Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / fortran / trans-common.c
blob1162636fe5af58e756e9c90d244107c3e6d4a210
1 /* Common block and equivalence list handling
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Canqun Yang <canqun@nudt.edu.cn>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
23 way to build UNION_TYPE is borrowed from Richard Henderson.
25 Transform common blocks. An integral part of this is processing
26 equivalence variables. Equivalenced variables that are not in a
27 common block end up in a private block of their own.
29 Each common block or local equivalence list is declared as a union.
30 Variables within the block are represented as a field within the
31 block with the proper offset.
33 So if two variables are equivalenced, they just point to a common
34 area in memory.
36 Mathematically, laying out an equivalence block is equivalent to
37 solving a linear system of equations. The matrix is usually a
38 sparse matrix in which each row contains all zero elements except
39 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
40 matrix is usually block diagonal. The system can be
41 overdetermined, underdetermined or have a unique solution. If the
42 system is inconsistent, the program is not standard conforming.
43 The solution vector is integral, since all of the pivots are +1 or -1.
45 How we lay out an equivalence block is a little less complicated.
46 In an equivalence list with n elements, there are n-1 conditions to
47 be satisfied. The conditions partition the variables into what we
48 will call segments. If A and B are equivalenced then A and B are
49 in the same segment. If B and C are equivalenced as well, then A,
50 B and C are in a segment and so on. Each segment is a block of
51 memory that has one or more variables equivalenced in some way. A
52 common block is made up of a series of segments that are joined one
53 after the other. In the linear system, a segment is a block
54 diagonal.
56 To lay out a segment we first start with some variable and
57 determine its length. The first variable is assumed to start at
58 offset one and extends to however long it is. We then traverse the
59 list of equivalences to find an unused condition that involves at
60 least one of the variables currently in the segment.
62 Each equivalence condition amounts to the condition B+b=C+c where B
63 and C are the offsets of the B and C variables, and b and c are
64 constants which are nonzero for array elements, substrings or
65 structure components. So for
67 EQUIVALENCE(B(2), C(3))
68 we have
69 B + 2*size of B's elements = C + 3*size of C's elements.
71 If B and C are known we check to see if the condition already
72 holds. If B is known we can solve for C. Since we know the length
73 of C, we can see if the minimum and maximum extents of the segment
74 are affected. Eventually, we make a full pass through the
75 equivalence list without finding any new conditions and the segment
76 is fully specified.
78 At this point, the segment is added to the current common block.
79 Since we know the minimum extent of the segment, everything in the
80 segment is translated to its position in the common block. The
81 usual case here is that there are no equivalence statements and the
82 common block is series of segments with one variable each, which is
83 a diagonal matrix in the matrix formulation.
85 Each segment is described by a chain of segment_info structures. Each
86 segment_info structure describes the extents of a single variable within
87 the segment. This list is maintained in the order the elements are
88 positioned withing the segment. If two elements have the same starting
89 offset the smaller will come first. If they also have the same size their
90 ordering is undefined.
92 Once all common blocks have been created, the list of equivalences
93 is examined for still-unused equivalence conditions. We create a
94 block for each merged equivalence list. */
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "toplev.h" /* For exact_log2. */
102 #include "output.h" /* For decl_default_tls_model. */
103 #include "gfortran.h"
104 #include "trans.h"
105 #include "trans-types.h"
106 #include "trans-const.h"
107 #include "target-memory.h"
110 /* Holds a single variable in an equivalence set. */
111 typedef struct segment_info
113 gfc_symbol *sym;
114 HOST_WIDE_INT offset;
115 HOST_WIDE_INT length;
116 /* This will contain the field type until the field is created. */
117 tree field;
118 struct segment_info *next;
119 } segment_info;
121 static segment_info * current_segment;
122 static gfc_namespace *gfc_common_ns = NULL;
125 /* Make a segment_info based on a symbol. */
127 static segment_info *
128 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
