Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / recog.c
blob1847c236fec85912ba289bf6173c073e6b44efab
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
47 #ifndef STACK_PUSH_CODE
48 #ifdef STACK_GROWS_DOWNWARD
49 #define STACK_PUSH_CODE PRE_DEC
50 #else
51 #define STACK_PUSH_CODE PRE_INC
52 #endif
53 #endif
55 #ifndef STACK_POP_CODE
56 #ifdef STACK_GROWS_DOWNWARD
57 #define STACK_POP_CODE POST_INC
58 #else
59 #define STACK_POP_CODE POST_DEC
60 #endif
61 #endif
63 #ifndef HAVE_ATTR_enabled
64 static inline bool
65 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
67 return true;
69 #endif
71 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
72 static void validate_replace_src_1 (rtx *, void *);
73 static rtx split_insn (rtx);
75 /* Nonzero means allow operands to be volatile.
76 This should be 0 if you are generating rtl, such as if you are calling
77 the functions in optabs.c and expmed.c (most of the time).
78 This should be 1 if all valid insns need to be recognized,
79 such as in reginfo.c and final.c and reload.c.
81 init_recog and init_recog_no_volatile are responsible for setting this. */
83 int volatile_ok;
85 struct recog_data recog_data;
87 /* Contains a vector of operand_alternative structures for every operand.
88 Set up by preprocess_constraints. */
89 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
91 /* On return from `constrain_operands', indicate which alternative
92 was satisfied. */
94 int which_alternative;
96 /* Nonzero after end of reload pass.
97 Set to 1 or 0 by toplev.c.
98 Controls the significance of (SUBREG (MEM)). */
100 int reload_completed;
102 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
103 int epilogue_completed;
105 /* Initialize data used by the function `recog'.
106 This must be called once in the compilation of a function
107 before any insn recognition may be done in the function. */
109 void
110 init_recog_no_volatile (void)
112 volatile_ok = 0;
115 void
116 init_recog (void)
118 volatile_ok = 1;
122 /* Check that X is an insn-body for an `asm' with operands
123 and that the operands mentioned in it are legitimate. */
126 check_asm_operands (rtx x)
128 int noperands;
129 rtx *operands;
130 const char **constraints;
131 int i;
133 /* Post-reload, be more strict with things. */
134 if (reload_completed)
136 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
137 extract_insn (make_insn_raw (x));
138 constrain_operands (1);
139 return which_alternative >= 0;
142 noperands = asm_noperands (x);
143 if (noperands < 0)
144 return 0;
145 if (noperands == 0)
146 return 1;
148 operands = XALLOCAVEC (rtx, noperands);
149 constraints = XALLOCAVEC (const char *, noperands);
151 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
153 for (i = 0; i < noperands; i++)
155 const char *c = constraints[i];
156 if (c[0] == '%')
157 c++;
158 if (! asm_operand_ok (operands[i], c, constraints))
159 return 0;
162 return 1;
165 /* Static data for the next two routines. */
167 typedef struct change_t
169 rtx object;
170 int old_code;
171 rtx *loc;
172 rtx old;
173 bool unshare;
174 } change_t;
176 static change_t *changes;
177 static int changes_allocated;
179 static int num_changes = 0;
181 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
182 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
183 the change is simply made.
185 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
186 will be called with the address and mode as parameters. If OBJECT is
187 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
188 the change in place.
190 IN_GROUP is nonzero if this is part of a group of changes that must be
191 performed as a group. In that case, the changes will be stored. The
192 function `apply_change_group' will validate and apply the changes.
194 If IN_GROUP is zero, this is a single change. Try to recognize the insn
195 or validate the memory reference with the change applied. If the result
196 is not valid for the machine, suppress the change and return zero.
197 Otherwise, perform the change and return 1. */
199 static bool
200 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
202 rtx old = *loc;
204 if (old == new_rtx || rtx_equal_p (old, new_rtx))
205 return 1;
207 gcc_assert (in_group != 0 || num_changes == 0);
209 *loc = new_rtx;
211 /* Save the information describing this change. */
212 if (num_changes >= changes_allocated)
214 if (changes_allocated == 0)
215 /* This value allows for repeated substitutions inside complex
216 indexed addresses, or changes in up to 5 insns. */
217 changes_allocated = MAX_RECOG_OPERANDS * 5;
218 else
219 changes_allocated *= 2;
221 changes = XRESIZEVEC (change_t, changes, changes_allocated);
224 changes[num_changes].object = object;
225 changes[num_changes].loc = loc;
226 changes[num_changes].old = old;
227 changes[num_changes].unshare = unshare;
229 if (object && !MEM_P (object))
231 /* Set INSN_CODE to force rerecognition of insn. Save old code in
232 case invalid. */
233 changes[num_changes].old_code = INSN_CODE (object);
234 INSN_CODE (object) = -1;
237 num_changes++;
239 /* If we are making a group of changes, return 1. Otherwise, validate the
240 change group we made. */
242 if (in_group)
243 return 1;
244 else
245 return apply_change_group ();
248 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
249 UNSHARE to false. */
251 bool
252 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
254 return validate_change_1 (object, loc, new_rtx, in_group, false);
257 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
258 UNSHARE to true. */
260 bool
261 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
263 return validate_change_1 (object, loc, new_rtx, in_group, true);
267 /* Keep X canonicalized if some changes have made it non-canonical; only
268 modifies the operands of X, not (for example) its code. Simplifications
269 are not the job of this routine.
271 Return true if anything was changed. */
272 bool
273 canonicalize_change_group (rtx insn, rtx x)
275 if (COMMUTATIVE_P (x)
276 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
278 /* Oops, the caller has made X no longer canonical.
279 Let's redo the changes in the correct order. */
280 rtx tem = XEXP (x, 0);
281 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
282 validate_change (insn, &XEXP (x, 1), tem, 1);
283 return true;
285 else
286 return false;
290 /* This subroutine of apply_change_group verifies whether the changes to INSN
291 were valid; i.e. whether INSN can still be recognized. */
294 insn_invalid_p (rtx insn)
296 rtx pat = PATTERN (insn);
297 int num_clobbers = 0;
298 /* If we are before reload and the pattern is a SET, see if we can add
299 clobbers. */
300 int icode = recog (pat, insn,
301 (GET_CODE (pat) == SET
302 && ! reload_completed && ! reload_in_progress)
303 ? &num_clobbers : 0);
304 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
307 /* If this is an asm and the operand aren't legal, then fail. Likewise if
308 this is not an asm and the insn wasn't recognized. */
309 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
310 || (!is_asm && icode < 0))
311 return 1;
313 /* If we have to add CLOBBERs, fail if we have to add ones that reference
314 hard registers since our callers can't know if they are live or not.
315 Otherwise, add them. */
316 if (num_clobbers > 0)
318 rtx newpat;
320 if (added_clobbers_hard_reg_p (icode))
321 return 1;
323 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
324 XVECEXP (newpat, 0, 0) = pat;
325 add_clobbers (newpat, icode);
326 PATTERN (insn) = pat = newpat;
329 /* After reload, verify that all constraints are satisfied. */
330 if (reload_completed)
332 extract_insn (insn);
334 if (! constrain_operands (1))
335 return 1;
338 INSN_CODE (insn) = icode;
339 return 0;
342 /* Return number of changes made and not validated yet. */
344 num_changes_pending (void)
346 return num_changes;
349 /* Tentatively apply the changes numbered NUM and up.
350 Return 1 if all changes are valid, zero otherwise. */
353 verify_changes (int num)
355 int i;
356 rtx last_validated = NULL_RTX;
358 /* The changes have been applied and all INSN_CODEs have been reset to force
359 rerecognition.
361 The changes are valid if we aren't given an object, or if we are
362 given a MEM and it still is a valid address, or if this is in insn
363 and it is recognized. In the latter case, if reload has completed,
364 we also require that the operands meet the constraints for
365 the insn. */
367 for (i = num; i < num_changes; i++)
369 rtx object = changes[i].object;
371 /* If there is no object to test or if it is the same as the one we
372 already tested, ignore it. */
373 if (object == 0 || object == last_validated)
374 continue;
376 if (MEM_P (object))
378 if (! memory_address_addr_space_p (GET_MODE (object),
379 XEXP (object, 0),
380 MEM_ADDR_SPACE (object)))
381 break;
383 else if (REG_P (changes[i].old)
384 && asm_noperands (PATTERN (object)) > 0
385 && REG_EXPR (changes[i].old) != NULL_TREE
386 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
387 && DECL_REGISTER (REG_EXPR (changes[i].old)))
389 /* Don't allow changes of hard register operands to inline
390 assemblies if they have been defined as register asm ("x"). */
391 break;
393 else if (DEBUG_INSN_P (object))
394 continue;
395 else if (insn_invalid_p (object))
397 rtx pat = PATTERN (object);
399 /* Perhaps we couldn't recognize the insn because there were
400 extra CLOBBERs at the end. If so, try to re-recognize
401 without the last CLOBBER (later iterations will cause each of
402 them to be eliminated, in turn). But don't do this if we
403 have an ASM_OPERAND. */
404 if (GET_CODE (pat) == PARALLEL
405 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
406 && asm_noperands (PATTERN (object)) < 0)
408 rtx newpat;
410 if (XVECLEN (pat, 0) == 2)
411 newpat = XVECEXP (pat, 0, 0);
412 else
414 int j;
416 newpat
417 = gen_rtx_PARALLEL (VOIDmode,
418 rtvec_alloc (XVECLEN (pat, 0) - 1));
419 for (j = 0; j < XVECLEN (newpat, 0); j++)
420 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
423 /* Add a new change to this group to replace the pattern
424 with this new pattern. Then consider this change
425 as having succeeded. The change we added will
426 cause the entire call to fail if things remain invalid.
428 Note that this can lose if a later change than the one
429 we are processing specified &XVECEXP (PATTERN (object), 0, X)
430 but this shouldn't occur. */
432 validate_change (object, &PATTERN (object), newpat, 1);
433 continue;
435 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
436 || GET_CODE (pat) == VAR_LOCATION)
437 /* If this insn is a CLOBBER or USE, it is always valid, but is
438 never recognized. */
439 continue;
440 else
441 break;
443 last_validated = object;
446 return (i == num_changes);
449 /* A group of changes has previously been issued with validate_change
450 and verified with verify_changes. Call df_insn_rescan for each of
451 the insn changed and clear num_changes. */
453 void
454 confirm_change_group (void)
456 int i;
457 rtx last_object = NULL;
459 for (i = 0; i < num_changes; i++)
461 rtx object = changes[i].object;
463 if (changes[i].unshare)
464 *changes[i].loc = copy_rtx (*changes[i].loc);
466 /* Avoid unnecessary rescanning when multiple changes to same instruction
467 are made. */
468 if (object)
470 if (object != last_object && last_object && INSN_P (last_object))
471 df_insn_rescan (last_object);
472 last_object = object;
476 if (last_object && INSN_P (last_object))
477 df_insn_rescan (last_object);
478 num_changes = 0;
481 /* Apply a group of changes previously issued with `validate_change'.
