Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / doc / gimple.texi
blob16692c5745025d866d46dca21f687869f79993f0
1 @c Copyright (c) 2008, 2009, 2010 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls).  GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices.  For one thing, SIMPLE doesn't support @code{goto}.
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}.  The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node.  It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@.  Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@.  This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}.  High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@.  Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms.  There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way.  This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
71 @menu
72 * Tuple representation::
73 * GIMPLE instruction set::
74 * GIMPLE Exception Handling::
75 * Temporaries::
76 * Operands::
77 * Manipulating GIMPLE statements::
78 * Tuple specific accessors::
79 * GIMPLE sequences::
80 * Sequence iterators::
81 * Adding a new GIMPLE statement code::
82 * Statement and operand traversals::
83 @end menu
85 @node Tuple representation
86 @section Tuple representation
87 @cindex tuples
89 GIMPLE instructions are tuples of variable size divided in two
90 groups: a header describing the instruction and its locations,
91 and a variable length body with all the operands. Tuples are
92 organized into a hierarchy with 3 main classes of tuples.
94 @subsection @code{gimple_statement_base} (gsbase)
95 @cindex gimple_statement_base
97 This is the root of the hierarchy, it holds basic information
98 needed by most GIMPLE statements. There are some fields that
99 may not be relevant to every GIMPLE statement, but those were
100 moved into the base structure to take advantage of holes left by
101 other fields (thus making the structure more compact).  The
102 structure takes 4 words (32 bytes) on 64 bit hosts:
104 @multitable {@code{references_memory_p}} {Size (bits)}
105 @item Field                             @tab Size (bits)
106 @item @code{code}                       @tab 8
107 @item @code{subcode}                    @tab 16
108 @item @code{no_warning}                 @tab 1
109 @item @code{visited}                    @tab 1
110 @item @code{nontemporal_move}           @tab 1
111 @item @code{plf}                        @tab 2
112 @item @code{modified}                   @tab 1
113 @item @code{has_volatile_ops}           @tab 1
114 @item @code{references_memory_p}        @tab 1
115 @item @code{uid}                        @tab 32
116 @item @code{location}                   @tab 32
117 @item @code{num_ops}                    @tab 32
118 @item @code{bb}                         @tab 64
119 @item @code{block}                      @tab 63
120 @item Total size                        @tab 32 bytes   
121 @end multitable
123 @itemize @bullet
124 @item @code{code}
125 Main identifier for a GIMPLE instruction. 
127 @item @code{subcode}
128 Used to distinguish different variants of the same basic
129 instruction or provide flags applicable to a given code. The
130 @code{subcode} flags field has different uses depending on the code of
131 the instruction, but mostly it distinguishes instructions of the
132 same family. The most prominent use of this field is in
133 assignments, where subcode indicates the operation done on the
134 RHS of the assignment. For example, a = b + c is encoded as
135 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
137 @item @code{no_warning}
138 Bitflag to indicate whether a warning has already been issued on
139 this statement.
141 @item @code{visited}
142 General purpose ``visited'' marker. Set and cleared by each pass
143 when needed.
145 @item @code{nontemporal_move}
146 Bitflag used in assignments that represent non-temporal moves.
147 Although this bitflag is only used in assignments, it was moved
148 into the base to take advantage of the bit holes left by the
149 previous fields.
151 @item @code{plf}
152 Pass Local Flags. This 2-bit mask can be used as general purpose
153 markers by any pass. Passes are responsible for clearing and
154 setting these two flags accordingly.
156 @item @code{modified}
157 Bitflag to indicate whether the statement has been modified.
158 Used mainly by the operand scanner to determine when to re-scan a
159 statement for operands.
161 @item @code{has_volatile_ops}
162 Bitflag to indicate whether this statement contains operands that
163 have been marked volatile.
165 @item @code{references_memory_p}
166 Bitflag to indicate whether this statement contains memory
167 references (i.e., its operands are either global variables, or
168 pointer dereferences or anything that must reside in memory).
170 @item @code{uid}
171 This is an unsigned integer used by passes that want to assign
172 IDs to every statement. These IDs must be assigned and used by
173 each pass.
175 @item @code{location}
176 This is a @code{location_t} identifier to specify source code
177 location for this statement. It is inherited from the front
178 end.
180 @item @code{num_ops}
181 Number of operands that this statement has. This specifies the
182 size of the operand vector embedded in the tuple. Only used in
183 some tuples, but it is declared in the base tuple to take
184 advantage of the 32-bit hole left by the previous fields.
186 @item @code{bb}
187 Basic block holding the instruction.
189 @item @code{block}
190 Lexical block holding this statement.  Also used for debug
191 information generation.
192 @end itemize
194 @subsection @code{gimple_statement_with_ops}
195 @cindex gimple_statement_with_ops
197 This tuple is actually split in two:
198 @code{gimple_statement_with_ops_base} and
199 @code{gimple_statement_with_ops}. This is needed to accommodate the
200 way the operand vector is allocated. The operand vector is
201 defined to be an array of 1 element. So, to allocate a dynamic
202 number of operands, the memory allocator (@code{gimple_alloc}) simply
203 allocates enough memory to hold the structure itself plus @code{N
204 - 1} operands which run ``off the end'' of the structure. For
205 example, to allocate space for a tuple with 3 operands,
206 @code{gimple_alloc} reserves @code{sizeof (struct
207 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
209 On the other hand, several fields in this tuple need to be shared
210 with the @code{gimple_statement_with_memory_ops} tuple. So, these
211 common fields are placed in @code{gimple_statement_with_ops_base} which
212 is then inherited from the other two tuples.
215 @multitable {@code{def_ops}}    {48 + 8 * @code{num_ops} bytes}
216 @item   @code{gsbase}           @tab 256        
217 @item   @code{def_ops}          @tab 64 
218 @item   @code{use_ops}          @tab 64 
219 @item   @code{op}               @tab @code{num_ops} * 64        
220 @item   Total size              @tab 48 + 8 * @code{num_ops} bytes
221 @end multitable
223 @itemize @bullet
224 @item @code{gsbase}
225 Inherited from @code{struct gimple_statement_base}.
227 @item @code{def_ops}
228 Array of pointers into the operand array indicating all the slots that
229 contain a variable written-to by the statement. This array is
230 also used for immediate use chaining. Note that it would be
231 possible to not rely on this array, but the changes required to
232 implement this are pretty invasive.
234 @item @code{use_ops}
235 Similar to @code{def_ops} but for variables read by the statement.
237 @item @code{op}
238 Array of trees with @code{num_ops} slots.
239 @end itemize
241 @subsection @code{gimple_statement_with_memory_ops}
243 This tuple is essentially identical to @code{gimple_statement_with_ops},
244 except that it contains 4 additional fields to hold vectors
245 related memory stores and loads.  Similar to the previous case,
246 the structure is split in two to accommodate for the operand
247 vector (@code{gimple_statement_with_memory_ops_base} and
248 @code{gimple_statement_with_memory_ops}).
251 @multitable {@code{vdef_ops}}   {80 + 8 * @code{num_ops} bytes}
252 @item Field                     @tab Size (bits)
253 @item @code{gsbase}             @tab 256
254 @item @code{def_ops}            @tab 64
255 @item @code{use_ops}            @tab 64
256 @item @code{vdef_ops}           @tab 64
257 @item @code{vuse_ops}           @tab 64
258 @item @code{stores}             @tab 64 
259 @item @code{loads}              @tab 64 
260 @item @code{op}                 @tab @code{num_ops} * 64        
261 @item Total size                @tab 80 + 8 * @code{num_ops} bytes
262 @end multitable
264 @itemize @bullet
265 @item @code{vdef_ops}
266 Similar to @code{def_ops} but for @code{VDEF} operators. There is
267 one entry per memory symbol written by this statement. This is
268 used to maintain the memory SSA use-def and def-def chains.