130 segment_info *s;
132 /* Make sure we've got the character length. */
133 if (sym->ts.type == BT_CHARACTER)
134 gfc_conv_const_charlen (sym->ts.u.cl);
136 /* Create the segment_info and fill it in. */
137 s = (segment_info *) gfc_getmem (sizeof (segment_info));
138 s->sym = sym;
139 /* We will use this type when building the segment aggregate type. */
140 s->field = gfc_sym_type (sym);
141 s->length = int_size_in_bytes (s->field);
142 s->offset = offset;
144 return s;
148 /* Add a copy of a segment list to the namespace. This is specifically for
149 equivalence segments, so that dependency checking can be done on
150 equivalence group members. */
152 static void
153 copy_equiv_list_to_ns (segment_info *c)
155 segment_info *f;
156 gfc_equiv_info *s;
157 gfc_equiv_list *l;
159 l = (gfc_equiv_list *) gfc_getmem (sizeof (gfc_equiv_list));
161 l->next = c->sym->ns->equiv_lists;
162 c->sym->ns->equiv_lists = l;
164 for (f = c; f; f = f->next)
166 s = (gfc_equiv_info *) gfc_getmem (sizeof (gfc_equiv_info));
167 s->next = l->equiv;
168 l->equiv = s;
169 s->sym = f->sym;
170 s->offset = f->offset;
171 s->length = f->length;
176 /* Add combine segment V and segment LIST. */
178 static segment_info *
179 add_segments (segment_info *list, segment_info *v)
181 segment_info *s;
182 segment_info *p;
183 segment_info *next;
185 p = NULL;
186 s = list;
188 while (v)
190 /* Find the location of the new element. */
191 while (s)
193 if (v->offset < s->offset)
194 break;
195 if (v->offset == s->offset
196 && v->length <= s->length)
197 break;
199 p = s;
200 s = s->next;
203 /* Insert the new element in between p and s. */
204 next = v->next;
205 v->next = s;
206 if (p == NULL)
207 list = v;
208 else
209 p->next = v;
211 p = v;
212 v = next;
215 return list;
219 /* Construct mangled common block name from symbol name. */
221 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
222 name. There are few calls to this function, so few places that this
223 would need to be added. At the moment, there is only one call, in
224 build_common_decl(). We can't attempt to look up the common block
225 because we may be building it for the first time and therefore, it won't
226 be in the common_root. We also need the binding label, if it's bind(c).
227 Therefore, send in the pointer to the common block, so whatever info we
228 have so far can be used. All of the necessary info should be available
229 in the gfc_common_head by now, so it should be accurate to test the
230 isBindC flag and use the binding label given if it is bind(c).
232 We may NOT know yet if it's bind(c) or not, but we can try at least.
233 Will have to figure out what to do later if it's labeled bind(c)
234 after this is called. */
236 static tree
237 gfc_sym_mangled_common_id (gfc_common_head *com)
239 int has_underscore;
240 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
241 char name[GFC_MAX_SYMBOL_LEN + 1];
243 /* Get the name out of the common block pointer. */
244 strcpy (name, com->name);
246 /* If we're suppose to do a bind(c). */
247 if (com->is_bind_c == 1 && com->binding_label[0] != '\0')
248 return get_identifier (com->binding_label);
250 if (strcmp (name, BLANK_COMMON_NAME) == 0)
251 return get_identifier (name);
253 if (gfc_option.flag_underscoring)
255 has_underscore = strchr (name, '_') != 0;
256 if (gfc_option.flag_second_underscore && has_underscore)
257 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
258 else
259 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
261 return get_identifier (mangled_name);
263 else
264 return get_identifier (name);
268 /* Build a field declaration for a common variable or a local equivalence
269 object. */
271 static void
272 build_field (segment_info *h, tree union_type, record_layout_info rli)
274 tree field;
275 tree name;
276 HOST_WIDE_INT offset = h->offset;
277 unsigned HOST_WIDE_INT desired_align, known_align;
279 name = get_identifier (h->sym->name);
280 field = build_decl (h->sym->declared_at.lb->location,
281 FIELD_DECL, name, h->field);
282 known_align = (offset & -offset) * BITS_PER_UNIT;
283 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
284 known_align = BIGGEST_ALIGNMENT;
286 desired_align = update_alignment_for_field (rli, field, known_align);
287 if (desired_align > known_align)
288 DECL_PACKED (field) = 1;
290 DECL_FIELD_CONTEXT (field) = union_type;
291 DECL_FIELD_OFFSET (field) = size_int (offset);
292 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
293 SET_DECL_OFFSET_ALIGN (field, known_align);
295 rli->offset = size_binop (MAX_EXPR, rli->offset,
296 size_binop (PLUS_EXPR,
297 DECL_FIELD_OFFSET (field),
298 DECL_SIZE_UNIT (field)));
299 /* If this field is assigned to a label, we create another two variables.
