Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / graphite-dependences.c
blobfae7cc52af809247014344693c4b56ab00ae1ef2
1 /* Data dependence analysis for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Konrad Trifunovic <konrad.trifunovic@inria.fr>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
44 #ifdef HAVE_cloog
45 #include "ppl_c.h"
46 #include "sese.h"
47 #include "graphite-ppl.h"
48 #include "graphite.h"
49 #include "graphite-poly.h"
50 #include "graphite-dependences.h"
52 /* Returns a new polyhedral Data Dependence Relation (DDR). SOURCE is
53 the source data reference, SINK is the sink data reference. When
54 the Data Dependence Polyhedron DDP is not NULL or not empty, SOURCE
55 and SINK are in dependence as described by DDP. */
57 static poly_ddr_p
58 new_poly_ddr (poly_dr_p source, poly_dr_p sink,
59 ppl_Pointset_Powerset_C_Polyhedron_t ddp,
60 bool original_scattering_p)
62 poly_ddr_p pddr = XNEW (struct poly_ddr);
64 PDDR_SOURCE (pddr) = source;
65 PDDR_SINK (pddr) = sink;
66 PDDR_DDP (pddr) = ddp;
67 PDDR_ORIGINAL_SCATTERING_P (pddr) = original_scattering_p;
69 if (!ddp || ppl_Pointset_Powerset_C_Polyhedron_is_empty (ddp))
70 PDDR_KIND (pddr) = no_dependence;
71 else
72 PDDR_KIND (pddr) = has_dependence;
74 return pddr;
77 /* Free the poly_ddr_p P. */
79 void
80 free_poly_ddr (void *p)
82 poly_ddr_p pddr = (poly_ddr_p) p;
83 ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
84 free (pddr);
87 /* Comparison function for poly_ddr hash table. */
89 int
90 eq_poly_ddr_p (const void *pddr1, const void *pddr2)
92 const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
93 const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
95 return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
96 && PDDR_SINK (p1) == PDDR_SINK (p2));
99 /* Hash function for poly_ddr hashtable. */
101 hashval_t
102 hash_poly_ddr_p (const void *pddr)
104 const struct poly_ddr *p = (const struct poly_ddr *) pddr;
106 return (hashval_t) ((long) PDDR_SOURCE (p) + (long) PDDR_SINK (p));
109 /* Returns true when PDDR has no dependence. */
111 static bool
112 pddr_is_empty (poly_ddr_p pddr)
114 if (!pddr)
115 return true;
117 gcc_assert (PDDR_KIND (pddr) != unknown_dependence);
119 return PDDR_KIND (pddr) == no_dependence ? true : false;
122 /* Prints to FILE the layout of the dependence polyhedron of PDDR:
124 T1|I1|T2|I2|S1|S2|G
126 with
127 | T1 and T2 the scattering dimensions for PDDR_SOURCE and PDDR_SINK
128 | I1 and I2 the iteration domains
129 | S1 and S2 the subscripts
130 | G the global parameters. */
132 static void
133 print_dependence_polyhedron_layout (FILE *file, poly_ddr_p pddr)
135 poly_dr_p pdr1 = PDDR_SOURCE (pddr);
136 poly_dr_p pdr2 = PDDR_SINK (pddr);
137 poly_bb_p pbb1 = PDR_PBB (pdr1);
138 poly_bb_p pbb2 = PDR_PBB (pdr2);
140 graphite_dim_t i;
141 graphite_dim_t tdim1 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
142 pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
143 graphite_dim_t tdim2 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
144 pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
145 graphite_dim_t idim1 = pbb_dim_iter_domain (pbb1);
146 graphite_dim_t idim2 = pbb_dim_iter_domain (pbb2);
147 graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
148 graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
149 graphite_dim_t gdim = scop_nb_params (PBB_SCOP (pbb1));
151 fprintf (file, "# eq");
153 for (i = 0; i < tdim1; i++)
154 fprintf (file, " t1_%d", (int) i);
155 for (i = 0; i < idim1; i++)
156 fprintf (file, " i1_%d", (int) i);
157 for (i = 0; i < tdim2; i++)
158 fprintf (file, " t2_%d", (int) i);
159 for (i = 0; i < idim2; i++)
160 fprintf (file, " i2_%d", (int) i);
161 for (i = 0; i < sdim1; i++)
162 fprintf (file, " s1_%d", (int) i);
163 for (i = 0; i < sdim2; i++)
164 fprintf (file, " s2_%d", (int) i);
165 for (i = 0; i < gdim; i++)
166 fprintf (file, " g_%d", (int) i);
168 fprintf (file, " cst\n");
171 /* Prints to FILE the poly_ddr_p PDDR. */
