 then
3632 return;
3633 end if;
3634 end if;
3636 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3638 else
3639 -- Invalid prefix
3641 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3642 end if;
3644 -- If N still has no type, the component is not defined in the prefix
3646 if Etype (N) = Any_Type then
3648 -- If the prefix is a single concurrent object, use its name in the
3649 -- error message, rather than that of its anonymous type.
3651 if Is_Concurrent_Type (Prefix_Type)
3652 and then Is_Internal_Name (Chars (Prefix_Type))
3653 and then not Is_Derived_Type (Prefix_Type)
3654 and then Is_Entity_Name (Name)
3655 then
3657 Error_Msg_Node_2 := Entity (Name);
3658 Error_Msg_NE ("no selector& for&", N, Sel);
3660 Check_Misspelled_Selector (Type_To_Use, Sel);
3662 elsif Is_Generic_Type (Prefix_Type)
3663 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
3664 and then Prefix_Type /= Etype (Prefix_Type)
3665 and then Is_Record_Type (Etype (Prefix_Type))
3666 then
3667 -- If this is a derived formal type, the parent may have
3668 -- different visibility at this point. Try for an inherited
3669 -- component before reporting an error.
3671 Set_Etype (Prefix (N), Etype (Prefix_Type));
3672 Analyze_Selected_Component (N);
3673 return;
3675 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3676 and then Is_Generic_Actual_Type (Prefix_Type)
3677 and then Present (Full_View (Prefix_Type))
3678 then
3679 -- Similarly, if this the actual for a formal derived type, the
3680 -- component inherited from the generic parent may not be visible
3681 -- in the actual, but the selected component is legal.
3683 declare
3684 Comp : Entity_Id;
3686 begin
3687 Comp :=
3688 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
3689 while Present (Comp) loop
3690 if Chars (Comp) = Chars (Sel) then
3691 Set_Entity_With_Style_Check (Sel, Comp);
3692 Set_Etype (Sel, Etype (Comp));
3693 Set_Etype (N, Etype (Comp));
3694 return;
3695 end if;
3697 Next_Component (Comp);
3698 end loop;
3700 pragma Assert (Etype (N) /= Any_Type);
3701 end;
3703 else
3704 if Ekind (Prefix_Type) = E_Record_Subtype then
3706 -- Check whether this is a component of the base type
3707 -- which is absent from a statically constrained subtype.
3708 -- This will raise constraint error at run-time, but is
3709 -- not a compile-time error. When the selector is illegal
3710 -- for base type as well fall through and generate a
3711 -- compilation error anyway.
3713 Comp := First_Component (Base_Type (Prefix_Type));
3714 while Present (Comp) loop
3715 if Chars (Comp) = Chars (Sel)
3716 and then Is_Visible_Component (Comp)
3717 then
3718 Set_Entity_With_Style_Check (Sel, Comp);
3719 Generate_Reference (Comp, Sel);
3720 Set_Etype (Sel, Etype (Comp));
3721 Set_Etype (N, Etype (Comp));
3723 -- Emit appropriate message. Gigi will replace the
3724 -- node subsequently with the appropriate Raise.
3726 Apply_Compile_Time_Constraint_Error
3727 (N, "component not present in }?",
3728 CE_Discriminant_Check_Failed,
3729 Ent => Prefix_Type, Rep => False);
3730 Set_Raises_Constraint_Error (N);
3731 return;
3732 end if;
3734 Next_Component (Comp);
3735 end loop;
3737 end if;
3739 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3740 Error_Msg_NE ("no selector& for}", N, Sel);
3742 Check_Misspelled_Selector (Type_To_Use, Sel);
3743 end if;
3745 Set_Entity (Sel, Any_Id);
3746 Set_Etype (Sel, Any_Type);
3747 end if;
3748 end Analyze_Selected_Component;
3750 ---------------------------
3751 -- Analyze_Short_Circuit --
3752 ---------------------------
3754 procedure Analyze_Short_Circuit (N : Node_Id) is
3755 L : constant Node_Id := Left_Opnd (N);
3756 R : constant Node_Id := Right_Opnd (N);
3757 Ind : Interp_Index;
3758 It : Interp;
3760 begin
3761 Analyze_Expression (L);
3762 Analyze_Expression (R);
3763 Set_Etype (N, Any_Type);
3765 if not Is_Overloaded (L) then
3766 if Root_Type (Etype (L)) = Standard_Boolean
3767 and then Has_Compatible_Type (R, Etype (L))
3768 then
3769 Add_One_Interp (N, Etype (L), Etype (L));
3770 end if;
3772 else
3773 Get_First_Interp (L, Ind, It);
3774 while Present (It.Typ) loop
3775 if Root_Type (It.Typ) = Standard_Boolean
3776 and then Has_Compatible_Type (R, It.Typ)
3777 then
3778 Add_One_Interp (N, It.Typ, It.Typ);
3779 end if;
3781 Get_Next_Interp (Ind, It);
3782 end loop;
3783 end if;
3785 -- Here we have failed to find an interpretation. Clearly we know that
3786 -- it is not the case that both operands can have an interpretation of
3787 -- Boolean, but this is by far the most likely intended interpretation.
3788 -- So we simply resolve both operands as Booleans, and at least one of
3789 -- these resolutions will generate an error message, and we do not need
3790 -- to give another error message on the short circuit operation itself.
3792 if Etype (N) = Any_Type then
3793 Resolve (L, Standard_Boolean);
3794 Resolve (R, Standard_Boolean);
3795 Set_Etype (N, Standard_Boolean);
3796 end if;
3797 end Analyze_Short_Circuit;
3799 -------------------
3800 -- Analyze_Slice --
3801 -------------------
3803 procedure Analyze_Slice (N : Node_Id) is
3804 P : constant Node_Id := Prefix (N);
3805 D : constant Node_Id := Discrete_Range (N);
3806 Array_Type : Entity_Id;
3808 procedure Analyze_Overloaded_Slice;
3809 -- If the prefix is overloaded, select those interpretations that
3810 -- yield a one-dimensional array type.
3812 ------------------------------
3813 -- Analyze_Overloaded_Slice --
3814 ------------------------------
3816 procedure Analyze_Overloaded_Slice is
3817 I : Interp_Index;
3818 It : Interp;
3819 Typ : Entity_Id;
3821 begin
3822 Set_Etype (N, Any_Type);
3824 Get_First_Interp (P, I, It);
3825 while Present (It.Nam) loop
3826 Typ := It.Typ;
3828 if Is_Access_Type (Typ) then
3829 Typ := Designated_Type (Typ);
3830 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3831 end if;
3833 if Is_Array_Type (Typ)
3834 and then Number_Dimensions (Typ) = 1
3835 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
3836 then
3837 Add_One_Interp (N, Typ, Typ);
3838 end if;
3840 Get_Next_Interp (I, It);
3841 end loop;
3843 if Etype (N) = Any_Type then
3844 Error_Msg_N ("expect array type in prefix of slice", N);
3845 end if;
3846 end Analyze_Overloaded_Slice;
3848 -- Start of processing for Analyze_Slice
3850 begin
3851 Analyze (P);
3852 Analyze (D);
3854 if Is_Overloaded (P) then
3855 Analyze_Overloaded_Slice;
3857 else
3858 Array_Type := Etype (P);
3859 Set_Etype (N, Any_Type);
3861 if Is_Access_Type (Array_Type) then
3862 Array_Type := Designated_Type (Array_Type);
3863 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3864 end if;
3866 if not Is_Array_Type (Array_Type) then
3867 Wrong_Type (P, Any_Array);
3869 elsif Number_Dimensions (Array_Type) > 1 then
3870 Error_Msg_N
3871 ("type is not one-dimensional array in slice prefix", N);
3873 elsif not
3874 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
3875 then
3876 Wrong_Type (D, Etype (First_Index (Array_Type)));
3878 else
3879 Set_Etype (N, Array_Type);
3880 end if;
3881 end if;
3882 end Analyze_Slice;
3884 -----------------------------
3885 -- Analyze_Type_Conversion --
3886 -----------------------------
3888 procedure Analyze_Type_Conversion (N : Node_Id) is
3889 Expr : constant Node_Id := Expression (N);
3890 T : Entity_Id;
3892 begin
3893 -- Check if the expression is a function call for which we need to
3894 -- adjust a SCIL dispatching node.
3896 if Generate_SCIL
3897 and then Nkind (Expr) = N_Function_Call
3898 then
3899 Adjust_SCIL_Node (N, Expr);
3900 end if;
3902 -- If Conversion_OK is set, then the Etype is already set, and the
3903 -- only processing required is to analyze the expression. This is
3904 -- used to construct certain "illegal" conversions which are not
3905 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3906 -- Sinfo for further details.
3908 if Conversion_OK (N) then
3909 Analyze (Expr);
3910 return;
3911 end if;
3913 -- Otherwise full type analysis is required, as well as some semantic
3914 -- checks to make sure the argument of the conversion is appropriate.
3916 Find_Type (Subtype_Mark (N));
3917 T := Entity (Subtype_Mark (N));
3918 Set_Etype (N, T);
3919 Check_Fully_Declared (T, N);
3920 Analyze_Expression (Expr);
3921 Validate_Remote_Type_Type_Conversion (N);
3923 -- Only remaining step is validity checks on the argument. These
3924 -- are skipped if the conversion does not come from the source.
3926 if not Comes_From_Source (N) then
3927 return;
3929 -- If there was an error in a generic unit, no need to replicate the
3930 -- error message. Conversely, constant-folding in the generic may
3931 -- transform the argument of a conversion into a string literal, which
3932 -- is legal. Therefore the following tests are not performed in an
3933 -- instance.
3935 elsif In_Instance then
3936 return;
3938 elsif Nkind (Expr) = N_Null then
3939 Error_Msg_N ("argument of conversion cannot be null", N);
3940 Error_Msg_N ("\use qualified expression instead", N);
3941 Set_Etype (N, Any_Type);
3943 elsif Nkind (Expr) = N_Aggregate then
3944 Error_Msg_N ("argument of conversion cannot be aggregate", N);
3945 Error_Msg_N ("\use qualified expression instead", N);
3947 elsif Nkind (Expr) = N_Allocator then
3948 Error_Msg_N ("argument of conversion cannot be an allocator", N);
3949 Error_Msg_N ("\use qualified expression instead", N);
3951 elsif Nkind (Expr) = N_String_Literal then
3952 Error_Msg_N ("argument of conversion cannot be string literal", N);
3953 Error_Msg_N ("\use qualified expression instead", N);
3955 elsif Nkind (Expr) = N_Character_Literal then
3956 if Ada_Version = Ada_83 then
3957 Resolve (Expr, T);
3958 else
3959 Error_Msg_N ("argument of conversion cannot be character literal",
3961 Error_Msg_N ("\use qualified expression instead", N);
3962 end if;
3964 elsif Nkind (Expr) = N_Attribute_Reference
3965 and then
3966 (Attribute_Name (Expr) = Name_Access or else
3967 Attribute_Name (Expr) = Name_Unchecked_Access or else
3968 Attribute_Name (Expr) = Name_Unrestricted_Access)
3969 then
3970 Error_Msg_N ("argument of conversion cannot be access", N);
3971 Error_Msg_N ("\use qualified expression instead", N);
3972 end if;
3973 end Analyze_Type_Conversion;
3975 ----------------------
3976 -- Analyze_Unary_Op --
3977 ----------------------
3979 procedure Analyze_Unary_Op (N : Node_Id) is
3980 R : constant Node_Id := Right_Opnd (N);
3981 Op_Id : Entity_Id := Entity (N);
3983 begin
3984 Set_Etype (N, Any_Type);
3985 Candidate_Type := Empty;
3987 Analyze_Expression (R);
3989 if Present (Op_Id) then
3990 if Ekind (Op_Id) = E_Operator then
3991 Find_Unary_Types (R, Op_Id, N);
3992 else
3993 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3994 end if;
3996 else
3997 Op_Id := Get_Name_Entity_Id (Chars (N));
3998 while Present (Op_Id) loop
3999 if Ekind (Op_Id) = E_Operator then
4000 if No (Next_Entity (First_Entity (Op_Id))) then
4001 Find_Unary_Types (R, Op_Id, N);
4002 end if;
4004 elsif Is_Overloadable (Op_Id) then
4005 Analyze_User_Defined_Unary_Op (N, Op_Id);
4006 end if;
4008 Op_Id := Homonym (Op_Id);
4009 end loop;
4010 end if;
4012 Operator_Check (N);
4013 end Analyze_Unary_Op;
4015 ----------------------------------
4016 -- Analyze_Unchecked_Expression --
4017 ----------------------------------
4019 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4020 begin
4021 Analyze (Expression (N), Suppress => All_Checks);
4022 Set_Etype (N, Etype (Expression (N)));
4023 Save_Interps (Expression (N), N);
4024 end Analyze_Unchecked_Expression;
4026 ---------------------------------------
4027 -- Analyze_Unchecked_Type_Conversion --
4028 ---------------------------------------
4030 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4031 begin
4032 Find_Type (Subtype_Mark (N));
4033 Analyze_Expression (Expression (N));
4034 Set_Etype (N, Entity (Subtype_Mark (N)));
4035 end Analyze_Unchecked_Type_Conversion;
4037 ------------------------------------
4038 -- Analyze_User_Defined_Binary_Op --
4039 ------------------------------------
4041 procedure Analyze_User_Defined_Binary_Op
4042 (N : Node_Id;
4043 Op_Id : Entity_Id)
4045 begin
4046 -- Only do analysis if the operator Comes_From_Source, since otherwise
4047 -- the operator was generated by the expander, and all such operators
4048 -- always refer to the operators in package Standard.