270 @item @code{vuse_ops}
271 Similar to @code{use_ops} but for @code{VUSE} operators. There is
272 one entry per memory symbol loaded by this statement. This is
273 used to maintain the memory SSA use-def chains.
275 @item @code{stores}
276 Bitset with all the UIDs for the symbols written-to by the
277 statement.  This is different than @code{vdef_ops} in that all the
278 affected symbols are mentioned in this set.  If memory
279 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
280 partitions. Furthermore, no SSA information is stored in this
281 set.
283 @item @code{loads}
284 Similar to @code{stores}, but for memory loads. (Note that there
285 is some amount of redundancy here, it should be possible to
286 reduce memory utilization further by removing these sets).
287 @end itemize
289 All the other tuples are defined in terms of these three basic
290 ones. Each tuple will add some fields. The main gimple type
291 is defined to be the union of all these structures (@code{GTY} markers
292 elided for clarity):
294 @smallexample
295 union gimple_statement_d
297   struct gimple_statement_base gsbase;
298   struct gimple_statement_with_ops gsops;
299   struct gimple_statement_with_memory_ops gsmem;
300   struct gimple_statement_omp omp;
301   struct gimple_statement_bind gimple_bind;
302   struct gimple_statement_catch gimple_catch;
303   struct gimple_statement_eh_filter gimple_eh_filter;
304   struct gimple_statement_phi gimple_phi;
305   struct gimple_statement_resx gimple_resx;
306   struct gimple_statement_try gimple_try;
307   struct gimple_statement_wce gimple_wce;
308   struct gimple_statement_asm gimple_asm;
309   struct gimple_statement_omp_critical gimple_omp_critical;
310   struct gimple_statement_omp_for gimple_omp_for;
311   struct gimple_statement_omp_parallel gimple_omp_parallel;
312   struct gimple_statement_omp_task gimple_omp_task;
313   struct gimple_statement_omp_sections gimple_omp_sections;
314   struct gimple_statement_omp_single gimple_omp_single;
315   struct gimple_statement_omp_continue gimple_omp_continue;
316   struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
317   struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
319 @end smallexample
322 @node GIMPLE instruction set
323 @section GIMPLE instruction set
324 @cindex GIMPLE instruction set
326 The following table briefly describes the GIMPLE instruction set.
328 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
329 @item Instruction                       @tab High GIMPLE        @tab Low GIMPLE
330 @item @code{GIMPLE_ASM}                 @tab x                  @tab x
331 @item @code{GIMPLE_ASSIGN}              @tab x                  @tab x
332 @item @code{GIMPLE_BIND}                @tab x                  @tab
333 @item @code{GIMPLE_CALL}                @tab x                  @tab x
334 @item @code{GIMPLE_CATCH}               @tab x                  @tab
335 @item @code{GIMPLE_COND}                @tab x                  @tab x
336 @item @code{GIMPLE_EH_FILTER}           @tab x                  @tab
337 @item @code{GIMPLE_GOTO}                @tab x                  @tab x
338 @item @code{GIMPLE_LABEL}               @tab x                  @tab x
339 @item @code{GIMPLE_NOP}                 @tab x                  @tab x
340 @item @code{GIMPLE_OMP_ATOMIC_LOAD}     @tab x                  @tab x
341 @item @code{GIMPLE_OMP_ATOMIC_STORE}    @tab x                  @tab x
342 @item @code{GIMPLE_OMP_CONTINUE}        @tab x                  @tab x
343 @item @code{GIMPLE_OMP_CRITICAL}        @tab x                  @tab x
344 @item @code{GIMPLE_OMP_FOR}             @tab x                  @tab x
345 @item @code{GIMPLE_OMP_MASTER}          @tab x                  @tab x
346 @item @code{GIMPLE_OMP_ORDERED}         @tab x                  @tab x
347 @item @code{GIMPLE_OMP_PARALLEL}        @tab x                  @tab x
348 @item @code{GIMPLE_OMP_RETURN}          @tab x                  @tab x
349 @item @code{GIMPLE_OMP_SECTION}         @tab x                  @tab x
350 @item @code{GIMPLE_OMP_SECTIONS}        @tab x                  @tab x
351 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x                  @tab x
352 @item @code{GIMPLE_OMP_SINGLE}          @tab x                  @tab x
353 @item @code{GIMPLE_PHI}                 @tab                    @tab x
354 @item @code{GIMPLE_RESX}                @tab                    @tab x
355 @item @code{GIMPLE_RETURN}              @tab x                  @tab x
356 @item @code{GIMPLE_SWITCH}              @tab x                  @tab x
357 @item @code{GIMPLE_TRY}                 @tab x                  @tab
358 @end multitable
360 @node GIMPLE Exception Handling
361 @section Exception Handling
362 @cindex GIMPLE Exception Handling
364 Other exception handling constructs are represented using
365 @code{GIMPLE_TRY_CATCH}.  @code{GIMPLE_TRY_CATCH} has two operands.  The
366 first operand is a sequence of statements to execute.  If executing
367 these statements does not throw an exception, then the second operand
368 is ignored.  Otherwise, if an exception is thrown, then the second
369 operand of the @code{GIMPLE_TRY_CATCH} is checked.  The second
370 operand may have the following forms:
372 @enumerate
374 @item A sequence of statements to execute.  When an exception occurs,
375 these statements are executed, and then the exception is rethrown.
377 @item A sequence of @code{GIMPLE_CATCH} statements.  Each
378 @code{GIMPLE_CATCH} has a list of applicable exception types and
379 handler code.  If the thrown exception matches one of the caught
380 types, the associated handler code is executed.  If the handler
381 code falls off the bottom, execution continues after the original
382 @code{GIMPLE_TRY_CATCH}.
384 @item A @code{GIMPLE_EH_FILTER} statement.  This has a list of
385 permitted exception types, and code to handle a match failure.  If the
386 thrown exception does not match one of the allowed types, the
387 associated match failure code is executed.  If the thrown exception
388 does match, it continues unwinding the stack looking for the next
389 handler.
391 @end enumerate
393 Currently throwing an exception is not directly represented in
394 GIMPLE, since it is implemented by calling a function.  At some
395 point in the future we will want to add some way to express that
396 the call will throw an exception of a known type.
398 Just before running the optimizers, the compiler lowers the
399 high-level EH constructs above into a set of @samp{goto}s, magic
400 labels, and EH regions.  Continuing to unwind at the end of a
401 cleanup is represented with a @code{GIMPLE_RESX}.
404 @node Temporaries
405 @section Temporaries
406 @cindex Temporaries
408 When gimplification encounters a subexpression that is too
409 complex, it creates a new temporary variable to hold the value of
410 the subexpression, and adds a new statement to initialize it
411 before the current statement. These special temporaries are known
412 as @samp{expression temporaries}, and are allocated using
413 @code{get_formal_tmp_var}.  The compiler tries to always evaluate
414 identical expressions into the same temporary, to simplify
415 elimination of redundant calculations.
417 We can only use expression temporaries when we know that it will
418 not be reevaluated before its value is used, and that it will not
419 be otherwise modified@footnote{These restrictions are derived
420 from those in Morgan 4.8.}. Other temporaries can be allocated
421 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
423 Currently, an expression like @code{a = b + 5} is not reduced any
424 further.  We tried converting it to something like
425 @smallexample
426   T1 = b + 5;
427   a = T1;
428 @end smallexample
429 but this bloated the representation for minimal benefit.  However, a
430 variable which must live in memory cannot appear in an expression; its
431 value is explicitly loaded into a temporary first.  Similarly, storing
432 the value of an expression to a memory variable goes through a
433 temporary.