173 void
174 print_pddr (FILE *file, poly_ddr_p pddr)
176 fprintf (file, "pddr (kind: ");
178 if (PDDR_KIND (pddr) == unknown_dependence)
179 fprintf (file, "unknown_dependence");
180 else if (PDDR_KIND (pddr) == no_dependence)
181 fprintf (file, "no_dependence");
182 else if (PDDR_KIND (pddr) == has_dependence)
183 fprintf (file, "has_dependence");
185 fprintf (file, "\n source ");
186 print_pdr (file, PDDR_SOURCE (pddr), 2);
188 fprintf (file, "\n sink ");
189 print_pdr (file, PDDR_SINK (pddr), 2);
191 if (PDDR_KIND (pddr) == has_dependence)
193 fprintf (file, "\n dependence polyhedron (\n");
194 print_dependence_polyhedron_layout (file, pddr);
195 ppl_print_powerset_matrix (file, PDDR_DDP (pddr));
196 fprintf (file, ")\n");
199 fprintf (file, ")\n");
202 /* Prints to STDERR the poly_ddr_p PDDR. */
204 DEBUG_FUNCTION void
205 debug_pddr (poly_ddr_p pddr)
207 print_pddr (stderr, pddr);
211 /* Remove all the dimensions except alias information at dimension
212 ALIAS_DIM. */
214 static void
215 build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
216 ppl_dimension_type alias_dim)
218 ppl_dimension_type *ds;
219 ppl_dimension_type access_dim;
220 unsigned i, pos = 0;
222 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
223 &access_dim);
224 ds = XNEWVEC (ppl_dimension_type, access_dim-1);
225 for (i = 0; i < access_dim; i++)
227 if (i == alias_dim)
228 continue;
230 ds[pos] = i;
231 pos++;
234 ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
236 access_dim - 1);
237 free (ds);
240 /* Return true when PDR1 and PDR2 may alias. */
242 static bool
243 poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
245 ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
246 ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
247 ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
248 ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
249 ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
250 int empty_p;
252 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
253 (&alias_powerset1, accesses1);
254 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
255 (&alias_powerset2, accesses2);
257 build_alias_set_powerset (alias_powerset1, alias_dim1);
258 build_alias_set_powerset (alias_powerset2, alias_dim2);
260 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
261 (alias_powerset1, alias_powerset2);
263 empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
265 ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
266 ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
268 return !empty_p;
271 /* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
272 transformed into "a CUT0 c CUT1' b"
274 Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b"
275 Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b"
276 Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
277 "00...0 a 00...0 c 00...0 b". */
279 static ppl_Pointset_Powerset_C_Polyhedron_t
280 map_dr_into_dep_poly (graphite_dim_t dim,
281 ppl_Pointset_Powerset_C_Polyhedron_t dr,
282 graphite_dim_t cut0, graphite_dim_t cut1,
283 graphite_dim_t nb0, graphite_dim_t nb1)
285 ppl_dimension_type pdim;
286 ppl_dimension_type *map;
287 ppl_Pointset_Powerset_C_Polyhedron_t res;
288 ppl_dimension_type i;
290 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
291 (&res, dr);
292 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
294 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
296 /* First mapping: move 'g' vector to right position. */
297 for (i = 0; i < cut0; i++)
298 map[i] = i;
300 for (i = cut0; i < cut1; i++)
301 map[i] = pdim - cut1 + i;
303 for (i = cut1; i < pdim; i++)
304 map[i] = cut0 + i - cut1;
306 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
307 free (map);
309 /* After swapping 's' and 'g' vectors, we have to update a new cut. */
310 cut1 = pdim - cut1 + cut0;
312 ppl_insert_dimensions_pointset (res, 0, nb0);
313 ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
314 ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