4050 if Comes_From_Source (N) then
4051 declare
4052 F1 : constant Entity_Id := First_Formal (Op_Id);
4053 F2 : constant Entity_Id := Next_Formal (F1);
4055 begin
4056 -- Verify that Op_Id is a visible binary function. Note that since
4057 -- we know Op_Id is overloaded, potentially use visible means use
4058 -- visible for sure (RM 9.4(11)).
4060 if Ekind (Op_Id) = E_Function
4061 and then Present (F2)
4062 and then (Is_Immediately_Visible (Op_Id)
4063 or else Is_Potentially_Use_Visible (Op_Id))
4064 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4065 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4066 then
4067 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4069 -- If the left operand is overloaded, indicate that the
4070 -- current type is a viable candidate. This is redundant
4071 -- in most cases, but for equality and comparison operators
4072 -- where the context does not impose a type on the operands,
4073 -- setting the proper type is necessary to avoid subsequent
4074 -- ambiguities during resolution, when both user-defined and
4075 -- predefined operators may be candidates.
4077 if Is_Overloaded (Left_Opnd (N)) then
4078 Set_Etype (Left_Opnd (N), Etype (F1));
4079 end if;
4081 if Debug_Flag_E then
4082 Write_Str ("user defined operator ");
4083 Write_Name (Chars (Op_Id));
4084 Write_Str (" on node ");
4085 Write_Int (Int (N));
4086 Write_Eol;
4087 end if;
4088 end if;
4089 end;
4090 end if;
4091 end Analyze_User_Defined_Binary_Op;
4093 -----------------------------------
4094 -- Analyze_User_Defined_Unary_Op --
4095 -----------------------------------
4097 procedure Analyze_User_Defined_Unary_Op
4098 (N : Node_Id;
4099 Op_Id : Entity_Id)
4101 begin
4102 -- Only do analysis if the operator Comes_From_Source, since otherwise
4103 -- the operator was generated by the expander, and all such operators
4104 -- always refer to the operators in package Standard.
4106 if Comes_From_Source (N) then
4107 declare
4108 F : constant Entity_Id := First_Formal (Op_Id);
4110 begin
4111 -- Verify that Op_Id is a visible unary function. Note that since
4112 -- we know Op_Id is overloaded, potentially use visible means use
4113 -- visible for sure (RM 9.4(11)).
4115 if Ekind (Op_Id) = E_Function
4116 and then No (Next_Formal (F))
4117 and then (Is_Immediately_Visible (Op_Id)
4118 or else Is_Potentially_Use_Visible (Op_Id))
4119 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4120 then
4121 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4122 end if;
4123 end;
4124 end if;
4125 end Analyze_User_Defined_Unary_Op;
4127 ---------------------------
4128 -- Check_Arithmetic_Pair --
4129 ---------------------------
4131 procedure Check_Arithmetic_Pair
4132 (T1, T2 : Entity_Id;
4133 Op_Id : Entity_Id;
4134 N : Node_Id)
4136 Op_Name : constant Name_Id := Chars (Op_Id);
4138 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4139 -- Check whether the fixed-point type Typ has a user-defined operator
4140 -- (multiplication or division) that should hide the corresponding
4141 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4142 -- such operators more visible and therefore useful.
4144 -- If the name of the operation is an expanded name with prefix
4145 -- Standard, the predefined universal fixed operator is available,
4146 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4148 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4149 -- Get specific type (i.e. non-universal type if there is one)
4151 ------------------
4152 -- Has_Fixed_Op --
4153 ------------------
4155 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4156 Bas : constant Entity_Id := Base_Type (Typ);
4157 Ent : Entity_Id;
4158 F1 : Entity_Id;
4159 F2 : Entity_Id;
4161 begin
4162 -- If the universal_fixed operation is given explicitly the rule
4163 -- concerning primitive operations of the type do not apply.
4165 if Nkind (N) = N_Function_Call
4166 and then Nkind (Name (N)) = N_Expanded_Name
4167 and then Entity (Prefix (Name (N))) = Standard_Standard
4168 then
4169 return False;
4170 end if;
4172 -- The operation is treated as primitive if it is declared in the
4173 -- same scope as the type, and therefore on the same entity chain.
4175 Ent := Next_Entity (Typ);
4176 while Present (Ent) loop
4177 if Chars (Ent) = Chars (Op) then
4178 F1 := First_Formal (Ent);
4179 F2 := Next_Formal (F1);
4181 -- The operation counts as primitive if either operand or
4182 -- result are of the given base type, and both operands are
4183 -- fixed point types.
4185 if (Base_Type (Etype (F1)) = Bas
4186 and then Is_Fixed_Point_Type (Etype (F2)))
4188 or else
4189 (Base_Type (Etype (F2)) = Bas
4190 and then Is_Fixed_Point_Type (Etype (F1)))
4192 or else
4193 (Base_Type (Etype (Ent)) = Bas
4194 and then Is_Fixed_Point_Type (Etype (F1))
4195 and then Is_Fixed_Point_Type (Etype (F2)))
4196 then
4197 return True;
4198 end if;
4199 end if;
4201 Next_Entity (Ent);
4202 end loop;
4204 return False;
4205 end Has_Fixed_Op;
4207 -------------------
4208 -- Specific_Type --
4209 -------------------
4211 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4212 begin
4213 if T1 = Universal_Integer or else T1 = Universal_Real then
4214 return Base_Type (T2);
4215 else
4216 return Base_Type (T1);
4217 end if;
4218 end Specific_Type;
4220 -- Start of processing for Check_Arithmetic_Pair
4222 begin
4223 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4225 if Is_Numeric_Type (T1)
4226 and then Is_Numeric_Type (T2)
4227 and then (Covers (T1 => T1, T2 => T2)
4228 or else
4229 Covers (T1 => T2, T2 => T1))
4230 then
4231 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4232 end if;
4234 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4236 if Is_Fixed_Point_Type (T1)
4237 and then (Is_Fixed_Point_Type (T2)
4238 or else T2 = Universal_Real)
4239 then
4240 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4241 -- and no further processing is required (this is the case of an
4242 -- operator constructed by Exp_Fixd for a fixed point operation)
4243 -- Otherwise add one interpretation with universal fixed result
4244 -- If the operator is given in functional notation, it comes
4245 -- from source and Fixed_As_Integer cannot apply.
4247 if (Nkind (N) not in N_Op
4248 or else not Treat_Fixed_As_Integer (N))
4249 and then
4250 (not Has_Fixed_Op (T1, Op_Id)
4251 or else Nkind (Parent (N)) = N_Type_Conversion)
4252 then
4253 Add_One_Interp (N, Op_Id, Universal_Fixed);
4254 end if;
4256 elsif Is_Fixed_Point_Type (T2)
4257 and then (Nkind (N) not in N_Op
4258 or else not Treat_Fixed_As_Integer (N))
4259 and then T1 = Universal_Real
4260 and then
4261 (not Has_Fixed_Op (T1, Op_Id)
4262 or else Nkind (Parent (N)) = N_Type_Conversion)
4263 then
4264 Add_One_Interp (N, Op_Id, Universal_Fixed);
4266 elsif Is_Numeric_Type (T1)
4267 and then Is_Numeric_Type (T2)
4268 and then (Covers (T1 => T1, T2 => T2)
4269 or else
4270 Covers (T1 => T2, T2 => T1))
4271 then
4272 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4274 elsif Is_Fixed_Point_Type (T1)
4275 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4276 or else T2 = Universal_Integer)
4277 then
4278 Add_One_Interp (N, Op_Id, T1);
4280 elsif T2 = Universal_Real
4281 and then Base_Type (T1) = Base_Type (Standard_Integer)
4282 and then Op_Name = Name_Op_Multiply
4283 then
4284 Add_One_Interp (N, Op_Id, Any_Fixed);
4286 elsif T1 = Universal_Real
4287 and then Base_Type (T2) = Base_Type (Standard_Integer)
4288 then
4289 Add_One_Interp (N, Op_Id, Any_Fixed);
4291 elsif Is_Fixed_Point_Type (T2)
4292 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4293 or else T1 = Universal_Integer)
4294 and then Op_Name = Name_Op_Multiply
4295 then
4296 Add_One_Interp (N, Op_Id, T2);
4298 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4299 Add_One_Interp (N, Op_Id, T1);
4301 elsif T2 = Universal_Real
4302 and then T1 = Universal_Integer
4303 and then Op_Name = Name_Op_Multiply
4304 then
4305 Add_One_Interp (N, Op_Id, T2);
4306 end if;
4308 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4310 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4311 -- set does not require any special processing, since the Etype is
4312 -- already set (case of operation constructed by Exp_Fixed).
4314 if Is_Integer_Type (T1)
4315 and then (Covers (T1 => T1, T2 => T2)
4316 or else
4317 Covers (T1 => T2, T2 => T1))
4318 then
4319 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4320 end if;
4322 elsif Op_Name = Name_Op_Expon then
4323 if Is_Numeric_Type (T1)
4324 and then not Is_Fixed_Point_Type (T1)
4325 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4326 or else T2 = Universal_Integer)
4327 then
4328 Add_One_Interp (N, Op_Id, Base_Type (T1));
4329 end if;
4331 else pragma Assert (Nkind (N) in N_Op_Shift);
4333 -- If not one of the predefined operators, the node may be one
4334 -- of the intrinsic functions. Its kind is always specific, and
4335 -- we can use it directly, rather than the name of the operation.
4337 if Is_Integer_Type (T1)
4338 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4339 or else T2 = Universal_Integer)
4340 then
4341 Add_One_Interp (N, Op_Id, Base_Type (T1));
4342 end if;
4343 end if;
4344 end Check_Arithmetic_Pair;
4346 -------------------------------
4347 -- Check_Misspelled_Selector --
4348 -------------------------------
4350 procedure Check_Misspelled_Selector
4351 (Prefix : Entity_Id;
4352 Sel : Node_Id)
4354 Max_Suggestions : constant := 2;
4355 Nr_Of_Suggestions : Natural := 0;
4357 Suggestion_1 : Entity_Id := Empty;
4358 Suggestion_2 : Entity_Id := Empty;
4360 Comp : Entity_Id;
4362 begin
4363 -- All the components of the prefix of selector Sel are matched
4364 -- against Sel and a count is maintained of possible misspellings.
4365 -- When at the end of the analysis there are one or two (not more!)
4366 -- possible misspellings, these misspellings will be suggested as
4367 -- possible correction.
4369 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4371 -- Concurrent types should be handled as well ???
4373 return;
4374 end if;
4376 Comp := First_Entity (Prefix);
4377 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4378 if Is_Visible_Component (Comp) then
4379 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4380 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4382 case Nr_Of_Suggestions is
4383 when 1 => Suggestion_1 := Comp;
4384 when 2 => Suggestion_2 := Comp;
4385 when others => exit;
4386 end case;
4387 end if;
4388 end if;
4390 Comp := Next_Entity (Comp);
4391 end loop;
4393 -- Report at most two suggestions
4395 if Nr_Of_Suggestions = 1 then
4396 Error_Msg_NE -- CODEFIX
4397 ("\possible misspelling of&", Sel, Suggestion_1);
4399 elsif Nr_Of_Suggestions = 2 then
4400 Error_Msg_Node_2 := Suggestion_2;
4401 Error_Msg_NE -- CODEFIX
4402 ("\possible misspelling of& or&", Sel, Suggestion_1);
4403 end if;
4404 end Check_Misspelled_Selector;
4406 ----------------------
4407 -- Defined_In_Scope --
4408 ----------------------
4410 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4412 S1 : constant Entity_Id := Scope (Base_Type (T));
4413 begin
4414 return S1 = S
4415 or else (S1 = System_Aux_Id and then S = Scope (S1));
4416 end Defined_In_Scope;
4418 -------------------
4419 -- Diagnose_Call --
4420 -------------------
4422 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
4423 Actual : Node_Id;
4424 X : Interp_Index;
4425 It : Interp;
4426 Err_Mode : Boolean;
4427 New_Nam : Node_Id;
4428 Void_Interp_Seen : Boolean := False;
4430 Success : Boolean;
4431 pragma Warnings (Off, Boolean);
4433 begin
4434 if Ada_Version >= Ada_05 then
4435 Actual := First_Actual (N);
4436 while Present (Actual) loop
4438 -- Ada 2005 (AI-50217): Post an error in case of premature
4439 -- usage of an entity from the limited view.