300 One will hold the address of target label or format label. The other will
301 hold the length of format label string. */
302 if (h->sym->attr.assign)
304 tree len;
305 tree addr;
307 gfc_allocate_lang_decl (field);
308 GFC_DECL_ASSIGN (field) = 1;
309 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
310 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
311 TREE_STATIC (len) = 1;
312 TREE_STATIC (addr) = 1;
313 DECL_INITIAL (len) = build_int_cst (NULL_TREE, -2);
314 gfc_set_decl_location (len, &h->sym->declared_at);
315 gfc_set_decl_location (addr, &h->sym->declared_at);
316 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
317 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
320 /* If this field is volatile, mark it. */
321 if (h->sym->attr.volatile_)
323 tree new_type;
324 TREE_THIS_VOLATILE (field) = 1;
325 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
326 TREE_TYPE (field) = new_type;
329 h->field = field;
333 /* Get storage for local equivalence. */
335 static tree
336 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
338 tree decl;
339 char name[15];
340 static int serial = 0;
342 if (is_init)
344 decl = gfc_create_var (union_type, "equiv");
345 TREE_STATIC (decl) = 1;
346 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
347 return decl;
350 snprintf (name, sizeof (name), "equiv.%d", serial++);
351 decl = build_decl (input_location,
352 VAR_DECL, get_identifier (name), union_type);
353 DECL_ARTIFICIAL (decl) = 1;
354 DECL_IGNORED_P (decl) = 1;
356 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
357 || is_saved)
358 TREE_STATIC (decl) = 1;
360 TREE_ADDRESSABLE (decl) = 1;
361 TREE_USED (decl) = 1;
362 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
364 /* The source location has been lost, and doesn't really matter.
365 We need to set it to something though. */
366 gfc_set_decl_location (decl, &gfc_current_locus);
368 gfc_add_decl_to_function (decl);
370 return decl;
374 /* Get storage for common block. */
376 static tree
377 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
379 gfc_symbol *common_sym;
380 tree decl;
382 /* Create a namespace to store symbols for common blocks. */
383 if (gfc_common_ns == NULL)
384 gfc_common_ns = gfc_get_namespace (NULL, 0);
386 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
387 decl = common_sym->backend_decl;
389 /* Update the size of this common block as needed. */
390 if (decl != NULL_TREE)
392 tree size = TYPE_SIZE_UNIT (union_type);
393 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
395 /* Named common blocks of the same name shall be of the same size
396 in all scoping units of a program in which they appear, but
397 blank common blocks may be of different sizes. */
398 if (strcmp (com->name, BLANK_COMMON_NAME))
399 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
400 "same size", com->name, &com->where);
401 DECL_SIZE (decl) = TYPE_SIZE (union_type);
402 DECL_SIZE_UNIT (decl) = size;
403 DECL_MODE (decl) = TYPE_MODE (union_type);
404 TREE_TYPE (decl) = union_type;
405 layout_decl (decl, 0);
409 /* If this common block has been declared in a previous program unit,
410 and either it is already initialized or there is no new initialization
411 for it, just return. */
412 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
413 return decl;
415 /* If there is no backend_decl for the common block, build it. */
416 if (decl == NULL_TREE)
418 decl = build_decl (input_location,
419 VAR_DECL, get_identifier (com->name), union_type);
420 gfc_set_decl_assembler_name (decl, gfc_sym_mangled_common_id (com));
421 TREE_PUBLIC (decl) = 1;
422 TREE_STATIC (decl) = 1;
423 DECL_IGNORED_P (decl) = 1;
424 if (!com->is_bind_c)
425 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
426 else
428 /* Do not set the alignment for bind(c) common blocks to
429 BIGGEST_ALIGNMENT because that won't match what C does. Also,
430 for common blocks with one element, the alignment must be
431 that of the field within the common block in order to match
432 what C will do. */
433 tree field = NULL_TREE;
434 field = TYPE_FIELDS (TREE_TYPE (decl));
