Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / sese.h
blobf10030c67a814ea441e694187414d33274684b31
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
5 Sebastian Pop <sebastian.pop@amd.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #ifndef GCC_SESE_H
24 #define GCC_SESE_H
26 /* A Single Entry, Single Exit region is a part of the CFG delimited
27 by two edges. */
28 typedef struct sese_s
30 /* Single ENTRY and single EXIT from the SESE region. */
31 edge entry, exit;
33 /* Parameters used within the SCOP. */
34 VEC (tree, heap) *params;
36 /* Loops completely contained in the SCOP. */
37 bitmap loops;
38 VEC (loop_p, heap) *loop_nest;
40 /* Are we allowed to add more params? This is for debugging purpose. We
41 can only add new params before generating the bb domains, otherwise they
42 become invalid. */
43 bool add_params;
44 } *sese;
46 #define SESE_ENTRY(S) (S->entry)
47 #define SESE_ENTRY_BB(S) (S->entry->dest)
48 #define SESE_EXIT(S) (S->exit)
49 #define SESE_EXIT_BB(S) (S->exit->dest)
50 #define SESE_PARAMS(S) (S->params)
51 #define SESE_LOOPS(S) (S->loops)
52 #define SESE_LOOP_NEST(S) (S->loop_nest)
53 #define SESE_ADD_PARAMS(S) (S->add_params)
55 extern sese new_sese (edge, edge);
56 extern void free_sese (sese);
57 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
58 extern void build_sese_loop_nests (sese);
59 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
60 VEC (tree, heap) *);
61 extern struct loop *outermost_loop_in_sese (sese, basic_block);
62 extern void insert_loop_close_phis (htab_t, loop_p);
63 extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t);
64 extern tree scalar_evolution_in_region (sese, loop_p, tree);
66 /* Check that SESE contains LOOP. */
68 static inline bool
69 sese_contains_loop (sese sese, struct loop *loop)
71 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
74 /* The number of parameters in REGION. */
76 static inline unsigned
77 sese_nb_params (sese region)
79 return VEC_length (tree, SESE_PARAMS (region));
82 /* Checks whether BB is contained in the region delimited by ENTRY and
83 EXIT blocks. */
85 static inline bool
86 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
88 #ifdef ENABLE_CHECKING
90 edge e;
91 edge_iterator ei;
93 /* Check that there are no edges coming in the region: all the
94 predecessors of EXIT are dominated by ENTRY. */
95 FOR_EACH_EDGE (e, ei, exit->preds)
96 dominated_by_p (CDI_DOMINATORS, e->src, entry);
98 /* Check that there are no edges going out of the region: the
99 entry is post-dominated by the exit. FIXME: This cannot be
100 checked right now as the CDI_POST_DOMINATORS are needed. */
102 #endif
104 return dominated_by_p (CDI_DOMINATORS, bb, entry)
105 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
106 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
109 /* Checks whether BB is contained in the region delimited by ENTRY and
110 EXIT blocks. */
112 static inline bool
113 bb_in_sese_p (basic_block bb, sese region)
115 basic_block entry = SESE_ENTRY_BB (region);
116 basic_block exit = SESE_EXIT_BB (region);
118 return bb_in_region (bb, entry, exit);
121 /* Returns true when NAME is defined in REGION. */
123 static inline bool
124 defined_in_sese_p (tree name, sese region)
126 gimple stmt = SSA_NAME_DEF_STMT (name);
127 basic_block bb = gimple_bb (stmt);
129 return bb && bb_in_sese_p (bb, region);
132 /* Returns true when LOOP is in REGION. */
134 static inline bool
135 loop_in_sese_p (struct loop *loop, sese region)
137 return (bb_in_sese_p (loop->header, region)
138 && bb_in_sese_p (loop->latch, region));
141 /* Returns the loop depth of LOOP in REGION. The loop depth
142 is the same as the normal loop depth, but limited by a region.