482 If all changes are valid, call confirm_change_group and return 1,
483 otherwise, call cancel_changes and return 0. */
486 apply_change_group (void)
488 if (verify_changes (0))
490 confirm_change_group ();
491 return 1;
493 else
495 cancel_changes (0);
496 return 0;
501 /* Return the number of changes so far in the current group. */
504 num_validated_changes (void)
506 return num_changes;
509 /* Retract the changes numbered NUM and up. */
511 void
512 cancel_changes (int num)
514 int i;
516 /* Back out all the changes. Do this in the opposite order in which
517 they were made. */
518 for (i = num_changes - 1; i >= num; i--)
520 *changes[i].loc = changes[i].old;
521 if (changes[i].object && !MEM_P (changes[i].object))
522 INSN_CODE (changes[i].object) = changes[i].old_code;
524 num_changes = num;
527 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
528 rtx. */
530 static void
531 simplify_while_replacing (rtx *loc, rtx to, rtx object,
532 enum machine_mode op0_mode)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx new_rtx;
538 if (SWAPPABLE_OPERANDS_P (x)
539 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
541 validate_unshare_change (object, loc,
542 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
543 : swap_condition (code),
544 GET_MODE (x), XEXP (x, 1),
545 XEXP (x, 0)), 1);
546 x = *loc;
547 code = GET_CODE (x);
550 switch (code)
552 case PLUS:
553 /* If we have a PLUS whose second operand is now a CONST_INT, use
554 simplify_gen_binary to try to simplify it.
555 ??? We may want later to remove this, once simplification is
556 separated from this function. */
557 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
558 validate_change (object, loc,
559 simplify_gen_binary
560 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
561 break;
562 case MINUS:
563 if (CONST_INT_P (XEXP (x, 1))
564 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
565 validate_change (object, loc,
566 simplify_gen_binary
567 (PLUS, GET_MODE (x), XEXP (x, 0),
568 simplify_gen_unary (NEG,
569 GET_MODE (x), XEXP (x, 1),
570 GET_MODE (x))), 1);
571 break;
572 case ZERO_EXTEND:
573 case SIGN_EXTEND:
574 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
576 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
577 op0_mode);
578 /* If any of the above failed, substitute in something that
579 we know won't be recognized. */
580 if (!new_rtx)
581 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
582 validate_change (object, loc, new_rtx, 1);
584 break;
585 case SUBREG:
586 /* All subregs possible to simplify should be simplified. */
587 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
588 SUBREG_BYTE (x));
590 /* Subregs of VOIDmode operands are incorrect. */
591 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
592 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
593 if (new_rtx)
594 validate_change (object, loc, new_rtx, 1);
595 break;
596 case ZERO_EXTRACT:
597 case SIGN_EXTRACT:
598 /* If we are replacing a register with memory, try to change the memory
599 to be the mode required for memory in extract operations (this isn't
600 likely to be an insertion operation; if it was, nothing bad will
601 happen, we might just fail in some cases). */
603 if (MEM_P (XEXP (x, 0))
604 && CONST_INT_P (XEXP (x, 1))
605 && CONST_INT_P (XEXP (x, 2))
606 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
607 && !MEM_VOLATILE_P (XEXP (x, 0)))
609 enum machine_mode wanted_mode = VOIDmode;
610 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
611 int pos = INTVAL (XEXP (x, 2));
613 if (GET_CODE (x) == ZERO_EXTRACT)
615 enum machine_mode new_mode
616 = mode_for_extraction (EP_extzv, 1);
617 if (new_mode != MAX_MACHINE_MODE)
618 wanted_mode = new_mode;
620 else if (GET_CODE (x) == SIGN_EXTRACT)
622 enum machine_mode new_mode
623 = mode_for_extraction (EP_extv, 1);
624 if (new_mode != MAX_MACHINE_MODE)
625 wanted_mode = new_mode;
628 /* If we have a narrower mode, we can do something. */
629 if (wanted_mode != VOIDmode
630 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
632 int offset = pos / BITS_PER_UNIT;
633 rtx newmem;
635 /* If the bytes and bits are counted differently, we
636 must adjust the offset. */
637 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
638 offset =
639 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
640 offset);
642 pos %= GET_MODE_BITSIZE (wanted_mode);
644 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
646 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
647 validate_change (object, &XEXP (x, 0), newmem, 1);
651 break;
653 default:
654 break;
658 /* Replace every occurrence of FROM in X with TO. Mark each change with
659 validate_change passing OBJECT. */
661 static void
662 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
663 bool simplify)
665 int i, j;
666 const char *fmt;
667 rtx x = *loc;
668 enum rtx_code code;
669 enum machine_mode op0_mode = VOIDmode;
670 int prev_changes = num_changes;
672 if (!x)
673 return;
675 code = GET_CODE (x);
676 fmt = GET_RTX_FORMAT (code);
677 if (fmt[0] == 'e')
678 op0_mode = GET_MODE (XEXP (x, 0));
680 /* X matches FROM if it is the same rtx or they are both referring to the
681 same register in the same mode. Avoid calling rtx_equal_p unless the
682 operands look similar. */
684 if (x == from
685 || (REG_P (x) && REG_P (from)
686 && GET_MODE (x) == GET_MODE (from)
687 && REGNO (x) == REGNO (from))
688 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
689 && rtx_equal_p (x, from)))
691 validate_unshare_change (object, loc, to, 1);
692 return;
695 /* Call ourself recursively to perform the replacements.
696 We must not replace inside already replaced expression, otherwise we
697 get infinite recursion for replacements like (reg X)->(subreg (reg X))
698 done by regmove, so we must special case shared ASM_OPERANDS. */
700 if (GET_CODE (x) == PARALLEL)
702 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
704 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
705 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
707 /* Verify that operands are really shared. */
708 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
709 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
710 (x, 0, j))));
711 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
712 from, to, object, simplify);
714 else
715 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
716 simplify);
719 else
720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
722 if (fmt[i] == 'e')
723 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
724 else if (fmt[i] == 'E')
725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
726 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
727 simplify);
730 /* If we didn't substitute, there is nothing more to do. */
731 if (num_changes == prev_changes)
732 return;
734 /* Allow substituted expression to have different mode. This is used by
735 regmove to change mode of pseudo register. */
736 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
737 op0_mode = GET_MODE (XEXP (x, 0));
739 /* Do changes needed to keep rtx consistent. Don't do any other
740 simplifications, as it is not our job. */
741 if (simplify)
742 simplify_while_replacing (loc, to, object, op0_mode);
745 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
746 with TO. After all changes have been made, validate by seeing
747 if INSN is still valid. */
750 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
752 validate_replace_rtx_1 (loc, from, to, insn, true);
753 return apply_change_group ();
756 /* Try replacing every occurrence of FROM in INSN with TO. After all
757 changes have been made, validate by seeing if INSN is still valid. */
760 validate_replace_rtx (rtx from, rtx to, rtx insn)
762 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
763 return apply_change_group ();
766 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
767 is a part of INSN. After all changes have been made, validate by seeing if
768 INSN is still valid.
769 validate_replace_rtx (from, to, insn) is equivalent to
770 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
773 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
775 validate_replace_rtx_1 (where, from, to, insn, true);
776 return apply_change_group ();
779 /* Same as above, but do not simplify rtx afterwards. */
781 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
782 rtx insn)
784 validate_replace_rtx_1 (where, from, to, insn, false);
785 return apply_change_group ();
789 /* Try replacing every occurrence of FROM in INSN with TO. This also
790 will replace in REG_EQUAL and REG_EQUIV notes. */
792 void
793 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
795 rtx note;
796 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
797 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
798 if (REG_NOTE_KIND (note) == REG_EQUAL
799 || REG_NOTE_KIND (note) == REG_EQUIV)
800 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
803 /* Function called by note_uses to replace used subexpressions. */
804 struct validate_replace_src_data
806 rtx from; /* Old RTX */
807 rtx to; /* New RTX */
808 rtx insn; /* Insn in which substitution is occurring. */
811 static void
812 validate_replace_src_1 (rtx *x, void *data)
814 struct validate_replace_src_data *d
815 = (struct validate_replace_src_data *) data;
817 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
820 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
821 SET_DESTs. */
823 void
824 validate_replace_src_group (rtx from, rtx to, rtx insn)
826 struct validate_replace_src_data d;
828 d.from = from;
829 d.to = to;
830 d.insn = insn;
831 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
834 /* Try simplify INSN.
835 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
836 pattern and return true if something was simplified. */
838 bool
839 validate_simplify_insn (rtx insn)
841 int i;
842 rtx pat = NULL;
843 rtx newpat = NULL;
845 pat = PATTERN (insn);
847 if (GET_CODE (pat) == SET)
849 newpat = simplify_rtx (SET_SRC (pat));
850 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
851 validate_change (insn, &SET_SRC (pat), newpat, 1);
852 newpat = simplify_rtx (SET_DEST (pat));
853 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
854 validate_change (insn, &SET_DEST (pat), newpat, 1);
856 else if (GET_CODE (pat) == PARALLEL)
857 for (i = 0; i < XVECLEN (pat, 0); i++)
859 rtx s = XVECEXP (pat, 0, i);
861 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
863 newpat = simplify_rtx (SET_SRC (s));
864 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
865 validate_change (insn, &SET_SRC (s), newpat, 1);
866 newpat = simplify_rtx (SET_DEST (s));
867 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
868 validate_change (insn, &SET_DEST (s), newpat, 1);
871 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
874 #ifdef HAVE_cc0
875 /* Return 1 if the insn using CC0 set by INSN does not contain
876 any ordered tests applied to the condition codes.
877 EQ and NE tests do not count. */
880 next_insn_tests_no_inequality (rtx insn)
882 rtx next = next_cc0_user (insn);
884 /* If there is no next insn, we have to take the conservative choice. */
885 if (next == 0)
886 return 0;
888 return (INSN_P (next)
889 && ! inequality_comparisons_p (PATTERN (next)));
891 #endif
893 /* Return 1 if OP is a valid general operand for machine mode MODE.
894 This is either a register reference, a memory reference,
895 or a constant. In the case of a memory reference, the address
896 is checked for general validity for the target machine.
898 Register and memory references must have mode MODE in order to be valid,
899 but some constants have no machine mode and are valid for any mode.
901 If MODE is VOIDmode, OP is checked for validity for whatever mode
902 it has.
904 The main use of this function is as a predicate in match_operand
905 expressions in the machine description.
907 For an explanation of this function's behavior for registers of
908 class NO_REGS, see the comment for `register_operand'. */
911 general_operand (rtx op, enum machine_mode mode)
913 enum rtx_code code = GET_CODE (op);
915 if (mode == VOIDmode)
916 mode = GET_MODE (op);
918 /* Don't accept CONST_INT or anything similar
919 if the caller wants something floating. */
920 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
921 && GET_MODE_CLASS (mode) != MODE_INT
922 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
923 return 0;
925 if (CONST_INT_P (op)
926 && mode != VOIDmode
927 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
928 return 0;
930 if (CONSTANT_P (op))
931 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
932 || mode == VOIDmode)
933 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
934 && LEGITIMATE_CONSTANT_P (op));
936 /* Except for certain constants with VOIDmode, already checked for,
937 OP's mode must match MODE if MODE specifies a mode. */
939 if (GET_MODE (op) != mode)
940 return 0;
942 if (code == SUBREG)
944 rtx sub = SUBREG_REG (op);
946 #ifdef INSN_SCHEDULING
947 /* On machines that have insn scheduling, we want all memory
948 reference to be explicit, so outlaw paradoxical SUBREGs.
949 However, we must allow them after reload so that they can
950 get cleaned up by cleanup_subreg_operands. */
951 if (!reload_completed && MEM_P (sub)
952 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
953 return 0;
954 #endif
955 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
956 may result in incorrect reference. We should simplify all valid
957 subregs of MEM anyway. But allow this after reload because we
958 might be called from cleanup_subreg_operands.