435 @node Operands
436 @section Operands
437 @cindex Operands
439 In general, expressions in GIMPLE consist of an operation and the
440 appropriate number of simple operands; these operands must either be a
441 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
442 variable.  More complex operands are factored out into temporaries, so
443 that
444 @smallexample
445   a = b + c + d
446 @end smallexample
447 becomes
448 @smallexample
449   T1 = b + c;
450   a = T1 + d;
451 @end smallexample
453 The same rule holds for arguments to a @code{GIMPLE_CALL}.
455 The target of an assignment is usually a variable, but can also be an
456 @code{INDIRECT_REF} or a compound lvalue as described below.
458 @menu
459 * Compound Expressions::
460 * Compound Lvalues::
461 * Conditional Expressions::
462 * Logical Operators::
463 @end menu
465 @node Compound Expressions
466 @subsection Compound Expressions
467 @cindex Compound Expressions
469 The left-hand side of a C comma expression is simply moved into a separate
470 statement.
472 @node Compound Lvalues
473 @subsection Compound Lvalues
474 @cindex Compound Lvalues
476 Currently compound lvalues involving array and structure field references
477 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
478 any further (though complex array subscripts are).  This restriction is a
479 workaround for limitations in later optimizers; if we were to convert this
482 @smallexample
483   T1 = &a.b;
484   T1[2] = 42;
485 @end smallexample
487 alias analysis would not remember that the reference to @code{T1[2]} came
488 by way of @code{a.b}, so it would think that the assignment could alias
489 another member of @code{a}; this broke @code{struct-alias-1.c}.  Future
490 optimizer improvements may make this limitation unnecessary.
492 @node Conditional Expressions
493 @subsection Conditional Expressions
494 @cindex Conditional Expressions
496 A C @code{?:} expression is converted into an @code{if} statement with
497 each branch assigning to the same temporary.  So,
499 @smallexample
500   a = b ? c : d;
501 @end smallexample
502 becomes
503 @smallexample
504   if (b == 1)
505     T1 = c;
506   else
507     T1 = d;
508   a = T1;
509 @end smallexample
511 The GIMPLE level if-conversion pass re-introduces @code{?:}
512 expression, if appropriate. It is used to vectorize loops with
513 conditions using vector conditional operations.
515 Note that in GIMPLE, @code{if} statements are represented using
516 @code{GIMPLE_COND}, as described below.
518 @node Logical Operators
519 @subsection Logical Operators
520 @cindex Logical Operators
522 Except when they appear in the condition operand of a
523 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
524 as follows: @code{a = b && c} becomes
526 @smallexample
527   T1 = (bool)b;
528   if (T1 == true)
529     T1 = (bool)c;
530   a = T1;
531 @end smallexample
533 Note that @code{T1} in this example cannot be an expression temporary,
534 because it has two different assignments.
536 @subsection Manipulating operands
538 All gimple operands are of type @code{tree}.  But only certain
539 types of trees are allowed to be used as operand tuples.  Basic
540 validation is controlled by the function
541 @code{get_gimple_rhs_class}, which given a tree code, returns an
542 @code{enum} with the following values of type @code{enum
543 gimple_rhs_class}
545 @itemize @bullet
546 @item @code{GIMPLE_INVALID_RHS}
547 The tree cannot be used as a GIMPLE operand.
549 @item @code{GIMPLE_BINARY_RHS}
550 The tree is a valid GIMPLE binary operation.
552 @item @code{GIMPLE_UNARY_RHS}
553 The tree is a valid GIMPLE unary operation.
555 @item @code{GIMPLE_SINGLE_RHS}
556 The tree is a single object, that cannot be split into simpler
557 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
559 This operand class also acts as an escape hatch for tree nodes
560 that may be flattened out into the operand vector, but would need
561 more than two slots on the RHS.  For instance, a @code{COND_EXPR}
562 expression of the form @code{(a op b) ? x : y} could be flattened
563 out on the operand vector using 4 slots, but it would also
564 require additional processing to distinguish @code{c = a op b}
565 from @code{c = a op b ? x : y}.  Something similar occurs with
566 @code{ASSERT_EXPR}.   In time, these special case tree
567 expressions should be flattened into the operand vector.
568 @end itemize
570 For tree nodes in the categories @code{GIMPLE_BINARY_RHS} and
571 @code{GIMPLE_UNARY_RHS}, they cannot be stored inside tuples directly.
572 They first need to be flattened and separated into individual
573 components.  For instance, given the GENERIC expression
575 @smallexample
576 a = b + c
577 @end smallexample
579 its tree representation is:
581 @smallexample
582 MODIFY_EXPR <VAR_DECL  <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
583 @end smallexample
585 In this case, the GIMPLE form for this statement is logically
586 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
587 on the RHS of the assignment is not represented as a tree,
588 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
589 and flattened into the GIMPLE tuple as follows:
591 @smallexample
592 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
593 @end smallexample
595 @subsection Operand vector allocation
597 The operand vector is stored at the bottom of the three tuple
598 structures that accept operands. This means, that depending on
599 the code of a given statement, its operand vector will be at
600 different offsets from the base of the structure.  To access
601 tuple operands use the following accessors
603 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
604 Returns the number of operands in statement G.
605 @end deftypefn
607 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
608 Returns operand @code{I} from statement @code{G}.
609 @end deftypefn
611 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
612 Returns a pointer into the operand vector for statement @code{G}.  This
613 is computed using an internal table called @code{gimple_ops_offset_}[].
614 This table is indexed by the gimple code of @code{G}.
616 When the compiler is built, this table is filled-in using the
617 sizes of the structures used by each statement code defined in
618 gimple.def.  Since the operand vector is at the bottom of the
619 structure, for a gimple code @code{C} the offset is computed as sizeof
620 (struct-of @code{C}) - sizeof (tree).
622 This mechanism adds one memory indirection to every access when
623 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
624 choose to memoize the result from @code{gimple_ops}() and use that to
625 access the operands.
626 @end deftypefn
628 @subsection Operand validation
630 When adding a new operand to a gimple statement, the operand will
631 be validated according to what each tuple accepts in its operand
632 vector.  These predicates are called by the
633 @code{gimple_<name>_set_...()}.  Each tuple will use one of the
634 following predicates (Note, this list is not exhaustive):
636 @deftypefn {GIMPLE function} is_gimple_operand (tree t)
637 This is the most permissive of the predicates.  It essentially
638 checks whether t has a @code{gimple_rhs_class} of @code{GIMPLE_SINGLE_RHS}.
639 @end deftypefn
642 @deftypefn {GIMPLE function} is_gimple_val (tree t)
643 Returns true if t is a "GIMPLE value", which are all the
644 non-addressable stack variables (variables for which
645 @code{is_gimple_reg} returns true) and constants (expressions for which
646 @code{is_gimple_min_invariant} returns true).
647 @end deftypefn
649 @deftypefn {GIMPLE function} is_gimple_addressable (tree t)
650 Returns true if t is a symbol or memory reference whose address
651 can be taken.
652 @end deftypefn
654 @deftypefn {GIMPLE function} is_gimple_asm_val (tree t)
655 Similar to @code{is_gimple_val} but it also accepts hard registers.
656 @end deftypefn
658 @deftypefn {GIMPLE function} is_gimple_call_addr (tree t)
659 Return true if t is a valid expression to use as the function
660 called by a @code{GIMPLE_CALL}.
661 @end deftypefn
663 @deftypefn {GIMPLE function} is_gimple_constant (tree t)
664 Return true if t is a valid gimple constant.
665 @end deftypefn
667 @deftypefn {GIMPLE function} is_gimple_min_invariant (tree t)
668 Return true if t is a valid minimal invariant.  This is different
669 from constants, in that the specific value of t may not be known
670 at compile time, but it is known that it doesn't change (e.g.,
671 the address of a function local variable).