144 Example:
146 loop_0
147 loop_1
150 <- region start
153 loop_2
157 <- region end
160 loop_0 does not exist in the region -> invalid
161 loop_1 exists, but is not completely contained in the region -> depth 0
162 loop_2 is completely contained -> depth 1 */
164 static inline unsigned int
165 sese_loop_depth (sese region, loop_p loop)
167 unsigned int depth = 0;
169 gcc_assert ((!loop_in_sese_p (loop, region)
170 && (SESE_ENTRY_BB (region)->loop_father == loop
171 || SESE_EXIT (region)->src->loop_father == loop))
172 || loop_in_sese_p (loop, region));
174 while (loop_in_sese_p (loop, region))
176 depth++;
177 loop = loop_outer (loop);
180 return depth;
183 /* Splits BB to make a single entry single exit region. */
185 static inline sese
186 split_region_for_bb (basic_block bb)
188 edge entry, exit;
190 if (single_pred_p (bb))
191 entry = single_pred_edge (bb);
192 else
194 entry = split_block_after_labels (bb);
195 bb = single_succ (bb);
198 if (single_succ_p (bb))
199 exit = single_succ_edge (bb);
200 else
202 gimple_stmt_iterator gsi = gsi_last_bb (bb);
203 gsi_prev (&gsi);
204 exit = split_block (bb, gsi_stmt (gsi));
207 return new_sese (entry, exit);
210 /* Returns the block preceding the entry of a SESE. */
212 static inline basic_block
213 block_before_sese (sese sese)
215 return SESE_ENTRY (sese)->src;
220 /* A single entry single exit specialized for conditions. */
222 typedef struct ifsese_s {
223 sese region;
224 sese true_region;
225 sese false_region;
226 } *ifsese;
228 extern void if_region_set_false_region (ifsese, sese);
229 extern ifsese move_sese_in_condition (sese);
230 extern edge get_true_edge_from_guard_bb (basic_block);
231 extern edge get_false_edge_from_guard_bb (basic_block);
232 extern void set_ifsese_condition (ifsese, tree);
234 static inline edge
235 if_region_entry (ifsese if_region)
237 return SESE_ENTRY (if_region->region);
240 static inline edge
241 if_region_exit (ifsese if_region)
243 return SESE_EXIT (if_region->region);
246 static inline basic_block
247 if_region_get_condition_block (ifsese if_region)
249 return if_region_entry (if_region)->dest;
252 /* Structure containing the mapping between the old names and the new
253 names used after block copy in the new loop context. */
254 typedef struct rename_map_elt_s
256 tree old_name, expr;
257 } *rename_map_elt;
259 DEF_VEC_P(rename_map_elt);
260 DEF_VEC_ALLOC_P (rename_map_elt, heap);
262 extern void debug_rename_map (htab_t);
263 extern hashval_t rename_map_elt_info (const void *);
264 extern int eq_rename_map_elts (const void *, const void *);
266 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
268 static inline rename_map_elt
269 new_rename_map_elt (tree old_name, tree expr)
271 rename_map_elt res;
273 res = XNEW (struct rename_map_elt_s);
274 res->old_name = old_name;
275 res->expr = expr;
277 return res;
280 /* Structure containing the mapping between the CLooG's induction
281 variable and the type of the old induction variable. */
282 typedef struct ivtype_map_elt_s
284 tree type;
285 const char *cloog_iv;
286 } *ivtype_map_elt;
288 extern void debug_ivtype_map (htab_t);
289 extern hashval_t ivtype_map_elt_info (const void *);
290 extern int eq_ivtype_map_elts (const void *, const void *);
292 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
294 static inline ivtype_map_elt
295 new_ivtype_map_elt (const char *cloog_iv, tree type)
297 ivtype_map_elt res;
299 res = XNEW (struct ivtype_map_elt_s);
300 res->cloog_iv = cloog_iv;
301 res->type = type;
303 return res;
306 /* Free and compute again all the dominators information. */
308 static inline void
309 recompute_all_dominators (void)
311 mark_irreducible_loops ();
312 free_dominance_info (CDI_DOMINATORS);
313 free_dominance_info (CDI_POST_DOMINATORS);
314 calculate_dominance_info (CDI_DOMINATORS);
315 calculate_dominance_info (CDI_POST_DOMINATORS);
318 typedef struct gimple_bb
320 basic_block bb;
322 /* Lists containing the restrictions of the conditional statements
323 dominating this bb. This bb can only be executed, if all conditions
324 are true.
326 Example:
328 for (i = 0; i <= 20; i++)
332 if (2i <= 8)
336 So for B there is an additional condition (2i <= 8).
338 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
339 corresponding element in CONDITION_CASES is not NULL_TREE. For a
340 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
341 CASE_LABEL_EXPR. */
342 VEC (gimple, heap) *conditions;
343 VEC (gimple, heap) *condition_cases;
344 VEC (data_reference_p, heap) *data_refs;
345 } *gimple_bb_p;
347 #define GBB_BB(GBB) GBB->bb
348 #define GBB_DATA_REFS(GBB) GBB->data_refs
349 #define GBB_CONDITIONS(GBB) GBB->conditions
350 #define GBB_CONDITION_CASES(GBB) GBB->condition_cases
352 /* Return the innermost loop that contains the basic block GBB. */
354 static inline struct loop *
355 gbb_loop (struct gimple_bb *gbb)
357 return GBB_BB (gbb)->loop_father;
360 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
361 If there is no corresponding gimple loop, we return NULL. */
363 static inline loop_p
364 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
366 loop_p loop = gbb_loop (gbb);
367 int depth = sese_loop_depth (region, loop);
369 while (--depth > index)
370 loop = loop_outer (loop);
372 gcc_assert (sese_contains_loop (region, loop));
374 return loop;
377 /* The number of common loops in REGION for GBB1 and GBB2. */
379 static inline int
380 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
382 loop_p l1 = gbb_loop (gbb1);
383 loop_p l2 = gbb_loop (gbb2);
384 loop_p common = find_common_loop (l1, l2);
386 return sese_loop_depth (region, common);
389 /* Return true when DEF can be analyzed in REGION by the scalar
390 evolution analyzer. */
392 static inline bool
393 scev_analyzable_p (tree def, sese region)
395 gimple stmt = SSA_NAME_DEF_STMT (def);
396 loop_p loop = loop_containing_stmt (stmt);
397 tree scev = scalar_evolution_in_region (region, loop, def);
399 return !chrec_contains_undetermined (scev)
400 && TREE_CODE (scev) != SSA_NAME
401 && (tree_does_not_contain_chrecs (scev)
402 || evolution_function_is_affine_p (scev));
405 #endif