960 ??? This is a kludge. */
961 if (!reload_completed && SUBREG_BYTE (op) != 0
962 && MEM_P (sub))
963 return 0;
965 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
966 create such rtl, and we must reject it. */
967 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
968 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
969 return 0;
971 op = sub;
972 code = GET_CODE (op);
975 if (code == REG)
976 /* A register whose class is NO_REGS is not a general operand. */
977 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
978 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
980 if (code == MEM)
982 rtx y = XEXP (op, 0);
984 if (! volatile_ok && MEM_VOLATILE_P (op))
985 return 0;
987 /* Use the mem's mode, since it will be reloaded thus. */
988 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
989 return 1;
992 return 0;
995 /* Return 1 if OP is a valid memory address for a memory reference
996 of mode MODE.
998 The main use of this function is as a predicate in match_operand
999 expressions in the machine description. */
1002 address_operand (rtx op, enum machine_mode mode)
1004 return memory_address_p (mode, op);
1007 /* Return 1 if OP is a register reference of mode MODE.
1008 If MODE is VOIDmode, accept a register in any mode.
1010 The main use of this function is as a predicate in match_operand
1011 expressions in the machine description.
1013 As a special exception, registers whose class is NO_REGS are
1014 not accepted by `register_operand'. The reason for this change
1015 is to allow the representation of special architecture artifacts
1016 (such as a condition code register) without extending the rtl
1017 definitions. Since registers of class NO_REGS cannot be used
1018 as registers in any case where register classes are examined,
1019 it is most consistent to keep this function from accepting them. */
1022 register_operand (rtx op, enum machine_mode mode)
1024 if (GET_MODE (op) != mode && mode != VOIDmode)
1025 return 0;
1027 if (GET_CODE (op) == SUBREG)
1029 rtx sub = SUBREG_REG (op);
1031 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1032 because it is guaranteed to be reloaded into one.
1033 Just make sure the MEM is valid in itself.
1034 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1035 but currently it does result from (SUBREG (REG)...) where the
1036 reg went on the stack.) */
1037 if (! reload_completed && MEM_P (sub))
1038 return general_operand (op, mode);
1040 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 if (REG_P (sub)
1042 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1043 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1044 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1045 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1046 return 0;
1047 #endif
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1053 return 0;
1055 op = sub;
1058 /* We don't consider registers whose class is NO_REGS
1059 to be a register operand. */
1060 return (REG_P (op)
1061 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1062 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1065 /* Return 1 for a register in Pmode; ignore the tested mode. */
1068 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1070 return register_operand (op, Pmode);
1073 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1074 or a hard register. */
1077 scratch_operand (rtx op, enum machine_mode mode)
1079 if (GET_MODE (op) != mode && mode != VOIDmode)
1080 return 0;
1082 return (GET_CODE (op) == SCRATCH
1083 || (REG_P (op)
1084 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1087 /* Return 1 if OP is a valid immediate operand for mode MODE.
1089 The main use of this function is as a predicate in match_operand
1090 expressions in the machine description. */
1093 immediate_operand (rtx op, enum machine_mode mode)
1095 /* Don't accept CONST_INT or anything similar
1096 if the caller wants something floating. */
1097 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1098 && GET_MODE_CLASS (mode) != MODE_INT
1099 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1100 return 0;
1102 if (CONST_INT_P (op)
1103 && mode != VOIDmode
1104 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1105 return 0;
1107 return (CONSTANT_P (op)
1108 && (GET_MODE (op) == mode || mode == VOIDmode
1109 || GET_MODE (op) == VOIDmode)
1110 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1111 && LEGITIMATE_CONSTANT_P (op));
1114 /* Returns 1 if OP is an operand that is a CONST_INT. */
1117 const_int_operand (rtx op, enum machine_mode mode)
1119 if (!CONST_INT_P (op))
1120 return 0;
1122 if (mode != VOIDmode
1123 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1124 return 0;
1126 return 1;
1129 /* Returns 1 if OP is an operand that is a constant integer or constant
1130 floating-point number. */
1133 const_double_operand (rtx op, enum machine_mode mode)
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1142 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1143 && (mode == VOIDmode || GET_MODE (op) == mode
1144 || GET_MODE (op) == VOIDmode));
1147 /* Return 1 if OP is a general operand that is not an immediate operand. */
1150 nonimmediate_operand (rtx op, enum machine_mode mode)
1152 return (general_operand (op, mode) && ! CONSTANT_P (op));
1155 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1158 nonmemory_operand (rtx op, enum machine_mode mode)
1160 if (CONSTANT_P (op))
1162 /* Don't accept CONST_INT or anything similar
1163 if the caller wants something floating. */
1164 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1165 && GET_MODE_CLASS (mode) != MODE_INT
1166 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1167 return 0;
1169 if (CONST_INT_P (op)
1170 && mode != VOIDmode
1171 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1172 return 0;
1174 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1175 || mode == VOIDmode)
1176 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1177 && LEGITIMATE_CONSTANT_P (op));
1180 if (GET_MODE (op) != mode && mode != VOIDmode)
1181 return 0;
1183 if (GET_CODE (op) == SUBREG)
1185 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1186 because it is guaranteed to be reloaded into one.
1187 Just make sure the MEM is valid in itself.
1188 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1189 but currently it does result from (SUBREG (REG)...) where the
1190 reg went on the stack.) */
1191 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1192 return general_operand (op, mode);
1193 op = SUBREG_REG (op);
1196 /* We don't consider registers whose class is NO_REGS
1197 to be a register operand. */
1198 return (REG_P (op)
1199 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1200 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1203 /* Return 1 if OP is a valid operand that stands for pushing a
1204 value of mode MODE onto the stack.
1206 The main use of this function is as a predicate in match_operand
1207 expressions in the machine description. */
1210 push_operand (rtx op, enum machine_mode mode)
1212 unsigned int rounded_size = GET_MODE_SIZE (mode);
1214 #ifdef PUSH_ROUNDING
1215 rounded_size = PUSH_ROUNDING (rounded_size);
1216 #endif
1218 if (!MEM_P (op))
1219 return 0;
1221 if (mode != VOIDmode && GET_MODE (op) != mode)
1222 return 0;
1224 op = XEXP (op, 0);
1226 if (rounded_size == GET_MODE_SIZE (mode))
1228 if (GET_CODE (op) != STACK_PUSH_CODE)
1229 return 0;
1231 else
1233 if (GET_CODE (op) != PRE_MODIFY
1234 || GET_CODE (XEXP (op, 1)) != PLUS
1235 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1236 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1237 #ifdef STACK_GROWS_DOWNWARD
1238 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1239 #else
1240 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1241 #endif
1243 return 0;
1246 return XEXP (op, 0) == stack_pointer_rtx;
1249 /* Return 1 if OP is a valid operand that stands for popping a
1250 value of mode MODE off the stack.
1252 The main use of this function is as a predicate in match_operand
1253 expressions in the machine description. */
1256 pop_operand (rtx op, enum machine_mode mode)
1258 if (!MEM_P (op))
1259 return 0;
1261 if (mode != VOIDmode && GET_MODE (op) != mode)
1262 return 0;
1264 op = XEXP (op, 0);
1266 if (GET_CODE (op) != STACK_POP_CODE)
1267 return 0;
1269 return XEXP (op, 0) == stack_pointer_rtx;
1272 /* Return 1 if ADDR is a valid memory address
1273 for mode MODE in address space AS. */
1276 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1277 rtx addr, addr_space_t as)
1279 #ifdef GO_IF_LEGITIMATE_ADDRESS
1280 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1281 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1282 return 0;
1284 win:
1285 return 1;
1286 #else
1287 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1288 #endif
1291 /* Return 1 if OP is a valid memory reference with mode MODE,
1292 including a valid address.
1294 The main use of this function is as a predicate in match_operand
1295 expressions in the machine description. */
1298 memory_operand (rtx op, enum machine_mode mode)
1300 rtx inner;
1302 if (! reload_completed)
1303 /* Note that no SUBREG is a memory operand before end of reload pass,
1304 because (SUBREG (MEM...)) forces reloading into a register. */
1305 return MEM_P (op) && general_operand (op, mode);
1307 if (mode != VOIDmode && GET_MODE (op) != mode)
1308 return 0;
1310 inner = op;
1311 if (GET_CODE (inner) == SUBREG)
1312 inner = SUBREG_REG (inner);
1314 return (MEM_P (inner) && general_operand (op, mode));
1317 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1318 that is, a memory reference whose address is a general_operand. */
1321 indirect_operand (rtx op, enum machine_mode mode)
1323 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1324 if (! reload_completed
1325 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1327 int offset = SUBREG_BYTE (op);
1328 rtx inner = SUBREG_REG (op);
1330 if (mode != VOIDmode && GET_MODE (op) != mode)
1331 return 0;
1333 /* The only way that we can have a general_operand as the resulting
1334 address is if OFFSET is zero and the address already is an operand
1335 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1336 operand. */
1338 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1339 || (GET_CODE (XEXP (inner, 0)) == PLUS
1340 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1341 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1342 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1345 return (MEM_P (op)
1346 && memory_operand (op, mode)
1347 && general_operand (XEXP (op, 0), Pmode));
1350 /* Return 1 if this is an ordered comparison operator (not including
1351 ORDERED and UNORDERED). */
1354 ordered_comparison_operator (rtx op, enum machine_mode mode)
1356 if (mode != VOIDmode && GET_MODE (op) != mode)
1357 return false;
1358 switch (GET_CODE (op))
1360 case EQ:
1361 case NE:
1362 case LT:
1363 case LTU:
1364 case LE:
1365 case LEU:
1366 case GT:
1367 case GTU:
1368 case GE:
1369 case GEU:
1370 return true;
1371 default:
1372 return false;
1376 /* Return 1 if this is a comparison operator. This allows the use of
1377 MATCH_OPERATOR to recognize all the branch insns. */
1380 comparison_operator (rtx op, enum machine_mode mode)
1382 return ((mode == VOIDmode || GET_MODE (op) == mode)
1383 && COMPARISON_P (op));
1386 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1389 extract_asm_operands (rtx body)
1391 rtx tmp;
1392 switch (GET_CODE (body))
1394 case ASM_OPERANDS:
1395 return body;
1397 case SET:
1398 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1399 tmp = SET_SRC (body);
1400 if (GET_CODE (tmp) == ASM_OPERANDS)
1401 return tmp;
1402 break;
1404 case PARALLEL:
1405 tmp = XVECEXP (body, 0, 0);
1406 if (GET_CODE (tmp) == ASM_OPERANDS)
1407 return tmp;
1408 if (GET_CODE (tmp) == SET)
1410 tmp = SET_SRC (tmp);
1411 if (GET_CODE (tmp) == ASM_OPERANDS)
1412 return tmp;
1414 break;
1416 default:
1417 break;
1419 return NULL;
1422 /* If BODY is an insn body that uses ASM_OPERANDS,
1423 return the number of operands (both input and output) in the insn.