4441 if not Analyzed (Etype (Actual))
4442 and then From_With_Type (Etype (Actual))
4443 then
4444 Error_Msg_Qual_Level := 1;
4445 Error_Msg_NE
4446 ("missing with_clause for scope of imported type&",
4447 Actual, Etype (Actual));
4448 Error_Msg_Qual_Level := 0;
4449 end if;
4451 Next_Actual (Actual);
4452 end loop;
4453 end if;
4455 -- Analyze each candidate call again, with full error reporting
4456 -- for each.
4458 Error_Msg_N
4459 ("no candidate interpretations match the actuals:!", Nam);
4460 Err_Mode := All_Errors_Mode;
4461 All_Errors_Mode := True;
4463 -- If this is a call to an operation of a concurrent type,
4464 -- the failed interpretations have been removed from the
4465 -- name. Recover them to provide full diagnostics.
4467 if Nkind (Parent (Nam)) = N_Selected_Component then
4468 Set_Entity (Nam, Empty);
4469 New_Nam := New_Copy_Tree (Parent (Nam));
4470 Set_Is_Overloaded (New_Nam, False);
4471 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4472 Set_Parent (New_Nam, Parent (Parent (Nam)));
4473 Analyze_Selected_Component (New_Nam);
4474 Get_First_Interp (Selector_Name (New_Nam), X, It);
4475 else
4476 Get_First_Interp (Nam, X, It);
4477 end if;
4479 while Present (It.Nam) loop
4480 if Etype (It.Nam) = Standard_Void_Type then
4481 Void_Interp_Seen := True;
4482 end if;
4484 Analyze_One_Call (N, It.Nam, True, Success);
4485 Get_Next_Interp (X, It);
4486 end loop;
4488 if Nkind (N) = N_Function_Call then
4489 Get_First_Interp (Nam, X, It);
4490 while Present (It.Nam) loop
4491 if Ekind (It.Nam) = E_Function
4492 or else Ekind (It.Nam) = E_Operator
4493 then
4494 return;
4495 else
4496 Get_Next_Interp (X, It);
4497 end if;
4498 end loop;
4500 -- If all interpretations are procedures, this deserves a
4501 -- more precise message. Ditto if this appears as the prefix
4502 -- of a selected component, which may be a lexical error.
4504 Error_Msg_N
4505 ("\context requires function call, found procedure name", Nam);
4507 if Nkind (Parent (N)) = N_Selected_Component
4508 and then N = Prefix (Parent (N))
4509 then
4510 Error_Msg_N -- CODEFIX
4511 ("\period should probably be semicolon", Parent (N));
4512 end if;
4514 elsif Nkind (N) = N_Procedure_Call_Statement
4515 and then not Void_Interp_Seen
4516 then
4517 Error_Msg_N (
4518 "\function name found in procedure call", Nam);
4519 end if;
4521 All_Errors_Mode := Err_Mode;
4522 end Diagnose_Call;
4524 ---------------------------
4525 -- Find_Arithmetic_Types --
4526 ---------------------------
4528 procedure Find_Arithmetic_Types
4529 (L, R : Node_Id;
4530 Op_Id : Entity_Id;
4531 N : Node_Id)
4533 Index1 : Interp_Index;
4534 Index2 : Interp_Index;
4535 It1 : Interp;
4536 It2 : Interp;
4538 procedure Check_Right_Argument (T : Entity_Id);
4539 -- Check right operand of operator
4541 --------------------------
4542 -- Check_Right_Argument --
4543 --------------------------
4545 procedure Check_Right_Argument (T : Entity_Id) is
4546 begin
4547 if not Is_Overloaded (R) then
4548 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4549 else
4550 Get_First_Interp (R, Index2, It2);
4551 while Present (It2.Typ) loop
4552 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4553 Get_Next_Interp (Index2, It2);
4554 end loop;
4555 end if;
4556 end Check_Right_Argument;
4558 -- Start of processing for Find_Arithmetic_Types
4560 begin
4561 if not Is_Overloaded (L) then
4562 Check_Right_Argument (Etype (L));
4564 else
4565 Get_First_Interp (L, Index1, It1);
4566 while Present (It1.Typ) loop
4567 Check_Right_Argument (It1.Typ);
4568 Get_Next_Interp (Index1, It1);
4569 end loop;
4570 end if;
4572 end Find_Arithmetic_Types;
4574 ------------------------
4575 -- Find_Boolean_Types --
4576 ------------------------
4578 procedure Find_Boolean_Types
4579 (L, R : Node_Id;
4580 Op_Id : Entity_Id;
4581 N : Node_Id)
4583 Index : Interp_Index;
4584 It : Interp;
4586 procedure Check_Numeric_Argument (T : Entity_Id);
4587 -- Special case for logical operations one of whose operands is an
4588 -- integer literal. If both are literal the result is any modular type.
4590 ----------------------------
4591 -- Check_Numeric_Argument --
4592 ----------------------------
4594 procedure Check_Numeric_Argument (T : Entity_Id) is
4595 begin
4596 if T = Universal_Integer then
4597 Add_One_Interp (N, Op_Id, Any_Modular);
4599 elsif Is_Modular_Integer_Type (T) then
4600 Add_One_Interp (N, Op_Id, T);
4601 end if;
4602 end Check_Numeric_Argument;
4604 -- Start of processing for Find_Boolean_Types
4606 begin
4607 if not Is_Overloaded (L) then
4608 if Etype (L) = Universal_Integer
4609 or else Etype (L) = Any_Modular
4610 then
4611 if not Is_Overloaded (R) then
4612 Check_Numeric_Argument (Etype (R));
4614 else
4615 Get_First_Interp (R, Index, It);
4616 while Present (It.Typ) loop
4617 Check_Numeric_Argument (It.Typ);
4618 Get_Next_Interp (Index, It);
4619 end loop;
4620 end if;
4622 -- If operands are aggregates, we must assume that they may be
4623 -- boolean arrays, and leave disambiguation for the second pass.
4624 -- If only one is an aggregate, verify that the other one has an
4625 -- interpretation as a boolean array
4627 elsif Nkind (L) = N_Aggregate then
4628 if Nkind (R) = N_Aggregate then
4629 Add_One_Interp (N, Op_Id, Etype (L));
4631 elsif not Is_Overloaded (R) then
4632 if Valid_Boolean_Arg (Etype (R)) then
4633 Add_One_Interp (N, Op_Id, Etype (R));
4634 end if;
4636 else
4637 Get_First_Interp (R, Index, It);
4638 while Present (It.Typ) loop
4639 if Valid_Boolean_Arg (It.Typ) then
4640 Add_One_Interp (N, Op_Id, It.Typ);
4641 end if;
4643 Get_Next_Interp (Index, It);
4644 end loop;
4645 end if;
4647 elsif Valid_Boolean_Arg (Etype (L))
4648 and then Has_Compatible_Type (R, Etype (L))
4649 then
4650 Add_One_Interp (N, Op_Id, Etype (L));
4651 end if;
4653 else
4654 Get_First_Interp (L, Index, It);
4655 while Present (It.Typ) loop
4656 if Valid_Boolean_Arg (It.Typ)
4657 and then Has_Compatible_Type (R, It.Typ)
4658 then
4659 Add_One_Interp (N, Op_Id, It.Typ);
4660 end if;
4662 Get_Next_Interp (Index, It);
4663 end loop;
4664 end if;
4665 end Find_Boolean_Types;
4667 ---------------------------
4668 -- Find_Comparison_Types --
4669 ---------------------------
4671 procedure Find_Comparison_Types
4672 (L, R : Node_Id;
4673 Op_Id : Entity_Id;
4674 N : Node_Id)
4676 Index : Interp_Index;
4677 It : Interp;
4678 Found : Boolean := False;
4679 I_F : Interp_Index;
4680 T_F : Entity_Id;
4681 Scop : Entity_Id := Empty;
4683 procedure Try_One_Interp (T1 : Entity_Id);
4684 -- Routine to try one proposed interpretation. Note that the context
4685 -- of the operator plays no role in resolving the arguments, so that
4686 -- if there is more than one interpretation of the operands that is
4687 -- compatible with comparison, the operation is ambiguous.
4689 --------------------
4690 -- Try_One_Interp --
4691 --------------------
4693 procedure Try_One_Interp (T1 : Entity_Id) is
4694 begin
4696 -- If the operator is an expanded name, then the type of the operand
4697 -- must be defined in the corresponding scope. If the type is
4698 -- universal, the context will impose the correct type.
4700 if Present (Scop)
4701 and then not Defined_In_Scope (T1, Scop)
4702 and then T1 /= Universal_Integer
4703 and then T1 /= Universal_Real
4704 and then T1 /= Any_String
4705 and then T1 /= Any_Composite
4706 then
4707 return;
4708 end if;
4710 if Valid_Comparison_Arg (T1)
4711 and then Has_Compatible_Type (R, T1)
4712 then
4713 if Found
4714 and then Base_Type (T1) /= Base_Type (T_F)
4715 then
4716 It := Disambiguate (L, I_F, Index, Any_Type);
4718 if It = No_Interp then
4719 Ambiguous_Operands (N);
4720 Set_Etype (L, Any_Type);
4721 return;
4723 else
4724 T_F := It.Typ;
4725 end if;
4727 else
4728 Found := True;
4729 T_F := T1;
4730 I_F := Index;
4731 end if;
4733 Set_Etype (L, T_F);
4734 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4736 end if;
4737 end Try_One_Interp;
4739 -- Start of processing for Find_Comparison_Types
4741 begin
4742 -- If left operand is aggregate, the right operand has to
4743 -- provide a usable type for it.
4745 if Nkind (L) = N_Aggregate
4746 and then Nkind (R) /= N_Aggregate
4747 then
4748 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4749 return;
4750 end if;
4752 if Nkind (N) = N_Function_Call
4753 and then Nkind (Name (N)) = N_Expanded_Name
4754 then
4755 Scop := Entity (Prefix (Name (N)));
4757 -- The prefix may be a package renaming, and the subsequent test
4758 -- requires the original package.
4760 if Ekind (Scop) = E_Package
4761 and then Present (Renamed_Entity (Scop))
4762 then
4763 Scop := Renamed_Entity (Scop);
4764 Set_Entity (Prefix (Name (N)), Scop);
4765 end if;
4766 end if;
4768 if not Is_Overloaded (L) then
4769 Try_One_Interp (Etype (L));
4771 else
4772 Get_First_Interp (L, Index, It);
4773 while Present (It.Typ) loop
4774 Try_One_Interp (It.Typ);
4775 Get_Next_Interp (Index, It);
4776 end loop;
4777 end if;
4778 end Find_Comparison_Types;
4780 ----------------------------------------
4781 -- Find_Non_Universal_Interpretations --
4782 ----------------------------------------
4784 procedure Find_Non_Universal_Interpretations
4785 (N : Node_Id;
4786 R : Node_Id;
4787 Op_Id : Entity_Id;
4788 T1 : Entity_Id)
4790 Index : Interp_Index;
4791 It : Interp;
4793 begin
4794 if T1 = Universal_Integer
4795 or else T1 = Universal_Real
4796 then
4797 if not Is_Overloaded (R) then
4798 Add_One_Interp
4799 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
4800 else
4801 Get_First_Interp (R, Index, It);
4802 while Present (It.Typ) loop
4803 if Covers (It.Typ, T1) then
4804 Add_One_Interp
4805 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
4806 end if;
4808 Get_Next_Interp (Index, It);
4809 end loop;
4810 end if;
4811 else
4812 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
4813 end if;
4814 end Find_Non_Universal_Interpretations;
4816 ------------------------------
4817 -- Find_Concatenation_Types --
4818 ------------------------------
4820 procedure Find_Concatenation_Types
4821 (L, R : Node_Id;
4822 Op_Id : Entity_Id;
4823 N : Node_Id)
4825 Op_Type : constant Entity_Id := Etype (Op_Id);
4827 begin
4828 if Is_Array_Type (Op_Type)
4829 and then not Is_Limited_Type (Op_Type)
4831 and then (Has_Compatible_Type (L, Op_Type)
4832 or else
4833 Has_Compatible_Type (L, Component_Type (Op_Type)))
4835 and then (Has_Compatible_Type (R, Op_Type)
4836 or else
4837 Has_Compatible_Type (R, Component_Type (Op_Type)))
4838 then
4839 Add_One_Interp (N, Op_Id, Op_Type);
4840 end if;
4841 end Find_Concatenation_Types;
4843 -------------------------
4844 -- Find_Equality_Types --
4845 -------------------------
4847 procedure Find_Equality_Types
4848 (L, R : Node_Id;
4849 Op_Id : Entity_Id;
4850 N : Node_Id)
4852 Index : Interp_Index;
4853 It : Interp;
4854 Found : Boolean := False;
4855 I_F : Interp_Index;
4856 T_F : Entity_Id;
4857 Scop : Entity_Id := Empty;
4859 procedure Try_One_Interp (T1 : Entity_Id);
4860 -- The context of the equality operator plays no role in resolving the
4861 -- arguments, so that if there is more than one interpretation of the
4862 -- operands that is compatible with equality, the construct is ambiguous
4863 -- and an error can be emitted now, after trying to disambiguate, i.e.
