Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / libgfortran / generated / minloc1_8_i2.c
blob73042fd95a108cb2a14d8a17da08eaeb9b3fc92f
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29 #include <limits.h>
32 #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_8)
35 extern void minloc1_8_i2 (gfc_array_i8 * const restrict,
36 gfc_array_i2 * const restrict, const index_type * const restrict);
37 export_proto(minloc1_8_i2);
39 void
40 minloc1_8_i2 (gfc_array_i8 * const restrict retarray,
41 gfc_array_i2 * const restrict array,
42 const index_type * const restrict pdim)
44 index_type count[GFC_MAX_DIMENSIONS];
45 index_type extent[GFC_MAX_DIMENSIONS];
46 index_type sstride[GFC_MAX_DIMENSIONS];
47 index_type dstride[GFC_MAX_DIMENSIONS];
48 const GFC_INTEGER_2 * restrict base;
49 GFC_INTEGER_8 * restrict dest;
50 index_type rank;
51 index_type n;
52 index_type len;
53 index_type delta;
54 index_type dim;
55 int continue_loop;
57 /* Make dim zero based to avoid confusion. */
58 dim = (*pdim) - 1;
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
61 len = GFC_DESCRIPTOR_EXTENT(array,dim);
62 if (len < 0)
63 len = 0;
64 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
66 for (n = 0; n < dim; n++)
68 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
69 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
71 if (extent[n] < 0)
72 extent[n] = 0;
74 for (n = dim; n < rank; n++)
76 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
77 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
79 if (extent[n] < 0)
80 extent[n] = 0;
83 if (retarray->data == NULL)
85 size_t alloc_size, str;
87 for (n = 0; n < rank; n++)
89 if (n == 0)
90 str = 1;
91 else
92 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
94 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
98 retarray->offset = 0;
99 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
101 alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
102 * extent[rank-1];
104 if (alloc_size == 0)
106 /* Make sure we have a zero-sized array. */
107 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
108 return;
111 else
112 retarray->data = internal_malloc_size (alloc_size);
114 else
116 if (rank != GFC_DESCRIPTOR_RANK (retarray))
117 runtime_error ("rank of return array incorrect in"
118 " MINLOC intrinsic: is %ld, should be %ld",
119 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
120 (long int) rank);
122 if (unlikely (compile_options.bounds_check))
123 bounds_ifunction_return ((array_t *) retarray, extent,
124 "return value", "MINLOC");
127 for (n = 0; n < rank; n++)
129 count[n] = 0;
130 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
131 if (extent[n] <= 0)
132 len = 0;
135 base = array->data;
136 dest = retarray->data;
138 continue_loop = 1;
139 while (continue_loop)
141 const GFC_INTEGER_2 * restrict src;
142 GFC_INTEGER_8 result;
143 src = base;
146 GFC_INTEGER_2 minval;
147 #if defined (GFC_INTEGER_2_INFINITY)
148 minval = GFC_INTEGER_2_INFINITY;
149 #else
150 minval = GFC_INTEGER_2_HUGE;
151 #endif
152 result = 1;
153 if (len <= 0)
154 *dest = 0;
155 else
157 for (n = 0; n < len; n++, src += delta)
160 #if defined (GFC_INTEGER_2_QUIET_NAN)
161 if (*src <= minval)
163 minval = *src;
164 result = (GFC_INTEGER_8)n + 1;
165 break;
168 for (; n < len; n++, src += delta)
170 #endif
171 if (*src < minval)
173 minval = *src;
174 result = (GFC_INTEGER_8)n + 1;
177 *dest = result;
180 /* Advance to the next element. */
181 count[0]++;
182 base += sstride[0];
183 dest += dstride[0];
184 n = 0;
185 while (count[n] == extent[n])
187 /* When we get to the end of a dimension, reset it and increment
188 the next dimension. */
189 count[n] = 0;
190 /* We could precalculate these products, but this is a less
191 frequently used path so probably not worth it. */
192 base -= sstride[n] * extent[n];
193 dest -= dstride[n] * extent[n];
194 n++;
195 if (n == rank)
197 /* Break out of the look. */