1424 Otherwise return -1. */
1427 asm_noperands (const_rtx body)
1429 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1430 int n_sets = 0;
1432 if (asm_op == NULL)
1433 return -1;
1435 if (GET_CODE (body) == SET)
1436 n_sets = 1;
1437 else if (GET_CODE (body) == PARALLEL)
1439 int i;
1440 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1442 /* Multiple output operands, or 1 output plus some clobbers:
1443 body is
1444 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1445 /* Count backwards through CLOBBERs to determine number of SETs. */
1446 for (i = XVECLEN (body, 0); i > 0; i--)
1448 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1449 break;
1450 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1451 return -1;
1454 /* N_SETS is now number of output operands. */
1455 n_sets = i;
1457 /* Verify that all the SETs we have
1458 came from a single original asm_operands insn
1459 (so that invalid combinations are blocked). */
1460 for (i = 0; i < n_sets; i++)
1462 rtx elt = XVECEXP (body, 0, i);
1463 if (GET_CODE (elt) != SET)
1464 return -1;
1465 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1466 return -1;
1467 /* If these ASM_OPERANDS rtx's came from different original insns
1468 then they aren't allowed together. */
1469 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1470 != ASM_OPERANDS_INPUT_VEC (asm_op))
1471 return -1;
1474 else
1476 /* 0 outputs, but some clobbers:
1477 body is [(asm_operands ...) (clobber (reg ...))...]. */
1478 /* Make sure all the other parallel things really are clobbers. */
1479 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1480 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1481 return -1;
1485 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1486 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1489 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1490 copy its operands (both input and output) into the vector OPERANDS,
1491 the locations of the operands within the insn into the vector OPERAND_LOCS,
1492 and the constraints for the operands into CONSTRAINTS.
1493 Write the modes of the operands into MODES.
1494 Return the assembler-template.
1496 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1497 we don't store that info. */
1499 const char *
1500 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1501 const char **constraints, enum machine_mode *modes,
1502 location_t *loc)
1504 int nbase = 0, n, i;
1505 rtx asmop;
1507 switch (GET_CODE (body))
1509 case ASM_OPERANDS:
1510 /* Zero output asm: BODY is (asm_operands ...). */
1511 asmop = body;
1512 break;
1514 case SET:
1515 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1516 asmop = SET_SRC (body);
1518 /* The output is in the SET.
1519 Its constraint is in the ASM_OPERANDS itself. */
1520 if (operands)
1521 operands[0] = SET_DEST (body);
1522 if (operand_locs)
1523 operand_locs[0] = &SET_DEST (body);
1524 if (constraints)
1525 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1526 if (modes)
1527 modes[0] = GET_MODE (SET_DEST (body));
1528 nbase = 1;
1529 break;
1531 case PARALLEL:
1533 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1535 asmop = XVECEXP (body, 0, 0);
1536 if (GET_CODE (asmop) == SET)
1538 asmop = SET_SRC (asmop);
1540 /* At least one output, plus some CLOBBERs. The outputs are in
1541 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1542 for (i = 0; i < nparallel; i++)
1544 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1545 break; /* Past last SET */
1546 if (operands)
1547 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1548 if (operand_locs)
1549 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1550 if (constraints)
1551 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1552 if (modes)
1553 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1555 nbase = i;
1557 break;
1560 default:
1561 gcc_unreachable ();
1564 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1565 for (i = 0; i < n; i++)
1567 if (operand_locs)
1568 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1569 if (operands)
1570 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1571 if (constraints)
1572 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1573 if (modes)
1574 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1576 nbase += n;
1578 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1579 for (i = 0; i < n; i++)
1581 if (operand_locs)
1582 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1583 if (operands)
1584 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1585 if (constraints)
1586 constraints[nbase + i] = "";
1587 if (modes)
1588 modes[nbase + i] = Pmode;
1591 if (loc)
1592 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1594 return ASM_OPERANDS_TEMPLATE (asmop);
1597 /* Check if an asm_operand matches its constraints.
1598 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1601 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1603 int result = 0;
1605 /* Use constrain_operands after reload. */
1606 gcc_assert (!reload_completed);
1608 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1609 many alternatives as required to match the other operands. */
1610 if (*constraint == '\0')
1611 return 1;
1613 while (*constraint)
1615 char c = *constraint;
1616 int len;
1617 switch (c)
1619 case ',':
1620 constraint++;
1621 continue;
1622 case '=':
1623 case '+':
1624 case '*':
1625 case '%':
1626 case '!':
1627 case '#':
1628 case '&':
1629 case '?':
1630 break;
1632 case '0': case '1': case '2': case '3': case '4':
1633 case '5': case '6': case '7': case '8': case '9':
1634 /* If caller provided constraints pointer, look up
1635 the maching constraint. Otherwise, our caller should have
1636 given us the proper matching constraint, but we can't
1637 actually fail the check if they didn't. Indicate that
1638 results are inconclusive. */
1639 if (constraints)
1641 char *end;
1642 unsigned long match;
1644 match = strtoul (constraint, &end, 10);
1645 if (!result)
1646 result = asm_operand_ok (op, constraints[match], NULL);
1647 constraint = (const char *) end;
1649 else
1652 constraint++;
1653 while (ISDIGIT (*constraint));
1654 if (! result)
1655 result = -1;
1657 continue;
1659 case 'p':
1660 if (address_operand (op, VOIDmode))
1661 result = 1;
1662 break;
1664 case TARGET_MEM_CONSTRAINT:
1665 case 'V': /* non-offsettable */
1666 if (memory_operand (op, VOIDmode))
1667 result = 1;
1668 break;
1670 case 'o': /* offsettable */
1671 if (offsettable_nonstrict_memref_p (op))
1672 result = 1;
1673 break;
1675 case '<':
1676 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1677 excepting those that expand_call created. Further, on some
1678 machines which do not have generalized auto inc/dec, an inc/dec
1679 is not a memory_operand.
1681 Match any memory and hope things are resolved after reload. */
1683 if (MEM_P (op)
1684 && (1
1685 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1686 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1687 result = 1;
1688 break;
1690 case '>':
1691 if (MEM_P (op)
1692 && (1
1693 || GET_CODE (XEXP (op, 0)) == PRE_INC
1694 || GET_CODE (XEXP (op, 0)) == POST_INC))
1695 result = 1;
1696 break;
1698 case 'E':
1699 case 'F':
1700 if (GET_CODE (op) == CONST_DOUBLE
1701 || (GET_CODE (op) == CONST_VECTOR
1702 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1703 result = 1;
1704 break;
1706 case 'G':
1707 if (GET_CODE (op) == CONST_DOUBLE
1708 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1709 result = 1;
1710 break;
1711 case 'H':
1712 if (GET_CODE (op) == CONST_DOUBLE
1713 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1714 result = 1;
1715 break;
1717 case 's':
1718 if (CONST_INT_P (op)
1719 || (GET_CODE (op) == CONST_DOUBLE
1720 && GET_MODE (op) == VOIDmode))
1721 break;
1722 /* Fall through. */
1724 case 'i':
1725 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1726 result = 1;
1727 break;
1729 case 'n':
1730 if (CONST_INT_P (op)
1731 || (GET_CODE (op) == CONST_DOUBLE
1732 && GET_MODE (op) == VOIDmode))
1733 result = 1;
1734 break;
1736 case 'I':
1737 if (CONST_INT_P (op)
1738 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1739 result = 1;
1740 break;
1741 case 'J':
1742 if (CONST_INT_P (op)
1743 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1744 result = 1;
1745 break;
1746 case 'K':
1747 if (CONST_INT_P (op)
1748 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1749 result = 1;
1750 break;
1751 case 'L':
1752 if (CONST_INT_P (op)
1753 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1754 result = 1;
1755 break;
1756 case 'M':
1757 if (CONST_INT_P (op)
1758 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1759 result = 1;
1760 break;
1761 case 'N':
1762 if (CONST_INT_P (op)
1763 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1764 result = 1;
1765 break;
1766 case 'O':
1767 if (CONST_INT_P (op)
1768 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1769 result = 1;
1770 break;
1771 case 'P':
1772 if (CONST_INT_P (op)
1773 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1774 result = 1;
1775 break;
1777 case 'X':
1778 result = 1;
1779 break;
1781 case 'g':
1782 if (general_operand (op, VOIDmode))
1783 result = 1;
1784 break;
1786 default:
1787 /* For all other letters, we first check for a register class,
1788 otherwise it is an EXTRA_CONSTRAINT. */
1789 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1791 case 'r':
1792 if (GET_MODE (op) == BLKmode)
1793 break;
1794 if (register_operand (op, VOIDmode))
1795 result = 1;
1797 #ifdef EXTRA_CONSTRAINT_STR
1798 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1799 /* Every memory operand can be reloaded to fit. */
1800 result = result || memory_operand (op, VOIDmode);
1801 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1802 /* Every address operand can be reloaded to fit. */
1803 result = result || address_operand (op, VOIDmode);
1804 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1805 result = 1;
1806 #endif
1807 break;
1809 len = CONSTRAINT_LEN (c, constraint);
1811 constraint++;
1812 while (--len && *constraint);
1813 if (len)
1814 return 0;
1817 return result;
1820 /* Given an rtx *P, if it is a sum containing an integer constant term,
1821 return the location (type rtx *) of the pointer to that constant term.
1822 Otherwise, return a null pointer. */
1824 rtx *
1825 find_constant_term_loc (rtx *p)
1827 rtx *tem;
1828 enum rtx_code code = GET_CODE (*p);
1830 /* If *P IS such a constant term, P is its location. */
1832 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1833 || code == CONST)
1834 return p;
1836 /* Otherwise, if not a sum, it has no constant term. */
1838 if (GET_CODE (*p) != PLUS)
1839 return 0;
1841 /* If one of the summands is constant, return its location. */
1843 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1844 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1845 return p;
1847 /* Otherwise, check each summand for containing a constant term. */
1849 if (XEXP (*p, 0) != 0)
1851 tem = find_constant_term_loc (&XEXP (*p, 0));
1852 if (tem != 0)
1853 return tem;
1856 if (XEXP (*p, 1) != 0)
1858 tem = find_constant_term_loc (&XEXP (*p, 1));
1859 if (tem != 0)
1860 return tem;
1863 return 0;
1866 /* Return 1 if OP is a memory reference
1867 whose address contains no side effects
1868 and remains valid after the addition
1869 of a positive integer less than the
1870 size of the object being referenced.
1872 We assume that the original address is valid and do not check it.
1874 This uses strict_memory_address_p as a subroutine, so
1875 don't use it before reload. */
1878 offsettable_memref_p (rtx op)
1880 return ((MEM_P (op))
1881 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1882 MEM_ADDR_SPACE (op)));
1885 /* Similar, but don't require a strictly valid mem ref:
1886 consider pseudo-regs valid as index or base regs. */
1889 offsettable_nonstrict_memref_p (rtx op)
1891 return ((MEM_P (op))
1892 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1893 MEM_ADDR_SPACE (op)));
1896 /* Return 1 if Y is a memory address which contains no side effects
1897 and would remain valid for address space AS after the addition of
1898 a positive integer less than the size of that mode.
1900 We assume that the original address is valid and do not check it.
1901 We do check that it is valid for narrower modes.
1903 If STRICTP is nonzero, we require a strictly valid address,
1904 for the sake of use in reload.c. */
1907 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1908 addr_space_t as)
1910 enum rtx_code ycode = GET_CODE (y);
1911 rtx z;
1912 rtx y1 = y;
1913 rtx *y2;
1914 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1915 (strictp ? strict_memory_address_addr_space_p
1916 : memory_address_addr_space_p);
1917 unsigned int mode_sz = GET_MODE_SIZE (mode);
1919 if (CONSTANT_ADDRESS_P (y))
1920 return 1;
1922 /* Adjusting an offsettable address involves changing to a narrower mode.
1923 Make sure that's OK. */
1925 if (mode_dependent_address_p (y))
1926 return 0;
1928 /* ??? How much offset does an offsettable BLKmode reference need?