4864 -- applying preference rules.
4866 --------------------
4867 -- Try_One_Interp --
4868 --------------------
4870 procedure Try_One_Interp (T1 : Entity_Id) is
4871 Bas : constant Entity_Id := Base_Type (T1);
4873 begin
4874 -- If the operator is an expanded name, then the type of the operand
4875 -- must be defined in the corresponding scope. If the type is
4876 -- universal, the context will impose the correct type. An anonymous
4877 -- type for a 'Access reference is also universal in this sense, as
4878 -- the actual type is obtained from context.
4879 -- In Ada 2005, the equality operator for anonymous access types
4880 -- is declared in Standard, and preference rules apply to it.
4882 if Present (Scop) then
4883 if Defined_In_Scope (T1, Scop)
4884 or else T1 = Universal_Integer
4885 or else T1 = Universal_Real
4886 or else T1 = Any_Access
4887 or else T1 = Any_String
4888 or else T1 = Any_Composite
4889 or else (Ekind (T1) = E_Access_Subprogram_Type
4890 and then not Comes_From_Source (T1))
4891 then
4892 null;
4894 elsif Ekind (T1) = E_Anonymous_Access_Type
4895 and then Scop = Standard_Standard
4896 then
4897 null;
4899 else
4900 -- The scope does not contain an operator for the type
4902 return;
4903 end if;
4905 -- If we have infix notation, the operator must be usable.
4906 -- Within an instance, if the type is already established we
4907 -- know it is correct.
4908 -- In Ada 2005, the equality on anonymous access types is declared
4909 -- in Standard, and is always visible.
4911 elsif In_Open_Scopes (Scope (Bas))
4912 or else Is_Potentially_Use_Visible (Bas)
4913 or else In_Use (Bas)
4914 or else (In_Use (Scope (Bas))
4915 and then not Is_Hidden (Bas))
4916 or else (In_Instance
4917 and then First_Subtype (T1) = First_Subtype (Etype (R)))
4918 or else Ekind (T1) = E_Anonymous_Access_Type
4919 then
4920 null;
4922 else
4923 -- Save candidate type for subsquent error message, if any
4925 if not Is_Limited_Type (T1) then
4926 Candidate_Type := T1;
4927 end if;
4929 return;
4930 end if;
4932 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
4933 -- Do not allow anonymous access types in equality operators.
4935 if Ada_Version < Ada_05
4936 and then Ekind (T1) = E_Anonymous_Access_Type
4937 then
4938 return;
4939 end if;
4941 if T1 /= Standard_Void_Type
4942 and then not Is_Limited_Type (T1)
4943 and then not Is_Limited_Composite (T1)
4944 and then Has_Compatible_Type (R, T1)
4945 then
4946 if Found
4947 and then Base_Type (T1) /= Base_Type (T_F)
4948 then
4949 It := Disambiguate (L, I_F, Index, Any_Type);
4951 if It = No_Interp then
4952 Ambiguous_Operands (N);
4953 Set_Etype (L, Any_Type);
4954 return;
4956 else
4957 T_F := It.Typ;
4958 end if;
4960 else
4961 Found := True;
4962 T_F := T1;
4963 I_F := Index;
4964 end if;
4966 if not Analyzed (L) then
4967 Set_Etype (L, T_F);
4968 end if;
4970 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4972 -- Case of operator was not visible, Etype still set to Any_Type
4974 if Etype (N) = Any_Type then
4975 Found := False;
4976 end if;
4978 elsif Scop = Standard_Standard
4979 and then Ekind (T1) = E_Anonymous_Access_Type
4980 then
4981 Found := True;
4982 end if;
4983 end Try_One_Interp;
4985 -- Start of processing for Find_Equality_Types
4987 begin
4988 -- If left operand is aggregate, the right operand has to
4989 -- provide a usable type for it.
4991 if Nkind (L) = N_Aggregate
4992 and then Nkind (R) /= N_Aggregate
4993 then
4994 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4995 return;
4996 end if;
4998 if Nkind (N) = N_Function_Call
4999 and then Nkind (Name (N)) = N_Expanded_Name
5000 then
5001 Scop := Entity (Prefix (Name (N)));
5003 -- The prefix may be a package renaming, and the subsequent test
5004 -- requires the original package.
5006 if Ekind (Scop) = E_Package
5007 and then Present (Renamed_Entity (Scop))
5008 then
5009 Scop := Renamed_Entity (Scop);
5010 Set_Entity (Prefix (Name (N)), Scop);
5011 end if;
5012 end if;
5014 if not Is_Overloaded (L) then
5015 Try_One_Interp (Etype (L));
5017 else
5018 Get_First_Interp (L, Index, It);
5019 while Present (It.Typ) loop
5020 Try_One_Interp (It.Typ);
5021 Get_Next_Interp (Index, It);
5022 end loop;
5023 end if;
5024 end Find_Equality_Types;
5026 -------------------------
5027 -- Find_Negation_Types --
5028 -------------------------
5030 procedure Find_Negation_Types
5031 (R : Node_Id;
5032 Op_Id : Entity_Id;
5033 N : Node_Id)
5035 Index : Interp_Index;
5036 It : Interp;
5038 begin
5039 if not Is_Overloaded (R) then
5040 if Etype (R) = Universal_Integer then
5041 Add_One_Interp (N, Op_Id, Any_Modular);
5042 elsif Valid_Boolean_Arg (Etype (R)) then
5043 Add_One_Interp (N, Op_Id, Etype (R));
5044 end if;
5046 else
5047 Get_First_Interp (R, Index, It);
5048 while Present (It.Typ) loop
5049 if Valid_Boolean_Arg (It.Typ) then
5050 Add_One_Interp (N, Op_Id, It.Typ);
5051 end if;
5053 Get_Next_Interp (Index, It);
5054 end loop;
5055 end if;
5056 end Find_Negation_Types;
5058 ------------------------------
5059 -- Find_Primitive_Operation --
5060 ------------------------------
5062 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5063 Obj : constant Node_Id := Prefix (N);
5064 Op : constant Node_Id := Selector_Name (N);
5066 Prim : Elmt_Id;
5067 Prims : Elist_Id;
5068 Typ : Entity_Id;
5070 begin
5071 Set_Etype (Op, Any_Type);
5073 if Is_Access_Type (Etype (Obj)) then
5074 Typ := Designated_Type (Etype (Obj));
5075 else
5076 Typ := Etype (Obj);
5077 end if;
5079 if Is_Class_Wide_Type (Typ) then
5080 Typ := Root_Type (Typ);
5081 end if;
5083 Prims := Primitive_Operations (Typ);
5085 Prim := First_Elmt (Prims);
5086 while Present (Prim) loop
5087 if Chars (Node (Prim)) = Chars (Op) then
5088 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5089 Set_Etype (N, Etype (Node (Prim)));
5090 end if;
5092 Next_Elmt (Prim);
5093 end loop;
5095 -- Now look for class-wide operations of the type or any of its
5096 -- ancestors by iterating over the homonyms of the selector.
5098 declare
5099 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5100 Hom : Entity_Id;
5102 begin
5103 Hom := Current_Entity (Op);
5104 while Present (Hom) loop
5105 if (Ekind (Hom) = E_Procedure
5106 or else
5107 Ekind (Hom) = E_Function)
5108 and then Scope (Hom) = Scope (Typ)
5109 and then Present (First_Formal (Hom))
5110 and then
5111 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5112 or else
5113 (Is_Access_Type (Etype (First_Formal (Hom)))
5114 and then
5115 Ekind (Etype (First_Formal (Hom))) =
5116 E_Anonymous_Access_Type
5117 and then
5118 Base_Type
5119 (Designated_Type (Etype (First_Formal (Hom)))) =
5120 Cls_Type))
5121 then
5122 Add_One_Interp (Op, Hom, Etype (Hom));
5123 Set_Etype (N, Etype (Hom));
5124 end if;
5126 Hom := Homonym (Hom);
5127 end loop;
5128 end;
5130 return Etype (Op) /= Any_Type;
5131 end Find_Primitive_Operation;
5133 ----------------------
5134 -- Find_Unary_Types --
5135 ----------------------
5137 procedure Find_Unary_Types
5138 (R : Node_Id;
5139 Op_Id : Entity_Id;
5140 N : Node_Id)
5142 Index : Interp_Index;
5143 It : Interp;
5145 begin
5146 if not Is_Overloaded (R) then
5147 if Is_Numeric_Type (Etype (R)) then
5148 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5149 end if;
5151 else
5152 Get_First_Interp (R, Index, It);
5153 while Present (It.Typ) loop
5154 if Is_Numeric_Type (It.Typ) then
5155 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5156 end if;
5158 Get_Next_Interp (Index, It);
5159 end loop;
5160 end if;
5161 end Find_Unary_Types;
5163 ------------------
5164 -- Junk_Operand --
5165 ------------------
5167 function Junk_Operand (N : Node_Id) return Boolean is
5168 Enode : Node_Id;
5170 begin
5171 if Error_Posted (N) then
5172 return False;
5173 end if;
5175 -- Get entity to be tested
5177 if Is_Entity_Name (N)
5178 and then Present (Entity (N))
5179 then
5180 Enode := N;
5182 -- An odd case, a procedure name gets converted to a very peculiar
5183 -- function call, and here is where we detect this happening.
5185 elsif Nkind (N) = N_Function_Call
5186 and then Is_Entity_Name (Name (N))
5187 and then Present (Entity (Name (N)))
5188 then
5189 Enode := Name (N);
5191 -- Another odd case, there are at least some cases of selected
5192 -- components where the selected component is not marked as having
5193 -- an entity, even though the selector does have an entity
5195 elsif Nkind (N) = N_Selected_Component
5196 and then Present (Entity (Selector_Name (N)))
5197 then
5198 Enode := Selector_Name (N);
5200 else
5201 return False;
5202 end if;
5204 -- Now test the entity we got to see if it is a bad case
5206 case Ekind (Entity (Enode)) is
5208 when E_Package =>
5209 Error_Msg_N
5210 ("package name cannot be used as operand", Enode);
5212 when Generic_Unit_Kind =>
5213 Error_Msg_N
5214 ("generic unit name cannot be used as operand", Enode);
5216 when Type_Kind =>
5217 Error_Msg_N
5218 ("subtype name cannot be used as operand", Enode);
5220 when Entry_Kind =>
5221 Error_Msg_N
5222 ("entry name cannot be used as operand", Enode);
5224 when E_Procedure =>
5225 Error_Msg_N
5226 ("procedure name cannot be used as operand", Enode);
5228 when E_Exception =>
5229 Error_Msg_N
5230 ("exception name cannot be used as operand", Enode);
5232 when E_Block | E_Label | E_Loop =>
5233 Error_Msg_N
5234 ("label name cannot be used as operand", Enode);
5236 when others =>
5237 return False;
5239 end case;
5241 return True;
5242 end Junk_Operand;
5244 --------------------
5245 -- Operator_Check --
5246 --------------------
5248 procedure Operator_Check (N : Node_Id) is
5249 begin
5250 Remove_Abstract_Operations (N);
5252 -- Test for case of no interpretation found for operator
5254 if Etype (N) = Any_Type then
5255 declare
5256 L : Node_Id;
5257 R : Node_Id;
5258 Op_Id : Entity_Id := Empty;
5260 begin
5261 R := Right_Opnd (N);
5263 if Nkind (N) in N_Binary_Op then
5264 L := Left_Opnd (N);
5265 else
5266 L := Empty;
5267 end if;
5269 -- If either operand has no type, then don't complain further,
5270 -- since this simply means that we have a propagated error.
5272 if R = Error
5273 or else Etype (R) = Any_Type
5274 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5275 then
5276 return;
5278 -- We explicitly check for the case of concatenation of component
5279 -- with component to avoid reporting spurious matching array types
5280 -- that might happen to be lurking in distant packages (such as
5281 -- run-time packages). This also prevents inconsistencies in the
5282 -- messages for certain ACVC B tests, which can vary depending on
5283 -- types declared in run-time interfaces. Another improvement when
5284 -- aggregates are present is to look for a well-typed operand.
5286 elsif Present (Candidate_Type)
5287 and then (Nkind (N) /= N_Op_Concat
5288 or else Is_Array_Type (Etype (L))
5289 or else Is_Array_Type (Etype (R)))
5290 then
5292 if Nkind (N) = N_Op_Concat then
5293 if Etype (L) /= Any_Composite
5294 and then Is_Array_Type (Etype (L))
5295 then
5296 Candidate_Type := Etype (L);
5298 elsif Etype (R) /= Any_Composite
5299 and then Is_Array_Type (Etype (R))
5300 then
5301 Candidate_Type := Etype (R);
5302 end if;
5303 end if;
5305 Error_Msg_NE
5306 ("operator for} is not directly visible!",
5307 N, First_Subtype (Candidate_Type));
5308 Error_Msg_N ("use clause would make operation legal!", N);
5309 return;
5311 -- If either operand is a junk operand (e.g. package name), then
5312 -- post appropriate error messages, but do not complain further.