315 dim - nb0 - nb1 - pdim);
317 return res;
320 /* Builds subscript equality constraints. */
322 static ppl_Pointset_Powerset_C_Polyhedron_t
323 dr_equality_constraints (graphite_dim_t dim,
324 graphite_dim_t pos, graphite_dim_t nb_subscripts)
326 ppl_Polyhedron_t eqs;
327 ppl_Pointset_Powerset_C_Polyhedron_t res;
328 graphite_dim_t i;
330 ppl_new_C_Polyhedron_from_space_dimension (&eqs, dim, 0);
332 for (i = 0; i < nb_subscripts; i++)
334 ppl_Constraint_t cstr
335 = ppl_build_relation (dim, pos + i, pos + i + nb_subscripts,
336 0, PPL_CONSTRAINT_TYPE_EQUAL);
337 ppl_Polyhedron_add_constraint (eqs, cstr);
338 ppl_delete_Constraint (cstr);
341 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, eqs);
342 ppl_delete_Polyhedron (eqs);
343 return res;
346 /* Builds scheduling inequality constraints: when DIRECTION is
347 1 builds a GE constraint,
348 0 builds an EQ constraint,
349 -1 builds a LE constraint. */
351 static ppl_Pointset_Powerset_C_Polyhedron_t
352 build_pairwise_scheduling (graphite_dim_t dim,
353 graphite_dim_t pos,
354 graphite_dim_t offset,
355 int direction)
357 ppl_Pointset_Powerset_C_Polyhedron_t res;
358 ppl_Polyhedron_t equalities;
359 ppl_Constraint_t cstr;
361 ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
363 switch (direction)
365 case -1:
366 cstr = ppl_build_relation (dim, pos, pos + offset, 1,
367 PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
368 break;
370 case 0:
371 cstr = ppl_build_relation (dim, pos, pos + offset, 0,
372 PPL_CONSTRAINT_TYPE_EQUAL);
373 break;
375 case 1:
376 cstr = ppl_build_relation (dim, pos, pos + offset, -1,
377 PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
378 break;
380 default:
381 gcc_unreachable ();
384 ppl_Polyhedron_add_constraint (equalities, cstr);
385 ppl_delete_Constraint (cstr);
387 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
388 ppl_delete_Polyhedron (equalities);
389 return res;
392 /* Add to a non empty polyhedron BAG the precedence constraints for
393 the lexicographical comparison of time vectors in BAG following the
394 lexicographical order. DIM is the dimension of the polyhedron BAG.
395 TDIM is the number of loops common to the two statements that are
396 compared lexicographically, i.e. the number of loops containing
397 both statements. OFFSET is the number of dimensions needed to
398 represent the first statement, i.e. dimT1 + dimI1 in the layout of
399 the BAG polyhedron: T1|I1|T2|I2|S1|S2|G. When DIRECTION is set to
400 1, compute the direct dependence from PDR1 to PDR2, and when
401 DIRECTION is -1, compute the reversed dependence relation, from
402 PDR2 to PDR1. */
404 static ppl_Pointset_Powerset_C_Polyhedron_t
405 build_lexicographical_constraint (ppl_Pointset_Powerset_C_Polyhedron_t bag,
406 graphite_dim_t dim,
407 graphite_dim_t tdim,
408 graphite_dim_t offset,
409 int direction)
411 graphite_dim_t i;
412 ppl_Pointset_Powerset_C_Polyhedron_t res, lex;
414 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 1);
416 lex = build_pairwise_scheduling (dim, 0, offset, direction);
417 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
419 if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (lex))
420 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
422 ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
424 for (i = 0; i < tdim - 1; i++)
426 ppl_Pointset_Powerset_C_Polyhedron_t sceq;
428 sceq = build_pairwise_scheduling (dim, i, offset, 0);
429 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (bag, sceq);
430 ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
432 lex = build_pairwise_scheduling (dim, i + 1, offset, direction);
433 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
435 if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (lex))
436 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
438 ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
441 return res;
444 /* Build the dependence polyhedron for data references PDR1 and PDR2.