198 continue_loop = 0;
199 break;
201 else
203 count[n]++;
204 base += sstride[n];
205 dest += dstride[n];
212 extern void mminloc1_8_i2 (gfc_array_i8 * const restrict,
213 gfc_array_i2 * const restrict, const index_type * const restrict,
214 gfc_array_l1 * const restrict);
215 export_proto(mminloc1_8_i2);
217 void
218 mminloc1_8_i2 (gfc_array_i8 * const restrict retarray,
219 gfc_array_i2 * const restrict array,
220 const index_type * const restrict pdim,
221 gfc_array_l1 * const restrict mask)
223 index_type count[GFC_MAX_DIMENSIONS];
224 index_type extent[GFC_MAX_DIMENSIONS];
225 index_type sstride[GFC_MAX_DIMENSIONS];
226 index_type dstride[GFC_MAX_DIMENSIONS];
227 index_type mstride[GFC_MAX_DIMENSIONS];
228 GFC_INTEGER_8 * restrict dest;
229 const GFC_INTEGER_2 * restrict base;
230 const GFC_LOGICAL_1 * restrict mbase;
231 int rank;
232 int dim;
233 index_type n;
234 index_type len;
235 index_type delta;
236 index_type mdelta;
237 int mask_kind;
239 dim = (*pdim) - 1;
240 rank = GFC_DESCRIPTOR_RANK (array) - 1;
242 len = GFC_DESCRIPTOR_EXTENT(array,dim);
243 if (len <= 0)
244 return;
246 mbase = mask->data;
248 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
250 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
251 #ifdef HAVE_GFC_LOGICAL_16
252 || mask_kind == 16
253 #endif
255 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
256 else
257 runtime_error ("Funny sized logical array");
259 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
260 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
262 for (n = 0; n < dim; n++)
264 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
265 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
266 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
268 if (extent[n] < 0)
269 extent[n] = 0;
272 for (n = dim; n < rank; n++)
274 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
275 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
276 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
278 if (extent[n] < 0)
279 extent[n] = 0;
282 if (retarray->data == NULL)
284 size_t alloc_size, str;
286 for (n = 0; n < rank; n++)
288 if (n == 0)
289 str = 1;
290 else
291 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
293 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
297 alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
298 * extent[rank-1];
300 retarray->offset = 0;
301 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
303 if (alloc_size == 0)
305 /* Make sure we have a zero-sized array. */
306 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
307 return;
309 else
310 retarray->data = internal_malloc_size (alloc_size);
313 else
315 if (rank != GFC_DESCRIPTOR_RANK (retarray))
316 runtime_error ("rank of return array incorrect in MINLOC intrinsic");
318 if (unlikely (compile_options.bounds_check))
320 bounds_ifunction_return ((array_t *) retarray, extent,
321 "return value", "MINLOC");
322 bounds_equal_extents ((array_t *) mask, (array_t *) array,
323 "MASK argument", "MINLOC");
327 for (n = 0; n < rank; n++)
329 count[n] = 0;
330 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
331 if (extent[n] <= 0)
332 return;
335 dest = retarray->data;
336 base = array->data;
338 while (base)
340 const GFC_INTEGER_2 * restrict src;
341 const GFC_LOGICAL_1 * restrict msrc;
342 GFC_INTEGER_8 result;
343 src = base;
344 msrc = mbase;
347 GFC_INTEGER_2 minval;
348 #if defined (GFC_INTEGER_2_INFINITY)
349 minval = GFC_INTEGER_2_INFINITY;
350 #else
351 minval = GFC_INTEGER_2_HUGE;
352 #endif
353 #if defined (GFC_INTEGER_2_QUIET_NAN)
354 GFC_INTEGER_8 result2 = 0;
355 #endif
356 result = 0;
357 if (len <= 0)
358 *dest = 0;
359 else
361 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
364 if (*msrc)
366 #if defined (GFC_INTEGER_2_QUIET_NAN)
367 if (!result2)
368 result2 = (GFC_INTEGER_8)n + 1;
369 if (*src <= minval)
370 #endif
372 minval = *src;