672 @end deftypefn
674 @deftypefn {GIMPLE function} is_gimple_min_invariant_address (tree t)
675 Return true if t is an @code{ADDR_EXPR} that does not change once a
676 function is running.
677 @end deftypefn
679 @deftypefn {GIMPLE function} is_gimple_ip_invariant (tree t)
680 Return true if t is an interprocedural invariant.  This means that t
681 is a valid invariant in all functions (e.g. it can be an address of a
682 global variable but not of a local one).
683 @end deftypefn
685 @deftypefn {GIMPLE function} is_gimple_ip_invariant_address (tree t)
686 Return true if t is an @code{ADDR_EXPR} that does not change once the
687 program is running (and which is valid in all functions).
688 @end deftypefn
691 @subsection Statement validation
693 @deftypefn {GIMPLE function} is_gimple_assign (gimple g)
694 Return true if the code of g is @code{GIMPLE_ASSIGN}.
695 @end deftypefn
697 @deftypefn {GIMPLE function} is_gimple_call (gimple g)
698 Return true if the code of g is @code{GIMPLE_CALL}.
699 @end deftypefn
701 @deftypefn {GIMPLE function} is_gimple_debug (gimple g)
702 Return true if the code of g is @code{GIMPLE_DEBUG}.
703 @end deftypefn
705 @deftypefn {GIMPLE function} gimple_assign_cast_p (gimple g)
706 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
707 operation.
708 @end deftypefn
710 @deftypefn {GIMPLE function} gimple_debug_bind_p (gimple g)
711 Return true if g is a @code{GIMPLE_DEBUG} that binds the value of an
712 expression to a variable.
713 @end deftypefn
715 @node Manipulating GIMPLE statements
716 @section Manipulating GIMPLE statements
717 @cindex Manipulating GIMPLE statements
719 This section documents all the functions available to handle each
720 of the GIMPLE instructions.
722 @subsection Common accessors 
723 The following are common accessors for gimple statements.
725 @deftypefn {GIMPLE function} enum gimple_code gimple_code (gimple g)
726 Return the code for statement @code{G}.
727 @end deftypefn
729 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
730 Return the basic block to which statement @code{G} belongs to.
731 @end deftypefn
733 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
734 Return the lexical scope block holding statement @code{G}.
735 @end deftypefn
737 @deftypefn {GIMPLE function} tree gimple_expr_type (gimple stmt)
738 Return the type of the main expression computed by @code{STMT}. Return
739 @code{void_type_node} if @code{STMT} computes nothing. This will only return
740 something meaningful for @code{GIMPLE_ASSIGN}, @code{GIMPLE_COND} and
741 @code{GIMPLE_CALL}.  For all other tuple codes, it will return
742 @code{void_type_node}.
743 @end deftypefn
745 @deftypefn {GIMPLE function} enum tree_code gimple_expr_code (gimple stmt)
746 Return the tree code for the expression computed by @code{STMT}.  This
747 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
748 @code{GIMPLE_COND}.  If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
749 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
750 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
751 by the @code{RHS} of the assignment.
752 @end deftypefn
754 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
755 Set the lexical scope block of @code{G} to @code{BLOCK}.
756 @end deftypefn
758 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
759 Return locus information for statement @code{G}.
760 @end deftypefn
762 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
763 Set locus information for statement @code{G}.
764 @end deftypefn
766 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
767 Return true if @code{G} does not have locus information.
768 @end deftypefn
770 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
771 Return true if no warnings should be emitted for statement @code{STMT}.
772 @end deftypefn
774 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
775 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
776 @end deftypefn
778 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
779 Return the visited status on statement @code{STMT}.
780 @end deftypefn
782 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
783 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
784 @end deftypefn
786 @deftypefn {GIMPLE function} unsigned int gimple_plf (gimple stmt, enum plf_mask plf)
787 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
788 @end deftypefn
790 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
791 Return true if statement @code{G} has register or memory operands.
792 @end deftypefn
794 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
795 Return true if statement @code{G} has memory operands.
796 @end deftypefn
798 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
799 Return the number of operands for statement @code{G}.
800 @end deftypefn
802 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
803 Return the array of operands for statement @code{G}.
804 @end deftypefn
806 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
807 Return operand @code{I} for statement @code{G}.
808 @end deftypefn
810 @deftypefn {GIMPLE function} tree *gimple_op_ptr (gimple g, unsigned i)
811 Return a pointer to operand @code{I} for statement @code{G}.
812 @end deftypefn
814 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
815 Set operand @code{I} of statement @code{G} to @code{OP}.
816 @end deftypefn
818 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
819 Return the set of symbols that have had their address taken by
820 @code{STMT}.
821 @end deftypefn
823 @deftypefn {GIMPLE function} struct def_optype_d *gimple_def_ops (gimple g)
824 Return the set of @code{DEF} operands for statement @code{G}.
825 @end deftypefn
827 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
828 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
829 @end deftypefn
831 @deftypefn {GIMPLE function} struct use_optype_d *gimple_use_ops (gimple g)
832 Return the set of @code{USE} operands for statement @code{G}.
833 @end deftypefn
835 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
836 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
837 @end deftypefn
839 @deftypefn {GIMPLE function} struct voptype_d *gimple_vuse_ops (gimple g)
840 Return the set of @code{VUSE} operands for statement @code{G}.
841 @end deftypefn
843 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
844 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
845 @end deftypefn
847 @deftypefn {GIMPLE function} struct voptype_d *gimple_vdef_ops (gimple g)
848 Return the set of @code{VDEF} operands for statement @code{G}.
849 @end deftypefn
851 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
852 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
853 @end deftypefn
855 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
856 Return the set of symbols loaded by statement @code{G}.  Each element of
857 the set is the @code{DECL_UID} of the corresponding symbol.
858 @end deftypefn
860 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
861 Return the set of symbols stored by statement @code{G}.  Each element of
862 the set is the @code{DECL_UID} of the corresponding symbol.
863 @end deftypefn
865 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
866 Return true if statement @code{G} has operands and the modified field
867 has been set.
868 @end deftypefn
870 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
871 Return true if statement @code{STMT} contains volatile operands.
872 @end deftypefn
874 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
875 Return true if statement @code{STMT} contains volatile operands.
876 @end deftypefn
878 @deftypefn {GIMPLE function} void update_stmt (gimple s)
879 Mark statement @code{S} as modified, and update it.
880 @end deftypefn
882 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
883 Update statement @code{S} if it has been marked modified.
884 @end deftypefn
886 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
887 Return a deep copy of statement @code{STMT}.
888 @end deftypefn
890 @node Tuple specific accessors
891 @section Tuple specific accessors
892 @cindex Tuple specific accessors
894 @menu
895 * @code{GIMPLE_ASM}::
896 * @code{GIMPLE_ASSIGN}::
897 * @code{GIMPLE_BIND}::
898 * @code{GIMPLE_CALL}::
899 * @code{GIMPLE_CATCH}::
900 * @code{GIMPLE_COND}::
901 * @code{GIMPLE_EH_FILTER}::
902 * @code{GIMPLE_LABEL}::
903 * @code{GIMPLE_NOP}::
904 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
905 * @code{GIMPLE_OMP_ATOMIC_STORE}::
906 * @code{GIMPLE_OMP_CONTINUE}::
907 * @code{GIMPLE_OMP_CRITICAL}::
908 * @code{GIMPLE_OMP_FOR}::
909 * @code{GIMPLE_OMP_MASTER}::
910 * @code{GIMPLE_OMP_ORDERED}::
911 * @code{GIMPLE_OMP_PARALLEL}::
912 * @code{GIMPLE_OMP_RETURN}::
913 * @code{GIMPLE_OMP_SECTION}::
914 * @code{GIMPLE_OMP_SECTIONS}::
915 * @code{GIMPLE_OMP_SINGLE}::
916 * @code{GIMPLE_PHI}::
917 * @code{GIMPLE_RESX}::
918 * @code{GIMPLE_RETURN}::
919 * @code{GIMPLE_SWITCH}::
920 * @code{GIMPLE_TRY}::
921 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
922 @end menu
925 @node @code{GIMPLE_ASM}
926 @subsection @code{GIMPLE_ASM}
927 @cindex @code{GIMPLE_ASM}
929 @deftypefn {GIMPLE function} gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...)