1929 Clearly that depends on the situation in which it's being used.
1930 However, the current situation in which we test 0xffffffff is
1931 less than ideal. Caveat user. */
1932 if (mode_sz == 0)
1933 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1935 /* If the expression contains a constant term,
1936 see if it remains valid when max possible offset is added. */
1938 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1940 int good;
1942 y1 = *y2;
1943 *y2 = plus_constant (*y2, mode_sz - 1);
1944 /* Use QImode because an odd displacement may be automatically invalid
1945 for any wider mode. But it should be valid for a single byte. */
1946 good = (*addressp) (QImode, y, as);
1948 /* In any case, restore old contents of memory. */
1949 *y2 = y1;
1950 return good;
1953 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1954 return 0;
1956 /* The offset added here is chosen as the maximum offset that
1957 any instruction could need to add when operating on something
1958 of the specified mode. We assume that if Y and Y+c are
1959 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1960 go inside a LO_SUM here, so we do so as well. */
1961 if (GET_CODE (y) == LO_SUM
1962 && mode != BLKmode
1963 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1964 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1965 plus_constant (XEXP (y, 1), mode_sz - 1));
1966 else
1967 z = plus_constant (y, mode_sz - 1);
1969 /* Use QImode because an odd displacement may be automatically invalid
1970 for any wider mode. But it should be valid for a single byte. */
1971 return (*addressp) (QImode, z, as);
1974 /* Return 1 if ADDR is an address-expression whose effect depends
1975 on the mode of the memory reference it is used in.
1977 Autoincrement addressing is a typical example of mode-dependence
1978 because the amount of the increment depends on the mode. */
1980 bool
1981 mode_dependent_address_p (rtx addr)
1983 /* Auto-increment addressing with anything other than post_modify
1984 or pre_modify always introduces a mode dependency. Catch such
1985 cases now instead of deferring to the target. */
1986 if (GET_CODE (addr) == PRE_INC
1987 || GET_CODE (addr) == POST_INC
1988 || GET_CODE (addr) == PRE_DEC
1989 || GET_CODE (addr) == POST_DEC)
1990 return true;
1992 return targetm.mode_dependent_address_p (addr);
1995 /* Like extract_insn, but save insn extracted and don't extract again, when
1996 called again for the same insn expecting that recog_data still contain the
1997 valid information. This is used primary by gen_attr infrastructure that
1998 often does extract insn again and again. */
1999 void
2000 extract_insn_cached (rtx insn)
2002 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2003 return;
2004 extract_insn (insn);
2005 recog_data.insn = insn;
2008 /* Do cached extract_insn, constrain_operands and complain about failures.
2009 Used by insn_attrtab. */
2010 void
2011 extract_constrain_insn_cached (rtx insn)
2013 extract_insn_cached (insn);
2014 if (which_alternative == -1
2015 && !constrain_operands (reload_completed))
2016 fatal_insn_not_found (insn);
2019 /* Do cached constrain_operands and complain about failures. */
2021 constrain_operands_cached (int strict)
2023 if (which_alternative == -1)
2024 return constrain_operands (strict);
2025 else
2026 return 1;
2029 /* Analyze INSN and fill in recog_data. */
2031 void
2032 extract_insn (rtx insn)
2034 int i;
2035 int icode;
2036 int noperands;
2037 rtx body = PATTERN (insn);
2039 recog_data.n_operands = 0;
2040 recog_data.n_alternatives = 0;
2041 recog_data.n_dups = 0;
2043 switch (GET_CODE (body))
2045 case USE:
2046 case CLOBBER:
2047 case ASM_INPUT:
2048 case ADDR_VEC:
2049 case ADDR_DIFF_VEC:
2050 case VAR_LOCATION:
2051 return;
2053 case SET:
2054 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2055 goto asm_insn;
2056 else
2057 goto normal_insn;
2058 case PARALLEL:
2059 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2060 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2061 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2062 goto asm_insn;
2063 else
2064 goto normal_insn;
2065 case ASM_OPERANDS:
2066 asm_insn:
2067 recog_data.n_operands = noperands = asm_noperands (body);
2068 if (noperands >= 0)
2070 /* This insn is an `asm' with operands. */
2072 /* expand_asm_operands makes sure there aren't too many operands. */
2073 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2075 /* Now get the operand values and constraints out of the insn. */
2076 decode_asm_operands (body, recog_data.operand,
2077 recog_data.operand_loc,
2078 recog_data.constraints,
2079 recog_data.operand_mode, NULL);
2080 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2081 if (noperands > 0)
2083 const char *p = recog_data.constraints[0];
2084 recog_data.n_alternatives = 1;
2085 while (*p)
2086 recog_data.n_alternatives += (*p++ == ',');
2088 break;
2090 fatal_insn_not_found (insn);
2092 default:
2093 normal_insn:
2094 /* Ordinary insn: recognize it, get the operands via insn_extract
2095 and get the constraints. */
2097 icode = recog_memoized (insn);
2098 if (icode < 0)
2099 fatal_insn_not_found (insn);
2101 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2102 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2103 recog_data.n_dups = insn_data[icode].n_dups;
2105 insn_extract (insn);
2107 for (i = 0; i < noperands; i++)
2109 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2110 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2111 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2112 /* VOIDmode match_operands gets mode from their real operand. */
2113 if (recog_data.operand_mode[i] == VOIDmode)
2114 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2117 for (i = 0; i < noperands; i++)
2118 recog_data.operand_type[i]
2119 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2120 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2121 : OP_IN);
2123 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2125 if (INSN_CODE (insn) < 0)
2126 for (i = 0; i < recog_data.n_alternatives; i++)
2127 recog_data.alternative_enabled_p[i] = true;
2128 else
2130 recog_data.insn = insn;
2131 for (i = 0; i < recog_data.n_alternatives; i++)
2133 which_alternative = i;
2134 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2138 recog_data.insn = NULL;
2139 which_alternative = -1;
2142 /* After calling extract_insn, you can use this function to extract some
2143 information from the constraint strings into a more usable form.
2144 The collected data is stored in recog_op_alt. */
2145 void
2146 preprocess_constraints (void)
2148 int i;
2150 for (i = 0; i < recog_data.n_operands; i++)
2151 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2152 * sizeof (struct operand_alternative)));
2154 for (i = 0; i < recog_data.n_operands; i++)
2156 int j;
2157 struct operand_alternative *op_alt;
2158 const char *p = recog_data.constraints[i];
2160 op_alt = recog_op_alt[i];
2162 for (j = 0; j < recog_data.n_alternatives; j++)
2164 op_alt[j].cl = NO_REGS;
2165 op_alt[j].constraint = p;
2166 op_alt[j].matches = -1;
2167 op_alt[j].matched = -1;
2169 if (!recog_data.alternative_enabled_p[j])
2171 p = skip_alternative (p);
2172 continue;
2175 if (*p == '\0' || *p == ',')
2177 op_alt[j].anything_ok = 1;
2178 continue;
2181 for (;;)
2183 char c = *p;
2184 if (c == '#')
2186 c = *++p;
2187 while (c != ',' && c != '\0');
2188 if (c == ',' || c == '\0')
2190 p++;
2191 break;
2194 switch (c)
2196 case '=': case '+': case '*': case '%':
2197 case 'E': case 'F': case 'G': case 'H':
2198 case 's': case 'i': case 'n':
2199 case 'I': case 'J': case 'K': case 'L':
2200 case 'M': case 'N': case 'O': case 'P':
2201 /* These don't say anything we care about. */
2202 break;
2204 case '?':
2205 op_alt[j].reject += 6;
2206 break;
2207 case '!':
2208 op_alt[j].reject += 600;
2209 break;
2210 case '&':
2211 op_alt[j].earlyclobber = 1;
2212 break;
2214 case '0': case '1': case '2': case '3': case '4':
2215 case '5': case '6': case '7': case '8': case '9':
2217 char *end;
2218 op_alt[j].matches = strtoul (p, &end, 10);
2219 recog_op_alt[op_alt[j].matches][j].matched = i;
2220 p = end;
2222 continue;
2224 case TARGET_MEM_CONSTRAINT:
2225 op_alt[j].memory_ok = 1;
2226 break;
2227 case '<':
2228 op_alt[j].decmem_ok = 1;
2229 break;
2230 case '>':
2231 op_alt[j].incmem_ok = 1;
2232 break;
2233 case 'V':
2234 op_alt[j].nonoffmem_ok = 1;
2235 break;
2236 case 'o':
2237 op_alt[j].offmem_ok = 1;
2238 break;
2239 case 'X':
2240 op_alt[j].anything_ok = 1;
2241 break;
2243 case 'p':
2244 op_alt[j].is_address = 1;
2245 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2246 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2247 break;
2249 case 'g':
2250 case 'r':
2251 op_alt[j].cl =
2252 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2253 break;
2255 default:
2256 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2258 op_alt[j].memory_ok = 1;
2259 break;
2261 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2263 op_alt[j].is_address = 1;
2264 op_alt[j].cl
2265 = (reg_class_subunion
2266 [(int) op_alt[j].cl]
2267 [(int) base_reg_class (VOIDmode, ADDRESS,
2268 SCRATCH)]);
2269 break;
2272 op_alt[j].cl
2273 = (reg_class_subunion
2274 [(int) op_alt[j].cl]
2275 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2276 break;
2278 p += CONSTRAINT_LEN (c, p);
2284 /* Check the operands of an insn against the insn's operand constraints
2285 and return 1 if they are valid.
2286 The information about the insn's operands, constraints, operand modes
2287 etc. is obtained from the global variables set up by extract_insn.
2289 WHICH_ALTERNATIVE is set to a number which indicates which
2290 alternative of constraints was matched: 0 for the first alternative,
2291 1 for the next, etc.
2293 In addition, when two operands are required to match
2294 and it happens that the output operand is (reg) while the
2295 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2296 make the output operand look like the input.
2297 This is because the output operand is the one the template will print.
2299 This is used in final, just before printing the assembler code and by
2300 the routines that determine an insn's attribute.
2302 If STRICT is a positive nonzero value, it means that we have been
2303 called after reload has been completed. In that case, we must
2304 do all checks strictly. If it is zero, it means that we have been called
2305 before reload has completed. In that case, we first try to see if we can
2306 find an alternative that matches strictly. If not, we try again, this
2307 time assuming that reload will fix up the insn. This provides a "best
2308 guess" for the alternative and is used to compute attributes of insns prior
2309 to reload. A negative value of STRICT is used for this internal call. */
2311 struct funny_match
2313 int this_op, other;
2317 constrain_operands (int strict)
2319 const char *constraints[MAX_RECOG_OPERANDS];
2320 int matching_operands[MAX_RECOG_OPERANDS];
2321 int earlyclobber[MAX_RECOG_OPERANDS];
2322 int c;
2324 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2325 int funny_match_index;
2327 which_alternative = 0;
2328 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2329 return 1;
2331 for (c = 0; c < recog_data.n_operands; c++)
2333 constraints[c] = recog_data.constraints[c];
2334 matching_operands[c] = -1;
2339 int seen_earlyclobber_at = -1;
2340 int opno;
2341 int lose = 0;
2342 funny_match_index = 0;
2344 if (!recog_data.alternative_enabled_p[which_alternative])
2346 int i;
2348 for (i = 0; i < recog_data.n_operands; i++)
2349 constraints[i] = skip_alternative (constraints[i]);
2351 which_alternative++;
2352 continue;
2355 for (opno = 0; opno < recog_data.n_operands; opno++)
2357 rtx op = recog_data.operand[opno];
2358 enum machine_mode mode = GET_MODE (op);
2359 const char *p = constraints[opno];
2360 int offset = 0;
2361 int win = 0;
2362 int val;
2363 int len;
2365 earlyclobber[opno] = 0;
2367 /* A unary operator may be accepted by the predicate, but it
2368 is irrelevant for matching constraints. */
2369 if (UNARY_P (op))
2370 op = XEXP (op, 0);
2372 if (GET_CODE (op) == SUBREG)
2374 if (REG_P (SUBREG_REG (op))
2375 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2376 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2377 GET_MODE (SUBREG_REG (op)),
2378 SUBREG_BYTE (op),
2379 GET_MODE (op));
2380 op = SUBREG_REG (op);
2383 /* An empty constraint or empty alternative
2384 allows anything which matched the pattern. */
2385 if (*p == 0 || *p == ',')
2386 win = 1;
2389 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2391 case '\0':
2392 len = 0;
2393 break;
2394 case ',':
2395 c = '\0';
2396 break;
2398 case '?': case '!': case '*': case '%':
2399 case '=': case '+':
2400 break;
2402 case '#':
2403 /* Ignore rest of this alternative as far as
2404 constraint checking is concerned. */
2406 p++;
2407 while (*p && *p != ',');
2408 len = 0;
2409 break;
2411 case '&':
2412 earlyclobber[opno] = 1;
2413 if (seen_earlyclobber_at < 0)
2414 seen_earlyclobber_at = opno;
2415 break;
2417 case '0': case '1': case '2': case '3': case '4':
2418 case '5': case '6': case '7': case '8': case '9':
2420 /* This operand must be the same as a previous one.