5314 -- Note that the use of OR in this test instead of OR ELSE is
5315 -- quite deliberate, we may as well check both operands in the
5316 -- binary operator case.
5318 elsif Junk_Operand (R)
5319 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5320 then
5321 return;
5323 -- If we have a logical operator, one of whose operands is
5324 -- Boolean, then we know that the other operand cannot resolve to
5325 -- Boolean (since we got no interpretations), but in that case we
5326 -- pretty much know that the other operand should be Boolean, so
5327 -- resolve it that way (generating an error)
5329 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5330 if Etype (L) = Standard_Boolean then
5331 Resolve (R, Standard_Boolean);
5332 return;
5333 elsif Etype (R) = Standard_Boolean then
5334 Resolve (L, Standard_Boolean);
5335 return;
5336 end if;
5338 -- For an arithmetic operator or comparison operator, if one
5339 -- of the operands is numeric, then we know the other operand
5340 -- is not the same numeric type. If it is a non-numeric type,
5341 -- then probably it is intended to match the other operand.
5343 elsif Nkind_In (N, N_Op_Add,
5344 N_Op_Divide,
5345 N_Op_Ge,
5346 N_Op_Gt,
5347 N_Op_Le)
5348 or else
5349 Nkind_In (N, N_Op_Lt,
5350 N_Op_Mod,
5351 N_Op_Multiply,
5352 N_Op_Rem,
5353 N_Op_Subtract)
5354 then
5355 if Is_Numeric_Type (Etype (L))
5356 and then not Is_Numeric_Type (Etype (R))
5357 then
5358 Resolve (R, Etype (L));
5359 return;
5361 elsif Is_Numeric_Type (Etype (R))
5362 and then not Is_Numeric_Type (Etype (L))
5363 then
5364 Resolve (L, Etype (R));
5365 return;
5366 end if;
5368 -- Comparisons on A'Access are common enough to deserve a
5369 -- special message.
5371 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5372 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5373 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5374 then
5375 Error_Msg_N
5376 ("two access attributes cannot be compared directly", N);
5377 Error_Msg_N
5378 ("\use qualified expression for one of the operands",
5380 return;
5382 -- Another one for C programmers
5384 elsif Nkind (N) = N_Op_Concat
5385 and then Valid_Boolean_Arg (Etype (L))
5386 and then Valid_Boolean_Arg (Etype (R))
5387 then
5388 Error_Msg_N ("invalid operands for concatenation", N);
5389 Error_Msg_N -- CODEFIX
5390 ("\maybe AND was meant", N);
5391 return;
5393 -- A special case for comparison of access parameter with null
5395 elsif Nkind (N) = N_Op_Eq
5396 and then Is_Entity_Name (L)
5397 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5398 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5399 N_Access_Definition
5400 and then Nkind (R) = N_Null
5401 then
5402 Error_Msg_N ("access parameter is not allowed to be null", L);
5403 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5404 return;
5406 -- Another special case for exponentiation, where the right
5407 -- operand must be Natural, independently of the base.
5409 elsif Nkind (N) = N_Op_Expon
5410 and then Is_Numeric_Type (Etype (L))
5411 and then not Is_Overloaded (R)
5412 and then
5413 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5414 and then Base_Type (Etype (R)) /= Universal_Integer
5415 then
5416 Error_Msg_NE
5417 ("exponent must be of type Natural, found}", R, Etype (R));
5418 return;
5419 end if;
5421 -- If we fall through then just give general message. Note that in
5422 -- the following messages, if the operand is overloaded we choose
5423 -- an arbitrary type to complain about, but that is probably more
5424 -- useful than not giving a type at all.
5426 if Nkind (N) in N_Unary_Op then
5427 Error_Msg_Node_2 := Etype (R);
5428 Error_Msg_N ("operator& not defined for}", N);
5429 return;
5431 else
5432 if Nkind (N) in N_Binary_Op then
5433 if not Is_Overloaded (L)
5434 and then not Is_Overloaded (R)
5435 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5436 then
5437 Error_Msg_Node_2 := First_Subtype (Etype (R));
5438 Error_Msg_N ("there is no applicable operator& for}", N);
5440 else
5441 -- Another attempt to find a fix: one of the candidate
5442 -- interpretations may not be use-visible. This has
5443 -- already been checked for predefined operators, so
5444 -- we examine only user-defined functions.
5446 Op_Id := Get_Name_Entity_Id (Chars (N));
5448 while Present (Op_Id) loop
5449 if Ekind (Op_Id) /= E_Operator
5450 and then Is_Overloadable (Op_Id)
5451 then
5452 if not Is_Immediately_Visible (Op_Id)
5453 and then not In_Use (Scope (Op_Id))
5454 and then not Is_Abstract_Subprogram (Op_Id)
5455 and then not Is_Hidden (Op_Id)
5456 and then Ekind (Scope (Op_Id)) = E_Package
5457 and then
5458 Has_Compatible_Type
5459 (L, Etype (First_Formal (Op_Id)))
5460 and then Present
5461 (Next_Formal (First_Formal (Op_Id)))
5462 and then
5463 Has_Compatible_Type
5465 Etype (Next_Formal (First_Formal (Op_Id))))
5466 then
5467 Error_Msg_N
5468 ("No legal interpretation for operator&", N);
5469 Error_Msg_NE
5470 ("\use clause on& would make operation legal",
5471 N, Scope (Op_Id));
5472 exit;
5473 end if;
5474 end if;
5476 Op_Id := Homonym (Op_Id);
5477 end loop;
5479 if No (Op_Id) then
5480 Error_Msg_N ("invalid operand types for operator&", N);
5482 if Nkind (N) /= N_Op_Concat then
5483 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5484 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5485 end if;
5486 end if;
5487 end if;
5488 end if;
5489 end if;
5490 end;
5491 end if;
5492 end Operator_Check;
5494 -----------------------------------------
5495 -- Process_Implicit_Dereference_Prefix --
5496 -----------------------------------------
5498 function Process_Implicit_Dereference_Prefix
5499 (E : Entity_Id;
5500 P : Entity_Id) return Entity_Id
5502 Ref : Node_Id;
5503 Typ : constant Entity_Id := Designated_Type (Etype (P));
5505 begin
5506 if Present (E)
5507 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5508 then
5509 -- We create a dummy reference to E to ensure that the reference
5510 -- is not considered as part of an assignment (an implicit
5511 -- dereference can never assign to its prefix). The Comes_From_Source
5512 -- attribute needs to be propagated for accurate warnings.
5514 Ref := New_Reference_To (E, Sloc (P));
5515 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5516 Generate_Reference (E, Ref);
5517 end if;
5519 -- An implicit dereference is a legal occurrence of an
5520 -- incomplete type imported through a limited_with clause,
5521 -- if the full view is visible.
5523 if From_With_Type (Typ)
5524 and then not From_With_Type (Scope (Typ))
5525 and then
5526 (Is_Immediately_Visible (Scope (Typ))
5527 or else
5528 (Is_Child_Unit (Scope (Typ))
5529 and then Is_Visible_Child_Unit (Scope (Typ))))
5530 then
5531 return Available_View (Typ);
5532 else
5533 return Typ;
5534 end if;
5536 end Process_Implicit_Dereference_Prefix;
5538 --------------------------------
5539 -- Remove_Abstract_Operations --
5540 --------------------------------
5542 procedure Remove_Abstract_Operations (N : Node_Id) is
5543 Abstract_Op : Entity_Id := Empty;
5544 Address_Kludge : Boolean := False;
5545 I : Interp_Index;
5546 It : Interp;
5548 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5549 -- activate this if either extensions are enabled, or if the abstract
5550 -- operation in question comes from a predefined file. This latter test
5551 -- allows us to use abstract to make operations invisible to users. In
5552 -- particular, if type Address is non-private and abstract subprograms
5553 -- are used to hide its operators, they will be truly hidden.
5555 type Operand_Position is (First_Op, Second_Op);
5556 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5558 procedure Remove_Address_Interpretations (Op : Operand_Position);
5559 -- Ambiguities may arise when the operands are literal and the address
5560 -- operations in s-auxdec are visible. In that case, remove the
5561 -- interpretation of a literal as Address, to retain the semantics of
5562 -- Address as a private type.
5564 ------------------------------------
5565 -- Remove_Address_Interpretations --
5566 ------------------------------------
5568 procedure Remove_Address_Interpretations (Op : Operand_Position) is
5569 Formal : Entity_Id;
5571 begin
5572 if Is_Overloaded (N) then
5573 Get_First_Interp (N, I, It);
5574 while Present (It.Nam) loop
5575 Formal := First_Entity (It.Nam);
5577 if Op = Second_Op then
5578 Formal := Next_Entity (Formal);
5579 end if;
5581 if Is_Descendent_Of_Address (Etype (Formal)) then
5582 Address_Kludge := True;
5583 Remove_Interp (I);
5584 end if;
5586 Get_Next_Interp (I, It);
5587 end loop;
5588 end if;
5589 end Remove_Address_Interpretations;
5591 -- Start of processing for Remove_Abstract_Operations
5593 begin
5594 if Is_Overloaded (N) then
5595 Get_First_Interp (N, I, It);
5597 while Present (It.Nam) loop
5598 if Is_Overloadable (It.Nam)
5599 and then Is_Abstract_Subprogram (It.Nam)
5600 and then not Is_Dispatching_Operation (It.Nam)
5601 then
5602 Abstract_Op := It.Nam;
5604 if Is_Descendent_Of_Address (It.Typ) then
5605 Address_Kludge := True;
5606 Remove_Interp (I);
5607 exit;
5609 -- In Ada 2005, this operation does not participate in Overload
5610 -- resolution. If the operation is defined in a predefined
5611 -- unit, it is one of the operations declared abstract in some
5612 -- variants of System, and it must be removed as well.
5614 elsif Ada_Version >= Ada_05
5615 or else Is_Predefined_File_Name
5616 (Unit_File_Name (Get_Source_Unit (It.Nam)))
5617 then
5618 Remove_Interp (I);
5619 exit;
5620 end if;
5621 end if;
5623 Get_Next_Interp (I, It);
5624 end loop;
5626 if No (Abstract_Op) then
5628 -- If some interpretation yields an integer type, it is still
5629 -- possible that there are address interpretations. Remove them
5630 -- if one operand is a literal, to avoid spurious ambiguities
5631 -- on systems where Address is a visible integer type.
5633 if Is_Overloaded (N)
5634 and then Nkind (N) in N_Op
5635 and then Is_Integer_Type (Etype (N))
5636 then
5637 if Nkind (N) in N_Binary_Op then
5638 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5639 Remove_Address_Interpretations (Second_Op);
5641 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5642 Remove_Address_Interpretations (First_Op);
5643 end if;
5644 end if;
5645 end if;
5647 elsif Nkind (N) in N_Op then
5649 -- Remove interpretations that treat literals as addresses. This
5650 -- is never appropriate, even when Address is defined as a visible
5651 -- Integer type. The reason is that we would really prefer Address
5652 -- to behave as a private type, even in this case, which is there
5653 -- only to accommodate oddities of VMS address sizes. If Address
5654 -- is a visible integer type, we get lots of overload ambiguities.
5656 if Nkind (N) in N_Binary_Op then
5657 declare
5658 U1 : constant Boolean :=
5659 Present (Universal_Interpretation (Right_Opnd (N)));
5660 U2 : constant Boolean :=
5661 Present (Universal_Interpretation (Left_Opnd (N)));
5663 begin
5664 if U1 then
5665 Remove_Address_Interpretations (Second_Op);
5666 end if;
5668 if U2 then
5669 Remove_Address_Interpretations (First_Op);
5670 end if;
5672 if not (U1 and U2) then
5674 -- Remove corresponding predefined operator, which is
5675 -- always added to the overload set.
5677 Get_First_Interp (N, I, It);
5678 while Present (It.Nam) loop
5679 if Scope (It.Nam) = Standard_Standard
5680 and then Base_Type (It.Typ) =
5681 Base_Type (Etype (Abstract_Op))
5682 then
5683 Remove_Interp (I);
5684 end if;
5686 Get_Next_Interp (I, It);
5687 end loop;
5689 elsif Is_Overloaded (N)
5690 and then Present (Univ_Type)
5691 then
5692 -- If both operands have a universal interpretation,
5693 -- it is still necessary to remove interpretations that
5694 -- yield Address. Any remaining ambiguities will be
5695 -- removed in Disambiguate.