445 The layout of the dependence polyhedron is:
447 T1|I1|T2|I2|S1|S2|G
449 with
450 | T1 and T2 the scattering dimensions for PDR1 and PDR2
451 | I1 and I2 the iteration domains
452 | S1 and S2 the subscripts
453 | G the global parameters.
455 When DIRECTION is set to 1, compute the direct dependence from PDR1
456 to PDR2, and when DIRECTION is -1, compute the reversed dependence
457 relation, from PDR2 to PDR1. */
459 static ppl_Pointset_Powerset_C_Polyhedron_t
460 dependence_polyhedron_1 (poly_dr_p pdr1, poly_dr_p pdr2,
461 int direction, bool original_scattering_p)
463 poly_bb_p pbb1 = PDR_PBB (pdr1);
464 poly_bb_p pbb2 = PDR_PBB (pdr2);
465 scop_p scop = PBB_SCOP (pbb1);
466 graphite_dim_t tdim1 = original_scattering_p ?
467 pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
468 graphite_dim_t tdim2 = original_scattering_p ?
469 pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
470 graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
471 graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
472 graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
473 graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
474 graphite_dim_t gdim = scop_nb_params (scop);
475 graphite_dim_t dim1 = pdr_dim (pdr1);
476 graphite_dim_t dim2 = pdr_dim (pdr2);
477 graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2 - gdim;
478 ppl_Pointset_Powerset_C_Polyhedron_t res;
479 ppl_Pointset_Powerset_C_Polyhedron_t idr1, idr2;
480 ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
482 gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
484 combine_context_id_scat (&sc1, pbb1, original_scattering_p);
485 combine_context_id_scat (&sc2, pbb2, original_scattering_p);
487 ppl_insert_dimensions_pointset (sc1, tdim1 + ddim1,
488 tdim2 + ddim2 + sdim1 + sdim2);
490 ppl_insert_dimensions_pointset (sc2, 0, tdim1 + ddim1);
491 ppl_insert_dimensions_pointset (sc2, tdim1 + ddim1 + tdim2 + ddim2,
492 sdim1 + sdim2);
494 idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
495 tdim1, tdim2 + ddim2);
496 idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
497 tdim1 + ddim1 + tdim2, sdim1);
499 /* Now add the subscript equalities. */
500 dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
502 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
503 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc1);
504 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc2);
505 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
506 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
507 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
508 ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
509 ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
510 ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
511 ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
512 ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
514 if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (res))
516 ppl_Pointset_Powerset_C_Polyhedron_t lex =
517 build_lexicographical_constraint (res, dim, MIN (tdim1, tdim2),
518 tdim1 + ddim1, direction);
519 ppl_delete_Pointset_Powerset_C_Polyhedron (res);
520 res = lex;
523 return res;
526 /* Build the dependence polyhedron for data references PDR1 and PDR2.