373 result = (GFC_INTEGER_8)n + 1;
374 break;
378 #if defined (GFC_INTEGER_2_QUIET_NAN)
379 if (unlikely (n >= len))
380 result = result2;
381 else
382 #endif
383 for (; n < len; n++, src += delta, msrc += mdelta)
385 if (*msrc && *src < minval)
387 minval = *src;
388 result = (GFC_INTEGER_8)n + 1;
391 *dest = result;
394 /* Advance to the next element. */
395 count[0]++;
396 base += sstride[0];
397 mbase += mstride[0];
398 dest += dstride[0];
399 n = 0;
400 while (count[n] == extent[n])
402 /* When we get to the end of a dimension, reset it and increment
403 the next dimension. */
404 count[n] = 0;
405 /* We could precalculate these products, but this is a less
406 frequently used path so probably not worth it. */
407 base -= sstride[n] * extent[n];
408 mbase -= mstride[n] * extent[n];
409 dest -= dstride[n] * extent[n];
410 n++;
411 if (n == rank)
413 /* Break out of the look. */
414 base = NULL;
415 break;
417 else
419 count[n]++;
420 base += sstride[n];
421 mbase += mstride[n];
422 dest += dstride[n];
429 extern void sminloc1_8_i2 (gfc_array_i8 * const restrict,
430 gfc_array_i2 * const restrict, const index_type * const restrict,
431 GFC_LOGICAL_4 *);
432 export_proto(sminloc1_8_i2);
434 void
435 sminloc1_8_i2 (gfc_array_i8 * const restrict retarray,
436 gfc_array_i2 * const restrict array,
437 const index_type * const restrict pdim,
438 GFC_LOGICAL_4 * mask)
440 index_type count[GFC_MAX_DIMENSIONS];
441 index_type extent[GFC_MAX_DIMENSIONS];
442 index_type dstride[GFC_MAX_DIMENSIONS];
443 GFC_INTEGER_8 * restrict dest;
444 index_type rank;
445 index_type n;
446 index_type dim;
449 if (*mask)
451 minloc1_8_i2 (retarray, array, pdim);
452 return;
454 /* Make dim zero based to avoid confusion. */
455 dim = (*pdim) - 1;
456 rank = GFC_DESCRIPTOR_RANK (array) - 1;
458 for (n = 0; n < dim; n++)
460 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
462 if (extent[n] <= 0)
463 extent[n] = 0;
466 for (n = dim; n < rank; n++)
468 extent[n] =
469 GFC_DESCRIPTOR_EXTENT(array,n + 1);
471 if (extent[n] <= 0)
472 extent[n] = 0;
475 if (retarray->data == NULL)
477 size_t alloc_size, str;
479 for (n = 0; n < rank; n++)
481 if (n == 0)
482 str = 1;
483 else
484 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
486 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
490 retarray->offset = 0;
491 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
493 alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
494 * extent[rank-1];
496 if (alloc_size == 0)
498 /* Make sure we have a zero-sized array. */
499 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
500 return;
502 else
503 retarray->data = internal_malloc_size (alloc_size);
505 else
507 if (rank != GFC_DESCRIPTOR_RANK (retarray))
508 runtime_error ("rank of return array incorrect in"
509 " MINLOC intrinsic: is %ld, should be %ld",
510 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
511 (long int) rank);
513 if (unlikely (compile_options.bounds_check))
515 for (n=0; n < rank; n++)
517 index_type ret_extent;
519 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
520 if (extent[n] != ret_extent)
521 runtime_error ("Incorrect extent in return value of"
522 " MINLOC intrinsic in dimension %ld:"
523 " is %ld, should be %ld", (long int) n + 1,
524 (long int) ret_extent, (long int) extent[n]);
529 for (n = 0; n < rank; n++)
531 count[n] = 0;
532 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
535 dest = retarray->data;
537 while(1)
539 *dest = 0;
540 count[0]++;
541 dest += dstride[0];
542 n = 0;
543 while (count[n] == extent[n])
545 /* When we get to the end of a dimension, reset it and increment
546 the next dimension. */
547 count[n] = 0;
548 /* We could precalculate these products, but this is a less
549 frequently used path so probably not worth it. */
550 dest -= dstride[n] * extent[n];
551 n++;
552 if (n == rank)
553 return;
554 else
556 count[n]++;
557 dest += dstride[n];
563 #endif