2421 This kind of constraint is used for instructions such
2422 as add when they take only two operands.
2424 Note that the lower-numbered operand is passed first.
2426 If we are not testing strictly, assume that this
2427 constraint will be satisfied. */
2429 char *end;
2430 int match;
2432 match = strtoul (p, &end, 10);
2433 p = end;
2435 if (strict < 0)
2436 val = 1;
2437 else
2439 rtx op1 = recog_data.operand[match];
2440 rtx op2 = recog_data.operand[opno];
2442 /* A unary operator may be accepted by the predicate,
2443 but it is irrelevant for matching constraints. */
2444 if (UNARY_P (op1))
2445 op1 = XEXP (op1, 0);
2446 if (UNARY_P (op2))
2447 op2 = XEXP (op2, 0);
2449 val = operands_match_p (op1, op2);
2452 matching_operands[opno] = match;
2453 matching_operands[match] = opno;
2455 if (val != 0)
2456 win = 1;
2458 /* If output is *x and input is *--x, arrange later
2459 to change the output to *--x as well, since the
2460 output op is the one that will be printed. */
2461 if (val == 2 && strict > 0)
2463 funny_match[funny_match_index].this_op = opno;
2464 funny_match[funny_match_index++].other = match;
2467 len = 0;
2468 break;
2470 case 'p':
2471 /* p is used for address_operands. When we are called by
2472 gen_reload, no one will have checked that the address is
2473 strictly valid, i.e., that all pseudos requiring hard regs
2474 have gotten them. */
2475 if (strict <= 0
2476 || (strict_memory_address_p (recog_data.operand_mode[opno],
2477 op)))
2478 win = 1;
2479 break;
2481 /* No need to check general_operand again;
2482 it was done in insn-recog.c. Well, except that reload
2483 doesn't check the validity of its replacements, but
2484 that should only matter when there's a bug. */
2485 case 'g':
2486 /* Anything goes unless it is a REG and really has a hard reg
2487 but the hard reg is not in the class GENERAL_REGS. */
2488 if (REG_P (op))
2490 if (strict < 0
2491 || GENERAL_REGS == ALL_REGS
2492 || (reload_in_progress
2493 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2494 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2495 win = 1;
2497 else if (strict < 0 || general_operand (op, mode))
2498 win = 1;
2499 break;
2501 case 'X':
2502 /* This is used for a MATCH_SCRATCH in the cases when
2503 we don't actually need anything. So anything goes
2504 any time. */
2505 win = 1;
2506 break;
2508 case TARGET_MEM_CONSTRAINT:
2509 /* Memory operands must be valid, to the extent
2510 required by STRICT. */
2511 if (MEM_P (op))
2513 if (strict > 0
2514 && !strict_memory_address_addr_space_p
2515 (GET_MODE (op), XEXP (op, 0),
2516 MEM_ADDR_SPACE (op)))
2517 break;
2518 if (strict == 0
2519 && !memory_address_addr_space_p
2520 (GET_MODE (op), XEXP (op, 0),
2521 MEM_ADDR_SPACE (op)))
2522 break;
2523 win = 1;
2525 /* Before reload, accept what reload can turn into mem. */
2526 else if (strict < 0 && CONSTANT_P (op))
2527 win = 1;
2528 /* During reload, accept a pseudo */
2529 else if (reload_in_progress && REG_P (op)
2530 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2531 win = 1;
2532 break;
2534 case '<':
2535 if (MEM_P (op)
2536 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2537 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2538 win = 1;
2539 break;
2541 case '>':
2542 if (MEM_P (op)
2543 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2544 || GET_CODE (XEXP (op, 0)) == POST_INC))
2545 win = 1;
2546 break;
2548 case 'E':
2549 case 'F':
2550 if (GET_CODE (op) == CONST_DOUBLE
2551 || (GET_CODE (op) == CONST_VECTOR
2552 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2553 win = 1;
2554 break;
2556 case 'G':
2557 case 'H':
2558 if (GET_CODE (op) == CONST_DOUBLE
2559 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2560 win = 1;
2561 break;
2563 case 's':
2564 if (CONST_INT_P (op)
2565 || (GET_CODE (op) == CONST_DOUBLE
2566 && GET_MODE (op) == VOIDmode))
2567 break;
2568 case 'i':
2569 if (CONSTANT_P (op))
2570 win = 1;
2571 break;
2573 case 'n':
2574 if (CONST_INT_P (op)
2575 || (GET_CODE (op) == CONST_DOUBLE
2576 && GET_MODE (op) == VOIDmode))
2577 win = 1;
2578 break;
2580 case 'I':
2581 case 'J':
2582 case 'K':
2583 case 'L':
2584 case 'M':
2585 case 'N':
2586 case 'O':
2587 case 'P':
2588 if (CONST_INT_P (op)
2589 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2590 win = 1;
2591 break;
2593 case 'V':
2594 if (MEM_P (op)
2595 && ((strict > 0 && ! offsettable_memref_p (op))
2596 || (strict < 0
2597 && !(CONSTANT_P (op) || MEM_P (op)))
2598 || (reload_in_progress
2599 && !(REG_P (op)
2600 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2601 win = 1;
2602 break;
2604 case 'o':
2605 if ((strict > 0 && offsettable_memref_p (op))
2606 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2607 /* Before reload, accept what reload can handle. */
2608 || (strict < 0
2609 && (CONSTANT_P (op) || MEM_P (op)))
2610 /* During reload, accept a pseudo */
2611 || (reload_in_progress && REG_P (op)
2612 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2613 win = 1;
2614 break;
2616 default:
2618 enum reg_class cl;
2620 cl = (c == 'r'
2621 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2622 if (cl != NO_REGS)
2624 if (strict < 0
2625 || (strict == 0
2626 && REG_P (op)
2627 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2628 || (strict == 0 && GET_CODE (op) == SCRATCH)
2629 || (REG_P (op)
2630 && reg_fits_class_p (op, cl, offset, mode)))
2631 win = 1;
2633 #ifdef EXTRA_CONSTRAINT_STR
2634 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2635 win = 1;
2637 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2638 /* Every memory operand can be reloaded to fit. */
2639 && ((strict < 0 && MEM_P (op))
2640 /* Before reload, accept what reload can turn
2641 into mem. */
2642 || (strict < 0 && CONSTANT_P (op))
2643 /* During reload, accept a pseudo */
2644 || (reload_in_progress && REG_P (op)
2645 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2646 win = 1;
2647 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2648 /* Every address operand can be reloaded to fit. */
2649 && strict < 0)
2650 win = 1;
2651 #endif
2652 break;
2655 while (p += len, c);
2657 constraints[opno] = p;
2658 /* If this operand did not win somehow,
2659 this alternative loses. */
2660 if (! win)
2661 lose = 1;
2663 /* This alternative won; the operands are ok.
2664 Change whichever operands this alternative says to change. */
2665 if (! lose)
2667 int opno, eopno;
2669 /* See if any earlyclobber operand conflicts with some other
2670 operand. */
2672 if (strict > 0 && seen_earlyclobber_at >= 0)
2673 for (eopno = seen_earlyclobber_at;
2674 eopno < recog_data.n_operands;
2675 eopno++)
2676 /* Ignore earlyclobber operands now in memory,
2677 because we would often report failure when we have
2678 two memory operands, one of which was formerly a REG. */
2679 if (earlyclobber[eopno]
2680 && REG_P (recog_data.operand[eopno]))
2681 for (opno = 0; opno < recog_data.n_operands; opno++)
2682 if ((MEM_P (recog_data.operand[opno])
2683 || recog_data.operand_type[opno] != OP_OUT)
2684 && opno != eopno
2685 /* Ignore things like match_operator operands. */
2686 && *recog_data.constraints[opno] != 0
2687 && ! (matching_operands[opno] == eopno
2688 && operands_match_p (recog_data.operand[opno],
2689 recog_data.operand[eopno]))
2690 && ! safe_from_earlyclobber (recog_data.operand[opno],
2691 recog_data.operand[eopno]))
2692 lose = 1;
2694 if (! lose)
2696 while (--funny_match_index >= 0)
2698 recog_data.operand[funny_match[funny_match_index].other]
2699 = recog_data.operand[funny_match[funny_match_index].this_op];
2702 return 1;
2706 which_alternative++;
2708 while (which_alternative < recog_data.n_alternatives);
2710 which_alternative = -1;
2711 /* If we are about to reject this, but we are not to test strictly,
2712 try a very loose test. Only return failure if it fails also. */
2713 if (strict == 0)
2714 return constrain_operands (-1);
2715 else
2716 return 0;
2719 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2720 is a hard reg in class CLASS when its regno is offset by OFFSET
2721 and changed to mode MODE.