527 If possible use already cached information.
529 When DIRECTION is set to 1, compute the direct dependence from PDR1
530 to PDR2, and when DIRECTION is -1, compute the reversed dependence
531 relation, from PDR2 to PDR1. */
533 static poly_ddr_p
534 dependence_polyhedron (poly_dr_p pdr1, poly_dr_p pdr2,
535 int direction, bool original_scattering_p)
537 PTR *x = NULL;
538 poly_ddr_p res;
539 ppl_Pointset_Powerset_C_Polyhedron_t ddp;
541 /* Return the PDDR from the cache if it already has been computed. */
542 if (original_scattering_p)
544 struct poly_ddr tmp;
545 scop_p scop = PBB_SCOP (PDR_PBB (pdr1));
547 tmp.source = pdr1;
548 tmp.sink = pdr2;
549 x = htab_find_slot (SCOP_ORIGINAL_PDDRS (scop),
550 &tmp, INSERT);
552 if (x && *x)
553 return (poly_ddr_p) *x;
556 if ((pdr_read_p (pdr1) && pdr_read_p (pdr2))
557 || PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
558 || PDR_NB_SUBSCRIPTS (pdr1) != PDR_NB_SUBSCRIPTS (pdr2)
559 || !poly_drs_may_alias_p (pdr1, pdr2))
560 ddp = NULL;
561 else
562 ddp = dependence_polyhedron_1 (pdr1, pdr2, direction,
563 original_scattering_p);
565 res = new_poly_ddr (pdr1, pdr2, ddp, original_scattering_p);
567 if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
568 && PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
569 && poly_drs_may_alias_p (pdr1, pdr2))
570 PDDR_KIND (res) = unknown_dependence;
572 if (original_scattering_p)
573 *x = res;
575 return res;
578 /* Return true when the data dependence relation between the data
579 references PDR1 belonging to PBB1 and PDR2 is part of a
580 reduction. */
582 static inline bool
583 reduction_dr_1 (poly_bb_p pbb1, poly_dr_p pdr1, poly_dr_p pdr2)
585 int i;
586 poly_dr_p pdr;
588 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr); i++)
589 if (PDR_TYPE (pdr) == PDR_WRITE)
590 break;
592 return same_pdr_p (pdr, pdr1) && same_pdr_p (pdr, pdr2);
595 /* Return true when the data dependence relation between the data
596 references PDR1 belonging to PBB1 and PDR2 belonging to PBB2 is
597 part of a reduction. */
599 static inline bool
600 reduction_dr_p (poly_dr_p pdr1, poly_dr_p pdr2)
602 poly_bb_p pbb1 = PDR_PBB (pdr1);
603 poly_bb_p pbb2 = PDR_PBB (pdr2);
605 if (PBB_IS_REDUCTION (pbb1))
606 return reduction_dr_1 (pbb1, pdr1, pdr2);
608 if (PBB_IS_REDUCTION (pbb2))
609 return reduction_dr_1 (pbb2, pdr2, pdr1);
611 return false;
614 /* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
615 and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
616 functions. */
618 static bool
619 graphite_legal_transform_dr (poly_dr_p pdr1, poly_dr_p pdr2)
621 ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
622 graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
623 ppl_Pointset_Powerset_C_Polyhedron_t po_temp;
624 ppl_dimension_type pdim;
625 bool is_empty_p;
626 poly_ddr_p opddr, tpddr;
627 poly_bb_p pbb1, pbb2;
629 if (reduction_dr_p (pdr1, pdr2))
630 return true;
632 /* We build the reverse dependence relation for the transformed
633 scattering, such that when we intersect it with the original PO,
634 we get an empty intersection when the transform is legal:
635 i.e. the transform should reverse no dependences, and so PT, the
636 reversed transformed PDDR, should have no constraint from PO. */
637 opddr = dependence_polyhedron (pdr1, pdr2, 1, true);
639 if (PDDR_KIND (opddr) == unknown_dependence)
640 return false;
642 /* There are no dependences between PDR1 and PDR2 in the original
643 version of the program, or after the transform, so the
644 transform is legal. */
645 if (pddr_is_empty (opddr))
646 return true;
648 tpddr = dependence_polyhedron (pdr1, pdr2, -1, false);
650 if (PDDR_KIND (tpddr) == unknown_dependence)
652 free_poly_ddr (tpddr);
653 return false;
656 if (pddr_is_empty (tpddr))
658 free_poly_ddr (tpddr);
659 return true;
662 po = PDDR_DDP (opddr);
663 pt = PDDR_DDP (tpddr);
665 /* Copy PO into PO_TEMP, such that PO is not destroyed. PO is
666 stored in a cache and should not be modified or freed. */
667 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
668 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&po_temp,
669 pdim, 0);
670 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, po);