930 Build a @code{GIMPLE_ASM} statement.  This statement is used for
931 building in-line assembly constructs.  @code{STRING} is the assembly
932 code.  @code{NINPUT} is the number of register inputs.  @code{NOUTPUT} is the
933 number of register outputs.  @code{NCLOBBERS} is the number of clobbered
934 registers.  The rest of the arguments trees for each input,
935 output, and clobbered registers.
936 @end deftypefn
938 @deftypefn {GIMPLE function} gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)
939 Identical to gimple_build_asm, but the arguments are passed in
940 VECs.
941 @end deftypefn
943 @deftypefn {GIMPLE function} gimple_asm_ninputs (gimple g)
944 Return the number of input operands for @code{GIMPLE_ASM} @code{G}. 
945 @end deftypefn
947 @deftypefn {GIMPLE function} gimple_asm_noutputs (gimple g)
948 Return the number of output operands for @code{GIMPLE_ASM} @code{G}. 
949 @end deftypefn
951 @deftypefn {GIMPLE function} gimple_asm_nclobbers (gimple g)
952 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}. 
953 @end deftypefn
955 @deftypefn {GIMPLE function} tree gimple_asm_input_op (gimple g, unsigned index)
956 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}. 
957 @end deftypefn
959 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op)
960 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}. 
961 @end deftypefn
963 @deftypefn {GIMPLE function} tree gimple_asm_output_op (gimple g, unsigned index)
964 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}. 
965 @end deftypefn
967 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gimple g, @
968 unsigned index, tree out_op)
969 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}. 
970 @end deftypefn
972 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (gimple g, unsigned index)
973 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}. 
974 @end deftypefn
976 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op)
977 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}. 
978 @end deftypefn
980 @deftypefn {GIMPLE function} const char *gimple_asm_string (gimple g)
981 Return the string representing the assembly instruction in
982 @code{GIMPLE_ASM} @code{G}. 
983 @end deftypefn
985 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (gimple g)
986 Return true if @code{G} is an asm statement marked volatile. 
987 @end deftypefn
989 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gimple g)
990 Mark asm statement @code{G} as volatile. 
991 @end deftypefn
993 @deftypefn {GIMPLE function} void gimple_asm_clear_volatile (gimple g)
994 Remove volatile marker from asm statement @code{G}. 
995 @end deftypefn
997 @node @code{GIMPLE_ASSIGN}
998 @subsection @code{GIMPLE_ASSIGN}
999 @cindex @code{GIMPLE_ASSIGN}
1001 @deftypefn {GIMPLE function} gimple gimple_build_assign (tree lhs, tree rhs)
1002 Build a @code{GIMPLE_ASSIGN} statement.  The left-hand side is an lvalue
1003 passed in lhs.  The right-hand side can be either a unary or
1004 binary tree expression.  The expression tree rhs will be
1005 flattened and its operands assigned to the corresponding operand
1006 slots in the new statement.  This function is useful when you
1007 already have a tree expression that you want to convert into a
1008 tuple.  However, try to avoid building expression trees for the
1009 sole purpose of calling this function.  If you already have the
1010 operands in separate trees, it is better to use
1011 @code{gimple_build_assign_with_ops}.
1012 @end deftypefn
1015 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1016 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1017 @code{*SEQ_P}.
1018 @end deftypefn
1020 @code{DST}/@code{SRC} are the destination and source respectively.  You can
1021 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1022 case they will be converted to a gimple operand if necessary.
1024 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1026 @deftypefn {GIMPLE function} gimple gimple_build_assign_with_ops @
1027 (enum tree_code subcode, tree lhs, tree op1, tree op2)
1028 This function is similar to @code{gimple_build_assign}, but is used to
1029 build a @code{GIMPLE_ASSIGN} statement when the operands of the
1030 right-hand side of the assignment are already split into
1031 different operands.
1033 The left-hand side is an lvalue passed in lhs.  Subcode is the
1034 @code{tree_code} for the right-hand side of the assignment.  Op1 and op2
1035 are the operands.  If op2 is null, subcode must be a @code{tree_code}
1036 for a unary expression.
1037 @end deftypefn
1039 @deftypefn {GIMPLE function} enum tree_code gimple_assign_rhs_code (gimple g)
1040 Return the code of the expression computed on the @code{RHS} of
1041 assignment statement @code{G}.
1042 @end deftypefn
1045 @deftypefn {GIMPLE function} enum gimple_rhs_class gimple_assign_rhs_class (gimple g)
1046 Return the gimple rhs class of the code for the expression
1047 computed on the rhs of assignment statement @code{G}.  This will never
1048 return @code{GIMPLE_INVALID_RHS}.
1049 @end deftypefn
1051 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1052 Return the @code{LHS} of assignment statement @code{G}.
1053 @end deftypefn
1055 @deftypefn {GIMPLE function} tree *gimple_assign_lhs_ptr (gimple g)
1056 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1057 @end deftypefn
1059 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1060 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1061 @end deftypefn
1063 @deftypefn {GIMPLE function} tree *gimple_assign_rhs1_ptr (gimple g)
1064 Return the address of the first operand on the @code{RHS} of assignment
1065 statement @code{G}.
1066 @end deftypefn
1068 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1069 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1070 @end deftypefn
1072 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1073 Return the address of the second operand on the @code{RHS} of assignment
1074 statement @code{G}.
1075 @end deftypefn
1077 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1078 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1079 @end deftypefn
1081 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1082 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1083 statement @code{G}.
1084 @end deftypefn
1086 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1087 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1088 @end deftypefn
1090 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1091 Return a pointer to the second operand on the @code{RHS} of assignment
1092 statement @code{G}.
1093 @end deftypefn
1095 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1096 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1097 statement @code{G}.
1098 @end deftypefn
1100 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (gimple s)
1101 Return true if @code{S} is a type-cast assignment.
1102 @end deftypefn
1105 @node @code{GIMPLE_BIND}
1106 @subsection @code{GIMPLE_BIND}
1107 @cindex @code{GIMPLE_BIND}
1109 @deftypefn {GIMPLE function} gimple gimple_build_bind (tree vars, gimple_seq body)
1110 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1111 and a body of statements in sequence @code{BODY}.
1112 @end deftypefn
1114 @deftypefn {GIMPLE function} tree gimple_bind_vars (gimple g)
1115 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}. 
1116 @end deftypefn
1118 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gimple g, tree vars)
1119 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1120 statement @code{G}. 
1121 @end deftypefn
1123 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gimple g, tree vars)
1124 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1125 statement @code{G}.
1126 @end deftypefn
1128 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gimple g)
1129 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1130 @code{G}. 
1131 @end deftypefn
1133 @deftypefn {GIMPLE function} void gimple_bind_set_body (gimple g, gimple_seq seq)
1134 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1135 @end deftypefn
1137 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gimple gs, gimple stmt)
1138 Append a statement to the end of a @code{GIMPLE_BIND}'s body. 
1139 @end deftypefn
1141 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gimple gs, gimple_seq seq)
1142 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1143 body.