5697 Get_First_Interp (N, I, It);
5698 while Present (It.Nam) loop
5699 if Is_Descendent_Of_Address (It.Typ) then
5700 Remove_Interp (I);
5702 elsif not Is_Type (It.Nam) then
5703 Set_Entity (N, It.Nam);
5704 end if;
5706 Get_Next_Interp (I, It);
5707 end loop;
5708 end if;
5709 end;
5710 end if;
5712 elsif Nkind (N) = N_Function_Call
5713 and then
5714 (Nkind (Name (N)) = N_Operator_Symbol
5715 or else
5716 (Nkind (Name (N)) = N_Expanded_Name
5717 and then
5718 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5719 then
5721 declare
5722 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5723 U1 : constant Boolean :=
5724 Present (Universal_Interpretation (Arg1));
5725 U2 : constant Boolean :=
5726 Present (Next (Arg1)) and then
5727 Present (Universal_Interpretation (Next (Arg1)));
5729 begin
5730 if U1 then
5731 Remove_Address_Interpretations (First_Op);
5732 end if;
5734 if U2 then
5735 Remove_Address_Interpretations (Second_Op);
5736 end if;
5738 if not (U1 and U2) then
5739 Get_First_Interp (N, I, It);
5740 while Present (It.Nam) loop
5741 if Scope (It.Nam) = Standard_Standard
5742 and then It.Typ = Base_Type (Etype (Abstract_Op))
5743 then
5744 Remove_Interp (I);
5745 end if;
5747 Get_Next_Interp (I, It);
5748 end loop;
5749 end if;
5750 end;
5751 end if;
5753 -- If the removal has left no valid interpretations, emit an error
5754 -- message now and label node as illegal.
5756 if Present (Abstract_Op) then
5757 Get_First_Interp (N, I, It);
5759 if No (It.Nam) then
5761 -- Removal of abstract operation left no viable candidate
5763 Set_Etype (N, Any_Type);
5764 Error_Msg_Sloc := Sloc (Abstract_Op);
5765 Error_Msg_NE
5766 ("cannot call abstract operation& declared#", N, Abstract_Op);
5768 -- In Ada 2005, an abstract operation may disable predefined
5769 -- operators. Since the context is not yet known, we mark the
5770 -- predefined operators as potentially hidden. Do not include
5771 -- predefined operators when addresses are involved since this
5772 -- case is handled separately.
5774 elsif Ada_Version >= Ada_05
5775 and then not Address_Kludge
5776 then
5777 while Present (It.Nam) loop
5778 if Is_Numeric_Type (It.Typ)
5779 and then Scope (It.Typ) = Standard_Standard
5780 then
5781 Set_Abstract_Op (I, Abstract_Op);
5782 end if;
5784 Get_Next_Interp (I, It);
5785 end loop;
5786 end if;
5787 end if;
5788 end if;
5789 end Remove_Abstract_Operations;
5791 -----------------------
5792 -- Try_Indirect_Call --
5793 -----------------------
5795 function Try_Indirect_Call
5796 (N : Node_Id;
5797 Nam : Entity_Id;
5798 Typ : Entity_Id) return Boolean
5800 Actual : Node_Id;
5801 Formal : Entity_Id;
5803 Call_OK : Boolean;
5804 pragma Warnings (Off, Call_OK);
5806 begin
5807 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
5809 Actual := First_Actual (N);
5810 Formal := First_Formal (Designated_Type (Typ));
5811 while Present (Actual) and then Present (Formal) loop
5812 if not Has_Compatible_Type (Actual, Etype (Formal)) then
5813 return False;
5814 end if;
5816 Next (Actual);
5817 Next_Formal (Formal);
5818 end loop;
5820 if No (Actual) and then No (Formal) then
5821 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
5823 -- Nam is a candidate interpretation for the name in the call,
5824 -- if it is not an indirect call.
5826 if not Is_Type (Nam)
5827 and then Is_Entity_Name (Name (N))
5828 then
5829 Set_Entity (Name (N), Nam);
5830 end if;
5832 return True;
5833 else
5834 return False;
5835 end if;
5836 end Try_Indirect_Call;
5838 ----------------------
5839 -- Try_Indexed_Call --
5840 ----------------------
5842 function Try_Indexed_Call
5843 (N : Node_Id;
5844 Nam : Entity_Id;
5845 Typ : Entity_Id;
5846 Skip_First : Boolean) return Boolean
5848 Loc : constant Source_Ptr := Sloc (N);
5849 Actuals : constant List_Id := Parameter_Associations (N);
5850 Actual : Node_Id;
5851 Index : Entity_Id;
5853 begin
5854 Actual := First (Actuals);
5856 -- If the call was originally written in prefix form, skip the first
5857 -- actual, which is obviously not defaulted.
5859 if Skip_First then
5860 Next (Actual);
5861 end if;
5863 Index := First_Index (Typ);
5864 while Present (Actual) and then Present (Index) loop
5866 -- If the parameter list has a named association, the expression
5867 -- is definitely a call and not an indexed component.
5869 if Nkind (Actual) = N_Parameter_Association then
5870 return False;
5871 end if;
5873 if Is_Entity_Name (Actual)
5874 and then Is_Type (Entity (Actual))
5875 and then No (Next (Actual))
5876 then
5877 Rewrite (N,
5878 Make_Slice (Loc,
5879 Prefix => Make_Function_Call (Loc,
5880 Name => Relocate_Node (Name (N))),
5881 Discrete_Range =>
5882 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
5884 Analyze (N);
5885 return True;
5887 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
5888 return False;
5889 end if;
5891 Next (Actual);
5892 Next_Index (Index);
5893 end loop;
5895 if No (Actual) and then No (Index) then
5896 Add_One_Interp (N, Nam, Component_Type (Typ));
5898 -- Nam is a candidate interpretation for the name in the call,
5899 -- if it is not an indirect call.
5901 if not Is_Type (Nam)
5902 and then Is_Entity_Name (Name (N))
5903 then
5904 Set_Entity (Name (N), Nam);
5905 end if;
5907 return True;
5908 else
5909 return False;
5910 end if;
5911 end Try_Indexed_Call;
5913 --------------------------
5914 -- Try_Object_Operation --
5915 --------------------------
5917 function Try_Object_Operation (N : Node_Id) return Boolean is
5918 K : constant Node_Kind := Nkind (Parent (N));
5919 Is_Subprg_Call : constant Boolean := Nkind_In
5920 (K, N_Procedure_Call_Statement,
5921 N_Function_Call);
5922 Loc : constant Source_Ptr := Sloc (N);
5923 Obj : constant Node_Id := Prefix (N);
5924 Subprog : constant Node_Id :=
5925 Make_Identifier (Sloc (Selector_Name (N)),
5926 Chars => Chars (Selector_Name (N)));
5927 -- Identifier on which possible interpretations will be collected
5929 Report_Error : Boolean := False;
5930 -- If no candidate interpretation matches the context, redo the
5931 -- analysis with error enabled to provide additional information.
5933 Actual : Node_Id;
5934 Candidate : Entity_Id := Empty;
5935 New_Call_Node : Node_Id := Empty;
5936 Node_To_Replace : Node_Id;
5937 Obj_Type : Entity_Id := Etype (Obj);
5938 Success : Boolean := False;
5940 function Valid_Candidate
5941 (Success : Boolean;
5942 Call : Node_Id;
5943 Subp : Entity_Id) return Entity_Id;
5944 -- If the subprogram is a valid interpretation, record it, and add
5945 -- to the list of interpretations of Subprog.
5947 procedure Complete_Object_Operation
5948 (Call_Node : Node_Id;
5949 Node_To_Replace : Node_Id);
5950 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
5951 -- Call_Node, insert the object (or its dereference) as the first actual
5952 -- in the call, and complete the analysis of the call.
5954 procedure Report_Ambiguity (Op : Entity_Id);
5955 -- If a prefixed procedure call is ambiguous, indicate whether the
5956 -- call includes an implicit dereference or an implicit 'Access.
5958 procedure Transform_Object_Operation
5959 (Call_Node : out Node_Id;
5960 Node_To_Replace : out Node_Id);
5961 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
5962 -- Call_Node is the resulting subprogram call, Node_To_Replace is
5963 -- either N or the parent of N, and Subprog is a reference to the
5964 -- subprogram we are trying to match.
5966 function Try_Class_Wide_Operation
5967 (Call_Node : Node_Id;
5968 Node_To_Replace : Node_Id) return Boolean;
5969 -- Traverse all ancestor types looking for a class-wide subprogram
5970 -- for which the current operation is a valid non-dispatching call.
5972 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
5973 -- If prefix is overloaded, its interpretation may include different
5974 -- tagged types, and we must examine the primitive operations and
5975 -- the class-wide operations of each in order to find candidate
5976 -- interpretations for the call as a whole.
5978 function Try_Primitive_Operation
5979 (Call_Node : Node_Id;
5980 Node_To_Replace : Node_Id) return Boolean;
5981 -- Traverse the list of primitive subprograms looking for a dispatching
5982 -- operation for which the current node is a valid call .
5984 ---------------------
5985 -- Valid_Candidate --
5986 ---------------------
5988 function Valid_Candidate
5989 (Success : Boolean;
5990 Call : Node_Id;
5991 Subp : Entity_Id) return Entity_Id
5993 Arr_Type : Entity_Id;
5994 Comp_Type : Entity_Id;
5996 begin
5997 -- If the subprogram is a valid interpretation, record it in global
5998 -- variable Subprog, to collect all possible overloadings.
6000 if Success then
6001 if Subp /= Entity (Subprog) then
6002 Add_One_Interp (Subprog, Subp, Etype (Subp));
6003 end if;
6004 end if;
6006 -- If the call may be an indexed call, retrieve component type of
6007 -- resulting expression, and add possible interpretation.
6009 Arr_Type := Empty;
6010 Comp_Type := Empty;
6012 if Nkind (Call) = N_Function_Call
6013 and then Nkind (Parent (N)) = N_Indexed_Component
6014 and then Needs_One_Actual (Subp)
6015 then
6016 if Is_Array_Type (Etype (Subp)) then
6017 Arr_Type := Etype (Subp);
6019 elsif Is_Access_Type (Etype (Subp))
6020 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6021 then
6022 Arr_Type := Designated_Type (Etype (Subp));
6023 end if;
6024 end if;
6026 if Present (Arr_Type) then
6028 -- Verify that the actuals (excluding the object)
6029 -- match the types of the indices.
6031 declare
6032 Actual : Node_Id;
6033 Index : Node_Id;
6035 begin
6036 Actual := Next (First_Actual (Call));
6037 Index := First_Index (Arr_Type);
6038 while Present (Actual) and then Present (Index) loop
6039 if not Has_Compatible_Type (Actual, Etype (Index)) then
6040 Arr_Type := Empty;
6041 exit;
6042 end if;
6044 Next_Actual (Actual);
6045 Next_Index (Index);
6046 end loop;
6048 if No (Actual)
6049 and then No (Index)
6050 and then Present (Arr_Type)
6051 then
6052 Comp_Type := Component_Type (Arr_Type);
6053 end if;
6054 end;
6056 if Present (Comp_Type)
6057 and then Etype (Subprog) /= Comp_Type
6058 then
6059 Add_One_Interp (Subprog, Subp, Comp_Type);
6060 end if;
6061 end if;
6063 if Etype (Call) /= Any_Type then
6064 return Subp;
6065 else
6066 return Empty;
6067 end if;
6068 end Valid_Candidate;
6070 -------------------------------
6071 -- Complete_Object_Operation --
6072 -------------------------------
6074 procedure Complete_Object_Operation
6075 (Call_Node : Node_Id;
6076 Node_To_Replace : Node_Id)
6078 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6079 Formal_Type : constant Entity_Id := Etype (Control);
6080 First_Actual : Node_Id;
6082 begin
6083 -- Place the name of the operation, with its interpretations,
6084 -- on the rewritten call.
6086 Set_Name (Call_Node, Subprog);
6088 First_Actual := First (Parameter_Associations (Call_Node));
6090 -- For cross-reference purposes, treat the new node as being in
6091 -- the source if the original one is.
6093 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6094 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6096 if Nkind (N) = N_Selected_Component
6097 and then not Inside_A_Generic
6098 then
6099 Set_Entity (Selector_Name (N), Entity (Subprog));
6100 end if;
6102 -- If need be, rewrite first actual as an explicit dereference
6103 -- If the call is overloaded, the rewriting can only be done
6104 -- once the primitive operation is identified.
6106 if Is_Overloaded (Subprog) then
6108 -- The prefix itself may be overloaded, and its interpretations
6109 -- must be propagated to the new actual in the call.
6111 if Is_Overloaded (Obj) then
6112 Save_Interps (Obj, First_Actual);
6113 end if;
6115 Rewrite (First_Actual, Obj);
6117 elsif not Is_Access_Type (Formal_Type)
6118 and then Is_Access_Type (Etype (Obj))
6119 then
6120 Rewrite (First_Actual,
6121 Make_Explicit_Dereference (Sloc (Obj), Obj));
6122 Analyze (First_Actual);
6124 -- If we need to introduce an explicit dereference, verify that
6125 -- the resulting actual is compatible with the mode of the formal.
6127 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6128 and then Is_Access_Constant (Etype (Obj))
6129 then
6130 Error_Msg_NE
6131 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6132 end if;
6134 -- Conversely, if the formal is an access parameter and the object
6135 -- is not, replace the actual with a 'Access reference. Its analysis
6136 -- will check that the object is aliased.