672 /* Extend PO and PT to have the same dimensions. */
673 pbb1 = PDR_PBB (pdr1);
674 pbb2 = PDR_PBB (pdr2);
675 ddim1 = pbb_dim_iter_domain (pbb1);
676 otdim1 = pbb_nb_scattering_orig (pbb1);
677 otdim2 = pbb_nb_scattering_orig (pbb2);
678 ttdim1 = pbb_nb_scattering_transform (pbb1);
679 ttdim2 = pbb_nb_scattering_transform (pbb2);
680 ppl_insert_dimensions_pointset (po_temp, otdim1, ttdim1);
681 ppl_insert_dimensions_pointset (po_temp, otdim1 + ttdim1 + ddim1 + otdim2,
682 ttdim2);
683 ppl_insert_dimensions_pointset (pt, 0, otdim1);
684 ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
686 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, pt);
687 is_empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (po_temp);
689 ppl_delete_Pointset_Powerset_C_Polyhedron (po_temp);
690 free_poly_ddr (tpddr);
692 if (dump_file && (dump_flags & TDF_DETAILS))
693 fprintf (dump_file, "\nloop carries dependency.\n");
695 return is_empty_p;
698 /* Return true when the data dependence relation for PBB1 and PBB2 is
699 part of a reduction. */
701 static inline bool
702 reduction_ddr_p (poly_bb_p pbb1, poly_bb_p pbb2)
704 return pbb1 == pbb2 && PBB_IS_REDUCTION (pbb1);
707 /* Iterates over the data references of PBB1 and PBB2 and detect
708 whether the transformed schedule is correct. */
710 static bool
711 graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
713 int i, j;
714 poly_dr_p pdr1, pdr2;
716 if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
717 pbb_remove_duplicate_pdrs (pbb1);
719 if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
720 pbb_remove_duplicate_pdrs (pbb2);
722 if (reduction_ddr_p (pbb1, pbb2))
723 return true;
725 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
726 for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
727 if (!graphite_legal_transform_dr (pdr1, pdr2))
728 return false;
730 return true;
733 /* Iterates over the SCOP and detect whether the transformed schedule
734 is correct. */
736 bool
737 graphite_legal_transform (scop_p scop)
739 int i, j;
740 poly_bb_p pbb1, pbb2;
742 timevar_push (TV_GRAPHITE_DATA_DEPS);
744 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
745 for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
746 if (!graphite_legal_transform_bb (pbb1, pbb2))
748 timevar_pop (TV_GRAPHITE_DATA_DEPS);
749 return false;
752 timevar_pop (TV_GRAPHITE_DATA_DEPS);
753 return true;
756 /* Returns TRUE when the dependence polyhedron between PDR1 and
757 PDR2 represents a loop carried dependence at level LEVEL. */
759 static bool
760 graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
761 int level)
763 ppl_Pointset_Powerset_C_Polyhedron_t po;
764 ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
765 graphite_dim_t tdim1 = pbb_nb_scattering_transform (PDR_PBB (pdr1));
766 graphite_dim_t ddim1 = pbb_dim_iter_domain (PDR_PBB (pdr1));
767 ppl_dimension_type dim;
768 bool empty_p;
769 poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
771 if (PDDR_KIND (pddr) == unknown_dependence)
773 free_poly_ddr (pddr);
774 return true;
777 if (pddr_is_empty (pddr))
779 free_poly_ddr (pddr);
780 return false;
783 po = PDDR_DDP (pddr);
784 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
785 eqpp = build_pairwise_scheduling (dim, level, tdim1 + ddim1, 1);
787 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
788 empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (eqpp);
790 ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
791 free_poly_ddr (pddr);
793 return !empty_p;
796 /* Check data dependency between PBB1 and PBB2 at level LEVEL. */
798 bool
799 dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
801 int i, j;
802 poly_dr_p pdr1, pdr2;
804 timevar_push (TV_GRAPHITE_DATA_DEPS);
806 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
807 for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
808 if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
810 timevar_pop (TV_GRAPHITE_DATA_DEPS);
811 return true;
814 timevar_pop (TV_GRAPHITE_DATA_DEPS);
815 return false;
818 /* Pretty print to FILE all the original data dependences of SCoP in
819 DOT format. */
821 static void