435 if (TREE_CHAIN (field) == NULL_TREE)
436 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
438 DECL_USER_ALIGN (decl) = 0;
439 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
441 gfc_set_decl_location (decl, &com->where);
443 if (com->threadprivate)
444 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
446 /* Place the back end declaration for this common block in
447 GLOBAL_BINDING_LEVEL. */
448 common_sym->backend_decl = pushdecl_top_level (decl);
451 /* Has no initial values. */
452 if (!is_init)
454 DECL_INITIAL (decl) = NULL_TREE;
455 DECL_COMMON (decl) = 1;
456 DECL_DEFER_OUTPUT (decl) = 1;
458 else
460 DECL_INITIAL (decl) = error_mark_node;
461 DECL_COMMON (decl) = 0;
462 DECL_DEFER_OUTPUT (decl) = 0;
464 return decl;
468 /* Return a field that is the size of the union, if an equivalence has
469 overlapping initializers. Merge the initializers into a single
470 initializer for this new field, then free the old ones. */
472 static tree
473 get_init_field (segment_info *head, tree union_type, tree *field_init,
474 record_layout_info rli)
476 segment_info *s;
477 HOST_WIDE_INT length = 0;
478 HOST_WIDE_INT offset = 0;
479 unsigned HOST_WIDE_INT known_align, desired_align;
480 bool overlap = false;
481 tree tmp, field;
482 tree init;
483 unsigned char *data, *chk;
484 VEC(constructor_elt,gc) *v = NULL;
486 tree type = unsigned_char_type_node;
487 int i;
489 /* Obtain the size of the union and check if there are any overlapping
490 initializers. */
491 for (s = head; s; s = s->next)
493 HOST_WIDE_INT slen = s->offset + s->length;
494 if (s->sym->value)
496 if (s->offset < offset)
497 overlap = true;
498 offset = slen;
500 length = length < slen ? slen : length;
503 if (!overlap)
504 return NULL_TREE;
506 /* Now absorb all the initializer data into a single vector,
507 whilst checking for overlapping, unequal values. */
508 data = (unsigned char*)gfc_getmem ((size_t)length);
509 chk = (unsigned char*)gfc_getmem ((size_t)length);
511 /* TODO - change this when default initialization is implemented. */
512 memset (data, '\0', (size_t)length);
513 memset (chk, '\0', (size_t)length);
514 for (s = head; s; s = s->next)
515 if (s->sym->value)
516 gfc_merge_initializers (s->sym->ts, s->sym->value,
517 &data[s->offset],
518 &chk[s->offset],
519 (size_t)s->length);
521 for (i = 0; i < length; i++)
522 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
524 gfc_free (data);
525 gfc_free (chk);
527 /* Build a char[length] array to hold the initializers. Much of what
528 follows is borrowed from build_field, above. */
530 tmp = build_int_cst (gfc_array_index_type, length - 1);
531 tmp = build_range_type (gfc_array_index_type,
532 gfc_index_zero_node, tmp);
533 tmp = build_array_type (type, tmp);
534 field = build_decl (gfc_current_locus.lb->location,
535 FIELD_DECL, NULL_TREE, tmp);
537 known_align = BIGGEST_ALIGNMENT;
539 desired_align = update_alignment_for_field (rli, field, known_align);
540 if (desired_align > known_align)
541 DECL_PACKED (field) = 1;
543 DECL_FIELD_CONTEXT (field) = union_type;
544 DECL_FIELD_OFFSET (field) = size_int (0);
545 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
546 SET_DECL_OFFSET_ALIGN (field, known_align);
548 rli->offset = size_binop (MAX_EXPR, rli->offset,
549 size_binop (PLUS_EXPR,
550 DECL_FIELD_OFFSET (field),
551 DECL_SIZE_UNIT (field)));
553 init = build_constructor (TREE_TYPE (field), v);
554 TREE_CONSTANT (init) = 1;
556 *field_init = init;
558 for (s = head; s; s = s->next)
560 if (s->sym->value == NULL)
561 continue;
563 gfc_free_expr (s->sym->value);
564 s->sym->value = NULL;
567 return field;
571 /* Declare memory for the common block or local equivalence, and create
572 backend declarations for all of the elements. */
574 static void
575 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
577 segment_info *s, *next_s;
578 tree union_type;
579 tree *field_link;
580 tree field;
581 tree field_init = NULL_TREE;
582 record_layout_info rli;
583 tree decl;
584 bool is_init = false;
585 bool is_saved = false;
587 /* Declare the variables inside the common block.