6138 elsif Is_Access_Type (Formal_Type)
6139 and then not Is_Access_Type (Etype (Obj))
6140 then
6141 -- A special case: A.all'access is illegal if A is an access to a
6142 -- constant and the context requires an access to a variable.
6144 if not Is_Access_Constant (Formal_Type) then
6145 if (Nkind (Obj) = N_Explicit_Dereference
6146 and then Is_Access_Constant (Etype (Prefix (Obj))))
6147 or else not Is_Variable (Obj)
6148 then
6149 Error_Msg_NE
6150 ("actual for& must be a variable", Obj, Control);
6151 end if;
6152 end if;
6154 Rewrite (First_Actual,
6155 Make_Attribute_Reference (Loc,
6156 Attribute_Name => Name_Access,
6157 Prefix => Relocate_Node (Obj)));
6159 if not Is_Aliased_View (Obj) then
6160 Error_Msg_NE
6161 ("object in prefixed call to& must be aliased"
6162 & " (RM-2005 4.3.1 (13))",
6163 Prefix (First_Actual), Subprog);
6164 end if;
6166 Analyze (First_Actual);
6168 else
6169 if Is_Overloaded (Obj) then
6170 Save_Interps (Obj, First_Actual);
6171 end if;
6173 Rewrite (First_Actual, Obj);
6174 end if;
6176 Rewrite (Node_To_Replace, Call_Node);
6178 -- Propagate the interpretations collected in subprog to the new
6179 -- function call node, to be resolved from context.
6181 if Is_Overloaded (Subprog) then
6182 Save_Interps (Subprog, Node_To_Replace);
6183 else
6184 Analyze (Node_To_Replace);
6185 end if;
6186 end Complete_Object_Operation;
6188 ----------------------
6189 -- Report_Ambiguity --
6190 ----------------------
6192 procedure Report_Ambiguity (Op : Entity_Id) is
6193 Access_Formal : constant Boolean :=
6194 Is_Access_Type (Etype (First_Formal (Op)));
6195 Access_Actual : constant Boolean :=
6196 Is_Access_Type (Etype (Prefix (N)));
6198 begin
6199 Error_Msg_Sloc := Sloc (Op);
6201 if Access_Formal and then not Access_Actual then
6202 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6203 Error_Msg_N
6204 ("\possible interpretation"
6205 & " (inherited, with implicit 'Access) #", N);
6206 else
6207 Error_Msg_N
6208 ("\possible interpretation (with implicit 'Access) #", N);
6209 end if;
6211 elsif not Access_Formal and then Access_Actual then
6212 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6213 Error_Msg_N
6214 ("\possible interpretation"
6215 & " ( inherited, with implicit dereference) #", N);
6216 else
6217 Error_Msg_N
6218 ("\possible interpretation (with implicit dereference) #", N);
6219 end if;
6221 else
6222 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6223 Error_Msg_N ("\possible interpretation (inherited)#", N);
6224 else
6225 Error_Msg_N -- CODEFIX
6226 ("\possible interpretation#", N);
6227 end if;
6228 end if;
6229 end Report_Ambiguity;
6231 --------------------------------
6232 -- Transform_Object_Operation --
6233 --------------------------------
6235 procedure Transform_Object_Operation
6236 (Call_Node : out Node_Id;
6237 Node_To_Replace : out Node_Id)
6239 Dummy : constant Node_Id := New_Copy (Obj);
6240 -- Placeholder used as a first parameter in the call, replaced
6241 -- eventually by the proper object.
6243 Parent_Node : constant Node_Id := Parent (N);
6245 Actual : Node_Id;
6246 Actuals : List_Id;
6248 begin
6249 -- Common case covering 1) Call to a procedure and 2) Call to a
6250 -- function that has some additional actuals.
6252 if Nkind_In (Parent_Node, N_Function_Call,
6253 N_Procedure_Call_Statement)
6255 -- N is a selected component node containing the name of the
6256 -- subprogram. If N is not the name of the parent node we must
6257 -- not replace the parent node by the new construct. This case
6258 -- occurs when N is a parameterless call to a subprogram that
6259 -- is an actual parameter of a call to another subprogram. For
6260 -- example:
6261 -- Some_Subprogram (..., Obj.Operation, ...)
6263 and then Name (Parent_Node) = N
6264 then
6265 Node_To_Replace := Parent_Node;
6267 Actuals := Parameter_Associations (Parent_Node);
6269 if Present (Actuals) then
6270 Prepend (Dummy, Actuals);
6271 else
6272 Actuals := New_List (Dummy);
6273 end if;
6275 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6276 Call_Node :=
6277 Make_Procedure_Call_Statement (Loc,
6278 Name => New_Copy (Subprog),
6279 Parameter_Associations => Actuals);
6281 else
6282 Call_Node :=
6283 Make_Function_Call (Loc,
6284 Name => New_Copy (Subprog),
6285 Parameter_Associations => Actuals);
6287 end if;
6289 -- Before analysis, a function call appears as an indexed component
6290 -- if there are no named associations.
6292 elsif Nkind (Parent_Node) = N_Indexed_Component
6293 and then N = Prefix (Parent_Node)
6294 then
6295 Node_To_Replace := Parent_Node;
6297 Actuals := Expressions (Parent_Node);
6299 Actual := First (Actuals);
6300 while Present (Actual) loop
6301 Analyze (Actual);
6302 Next (Actual);
6303 end loop;
6305 Prepend (Dummy, Actuals);
6307 Call_Node :=
6308 Make_Function_Call (Loc,
6309 Name => New_Copy (Subprog),
6310 Parameter_Associations => Actuals);
6312 -- Parameterless call: Obj.F is rewritten as F (Obj)
6314 else
6315 Node_To_Replace := N;
6317 Call_Node :=
6318 Make_Function_Call (Loc,
6319 Name => New_Copy (Subprog),
6320 Parameter_Associations => New_List (Dummy));
6321 end if;
6322 end Transform_Object_Operation;
6324 ------------------------------
6325 -- Try_Class_Wide_Operation --
6326 ------------------------------
6328 function Try_Class_Wide_Operation
6329 (Call_Node : Node_Id;
6330 Node_To_Replace : Node_Id) return Boolean
6332 Anc_Type : Entity_Id;
6333 Matching_Op : Entity_Id := Empty;
6334 Error : Boolean;
6336 procedure Traverse_Homonyms
6337 (Anc_Type : Entity_Id;
6338 Error : out Boolean);
6339 -- Traverse the homonym chain of the subprogram searching for those
6340 -- homonyms whose first formal has the Anc_Type's class-wide type,
6341 -- or an anonymous access type designating the class-wide type. If
6342 -- an ambiguity is detected, then Error is set to True.
6344 procedure Traverse_Interfaces
6345 (Anc_Type : Entity_Id;
6346 Error : out Boolean);
6347 -- Traverse the list of interfaces, if any, associated with Anc_Type
6348 -- and search for acceptable class-wide homonyms associated with each
6349 -- interface. If an ambiguity is detected, then Error is set to True.
6351 -----------------------
6352 -- Traverse_Homonyms --
6353 -----------------------
6355 procedure Traverse_Homonyms
6356 (Anc_Type : Entity_Id;
6357 Error : out Boolean)
6359 Cls_Type : Entity_Id;
6360 Hom : Entity_Id;
6361 Hom_Ref : Node_Id;
6362 Success : Boolean;
6364 begin
6365 Error := False;
6367 Cls_Type := Class_Wide_Type (Anc_Type);
6369 Hom := Current_Entity (Subprog);
6371 -- Find operation whose first parameter is of the class-wide
6372 -- type, a subtype thereof, or an anonymous access to same.
6374 while Present (Hom) loop
6375 if (Ekind (Hom) = E_Procedure
6376 or else
6377 Ekind (Hom) = E_Function)
6378 and then Scope (Hom) = Scope (Anc_Type)
6379 and then Present (First_Formal (Hom))
6380 and then
6381 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6382 or else
6383 (Is_Access_Type (Etype (First_Formal (Hom)))
6384 and then
6385 Ekind (Etype (First_Formal (Hom))) =
6386 E_Anonymous_Access_Type
6387 and then
6388 Base_Type
6389 (Designated_Type (Etype (First_Formal (Hom)))) =
6390 Cls_Type))
6391 then
6392 Set_Etype (Call_Node, Any_Type);
6393 Set_Is_Overloaded (Call_Node, False);
6394 Success := False;
6396 if No (Matching_Op) then
6397 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6398 Set_Etype (Call_Node, Any_Type);
6399 Set_Parent (Call_Node, Parent (Node_To_Replace));
6401 Set_Name (Call_Node, Hom_Ref);
6403 Analyze_One_Call
6404 (N => Call_Node,
6405 Nam => Hom,
6406 Report => Report_Error,
6407 Success => Success,
6408 Skip_First => True);
6410 Matching_Op :=
6411 Valid_Candidate (Success, Call_Node, Hom);
6413 else
6414 Analyze_One_Call
6415 (N => Call_Node,
6416 Nam => Hom,
6417 Report => Report_Error,
6418 Success => Success,
6419 Skip_First => True);
6421 if Present (Valid_Candidate (Success, Call_Node, Hom))
6422 and then Nkind (Call_Node) /= N_Function_Call
6423 then
6424 Error_Msg_NE ("ambiguous call to&", N, Hom);
6425 Report_Ambiguity (Matching_Op);
6426 Report_Ambiguity (Hom);
6427 Error := True;
6428 return;
6429 end if;
6430 end if;
6431 end if;
6433 Hom := Homonym (Hom);
6434 end loop;
6435 end Traverse_Homonyms;
6437 -------------------------
6438 -- Traverse_Interfaces --
6439 -------------------------
6441 procedure Traverse_Interfaces
6442 (Anc_Type : Entity_Id;
6443 Error : out Boolean)
6445 Intface_List : constant List_Id :=
6446 Abstract_Interface_List (Anc_Type);
6447 Intface : Node_Id;
6449 begin
6450 Error := False;
6452 if Is_Non_Empty_List (Intface_List) then
6453 Intface := First (Intface_List);
6454 while Present (Intface) loop
6456 -- Look for acceptable class-wide homonyms associated with
6457 -- the interface.
6459 Traverse_Homonyms (Etype (Intface), Error);
6461 if Error then
6462 return;
6463 end if;
6465 -- Continue the search by looking at each of the interface's
6466 -- associated interface ancestors.
6468 Traverse_Interfaces (Etype (Intface), Error);
6470 if Error then
6471 return;
6472 end if;
6474 Next (Intface);
6475 end loop;
6476 end if;
6477 end Traverse_Interfaces;
6479 -- Start of processing for Try_Class_Wide_Operation
6481 begin
6482 -- Loop through ancestor types (including interfaces), traversing
6483 -- the homonym chain of the subprogram, trying out those homonyms
6484 -- whose first formal has the class-wide type of the ancestor, or
6485 -- an anonymous access type designating the class-wide type.
6487 Anc_Type := Obj_Type;
6488 loop
6489 -- Look for a match among homonyms associated with the ancestor
6491 Traverse_Homonyms (Anc_Type, Error);
6493 if Error then
6494 return True;
6495 end if;
6497 -- Continue the search for matches among homonyms associated with
6498 -- any interfaces implemented by the ancestor.
6500 Traverse_Interfaces (Anc_Type, Error);
6502 if Error then
6503 return True;
6504 end if;
6506 exit when Etype (Anc_Type) = Anc_Type;
6507 Anc_Type := Etype (Anc_Type);
6508 end loop;
6510 if Present (Matching_Op) then
6511 Set_Etype (Call_Node, Etype (Matching_Op));
6512 end if;
6514 return Present (Matching_Op);
6515 end Try_Class_Wide_Operation;
6517 -----------------------------------
6518 -- Try_One_Prefix_Interpretation --
6519 -----------------------------------
6521 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6522 begin
6523 Obj_Type := T;
6525 if Is_Access_Type (Obj_Type) then
6526 Obj_Type := Designated_Type (Obj_Type);
6527 end if;
6529 if Ekind (Obj_Type) = E_Private_Subtype then
6530 Obj_Type := Base_Type (Obj_Type);
6531 end if;
6533 if Is_Class_Wide_Type (Obj_Type) then
6534 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6535 end if;
6537 -- The type may have be obtained through a limited_with clause,
6538 -- in which case the primitive operations are available on its
6539 -- non-limited view. If still incomplete, retrieve full view.
6541 if Ekind (Obj_Type) = E_Incomplete_Type
6542 and then From_With_Type (Obj_Type)
6543 then
6544 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
6545 end if;
6547 -- If the object is not tagged, or the type is still an incomplete
6548 -- type, this is not a prefixed call.