2722 If REG occupies multiple hard regs, all of them must be in CLASS. */
2725 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2726 enum machine_mode mode)
2728 int regno = REGNO (operand);
2730 if (cl == NO_REGS)
2731 return 0;
2733 return (regno < FIRST_PSEUDO_REGISTER
2734 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2735 mode, regno + offset));
2738 /* Split single instruction. Helper function for split_all_insns and
2739 split_all_insns_noflow. Return last insn in the sequence if successful,
2740 or NULL if unsuccessful. */
2742 static rtx
2743 split_insn (rtx insn)
2745 /* Split insns here to get max fine-grain parallelism. */
2746 rtx first = PREV_INSN (insn);
2747 rtx last = try_split (PATTERN (insn), insn, 1);
2748 rtx insn_set, last_set, note;
2750 if (last == insn)
2751 return NULL_RTX;
2753 /* If the original instruction was a single set that was known to be
2754 equivalent to a constant, see if we can say the same about the last
2755 instruction in the split sequence. The two instructions must set
2756 the same destination. */
2757 insn_set = single_set (insn);
2758 if (insn_set)
2760 last_set = single_set (last);
2761 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2763 note = find_reg_equal_equiv_note (insn);
2764 if (note && CONSTANT_P (XEXP (note, 0)))
2765 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2766 else if (CONSTANT_P (SET_SRC (insn_set)))
2767 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2771 /* try_split returns the NOTE that INSN became. */
2772 SET_INSN_DELETED (insn);
2774 /* ??? Coddle to md files that generate subregs in post-reload
2775 splitters instead of computing the proper hard register. */
2776 if (reload_completed && first != last)
2778 first = NEXT_INSN (first);
2779 for (;;)
2781 if (INSN_P (first))
2782 cleanup_subreg_operands (first);
2783 if (first == last)
2784 break;
2785 first = NEXT_INSN (first);
2789 return last;
2792 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2794 void
2795 split_all_insns (void)
2797 sbitmap blocks;
2798 bool changed;
2799 basic_block bb;
2801 blocks = sbitmap_alloc (last_basic_block);
2802 sbitmap_zero (blocks);
2803 changed = false;
2805 FOR_EACH_BB_REVERSE (bb)
2807 rtx insn, next;
2808 bool finish = false;
2810 rtl_profile_for_bb (bb);
2811 for (insn = BB_HEAD (bb); !finish ; insn = next)
2813 /* Can't use `next_real_insn' because that might go across
2814 CODE_LABELS and short-out basic blocks. */
2815 next = NEXT_INSN (insn);
2816 finish = (insn == BB_END (bb));
2817 if (INSN_P (insn))
2819 rtx set = single_set (insn);
2821 /* Don't split no-op move insns. These should silently
2822 disappear later in final. Splitting such insns would
2823 break the code that handles LIBCALL blocks. */
2824 if (set && set_noop_p (set))
2826 /* Nops get in the way while scheduling, so delete them
2827 now if register allocation has already been done. It
2828 is too risky to try to do this before register
2829 allocation, and there are unlikely to be very many
2830 nops then anyways. */
2831 if (reload_completed)
2832 delete_insn_and_edges (insn);
2834 else
2836 rtx last = split_insn (insn);
2837 if (last)
2839 /* The split sequence may include barrier, but the
2840 BB boundary we are interested in will be set to
2841 previous one. */
2843 while (BARRIER_P (last))
2844 last = PREV_INSN (last);
2845 SET_BIT (blocks, bb->index);
2846 changed = true;
2853 default_rtl_profile ();
2854 if (changed)
2855 find_many_sub_basic_blocks (blocks);
2857 #ifdef ENABLE_CHECKING
2858 verify_flow_info ();
2859 #endif
2861 sbitmap_free (blocks);
2864 /* Same as split_all_insns, but do not expect CFG to be available.
2865 Used by machine dependent reorg passes. */
2867 unsigned int
2868 split_all_insns_noflow (void)
2870 rtx next, insn;
2872 for (insn = get_insns (); insn; insn = next)
2874 next = NEXT_INSN (insn);
2875 if (INSN_P (insn))
2877 /* Don't split no-op move insns. These should silently
2878 disappear later in final. Splitting such insns would
2879 break the code that handles LIBCALL blocks. */
2880 rtx set = single_set (insn);
2881 if (set && set_noop_p (set))
2883 /* Nops get in the way while scheduling, so delete them
2884 now if register allocation has already been done. It
2885 is too risky to try to do this before register
2886 allocation, and there are unlikely to be very many
2887 nops then anyways.
2889 ??? Should we use delete_insn when the CFG isn't valid? */
2890 if (reload_completed)
2891 delete_insn_and_edges (insn);
2893 else
2894 split_insn (insn);
2897 return 0;
2900 #ifdef HAVE_peephole2
2901 struct peep2_insn_data
2903 rtx insn;
2904 regset live_before;
2907 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2908 static int peep2_current;
2909 /* The number of instructions available to match a peep2. */
2910 int peep2_current_count;
2912 /* A non-insn marker indicating the last insn of the block.
2913 The live_before regset for this element is correct, indicating
2914 DF_LIVE_OUT for the block. */
2915 #define PEEP2_EOB pc_rtx
2917 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2918 does not exist. Used by the recognizer to find the next insn to match
2919 in a multi-insn pattern. */
2922 peep2_next_insn (int n)
2924 gcc_assert (n <= peep2_current_count);
2926 n += peep2_current;
2927 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2928 n -= MAX_INSNS_PER_PEEP2 + 1;
2930 return peep2_insn_data[n].insn;
2933 /* Return true if REGNO is dead before the Nth non-note insn
2934 after `current'. */
2937 peep2_regno_dead_p (int ofs, int regno)
2939 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2941 ofs += peep2_current;
2942 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2943 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2945 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2947 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2950 /* Similarly for a REG. */
2953 peep2_reg_dead_p (int ofs, rtx reg)
2955 int regno, n;
2957 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2959 ofs += peep2_current;
2960 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2961 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2963 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2965 regno = REGNO (reg);
2966 n = hard_regno_nregs[regno][GET_MODE (reg)];
2967 while (--n >= 0)
2968 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2969 return 0;
2970 return 1;
2973 /* Try to find a hard register of mode MODE, matching the register class in
2974 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2975 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2976 in which case the only condition is that the register must be available
2977 before CURRENT_INSN.
2978 Registers that already have bits set in REG_SET will not be considered.
2980 If an appropriate register is available, it will be returned and the
2981 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2982 returned. */
2985 peep2_find_free_register (int from, int to, const char *class_str,
2986 enum machine_mode mode, HARD_REG_SET *reg_set)
2988 static int search_ofs;
2989 enum reg_class cl;
2990 HARD_REG_SET live;
2991 int i;
2993 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2994 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2996 from += peep2_current;
2997 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2998 from -= MAX_INSNS_PER_PEEP2 + 1;
2999 to += peep2_current;
3000 if (to >= MAX_INSNS_PER_PEEP2 + 1)
3001 to -= MAX_INSNS_PER_PEEP2 + 1;
3003 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3004 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3006 while (from != to)
3008 HARD_REG_SET this_live;
3010 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3011 from = 0;
3012 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3013 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3014 IOR_HARD_REG_SET (live, this_live);
3017 cl = (class_str[0] == 'r' ? GENERAL_REGS
3018 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3020 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3022 int raw_regno, regno, success, j;
3024 /* Distribute the free registers as much as possible. */
3025 raw_regno = search_ofs + i;
3026 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3027 raw_regno -= FIRST_PSEUDO_REGISTER;
3028 #ifdef REG_ALLOC_ORDER
3029 regno = reg_alloc_order[raw_regno];
3030 #else
3031 regno = raw_regno;
3032 #endif
3034 /* Don't allocate fixed registers. */
3035 if (fixed_regs[regno])
3036 continue;
3037 /* Don't allocate global registers. */
3038 if (global_regs[regno])
3039 continue;
3040 /* Make sure the register is of the right class. */
3041 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3042 continue;
3043 /* And can support the mode we need. */
3044 if (! HARD_REGNO_MODE_OK (regno, mode))
3045 continue;
3046 /* And that we don't create an extra save/restore. */
3047 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3048 continue;
3049 if (! targetm.hard_regno_scratch_ok (regno))
3050 continue;
3052 /* And we don't clobber traceback for noreturn functions. */
3053 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3054 && (! reload_completed || frame_pointer_needed))
3055 continue;
3057 success = 1;
3058 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3060 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3061 || TEST_HARD_REG_BIT (live, regno + j))
3063 success = 0;
3064 break;
3067 if (success)
3069 add_to_hard_reg_set (reg_set, mode, regno);
3071 /* Start the next search with the next register. */
3072 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3073 raw_regno = 0;
3074 search_ofs = raw_regno;
3076 return gen_rtx_REG (mode, regno);
3080 search_ofs = 0;
3081 return NULL_RTX;
3084 /* Forget all currently tracked instructions, only remember current
3085 LIVE regset. */
3087 static void
3088 peep2_reinit_state (regset live)
3090 int i;
3092 /* Indicate that all slots except the last holds invalid data. */
3093 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3094 peep2_insn_data[i].insn = NULL_RTX;
3095 peep2_current_count = 0;
3097 /* Indicate that the last slot contains live_after data. */
3098 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3099 peep2_current = MAX_INSNS_PER_PEEP2;
3101 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3104 /* Perform the peephole2 optimization pass. */
3106 static void
3107 peephole2_optimize (void)
3109 rtx insn, prev;
3110 bitmap live;
3111 int i;
3112 basic_block bb;
3113 bool do_cleanup_cfg = false;
3114 bool do_rebuild_jump_labels = false;
3116 df_set_flags (DF_LR_RUN_DCE);
3117 df_analyze ();
3119 /* Initialize the regsets we're going to use. */
3120 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3121 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3122 live = BITMAP_ALLOC (&reg_obstack);
3124 FOR_EACH_BB_REVERSE (bb)
3126 rtl_profile_for_bb (bb);
3128 /* Start up propagation. */
3129 bitmap_copy (live, DF_LR_OUT (bb));
3130 df_simulate_initialize_backwards (bb, live);
3131 peep2_reinit_state (live);
3133 for (insn = BB_END (bb); ; insn = prev)
3135 prev = PREV_INSN (insn);
3136 if (NONDEBUG_INSN_P (insn))
3138 rtx attempt, before_try, x;
3139 int match_len;
3140 rtx note;
3141 bool was_call = false;
3143 /* Record this insn. */
3144 if (--peep2_current < 0)
3145 peep2_current = MAX_INSNS_PER_PEEP2;
3146 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3147 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3148 peep2_current_count++;
3149 peep2_insn_data[peep2_current].insn = insn;
3150 df_simulate_one_insn_backwards (bb, insn, live);
3151 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3153 if (RTX_FRAME_RELATED_P (insn))
3155 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3156 substitution would lose the
3157 REG_FRAME_RELATED_EXPR that is attached. */
3158 peep2_reinit_state (live);
3159 attempt = NULL;
3161 else
3162 /* Match the peephole. */
3163 attempt = peephole2_insns (PATTERN (insn), insn, &match_len);
3165 if (attempt != NULL)
3167 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3168 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3169 cfg-related call notes. */