588 If the current common block contains any equivalence object, then
589 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
590 alias analyzer work well when there is no address overlapping for
591 common variables in the current common block. */
592 if (saw_equiv)
593 union_type = make_node (UNION_TYPE);
594 else
595 union_type = make_node (RECORD_TYPE);
597 rli = start_record_layout (union_type);
598 field_link = &TYPE_FIELDS (union_type);
600 /* Check for overlapping initializers and replace them with a single,
601 artificial field that contains all the data. */
602 if (saw_equiv)
603 field = get_init_field (head, union_type, &field_init, rli);
604 else
605 field = NULL_TREE;
607 if (field != NULL_TREE)
609 is_init = true;
610 *field_link = field;
611 field_link = &TREE_CHAIN (field);
614 for (s = head; s; s = s->next)
616 build_field (s, union_type, rli);
618 /* Link the field into the type. */
619 *field_link = s->field;
620 field_link = &TREE_CHAIN (s->field);
622 /* Has initial value. */
623 if (s->sym->value)
624 is_init = true;
626 /* Has SAVE attribute. */
627 if (s->sym->attr.save)
628 is_saved = true;
631 finish_record_layout (rli, true);
633 if (com)
634 decl = build_common_decl (com, union_type, is_init);
635 else
636 decl = build_equiv_decl (union_type, is_init, is_saved);
638 if (is_init)
640 tree ctor, tmp;
641 VEC(constructor_elt,gc) *v = NULL;
643 if (field != NULL_TREE && field_init != NULL_TREE)
644 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
645 else
646 for (s = head; s; s = s->next)
648 if (s->sym->value)
650 /* Add the initializer for this field. */
651 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
652 TREE_TYPE (s->field), s->sym->attr.dimension,
653 s->sym->attr.pointer || s->sym->attr.allocatable);
655 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
659 gcc_assert (!VEC_empty (constructor_elt, v));
660 ctor = build_constructor (union_type, v);
661 TREE_CONSTANT (ctor) = 1;
662 TREE_STATIC (ctor) = 1;
663 DECL_INITIAL (decl) = ctor;
665 #ifdef ENABLE_CHECKING
667 tree field, value;
668 unsigned HOST_WIDE_INT idx;
669 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
670 gcc_assert (TREE_CODE (field) == FIELD_DECL);
672 #endif
675 /* Build component reference for each variable. */
676 for (s = head; s; s = next_s)
678 tree var_decl;
680 var_decl = build_decl (s->sym->declared_at.lb->location,
681 VAR_DECL, DECL_NAME (s->field),
682 TREE_TYPE (s->field));
683 TREE_STATIC (var_decl) = TREE_STATIC (decl);
684 TREE_USED (var_decl) = TREE_USED (decl);
685 if (s->sym->attr.use_assoc)
686 DECL_IGNORED_P (var_decl) = 1;
687 if (s->sym->attr.target)
688 TREE_ADDRESSABLE (var_decl) = 1;
689 /* This is a fake variable just for debugging purposes. */
690 TREE_ASM_WRITTEN (var_decl) = 1;
691 /* Fake variables are not visible from other translation units. */
692 TREE_PUBLIC (var_decl) = 0;
694 /* To preserve identifier names in COMMON, chain to procedure
695 scope unless at top level in a module definition. */
696 if (com
697 && s->sym->ns->proc_name
698 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
699 var_decl = pushdecl_top_level (var_decl);
700 else
701 gfc_add_decl_to_function (var_decl);
703 SET_DECL_VALUE_EXPR (var_decl,
704 fold_build3 (COMPONENT_REF, TREE_TYPE (s->field),
705 decl, s->field, NULL_TREE));
706 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
707 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
709 if (s->sym->attr.assign)
711 gfc_allocate_lang_decl (var_decl);
712 GFC_DECL_ASSIGN (var_decl) = 1;
713 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
714 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
717 s->sym->backend_decl = var_decl;
719 next_s = s->next;
720 gfc_free (s);
725 /* Given a symbol, find it in the current segment list. Returns NULL if
726 not found. */
728 static segment_info *
729 find_segment_info (gfc_symbol *symbol)
731 segment_info *n;
733 for (n = current_segment; n; n = n->next)
735 if (n->sym == symbol)
736 return n;
739 return NULL;
743 /* Given an expression node, make sure it is a constant integer and return
744 the mpz_t value. */
746 static mpz_t *
747 get_mpz (gfc_expr *e)
750 if (e->expr_type != EXPR_CONSTANT)
751 gfc_internal_error ("get_mpz(): Not an integer constant");
753 return &e->value.integer;
757 /* Given an array specification and an array reference, figure out the
758 array element number (zero based). Bounds and elements are guaranteed
759 to be constants. If something goes wrong we generate an error and
760 return zero. */
762 static HOST_WIDE_INT
763 element_number (gfc_array_ref *ar)
765 mpz_t multiplier, offset, extent, n;
766 gfc_array_spec *as;
767 HOST_WIDE_INT i, rank;
769 as = ar->as;
770 rank = as->rank;
771 mpz_init_set_ui (multiplier, 1);
772 mpz_init_set_ui (offset, 0);
773 mpz_init (extent);
774 mpz_init (n);
776 for (i = 0; i < rank; i++)
778 if (ar->dimen_type[i] != DIMEN_ELEMENT)
779 gfc_internal_error ("element_number(): Bad dimension type");
781 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
783 mpz_mul (n, n, multiplier);