6550 if not Is_Tagged_Type (Obj_Type)
6551 or else Is_Incomplete_Type (Obj_Type)
6552 then
6553 return;
6554 end if;
6556 if Try_Primitive_Operation
6557 (Call_Node => New_Call_Node,
6558 Node_To_Replace => Node_To_Replace)
6559 or else
6560 Try_Class_Wide_Operation
6561 (Call_Node => New_Call_Node,
6562 Node_To_Replace => Node_To_Replace)
6563 then
6564 null;
6565 end if;
6566 end Try_One_Prefix_Interpretation;
6568 -----------------------------
6569 -- Try_Primitive_Operation --
6570 -----------------------------
6572 function Try_Primitive_Operation
6573 (Call_Node : Node_Id;
6574 Node_To_Replace : Node_Id) return Boolean
6576 Elmt : Elmt_Id;
6577 Prim_Op : Entity_Id;
6578 Matching_Op : Entity_Id := Empty;
6579 Prim_Op_Ref : Node_Id := Empty;
6581 Corr_Type : Entity_Id := Empty;
6582 -- If the prefix is a synchronized type, the controlling type of
6583 -- the primitive operation is the corresponding record type, else
6584 -- this is the object type itself.
6586 Success : Boolean := False;
6588 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6589 -- For tagged types the candidate interpretations are found in
6590 -- the list of primitive operations of the type and its ancestors.
6591 -- For formal tagged types we have to find the operations declared
6592 -- in the same scope as the type (including in the generic formal
6593 -- part) because the type itself carries no primitive operations,
6594 -- except for formal derived types that inherit the operations of
6595 -- the parent and progenitors.
6596 -- If the context is a generic subprogram body, the generic formals
6597 -- are visible by name, but are not in the entity list of the
6598 -- subprogram because that list starts with the subprogram formals.
6599 -- We retrieve the candidate operations from the generic declaration.
6601 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
6602 -- An operation that overrides an inherited operation in the private
6603 -- part of its package may be hidden, but if the inherited operation
6604 -- is visible a direct call to it will dispatch to the private one,
6605 -- which is therefore a valid candidate.
6607 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6608 -- Verify that the prefix, dereferenced if need be, is a valid
6609 -- controlling argument in a call to Op. The remaining actuals
6610 -- are checked in the subsequent call to Analyze_One_Call.
6612 ------------------------------
6613 -- Collect_Generic_Type_Ops --
6614 ------------------------------
6616 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6617 Bas : constant Entity_Id := Base_Type (T);
6618 Candidates : constant Elist_Id := New_Elmt_List;
6619 Subp : Entity_Id;
6620 Formal : Entity_Id;
6622 procedure Check_Candidate;
6623 -- The operation is a candidate if its first parameter is a
6624 -- controlling operand of the desired type.
6626 -----------------------
6627 -- Check_Candidate; --
6628 -----------------------
6630 procedure Check_Candidate is
6631 begin
6632 Formal := First_Formal (Subp);
6634 if Present (Formal)
6635 and then Is_Controlling_Formal (Formal)
6636 and then
6637 (Base_Type (Etype (Formal)) = Bas
6638 or else
6639 (Is_Access_Type (Etype (Formal))
6640 and then Designated_Type (Etype (Formal)) = Bas))
6641 then
6642 Append_Elmt (Subp, Candidates);
6643 end if;
6644 end Check_Candidate;
6646 -- Start of processing for Collect_Generic_Type_Ops
6648 begin
6649 if Is_Derived_Type (T) then
6650 return Primitive_Operations (T);
6652 elsif Ekind (Scope (T)) = E_Procedure
6653 or else Ekind (Scope (T)) = E_Function
6654 then
6655 -- Scan the list of generic formals to find subprograms
6656 -- that may have a first controlling formal of the type.
6658 declare
6659 Decl : Node_Id;
6661 begin
6662 Decl :=
6663 First (Generic_Formal_Declarations
6664 (Unit_Declaration_Node (Scope (T))));
6665 while Present (Decl) loop
6666 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6667 Subp := Defining_Entity (Decl);
6668 Check_Candidate;
6669 end if;
6671 Next (Decl);
6672 end loop;
6673 end;
6675 return Candidates;
6677 else
6678 -- Scan the list of entities declared in the same scope as
6679 -- the type. In general this will be an open scope, given that
6680 -- the call we are analyzing can only appear within a generic
6681 -- declaration or body (either the one that declares T, or a
6682 -- child unit).
6684 Subp := First_Entity (Scope (T));
6685 while Present (Subp) loop
6686 if Is_Overloadable (Subp) then
6687 Check_Candidate;
6688 end if;
6690 Next_Entity (Subp);
6691 end loop;
6693 return Candidates;
6694 end if;
6695 end Collect_Generic_Type_Ops;
6697 ---------------------------
6698 -- Is_Private_Overriding --
6699 ---------------------------
6701 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
6702 Visible_Op : constant Entity_Id := Homonym (Op);
6704 begin
6705 return Present (Visible_Op)
6706 and then Scope (Op) = Scope (Visible_Op)
6707 and then not Comes_From_Source (Visible_Op)
6708 and then Alias (Visible_Op) = Op
6709 and then not Is_Hidden (Visible_Op);
6710 end Is_Private_Overriding;
6712 -----------------------------
6713 -- Valid_First_Argument_Of --
6714 -----------------------------
6716 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
6717 Typ : Entity_Id := Etype (First_Formal (Op));
6719 begin
6720 if Is_Concurrent_Type (Typ)
6721 and then Present (Corresponding_Record_Type (Typ))
6722 then
6723 Typ := Corresponding_Record_Type (Typ);
6724 end if;
6726 -- Simple case. Object may be a subtype of the tagged type or
6727 -- may be the corresponding record of a synchronized type.
6729 return Obj_Type = Typ
6730 or else Base_Type (Obj_Type) = Typ
6731 or else Corr_Type = Typ
6733 -- Prefix can be dereferenced
6735 or else
6736 (Is_Access_Type (Corr_Type)
6737 and then Designated_Type (Corr_Type) = Typ)
6739 -- Formal is an access parameter, for which the object
6740 -- can provide an access.
6742 or else
6743 (Ekind (Typ) = E_Anonymous_Access_Type
6744 and then Designated_Type (Typ) = Base_Type (Corr_Type));
6745 end Valid_First_Argument_Of;
6747 -- Start of processing for Try_Primitive_Operation
6749 begin
6750 -- Look for subprograms in the list of primitive operations. The name
6751 -- must be identical, and the kind of call indicates the expected
6752 -- kind of operation (function or procedure). If the type is a
6753 -- (tagged) synchronized type, the primitive ops are attached to the
6754 -- corresponding record (base) type.
6756 if Is_Concurrent_Type (Obj_Type) then
6757 if not Present (Corresponding_Record_Type (Obj_Type)) then
6758 return False;
6759 end if;
6761 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
6762 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
6764 elsif not Is_Generic_Type (Obj_Type) then
6765 Corr_Type := Obj_Type;
6766 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
6768 else
6769 Corr_Type := Obj_Type;
6770 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
6771 end if;
6773 while Present (Elmt) loop
6774 Prim_Op := Node (Elmt);
6776 if Chars (Prim_Op) = Chars (Subprog)
6777 and then Present (First_Formal (Prim_Op))
6778 and then Valid_First_Argument_Of (Prim_Op)
6779 and then
6780 (Nkind (Call_Node) = N_Function_Call)
6781 = (Ekind (Prim_Op) = E_Function)
6782 then
6783 -- Ada 2005 (AI-251): If this primitive operation corresponds
6784 -- with an immediate ancestor interface there is no need to add
6785 -- it to the list of interpretations; the corresponding aliased
6786 -- primitive is also in this list of primitive operations and
6787 -- will be used instead.
6789 if (Present (Interface_Alias (Prim_Op))
6790 and then Is_Ancestor (Find_Dispatching_Type
6791 (Alias (Prim_Op)), Corr_Type))
6793 -- Do not consider hidden primitives unless the type is in an
6794 -- open scope or we are within an instance, where visibility
6795 -- is known to be correct, or else if this is an overriding
6796 -- operation in the private part for an inherited operation.
6798 or else (Is_Hidden (Prim_Op)
6799 and then not Is_Immediately_Visible (Obj_Type)
6800 and then not In_Instance
6801 and then not Is_Private_Overriding (Prim_Op))
6802 then
6803 goto Continue;
6804 end if;
6806 Set_Etype (Call_Node, Any_Type);
6807 Set_Is_Overloaded (Call_Node, False);
6809 if No (Matching_Op) then
6810 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
6811 Candidate := Prim_Op;
6813 Set_Parent (Call_Node, Parent (Node_To_Replace));
6815 Set_Name (Call_Node, Prim_Op_Ref);
6816 Success := False;
6818 Analyze_One_Call
6819 (N => Call_Node,
6820 Nam => Prim_Op,
6821 Report => Report_Error,
6822 Success => Success,
6823 Skip_First => True);
6825 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
6827 -- More than one interpretation, collect for subsequent
6828 -- disambiguation. If this is a procedure call and there
6829 -- is another match, report ambiguity now.
6831 else
6832 Analyze_One_Call
6833 (N => Call_Node,
6834 Nam => Prim_Op,
6835 Report => Report_Error,
6836 Success => Success,
6837 Skip_First => True);
6839 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
6840 and then Nkind (Call_Node) /= N_Function_Call
6841 then
6842 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
6843 Report_Ambiguity (Matching_Op);
6844 Report_Ambiguity (Prim_Op);
6845 return True;
6846 end if;
6847 end if;
6848 end if;
6850 <<Continue>>
6851 Next_Elmt (Elmt);
6852 end loop;
6854 if Present (Matching_Op) then
6855 Set_Etype (Call_Node, Etype (Matching_Op));
6856 end if;
6858 return Present (Matching_Op);
6859 end Try_Primitive_Operation;
6861 -- Start of processing for Try_Object_Operation
6863 begin
6864 Analyze_Expression (Obj);
6866 -- Analyze the actuals if node is known to be a subprogram call
6868 if Is_Subprg_Call and then N = Name (Parent (N)) then
6869 Actual := First (Parameter_Associations (Parent (N)));
6870 while Present (Actual) loop
6871 Analyze_Expression (Actual);
6872 Next (Actual);
6873 end loop;
6874 end if;
6876 -- Build a subprogram call node, using a copy of Obj as its first
6877 -- actual. This is a placeholder, to be replaced by an explicit
6878 -- dereference when needed.
6880 Transform_Object_Operation
6881 (Call_Node => New_Call_Node,
6882 Node_To_Replace => Node_To_Replace);
6884 Set_Etype (New_Call_Node, Any_Type);
6885 Set_Etype (Subprog, Any_Type);
6886 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
6888 if not Is_Overloaded (Obj) then
6889 Try_One_Prefix_Interpretation (Obj_Type);
6891 else
6892 declare
6893 I : Interp_Index;
6894 It : Interp;
6895 begin
6896 Get_First_Interp (Obj, I, It);
6897 while Present (It.Nam) loop
6898 Try_One_Prefix_Interpretation (It.Typ);
6899 Get_Next_Interp (I, It);
6900 end loop;
6901 end;
6902 end if;
6904 if Etype (New_Call_Node) /= Any_Type then
6905 Complete_Object_Operation
6906 (Call_Node => New_Call_Node,
6907 Node_To_Replace => Node_To_Replace);
6908 return True;
6910 elsif Present (Candidate) then
6912 -- The argument list is not type correct. Re-analyze with error
6913 -- reporting enabled, and use one of the possible candidates.
6914 -- In All_Errors_Mode, re-analyze all failed interpretations.
6916 if All_Errors_Mode then
6917 Report_Error := True;
6918 if Try_Primitive_Operation
6919 (Call_Node => New_Call_Node,
6920 Node_To_Replace => Node_To_Replace)
6922 or else
6923 Try_Class_Wide_Operation
6924 (Call_Node => New_Call_Node,
6925 Node_To_Replace => Node_To_Replace)
6926 then
6927 null;
6928 end if;
6930 else
6931 Analyze_One_Call
6932 (N => New_Call_Node,
6933 Nam => Candidate,
6934 Report => True,
6935 Success => Success,
6936 Skip_First => True);
6937 end if;
6939 -- No need for further errors
6941 return True;
6943 else
6944 -- There was no candidate operation, so report it as an error
6945 -- in the caller: Analyze_Selected_Component.
6947 return False;
6948 end if;
6949 end Try_Object_Operation;
6951 ---------
6952 -- wpo --
6953 ---------
6955 procedure wpo (T : Entity_Id) is
6956 Op : Entity_Id;
6957 E : Elmt_Id;
6959 begin
6960 if not Is_Tagged_Type (T) then
6961 return;
6962 end if;
6964 E := First_Elmt (Primitive_Operations (Base_Type (T)));
6965 while Present (E) loop
6966 Op := Node (E);
6967 Write_Int (Int (Op));
6968 Write_Str (" === ");
6969 Write_Name (Chars (Op));
6970 Write_Str (" in ");
6971 Write_Name (Chars (Scope (Op)));
6972 Next_Elmt (E);
6973 Write_Eol;
6974 end loop;
6975 end wpo;
6977 end Sem_Ch4;