1144 @end deftypefn
1146 @deftypefn {GIMPLE function} tree gimple_bind_block (gimple g)
1147 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1148 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees. 
1149 @end deftypefn
1151 @deftypefn {GIMPLE function} void gimple_bind_set_block (gimple g, tree block)
1152 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1153 statement @code{G}. 
1154 @end deftypefn
1157 @node @code{GIMPLE_CALL}
1158 @subsection @code{GIMPLE_CALL}
1159 @cindex @code{GIMPLE_CALL}
1161 @deftypefn {GIMPLE function} gimple gimple_build_call (tree fn, unsigned nargs, ...)
1162 Build a @code{GIMPLE_CALL} statement to function @code{FN}.  The argument @code{FN}
1163 must be either a @code{FUNCTION_DECL} or a gimple call address as
1164 determined by @code{is_gimple_call_addr}.  @code{NARGS} are the number of
1165 arguments.  The rest of the arguments follow the argument @code{NARGS},
1166 and must be trees that are valid as rvalues in gimple (i.e., each
1167 operand is validated with @code{is_gimple_operand}).
1168 @end deftypefn
1171 @deftypefn {GIMPLE function} gimple gimple_build_call_from_tree (tree call_expr)
1172 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node.  The arguments and the
1173 function are taken from the expression directly.  This routine
1174 assumes that @code{call_expr} is already in GIMPLE form.  That is, its
1175 operands are GIMPLE values and the function call needs no further
1176 simplification.  All the call flags in @code{call_expr} are copied over
1177 to the new @code{GIMPLE_CALL}.
1178 @end deftypefn
1180 @deftypefn {GIMPLE function} gimple gimple_build_call_vec (tree fn, @code{VEC}(tree, heap) *args)
1181 Identical to @code{gimple_build_call} but the arguments are stored in a
1182 @code{VEC}().
1183 @end deftypefn
1185 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1186 Return the @code{LHS} of call statement @code{G}.
1187 @end deftypefn
1189 @deftypefn {GIMPLE function} tree *gimple_call_lhs_ptr (gimple g)
1190 Return a pointer to the @code{LHS} of call statement @code{G}.
1191 @end deftypefn
1193 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1194 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1195 @end deftypefn
1197 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1198 Return the tree node representing the function called by call
1199 statement @code{G}.
1200 @end deftypefn
1202 @deftypefn {GIMPLE function} void gimple_call_set_fn (gimple g, tree fn)
1203 Set @code{FN} to be the function called by call statement @code{G}.  This has
1204 to be a gimple value specifying the address of the called
1205 function.
1206 @end deftypefn
1208 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1209 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1210 Otherwise return @code{NULL}.  This function is analogous to
1211 @code{get_callee_fndecl} in @code{GENERIC}.
1212 @end deftypefn
1214 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1215 Set the called function to @code{FNDECL}.
1216 @end deftypefn
1218 @deftypefn {GIMPLE function} tree gimple_call_return_type (gimple g)
1219 Return the type returned by call statement @code{G}.
1220 @end deftypefn
1222 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1223 Return the static chain for call statement @code{G}. 
1224 @end deftypefn
1226 @deftypefn {GIMPLE function} void gimple_call_set_chain (gimple g, tree chain)
1227 Set @code{CHAIN} to be the static chain for call statement @code{G}. 
1228 @end deftypefn
1230 @deftypefn {GIMPLE function} gimple_call_num_args (gimple g)
1231 Return the number of arguments used by call statement @code{G}. 
1232 @end deftypefn
1234 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1235 Return the argument at position @code{INDEX} for call statement @code{G}.  The
1236 first argument is 0.
1237 @end deftypefn
1239 @deftypefn {GIMPLE function} tree *gimple_call_arg_ptr (gimple g, unsigned index)
1240 Return a pointer to the argument at position @code{INDEX} for call
1241 statement @code{G}. 
1242 @end deftypefn
1244 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1245 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1246 @code{G}. 
1247 @end deftypefn
1249 @deftypefn {GIMPLE function} void gimple_call_set_tail (gimple s)
1250 Mark call statement @code{S} as being a tail call (i.e., a call just
1251 before the exit of a function). These calls are candidate for
1252 tail call optimization. 
1253 @end deftypefn
1255 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gimple s)
1256 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call. 
1257 @end deftypefn
1259 @deftypefn {GIMPLE function} void gimple_call_mark_uninlinable (gimple s)
1260 Mark @code{GIMPLE_CALL} @code{S} as being uninlinable. 
1261 @end deftypefn
1263 @deftypefn {GIMPLE function} bool gimple_call_cannot_inline_p (gimple s)
1264 Return true if @code{GIMPLE_CALL} @code{S} cannot be inlined. 
1265 @end deftypefn
1267 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1268 Return true if @code{S} is a noreturn call. 
1269 @end deftypefn
1271 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
1272 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1273 in the positions marked by the set @code{ARGS_TO_SKIP}.
1274 @end deftypefn
1277 @node @code{GIMPLE_CATCH}
1278 @subsection @code{GIMPLE_CATCH}
1279 @cindex @code{GIMPLE_CATCH}
1281 @deftypefn {GIMPLE function} gimple gimple_build_catch (tree types, gimple_seq handler)
1282 Build a @code{GIMPLE_CATCH} statement.  @code{TYPES} are the tree types this
1283 catch handles.  @code{HANDLER} is a sequence of statements with the code
1284 for the handler.
1285 @end deftypefn
1287 @deftypefn {GIMPLE function} tree gimple_catch_types (gimple g)
1288 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}. 
1289 @end deftypefn
1291 @deftypefn {GIMPLE function} tree *gimple_catch_types_ptr (gimple g)
1292 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1293 @code{G}. 
1294 @end deftypefn
1296 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gimple g)
1297 Return the GIMPLE sequence representing the body of the handler
1298 of @code{GIMPLE_CATCH} statement @code{G}. 
1299 @end deftypefn
1301 @deftypefn {GIMPLE function} void gimple_catch_set_types (gimple g, tree t)
1302 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}. 
1303 @end deftypefn
1305 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gimple g, gimple_seq handler)
1306 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}. 
1307 @end deftypefn
1310 @node @code{GIMPLE_COND}
1311 @subsection @code{GIMPLE_COND}
1312 @cindex @code{GIMPLE_COND}
1314 @deftypefn {GIMPLE function} gimple gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1315 Build a @code{GIMPLE_COND} statement.  @code{A} @code{GIMPLE_COND} statement compares
1316 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1317 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1318 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1319 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1320 @end deftypefn
1323 @deftypefn {GIMPLE function} gimple gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
1324 Build a @code{GIMPLE_COND} statement from the conditional expression
1325 tree @code{COND}.  @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1326 @end deftypefn
1328 @deftypefn {GIMPLE function} enum tree_code gimple_cond_code (gimple g)
1329 Return the code of the predicate computed by conditional
1330 statement @code{G}. 
1331 @end deftypefn
1333 @deftypefn {GIMPLE function} void gimple_cond_set_code (gimple g, enum tree_code code)
1334 Set @code{CODE} to be the predicate code for the conditional statement
1335 @code{G}. 
1336 @end deftypefn
1338 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1339 Return the @code{LHS} of the predicate computed by conditional statement
1340 @code{G}. 
1341 @end deftypefn
1343 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gimple g, tree lhs)
1344 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1345 conditional statement @code{G}. 
1346 @end deftypefn
1348 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1349 Return the @code{RHS} operand of the predicate computed by conditional
1350 @code{G}. 
1351 @end deftypefn
1353 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gimple g, tree rhs)
1354 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1355 conditional statement @code{G}. 
1356 @end deftypefn
1358 @deftypefn {GIMPLE function} tree gimple_cond_true_label (gimple g)
1359 Return the label used by conditional statement @code{G} when its
1360 predicate evaluates to true. 