784 mpz_add (offset, offset, n);
786 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
787 mpz_add_ui (extent, extent, 1);
789 if (mpz_sgn (extent) < 0)
790 mpz_set_ui (extent, 0);
792 mpz_mul (multiplier, multiplier, extent);
795 i = mpz_get_ui (offset);
797 mpz_clear (multiplier);
798 mpz_clear (offset);
799 mpz_clear (extent);
800 mpz_clear (n);
802 return i;
806 /* Given a single element of an equivalence list, figure out the offset
807 from the base symbol. For simple variables or full arrays, this is
808 simply zero. For an array element we have to calculate the array
809 element number and multiply by the element size. For a substring we
810 have to calculate the further reference. */
812 static HOST_WIDE_INT
813 calculate_offset (gfc_expr *e)
815 HOST_WIDE_INT n, element_size, offset;
816 gfc_typespec *element_type;
817 gfc_ref *reference;
819 offset = 0;
820 element_type = &e->symtree->n.sym->ts;
822 for (reference = e->ref; reference; reference = reference->next)
823 switch (reference->type)
825 case REF_ARRAY:
826 switch (reference->u.ar.type)
828 case AR_FULL:
829 break;
831 case AR_ELEMENT:
832 n = element_number (&reference->u.ar);
833 if (element_type->type == BT_CHARACTER)
834 gfc_conv_const_charlen (element_type->u.cl);
835 element_size =
836 int_size_in_bytes (gfc_typenode_for_spec (element_type));
837 offset += n * element_size;
838 break;
840 default:
841 gfc_error ("Bad array reference at %L", &e->where);
843 break;
844 case REF_SUBSTRING:
845 if (reference->u.ss.start != NULL)
846 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
847 break;
848 default:
849 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
850 &e->where);
852 return offset;
856 /* Add a new segment_info structure to the current segment. eq1 is already
857 in the list, eq2 is not. */
859 static void
860 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
862 HOST_WIDE_INT offset1, offset2;
863 segment_info *a;
865 offset1 = calculate_offset (eq1->expr);
866 offset2 = calculate_offset (eq2->expr);
868 a = get_segment_info (eq2->expr->symtree->n.sym,
869 v->offset + offset1 - offset2);
871 current_segment = add_segments (current_segment, a);
875 /* Given two equivalence structures that are both already in the list, make
876 sure that this new condition is not violated, generating an error if it
877 is. */
879 static void
880 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
881 gfc_equiv *eq2)
883 HOST_WIDE_INT offset1, offset2;
885 offset1 = calculate_offset (eq1->expr);
886 offset2 = calculate_offset (eq2->expr);
888 if (s1->offset + offset1 != s2->offset + offset2)
889 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
890 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
891 s2->sym->name, &s2->sym->declared_at);
895 /* Process a new equivalence condition. eq1 is know to be in segment f.
896 If eq2 is also present then confirm that the condition holds.
897 Otherwise add a new variable to the segment list. */
899 static void
900 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
902 segment_info *n;
904 n = find_segment_info (eq2->expr->symtree->n.sym);
906 if (n == NULL)
907 new_condition (f, eq1, eq2);
908 else
909 confirm_condition (f, eq1, n, eq2);
913 /* Given a segment element, search through the equivalence lists for unused
914 conditions that involve the symbol. Add these rules to the segment. */
916 static bool
917 find_equivalence (segment_info *n)
919 gfc_equiv *e1, *e2, *eq;
920 bool found;
922 found = FALSE;
924 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
926 eq = NULL;
928 /* Search the equivalence list, including the root (first) element
929 for the symbol that owns the segment. */
930 for (e2 = e1; e2; e2 = e2->eq)
932 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
934 eq = e2;
935 break;
939 /* Go to the next root element. */
940 if (eq == NULL)
941 continue;
943 eq->used = 1;
945 /* Now traverse the equivalence list matching the offsets. */
946 for (e2 = e1; e2; e2 = e2->eq)
948 if (!e2->used && e2 != eq)
950 add_condition (n, eq, e2);
951 e2->used = 1;
952 found = TRUE;
956 return found;
960 /* Add all symbols equivalenced within a segment. We need to scan the
961 segment list multiple times to include indirect equivalences. Since
962 a new segment_info can inserted at the beginning of the segment list,
963 depending on its offset, we have to force a final pass through the
964 loop by demanding that completion sees a pass with no matches; i.e.,
965 all symbols with equiv_built set and no new equivalences found. */
967 static void
968 add_equivalences (bool *saw_equiv)
970 segment_info *f;
971 bool seen_one, more;
973 seen_one = false;
974 more = TRUE;
975 while (more)
977 more = FALSE;
978 for (f = current_segment; f; f = f->next)
980 if (!f->sym->equiv_built)
982 f->sym->equiv_built = 1;
983 seen_one = find_equivalence (f);
984 if (seen_one)
986 *saw_equiv = true;
987 more = true;
993 /* Add a copy of this segment list to the namespace. */
994 copy_equiv_list_to_ns (current_segment);
998 /* Returns the offset necessary to properly align the current equivalence.