822 dot_original_deps_stmt_1 (FILE *file, scop_p scop)
824 int i, j, k, l;
825 poly_bb_p pbb1, pbb2;
826 poly_dr_p pdr1, pdr2;
828 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
829 for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
831 for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
832 for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
833 if (!pddr_is_empty (dependence_polyhedron (pdr1, pdr2, 1, true)))
835 fprintf (file, "OS%d -> OS%d\n",
836 pbb_index (pbb1), pbb_index (pbb2));
837 goto done;
839 done:;
843 /* Pretty print to FILE all the transformed data dependences of SCoP in
844 DOT format. */
846 static void
847 dot_transformed_deps_stmt_1 (FILE *file, scop_p scop)
849 int i, j, k, l;
850 poly_bb_p pbb1, pbb2;
851 poly_dr_p pdr1, pdr2;
853 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
854 for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
856 for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
857 for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
859 poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
861 if (!pddr_is_empty (pddr))
863 fprintf (file, "TS%d -> TS%d\n",
864 pbb_index (pbb1), pbb_index (pbb2));
866 free_poly_ddr (pddr);
867 goto done;
870 free_poly_ddr (pddr);
872 done:;
877 /* Pretty print to FILE all the data dependences of SCoP in DOT
878 format. */
880 static void
881 dot_deps_stmt_1 (FILE *file, scop_p scop)
883 fputs ("digraph all {\n", file);
885 dot_original_deps_stmt_1 (file, scop);
886 dot_transformed_deps_stmt_1 (file, scop);
888 fputs ("}\n\n", file);
891 /* Pretty print to FILE all the original data dependences of SCoP in
892 DOT format. */
894 static void
895 dot_original_deps (FILE *file, scop_p scop)
897 int i, j, k, l;
898 poly_bb_p pbb1, pbb2;
899 poly_dr_p pdr1, pdr2;
901 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
902 for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
903 for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
904 for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
905 if (!pddr_is_empty (dependence_polyhedron (pdr1, pdr2, 1, true)))
906 fprintf (file, "OS%d_D%d -> OS%d_D%d\n",
907 pbb_index (pbb1), PDR_ID (pdr1),
908 pbb_index (pbb2), PDR_ID (pdr2));
911 /* Pretty print to FILE all the transformed data dependences of SCoP in
912 DOT format. */
914 static void
915 dot_transformed_deps (FILE *file, scop_p scop)
917 int i, j, k, l;
918 poly_bb_p pbb1, pbb2;
919 poly_dr_p pdr1, pdr2;
921 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
922 for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
923 for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
924 for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
926 poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
928 if (!pddr_is_empty (pddr))
929 fprintf (file, "TS%d_D%d -> TS%d_D%d\n",
930 pbb_index (pbb1), PDR_ID (pdr1),
931 pbb_index (pbb2), PDR_ID (pdr2));
933 free_poly_ddr (pddr);
937 /* Pretty print to FILE all the data dependences of SCoP in DOT
938 format. */
940 static void
941 dot_deps_1 (FILE *file, scop_p scop)
943 fputs ("digraph all {\n", file);
945 dot_original_deps (file, scop);
946 dot_transformed_deps (file, scop);
948 fputs ("}\n\n", file);
951 /* Display all the data dependences in SCoP using dotty. */
953 void
954 dot_deps (scop_p scop)
956 /* When debugging, enable the following code. This cannot be used
957 in production compilers because it calls "system". */
958 #if 1
959 FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
960 gcc_assert (stream);
962 dot_deps_1 (stream, scop);
963 fclose (stream);
965 system ("dotty /tmp/scopdeps.dot &");
966 #else
967 dot_deps_1 (stderr, scop);
968 #endif
971 /* Display all the statement dependences in SCoP using dotty. */
973 void
974 dot_deps_stmt (scop_p scop)
976 /* When debugging, enable the following code. This cannot be used
977 in production compilers because it calls "system". */
978 #if 1
979 FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
980 gcc_assert (stream);
982 dot_deps_stmt_1 (stream, scop);
983 fclose (stream);
985 system ("dotty /tmp/scopdeps.dot &");
986 #else
987 dot_deps_stmt_1 (stderr, scop);
988 #endif
991 #endif