1361 @end deftypefn
1363 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gimple g, tree label)
1364 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1365 its predicate evaluates to true. 
1366 @end deftypefn
1368 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gimple g, tree label)
1369 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1370 its predicate evaluates to false. 
1371 @end deftypefn
1373 @deftypefn {GIMPLE function} tree gimple_cond_false_label (gimple g)
1374 Return the label used by conditional statement @code{G} when its
1375 predicate evaluates to false. 
1376 @end deftypefn
1378 @deftypefn {GIMPLE function} void gimple_cond_make_false (gimple g)
1379 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'. 
1380 @end deftypefn
1382 @deftypefn {GIMPLE function} void gimple_cond_make_true (gimple g)
1383 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'. 
1384 @end deftypefn
1386 @node @code{GIMPLE_EH_FILTER}
1387 @subsection @code{GIMPLE_EH_FILTER}
1388 @cindex @code{GIMPLE_EH_FILTER}
1390 @deftypefn {GIMPLE function} gimple gimple_build_eh_filter (tree types, gimple_seq failure)
1391 Build a @code{GIMPLE_EH_FILTER} statement.  @code{TYPES} are the filter's
1392 types.  @code{FAILURE} is a sequence with the filter's failure action.
1393 @end deftypefn
1395 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1396 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}. 
1397 @end deftypefn
1399 @deftypefn {GIMPLE function} tree *gimple_eh_filter_types_ptr (gimple g)
1400 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1401 statement @code{G}. 
1402 @end deftypefn
1404 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1405 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1406 statement fails. 
1407 @end deftypefn
1409 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (gimple g, tree types)
1410 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}. 
1411 @end deftypefn
1413 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (gimple g, gimple_seq failure)
1414 Set @code{FAILURE} to be the sequence of statements to execute on
1415 failure for @code{GIMPLE_EH_FILTER} @code{G}. 
1416 @end deftypefn
1418 @deftypefn {GIMPLE function} bool gimple_eh_filter_must_not_throw (gimple g)
1419 Return the @code{EH_FILTER_MUST_NOT_THROW} flag. 
1420 @end deftypefn
1422 @deftypefn {GIMPLE function} void gimple_eh_filter_set_must_not_throw (gimple g, bool mntp)
1423 Set the @code{EH_FILTER_MUST_NOT_THROW} flag. 
1424 @end deftypefn
1427 @node @code{GIMPLE_LABEL}
1428 @subsection @code{GIMPLE_LABEL}
1429 @cindex @code{GIMPLE_LABEL}
1431 @deftypefn {GIMPLE function} gimple gimple_build_label (tree label)
1432 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1433 label, @code{LABEL}.
1434 @end deftypefn
1436 @deftypefn {GIMPLE function} tree gimple_label_label (gimple g)
1437 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}. 
1438 @end deftypefn
1440 @deftypefn {GIMPLE function} void gimple_label_set_label (gimple g, tree label)
1441 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1442 statement @code{G}. 
1443 @end deftypefn
1446 @deftypefn {GIMPLE function} gimple gimple_build_goto (tree dest)
1447 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1448 @end deftypefn
1450 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1451 Return the destination of the unconditional jump @code{G}. 
1452 @end deftypefn
1454 @deftypefn {GIMPLE function} void gimple_goto_set_dest (gimple g, tree dest)
1455 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1456 @end deftypefn
1459 @node @code{GIMPLE_NOP}
1460 @subsection @code{GIMPLE_NOP}
1461 @cindex @code{GIMPLE_NOP}
1463 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1464 Build a @code{GIMPLE_NOP} statement.
1465 @end deftypefn
1467 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1468 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}. 
1469 @end deftypefn
1471 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1472 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1473 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1475 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)
1476 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement.  @code{LHS} is the left-hand
1477 side of the assignment.  @code{RHS} is the right-hand side of the
1478 assignment.
1479 @end deftypefn
1481 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)
1482 Set the @code{LHS} of an atomic load. 
1483 @end deftypefn
1485 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs (gimple g)
1486 Get the @code{LHS} of an atomic load. 
1487 @end deftypefn
1489 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)
1490 Set the @code{RHS} of an atomic set. 
1491 @end deftypefn
1493 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs (gimple g)
1494 Get the @code{RHS} of an atomic set. 
1495 @end deftypefn
1498 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1499 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1500 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1502 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_store (tree val)
1503 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1504 stored.
1505 @end deftypefn
1507 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val (gimple g, tree val)
1508 Set the value being stored in an atomic store. 
1509 @end deftypefn
1511 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val (gimple g)
1512 Return the value being stored in an atomic store. 
1513 @end deftypefn
1515 @node @code{GIMPLE_OMP_CONTINUE}
1516 @subsection @code{GIMPLE_OMP_CONTINUE}
1517 @cindex @code{GIMPLE_OMP_CONTINUE}
1519 @deftypefn {GIMPLE function} gimple gimple_build_omp_continue (tree control_def, tree control_use)
1520 Build a @code{GIMPLE_OMP_CONTINUE} statement.  @code{CONTROL_DEF} is the
1521 definition of the control variable.  @code{CONTROL_USE} is the use of
1522 the control variable.
1523 @end deftypefn
1525 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def (gimple s)
1526 Return the definition of the control variable on a
1527 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1528 @end deftypefn
1530 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr (gimple s)
1531 Same as above, but return the pointer.
1532 @end deftypefn
1534 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def (gimple s)
1535 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1536 statement in @code{S}.
1537 @end deftypefn
1539 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use (gimple s)
1540 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1541 in @code{S}.
1542 @end deftypefn
1544 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr (gimple s)
1545 Same as above, but return the pointer.
1546 @end deftypefn
1548 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use (gimple s)
1549 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1550 in @code{S}.
1551 @end deftypefn
1554 @node @code{GIMPLE_OMP_CRITICAL}
1555 @subsection @code{GIMPLE_OMP_CRITICAL}
1556 @cindex @code{GIMPLE_OMP_CRITICAL}
1558 @deftypefn {GIMPLE function} gimple gimple_build_omp_critical (gimple_seq body, tree name)
1559 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1560 statements for which only one thread can execute.  @code{NAME} is an
1561 optional identifier for this critical block.
1562 @end deftypefn
1564 @deftypefn {GIMPLE function} tree gimple_omp_critical_name (gimple g)
1565 Return the name associated with @code{OMP_CRITICAL} statement @code{G}. 
1566 @end deftypefn
1568 @deftypefn {GIMPLE function} tree *gimple_omp_critical_name_ptr (gimple g)
1569 Return a pointer to the name associated with @code{OMP} critical
1570 statement @code{G}. 
1571 @end deftypefn
1573 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name (gimple g, tree name)
1574 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}. 
1575 @end deftypefn
1577 @node @code{GIMPLE_OMP_FOR}
1578 @subsection @code{GIMPLE_OMP_FOR}
1579 @cindex @code{GIMPLE_OMP_FOR}
1581 @deftypefn {GIMPLE function} gimple gimple_build_omp_for (gimple_seq body, @
1582 tree clauses, tree index, tree initial, tree final, tree incr, @
1583 gimple_seq pre_body, enum tree_code omp_for_cond)
1584 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1585 inside the for loop.  @code{CLAUSES}, are any of the @code{OMP} loop
1586 construct's clauses: private, firstprivate,  lastprivate,
1587 reductions, ordered, schedule, and nowait.  @code{PRE_BODY} is the
1588 sequence of statements that are loop invariant.  @code{INDEX} is the
1589 index variable.  @code{INITIAL} is the initial value of @code{INDEX}.  @code{FINAL} is
1590 final value of @code{INDEX}.  OMP_FOR_COND is the predicate used to
1591 compare @code{INDEX} and @code{FINAL}.  @code{INCR} is the increment expression.