999 Sets *palign to the required alignment. */
1001 static HOST_WIDE_INT
1002 align_segment (unsigned HOST_WIDE_INT *palign)
1004 segment_info *s;
1005 unsigned HOST_WIDE_INT offset;
1006 unsigned HOST_WIDE_INT max_align;
1007 unsigned HOST_WIDE_INT this_align;
1008 unsigned HOST_WIDE_INT this_offset;
1010 max_align = 1;
1011 offset = 0;
1012 for (s = current_segment; s; s = s->next)
1014 this_align = TYPE_ALIGN_UNIT (s->field);
1015 if (s->offset & (this_align - 1))
1017 /* Field is misaligned. */
1018 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1019 if (this_offset & (max_align - 1))
1021 /* Aligning this field would misalign a previous field. */
1022 gfc_error ("The equivalence set for variable '%s' "
1023 "declared at %L violates alignment requirements",
1024 s->sym->name, &s->sym->declared_at);
1026 offset += this_offset;
1028 max_align = this_align;
1030 if (palign)
1031 *palign = max_align;
1032 return offset;
1036 /* Adjust segment offsets by the given amount. */
1038 static void
1039 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1041 for (; s; s = s->next)
1042 s->offset += offset;
1046 /* Lay out a symbol in a common block. If the symbol has already been seen
1047 then check the location is consistent. Otherwise create segments
1048 for that symbol and all the symbols equivalenced with it. */
1050 /* Translate a single common block. */
1052 static void
1053 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1055 gfc_symbol *sym;
1056 segment_info *s;
1057 segment_info *common_segment;
1058 HOST_WIDE_INT offset;
1059 HOST_WIDE_INT current_offset;
1060 unsigned HOST_WIDE_INT align;
1061 unsigned HOST_WIDE_INT max_align;
1062 bool saw_equiv;
1064 common_segment = NULL;
1065 offset = 0;
1066 current_offset = 0;
1067 align = 1;
1068 max_align = 1;
1069 saw_equiv = false;
1071 /* Add symbols to the segment. */
1072 for (sym = var_list; sym; sym = sym->common_next)
1074 current_segment = common_segment;
1075 s = find_segment_info (sym);
1077 /* Symbol has already been added via an equivalence. Multiple
1078 use associations of the same common block result in equiv_built
1079 being set but no information about the symbol in the segment. */
1080 if (s && sym->equiv_built)
1082 /* Ensure the current location is properly aligned. */
1083 align = TYPE_ALIGN_UNIT (s->field);
1084 current_offset = (current_offset + align - 1) &~ (align - 1);
1086 /* Verify that it ended up where we expect it. */
1087 if (s->offset != current_offset)
1089 gfc_error ("Equivalence for '%s' does not match ordering of "
1090 "COMMON '%s' at %L", sym->name,
1091 common->name, &common->where);
1094 else
1096 /* A symbol we haven't seen before. */
1097 s = current_segment = get_segment_info (sym, current_offset);
1099 /* Add all objects directly or indirectly equivalenced with this
1100 symbol. */
1101 add_equivalences (&saw_equiv);
1103 if (current_segment->offset < 0)
1104 gfc_error ("The equivalence set for '%s' cause an invalid "
1105 "extension to COMMON '%s' at %L", sym->name,
1106 common->name, &common->where);
1108 if (gfc_option.flag_align_commons)
1109 offset = align_segment (&align);
1111 if (offset & (max_align - 1))
1113 /* The required offset conflicts with previous alignment
1114 requirements. Insert padding immediately before this
1115 segment. */
1116 if (gfc_option.warn_align_commons)
1118 if (strcmp (common->name, BLANK_COMMON_NAME))
1119 gfc_warning ("Padding of %d bytes required before '%s' in "
1120 "COMMON '%s' at %L; reorder elements or use "
1121 "-fno-align-commons", (int)offset,
1122 s->sym->name, common->name, &common->where);
1123 else
1124 gfc_warning ("Padding of %d bytes required before '%s' in "
1125 "COMMON at %L; reorder elements or use "
1126 "-fno-align-commons", (int)offset,
1127 s->sym->name, &common->where);
1131 /* Apply the offset to the new segments. */
1132 apply_segment_offset (current_segment, offset);
1133 current_offset += offset;
1134 if (max_align < align)
1135 max_align = align;
1137 /* Add the new segments to the common block. */
1138 common_segment = add_segments (common_segment, current_segment);
1141 /* The offset of the next common variable. */
1142 current_offset += s->length;
1145 if (common_segment == NULL)
1147 gfc_error ("COMMON '%s' at %L does not exist",
1148 common->name, &common->where);
1149 return;
1152 if (common_segment->offset != 0 && gfc_option.warn_align_commons)
1154 if (strcmp (common->name, BLANK_COMMON_NAME))
1155 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding at start; "
1156 "reorder elements or use -fno-align-commons",
1157 common->name, &common->where, (int)common_segment->offset);
1158 else
1159 gfc_warning ("COMMON at %L requires %d bytes of padding at start; "
1160 "reorder elements or use -fno-align-commons",
1161 &common->where, (int)common_segment->offset);
1164 create_common (common, common_segment, saw_equiv);
1168 /* Create a new block for each merged equivalence list. */
1170 static void
1171 finish_equivalences (gfc_namespace *ns)
1173 gfc_equiv *z, *y;
1174 gfc_symbol *sym;
1175 gfc_common_head * c;
1176 HOST_WIDE_INT offset;
1177 unsigned HOST_WIDE_INT align;
1178 bool dummy;
1180 for (z = ns->equiv; z; z = z->next)
1181 for (y = z->eq; y; y = y->eq)
1183 if (y->used)
1184 continue;
1185 sym = z->expr->symtree->n.sym;
1186 current_segment = get_segment_info (sym, 0);
1188 /* All objects directly or indirectly equivalenced with this
1189 symbol. */
1190 add_equivalences (&dummy);
1192 /* Align the block. */
1193 offset = align_segment (&align);
1195 /* Ensure all offsets are positive. */
1196 offset -= current_segment->offset & ~(align - 1);
1198 apply_segment_offset (current_segment, offset);
1200 /* Create the decl. If this is a module equivalence, it has a
1201 unique name, pointed to by z->module. This is written to a
1202 gfc_common_header to push create_common into using
1203 build_common_decl, so that the equivalence appears as an
1204 external symbol. Otherwise, a local declaration is built using
1205 build_equiv_decl. */
1206 if (z->module)
1208 c = gfc_get_common_head ();
1209 /* We've lost the real location, so use the location of the
1210 enclosing procedure. */
1211 c->where = ns->proc_name->declared_at;
1212 strcpy (c->name, z->module);
1214 else
1215 c = NULL;
1217 create_common (c, current_segment, true);
1218 break;
1223 /* Work function for translating a named common block. */
1225 static void
1226 named_common (gfc_symtree *st)
1228 translate_common (st->n.common, st->n.common->head);
1232 /* Translate the common blocks in a namespace. Unlike other variables,
1233 these have to be created before code, because the backend_decl depends
1234 on the rest of the common block. */
1236 void
1237 gfc_trans_common (gfc_namespace *ns)
1239 gfc_common_head *c;
1241 /* Translate the blank common block. */
1242 if (ns->blank_common.head != NULL)
1244 c = gfc_get_common_head ();
1245 c->where = ns->blank_common.head->common_head->where;
1246 strcpy (c->name, BLANK_COMMON_NAME);
1247 translate_common (c, ns->blank_common.head);
1250 /* Translate all named common blocks. */
1251 gfc_traverse_symtree (ns->common_root, named_common);
1253 /* Translate local equivalence. */
1254 finish_equivalences (ns);
1256 /* Commit the newly created symbols for common blocks and module
1257 equivalences. */
1258 gfc_commit_symbols ();