3170 for (i = 0; i <= match_len; ++i)
3172 int j;
3173 rtx old_insn, new_insn, note;
3175 j = i + peep2_current;
3176 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3177 j -= MAX_INSNS_PER_PEEP2 + 1;
3178 old_insn = peep2_insn_data[j].insn;
3179 if (!CALL_P (old_insn))
3180 continue;
3181 was_call = true;
3183 new_insn = attempt;
3184 while (new_insn != NULL_RTX)
3186 if (CALL_P (new_insn))
3187 break;
3188 new_insn = NEXT_INSN (new_insn);
3191 gcc_assert (new_insn != NULL_RTX);
3193 CALL_INSN_FUNCTION_USAGE (new_insn)
3194 = CALL_INSN_FUNCTION_USAGE (old_insn);
3196 for (note = REG_NOTES (old_insn);
3197 note;
3198 note = XEXP (note, 1))
3199 switch (REG_NOTE_KIND (note))
3201 case REG_NORETURN:
3202 case REG_SETJMP:
3203 add_reg_note (new_insn, REG_NOTE_KIND (note),
3204 XEXP (note, 0));
3205 break;
3206 default:
3207 /* Discard all other reg notes. */
3208 break;
3211 /* Croak if there is another call in the sequence. */
3212 while (++i <= match_len)
3214 j = i + peep2_current;
3215 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3216 j -= MAX_INSNS_PER_PEEP2 + 1;
3217 old_insn = peep2_insn_data[j].insn;
3218 gcc_assert (!CALL_P (old_insn));
3220 break;
3223 i = match_len + peep2_current;
3224 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3225 i -= MAX_INSNS_PER_PEEP2 + 1;
3227 note = find_reg_note (peep2_insn_data[i].insn,
3228 REG_EH_REGION, NULL_RTX);
3230 /* Replace the old sequence with the new. */
3231 attempt = emit_insn_after_setloc (attempt,
3232 peep2_insn_data[i].insn,
3233 INSN_LOCATOR (peep2_insn_data[i].insn));
3234 before_try = PREV_INSN (insn);
3235 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3237 /* Re-insert the EH_REGION notes. */
3238 if (note || (was_call && nonlocal_goto_handler_labels))
3240 edge eh_edge;
3241 edge_iterator ei;
3243 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3244 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3245 break;
3247 if (note)
3248 copy_reg_eh_region_note_backward (note, attempt,
3249 before_try);
3251 if (eh_edge)
3252 for (x = attempt ; x != before_try ; x = PREV_INSN (x))
3253 if (x != BB_END (bb)
3254 && (can_throw_internal (x)
3255 || can_nonlocal_goto (x)))
3257 edge nfte, nehe;
3258 int flags;
3260 nfte = split_block (bb, x);
3261 flags = (eh_edge->flags
3262 & (EDGE_EH | EDGE_ABNORMAL));
3263 if (CALL_P (x))
3264 flags |= EDGE_ABNORMAL_CALL;
3265 nehe = make_edge (nfte->src, eh_edge->dest,
3266 flags);
3268 nehe->probability = eh_edge->probability;
3269 nfte->probability
3270 = REG_BR_PROB_BASE - nehe->probability;
3272 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3273 bb = nfte->src;
3274 eh_edge = nehe;
3277 /* Converting possibly trapping insn to non-trapping is
3278 possible. Zap dummy outgoing edges. */
3279 do_cleanup_cfg |= purge_dead_edges (bb);
3282 if (targetm.have_conditional_execution ())
3284 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3285 peep2_insn_data[i].insn = NULL_RTX;
3286 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3287 peep2_current_count = 0;
3289 else
3291 /* Back up lifetime information past the end of the
3292 newly created sequence. */
3293 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3294 i = 0;
3295 bitmap_copy (live, peep2_insn_data[i].live_before);
3297 /* Update life information for the new sequence. */
3298 x = attempt;
3301 if (INSN_P (x))
3303 if (--i < 0)
3304 i = MAX_INSNS_PER_PEEP2;
3305 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3306 && peep2_insn_data[i].insn == NULL_RTX)
3307 peep2_current_count++;
3308 peep2_insn_data[i].insn = x;
3309 df_insn_rescan (x);
3310 df_simulate_one_insn_backwards (bb, x, live);
3311 bitmap_copy (peep2_insn_data[i].live_before,
3312 live);
3314 x = PREV_INSN (x);
3316 while (x != prev);
3318 peep2_current = i;
3321 /* If we generated a jump instruction, it won't have
3322 JUMP_LABEL set. Recompute after we're done. */
3323 for (x = attempt; x != before_try; x = PREV_INSN (x))
3324 if (JUMP_P (x))
3326 do_rebuild_jump_labels = true;
3327 break;
3332 if (insn == BB_HEAD (bb))
3333 break;
3337 default_rtl_profile ();
3338 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3339 BITMAP_FREE (peep2_insn_data[i].live_before);
3340 BITMAP_FREE (live);
3341 if (do_rebuild_jump_labels)
3342 rebuild_jump_labels (get_insns ());
3344 #endif /* HAVE_peephole2 */
3346 /* Common predicates for use with define_bypass. */
3348 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3349 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3350 must be either a single_set or a PARALLEL with SETs inside. */
3353 store_data_bypass_p (rtx out_insn, rtx in_insn)
3355 rtx out_set, in_set;
3356 rtx out_pat, in_pat;
3357 rtx out_exp, in_exp;
3358 int i, j;
3360 in_set = single_set (in_insn);
3361 if (in_set)
3363 if (!MEM_P (SET_DEST (in_set)))
3364 return false;
3366 out_set = single_set (out_insn);
3367 if (out_set)
3369 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3370 return false;
3372 else
3374 out_pat = PATTERN (out_insn);
3376 if (GET_CODE (out_pat) != PARALLEL)
3377 return false;
3379 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3381 out_exp = XVECEXP (out_pat, 0, i);
3383 if (GET_CODE (out_exp) == CLOBBER)
3384 continue;
3386 gcc_assert (GET_CODE (out_exp) == SET);
3388 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3389 return false;
3393 else
3395 in_pat = PATTERN (in_insn);
3396 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3398 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3400 in_exp = XVECEXP (in_pat, 0, i);
3402 if (GET_CODE (in_exp) == CLOBBER)
3403 continue;
3405 gcc_assert (GET_CODE (in_exp) == SET);
3407 if (!MEM_P (SET_DEST (in_exp)))
3408 return false;
3410 out_set = single_set (out_insn);
3411 if (out_set)
3413 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3414 return false;
3416 else
3418 out_pat = PATTERN (out_insn);
3419 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3421 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3423 out_exp = XVECEXP (out_pat, 0, j);
3425 if (GET_CODE (out_exp) == CLOBBER)
3426 continue;
3428 gcc_assert (GET_CODE (out_exp) == SET);
3430 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3431 return false;
3437 return true;
3440 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3441 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3442 or multiple set; IN_INSN should be single_set for truth, but for convenience
3443 of insn categorization may be any JUMP or CALL insn. */
3446 if_test_bypass_p (rtx out_insn, rtx in_insn)
3448 rtx out_set, in_set;
3450 in_set = single_set (in_insn);
3451 if (! in_set)
3453 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3454 return false;
3457 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3458 return false;
3459 in_set = SET_SRC (in_set);
3461 out_set = single_set (out_insn);
3462 if (out_set)
3464 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3465 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3466 return false;
3468 else
3470 rtx out_pat;
3471 int i;
3473 out_pat = PATTERN (out_insn);
3474 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3476 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3478 rtx exp = XVECEXP (out_pat, 0, i);
3480 if (GET_CODE (exp) == CLOBBER)
3481 continue;
3483 gcc_assert (GET_CODE (exp) == SET);
3485 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3486 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3487 return false;
3491 return true;
3494 static bool
3495 gate_handle_peephole2 (void)
3497 return (optimize > 0 && flag_peephole2);
3500 static unsigned int
3501 rest_of_handle_peephole2 (void)
3503 #ifdef HAVE_peephole2
3504 peephole2_optimize ();
3505 #endif
3506 return 0;
3509 struct rtl_opt_pass pass_peephole2 =
3512 RTL_PASS,
3513 "peephole2", /* name */
3514 gate_handle_peephole2, /* gate */
3515 rest_of_handle_peephole2, /* execute */
3516 NULL, /* sub */
3517 NULL, /* next */
3518 0, /* static_pass_number */
3519 TV_PEEPHOLE2, /* tv_id */
3520 0, /* properties_required */
3521 0, /* properties_provided */
3522 0, /* properties_destroyed */
3523 0, /* todo_flags_start */
3524 TODO_df_finish | TODO_verify_rtl_sharing |
3525 TODO_dump_func /* todo_flags_finish */
3529 static unsigned int
3530 rest_of_handle_split_all_insns (void)
3532 split_all_insns ();
3533 return 0;
3536 struct rtl_opt_pass pass_split_all_insns =
3539 RTL_PASS,
3540 "split1", /* name */
3541 NULL, /* gate */
3542 rest_of_handle_split_all_insns, /* execute */
3543 NULL, /* sub */
3544 NULL, /* next */
3545 0, /* static_pass_number */
3546 TV_NONE, /* tv_id */
3547 0, /* properties_required */
3548 0, /* properties_provided */
3549 0, /* properties_destroyed */
3550 0, /* todo_flags_start */
3551 TODO_dump_func /* todo_flags_finish */
3555 static unsigned int
3556 rest_of_handle_split_after_reload (void)
3558 /* If optimizing, then go ahead and split insns now. */
3559 #ifndef STACK_REGS
3560 if (optimize > 0)
3561 #endif
3562 split_all_insns ();
3563 return 0;
3566 struct rtl_opt_pass pass_split_after_reload =
3569 RTL_PASS,
3570 "split2", /* name */
3571 NULL, /* gate */
3572 rest_of_handle_split_after_reload, /* execute */
3573 NULL, /* sub */
3574 NULL, /* next */
3575 0, /* static_pass_number */
3576 TV_NONE, /* tv_id */
3577 0, /* properties_required */
3578 0, /* properties_provided */
3579 0, /* properties_destroyed */
3580 0, /* todo_flags_start */
3581 TODO_dump_func /* todo_flags_finish */
3585 static bool
3586 gate_handle_split_before_regstack (void)
3588 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3589 /* If flow2 creates new instructions which need splitting
3590 and scheduling after reload is not done, they might not be
3591 split until final which doesn't allow splitting
3592 if HAVE_ATTR_length. */
3593 # ifdef INSN_SCHEDULING
3594 return (optimize && !flag_schedule_insns_after_reload);
3595 # else
3596 return (optimize);
3597 # endif
3598 #else
3599 return 0;
3600 #endif
3603 static unsigned int
3604 rest_of_handle_split_before_regstack (void)
3606 split_all_insns ();
3607 return 0;
3610 struct rtl_opt_pass pass_split_before_regstack =
3613 RTL_PASS,
3614 "split3", /* name */
3615 gate_handle_split_before_regstack, /* gate */
3616 rest_of_handle_split_before_regstack, /* execute */
3617 NULL, /* sub */
3618 NULL, /* next */
3619 0, /* static_pass_number */
3620 TV_NONE, /* tv_id */
3621 0, /* properties_required */
3622 0, /* properties_provided */
3623 0, /* properties_destroyed */
3624 0, /* todo_flags_start */
3625 TODO_dump_func /* todo_flags_finish */
3629 static bool
3630 gate_handle_split_before_sched2 (void)
3632 #ifdef INSN_SCHEDULING
3633 return optimize > 0 && flag_schedule_insns_after_reload;
3634 #else
3635 return 0;
3636 #endif
3639 static unsigned int
3640 rest_of_handle_split_before_sched2 (void)
3642 #ifdef INSN_SCHEDULING
3643 split_all_insns ();
3644 #endif
3645 return 0;
3648 struct rtl_opt_pass pass_split_before_sched2 =
3651 RTL_PASS,
3652 "split4", /* name */
3653 gate_handle_split_before_sched2, /* gate */
3654 rest_of_handle_split_before_sched2, /* execute */
3655 NULL, /* sub */
3656 NULL, /* next */
3657 0, /* static_pass_number */
3658 TV_NONE, /* tv_id */
3659 0, /* properties_required */
3660 0, /* properties_provided */
3661 0, /* properties_destroyed */
3662 0, /* todo_flags_start */
3663 TODO_verify_flow |
3664 TODO_dump_func /* todo_flags_finish */
3668 /* The placement of the splitting that we do for shorten_branches
3669 depends on whether regstack is used by the target or not. */
3670 static bool
3671 gate_do_final_split (void)
3673 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3674 return 1;
3675 #else
3676 return 0;
3677 #endif
3680 struct rtl_opt_pass pass_split_for_shorten_branches =
3683 RTL_PASS,
3684 "split5", /* name */
3685 gate_do_final_split, /* gate */
3686 split_all_insns_noflow, /* execute */
3687 NULL, /* sub */
3688 NULL, /* next */
3689 0, /* static_pass_number */
3690 TV_NONE, /* tv_id */
3691 0, /* properties_required */
3692 0, /* properties_provided */
3693 0, /* properties_destroyed */
3694 0, /* todo_flags_start */
3695 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */