Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / expmed.c
blob017e208a80139d89bd96b9451540aa67c3cff507
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "recog.h"
37 #include "langhooks.h"
38 #include "df.h"
39 #include "target.h"
41 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT, rtx);
44 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
45 unsigned HOST_WIDE_INT, rtx);
46 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT, rtx, int);
50 static rtx mask_rtx (enum machine_mode, int, int, int);
51 static rtx lshift_value (enum machine_mode, rtx, int, int);
52 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT, int);
54 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
55 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
56 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58 /* Test whether a value is zero of a power of two. */
59 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61 /* Nonzero means divides or modulus operations are relatively cheap for
62 powers of two, so don't use branches; emit the operation instead.
63 Usually, this will mean that the MD file will emit non-branch
64 sequences. */
66 static bool sdiv_pow2_cheap[2][NUM_MACHINE_MODES];
67 static bool smod_pow2_cheap[2][NUM_MACHINE_MODES];
69 #ifndef SLOW_UNALIGNED_ACCESS
70 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
71 #endif
73 /* For compilers that support multiple targets with different word sizes,
74 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
75 is the H8/300(H) compiler. */
77 #ifndef MAX_BITS_PER_WORD
78 #define MAX_BITS_PER_WORD BITS_PER_WORD
79 #endif
81 /* Reduce conditional compilation elsewhere. */
82 #ifndef HAVE_insv
83 #define HAVE_insv 0
84 #define CODE_FOR_insv CODE_FOR_nothing
85 #define gen_insv(a,b,c,d) NULL_RTX
86 #endif
87 #ifndef HAVE_extv
88 #define HAVE_extv 0
89 #define CODE_FOR_extv CODE_FOR_nothing
90 #define gen_extv(a,b,c,d) NULL_RTX
91 #endif
92 #ifndef HAVE_extzv
93 #define HAVE_extzv 0
94 #define CODE_FOR_extzv CODE_FOR_nothing
95 #define gen_extzv(a,b,c,d) NULL_RTX
96 #endif
98 /* Cost of various pieces of RTL. Note that some of these are indexed by
99 shift count and some by mode. */
100 static int zero_cost[2];
101 static int add_cost[2][NUM_MACHINE_MODES];
102 static int neg_cost[2][NUM_MACHINE_MODES];
103 static int shift_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftadd_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftsub0_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub1_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[2][NUM_MACHINE_MODES];
108 static int sdiv_cost[2][NUM_MACHINE_MODES];
109 static int udiv_cost[2][NUM_MACHINE_MODES];
110 static int mul_widen_cost[2][NUM_MACHINE_MODES];
111 static int mul_highpart_cost[2][NUM_MACHINE_MODES];
113 void
114 init_expmed (void)
116 struct
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
134 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
135 } all;
137 rtx pow2[MAX_BITS_PER_WORD];
138 rtx cint[MAX_BITS_PER_WORD];
139 int m, n;
140 enum machine_mode mode, wider_mode;
141 int speed;
144 for (m = 1; m < MAX_BITS_PER_WORD; m++)
146 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
147 cint[m] = GEN_INT (m);
149 memset (&all, 0, sizeof all);
151 PUT_CODE (&all.reg, REG);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
155 PUT_CODE (&all.plus, PLUS);
156 XEXP (&all.plus, 0) = &all.reg;
157 XEXP (&all.plus, 1) = &all.reg;
159 PUT_CODE (&all.neg, NEG);
160 XEXP (&all.neg, 0) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.sdiv, DIV);
167 XEXP (&all.sdiv, 0) = &all.reg;
168 XEXP (&all.sdiv, 1) = &all.reg;
170 PUT_CODE (&all.udiv, UDIV);
171 XEXP (&all.udiv, 0) = &all.reg;
172 XEXP (&all.udiv, 1) = &all.reg;
174 PUT_CODE (&all.sdiv_32, DIV);
175 XEXP (&all.sdiv_32, 0) = &all.reg;
176 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
178 PUT_CODE (&all.smod_32, MOD);
179 XEXP (&all.smod_32, 0) = &all.reg;
180 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
182 PUT_CODE (&all.zext, ZERO_EXTEND);
183 XEXP (&all.zext, 0) = &all.reg;
185 PUT_CODE (&all.wide_mult, MULT);
186 XEXP (&all.wide_mult, 0) = &all.zext;
187 XEXP (&all.wide_mult, 1) = &all.zext;
189 PUT_CODE (&all.wide_lshr, LSHIFTRT);
190 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
192 PUT_CODE (&all.wide_trunc, TRUNCATE);
193 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
195 PUT_CODE (&all.shift, ASHIFT);
196 XEXP (&all.shift, 0) = &all.reg;
198 PUT_CODE (&all.shift_mult, MULT);
199 XEXP (&all.shift_mult, 0) = &all.reg;
201 PUT_CODE (&all.shift_add, PLUS);
202 XEXP (&all.shift_add, 0) = &all.shift_mult;
203 XEXP (&all.shift_add, 1) = &all.reg;
205 PUT_CODE (&all.shift_sub0, MINUS);
206 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
207 XEXP (&all.shift_sub0, 1) = &all.reg;
209 PUT_CODE (&all.shift_sub1, MINUS);
210 XEXP (&all.shift_sub1, 0) = &all.reg;
211 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
213 for (speed = 0; speed < 2; speed++)
215 crtl->maybe_hot_insn_p = speed;
216 zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
218 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
219 mode != VOIDmode;
220 mode = GET_MODE_WIDER_MODE (mode))
222 PUT_MODE (&all.reg, mode);
223 PUT_MODE (&all.plus, mode);
224 PUT_MODE (&all.neg, mode);
225 PUT_MODE (&all.mult, mode);
226 PUT_MODE (&all.sdiv, mode);
227 PUT_MODE (&all.udiv, mode);
228 PUT_MODE (&all.sdiv_32, mode);
229 PUT_MODE (&all.smod_32, mode);
230 PUT_MODE (&all.wide_trunc, mode);
231 PUT_MODE (&all.shift, mode);
232 PUT_MODE (&all.shift_mult, mode);
233 PUT_MODE (&all.shift_add, mode);
234 PUT_MODE (&all.shift_sub0, mode);
235 PUT_MODE (&all.shift_sub1, mode);
237 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
238 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
239 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
240 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
241 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
243 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
244 <= 2 * add_cost[speed][mode]);
245 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
246 <= 4 * add_cost[speed][mode]);
248 wider_mode = GET_MODE_WIDER_MODE (mode);
249 if (wider_mode != VOIDmode)
251 PUT_MODE (&all.zext, wider_mode);
252 PUT_MODE (&all.wide_mult, wider_mode);
253 PUT_MODE (&all.wide_lshr, wider_mode);
254 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
256 mul_widen_cost[speed][wider_mode]
257 = rtx_cost (&all.wide_mult, SET, speed);
258 mul_highpart_cost[speed][mode]
259 = rtx_cost (&all.wide_trunc, SET, speed);
262 shift_cost[speed][mode][0] = 0;
263 shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
264 = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
266 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
267 for (m = 1; m < n; m++)
269 XEXP (&all.shift, 1) = cint[m];
270 XEXP (&all.shift_mult, 1) = pow2[m];
272 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
273 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
274 shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
275 shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
279 default_rtl_profile ();
282 /* Return an rtx representing minus the value of X.
283 MODE is the intended mode of the result,
284 useful if X is a CONST_INT. */
287 negate_rtx (enum machine_mode mode, rtx x)
289 rtx result = simplify_unary_operation (NEG, mode, x, mode);
291 if (result == 0)
292 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
294 return result;
297 /* Report on the availability of insv/extv/extzv and the desired mode
298 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
299 is false; else the mode of the specified operand. If OPNO is -1,
300 all the caller cares about is whether the insn is available. */
301 enum machine_mode
302 mode_for_extraction (enum extraction_pattern pattern, int opno)
304 const struct insn_data *data;
306 switch (pattern)
308 case EP_insv:
309 if (HAVE_insv)
311 data = &insn_data[CODE_FOR_insv];
312 break;
314 return MAX_MACHINE_MODE;
316 case EP_extv:
317 if (HAVE_extv)
319 data = &insn_data[CODE_FOR_extv];
320 break;
322 return MAX_MACHINE_MODE;
324 case EP_extzv:
325 if (HAVE_extzv)
327 data = &insn_data[CODE_FOR_extzv];
328 break;
330 return MAX_MACHINE_MODE;
332 default:
333 gcc_unreachable ();
336 if (opno == -1)
337 return VOIDmode;
339 /* Everyone who uses this function used to follow it with
340 if (result == VOIDmode) result = word_mode; */
341 if (data->operand[opno].mode == VOIDmode)
342 return word_mode;
343 return data->operand[opno].mode;
346 /* Return true if X, of mode MODE, matches the predicate for operand
347 OPNO of instruction ICODE. Allow volatile memories, regardless of
348 the ambient volatile_ok setting. */
350 static bool
351 check_predicate_volatile_ok (enum insn_code icode, int opno,
352 rtx x, enum machine_mode mode)
354 bool save_volatile_ok, result;
356 save_volatile_ok = volatile_ok;
357 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
358 volatile_ok = save_volatile_ok;
359 return result;
362 /* A subroutine of store_bit_field, with the same arguments. Return true
363 if the operation could be implemented.
365 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
366 no other way of implementing the operation. If FALLBACK_P is false,
367 return false instead. */
369 static bool
370 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
371 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
372 rtx value, bool fallback_p)
374 unsigned int unit
375 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
376 unsigned HOST_WIDE_INT offset, bitpos;
377 rtx op0 = str_rtx;
378 int byte_offset;
379 rtx orig_value;
381 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
383 while (GET_CODE (op0) == SUBREG)
385 /* The following line once was done only if WORDS_BIG_ENDIAN,
386 but I think that is a mistake. WORDS_BIG_ENDIAN is
387 meaningful at a much higher level; when structures are copied
388 between memory and regs, the higher-numbered regs
389 always get higher addresses. */
390 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
391 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
393 byte_offset = 0;
395 /* Paradoxical subregs need special handling on big endian machines. */
396 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
398 int difference = inner_mode_size - outer_mode_size;
400 if (WORDS_BIG_ENDIAN)
401 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
402 if (BYTES_BIG_ENDIAN)
403 byte_offset += difference % UNITS_PER_WORD;
405 else
406 byte_offset = SUBREG_BYTE (op0);
408 bitnum += byte_offset * BITS_PER_UNIT;
409 op0 = SUBREG_REG (op0);
412 /* No action is needed if the target is a register and if the field
413 lies completely outside that register. This can occur if the source
414 code contains an out-of-bounds access to a small array. */
415 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
416 return true;
418 /* Use vec_set patterns for inserting parts of vectors whenever
419 available. */
420 if (VECTOR_MODE_P (GET_MODE (op0))
421 && !MEM_P (op0)
422 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
423 != CODE_FOR_nothing)
424 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
425 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
426 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
428 enum machine_mode outermode = GET_MODE (op0);
429 enum machine_mode innermode = GET_MODE_INNER (outermode);
430 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
431 int pos = bitnum / GET_MODE_BITSIZE (innermode);
432 rtx rtxpos = GEN_INT (pos);
433 rtx src = value;
434 rtx dest = op0;
435 rtx pat, seq;
436 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
437 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
438 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
440 start_sequence ();
442 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
443 src = copy_to_mode_reg (mode1, src);
445 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
446 rtxpos = copy_to_mode_reg (mode1, rtxpos);
448 /* We could handle this, but we should always be called with a pseudo
449 for our targets and all insns should take them as outputs. */
450 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
451 && (*insn_data[icode].operand[1].predicate) (src, mode1)
452 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
453 pat = GEN_FCN (icode) (dest, src, rtxpos);
454 seq = get_insns ();
455 end_sequence ();
456 if (pat)
458 emit_insn (seq);
459 emit_insn (pat);
460 return true;
464 /* If the target is a register, overwriting the entire object, or storing
465 a full-word or multi-word field can be done with just a SUBREG.
467 If the target is memory, storing any naturally aligned field can be
468 done with a simple store. For targets that support fast unaligned
469 memory, any naturally sized, unit aligned field can be done directly. */
471 offset = bitnum / unit;
472 bitpos = bitnum % unit;
473 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
474 + (offset * UNITS_PER_WORD);
476 if (bitpos == 0
477 && bitsize == GET_MODE_BITSIZE (fieldmode)
478 && (!MEM_P (op0)
479 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
480 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
481 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
482 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
483 || (offset * BITS_PER_UNIT % bitsize == 0
484 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
486 if (MEM_P (op0))
487 op0 = adjust_address (op0, fieldmode, offset);
488 else if (GET_MODE (op0) != fieldmode)
489 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
490 byte_offset);
491 emit_move_insn (op0, value);
492 return true;
495 /* Make sure we are playing with integral modes. Pun with subregs
496 if we aren't. This must come after the entire register case above,
497 since that case is valid for any mode. The following cases are only
498 valid for integral modes. */
500 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
501 if (imode != GET_MODE (op0))
503 if (MEM_P (op0))
504 op0 = adjust_address (op0, imode, 0);
505 else
507 gcc_assert (imode != BLKmode);
508 op0 = gen_lowpart (imode, op0);
513 /* We may be accessing data outside the field, which means
514 we can alias adjacent data. */
515 if (MEM_P (op0))
517 op0 = shallow_copy_rtx (op0);
518 set_mem_alias_set (op0, 0);
519 set_mem_expr (op0, 0);
522 /* If OP0 is a register, BITPOS must count within a word.
523 But as we have it, it counts within whatever size OP0 now has.
524 On a bigendian machine, these are not the same, so convert. */
525 if (BYTES_BIG_ENDIAN
526 && !MEM_P (op0)
527 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
528 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
530 /* Storing an lsb-aligned field in a register
531 can be done with a movestrict instruction. */
533 if (!MEM_P (op0)
534 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
535 && bitsize == GET_MODE_BITSIZE (fieldmode)
536 && (optab_handler (movstrict_optab, fieldmode)->insn_code
537 != CODE_FOR_nothing))
539 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
540 rtx insn;
541 rtx start = get_last_insn ();
542 rtx arg0 = op0;
544 /* Get appropriate low part of the value being stored. */
545 if (CONST_INT_P (value) || REG_P (value))
546 value = gen_lowpart (fieldmode, value);
547 else if (!(GET_CODE (value) == SYMBOL_REF
548 || GET_CODE (value) == LABEL_REF
549 || GET_CODE (value) == CONST))
550 value = convert_to_mode (fieldmode, value, 0);
552 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
553 value = copy_to_mode_reg (fieldmode, value);
555 if (GET_CODE (op0) == SUBREG)
557 /* Else we've got some float mode source being extracted into
558 a different float mode destination -- this combination of
559 subregs results in Severe Tire Damage. */
560 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
561 || GET_MODE_CLASS (fieldmode) == MODE_INT
562 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
563 arg0 = SUBREG_REG (op0);
566 insn = (GEN_FCN (icode)
567 (gen_rtx_SUBREG (fieldmode, arg0,
568 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
569 + (offset * UNITS_PER_WORD)),
570 value));
571 if (insn)
573 emit_insn (insn);
574 return true;
576 delete_insns_since (start);
579 /* Handle fields bigger than a word. */
581 if (bitsize > BITS_PER_WORD)
583 /* Here we transfer the words of the field
584 in the order least significant first.
585 This is because the most significant word is the one which may
586 be less than full.
587 However, only do that if the value is not BLKmode. */
589 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
590 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
591 unsigned int i;
592 rtx last;
594 /* This is the mode we must force value to, so that there will be enough
595 subwords to extract. Note that fieldmode will often (always?) be
596 VOIDmode, because that is what store_field uses to indicate that this
597 is a bit field, but passing VOIDmode to operand_subword_force
598 is not allowed. */
599 fieldmode = GET_MODE (value);
600 if (fieldmode == VOIDmode)
601 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
603 last = get_last_insn ();
604 for (i = 0; i < nwords; i++)
606 /* If I is 0, use the low-order word in both field and target;
607 if I is 1, use the next to lowest word; and so on. */
608 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
609 unsigned int bit_offset = (backwards
610 ? MAX ((int) bitsize - ((int) i + 1)
611 * BITS_PER_WORD,
613 : (int) i * BITS_PER_WORD);
614 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
616 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
617 bitsize - i * BITS_PER_WORD),
618 bitnum + bit_offset, word_mode,
619 value_word, fallback_p))
621 delete_insns_since (last);
622 return false;
625 return true;
628 /* From here on we can assume that the field to be stored in is
629 a full-word (whatever type that is), since it is shorter than a word. */
631 /* OFFSET is the number of words or bytes (UNIT says which)
632 from STR_RTX to the first word or byte containing part of the field. */
634 if (!MEM_P (op0))
636 if (offset != 0
637 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
639 if (!REG_P (op0))
641 /* Since this is a destination (lvalue), we can't copy
642 it to a pseudo. We can remove a SUBREG that does not
643 change the size of the operand. Such a SUBREG may
644 have been added above. */
645 gcc_assert (GET_CODE (op0) == SUBREG
646 && (GET_MODE_SIZE (GET_MODE (op0))
647 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
648 op0 = SUBREG_REG (op0);
650 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
651 op0, (offset * UNITS_PER_WORD));
653 offset = 0;
656 /* If VALUE has a floating-point or complex mode, access it as an
657 integer of the corresponding size. This can occur on a machine
658 with 64 bit registers that uses SFmode for float. It can also
659 occur for unaligned float or complex fields. */
660 orig_value = value;
661 if (GET_MODE (value) != VOIDmode
662 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
663 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
665 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
666 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
669 /* Now OFFSET is nonzero only if OP0 is memory
670 and is therefore always measured in bytes. */
672 if (HAVE_insv
673 && GET_MODE (value) != BLKmode
674 && bitsize > 0
675 && GET_MODE_BITSIZE (op_mode) >= bitsize
676 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
677 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
678 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
679 VOIDmode)
680 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
682 int xbitpos = bitpos;
683 rtx value1;
684 rtx xop0 = op0;
685 rtx last = get_last_insn ();
686 rtx pat;
687 bool copy_back = false;
689 /* Add OFFSET into OP0's address. */
690 if (MEM_P (xop0))
691 xop0 = adjust_address (xop0, byte_mode, offset);
693 /* If xop0 is a register, we need it in OP_MODE
694 to make it acceptable to the format of insv. */
695 if (GET_CODE (xop0) == SUBREG)
696 /* We can't just change the mode, because this might clobber op0,
697 and we will need the original value of op0 if insv fails. */
698 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
699 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
700 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
702 /* If the destination is a paradoxical subreg such that we need a
703 truncate to the inner mode, perform the insertion on a temporary and
704 truncate the result to the original destination. Note that we can't
705 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
706 X) 0)) is (reg:N X). */
707 if (GET_CODE (xop0) == SUBREG
708 && REG_P (SUBREG_REG (xop0))
709 && (!TRULY_NOOP_TRUNCATION
710 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
711 GET_MODE_BITSIZE (op_mode))))
713 rtx tem = gen_reg_rtx (op_mode);
714 emit_move_insn (tem, xop0);
715 xop0 = tem;
716 copy_back = true;
719 /* On big-endian machines, we count bits from the most significant.
720 If the bit field insn does not, we must invert. */
722 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
723 xbitpos = unit - bitsize - xbitpos;
725 /* We have been counting XBITPOS within UNIT.
726 Count instead within the size of the register. */
727 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
728 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
730 unit = GET_MODE_BITSIZE (op_mode);
732 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
733 value1 = value;
734 if (GET_MODE (value) != op_mode)
736 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
738 /* Optimization: Don't bother really extending VALUE
739 if it has all the bits we will actually use. However,
740 if we must narrow it, be sure we do it correctly. */
742 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
744 rtx tmp;
746 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
747 if (! tmp)
748 tmp = simplify_gen_subreg (op_mode,
749 force_reg (GET_MODE (value),
750 value1),
751 GET_MODE (value), 0);
752 value1 = tmp;
754 else
755 value1 = gen_lowpart (op_mode, value1);
757 else if (CONST_INT_P (value))
758 value1 = gen_int_mode (INTVAL (value), op_mode);
759 else
760 /* Parse phase is supposed to make VALUE's data type
761 match that of the component reference, which is a type
762 at least as wide as the field; so VALUE should have
763 a mode that corresponds to that type. */
764 gcc_assert (CONSTANT_P (value));
767 /* If this machine's insv insists on a register,
768 get VALUE1 into a register. */
769 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
770 (value1, op_mode)))
771 value1 = force_reg (op_mode, value1);
773 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
774 if (pat)
776 emit_insn (pat);
778 if (copy_back)
779 convert_move (op0, xop0, true);
780 return true;
782 delete_insns_since (last);
785 /* If OP0 is a memory, try copying it to a register and seeing if a
786 cheap register alternative is available. */
787 if (HAVE_insv && MEM_P (op0))
789 enum machine_mode bestmode;
791 /* Get the mode to use for inserting into this field. If OP0 is
792 BLKmode, get the smallest mode consistent with the alignment. If
793 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
794 mode. Otherwise, use the smallest mode containing the field. */
796 if (GET_MODE (op0) == BLKmode
797 || (op_mode != MAX_MACHINE_MODE
798 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
799 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
800 (op_mode == MAX_MACHINE_MODE
801 ? VOIDmode : op_mode),
802 MEM_VOLATILE_P (op0));
803 else
804 bestmode = GET_MODE (op0);
806 if (bestmode != VOIDmode
807 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
808 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
809 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
811 rtx last, tempreg, xop0;
812 unsigned HOST_WIDE_INT xoffset, xbitpos;
814 last = get_last_insn ();
816 /* Adjust address to point to the containing unit of
817 that mode. Compute the offset as a multiple of this unit,
818 counting in bytes. */
819 unit = GET_MODE_BITSIZE (bestmode);
820 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
821 xbitpos = bitnum % unit;
822 xop0 = adjust_address (op0, bestmode, xoffset);
824 /* Fetch that unit, store the bitfield in it, then store
825 the unit. */
826 tempreg = copy_to_reg (xop0);
827 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
828 fieldmode, orig_value, false))
830 emit_move_insn (xop0, tempreg);
831 return true;
833 delete_insns_since (last);
837 if (!fallback_p)
838 return false;
840 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
841 return true;
844 /* Generate code to store value from rtx VALUE
845 into a bit-field within structure STR_RTX
846 containing BITSIZE bits starting at bit BITNUM.
847 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
849 void
850 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
851 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
852 rtx value)
854 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
855 gcc_unreachable ();
858 /* Use shifts and boolean operations to store VALUE
859 into a bit field of width BITSIZE
860 in a memory location specified by OP0 except offset by OFFSET bytes.
861 (OFFSET must be 0 if OP0 is a register.)
862 The field starts at position BITPOS within the byte.
863 (If OP0 is a register, it may be a full word or a narrower mode,
864 but BITPOS still counts within a full word,
865 which is significant on bigendian machines.) */
867 static void
868 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
869 unsigned HOST_WIDE_INT bitsize,
870 unsigned HOST_WIDE_INT bitpos, rtx value)
872 enum machine_mode mode;
873 unsigned int total_bits = BITS_PER_WORD;
874 rtx temp;
875 int all_zero = 0;
876 int all_one = 0;
878 /* There is a case not handled here:
879 a structure with a known alignment of just a halfword
880 and a field split across two aligned halfwords within the structure.
881 Or likewise a structure with a known alignment of just a byte
882 and a field split across two bytes.
883 Such cases are not supposed to be able to occur. */
885 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
887 gcc_assert (!offset);
888 /* Special treatment for a bit field split across two registers. */
889 if (bitsize + bitpos > BITS_PER_WORD)
891 store_split_bit_field (op0, bitsize, bitpos, value);
892 return;
895 else
897 /* Get the proper mode to use for this field. We want a mode that
898 includes the entire field. If such a mode would be larger than
899 a word, we won't be doing the extraction the normal way.
900 We don't want a mode bigger than the destination. */
902 mode = GET_MODE (op0);
903 if (GET_MODE_BITSIZE (mode) == 0
904 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
905 mode = word_mode;
906 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
907 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
909 if (mode == VOIDmode)
911 /* The only way this should occur is if the field spans word
912 boundaries. */
913 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
914 value);
915 return;
918 total_bits = GET_MODE_BITSIZE (mode);
920 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
921 be in the range 0 to total_bits-1, and put any excess bytes in
922 OFFSET. */
923 if (bitpos >= total_bits)
925 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
926 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
927 * BITS_PER_UNIT);
930 /* Get ref to an aligned byte, halfword, or word containing the field.
931 Adjust BITPOS to be position within a word,
932 and OFFSET to be the offset of that word.
933 Then alter OP0 to refer to that word. */
934 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
935 offset -= (offset % (total_bits / BITS_PER_UNIT));
936 op0 = adjust_address (op0, mode, offset);
939 mode = GET_MODE (op0);
941 /* Now MODE is either some integral mode for a MEM as OP0,
942 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
943 The bit field is contained entirely within OP0.
944 BITPOS is the starting bit number within OP0.
945 (OP0's mode may actually be narrower than MODE.) */
947 if (BYTES_BIG_ENDIAN)
948 /* BITPOS is the distance between our msb
949 and that of the containing datum.
950 Convert it to the distance from the lsb. */
951 bitpos = total_bits - bitsize - bitpos;
953 /* Now BITPOS is always the distance between our lsb
954 and that of OP0. */
956 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
957 we must first convert its mode to MODE. */
959 if (CONST_INT_P (value))
961 HOST_WIDE_INT v = INTVAL (value);
963 if (bitsize < HOST_BITS_PER_WIDE_INT)
964 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
966 if (v == 0)
967 all_zero = 1;
968 else if ((bitsize < HOST_BITS_PER_WIDE_INT
969 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
970 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
971 all_one = 1;
973 value = lshift_value (mode, value, bitpos, bitsize);
975 else
977 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
978 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
980 if (GET_MODE (value) != mode)
981 value = convert_to_mode (mode, value, 1);
983 if (must_and)
984 value = expand_binop (mode, and_optab, value,
985 mask_rtx (mode, 0, bitsize, 0),
986 NULL_RTX, 1, OPTAB_LIB_WIDEN);
987 if (bitpos > 0)
988 value = expand_shift (LSHIFT_EXPR, mode, value,
989 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
992 /* Now clear the chosen bits in OP0,
993 except that if VALUE is -1 we need not bother. */
994 /* We keep the intermediates in registers to allow CSE to combine
995 consecutive bitfield assignments. */
997 temp = force_reg (mode, op0);
999 if (! all_one)
1001 temp = expand_binop (mode, and_optab, temp,
1002 mask_rtx (mode, bitpos, bitsize, 1),
1003 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1004 temp = force_reg (mode, temp);
1007 /* Now logical-or VALUE into OP0, unless it is zero. */
1009 if (! all_zero)
1011 temp = expand_binop (mode, ior_optab, temp, value,
1012 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1013 temp = force_reg (mode, temp);
1016 if (op0 != temp)
1018 op0 = copy_rtx (op0);
1019 emit_move_insn (op0, temp);
1023 /* Store a bit field that is split across multiple accessible memory objects.
1025 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1026 BITSIZE is the field width; BITPOS the position of its first bit
1027 (within the word).
1028 VALUE is the value to store.
1030 This does not yet handle fields wider than BITS_PER_WORD. */
1032 static void
1033 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1034 unsigned HOST_WIDE_INT bitpos, rtx value)
1036 unsigned int unit;
1037 unsigned int bitsdone = 0;
1039 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1040 much at a time. */
1041 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1042 unit = BITS_PER_WORD;
1043 else
1044 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1046 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1047 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1048 that VALUE might be a floating-point constant. */
1049 if (CONSTANT_P (value) && !CONST_INT_P (value))
1051 rtx word = gen_lowpart_common (word_mode, value);
1053 if (word && (value != word))
1054 value = word;
1055 else
1056 value = gen_lowpart_common (word_mode,
1057 force_reg (GET_MODE (value) != VOIDmode
1058 ? GET_MODE (value)
1059 : word_mode, value));
1062 while (bitsdone < bitsize)
1064 unsigned HOST_WIDE_INT thissize;
1065 rtx part, word;
1066 unsigned HOST_WIDE_INT thispos;
1067 unsigned HOST_WIDE_INT offset;
1069 offset = (bitpos + bitsdone) / unit;
1070 thispos = (bitpos + bitsdone) % unit;
1072 /* THISSIZE must not overrun a word boundary. Otherwise,
1073 store_fixed_bit_field will call us again, and we will mutually
1074 recurse forever. */
1075 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1076 thissize = MIN (thissize, unit - thispos);
1078 if (BYTES_BIG_ENDIAN)
1080 int total_bits;
1082 /* We must do an endian conversion exactly the same way as it is
1083 done in extract_bit_field, so that the two calls to
1084 extract_fixed_bit_field will have comparable arguments. */
1085 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1086 total_bits = BITS_PER_WORD;
1087 else
1088 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1090 /* Fetch successively less significant portions. */
1091 if (CONST_INT_P (value))
1092 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1093 >> (bitsize - bitsdone - thissize))
1094 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1095 else
1096 /* The args are chosen so that the last part includes the
1097 lsb. Give extract_bit_field the value it needs (with
1098 endianness compensation) to fetch the piece we want. */
1099 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1100 total_bits - bitsize + bitsdone,
1101 NULL_RTX, 1);
1103 else
1105 /* Fetch successively more significant portions. */
1106 if (CONST_INT_P (value))
1107 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1108 >> bitsdone)
1109 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1110 else
1111 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1112 bitsdone, NULL_RTX, 1);
1115 /* If OP0 is a register, then handle OFFSET here.
1117 When handling multiword bitfields, extract_bit_field may pass
1118 down a word_mode SUBREG of a larger REG for a bitfield that actually
1119 crosses a word boundary. Thus, for a SUBREG, we must find
1120 the current word starting from the base register. */
1121 if (GET_CODE (op0) == SUBREG)
1123 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1124 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1125 GET_MODE (SUBREG_REG (op0)));
1126 offset = 0;
1128 else if (REG_P (op0))
1130 word = operand_subword_force (op0, offset, GET_MODE (op0));
1131 offset = 0;
1133 else
1134 word = op0;
1136 /* OFFSET is in UNITs, and UNIT is in bits.
1137 store_fixed_bit_field wants offset in bytes. */
1138 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1139 thispos, part);
1140 bitsdone += thissize;
1144 /* A subroutine of extract_bit_field_1 that converts return value X
1145 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1146 to extract_bit_field. */
1148 static rtx
1149 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1150 enum machine_mode tmode, bool unsignedp)
1152 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1153 return x;
1155 /* If the x mode is not a scalar integral, first convert to the
1156 integer mode of that size and then access it as a floating-point
1157 value via a SUBREG. */
1158 if (!SCALAR_INT_MODE_P (tmode))
1160 enum machine_mode smode;
1162 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1163 x = convert_to_mode (smode, x, unsignedp);
1164 x = force_reg (smode, x);
1165 return gen_lowpart (tmode, x);
1168 return convert_to_mode (tmode, x, unsignedp);
1171 /* A subroutine of extract_bit_field, with the same arguments.
1172 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1173 if we can find no other means of implementing the operation.
1174 if FALLBACK_P is false, return NULL instead. */
1176 static rtx
1177 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1178 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1179 enum machine_mode mode, enum machine_mode tmode,
1180 bool fallback_p)
1182 unsigned int unit
1183 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1184 unsigned HOST_WIDE_INT offset, bitpos;
1185 rtx op0 = str_rtx;
1186 enum machine_mode int_mode;
1187 enum machine_mode ext_mode;
1188 enum machine_mode mode1;
1189 enum insn_code icode;
1190 int byte_offset;
1192 if (tmode == VOIDmode)
1193 tmode = mode;
1195 while (GET_CODE (op0) == SUBREG)
1197 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1198 op0 = SUBREG_REG (op0);
1201 /* If we have an out-of-bounds access to a register, just return an
1202 uninitialized register of the required mode. This can occur if the
1203 source code contains an out-of-bounds access to a small array. */
1204 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1205 return gen_reg_rtx (tmode);
1207 if (REG_P (op0)
1208 && mode == GET_MODE (op0)
1209 && bitnum == 0
1210 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1212 /* We're trying to extract a full register from itself. */
1213 return op0;
1216 /* See if we can get a better vector mode before extracting. */
1217 if (VECTOR_MODE_P (GET_MODE (op0))
1218 && !MEM_P (op0)
1219 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1221 enum machine_mode new_mode;
1222 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1224 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1225 new_mode = MIN_MODE_VECTOR_FLOAT;
1226 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1227 new_mode = MIN_MODE_VECTOR_FRACT;
1228 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1229 new_mode = MIN_MODE_VECTOR_UFRACT;
1230 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1231 new_mode = MIN_MODE_VECTOR_ACCUM;
1232 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1233 new_mode = MIN_MODE_VECTOR_UACCUM;
1234 else
1235 new_mode = MIN_MODE_VECTOR_INT;
1237 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1238 if (GET_MODE_NUNITS (new_mode) == nunits
1239 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1240 && targetm.vector_mode_supported_p (new_mode))
1241 break;
1242 if (new_mode != VOIDmode)
1243 op0 = gen_lowpart (new_mode, op0);
1246 /* Use vec_extract patterns for extracting parts of vectors whenever
1247 available. */
1248 if (VECTOR_MODE_P (GET_MODE (op0))
1249 && !MEM_P (op0)
1250 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1251 != CODE_FOR_nothing)
1252 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1253 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1255 enum machine_mode outermode = GET_MODE (op0);
1256 enum machine_mode innermode = GET_MODE_INNER (outermode);
1257 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1258 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1259 rtx rtxpos = GEN_INT (pos);
1260 rtx src = op0;
1261 rtx dest = NULL, pat, seq;
1262 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1263 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1264 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1266 if (innermode == tmode || innermode == mode)
1267 dest = target;
1269 if (!dest)
1270 dest = gen_reg_rtx (innermode);
1272 start_sequence ();
1274 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1275 dest = copy_to_mode_reg (mode0, dest);
1277 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1278 src = copy_to_mode_reg (mode1, src);
1280 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1281 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1283 /* We could handle this, but we should always be called with a pseudo
1284 for our targets and all insns should take them as outputs. */
1285 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1286 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1287 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1289 pat = GEN_FCN (icode) (dest, src, rtxpos);
1290 seq = get_insns ();
1291 end_sequence ();
1292 if (pat)
1294 emit_insn (seq);
1295 emit_insn (pat);
1296 if (mode0 != mode)
1297 return gen_lowpart (tmode, dest);
1298 return dest;
1302 /* Make sure we are playing with integral modes. Pun with subregs
1303 if we aren't. */
1305 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1306 if (imode != GET_MODE (op0))
1308 if (MEM_P (op0))
1309 op0 = adjust_address (op0, imode, 0);
1310 else if (imode != BLKmode)
1312 op0 = gen_lowpart (imode, op0);
1314 /* If we got a SUBREG, force it into a register since we
1315 aren't going to be able to do another SUBREG on it. */
1316 if (GET_CODE (op0) == SUBREG)
1317 op0 = force_reg (imode, op0);
1319 else if (REG_P (op0))
1321 rtx reg, subreg;
1322 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1323 MODE_INT);
1324 reg = gen_reg_rtx (imode);
1325 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1326 emit_move_insn (subreg, op0);
1327 op0 = reg;
1328 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1330 else
1332 rtx mem = assign_stack_temp (GET_MODE (op0),
1333 GET_MODE_SIZE (GET_MODE (op0)), 0);
1334 emit_move_insn (mem, op0);
1335 op0 = adjust_address (mem, BLKmode, 0);
1340 /* We may be accessing data outside the field, which means
1341 we can alias adjacent data. */
1342 if (MEM_P (op0))
1344 op0 = shallow_copy_rtx (op0);
1345 set_mem_alias_set (op0, 0);
1346 set_mem_expr (op0, 0);
1349 /* Extraction of a full-word or multi-word value from a structure
1350 in a register or aligned memory can be done with just a SUBREG.
1351 A subword value in the least significant part of a register
1352 can also be extracted with a SUBREG. For this, we need the
1353 byte offset of the value in op0. */
1355 bitpos = bitnum % unit;
1356 offset = bitnum / unit;
1357 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1359 /* If OP0 is a register, BITPOS must count within a word.
1360 But as we have it, it counts within whatever size OP0 now has.
1361 On a bigendian machine, these are not the same, so convert. */
1362 if (BYTES_BIG_ENDIAN
1363 && !MEM_P (op0)
1364 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1365 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1367 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1368 If that's wrong, the solution is to test for it and set TARGET to 0
1369 if needed. */
1371 /* Only scalar integer modes can be converted via subregs. There is an
1372 additional problem for FP modes here in that they can have a precision
1373 which is different from the size. mode_for_size uses precision, but
1374 we want a mode based on the size, so we must avoid calling it for FP
1375 modes. */
1376 mode1 = (SCALAR_INT_MODE_P (tmode)
1377 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1378 : mode);
1380 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1381 && bitpos % BITS_PER_WORD == 0)
1382 || (mode1 != BLKmode
1383 /* ??? The big endian test here is wrong. This is correct
1384 if the value is in a register, and if mode_for_size is not
1385 the same mode as op0. This causes us to get unnecessarily
1386 inefficient code from the Thumb port when -mbig-endian. */
1387 && (BYTES_BIG_ENDIAN
1388 ? bitpos + bitsize == BITS_PER_WORD
1389 : bitpos == 0)))
1390 && ((!MEM_P (op0)
1391 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1392 GET_MODE_BITSIZE (GET_MODE (op0)))
1393 && GET_MODE_SIZE (mode1) != 0
1394 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1395 || (MEM_P (op0)
1396 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1397 || (offset * BITS_PER_UNIT % bitsize == 0
1398 && MEM_ALIGN (op0) % bitsize == 0)))))
1400 if (MEM_P (op0))
1401 op0 = adjust_address (op0, mode1, offset);
1402 else if (mode1 != GET_MODE (op0))
1404 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1405 byte_offset);
1406 if (sub == NULL)
1407 goto no_subreg_mode_swap;
1408 op0 = sub;
1410 if (mode1 != mode)
1411 return convert_to_mode (tmode, op0, unsignedp);
1412 return op0;
1414 no_subreg_mode_swap:
1416 /* Handle fields bigger than a word. */
1418 if (bitsize > BITS_PER_WORD)
1420 /* Here we transfer the words of the field
1421 in the order least significant first.
1422 This is because the most significant word is the one which may
1423 be less than full. */
1425 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1426 unsigned int i;
1428 if (target == 0 || !REG_P (target))
1429 target = gen_reg_rtx (mode);
1431 /* Indicate for flow that the entire target reg is being set. */
1432 emit_clobber (target);
1434 for (i = 0; i < nwords; i++)
1436 /* If I is 0, use the low-order word in both field and target;
1437 if I is 1, use the next to lowest word; and so on. */
1438 /* Word number in TARGET to use. */
1439 unsigned int wordnum
1440 = (WORDS_BIG_ENDIAN
1441 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1442 : i);
1443 /* Offset from start of field in OP0. */
1444 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1445 ? MAX (0, ((int) bitsize - ((int) i + 1)
1446 * (int) BITS_PER_WORD))
1447 : (int) i * BITS_PER_WORD);
1448 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1449 rtx result_part
1450 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1451 bitsize - i * BITS_PER_WORD),
1452 bitnum + bit_offset, 1, target_part, mode,
1453 word_mode);
1455 gcc_assert (target_part);
1457 if (result_part != target_part)
1458 emit_move_insn (target_part, result_part);
1461 if (unsignedp)
1463 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1464 need to be zero'd out. */
1465 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1467 unsigned int i, total_words;
1469 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1470 for (i = nwords; i < total_words; i++)
1471 emit_move_insn
1472 (operand_subword (target,
1473 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1474 1, VOIDmode),
1475 const0_rtx);
1477 return target;
1480 /* Signed bit field: sign-extend with two arithmetic shifts. */
1481 target = expand_shift (LSHIFT_EXPR, mode, target,
1482 build_int_cst (NULL_TREE,
1483 GET_MODE_BITSIZE (mode) - bitsize),
1484 NULL_RTX, 0);
1485 return expand_shift (RSHIFT_EXPR, mode, target,
1486 build_int_cst (NULL_TREE,
1487 GET_MODE_BITSIZE (mode) - bitsize),
1488 NULL_RTX, 0);
1491 /* From here on we know the desired field is smaller than a word. */
1493 /* Check if there is a correspondingly-sized integer field, so we can
1494 safely extract it as one size of integer, if necessary; then
1495 truncate or extend to the size that is wanted; then use SUBREGs or
1496 convert_to_mode to get one of the modes we really wanted. */
1498 int_mode = int_mode_for_mode (tmode);
1499 if (int_mode == BLKmode)
1500 int_mode = int_mode_for_mode (mode);
1501 /* Should probably push op0 out to memory and then do a load. */
1502 gcc_assert (int_mode != BLKmode);
1504 /* OFFSET is the number of words or bytes (UNIT says which)
1505 from STR_RTX to the first word or byte containing part of the field. */
1506 if (!MEM_P (op0))
1508 if (offset != 0
1509 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1511 if (!REG_P (op0))
1512 op0 = copy_to_reg (op0);
1513 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1514 op0, (offset * UNITS_PER_WORD));
1516 offset = 0;
1519 /* Now OFFSET is nonzero only for memory operands. */
1520 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1521 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1522 if (ext_mode != MAX_MACHINE_MODE
1523 && bitsize > 0
1524 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1525 /* If op0 is a register, we need it in EXT_MODE to make it
1526 acceptable to the format of ext(z)v. */
1527 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1528 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1529 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1530 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1532 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1533 rtx bitsize_rtx, bitpos_rtx;
1534 rtx last = get_last_insn ();
1535 rtx xop0 = op0;
1536 rtx xtarget = target;
1537 rtx xspec_target = target;
1538 rtx xspec_target_subreg = 0;
1539 rtx pat;
1541 /* If op0 is a register, we need it in EXT_MODE to make it
1542 acceptable to the format of ext(z)v. */
1543 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1544 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1545 if (MEM_P (xop0))
1546 /* Get ref to first byte containing part of the field. */
1547 xop0 = adjust_address (xop0, byte_mode, xoffset);
1549 /* On big-endian machines, we count bits from the most significant.
1550 If the bit field insn does not, we must invert. */
1551 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1552 xbitpos = unit - bitsize - xbitpos;
1554 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1555 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1556 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1558 unit = GET_MODE_BITSIZE (ext_mode);
1560 if (xtarget == 0)
1561 xtarget = xspec_target = gen_reg_rtx (tmode);
1563 if (GET_MODE (xtarget) != ext_mode)
1565 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1566 between the mode of the extraction (word_mode) and the target
1567 mode. Instead, create a temporary and use convert_move to set
1568 the target. */
1569 if (REG_P (xtarget)
1570 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1571 GET_MODE_BITSIZE (ext_mode)))
1573 xtarget = gen_lowpart (ext_mode, xtarget);
1574 if (GET_MODE_SIZE (ext_mode)
1575 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1576 xspec_target_subreg = xtarget;
1578 else
1579 xtarget = gen_reg_rtx (ext_mode);
1582 /* If this machine's ext(z)v insists on a register target,
1583 make sure we have one. */
1584 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1585 xtarget = gen_reg_rtx (ext_mode);
1587 bitsize_rtx = GEN_INT (bitsize);
1588 bitpos_rtx = GEN_INT (xbitpos);
1590 pat = (unsignedp
1591 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1592 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1593 if (pat)
1595 emit_insn (pat);
1596 if (xtarget == xspec_target)
1597 return xtarget;
1598 if (xtarget == xspec_target_subreg)
1599 return xspec_target;
1600 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1602 delete_insns_since (last);
1605 /* If OP0 is a memory, try copying it to a register and seeing if a
1606 cheap register alternative is available. */
1607 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1609 enum machine_mode bestmode;
1611 /* Get the mode to use for inserting into this field. If
1612 OP0 is BLKmode, get the smallest mode consistent with the
1613 alignment. If OP0 is a non-BLKmode object that is no
1614 wider than EXT_MODE, use its mode. Otherwise, use the
1615 smallest mode containing the field. */
1617 if (GET_MODE (op0) == BLKmode
1618 || (ext_mode != MAX_MACHINE_MODE
1619 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1620 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1621 (ext_mode == MAX_MACHINE_MODE
1622 ? VOIDmode : ext_mode),
1623 MEM_VOLATILE_P (op0));
1624 else
1625 bestmode = GET_MODE (op0);
1627 if (bestmode != VOIDmode
1628 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1629 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1631 unsigned HOST_WIDE_INT xoffset, xbitpos;
1633 /* Compute the offset as a multiple of this unit,
1634 counting in bytes. */
1635 unit = GET_MODE_BITSIZE (bestmode);
1636 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1637 xbitpos = bitnum % unit;
1639 /* Make sure the register is big enough for the whole field. */
1640 if (xoffset * BITS_PER_UNIT + unit
1641 >= offset * BITS_PER_UNIT + bitsize)
1643 rtx last, result, xop0;
1645 last = get_last_insn ();
1647 /* Fetch it to a register in that size. */
1648 xop0 = adjust_address (op0, bestmode, xoffset);
1649 xop0 = force_reg (bestmode, xop0);
1650 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1651 unsignedp, target,
1652 mode, tmode, false);
1653 if (result)
1654 return result;
1656 delete_insns_since (last);
1661 if (!fallback_p)
1662 return NULL;
1664 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1665 bitpos, target, unsignedp);
1666 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1669 /* Generate code to extract a byte-field from STR_RTX
1670 containing BITSIZE bits, starting at BITNUM,
1671 and put it in TARGET if possible (if TARGET is nonzero).
1672 Regardless of TARGET, we return the rtx for where the value is placed.
1674 STR_RTX is the structure containing the byte (a REG or MEM).
1675 UNSIGNEDP is nonzero if this is an unsigned bit field.
1676 MODE is the natural mode of the field value once extracted.
1677 TMODE is the mode the caller would like the value to have;
1678 but the value may be returned with type MODE instead.
1680 If a TARGET is specified and we can store in it at no extra cost,
1681 we do so, and return TARGET.
1682 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1683 if they are equally easy. */
1686 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1687 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1688 enum machine_mode mode, enum machine_mode tmode)
1690 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1691 target, mode, tmode, true);
1694 /* Extract a bit field using shifts and boolean operations
1695 Returns an rtx to represent the value.
1696 OP0 addresses a register (word) or memory (byte).
1697 BITPOS says which bit within the word or byte the bit field starts in.
1698 OFFSET says how many bytes farther the bit field starts;
1699 it is 0 if OP0 is a register.
1700 BITSIZE says how many bits long the bit field is.
1701 (If OP0 is a register, it may be narrower than a full word,
1702 but BITPOS still counts within a full word,
1703 which is significant on bigendian machines.)
1705 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1706 If TARGET is nonzero, attempts to store the value there
1707 and return TARGET, but this is not guaranteed.
1708 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1710 static rtx
1711 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1712 unsigned HOST_WIDE_INT offset,
1713 unsigned HOST_WIDE_INT bitsize,
1714 unsigned HOST_WIDE_INT bitpos, rtx target,
1715 int unsignedp)
1717 unsigned int total_bits = BITS_PER_WORD;
1718 enum machine_mode mode;
1720 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1722 /* Special treatment for a bit field split across two registers. */
1723 if (bitsize + bitpos > BITS_PER_WORD)
1724 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1726 else
1728 /* Get the proper mode to use for this field. We want a mode that
1729 includes the entire field. If such a mode would be larger than
1730 a word, we won't be doing the extraction the normal way. */
1732 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1733 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1735 if (mode == VOIDmode)
1736 /* The only way this should occur is if the field spans word
1737 boundaries. */
1738 return extract_split_bit_field (op0, bitsize,
1739 bitpos + offset * BITS_PER_UNIT,
1740 unsignedp);
1742 total_bits = GET_MODE_BITSIZE (mode);
1744 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1745 be in the range 0 to total_bits-1, and put any excess bytes in
1746 OFFSET. */
1747 if (bitpos >= total_bits)
1749 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1750 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1751 * BITS_PER_UNIT);
1754 /* Get ref to an aligned byte, halfword, or word containing the field.
1755 Adjust BITPOS to be position within a word,
1756 and OFFSET to be the offset of that word.
1757 Then alter OP0 to refer to that word. */
1758 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1759 offset -= (offset % (total_bits / BITS_PER_UNIT));
1760 op0 = adjust_address (op0, mode, offset);
1763 mode = GET_MODE (op0);
1765 if (BYTES_BIG_ENDIAN)
1766 /* BITPOS is the distance between our msb and that of OP0.
1767 Convert it to the distance from the lsb. */
1768 bitpos = total_bits - bitsize - bitpos;
1770 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1771 We have reduced the big-endian case to the little-endian case. */
1773 if (unsignedp)
1775 if (bitpos)
1777 /* If the field does not already start at the lsb,
1778 shift it so it does. */
1779 tree amount = build_int_cst (NULL_TREE, bitpos);
1780 /* Maybe propagate the target for the shift. */
1781 /* But not if we will return it--could confuse integrate.c. */
1782 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1783 if (tmode != mode) subtarget = 0;
1784 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1786 /* Convert the value to the desired mode. */
1787 if (mode != tmode)
1788 op0 = convert_to_mode (tmode, op0, 1);
1790 /* Unless the msb of the field used to be the msb when we shifted,
1791 mask out the upper bits. */
1793 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1794 return expand_binop (GET_MODE (op0), and_optab, op0,
1795 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1796 target, 1, OPTAB_LIB_WIDEN);
1797 return op0;
1800 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1801 then arithmetic-shift its lsb to the lsb of the word. */
1802 op0 = force_reg (mode, op0);
1803 if (mode != tmode)
1804 target = 0;
1806 /* Find the narrowest integer mode that contains the field. */
1808 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1809 mode = GET_MODE_WIDER_MODE (mode))
1810 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1812 op0 = convert_to_mode (mode, op0, 0);
1813 break;
1816 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1818 tree amount
1819 = build_int_cst (NULL_TREE,
1820 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1821 /* Maybe propagate the target for the shift. */
1822 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1823 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1826 return expand_shift (RSHIFT_EXPR, mode, op0,
1827 build_int_cst (NULL_TREE,
1828 GET_MODE_BITSIZE (mode) - bitsize),
1829 target, 0);
1832 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1833 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1834 complement of that if COMPLEMENT. The mask is truncated if
1835 necessary to the width of mode MODE. The mask is zero-extended if
1836 BITSIZE+BITPOS is too small for MODE. */
1838 static rtx
1839 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1841 double_int mask;
1843 mask = double_int_mask (bitsize);
1844 mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1846 if (complement)
1847 mask = double_int_not (mask);
1849 return immed_double_int_const (mask, mode);
1852 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1853 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1855 static rtx
1856 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1858 double_int val;
1860 val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
1861 val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1863 return immed_double_int_const (val, mode);
1866 /* Extract a bit field that is split across two words
1867 and return an RTX for the result.
1869 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1870 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1871 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1873 static rtx
1874 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1875 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1877 unsigned int unit;
1878 unsigned int bitsdone = 0;
1879 rtx result = NULL_RTX;
1880 int first = 1;
1882 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1883 much at a time. */
1884 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1885 unit = BITS_PER_WORD;
1886 else
1887 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1889 while (bitsdone < bitsize)
1891 unsigned HOST_WIDE_INT thissize;
1892 rtx part, word;
1893 unsigned HOST_WIDE_INT thispos;
1894 unsigned HOST_WIDE_INT offset;
1896 offset = (bitpos + bitsdone) / unit;
1897 thispos = (bitpos + bitsdone) % unit;
1899 /* THISSIZE must not overrun a word boundary. Otherwise,
1900 extract_fixed_bit_field will call us again, and we will mutually
1901 recurse forever. */
1902 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1903 thissize = MIN (thissize, unit - thispos);
1905 /* If OP0 is a register, then handle OFFSET here.
1907 When handling multiword bitfields, extract_bit_field may pass
1908 down a word_mode SUBREG of a larger REG for a bitfield that actually
1909 crosses a word boundary. Thus, for a SUBREG, we must find
1910 the current word starting from the base register. */
1911 if (GET_CODE (op0) == SUBREG)
1913 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1914 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1915 GET_MODE (SUBREG_REG (op0)));
1916 offset = 0;
1918 else if (REG_P (op0))
1920 word = operand_subword_force (op0, offset, GET_MODE (op0));
1921 offset = 0;
1923 else
1924 word = op0;
1926 /* Extract the parts in bit-counting order,
1927 whose meaning is determined by BYTES_PER_UNIT.
1928 OFFSET is in UNITs, and UNIT is in bits.
1929 extract_fixed_bit_field wants offset in bytes. */
1930 part = extract_fixed_bit_field (word_mode, word,
1931 offset * unit / BITS_PER_UNIT,
1932 thissize, thispos, 0, 1);
1933 bitsdone += thissize;
1935 /* Shift this part into place for the result. */
1936 if (BYTES_BIG_ENDIAN)
1938 if (bitsize != bitsdone)
1939 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1940 build_int_cst (NULL_TREE, bitsize - bitsdone),
1941 0, 1);
1943 else
1945 if (bitsdone != thissize)
1946 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1947 build_int_cst (NULL_TREE,
1948 bitsdone - thissize), 0, 1);
1951 if (first)
1952 result = part;
1953 else
1954 /* Combine the parts with bitwise or. This works
1955 because we extracted each part as an unsigned bit field. */
1956 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1957 OPTAB_LIB_WIDEN);
1959 first = 0;
1962 /* Unsigned bit field: we are done. */
1963 if (unsignedp)
1964 return result;
1965 /* Signed bit field: sign-extend with two arithmetic shifts. */
1966 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1967 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1968 NULL_RTX, 0);
1969 return expand_shift (RSHIFT_EXPR, word_mode, result,
1970 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1971 NULL_RTX, 0);
1974 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1975 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1976 MODE, fill the upper bits with zeros. Fail if the layout of either
1977 mode is unknown (as for CC modes) or if the extraction would involve
1978 unprofitable mode punning. Return the value on success, otherwise
1979 return null.
1981 This is different from gen_lowpart* in these respects:
1983 - the returned value must always be considered an rvalue
1985 - when MODE is wider than SRC_MODE, the extraction involves
1986 a zero extension
1988 - when MODE is smaller than SRC_MODE, the extraction involves
1989 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1991 In other words, this routine performs a computation, whereas the
1992 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1993 operations. */
1996 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1998 enum machine_mode int_mode, src_int_mode;
2000 if (mode == src_mode)
2001 return src;
2003 if (CONSTANT_P (src))
2005 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2006 fails, it will happily create (subreg (symbol_ref)) or similar
2007 invalid SUBREGs. */
2008 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2009 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2010 if (ret)
2011 return ret;
2013 if (GET_MODE (src) == VOIDmode
2014 || !validate_subreg (mode, src_mode, src, byte))
2015 return NULL_RTX;
2017 src = force_reg (GET_MODE (src), src);
2018 return gen_rtx_SUBREG (mode, src, byte);
2021 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2022 return NULL_RTX;
2024 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2025 && MODES_TIEABLE_P (mode, src_mode))
2027 rtx x = gen_lowpart_common (mode, src);
2028 if (x)
2029 return x;
2032 src_int_mode = int_mode_for_mode (src_mode);
2033 int_mode = int_mode_for_mode (mode);
2034 if (src_int_mode == BLKmode || int_mode == BLKmode)
2035 return NULL_RTX;
2037 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2038 return NULL_RTX;
2039 if (!MODES_TIEABLE_P (int_mode, mode))
2040 return NULL_RTX;
2042 src = gen_lowpart (src_int_mode, src);
2043 src = convert_modes (int_mode, src_int_mode, src, true);
2044 src = gen_lowpart (mode, src);
2045 return src;
2048 /* Add INC into TARGET. */
2050 void
2051 expand_inc (rtx target, rtx inc)
2053 rtx value = expand_binop (GET_MODE (target), add_optab,
2054 target, inc,
2055 target, 0, OPTAB_LIB_WIDEN);
2056 if (value != target)
2057 emit_move_insn (target, value);
2060 /* Subtract DEC from TARGET. */
2062 void
2063 expand_dec (rtx target, rtx dec)
2065 rtx value = expand_binop (GET_MODE (target), sub_optab,
2066 target, dec,
2067 target, 0, OPTAB_LIB_WIDEN);
2068 if (value != target)
2069 emit_move_insn (target, value);
2072 /* Output a shift instruction for expression code CODE,
2073 with SHIFTED being the rtx for the value to shift,
2074 and AMOUNT the tree for the amount to shift by.
2075 Store the result in the rtx TARGET, if that is convenient.
2076 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2077 Return the rtx for where the value is. */
2080 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2081 tree amount, rtx target, int unsignedp)
2083 rtx op1, temp = 0;
2084 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2085 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2086 optab lshift_optab = ashl_optab;
2087 optab rshift_arith_optab = ashr_optab;
2088 optab rshift_uns_optab = lshr_optab;
2089 optab lrotate_optab = rotl_optab;
2090 optab rrotate_optab = rotr_optab;
2091 enum machine_mode op1_mode;
2092 int attempt;
2093 bool speed = optimize_insn_for_speed_p ();
2095 op1 = expand_normal (amount);
2096 op1_mode = GET_MODE (op1);
2098 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2099 shift amount is a vector, use the vector/vector shift patterns. */
2100 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2102 lshift_optab = vashl_optab;
2103 rshift_arith_optab = vashr_optab;
2104 rshift_uns_optab = vlshr_optab;
2105 lrotate_optab = vrotl_optab;
2106 rrotate_optab = vrotr_optab;
2109 /* Previously detected shift-counts computed by NEGATE_EXPR
2110 and shifted in the other direction; but that does not work
2111 on all machines. */
2113 if (SHIFT_COUNT_TRUNCATED)
2115 if (CONST_INT_P (op1)
2116 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2117 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2118 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2119 % GET_MODE_BITSIZE (mode));
2120 else if (GET_CODE (op1) == SUBREG
2121 && subreg_lowpart_p (op1)
2122 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2123 op1 = SUBREG_REG (op1);
2126 if (op1 == const0_rtx)
2127 return shifted;
2129 /* Check whether its cheaper to implement a left shift by a constant
2130 bit count by a sequence of additions. */
2131 if (code == LSHIFT_EXPR
2132 && CONST_INT_P (op1)
2133 && INTVAL (op1) > 0
2134 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2135 && INTVAL (op1) < MAX_BITS_PER_WORD
2136 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2137 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2139 int i;
2140 for (i = 0; i < INTVAL (op1); i++)
2142 temp = force_reg (mode, shifted);
2143 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2144 unsignedp, OPTAB_LIB_WIDEN);
2146 return shifted;
2149 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2151 enum optab_methods methods;
2153 if (attempt == 0)
2154 methods = OPTAB_DIRECT;
2155 else if (attempt == 1)
2156 methods = OPTAB_WIDEN;
2157 else
2158 methods = OPTAB_LIB_WIDEN;
2160 if (rotate)
2162 /* Widening does not work for rotation. */
2163 if (methods == OPTAB_WIDEN)
2164 continue;
2165 else if (methods == OPTAB_LIB_WIDEN)
2167 /* If we have been unable to open-code this by a rotation,
2168 do it as the IOR of two shifts. I.e., to rotate A
2169 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2170 where C is the bitsize of A.
2172 It is theoretically possible that the target machine might
2173 not be able to perform either shift and hence we would
2174 be making two libcalls rather than just the one for the
2175 shift (similarly if IOR could not be done). We will allow
2176 this extremely unlikely lossage to avoid complicating the
2177 code below. */
2179 rtx subtarget = target == shifted ? 0 : target;
2180 tree new_amount, other_amount;
2181 rtx temp1;
2182 tree type = TREE_TYPE (amount);
2183 if (GET_MODE (op1) != TYPE_MODE (type)
2184 && GET_MODE (op1) != VOIDmode)
2185 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2186 new_amount = make_tree (type, op1);
2187 other_amount
2188 = fold_build2 (MINUS_EXPR, type,
2189 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2190 new_amount);
2192 shifted = force_reg (mode, shifted);
2194 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2195 mode, shifted, new_amount, 0, 1);
2196 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2197 mode, shifted, other_amount, subtarget, 1);
2198 return expand_binop (mode, ior_optab, temp, temp1, target,
2199 unsignedp, methods);
2202 temp = expand_binop (mode,
2203 left ? lrotate_optab : rrotate_optab,
2204 shifted, op1, target, unsignedp, methods);
2206 else if (unsignedp)
2207 temp = expand_binop (mode,
2208 left ? lshift_optab : rshift_uns_optab,
2209 shifted, op1, target, unsignedp, methods);
2211 /* Do arithmetic shifts.
2212 Also, if we are going to widen the operand, we can just as well
2213 use an arithmetic right-shift instead of a logical one. */
2214 if (temp == 0 && ! rotate
2215 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2217 enum optab_methods methods1 = methods;
2219 /* If trying to widen a log shift to an arithmetic shift,
2220 don't accept an arithmetic shift of the same size. */
2221 if (unsignedp)
2222 methods1 = OPTAB_MUST_WIDEN;
2224 /* Arithmetic shift */
2226 temp = expand_binop (mode,
2227 left ? lshift_optab : rshift_arith_optab,
2228 shifted, op1, target, unsignedp, methods1);
2231 /* We used to try extzv here for logical right shifts, but that was
2232 only useful for one machine, the VAX, and caused poor code
2233 generation there for lshrdi3, so the code was deleted and a
2234 define_expand for lshrsi3 was added to vax.md. */
2237 gcc_assert (temp);
2238 return temp;
2241 enum alg_code {
2242 alg_unknown,
2243 alg_zero,
2244 alg_m, alg_shift,
2245 alg_add_t_m2,
2246 alg_sub_t_m2,
2247 alg_add_factor,
2248 alg_sub_factor,
2249 alg_add_t2_m,
2250 alg_sub_t2_m,
2251 alg_impossible
2254 /* This structure holds the "cost" of a multiply sequence. The
2255 "cost" field holds the total rtx_cost of every operator in the
2256 synthetic multiplication sequence, hence cost(a op b) is defined
2257 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2258 The "latency" field holds the minimum possible latency of the
2259 synthetic multiply, on a hypothetical infinitely parallel CPU.
2260 This is the critical path, or the maximum height, of the expression
2261 tree which is the sum of rtx_costs on the most expensive path from
2262 any leaf to the root. Hence latency(a op b) is defined as zero for
2263 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2265 struct mult_cost {
2266 short cost; /* Total rtx_cost of the multiplication sequence. */
2267 short latency; /* The latency of the multiplication sequence. */
2270 /* This macro is used to compare a pointer to a mult_cost against an
2271 single integer "rtx_cost" value. This is equivalent to the macro
2272 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2273 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2274 || ((X)->cost == (Y) && (X)->latency < (Y)))
2276 /* This macro is used to compare two pointers to mult_costs against
2277 each other. The macro returns true if X is cheaper than Y.
2278 Currently, the cheaper of two mult_costs is the one with the
2279 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2280 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2281 || ((X)->cost == (Y)->cost \
2282 && (X)->latency < (Y)->latency))
2284 /* This structure records a sequence of operations.
2285 `ops' is the number of operations recorded.
2286 `cost' is their total cost.
2287 The operations are stored in `op' and the corresponding
2288 logarithms of the integer coefficients in `log'.
2290 These are the operations:
2291 alg_zero total := 0;
2292 alg_m total := multiplicand;
2293 alg_shift total := total * coeff
2294 alg_add_t_m2 total := total + multiplicand * coeff;
2295 alg_sub_t_m2 total := total - multiplicand * coeff;
2296 alg_add_factor total := total * coeff + total;
2297 alg_sub_factor total := total * coeff - total;
2298 alg_add_t2_m total := total * coeff + multiplicand;
2299 alg_sub_t2_m total := total * coeff - multiplicand;
2301 The first operand must be either alg_zero or alg_m. */
2303 struct algorithm
2305 struct mult_cost cost;
2306 short ops;
2307 /* The size of the OP and LOG fields are not directly related to the
2308 word size, but the worst-case algorithms will be if we have few
2309 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2310 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2311 in total wordsize operations. */
2312 enum alg_code op[MAX_BITS_PER_WORD];
2313 char log[MAX_BITS_PER_WORD];
2316 /* The entry for our multiplication cache/hash table. */
2317 struct alg_hash_entry {
2318 /* The number we are multiplying by. */
2319 unsigned HOST_WIDE_INT t;
2321 /* The mode in which we are multiplying something by T. */
2322 enum machine_mode mode;
2324 /* The best multiplication algorithm for t. */
2325 enum alg_code alg;
2327 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2328 Otherwise, the cost within which multiplication by T is
2329 impossible. */
2330 struct mult_cost cost;
2332 /* OPtimized for speed? */
2333 bool speed;
2336 /* The number of cache/hash entries. */
2337 #if HOST_BITS_PER_WIDE_INT == 64
2338 #define NUM_ALG_HASH_ENTRIES 1031
2339 #else
2340 #define NUM_ALG_HASH_ENTRIES 307
2341 #endif
2343 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2344 actually a hash table. If we have a collision, that the older
2345 entry is kicked out. */
2346 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2348 /* Indicates the type of fixup needed after a constant multiplication.
2349 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2350 the result should be negated, and ADD_VARIANT means that the
2351 multiplicand should be added to the result. */
2352 enum mult_variant {basic_variant, negate_variant, add_variant};
2354 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2355 const struct mult_cost *, enum machine_mode mode);
2356 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2357 struct algorithm *, enum mult_variant *, int);
2358 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2359 const struct algorithm *, enum mult_variant);
2360 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2361 int, rtx *, int *, int *);
2362 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2363 static rtx extract_high_half (enum machine_mode, rtx);
2364 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2365 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2366 int, int);
2367 /* Compute and return the best algorithm for multiplying by T.
2368 The algorithm must cost less than cost_limit
2369 If retval.cost >= COST_LIMIT, no algorithm was found and all
2370 other field of the returned struct are undefined.
2371 MODE is the machine mode of the multiplication. */
2373 static void
2374 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2375 const struct mult_cost *cost_limit, enum machine_mode mode)
2377 int m;
2378 struct algorithm *alg_in, *best_alg;
2379 struct mult_cost best_cost;
2380 struct mult_cost new_limit;
2381 int op_cost, op_latency;
2382 unsigned HOST_WIDE_INT orig_t = t;
2383 unsigned HOST_WIDE_INT q;
2384 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2385 int hash_index;
2386 bool cache_hit = false;
2387 enum alg_code cache_alg = alg_zero;
2388 bool speed = optimize_insn_for_speed_p ();
2390 /* Indicate that no algorithm is yet found. If no algorithm
2391 is found, this value will be returned and indicate failure. */
2392 alg_out->cost.cost = cost_limit->cost + 1;
2393 alg_out->cost.latency = cost_limit->latency + 1;
2395 if (cost_limit->cost < 0
2396 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2397 return;
2399 /* Restrict the bits of "t" to the multiplication's mode. */
2400 t &= GET_MODE_MASK (mode);
2402 /* t == 1 can be done in zero cost. */
2403 if (t == 1)
2405 alg_out->ops = 1;
2406 alg_out->cost.cost = 0;
2407 alg_out->cost.latency = 0;
2408 alg_out->op[0] = alg_m;
2409 return;
2412 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2413 fail now. */
2414 if (t == 0)
2416 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2417 return;
2418 else
2420 alg_out->ops = 1;
2421 alg_out->cost.cost = zero_cost[speed];
2422 alg_out->cost.latency = zero_cost[speed];
2423 alg_out->op[0] = alg_zero;
2424 return;
2428 /* We'll be needing a couple extra algorithm structures now. */
2430 alg_in = XALLOCA (struct algorithm);
2431 best_alg = XALLOCA (struct algorithm);
2432 best_cost = *cost_limit;
2434 /* Compute the hash index. */
2435 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2437 /* See if we already know what to do for T. */
2438 if (alg_hash[hash_index].t == t
2439 && alg_hash[hash_index].mode == mode
2440 && alg_hash[hash_index].mode == mode
2441 && alg_hash[hash_index].speed == speed
2442 && alg_hash[hash_index].alg != alg_unknown)
2444 cache_alg = alg_hash[hash_index].alg;
2446 if (cache_alg == alg_impossible)
2448 /* The cache tells us that it's impossible to synthesize
2449 multiplication by T within alg_hash[hash_index].cost. */
2450 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2451 /* COST_LIMIT is at least as restrictive as the one
2452 recorded in the hash table, in which case we have no
2453 hope of synthesizing a multiplication. Just
2454 return. */
2455 return;
2457 /* If we get here, COST_LIMIT is less restrictive than the
2458 one recorded in the hash table, so we may be able to
2459 synthesize a multiplication. Proceed as if we didn't
2460 have the cache entry. */
2462 else
2464 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2465 /* The cached algorithm shows that this multiplication
2466 requires more cost than COST_LIMIT. Just return. This
2467 way, we don't clobber this cache entry with
2468 alg_impossible but retain useful information. */
2469 return;
2471 cache_hit = true;
2473 switch (cache_alg)
2475 case alg_shift:
2476 goto do_alg_shift;
2478 case alg_add_t_m2:
2479 case alg_sub_t_m2:
2480 goto do_alg_addsub_t_m2;
2482 case alg_add_factor:
2483 case alg_sub_factor:
2484 goto do_alg_addsub_factor;
2486 case alg_add_t2_m:
2487 goto do_alg_add_t2_m;
2489 case alg_sub_t2_m:
2490 goto do_alg_sub_t2_m;
2492 default:
2493 gcc_unreachable ();
2498 /* If we have a group of zero bits at the low-order part of T, try
2499 multiplying by the remaining bits and then doing a shift. */
2501 if ((t & 1) == 0)
2503 do_alg_shift:
2504 m = floor_log2 (t & -t); /* m = number of low zero bits */
2505 if (m < maxm)
2507 q = t >> m;
2508 /* The function expand_shift will choose between a shift and
2509 a sequence of additions, so the observed cost is given as
2510 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2511 op_cost = m * add_cost[speed][mode];
2512 if (shift_cost[speed][mode][m] < op_cost)
2513 op_cost = shift_cost[speed][mode][m];
2514 new_limit.cost = best_cost.cost - op_cost;
2515 new_limit.latency = best_cost.latency - op_cost;
2516 synth_mult (alg_in, q, &new_limit, mode);
2518 alg_in->cost.cost += op_cost;
2519 alg_in->cost.latency += op_cost;
2520 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2522 struct algorithm *x;
2523 best_cost = alg_in->cost;
2524 x = alg_in, alg_in = best_alg, best_alg = x;
2525 best_alg->log[best_alg->ops] = m;
2526 best_alg->op[best_alg->ops] = alg_shift;
2529 /* See if treating ORIG_T as a signed number yields a better
2530 sequence. Try this sequence only for a negative ORIG_T
2531 as it would be useless for a non-negative ORIG_T. */
2532 if ((HOST_WIDE_INT) orig_t < 0)
2534 /* Shift ORIG_T as follows because a right shift of a
2535 negative-valued signed type is implementation
2536 defined. */
2537 q = ~(~orig_t >> m);
2538 /* The function expand_shift will choose between a shift
2539 and a sequence of additions, so the observed cost is
2540 given as MIN (m * add_cost[speed][mode],
2541 shift_cost[speed][mode][m]). */
2542 op_cost = m * add_cost[speed][mode];
2543 if (shift_cost[speed][mode][m] < op_cost)
2544 op_cost = shift_cost[speed][mode][m];
2545 new_limit.cost = best_cost.cost - op_cost;
2546 new_limit.latency = best_cost.latency - op_cost;
2547 synth_mult (alg_in, q, &new_limit, mode);
2549 alg_in->cost.cost += op_cost;
2550 alg_in->cost.latency += op_cost;
2551 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2553 struct algorithm *x;
2554 best_cost = alg_in->cost;
2555 x = alg_in, alg_in = best_alg, best_alg = x;
2556 best_alg->log[best_alg->ops] = m;
2557 best_alg->op[best_alg->ops] = alg_shift;
2561 if (cache_hit)
2562 goto done;
2565 /* If we have an odd number, add or subtract one. */
2566 if ((t & 1) != 0)
2568 unsigned HOST_WIDE_INT w;
2570 do_alg_addsub_t_m2:
2571 for (w = 1; (w & t) != 0; w <<= 1)
2573 /* If T was -1, then W will be zero after the loop. This is another
2574 case where T ends with ...111. Handling this with (T + 1) and
2575 subtract 1 produces slightly better code and results in algorithm
2576 selection much faster than treating it like the ...0111 case
2577 below. */
2578 if (w == 0
2579 || (w > 2
2580 /* Reject the case where t is 3.
2581 Thus we prefer addition in that case. */
2582 && t != 3))
2584 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2586 op_cost = add_cost[speed][mode];
2587 new_limit.cost = best_cost.cost - op_cost;
2588 new_limit.latency = best_cost.latency - op_cost;
2589 synth_mult (alg_in, t + 1, &new_limit, mode);
2591 alg_in->cost.cost += op_cost;
2592 alg_in->cost.latency += op_cost;
2593 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2595 struct algorithm *x;
2596 best_cost = alg_in->cost;
2597 x = alg_in, alg_in = best_alg, best_alg = x;
2598 best_alg->log[best_alg->ops] = 0;
2599 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2602 else
2604 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2606 op_cost = add_cost[speed][mode];
2607 new_limit.cost = best_cost.cost - op_cost;
2608 new_limit.latency = best_cost.latency - op_cost;
2609 synth_mult (alg_in, t - 1, &new_limit, mode);
2611 alg_in->cost.cost += op_cost;
2612 alg_in->cost.latency += op_cost;
2613 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2615 struct algorithm *x;
2616 best_cost = alg_in->cost;
2617 x = alg_in, alg_in = best_alg, best_alg = x;
2618 best_alg->log[best_alg->ops] = 0;
2619 best_alg->op[best_alg->ops] = alg_add_t_m2;
2623 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2624 quickly with a - a * n for some appropriate constant n. */
2625 m = exact_log2 (-orig_t + 1);
2626 if (m >= 0 && m < maxm)
2628 op_cost = shiftsub1_cost[speed][mode][m];
2629 new_limit.cost = best_cost.cost - op_cost;
2630 new_limit.latency = best_cost.latency - op_cost;
2631 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
2633 alg_in->cost.cost += op_cost;
2634 alg_in->cost.latency += op_cost;
2635 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2637 struct algorithm *x;
2638 best_cost = alg_in->cost;
2639 x = alg_in, alg_in = best_alg, best_alg = x;
2640 best_alg->log[best_alg->ops] = m;
2641 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2645 if (cache_hit)
2646 goto done;
2649 /* Look for factors of t of the form
2650 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2651 If we find such a factor, we can multiply by t using an algorithm that
2652 multiplies by q, shift the result by m and add/subtract it to itself.
2654 We search for large factors first and loop down, even if large factors
2655 are less probable than small; if we find a large factor we will find a
2656 good sequence quickly, and therefore be able to prune (by decreasing
2657 COST_LIMIT) the search. */
2659 do_alg_addsub_factor:
2660 for (m = floor_log2 (t - 1); m >= 2; m--)
2662 unsigned HOST_WIDE_INT d;
2664 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2665 if (t % d == 0 && t > d && m < maxm
2666 && (!cache_hit || cache_alg == alg_add_factor))
2668 /* If the target has a cheap shift-and-add instruction use
2669 that in preference to a shift insn followed by an add insn.
2670 Assume that the shift-and-add is "atomic" with a latency
2671 equal to its cost, otherwise assume that on superscalar
2672 hardware the shift may be executed concurrently with the
2673 earlier steps in the algorithm. */
2674 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2675 if (shiftadd_cost[speed][mode][m] < op_cost)
2677 op_cost = shiftadd_cost[speed][mode][m];
2678 op_latency = op_cost;
2680 else
2681 op_latency = add_cost[speed][mode];
2683 new_limit.cost = best_cost.cost - op_cost;
2684 new_limit.latency = best_cost.latency - op_latency;
2685 synth_mult (alg_in, t / d, &new_limit, mode);
2687 alg_in->cost.cost += op_cost;
2688 alg_in->cost.latency += op_latency;
2689 if (alg_in->cost.latency < op_cost)
2690 alg_in->cost.latency = op_cost;
2691 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2693 struct algorithm *x;
2694 best_cost = alg_in->cost;
2695 x = alg_in, alg_in = best_alg, best_alg = x;
2696 best_alg->log[best_alg->ops] = m;
2697 best_alg->op[best_alg->ops] = alg_add_factor;
2699 /* Other factors will have been taken care of in the recursion. */
2700 break;
2703 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2704 if (t % d == 0 && t > d && m < maxm
2705 && (!cache_hit || cache_alg == alg_sub_factor))
2707 /* If the target has a cheap shift-and-subtract insn use
2708 that in preference to a shift insn followed by a sub insn.
2709 Assume that the shift-and-sub is "atomic" with a latency
2710 equal to it's cost, otherwise assume that on superscalar
2711 hardware the shift may be executed concurrently with the
2712 earlier steps in the algorithm. */
2713 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2714 if (shiftsub0_cost[speed][mode][m] < op_cost)
2716 op_cost = shiftsub0_cost[speed][mode][m];
2717 op_latency = op_cost;
2719 else
2720 op_latency = add_cost[speed][mode];
2722 new_limit.cost = best_cost.cost - op_cost;
2723 new_limit.latency = best_cost.latency - op_latency;
2724 synth_mult (alg_in, t / d, &new_limit, mode);
2726 alg_in->cost.cost += op_cost;
2727 alg_in->cost.latency += op_latency;
2728 if (alg_in->cost.latency < op_cost)
2729 alg_in->cost.latency = op_cost;
2730 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2732 struct algorithm *x;
2733 best_cost = alg_in->cost;
2734 x = alg_in, alg_in = best_alg, best_alg = x;
2735 best_alg->log[best_alg->ops] = m;
2736 best_alg->op[best_alg->ops] = alg_sub_factor;
2738 break;
2741 if (cache_hit)
2742 goto done;
2744 /* Try shift-and-add (load effective address) instructions,
2745 i.e. do a*3, a*5, a*9. */
2746 if ((t & 1) != 0)
2748 do_alg_add_t2_m:
2749 q = t - 1;
2750 q = q & -q;
2751 m = exact_log2 (q);
2752 if (m >= 0 && m < maxm)
2754 op_cost = shiftadd_cost[speed][mode][m];
2755 new_limit.cost = best_cost.cost - op_cost;
2756 new_limit.latency = best_cost.latency - op_cost;
2757 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2759 alg_in->cost.cost += op_cost;
2760 alg_in->cost.latency += op_cost;
2761 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2763 struct algorithm *x;
2764 best_cost = alg_in->cost;
2765 x = alg_in, alg_in = best_alg, best_alg = x;
2766 best_alg->log[best_alg->ops] = m;
2767 best_alg->op[best_alg->ops] = alg_add_t2_m;
2770 if (cache_hit)
2771 goto done;
2773 do_alg_sub_t2_m:
2774 q = t + 1;
2775 q = q & -q;
2776 m = exact_log2 (q);
2777 if (m >= 0 && m < maxm)
2779 op_cost = shiftsub0_cost[speed][mode][m];
2780 new_limit.cost = best_cost.cost - op_cost;
2781 new_limit.latency = best_cost.latency - op_cost;
2782 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2784 alg_in->cost.cost += op_cost;
2785 alg_in->cost.latency += op_cost;
2786 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2788 struct algorithm *x;
2789 best_cost = alg_in->cost;
2790 x = alg_in, alg_in = best_alg, best_alg = x;
2791 best_alg->log[best_alg->ops] = m;
2792 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2795 if (cache_hit)
2796 goto done;
2799 done:
2800 /* If best_cost has not decreased, we have not found any algorithm. */
2801 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2803 /* We failed to find an algorithm. Record alg_impossible for
2804 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2805 we are asked to find an algorithm for T within the same or
2806 lower COST_LIMIT, we can immediately return to the
2807 caller. */
2808 alg_hash[hash_index].t = t;
2809 alg_hash[hash_index].mode = mode;
2810 alg_hash[hash_index].speed = speed;
2811 alg_hash[hash_index].alg = alg_impossible;
2812 alg_hash[hash_index].cost = *cost_limit;
2813 return;
2816 /* Cache the result. */
2817 if (!cache_hit)
2819 alg_hash[hash_index].t = t;
2820 alg_hash[hash_index].mode = mode;
2821 alg_hash[hash_index].speed = speed;
2822 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2823 alg_hash[hash_index].cost.cost = best_cost.cost;
2824 alg_hash[hash_index].cost.latency = best_cost.latency;
2827 /* If we are getting a too long sequence for `struct algorithm'
2828 to record, make this search fail. */
2829 if (best_alg->ops == MAX_BITS_PER_WORD)
2830 return;
2832 /* Copy the algorithm from temporary space to the space at alg_out.
2833 We avoid using structure assignment because the majority of
2834 best_alg is normally undefined, and this is a critical function. */
2835 alg_out->ops = best_alg->ops + 1;
2836 alg_out->cost = best_cost;
2837 memcpy (alg_out->op, best_alg->op,
2838 alg_out->ops * sizeof *alg_out->op);
2839 memcpy (alg_out->log, best_alg->log,
2840 alg_out->ops * sizeof *alg_out->log);
2843 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2844 Try three variations:
2846 - a shift/add sequence based on VAL itself
2847 - a shift/add sequence based on -VAL, followed by a negation
2848 - a shift/add sequence based on VAL - 1, followed by an addition.
2850 Return true if the cheapest of these cost less than MULT_COST,
2851 describing the algorithm in *ALG and final fixup in *VARIANT. */
2853 static bool
2854 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2855 struct algorithm *alg, enum mult_variant *variant,
2856 int mult_cost)
2858 struct algorithm alg2;
2859 struct mult_cost limit;
2860 int op_cost;
2861 bool speed = optimize_insn_for_speed_p ();
2863 /* Fail quickly for impossible bounds. */
2864 if (mult_cost < 0)
2865 return false;
2867 /* Ensure that mult_cost provides a reasonable upper bound.
2868 Any constant multiplication can be performed with less
2869 than 2 * bits additions. */
2870 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2871 if (mult_cost > op_cost)
2872 mult_cost = op_cost;
2874 *variant = basic_variant;
2875 limit.cost = mult_cost;
2876 limit.latency = mult_cost;
2877 synth_mult (alg, val, &limit, mode);
2879 /* This works only if the inverted value actually fits in an
2880 `unsigned int' */
2881 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2883 op_cost = neg_cost[speed][mode];
2884 if (MULT_COST_LESS (&alg->cost, mult_cost))
2886 limit.cost = alg->cost.cost - op_cost;
2887 limit.latency = alg->cost.latency - op_cost;
2889 else
2891 limit.cost = mult_cost - op_cost;
2892 limit.latency = mult_cost - op_cost;
2895 synth_mult (&alg2, -val, &limit, mode);
2896 alg2.cost.cost += op_cost;
2897 alg2.cost.latency += op_cost;
2898 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2899 *alg = alg2, *variant = negate_variant;
2902 /* This proves very useful for division-by-constant. */
2903 op_cost = add_cost[speed][mode];
2904 if (MULT_COST_LESS (&alg->cost, mult_cost))
2906 limit.cost = alg->cost.cost - op_cost;
2907 limit.latency = alg->cost.latency - op_cost;
2909 else
2911 limit.cost = mult_cost - op_cost;
2912 limit.latency = mult_cost - op_cost;
2915 synth_mult (&alg2, val - 1, &limit, mode);
2916 alg2.cost.cost += op_cost;
2917 alg2.cost.latency += op_cost;
2918 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2919 *alg = alg2, *variant = add_variant;
2921 return MULT_COST_LESS (&alg->cost, mult_cost);
2924 /* A subroutine of expand_mult, used for constant multiplications.
2925 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2926 convenient. Use the shift/add sequence described by ALG and apply
2927 the final fixup specified by VARIANT. */
2929 static rtx
2930 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2931 rtx target, const struct algorithm *alg,
2932 enum mult_variant variant)
2934 HOST_WIDE_INT val_so_far;
2935 rtx insn, accum, tem;
2936 int opno;
2937 enum machine_mode nmode;
2939 /* Avoid referencing memory over and over and invalid sharing
2940 on SUBREGs. */
2941 op0 = force_reg (mode, op0);
2943 /* ACCUM starts out either as OP0 or as a zero, depending on
2944 the first operation. */
2946 if (alg->op[0] == alg_zero)
2948 accum = copy_to_mode_reg (mode, const0_rtx);
2949 val_so_far = 0;
2951 else if (alg->op[0] == alg_m)
2953 accum = copy_to_mode_reg (mode, op0);
2954 val_so_far = 1;
2956 else
2957 gcc_unreachable ();
2959 for (opno = 1; opno < alg->ops; opno++)
2961 int log = alg->log[opno];
2962 rtx shift_subtarget = optimize ? 0 : accum;
2963 rtx add_target
2964 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2965 && !optimize)
2966 ? target : 0;
2967 rtx accum_target = optimize ? 0 : accum;
2969 switch (alg->op[opno])
2971 case alg_shift:
2972 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2973 build_int_cst (NULL_TREE, log),
2974 NULL_RTX, 0);
2975 val_so_far <<= log;
2976 break;
2978 case alg_add_t_m2:
2979 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2980 build_int_cst (NULL_TREE, log),
2981 NULL_RTX, 0);
2982 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2983 add_target ? add_target : accum_target);
2984 val_so_far += (HOST_WIDE_INT) 1 << log;
2985 break;
2987 case alg_sub_t_m2:
2988 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2989 build_int_cst (NULL_TREE, log),
2990 NULL_RTX, 0);
2991 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2992 add_target ? add_target : accum_target);
2993 val_so_far -= (HOST_WIDE_INT) 1 << log;
2994 break;
2996 case alg_add_t2_m:
2997 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2998 build_int_cst (NULL_TREE, log),
2999 shift_subtarget,
3001 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3002 add_target ? add_target : accum_target);
3003 val_so_far = (val_so_far << log) + 1;
3004 break;
3006 case alg_sub_t2_m:
3007 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3008 build_int_cst (NULL_TREE, log),
3009 shift_subtarget, 0);
3010 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3011 add_target ? add_target : accum_target);
3012 val_so_far = (val_so_far << log) - 1;
3013 break;
3015 case alg_add_factor:
3016 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3017 build_int_cst (NULL_TREE, log),
3018 NULL_RTX, 0);
3019 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3020 add_target ? add_target : accum_target);
3021 val_so_far += val_so_far << log;
3022 break;
3024 case alg_sub_factor:
3025 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3026 build_int_cst (NULL_TREE, log),
3027 NULL_RTX, 0);
3028 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3029 (add_target
3030 ? add_target : (optimize ? 0 : tem)));
3031 val_so_far = (val_so_far << log) - val_so_far;
3032 break;
3034 default:
3035 gcc_unreachable ();
3038 /* Write a REG_EQUAL note on the last insn so that we can cse
3039 multiplication sequences. Note that if ACCUM is a SUBREG,
3040 we've set the inner register and must properly indicate
3041 that. */
3043 tem = op0, nmode = mode;
3044 if (GET_CODE (accum) == SUBREG)
3046 nmode = GET_MODE (SUBREG_REG (accum));
3047 tem = gen_lowpart (nmode, op0);
3050 insn = get_last_insn ();
3051 set_unique_reg_note (insn, REG_EQUAL,
3052 gen_rtx_MULT (nmode, tem,
3053 GEN_INT (val_so_far)));
3056 if (variant == negate_variant)
3058 val_so_far = -val_so_far;
3059 accum = expand_unop (mode, neg_optab, accum, target, 0);
3061 else if (variant == add_variant)
3063 val_so_far = val_so_far + 1;
3064 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3067 /* Compare only the bits of val and val_so_far that are significant
3068 in the result mode, to avoid sign-/zero-extension confusion. */
3069 val &= GET_MODE_MASK (mode);
3070 val_so_far &= GET_MODE_MASK (mode);
3071 gcc_assert (val == val_so_far);
3073 return accum;
3076 /* Perform a multiplication and return an rtx for the result.
3077 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3078 TARGET is a suggestion for where to store the result (an rtx).
3080 We check specially for a constant integer as OP1.
3081 If you want this check for OP0 as well, then before calling
3082 you should swap the two operands if OP0 would be constant. */
3085 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3086 int unsignedp)
3088 enum mult_variant variant;
3089 struct algorithm algorithm;
3090 int max_cost;
3091 bool speed = optimize_insn_for_speed_p ();
3093 /* Handling const0_rtx here allows us to use zero as a rogue value for
3094 coeff below. */
3095 if (op1 == const0_rtx)
3096 return const0_rtx;
3097 if (op1 == const1_rtx)
3098 return op0;
3099 if (op1 == constm1_rtx)
3100 return expand_unop (mode,
3101 GET_MODE_CLASS (mode) == MODE_INT
3102 && !unsignedp && flag_trapv
3103 ? negv_optab : neg_optab,
3104 op0, target, 0);
3106 /* These are the operations that are potentially turned into a sequence
3107 of shifts and additions. */
3108 if (SCALAR_INT_MODE_P (mode)
3109 && (unsignedp || !flag_trapv))
3111 HOST_WIDE_INT coeff = 0;
3112 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3114 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3115 less than or equal in size to `unsigned int' this doesn't matter.
3116 If the mode is larger than `unsigned int', then synth_mult works
3117 only if the constant value exactly fits in an `unsigned int' without
3118 any truncation. This means that multiplying by negative values does
3119 not work; results are off by 2^32 on a 32 bit machine. */
3121 if (CONST_INT_P (op1))
3123 /* Attempt to handle multiplication of DImode values by negative
3124 coefficients, by performing the multiplication by a positive
3125 multiplier and then inverting the result. */
3126 if (INTVAL (op1) < 0
3127 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3129 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3130 result is interpreted as an unsigned coefficient.
3131 Exclude cost of op0 from max_cost to match the cost
3132 calculation of the synth_mult. */
3133 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3134 - neg_cost[speed][mode];
3135 if (max_cost > 0
3136 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3137 &variant, max_cost))
3139 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3140 NULL_RTX, &algorithm,
3141 variant);
3142 return expand_unop (mode, neg_optab, temp, target, 0);
3145 else coeff = INTVAL (op1);
3147 else if (GET_CODE (op1) == CONST_DOUBLE)
3149 /* If we are multiplying in DImode, it may still be a win
3150 to try to work with shifts and adds. */
3151 if (CONST_DOUBLE_HIGH (op1) == 0
3152 && CONST_DOUBLE_LOW (op1) > 0)
3153 coeff = CONST_DOUBLE_LOW (op1);
3154 else if (CONST_DOUBLE_LOW (op1) == 0
3155 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3157 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3158 + HOST_BITS_PER_WIDE_INT;
3159 return expand_shift (LSHIFT_EXPR, mode, op0,
3160 build_int_cst (NULL_TREE, shift),
3161 target, unsignedp);
3165 /* We used to test optimize here, on the grounds that it's better to
3166 produce a smaller program when -O is not used. But this causes
3167 such a terrible slowdown sometimes that it seems better to always
3168 use synth_mult. */
3169 if (coeff != 0)
3171 /* Special case powers of two. */
3172 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3173 return expand_shift (LSHIFT_EXPR, mode, op0,
3174 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3175 target, unsignedp);
3177 /* Exclude cost of op0 from max_cost to match the cost
3178 calculation of the synth_mult. */
3179 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3180 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3181 max_cost))
3182 return expand_mult_const (mode, op0, coeff, target,
3183 &algorithm, variant);
3187 if (GET_CODE (op0) == CONST_DOUBLE)
3189 rtx temp = op0;
3190 op0 = op1;
3191 op1 = temp;
3194 /* Expand x*2.0 as x+x. */
3195 if (GET_CODE (op1) == CONST_DOUBLE
3196 && SCALAR_FLOAT_MODE_P (mode))
3198 REAL_VALUE_TYPE d;
3199 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3201 if (REAL_VALUES_EQUAL (d, dconst2))
3203 op0 = force_reg (GET_MODE (op0), op0);
3204 return expand_binop (mode, add_optab, op0, op0,
3205 target, unsignedp, OPTAB_LIB_WIDEN);
3209 /* This used to use umul_optab if unsigned, but for non-widening multiply
3210 there is no difference between signed and unsigned. */
3211 op0 = expand_binop (mode,
3212 ! unsignedp
3213 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3214 ? smulv_optab : smul_optab,
3215 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3216 gcc_assert (op0);
3217 return op0;
3220 /* Perform a widening multiplication and return an rtx for the result.
3221 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3222 TARGET is a suggestion for where to store the result (an rtx).
3223 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3224 or smul_widen_optab.
3226 We check specially for a constant integer as OP1, comparing the
3227 cost of a widening multiply against the cost of a sequence of shifts
3228 and adds. */
3231 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3232 int unsignedp, optab this_optab)
3234 bool speed = optimize_insn_for_speed_p ();
3236 if (CONST_INT_P (op1)
3237 && (INTVAL (op1) >= 0
3238 || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT))
3240 HOST_WIDE_INT coeff = INTVAL (op1);
3241 int max_cost;
3242 enum mult_variant variant;
3243 struct algorithm algorithm;
3245 /* Special case powers of two. */
3246 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3248 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3249 return expand_shift (LSHIFT_EXPR, mode, op0,
3250 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3251 target, unsignedp);
3254 /* Exclude cost of op0 from max_cost to match the cost
3255 calculation of the synth_mult. */
3256 max_cost = mul_widen_cost[speed][mode];
3257 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3258 max_cost))
3260 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3261 return expand_mult_const (mode, op0, coeff, target,
3262 &algorithm, variant);
3265 return expand_binop (mode, this_optab, op0, op1, target,
3266 unsignedp, OPTAB_LIB_WIDEN);
3269 /* Return the smallest n such that 2**n >= X. */
3272 ceil_log2 (unsigned HOST_WIDE_INT x)
3274 return floor_log2 (x - 1) + 1;
3277 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3278 replace division by D, and put the least significant N bits of the result
3279 in *MULTIPLIER_PTR and return the most significant bit.
3281 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3282 needed precision is in PRECISION (should be <= N).
3284 PRECISION should be as small as possible so this function can choose
3285 multiplier more freely.
3287 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3288 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3290 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3291 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3293 static
3294 unsigned HOST_WIDE_INT
3295 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3296 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3298 HOST_WIDE_INT mhigh_hi, mlow_hi;
3299 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3300 int lgup, post_shift;
3301 int pow, pow2;
3302 unsigned HOST_WIDE_INT nl, dummy1;
3303 HOST_WIDE_INT nh, dummy2;
3305 /* lgup = ceil(log2(divisor)); */
3306 lgup = ceil_log2 (d);
3308 gcc_assert (lgup <= n);
3310 pow = n + lgup;
3311 pow2 = n + lgup - precision;
3313 /* We could handle this with some effort, but this case is much
3314 better handled directly with a scc insn, so rely on caller using
3315 that. */
3316 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3318 /* mlow = 2^(N + lgup)/d */
3319 if (pow >= HOST_BITS_PER_WIDE_INT)
3321 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3322 nl = 0;
3324 else
3326 nh = 0;
3327 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3329 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3330 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3332 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3333 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3334 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3335 else
3336 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3337 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3338 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3340 gcc_assert (!mhigh_hi || nh - d < d);
3341 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3342 /* Assert that mlow < mhigh. */
3343 gcc_assert (mlow_hi < mhigh_hi
3344 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3346 /* If precision == N, then mlow, mhigh exceed 2^N
3347 (but they do not exceed 2^(N+1)). */
3349 /* Reduce to lowest terms. */
3350 for (post_shift = lgup; post_shift > 0; post_shift--)
3352 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3353 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3354 if (ml_lo >= mh_lo)
3355 break;
3357 mlow_hi = 0;
3358 mlow_lo = ml_lo;
3359 mhigh_hi = 0;
3360 mhigh_lo = mh_lo;
3363 *post_shift_ptr = post_shift;
3364 *lgup_ptr = lgup;
3365 if (n < HOST_BITS_PER_WIDE_INT)
3367 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3368 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3369 return mhigh_lo >= mask;
3371 else
3373 *multiplier_ptr = GEN_INT (mhigh_lo);
3374 return mhigh_hi;
3378 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3379 congruent to 1 (mod 2**N). */
3381 static unsigned HOST_WIDE_INT
3382 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3384 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3386 /* The algorithm notes that the choice y = x satisfies
3387 x*y == 1 mod 2^3, since x is assumed odd.
3388 Each iteration doubles the number of bits of significance in y. */
3390 unsigned HOST_WIDE_INT mask;
3391 unsigned HOST_WIDE_INT y = x;
3392 int nbit = 3;
3394 mask = (n == HOST_BITS_PER_WIDE_INT
3395 ? ~(unsigned HOST_WIDE_INT) 0
3396 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3398 while (nbit < n)
3400 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3401 nbit *= 2;
3403 return y;
3406 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3407 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3408 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3409 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3410 become signed.
3412 The result is put in TARGET if that is convenient.
3414 MODE is the mode of operation. */
3417 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3418 rtx op1, rtx target, int unsignedp)
3420 rtx tem;
3421 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3423 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3424 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3425 NULL_RTX, 0);
3426 tem = expand_and (mode, tem, op1, NULL_RTX);
3427 adj_operand
3428 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3429 adj_operand);
3431 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3432 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3433 NULL_RTX, 0);
3434 tem = expand_and (mode, tem, op0, NULL_RTX);
3435 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3436 target);
3438 return target;
3441 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3443 static rtx
3444 extract_high_half (enum machine_mode mode, rtx op)
3446 enum machine_mode wider_mode;
3448 if (mode == word_mode)
3449 return gen_highpart (mode, op);
3451 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3453 wider_mode = GET_MODE_WIDER_MODE (mode);
3454 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3455 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3456 return convert_modes (mode, wider_mode, op, 0);
3459 /* Like expand_mult_highpart, but only consider using a multiplication
3460 optab. OP1 is an rtx for the constant operand. */
3462 static rtx
3463 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3464 rtx target, int unsignedp, int max_cost)
3466 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3467 enum machine_mode wider_mode;
3468 optab moptab;
3469 rtx tem;
3470 int size;
3471 bool speed = optimize_insn_for_speed_p ();
3473 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3475 wider_mode = GET_MODE_WIDER_MODE (mode);
3476 size = GET_MODE_BITSIZE (mode);
3478 /* Firstly, try using a multiplication insn that only generates the needed
3479 high part of the product, and in the sign flavor of unsignedp. */
3480 if (mul_highpart_cost[speed][mode] < max_cost)
3482 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3483 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3484 unsignedp, OPTAB_DIRECT);
3485 if (tem)
3486 return tem;
3489 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3490 Need to adjust the result after the multiplication. */
3491 if (size - 1 < BITS_PER_WORD
3492 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3493 + 4 * add_cost[speed][mode] < max_cost))
3495 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3496 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3497 unsignedp, OPTAB_DIRECT);
3498 if (tem)
3499 /* We used the wrong signedness. Adjust the result. */
3500 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3501 tem, unsignedp);
3504 /* Try widening multiplication. */
3505 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3506 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3507 && mul_widen_cost[speed][wider_mode] < max_cost)
3509 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3510 unsignedp, OPTAB_WIDEN);
3511 if (tem)
3512 return extract_high_half (mode, tem);
3515 /* Try widening the mode and perform a non-widening multiplication. */
3516 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3517 && size - 1 < BITS_PER_WORD
3518 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3520 rtx insns, wop0, wop1;
3522 /* We need to widen the operands, for example to ensure the
3523 constant multiplier is correctly sign or zero extended.
3524 Use a sequence to clean-up any instructions emitted by
3525 the conversions if things don't work out. */
3526 start_sequence ();
3527 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3528 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3529 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3530 unsignedp, OPTAB_WIDEN);
3531 insns = get_insns ();
3532 end_sequence ();
3534 if (tem)
3536 emit_insn (insns);
3537 return extract_high_half (mode, tem);
3541 /* Try widening multiplication of opposite signedness, and adjust. */
3542 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3543 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3544 && size - 1 < BITS_PER_WORD
3545 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3546 + 4 * add_cost[speed][mode] < max_cost))
3548 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3549 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3550 if (tem != 0)
3552 tem = extract_high_half (mode, tem);
3553 /* We used the wrong signedness. Adjust the result. */
3554 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3555 target, unsignedp);
3559 return 0;
3562 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3563 putting the high half of the result in TARGET if that is convenient,
3564 and return where the result is. If the operation can not be performed,
3565 0 is returned.
3567 MODE is the mode of operation and result.
3569 UNSIGNEDP nonzero means unsigned multiply.
3571 MAX_COST is the total allowed cost for the expanded RTL. */
3573 static rtx
3574 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3575 rtx target, int unsignedp, int max_cost)
3577 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3578 unsigned HOST_WIDE_INT cnst1;
3579 int extra_cost;
3580 bool sign_adjust = false;
3581 enum mult_variant variant;
3582 struct algorithm alg;
3583 rtx tem;
3584 bool speed = optimize_insn_for_speed_p ();
3586 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3587 /* We can't support modes wider than HOST_BITS_PER_INT. */
3588 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3590 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3592 /* We can't optimize modes wider than BITS_PER_WORD.
3593 ??? We might be able to perform double-word arithmetic if
3594 mode == word_mode, however all the cost calculations in
3595 synth_mult etc. assume single-word operations. */
3596 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3597 return expand_mult_highpart_optab (mode, op0, op1, target,
3598 unsignedp, max_cost);
3600 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3602 /* Check whether we try to multiply by a negative constant. */
3603 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3605 sign_adjust = true;
3606 extra_cost += add_cost[speed][mode];
3609 /* See whether shift/add multiplication is cheap enough. */
3610 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3611 max_cost - extra_cost))
3613 /* See whether the specialized multiplication optabs are
3614 cheaper than the shift/add version. */
3615 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3616 alg.cost.cost + extra_cost);
3617 if (tem)
3618 return tem;
3620 tem = convert_to_mode (wider_mode, op0, unsignedp);
3621 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3622 tem = extract_high_half (mode, tem);
3624 /* Adjust result for signedness. */
3625 if (sign_adjust)
3626 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3628 return tem;
3630 return expand_mult_highpart_optab (mode, op0, op1, target,
3631 unsignedp, max_cost);
3635 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3637 static rtx
3638 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3640 unsigned HOST_WIDE_INT masklow, maskhigh;
3641 rtx result, temp, shift, label;
3642 int logd;
3644 logd = floor_log2 (d);
3645 result = gen_reg_rtx (mode);
3647 /* Avoid conditional branches when they're expensive. */
3648 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3649 && optimize_insn_for_speed_p ())
3651 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3652 mode, 0, -1);
3653 if (signmask)
3655 signmask = force_reg (mode, signmask);
3656 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3657 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3659 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3660 which instruction sequence to use. If logical right shifts
3661 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3662 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3664 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3665 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3666 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3668 temp = expand_binop (mode, xor_optab, op0, signmask,
3669 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3670 temp = expand_binop (mode, sub_optab, temp, signmask,
3671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3672 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3674 temp = expand_binop (mode, xor_optab, temp, signmask,
3675 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3676 temp = expand_binop (mode, sub_optab, temp, signmask,
3677 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3679 else
3681 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3682 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3683 signmask = force_reg (mode, signmask);
3685 temp = expand_binop (mode, add_optab, op0, signmask,
3686 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3687 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3689 temp = expand_binop (mode, sub_optab, temp, signmask,
3690 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3692 return temp;
3696 /* Mask contains the mode's signbit and the significant bits of the
3697 modulus. By including the signbit in the operation, many targets
3698 can avoid an explicit compare operation in the following comparison
3699 against zero. */
3701 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3702 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3704 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3705 maskhigh = -1;
3707 else
3708 maskhigh = (HOST_WIDE_INT) -1
3709 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3711 temp = expand_binop (mode, and_optab, op0,
3712 immed_double_const (masklow, maskhigh, mode),
3713 result, 1, OPTAB_LIB_WIDEN);
3714 if (temp != result)
3715 emit_move_insn (result, temp);
3717 label = gen_label_rtx ();
3718 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3720 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3721 0, OPTAB_LIB_WIDEN);
3722 masklow = (HOST_WIDE_INT) -1 << logd;
3723 maskhigh = -1;
3724 temp = expand_binop (mode, ior_optab, temp,
3725 immed_double_const (masklow, maskhigh, mode),
3726 result, 1, OPTAB_LIB_WIDEN);
3727 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3728 0, OPTAB_LIB_WIDEN);
3729 if (temp != result)
3730 emit_move_insn (result, temp);
3731 emit_label (label);
3732 return result;
3735 /* Expand signed division of OP0 by a power of two D in mode MODE.
3736 This routine is only called for positive values of D. */
3738 static rtx
3739 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3741 rtx temp, label;
3742 tree shift;
3743 int logd;
3745 logd = floor_log2 (d);
3746 shift = build_int_cst (NULL_TREE, logd);
3748 if (d == 2
3749 && BRANCH_COST (optimize_insn_for_speed_p (),
3750 false) >= 1)
3752 temp = gen_reg_rtx (mode);
3753 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3754 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3755 0, OPTAB_LIB_WIDEN);
3756 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3759 #ifdef HAVE_conditional_move
3760 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3761 >= 2)
3763 rtx temp2;
3765 /* ??? emit_conditional_move forces a stack adjustment via
3766 compare_from_rtx so, if the sequence is discarded, it will
3767 be lost. Do it now instead. */
3768 do_pending_stack_adjust ();
3770 start_sequence ();
3771 temp2 = copy_to_mode_reg (mode, op0);
3772 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3773 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3774 temp = force_reg (mode, temp);
3776 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3777 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3778 mode, temp, temp2, mode, 0);
3779 if (temp2)
3781 rtx seq = get_insns ();
3782 end_sequence ();
3783 emit_insn (seq);
3784 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3786 end_sequence ();
3788 #endif
3790 if (BRANCH_COST (optimize_insn_for_speed_p (),
3791 false) >= 2)
3793 int ushift = GET_MODE_BITSIZE (mode) - logd;
3795 temp = gen_reg_rtx (mode);
3796 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3797 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3798 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3799 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3800 else
3801 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3802 build_int_cst (NULL_TREE, ushift),
3803 NULL_RTX, 1);
3804 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3805 0, OPTAB_LIB_WIDEN);
3806 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3809 label = gen_label_rtx ();
3810 temp = copy_to_mode_reg (mode, op0);
3811 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3812 expand_inc (temp, GEN_INT (d - 1));
3813 emit_label (label);
3814 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3817 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3818 if that is convenient, and returning where the result is.
3819 You may request either the quotient or the remainder as the result;
3820 specify REM_FLAG nonzero to get the remainder.
3822 CODE is the expression code for which kind of division this is;
3823 it controls how rounding is done. MODE is the machine mode to use.
3824 UNSIGNEDP nonzero means do unsigned division. */
3826 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3827 and then correct it by or'ing in missing high bits
3828 if result of ANDI is nonzero.
3829 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3830 This could optimize to a bfexts instruction.
3831 But C doesn't use these operations, so their optimizations are
3832 left for later. */
3833 /* ??? For modulo, we don't actually need the highpart of the first product,
3834 the low part will do nicely. And for small divisors, the second multiply
3835 can also be a low-part only multiply or even be completely left out.
3836 E.g. to calculate the remainder of a division by 3 with a 32 bit
3837 multiply, multiply with 0x55555556 and extract the upper two bits;
3838 the result is exact for inputs up to 0x1fffffff.
3839 The input range can be reduced by using cross-sum rules.
3840 For odd divisors >= 3, the following table gives right shift counts
3841 so that if a number is shifted by an integer multiple of the given
3842 amount, the remainder stays the same:
3843 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3844 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3845 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3846 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3847 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3849 Cross-sum rules for even numbers can be derived by leaving as many bits
3850 to the right alone as the divisor has zeros to the right.
3851 E.g. if x is an unsigned 32 bit number:
3852 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3856 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3857 rtx op0, rtx op1, rtx target, int unsignedp)
3859 enum machine_mode compute_mode;
3860 rtx tquotient;
3861 rtx quotient = 0, remainder = 0;
3862 rtx last;
3863 int size;
3864 rtx insn, set;
3865 optab optab1, optab2;
3866 int op1_is_constant, op1_is_pow2 = 0;
3867 int max_cost, extra_cost;
3868 static HOST_WIDE_INT last_div_const = 0;
3869 static HOST_WIDE_INT ext_op1;
3870 bool speed = optimize_insn_for_speed_p ();
3872 op1_is_constant = CONST_INT_P (op1);
3873 if (op1_is_constant)
3875 ext_op1 = INTVAL (op1);
3876 if (unsignedp)
3877 ext_op1 &= GET_MODE_MASK (mode);
3878 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3879 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3883 This is the structure of expand_divmod:
3885 First comes code to fix up the operands so we can perform the operations
3886 correctly and efficiently.
3888 Second comes a switch statement with code specific for each rounding mode.
3889 For some special operands this code emits all RTL for the desired
3890 operation, for other cases, it generates only a quotient and stores it in
3891 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3892 to indicate that it has not done anything.
3894 Last comes code that finishes the operation. If QUOTIENT is set and
3895 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3896 QUOTIENT is not set, it is computed using trunc rounding.
3898 We try to generate special code for division and remainder when OP1 is a
3899 constant. If |OP1| = 2**n we can use shifts and some other fast
3900 operations. For other values of OP1, we compute a carefully selected
3901 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3902 by m.
3904 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3905 half of the product. Different strategies for generating the product are
3906 implemented in expand_mult_highpart.
3908 If what we actually want is the remainder, we generate that by another
3909 by-constant multiplication and a subtraction. */
3911 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3912 code below will malfunction if we are, so check here and handle
3913 the special case if so. */
3914 if (op1 == const1_rtx)
3915 return rem_flag ? const0_rtx : op0;
3917 /* When dividing by -1, we could get an overflow.
3918 negv_optab can handle overflows. */
3919 if (! unsignedp && op1 == constm1_rtx)
3921 if (rem_flag)
3922 return const0_rtx;
3923 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3924 ? negv_optab : neg_optab, op0, target, 0);
3927 if (target
3928 /* Don't use the function value register as a target
3929 since we have to read it as well as write it,
3930 and function-inlining gets confused by this. */
3931 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3932 /* Don't clobber an operand while doing a multi-step calculation. */
3933 || ((rem_flag || op1_is_constant)
3934 && (reg_mentioned_p (target, op0)
3935 || (MEM_P (op0) && MEM_P (target))))
3936 || reg_mentioned_p (target, op1)
3937 || (MEM_P (op1) && MEM_P (target))))
3938 target = 0;
3940 /* Get the mode in which to perform this computation. Normally it will
3941 be MODE, but sometimes we can't do the desired operation in MODE.
3942 If so, pick a wider mode in which we can do the operation. Convert
3943 to that mode at the start to avoid repeated conversions.
3945 First see what operations we need. These depend on the expression
3946 we are evaluating. (We assume that divxx3 insns exist under the
3947 same conditions that modxx3 insns and that these insns don't normally
3948 fail. If these assumptions are not correct, we may generate less
3949 efficient code in some cases.)
3951 Then see if we find a mode in which we can open-code that operation
3952 (either a division, modulus, or shift). Finally, check for the smallest
3953 mode for which we can do the operation with a library call. */
3955 /* We might want to refine this now that we have division-by-constant
3956 optimization. Since expand_mult_highpart tries so many variants, it is
3957 not straightforward to generalize this. Maybe we should make an array
3958 of possible modes in init_expmed? Save this for GCC 2.7. */
3960 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3961 ? (unsignedp ? lshr_optab : ashr_optab)
3962 : (unsignedp ? udiv_optab : sdiv_optab));
3963 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3964 ? optab1
3965 : (unsignedp ? udivmod_optab : sdivmod_optab));
3967 for (compute_mode = mode; compute_mode != VOIDmode;
3968 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3969 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3970 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3971 break;
3973 if (compute_mode == VOIDmode)
3974 for (compute_mode = mode; compute_mode != VOIDmode;
3975 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3976 if (optab_libfunc (optab1, compute_mode)
3977 || optab_libfunc (optab2, compute_mode))
3978 break;
3980 /* If we still couldn't find a mode, use MODE, but expand_binop will
3981 probably die. */
3982 if (compute_mode == VOIDmode)
3983 compute_mode = mode;
3985 if (target && GET_MODE (target) == compute_mode)
3986 tquotient = target;
3987 else
3988 tquotient = gen_reg_rtx (compute_mode);
3990 size = GET_MODE_BITSIZE (compute_mode);
3991 #if 0
3992 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3993 (mode), and thereby get better code when OP1 is a constant. Do that
3994 later. It will require going over all usages of SIZE below. */
3995 size = GET_MODE_BITSIZE (mode);
3996 #endif
3998 /* Only deduct something for a REM if the last divide done was
3999 for a different constant. Then set the constant of the last
4000 divide. */
4001 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
4002 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4003 && INTVAL (op1) == last_div_const))
4004 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
4006 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4008 /* Now convert to the best mode to use. */
4009 if (compute_mode != mode)
4011 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4012 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4014 /* convert_modes may have placed op1 into a register, so we
4015 must recompute the following. */
4016 op1_is_constant = CONST_INT_P (op1);
4017 op1_is_pow2 = (op1_is_constant
4018 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4019 || (! unsignedp
4020 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
4023 /* If one of the operands is a volatile MEM, copy it into a register. */
4025 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4026 op0 = force_reg (compute_mode, op0);
4027 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4028 op1 = force_reg (compute_mode, op1);
4030 /* If we need the remainder or if OP1 is constant, we need to
4031 put OP0 in a register in case it has any queued subexpressions. */
4032 if (rem_flag || op1_is_constant)
4033 op0 = force_reg (compute_mode, op0);
4035 last = get_last_insn ();
4037 /* Promote floor rounding to trunc rounding for unsigned operations. */
4038 if (unsignedp)
4040 if (code == FLOOR_DIV_EXPR)
4041 code = TRUNC_DIV_EXPR;
4042 if (code == FLOOR_MOD_EXPR)
4043 code = TRUNC_MOD_EXPR;
4044 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4045 code = TRUNC_DIV_EXPR;
4048 if (op1 != const0_rtx)
4049 switch (code)
4051 case TRUNC_MOD_EXPR:
4052 case TRUNC_DIV_EXPR:
4053 if (op1_is_constant)
4055 if (unsignedp)
4057 unsigned HOST_WIDE_INT mh;
4058 int pre_shift, post_shift;
4059 int dummy;
4060 rtx ml;
4061 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4062 & GET_MODE_MASK (compute_mode));
4064 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4066 pre_shift = floor_log2 (d);
4067 if (rem_flag)
4069 remainder
4070 = expand_binop (compute_mode, and_optab, op0,
4071 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4072 remainder, 1,
4073 OPTAB_LIB_WIDEN);
4074 if (remainder)
4075 return gen_lowpart (mode, remainder);
4077 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4078 build_int_cst (NULL_TREE,
4079 pre_shift),
4080 tquotient, 1);
4082 else if (size <= HOST_BITS_PER_WIDE_INT)
4084 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4086 /* Most significant bit of divisor is set; emit an scc
4087 insn. */
4088 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4089 compute_mode, 1, 1);
4091 else
4093 /* Find a suitable multiplier and right shift count
4094 instead of multiplying with D. */
4096 mh = choose_multiplier (d, size, size,
4097 &ml, &post_shift, &dummy);
4099 /* If the suggested multiplier is more than SIZE bits,
4100 we can do better for even divisors, using an
4101 initial right shift. */
4102 if (mh != 0 && (d & 1) == 0)
4104 pre_shift = floor_log2 (d & -d);
4105 mh = choose_multiplier (d >> pre_shift, size,
4106 size - pre_shift,
4107 &ml, &post_shift, &dummy);
4108 gcc_assert (!mh);
4110 else
4111 pre_shift = 0;
4113 if (mh != 0)
4115 rtx t1, t2, t3, t4;
4117 if (post_shift - 1 >= BITS_PER_WORD)
4118 goto fail1;
4120 extra_cost
4121 = (shift_cost[speed][compute_mode][post_shift - 1]
4122 + shift_cost[speed][compute_mode][1]
4123 + 2 * add_cost[speed][compute_mode]);
4124 t1 = expand_mult_highpart (compute_mode, op0, ml,
4125 NULL_RTX, 1,
4126 max_cost - extra_cost);
4127 if (t1 == 0)
4128 goto fail1;
4129 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4130 op0, t1),
4131 NULL_RTX);
4132 t3 = expand_shift
4133 (RSHIFT_EXPR, compute_mode, t2,
4134 build_int_cst (NULL_TREE, 1),
4135 NULL_RTX,1);
4136 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4137 t1, t3),
4138 NULL_RTX);
4139 quotient = expand_shift
4140 (RSHIFT_EXPR, compute_mode, t4,
4141 build_int_cst (NULL_TREE, post_shift - 1),
4142 tquotient, 1);
4144 else
4146 rtx t1, t2;
4148 if (pre_shift >= BITS_PER_WORD
4149 || post_shift >= BITS_PER_WORD)
4150 goto fail1;
4152 t1 = expand_shift
4153 (RSHIFT_EXPR, compute_mode, op0,
4154 build_int_cst (NULL_TREE, pre_shift),
4155 NULL_RTX, 1);
4156 extra_cost
4157 = (shift_cost[speed][compute_mode][pre_shift]
4158 + shift_cost[speed][compute_mode][post_shift]);
4159 t2 = expand_mult_highpart (compute_mode, t1, ml,
4160 NULL_RTX, 1,
4161 max_cost - extra_cost);
4162 if (t2 == 0)
4163 goto fail1;
4164 quotient = expand_shift
4165 (RSHIFT_EXPR, compute_mode, t2,
4166 build_int_cst (NULL_TREE, post_shift),
4167 tquotient, 1);
4171 else /* Too wide mode to use tricky code */
4172 break;
4174 insn = get_last_insn ();
4175 if (insn != last
4176 && (set = single_set (insn)) != 0
4177 && SET_DEST (set) == quotient)
4178 set_unique_reg_note (insn,
4179 REG_EQUAL,
4180 gen_rtx_UDIV (compute_mode, op0, op1));
4182 else /* TRUNC_DIV, signed */
4184 unsigned HOST_WIDE_INT ml;
4185 int lgup, post_shift;
4186 rtx mlr;
4187 HOST_WIDE_INT d = INTVAL (op1);
4188 unsigned HOST_WIDE_INT abs_d;
4190 /* Since d might be INT_MIN, we have to cast to
4191 unsigned HOST_WIDE_INT before negating to avoid
4192 undefined signed overflow. */
4193 abs_d = (d >= 0
4194 ? (unsigned HOST_WIDE_INT) d
4195 : - (unsigned HOST_WIDE_INT) d);
4197 /* n rem d = n rem -d */
4198 if (rem_flag && d < 0)
4200 d = abs_d;
4201 op1 = gen_int_mode (abs_d, compute_mode);
4204 if (d == 1)
4205 quotient = op0;
4206 else if (d == -1)
4207 quotient = expand_unop (compute_mode, neg_optab, op0,
4208 tquotient, 0);
4209 else if (HOST_BITS_PER_WIDE_INT >= size
4210 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4212 /* This case is not handled correctly below. */
4213 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4214 compute_mode, 1, 1);
4215 if (quotient == 0)
4216 goto fail1;
4218 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4219 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4220 : sdiv_pow2_cheap[speed][compute_mode])
4221 /* We assume that cheap metric is true if the
4222 optab has an expander for this mode. */
4223 && ((optab_handler ((rem_flag ? smod_optab
4224 : sdiv_optab),
4225 compute_mode)->insn_code
4226 != CODE_FOR_nothing)
4227 || (optab_handler(sdivmod_optab,
4228 compute_mode)
4229 ->insn_code != CODE_FOR_nothing)))
4231 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4233 if (rem_flag)
4235 remainder = expand_smod_pow2 (compute_mode, op0, d);
4236 if (remainder)
4237 return gen_lowpart (mode, remainder);
4240 if (sdiv_pow2_cheap[speed][compute_mode]
4241 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4242 != CODE_FOR_nothing)
4243 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4244 != CODE_FOR_nothing)))
4245 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4246 compute_mode, op0,
4247 gen_int_mode (abs_d,
4248 compute_mode),
4249 NULL_RTX, 0);
4250 else
4251 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4253 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4254 negate the quotient. */
4255 if (d < 0)
4257 insn = get_last_insn ();
4258 if (insn != last
4259 && (set = single_set (insn)) != 0
4260 && SET_DEST (set) == quotient
4261 && abs_d < ((unsigned HOST_WIDE_INT) 1
4262 << (HOST_BITS_PER_WIDE_INT - 1)))
4263 set_unique_reg_note (insn,
4264 REG_EQUAL,
4265 gen_rtx_DIV (compute_mode,
4266 op0,
4267 GEN_INT
4268 (trunc_int_for_mode
4269 (abs_d,
4270 compute_mode))));
4272 quotient = expand_unop (compute_mode, neg_optab,
4273 quotient, quotient, 0);
4276 else if (size <= HOST_BITS_PER_WIDE_INT)
4278 choose_multiplier (abs_d, size, size - 1,
4279 &mlr, &post_shift, &lgup);
4280 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4281 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4283 rtx t1, t2, t3;
4285 if (post_shift >= BITS_PER_WORD
4286 || size - 1 >= BITS_PER_WORD)
4287 goto fail1;
4289 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4290 + shift_cost[speed][compute_mode][size - 1]
4291 + add_cost[speed][compute_mode]);
4292 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4293 NULL_RTX, 0,
4294 max_cost - extra_cost);
4295 if (t1 == 0)
4296 goto fail1;
4297 t2 = expand_shift
4298 (RSHIFT_EXPR, compute_mode, t1,
4299 build_int_cst (NULL_TREE, post_shift),
4300 NULL_RTX, 0);
4301 t3 = expand_shift
4302 (RSHIFT_EXPR, compute_mode, op0,
4303 build_int_cst (NULL_TREE, size - 1),
4304 NULL_RTX, 0);
4305 if (d < 0)
4306 quotient
4307 = force_operand (gen_rtx_MINUS (compute_mode,
4308 t3, t2),
4309 tquotient);
4310 else
4311 quotient
4312 = force_operand (gen_rtx_MINUS (compute_mode,
4313 t2, t3),
4314 tquotient);
4316 else
4318 rtx t1, t2, t3, t4;
4320 if (post_shift >= BITS_PER_WORD
4321 || size - 1 >= BITS_PER_WORD)
4322 goto fail1;
4324 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4325 mlr = gen_int_mode (ml, compute_mode);
4326 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4327 + shift_cost[speed][compute_mode][size - 1]
4328 + 2 * add_cost[speed][compute_mode]);
4329 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4330 NULL_RTX, 0,
4331 max_cost - extra_cost);
4332 if (t1 == 0)
4333 goto fail1;
4334 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4335 t1, op0),
4336 NULL_RTX);
4337 t3 = expand_shift
4338 (RSHIFT_EXPR, compute_mode, t2,
4339 build_int_cst (NULL_TREE, post_shift),
4340 NULL_RTX, 0);
4341 t4 = expand_shift
4342 (RSHIFT_EXPR, compute_mode, op0,
4343 build_int_cst (NULL_TREE, size - 1),
4344 NULL_RTX, 0);
4345 if (d < 0)
4346 quotient
4347 = force_operand (gen_rtx_MINUS (compute_mode,
4348 t4, t3),
4349 tquotient);
4350 else
4351 quotient
4352 = force_operand (gen_rtx_MINUS (compute_mode,
4353 t3, t4),
4354 tquotient);
4357 else /* Too wide mode to use tricky code */
4358 break;
4360 insn = get_last_insn ();
4361 if (insn != last
4362 && (set = single_set (insn)) != 0
4363 && SET_DEST (set) == quotient)
4364 set_unique_reg_note (insn,
4365 REG_EQUAL,
4366 gen_rtx_DIV (compute_mode, op0, op1));
4368 break;
4370 fail1:
4371 delete_insns_since (last);
4372 break;
4374 case FLOOR_DIV_EXPR:
4375 case FLOOR_MOD_EXPR:
4376 /* We will come here only for signed operations. */
4377 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4379 unsigned HOST_WIDE_INT mh;
4380 int pre_shift, lgup, post_shift;
4381 HOST_WIDE_INT d = INTVAL (op1);
4382 rtx ml;
4384 if (d > 0)
4386 /* We could just as easily deal with negative constants here,
4387 but it does not seem worth the trouble for GCC 2.6. */
4388 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4390 pre_shift = floor_log2 (d);
4391 if (rem_flag)
4393 remainder = expand_binop (compute_mode, and_optab, op0,
4394 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4395 remainder, 0, OPTAB_LIB_WIDEN);
4396 if (remainder)
4397 return gen_lowpart (mode, remainder);
4399 quotient = expand_shift
4400 (RSHIFT_EXPR, compute_mode, op0,
4401 build_int_cst (NULL_TREE, pre_shift),
4402 tquotient, 0);
4404 else
4406 rtx t1, t2, t3, t4;
4408 mh = choose_multiplier (d, size, size - 1,
4409 &ml, &post_shift, &lgup);
4410 gcc_assert (!mh);
4412 if (post_shift < BITS_PER_WORD
4413 && size - 1 < BITS_PER_WORD)
4415 t1 = expand_shift
4416 (RSHIFT_EXPR, compute_mode, op0,
4417 build_int_cst (NULL_TREE, size - 1),
4418 NULL_RTX, 0);
4419 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4420 NULL_RTX, 0, OPTAB_WIDEN);
4421 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4422 + shift_cost[speed][compute_mode][size - 1]
4423 + 2 * add_cost[speed][compute_mode]);
4424 t3 = expand_mult_highpart (compute_mode, t2, ml,
4425 NULL_RTX, 1,
4426 max_cost - extra_cost);
4427 if (t3 != 0)
4429 t4 = expand_shift
4430 (RSHIFT_EXPR, compute_mode, t3,
4431 build_int_cst (NULL_TREE, post_shift),
4432 NULL_RTX, 1);
4433 quotient = expand_binop (compute_mode, xor_optab,
4434 t4, t1, tquotient, 0,
4435 OPTAB_WIDEN);
4440 else
4442 rtx nsign, t1, t2, t3, t4;
4443 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4444 op0, constm1_rtx), NULL_RTX);
4445 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4446 0, OPTAB_WIDEN);
4447 nsign = expand_shift
4448 (RSHIFT_EXPR, compute_mode, t2,
4449 build_int_cst (NULL_TREE, size - 1),
4450 NULL_RTX, 0);
4451 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4452 NULL_RTX);
4453 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4454 NULL_RTX, 0);
4455 if (t4)
4457 rtx t5;
4458 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4459 NULL_RTX, 0);
4460 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4461 t4, t5),
4462 tquotient);
4467 if (quotient != 0)
4468 break;
4469 delete_insns_since (last);
4471 /* Try using an instruction that produces both the quotient and
4472 remainder, using truncation. We can easily compensate the quotient
4473 or remainder to get floor rounding, once we have the remainder.
4474 Notice that we compute also the final remainder value here,
4475 and return the result right away. */
4476 if (target == 0 || GET_MODE (target) != compute_mode)
4477 target = gen_reg_rtx (compute_mode);
4479 if (rem_flag)
4481 remainder
4482 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4483 quotient = gen_reg_rtx (compute_mode);
4485 else
4487 quotient
4488 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4489 remainder = gen_reg_rtx (compute_mode);
4492 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4493 quotient, remainder, 0))
4495 /* This could be computed with a branch-less sequence.
4496 Save that for later. */
4497 rtx tem;
4498 rtx label = gen_label_rtx ();
4499 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4500 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4501 NULL_RTX, 0, OPTAB_WIDEN);
4502 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4503 expand_dec (quotient, const1_rtx);
4504 expand_inc (remainder, op1);
4505 emit_label (label);
4506 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4509 /* No luck with division elimination or divmod. Have to do it
4510 by conditionally adjusting op0 *and* the result. */
4512 rtx label1, label2, label3, label4, label5;
4513 rtx adjusted_op0;
4514 rtx tem;
4516 quotient = gen_reg_rtx (compute_mode);
4517 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4518 label1 = gen_label_rtx ();
4519 label2 = gen_label_rtx ();
4520 label3 = gen_label_rtx ();
4521 label4 = gen_label_rtx ();
4522 label5 = gen_label_rtx ();
4523 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4524 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4525 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4526 quotient, 0, OPTAB_LIB_WIDEN);
4527 if (tem != quotient)
4528 emit_move_insn (quotient, tem);
4529 emit_jump_insn (gen_jump (label5));
4530 emit_barrier ();
4531 emit_label (label1);
4532 expand_inc (adjusted_op0, const1_rtx);
4533 emit_jump_insn (gen_jump (label4));
4534 emit_barrier ();
4535 emit_label (label2);
4536 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4537 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4538 quotient, 0, OPTAB_LIB_WIDEN);
4539 if (tem != quotient)
4540 emit_move_insn (quotient, tem);
4541 emit_jump_insn (gen_jump (label5));
4542 emit_barrier ();
4543 emit_label (label3);
4544 expand_dec (adjusted_op0, const1_rtx);
4545 emit_label (label4);
4546 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4547 quotient, 0, OPTAB_LIB_WIDEN);
4548 if (tem != quotient)
4549 emit_move_insn (quotient, tem);
4550 expand_dec (quotient, const1_rtx);
4551 emit_label (label5);
4553 break;
4555 case CEIL_DIV_EXPR:
4556 case CEIL_MOD_EXPR:
4557 if (unsignedp)
4559 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4561 rtx t1, t2, t3;
4562 unsigned HOST_WIDE_INT d = INTVAL (op1);
4563 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4564 build_int_cst (NULL_TREE, floor_log2 (d)),
4565 tquotient, 1);
4566 t2 = expand_binop (compute_mode, and_optab, op0,
4567 GEN_INT (d - 1),
4568 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4569 t3 = gen_reg_rtx (compute_mode);
4570 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4571 compute_mode, 1, 1);
4572 if (t3 == 0)
4574 rtx lab;
4575 lab = gen_label_rtx ();
4576 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4577 expand_inc (t1, const1_rtx);
4578 emit_label (lab);
4579 quotient = t1;
4581 else
4582 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4583 t1, t3),
4584 tquotient);
4585 break;
4588 /* Try using an instruction that produces both the quotient and
4589 remainder, using truncation. We can easily compensate the
4590 quotient or remainder to get ceiling rounding, once we have the
4591 remainder. Notice that we compute also the final remainder
4592 value here, and return the result right away. */
4593 if (target == 0 || GET_MODE (target) != compute_mode)
4594 target = gen_reg_rtx (compute_mode);
4596 if (rem_flag)
4598 remainder = (REG_P (target)
4599 ? target : gen_reg_rtx (compute_mode));
4600 quotient = gen_reg_rtx (compute_mode);
4602 else
4604 quotient = (REG_P (target)
4605 ? target : gen_reg_rtx (compute_mode));
4606 remainder = gen_reg_rtx (compute_mode);
4609 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4610 remainder, 1))
4612 /* This could be computed with a branch-less sequence.
4613 Save that for later. */
4614 rtx label = gen_label_rtx ();
4615 do_cmp_and_jump (remainder, const0_rtx, EQ,
4616 compute_mode, label);
4617 expand_inc (quotient, const1_rtx);
4618 expand_dec (remainder, op1);
4619 emit_label (label);
4620 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4623 /* No luck with division elimination or divmod. Have to do it
4624 by conditionally adjusting op0 *and* the result. */
4626 rtx label1, label2;
4627 rtx adjusted_op0, tem;
4629 quotient = gen_reg_rtx (compute_mode);
4630 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4631 label1 = gen_label_rtx ();
4632 label2 = gen_label_rtx ();
4633 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4634 compute_mode, label1);
4635 emit_move_insn (quotient, const0_rtx);
4636 emit_jump_insn (gen_jump (label2));
4637 emit_barrier ();
4638 emit_label (label1);
4639 expand_dec (adjusted_op0, const1_rtx);
4640 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4641 quotient, 1, OPTAB_LIB_WIDEN);
4642 if (tem != quotient)
4643 emit_move_insn (quotient, tem);
4644 expand_inc (quotient, const1_rtx);
4645 emit_label (label2);
4648 else /* signed */
4650 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4651 && INTVAL (op1) >= 0)
4653 /* This is extremely similar to the code for the unsigned case
4654 above. For 2.7 we should merge these variants, but for
4655 2.6.1 I don't want to touch the code for unsigned since that
4656 get used in C. The signed case will only be used by other
4657 languages (Ada). */
4659 rtx t1, t2, t3;
4660 unsigned HOST_WIDE_INT d = INTVAL (op1);
4661 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4662 build_int_cst (NULL_TREE, floor_log2 (d)),
4663 tquotient, 0);
4664 t2 = expand_binop (compute_mode, and_optab, op0,
4665 GEN_INT (d - 1),
4666 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4667 t3 = gen_reg_rtx (compute_mode);
4668 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4669 compute_mode, 1, 1);
4670 if (t3 == 0)
4672 rtx lab;
4673 lab = gen_label_rtx ();
4674 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4675 expand_inc (t1, const1_rtx);
4676 emit_label (lab);
4677 quotient = t1;
4679 else
4680 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4681 t1, t3),
4682 tquotient);
4683 break;
4686 /* Try using an instruction that produces both the quotient and
4687 remainder, using truncation. We can easily compensate the
4688 quotient or remainder to get ceiling rounding, once we have the
4689 remainder. Notice that we compute also the final remainder
4690 value here, and return the result right away. */
4691 if (target == 0 || GET_MODE (target) != compute_mode)
4692 target = gen_reg_rtx (compute_mode);
4693 if (rem_flag)
4695 remainder= (REG_P (target)
4696 ? target : gen_reg_rtx (compute_mode));
4697 quotient = gen_reg_rtx (compute_mode);
4699 else
4701 quotient = (REG_P (target)
4702 ? target : gen_reg_rtx (compute_mode));
4703 remainder = gen_reg_rtx (compute_mode);
4706 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4707 remainder, 0))
4709 /* This could be computed with a branch-less sequence.
4710 Save that for later. */
4711 rtx tem;
4712 rtx label = gen_label_rtx ();
4713 do_cmp_and_jump (remainder, const0_rtx, EQ,
4714 compute_mode, label);
4715 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4716 NULL_RTX, 0, OPTAB_WIDEN);
4717 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4718 expand_inc (quotient, const1_rtx);
4719 expand_dec (remainder, op1);
4720 emit_label (label);
4721 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4724 /* No luck with division elimination or divmod. Have to do it
4725 by conditionally adjusting op0 *and* the result. */
4727 rtx label1, label2, label3, label4, label5;
4728 rtx adjusted_op0;
4729 rtx tem;
4731 quotient = gen_reg_rtx (compute_mode);
4732 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4733 label1 = gen_label_rtx ();
4734 label2 = gen_label_rtx ();
4735 label3 = gen_label_rtx ();
4736 label4 = gen_label_rtx ();
4737 label5 = gen_label_rtx ();
4738 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4739 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4740 compute_mode, label1);
4741 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4742 quotient, 0, OPTAB_LIB_WIDEN);
4743 if (tem != quotient)
4744 emit_move_insn (quotient, tem);
4745 emit_jump_insn (gen_jump (label5));
4746 emit_barrier ();
4747 emit_label (label1);
4748 expand_dec (adjusted_op0, const1_rtx);
4749 emit_jump_insn (gen_jump (label4));
4750 emit_barrier ();
4751 emit_label (label2);
4752 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4753 compute_mode, label3);
4754 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4755 quotient, 0, OPTAB_LIB_WIDEN);
4756 if (tem != quotient)
4757 emit_move_insn (quotient, tem);
4758 emit_jump_insn (gen_jump (label5));
4759 emit_barrier ();
4760 emit_label (label3);
4761 expand_inc (adjusted_op0, const1_rtx);
4762 emit_label (label4);
4763 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4764 quotient, 0, OPTAB_LIB_WIDEN);
4765 if (tem != quotient)
4766 emit_move_insn (quotient, tem);
4767 expand_inc (quotient, const1_rtx);
4768 emit_label (label5);
4771 break;
4773 case EXACT_DIV_EXPR:
4774 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4776 HOST_WIDE_INT d = INTVAL (op1);
4777 unsigned HOST_WIDE_INT ml;
4778 int pre_shift;
4779 rtx t1;
4781 pre_shift = floor_log2 (d & -d);
4782 ml = invert_mod2n (d >> pre_shift, size);
4783 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4784 build_int_cst (NULL_TREE, pre_shift),
4785 NULL_RTX, unsignedp);
4786 quotient = expand_mult (compute_mode, t1,
4787 gen_int_mode (ml, compute_mode),
4788 NULL_RTX, 1);
4790 insn = get_last_insn ();
4791 set_unique_reg_note (insn,
4792 REG_EQUAL,
4793 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4794 compute_mode,
4795 op0, op1));
4797 break;
4799 case ROUND_DIV_EXPR:
4800 case ROUND_MOD_EXPR:
4801 if (unsignedp)
4803 rtx tem;
4804 rtx label;
4805 label = gen_label_rtx ();
4806 quotient = gen_reg_rtx (compute_mode);
4807 remainder = gen_reg_rtx (compute_mode);
4808 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4810 rtx tem;
4811 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4812 quotient, 1, OPTAB_LIB_WIDEN);
4813 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4814 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4815 remainder, 1, OPTAB_LIB_WIDEN);
4817 tem = plus_constant (op1, -1);
4818 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4819 build_int_cst (NULL_TREE, 1),
4820 NULL_RTX, 1);
4821 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4822 expand_inc (quotient, const1_rtx);
4823 expand_dec (remainder, op1);
4824 emit_label (label);
4826 else
4828 rtx abs_rem, abs_op1, tem, mask;
4829 rtx label;
4830 label = gen_label_rtx ();
4831 quotient = gen_reg_rtx (compute_mode);
4832 remainder = gen_reg_rtx (compute_mode);
4833 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4835 rtx tem;
4836 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4837 quotient, 0, OPTAB_LIB_WIDEN);
4838 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4839 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4840 remainder, 0, OPTAB_LIB_WIDEN);
4842 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4843 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4844 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4845 build_int_cst (NULL_TREE, 1),
4846 NULL_RTX, 1);
4847 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4848 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4849 NULL_RTX, 0, OPTAB_WIDEN);
4850 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4851 build_int_cst (NULL_TREE, size - 1),
4852 NULL_RTX, 0);
4853 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4854 NULL_RTX, 0, OPTAB_WIDEN);
4855 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4856 NULL_RTX, 0, OPTAB_WIDEN);
4857 expand_inc (quotient, tem);
4858 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4859 NULL_RTX, 0, OPTAB_WIDEN);
4860 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4861 NULL_RTX, 0, OPTAB_WIDEN);
4862 expand_dec (remainder, tem);
4863 emit_label (label);
4865 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4867 default:
4868 gcc_unreachable ();
4871 if (quotient == 0)
4873 if (target && GET_MODE (target) != compute_mode)
4874 target = 0;
4876 if (rem_flag)
4878 /* Try to produce the remainder without producing the quotient.
4879 If we seem to have a divmod pattern that does not require widening,
4880 don't try widening here. We should really have a WIDEN argument
4881 to expand_twoval_binop, since what we'd really like to do here is
4882 1) try a mod insn in compute_mode
4883 2) try a divmod insn in compute_mode
4884 3) try a div insn in compute_mode and multiply-subtract to get
4885 remainder
4886 4) try the same things with widening allowed. */
4887 remainder
4888 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4889 op0, op1, target,
4890 unsignedp,
4891 ((optab_handler (optab2, compute_mode)->insn_code
4892 != CODE_FOR_nothing)
4893 ? OPTAB_DIRECT : OPTAB_WIDEN));
4894 if (remainder == 0)
4896 /* No luck there. Can we do remainder and divide at once
4897 without a library call? */
4898 remainder = gen_reg_rtx (compute_mode);
4899 if (! expand_twoval_binop ((unsignedp
4900 ? udivmod_optab
4901 : sdivmod_optab),
4902 op0, op1,
4903 NULL_RTX, remainder, unsignedp))
4904 remainder = 0;
4907 if (remainder)
4908 return gen_lowpart (mode, remainder);
4911 /* Produce the quotient. Try a quotient insn, but not a library call.
4912 If we have a divmod in this mode, use it in preference to widening
4913 the div (for this test we assume it will not fail). Note that optab2
4914 is set to the one of the two optabs that the call below will use. */
4915 quotient
4916 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4917 op0, op1, rem_flag ? NULL_RTX : target,
4918 unsignedp,
4919 ((optab_handler (optab2, compute_mode)->insn_code
4920 != CODE_FOR_nothing)
4921 ? OPTAB_DIRECT : OPTAB_WIDEN));
4923 if (quotient == 0)
4925 /* No luck there. Try a quotient-and-remainder insn,
4926 keeping the quotient alone. */
4927 quotient = gen_reg_rtx (compute_mode);
4928 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4929 op0, op1,
4930 quotient, NULL_RTX, unsignedp))
4932 quotient = 0;
4933 if (! rem_flag)
4934 /* Still no luck. If we are not computing the remainder,
4935 use a library call for the quotient. */
4936 quotient = sign_expand_binop (compute_mode,
4937 udiv_optab, sdiv_optab,
4938 op0, op1, target,
4939 unsignedp, OPTAB_LIB_WIDEN);
4944 if (rem_flag)
4946 if (target && GET_MODE (target) != compute_mode)
4947 target = 0;
4949 if (quotient == 0)
4951 /* No divide instruction either. Use library for remainder. */
4952 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4953 op0, op1, target,
4954 unsignedp, OPTAB_LIB_WIDEN);
4955 /* No remainder function. Try a quotient-and-remainder
4956 function, keeping the remainder. */
4957 if (!remainder)
4959 remainder = gen_reg_rtx (compute_mode);
4960 if (!expand_twoval_binop_libfunc
4961 (unsignedp ? udivmod_optab : sdivmod_optab,
4962 op0, op1,
4963 NULL_RTX, remainder,
4964 unsignedp ? UMOD : MOD))
4965 remainder = NULL_RTX;
4968 else
4970 /* We divided. Now finish doing X - Y * (X / Y). */
4971 remainder = expand_mult (compute_mode, quotient, op1,
4972 NULL_RTX, unsignedp);
4973 remainder = expand_binop (compute_mode, sub_optab, op0,
4974 remainder, target, unsignedp,
4975 OPTAB_LIB_WIDEN);
4979 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4982 /* Return a tree node with data type TYPE, describing the value of X.
4983 Usually this is an VAR_DECL, if there is no obvious better choice.
4984 X may be an expression, however we only support those expressions
4985 generated by loop.c. */
4987 tree
4988 make_tree (tree type, rtx x)
4990 tree t;
4992 switch (GET_CODE (x))
4994 case CONST_INT:
4996 HOST_WIDE_INT hi = 0;
4998 if (INTVAL (x) < 0
4999 && !(TYPE_UNSIGNED (type)
5000 && (GET_MODE_BITSIZE (TYPE_MODE (type))
5001 < HOST_BITS_PER_WIDE_INT)))
5002 hi = -1;
5004 t = build_int_cst_wide (type, INTVAL (x), hi);
5006 return t;
5009 case CONST_DOUBLE:
5010 if (GET_MODE (x) == VOIDmode)
5011 t = build_int_cst_wide (type,
5012 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
5013 else
5015 REAL_VALUE_TYPE d;
5017 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5018 t = build_real (type, d);
5021 return t;
5023 case CONST_VECTOR:
5025 int units = CONST_VECTOR_NUNITS (x);
5026 tree itype = TREE_TYPE (type);
5027 tree t = NULL_TREE;
5028 int i;
5031 /* Build a tree with vector elements. */
5032 for (i = units - 1; i >= 0; --i)
5034 rtx elt = CONST_VECTOR_ELT (x, i);
5035 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
5038 return build_vector (type, t);
5041 case PLUS:
5042 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5043 make_tree (type, XEXP (x, 1)));
5045 case MINUS:
5046 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5047 make_tree (type, XEXP (x, 1)));
5049 case NEG:
5050 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5052 case MULT:
5053 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5054 make_tree (type, XEXP (x, 1)));
5056 case ASHIFT:
5057 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5058 make_tree (type, XEXP (x, 1)));
5060 case LSHIFTRT:
5061 t = unsigned_type_for (type);
5062 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5063 make_tree (t, XEXP (x, 0)),
5064 make_tree (type, XEXP (x, 1))));
5066 case ASHIFTRT:
5067 t = signed_type_for (type);
5068 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5069 make_tree (t, XEXP (x, 0)),
5070 make_tree (type, XEXP (x, 1))));
5072 case DIV:
5073 if (TREE_CODE (type) != REAL_TYPE)
5074 t = signed_type_for (type);
5075 else
5076 t = type;
5078 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5079 make_tree (t, XEXP (x, 0)),
5080 make_tree (t, XEXP (x, 1))));
5081 case UDIV:
5082 t = unsigned_type_for (type);
5083 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5084 make_tree (t, XEXP (x, 0)),
5085 make_tree (t, XEXP (x, 1))));
5087 case SIGN_EXTEND:
5088 case ZERO_EXTEND:
5089 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5090 GET_CODE (x) == ZERO_EXTEND);
5091 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5093 case CONST:
5094 return make_tree (type, XEXP (x, 0));
5096 case SYMBOL_REF:
5097 t = SYMBOL_REF_DECL (x);
5098 if (t)
5099 return fold_convert (type, build_fold_addr_expr (t));
5100 /* else fall through. */
5102 default:
5103 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5105 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5106 address mode to pointer mode. */
5107 if (POINTER_TYPE_P (type))
5108 x = convert_memory_address_addr_space
5109 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5111 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5112 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5113 t->decl_with_rtl.rtl = x;
5115 return t;
5119 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5120 and returning TARGET.
5122 If TARGET is 0, a pseudo-register or constant is returned. */
5125 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5127 rtx tem = 0;
5129 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5130 tem = simplify_binary_operation (AND, mode, op0, op1);
5131 if (tem == 0)
5132 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5134 if (target == 0)
5135 target = tem;
5136 else if (tem != target)
5137 emit_move_insn (target, tem);
5138 return target;
5141 /* Helper function for emit_store_flag. */
5142 static rtx
5143 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5144 enum machine_mode mode, enum machine_mode compare_mode,
5145 int unsignedp, rtx x, rtx y, int normalizep,
5146 enum machine_mode target_mode)
5148 rtx op0, last, comparison, subtarget, pattern;
5149 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5151 last = get_last_insn ();
5152 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5153 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5154 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5155 if (!x || !y
5156 || !insn_data[icode].operand[2].predicate
5157 (x, insn_data[icode].operand[2].mode)
5158 || !insn_data[icode].operand[3].predicate
5159 (y, insn_data[icode].operand[3].mode)
5160 || !insn_data[icode].operand[1].predicate (comparison, VOIDmode))
5162 delete_insns_since (last);
5163 return NULL_RTX;
5166 if (target_mode == VOIDmode)
5167 target_mode = result_mode;
5168 if (!target)
5169 target = gen_reg_rtx (target_mode);
5171 if (optimize
5172 || !(insn_data[(int) icode].operand[0].predicate (target, result_mode)))
5173 subtarget = gen_reg_rtx (result_mode);
5174 else
5175 subtarget = target;
5177 pattern = GEN_FCN (icode) (subtarget, comparison, x, y);
5178 if (!pattern)
5179 return NULL_RTX;
5180 emit_insn (pattern);
5182 /* If we are converting to a wider mode, first convert to
5183 TARGET_MODE, then normalize. This produces better combining
5184 opportunities on machines that have a SIGN_EXTRACT when we are
5185 testing a single bit. This mostly benefits the 68k.
5187 If STORE_FLAG_VALUE does not have the sign bit set when
5188 interpreted in MODE, we can do this conversion as unsigned, which
5189 is usually more efficient. */
5190 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5192 convert_move (target, subtarget,
5193 (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT)
5194 && 0 == (STORE_FLAG_VALUE
5195 & ((HOST_WIDE_INT) 1
5196 << (GET_MODE_BITSIZE (result_mode) -1))));
5197 op0 = target;
5198 result_mode = target_mode;
5200 else
5201 op0 = subtarget;
5203 /* If we want to keep subexpressions around, don't reuse our last
5204 target. */
5205 if (optimize)
5206 subtarget = 0;
5208 /* Now normalize to the proper value in MODE. Sometimes we don't
5209 have to do anything. */
5210 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5212 /* STORE_FLAG_VALUE might be the most negative number, so write
5213 the comparison this way to avoid a compiler-time warning. */
5214 else if (- normalizep == STORE_FLAG_VALUE)
5215 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5217 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5218 it hard to use a value of just the sign bit due to ANSI integer
5219 constant typing rules. */
5220 else if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
5221 && (STORE_FLAG_VALUE
5222 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
5223 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5224 size_int (GET_MODE_BITSIZE (result_mode) - 1), subtarget,
5225 normalizep == 1);
5226 else
5228 gcc_assert (STORE_FLAG_VALUE & 1);
5230 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5231 if (normalizep == -1)
5232 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5235 /* If we were converting to a smaller mode, do the conversion now. */
5236 if (target_mode != result_mode)
5238 convert_move (target, op0, 0);
5239 return target;
5241 else
5242 return op0;
5246 /* A subroutine of emit_store_flag only including "tricks" that do not
5247 need a recursive call. These are kept separate to avoid infinite
5248 loops. */
5250 static rtx
5251 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5252 enum machine_mode mode, int unsignedp, int normalizep,
5253 enum machine_mode target_mode)
5255 rtx subtarget;
5256 enum insn_code icode;
5257 enum machine_mode compare_mode;
5258 enum mode_class mclass;
5259 enum rtx_code scode;
5260 rtx tem;
5262 if (unsignedp)
5263 code = unsigned_condition (code);
5264 scode = swap_condition (code);
5266 /* If one operand is constant, make it the second one. Only do this
5267 if the other operand is not constant as well. */
5269 if (swap_commutative_operands_p (op0, op1))
5271 tem = op0;
5272 op0 = op1;
5273 op1 = tem;
5274 code = swap_condition (code);
5277 if (mode == VOIDmode)
5278 mode = GET_MODE (op0);
5280 /* For some comparisons with 1 and -1, we can convert this to
5281 comparisons with zero. This will often produce more opportunities for
5282 store-flag insns. */
5284 switch (code)
5286 case LT:
5287 if (op1 == const1_rtx)
5288 op1 = const0_rtx, code = LE;
5289 break;
5290 case LE:
5291 if (op1 == constm1_rtx)
5292 op1 = const0_rtx, code = LT;
5293 break;
5294 case GE:
5295 if (op1 == const1_rtx)
5296 op1 = const0_rtx, code = GT;
5297 break;
5298 case GT:
5299 if (op1 == constm1_rtx)
5300 op1 = const0_rtx, code = GE;
5301 break;
5302 case GEU:
5303 if (op1 == const1_rtx)
5304 op1 = const0_rtx, code = NE;
5305 break;
5306 case LTU:
5307 if (op1 == const1_rtx)
5308 op1 = const0_rtx, code = EQ;
5309 break;
5310 default:
5311 break;
5314 /* If we are comparing a double-word integer with zero or -1, we can
5315 convert the comparison into one involving a single word. */
5316 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5317 && GET_MODE_CLASS (mode) == MODE_INT
5318 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5320 if ((code == EQ || code == NE)
5321 && (op1 == const0_rtx || op1 == constm1_rtx))
5323 rtx op00, op01;
5325 /* Do a logical OR or AND of the two words and compare the
5326 result. */
5327 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5328 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5329 tem = expand_binop (word_mode,
5330 op1 == const0_rtx ? ior_optab : and_optab,
5331 op00, op01, NULL_RTX, unsignedp,
5332 OPTAB_DIRECT);
5334 if (tem != 0)
5335 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5336 unsignedp, normalizep);
5338 else if ((code == LT || code == GE) && op1 == const0_rtx)
5340 rtx op0h;
5342 /* If testing the sign bit, can just test on high word. */
5343 op0h = simplify_gen_subreg (word_mode, op0, mode,
5344 subreg_highpart_offset (word_mode,
5345 mode));
5346 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5347 unsignedp, normalizep);
5349 else
5350 tem = NULL_RTX;
5352 if (tem)
5354 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5355 return tem;
5356 if (!target)
5357 target = gen_reg_rtx (target_mode);
5359 convert_move (target, tem,
5360 0 == ((normalizep ? normalizep : STORE_FLAG_VALUE)
5361 & ((HOST_WIDE_INT) 1
5362 << (GET_MODE_BITSIZE (word_mode) -1))));
5363 return target;
5367 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5368 complement of A (for GE) and shifting the sign bit to the low bit. */
5369 if (op1 == const0_rtx && (code == LT || code == GE)
5370 && GET_MODE_CLASS (mode) == MODE_INT
5371 && (normalizep || STORE_FLAG_VALUE == 1
5372 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5373 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5374 == ((unsigned HOST_WIDE_INT) 1
5375 << (GET_MODE_BITSIZE (mode) - 1))))))
5377 subtarget = target;
5379 if (!target)
5380 target_mode = mode;
5382 /* If the result is to be wider than OP0, it is best to convert it
5383 first. If it is to be narrower, it is *incorrect* to convert it
5384 first. */
5385 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5387 op0 = convert_modes (target_mode, mode, op0, 0);
5388 mode = target_mode;
5391 if (target_mode != mode)
5392 subtarget = 0;
5394 if (code == GE)
5395 op0 = expand_unop (mode, one_cmpl_optab, op0,
5396 ((STORE_FLAG_VALUE == 1 || normalizep)
5397 ? 0 : subtarget), 0);
5399 if (STORE_FLAG_VALUE == 1 || normalizep)
5400 /* If we are supposed to produce a 0/1 value, we want to do
5401 a logical shift from the sign bit to the low-order bit; for
5402 a -1/0 value, we do an arithmetic shift. */
5403 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5404 size_int (GET_MODE_BITSIZE (mode) - 1),
5405 subtarget, normalizep != -1);
5407 if (mode != target_mode)
5408 op0 = convert_modes (target_mode, mode, op0, 0);
5410 return op0;
5413 mclass = GET_MODE_CLASS (mode);
5414 for (compare_mode = mode; compare_mode != VOIDmode;
5415 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5417 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5418 icode = optab_handler (cstore_optab, optab_mode)->insn_code;
5419 if (icode != CODE_FOR_nothing)
5421 do_pending_stack_adjust ();
5422 tem = emit_cstore (target, icode, code, mode, compare_mode,
5423 unsignedp, op0, op1, normalizep, target_mode);
5424 if (tem)
5425 return tem;
5427 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5429 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5430 unsignedp, op1, op0, normalizep, target_mode);
5431 if (tem)
5432 return tem;
5434 break;
5438 return 0;
5441 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5442 and storing in TARGET. Normally return TARGET.
5443 Return 0 if that cannot be done.
5445 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5446 it is VOIDmode, they cannot both be CONST_INT.
5448 UNSIGNEDP is for the case where we have to widen the operands
5449 to perform the operation. It says to use zero-extension.
5451 NORMALIZEP is 1 if we should convert the result to be either zero
5452 or one. Normalize is -1 if we should convert the result to be
5453 either zero or -1. If NORMALIZEP is zero, the result will be left
5454 "raw" out of the scc insn. */
5457 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5458 enum machine_mode mode, int unsignedp, int normalizep)
5460 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5461 enum rtx_code rcode;
5462 rtx subtarget;
5463 rtx tem, last, trueval;
5465 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5466 target_mode);
5467 if (tem)
5468 return tem;
5470 /* If we reached here, we can't do this with a scc insn, however there
5471 are some comparisons that can be done in other ways. Don't do any
5472 of these cases if branches are very cheap. */
5473 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5474 return 0;
5476 /* See what we need to return. We can only return a 1, -1, or the
5477 sign bit. */
5479 if (normalizep == 0)
5481 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5482 normalizep = STORE_FLAG_VALUE;
5484 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5485 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5486 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5488 else
5489 return 0;
5492 last = get_last_insn ();
5494 /* If optimizing, use different pseudo registers for each insn, instead
5495 of reusing the same pseudo. This leads to better CSE, but slows
5496 down the compiler, since there are more pseudos */
5497 subtarget = (!optimize
5498 && (target_mode == mode)) ? target : NULL_RTX;
5499 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5501 /* For floating-point comparisons, try the reverse comparison or try
5502 changing the "orderedness" of the comparison. */
5503 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5505 enum rtx_code first_code;
5506 bool and_them;
5508 rcode = reverse_condition_maybe_unordered (code);
5509 if (can_compare_p (rcode, mode, ccp_store_flag)
5510 && (code == ORDERED || code == UNORDERED
5511 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5512 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5514 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5515 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5517 /* For the reverse comparison, use either an addition or a XOR. */
5518 if (want_add
5519 && rtx_cost (GEN_INT (normalizep), PLUS,
5520 optimize_insn_for_speed_p ()) == 0)
5522 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5523 STORE_FLAG_VALUE, target_mode);
5524 if (tem)
5525 return expand_binop (target_mode, add_optab, tem,
5526 GEN_INT (normalizep),
5527 target, 0, OPTAB_WIDEN);
5529 else if (!want_add
5530 && rtx_cost (trueval, XOR,
5531 optimize_insn_for_speed_p ()) == 0)
5533 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5534 normalizep, target_mode);
5535 if (tem)
5536 return expand_binop (target_mode, xor_optab, tem, trueval,
5537 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5541 delete_insns_since (last);
5543 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5544 if (code == ORDERED || code == UNORDERED)
5545 return 0;
5547 and_them = split_comparison (code, mode, &first_code, &code);
5549 /* If there are no NaNs, the first comparison should always fall through.
5550 Effectively change the comparison to the other one. */
5551 if (!HONOR_NANS (mode))
5553 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5554 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5555 target_mode);
5558 #ifdef HAVE_conditional_move
5559 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5560 conditional move. */
5561 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5562 normalizep, target_mode);
5563 if (tem == 0)
5564 return 0;
5566 if (and_them)
5567 tem = emit_conditional_move (target, code, op0, op1, mode,
5568 tem, const0_rtx, GET_MODE (tem), 0);
5569 else
5570 tem = emit_conditional_move (target, code, op0, op1, mode,
5571 trueval, tem, GET_MODE (tem), 0);
5573 if (tem == 0)
5574 delete_insns_since (last);
5575 return tem;
5576 #else
5577 return 0;
5578 #endif
5581 /* The remaining tricks only apply to integer comparisons. */
5583 if (GET_MODE_CLASS (mode) != MODE_INT)
5584 return 0;
5586 /* If this is an equality comparison of integers, we can try to exclusive-or
5587 (or subtract) the two operands and use a recursive call to try the
5588 comparison with zero. Don't do any of these cases if branches are
5589 very cheap. */
5591 if ((code == EQ || code == NE) && op1 != const0_rtx)
5593 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5594 OPTAB_WIDEN);
5596 if (tem == 0)
5597 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5598 OPTAB_WIDEN);
5599 if (tem != 0)
5600 tem = emit_store_flag (target, code, tem, const0_rtx,
5601 mode, unsignedp, normalizep);
5602 if (tem != 0)
5603 return tem;
5605 delete_insns_since (last);
5608 /* For integer comparisons, try the reverse comparison. However, for
5609 small X and if we'd have anyway to extend, implementing "X != 0"
5610 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5611 rcode = reverse_condition (code);
5612 if (can_compare_p (rcode, mode, ccp_store_flag)
5613 && ! (optab_handler (cstore_optab, mode)->insn_code == CODE_FOR_nothing
5614 && code == NE
5615 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5616 && op1 == const0_rtx))
5618 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5619 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5621 /* Again, for the reverse comparison, use either an addition or a XOR. */
5622 if (want_add
5623 && rtx_cost (GEN_INT (normalizep), PLUS,
5624 optimize_insn_for_speed_p ()) == 0)
5626 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5627 STORE_FLAG_VALUE, target_mode);
5628 if (tem != 0)
5629 tem = expand_binop (target_mode, add_optab, tem,
5630 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5632 else if (!want_add
5633 && rtx_cost (trueval, XOR,
5634 optimize_insn_for_speed_p ()) == 0)
5636 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5637 normalizep, target_mode);
5638 if (tem != 0)
5639 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5640 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5643 if (tem != 0)
5644 return tem;
5645 delete_insns_since (last);
5648 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5649 the constant zero. Reject all other comparisons at this point. Only
5650 do LE and GT if branches are expensive since they are expensive on
5651 2-operand machines. */
5653 if (op1 != const0_rtx
5654 || (code != EQ && code != NE
5655 && (BRANCH_COST (optimize_insn_for_speed_p (),
5656 false) <= 1 || (code != LE && code != GT))))
5657 return 0;
5659 /* Try to put the result of the comparison in the sign bit. Assume we can't
5660 do the necessary operation below. */
5662 tem = 0;
5664 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5665 the sign bit set. */
5667 if (code == LE)
5669 /* This is destructive, so SUBTARGET can't be OP0. */
5670 if (rtx_equal_p (subtarget, op0))
5671 subtarget = 0;
5673 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5674 OPTAB_WIDEN);
5675 if (tem)
5676 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5677 OPTAB_WIDEN);
5680 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5681 number of bits in the mode of OP0, minus one. */
5683 if (code == GT)
5685 if (rtx_equal_p (subtarget, op0))
5686 subtarget = 0;
5688 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5689 size_int (GET_MODE_BITSIZE (mode) - 1),
5690 subtarget, 0);
5691 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5692 OPTAB_WIDEN);
5695 if (code == EQ || code == NE)
5697 /* For EQ or NE, one way to do the comparison is to apply an operation
5698 that converts the operand into a positive number if it is nonzero
5699 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5700 for NE we negate. This puts the result in the sign bit. Then we
5701 normalize with a shift, if needed.
5703 Two operations that can do the above actions are ABS and FFS, so try
5704 them. If that doesn't work, and MODE is smaller than a full word,
5705 we can use zero-extension to the wider mode (an unsigned conversion)
5706 as the operation. */
5708 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5709 that is compensated by the subsequent overflow when subtracting
5710 one / negating. */
5712 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5713 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5714 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5715 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5716 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5718 tem = convert_modes (word_mode, mode, op0, 1);
5719 mode = word_mode;
5722 if (tem != 0)
5724 if (code == EQ)
5725 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5726 0, OPTAB_WIDEN);
5727 else
5728 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5731 /* If we couldn't do it that way, for NE we can "or" the two's complement
5732 of the value with itself. For EQ, we take the one's complement of
5733 that "or", which is an extra insn, so we only handle EQ if branches
5734 are expensive. */
5736 if (tem == 0
5737 && (code == NE
5738 || BRANCH_COST (optimize_insn_for_speed_p (),
5739 false) > 1))
5741 if (rtx_equal_p (subtarget, op0))
5742 subtarget = 0;
5744 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5745 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5746 OPTAB_WIDEN);
5748 if (tem && code == EQ)
5749 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5753 if (tem && normalizep)
5754 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5755 size_int (GET_MODE_BITSIZE (mode) - 1),
5756 subtarget, normalizep == 1);
5758 if (tem)
5760 if (!target)
5762 else if (GET_MODE (tem) != target_mode)
5764 convert_move (target, tem, 0);
5765 tem = target;
5767 else if (!subtarget)
5769 emit_move_insn (target, tem);
5770 tem = target;
5773 else
5774 delete_insns_since (last);
5776 return tem;
5779 /* Like emit_store_flag, but always succeeds. */
5782 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5783 enum machine_mode mode, int unsignedp, int normalizep)
5785 rtx tem, label;
5786 rtx trueval, falseval;
5788 /* First see if emit_store_flag can do the job. */
5789 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5790 if (tem != 0)
5791 return tem;
5793 if (!target)
5794 target = gen_reg_rtx (word_mode);
5796 /* If this failed, we have to do this with set/compare/jump/set code.
5797 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5798 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5799 if (code == NE
5800 && GET_MODE_CLASS (mode) == MODE_INT
5801 && REG_P (target)
5802 && op0 == target
5803 && op1 == const0_rtx)
5805 label = gen_label_rtx ();
5806 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5807 mode, NULL_RTX, NULL_RTX, label, -1);
5808 emit_move_insn (target, trueval);
5809 emit_label (label);
5810 return target;
5813 if (!REG_P (target)
5814 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5815 target = gen_reg_rtx (GET_MODE (target));
5817 /* Jump in the right direction if the target cannot implement CODE
5818 but can jump on its reverse condition. */
5819 falseval = const0_rtx;
5820 if (! can_compare_p (code, mode, ccp_jump)
5821 && (! FLOAT_MODE_P (mode)
5822 || code == ORDERED || code == UNORDERED
5823 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5824 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5826 enum rtx_code rcode;
5827 if (FLOAT_MODE_P (mode))
5828 rcode = reverse_condition_maybe_unordered (code);
5829 else
5830 rcode = reverse_condition (code);
5832 /* Canonicalize to UNORDERED for the libcall. */
5833 if (can_compare_p (rcode, mode, ccp_jump)
5834 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5836 falseval = trueval;
5837 trueval = const0_rtx;
5838 code = rcode;
5842 emit_move_insn (target, trueval);
5843 label = gen_label_rtx ();
5844 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5845 NULL_RTX, label, -1);
5847 emit_move_insn (target, falseval);
5848 emit_label (label);
5850 return target;
5853 /* Perform possibly multi-word comparison and conditional jump to LABEL
5854 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5855 now a thin wrapper around do_compare_rtx_and_jump. */
5857 static void
5858 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5859 rtx label)
5861 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5862 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5863 NULL_RTX, NULL_RTX, label, -1);