1592 @end deftypefn
1594 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1595 Return the clauses associated with @code{OMP_FOR} @code{G}. 
1596 @end deftypefn
1598 @deftypefn {GIMPLE function} tree *gimple_omp_for_clauses_ptr (gimple g)
1599 Return a pointer to the @code{OMP_FOR} @code{G}. 
1600 @end deftypefn
1602 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1603 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}. 
1604 @end deftypefn
1606 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1607 Return the index variable for @code{OMP_FOR} @code{G}. 
1608 @end deftypefn
1610 @deftypefn {GIMPLE function} tree *gimple_omp_for_index_ptr (gimple g)
1611 Return a pointer to the index variable for @code{OMP_FOR} @code{G}. 
1612 @end deftypefn
1614 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1615 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}. 
1616 @end deftypefn
1618 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1619 Return the initial value for @code{OMP_FOR} @code{G}. 
1620 @end deftypefn
1622 @deftypefn {GIMPLE function} tree *gimple_omp_for_initial_ptr (gimple g)
1623 Return a pointer to the initial value for @code{OMP_FOR} @code{G}. 
1624 @end deftypefn
1626 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1627 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1628 @end deftypefn
1630 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1631 Return the final value for @code{OMP_FOR} @code{G}. 
1632 @end deftypefn
1634 @deftypefn {GIMPLE function} tree *gimple_omp_for_final_ptr (gimple g)
1635 turn a pointer to the final value for @code{OMP_FOR} @code{G}. 
1636 @end deftypefn
1638 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1639 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}. 
1640 @end deftypefn
1642 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1643 Return the increment value for @code{OMP_FOR} @code{G}. 
1644 @end deftypefn
1646 @deftypefn {GIMPLE function} tree *gimple_omp_for_incr_ptr (gimple g)
1647 Return a pointer to the increment value for @code{OMP_FOR} @code{G}. 
1648 @end deftypefn
1650 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1651 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}. 
1652 @end deftypefn
1654 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1655 Return the sequence of statements to execute before the @code{OMP_FOR}
1656 statement @code{G} starts. 
1657 @end deftypefn
1659 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1660 Set @code{PRE_BODY} to be the sequence of statements to execute before
1661 the @code{OMP_FOR} statement @code{G} starts.
1662 @end deftypefn
1664 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1665 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}. 
1666 @end deftypefn
1668 @deftypefn {GIMPLE function} enum tree_code gimple_omp_for_cond (gimple g)
1669 Return the condition code associated with @code{OMP_FOR} @code{G}. 
1670 @end deftypefn
1673 @node @code{GIMPLE_OMP_MASTER}
1674 @subsection @code{GIMPLE_OMP_MASTER}
1675 @cindex @code{GIMPLE_OMP_MASTER}
1677 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1678 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1679 statements to be executed by just the master.
1680 @end deftypefn
1683 @node @code{GIMPLE_OMP_ORDERED}
1684 @subsection @code{GIMPLE_OMP_ORDERED}
1685 @cindex @code{GIMPLE_OMP_ORDERED}
1687 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1688 Build a @code{GIMPLE_OMP_ORDERED} statement.
1689 @end deftypefn
1691 @code{BODY} is the sequence of statements inside a loop that will
1692 executed in sequence.
1695 @node @code{GIMPLE_OMP_PARALLEL}
1696 @subsection @code{GIMPLE_OMP_PARALLEL}
1697 @cindex @code{GIMPLE_OMP_PARALLEL}
1699 @deftypefn {GIMPLE function} gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg)
1700 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1701 @end deftypefn
1703 @code{BODY} is sequence of statements which are executed in parallel.
1704 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses.  @code{CHILD_FN} is
1705 the function created for the parallel threads to execute.
1706 @code{DATA_ARG} are the shared data argument(s).
1708 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1709 Return true if @code{OMP} parallel statement @code{G} has the
1710 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1711 @end deftypefn
1713 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
1714 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
1715 @code{G}.
1716 @end deftypefn
1718 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
1719 Return the body for the @code{OMP} statement @code{G}. 
1720 @end deftypefn
1722 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
1723 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}. 
1724 @end deftypefn
1726 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
1727 Return the clauses associated with @code{OMP_PARALLEL} @code{G}. 
1728 @end deftypefn
1730 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_clauses_ptr (gimple g)
1731 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}. 
1732 @end deftypefn
1734 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses (gimple g, tree clauses)
1735 Set @code{CLAUSES} to be the list of clauses associated with
1736 @code{OMP_PARALLEL} @code{G}. 
1737 @end deftypefn
1739 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn (gimple g)
1740 Return the child function used to hold the body of @code{OMP_PARALLEL}
1741 @code{G}. 
1742 @end deftypefn
1744 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_child_fn_ptr (gimple g)
1745 Return a pointer to the child function used to hold the body of
1746 @code{OMP_PARALLEL} @code{G}. 
1747 @end deftypefn
1749 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn)
1750 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}. 
1751 @end deftypefn
1753 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg (gimple g)
1754 Return the artificial argument used to send variables and values
1755 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}. 
1756 @end deftypefn
1758 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_data_arg_ptr (gimple g)
1759 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}. 
1760 @end deftypefn
1762 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg)
1763 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}. 
1764 @end deftypefn
1766 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple stmt)
1767 Returns true when the gimple statement @code{STMT} is any of the OpenMP
1768 types. 
1769 @end deftypefn
1772 @node @code{GIMPLE_OMP_RETURN}
1773 @subsection @code{GIMPLE_OMP_RETURN}
1774 @cindex @code{GIMPLE_OMP_RETURN}
1776 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
1777 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
1778 non-waiting return.
1779 @end deftypefn
1781 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
1782 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
1783 @end deftypefn
1786 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
1787 Return true if @code{OMP} return statement @code{G} has the
1788 @code{GF_OMP_RETURN_NOWAIT} flag set.
1789 @end deftypefn
1791 @node @code{GIMPLE_OMP_SECTION}
1792 @subsection @code{GIMPLE_OMP_SECTION}
1793 @cindex @code{GIMPLE_OMP_SECTION}
1795 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
1796 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
1797 @end deftypefn
1799 @code{BODY} is the sequence of statements in the section.
1801 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
1802 Return true if @code{OMP} section statement @code{G} has the
1803 @code{GF_OMP_SECTION_LAST} flag set.
1804 @end deftypefn
1806 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
1807 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
1808 @end deftypefn
1810 @node @code{GIMPLE_OMP_SECTIONS}
1811 @subsection @code{GIMPLE_OMP_SECTIONS}
1812 @cindex @code{GIMPLE_OMP_SECTIONS}
1814 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections (gimple_seq body, tree clauses)
1815 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
1816 section statements.  @code{CLAUSES} are any of the @code{OMP} sections
1817 construct's clauses: private, firstprivate, lastprivate,
1818 reduction, and nowait.
1819 @end deftypefn
1822 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
1823 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
1824 @end deftypefn
1826 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
1827 Return the control variable associated with the
1828 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1829 @end deftypefn
1831 @deftypefn {GIMPLE function} tree *gimple_omp_sections_control_ptr (gimple g)
1832 Return a pointer to the clauses associated with the
1833 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1834 @end deftypefn
1836 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
1837 Set @code{CONTROL} to be the set of clauses associated with the
1838 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1839 @end deftypefn
1841 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
1842 Return the clauses associated with @code{OMP_SECTIONS} @code{G}. 
1843 @end deftypefn
1845 @deftypefn {GIMPLE function} tree *gimple_omp_sections_clauses_ptr (gimple g)
1846 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}. 
1847 @end deftypefn
1849 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
1850 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
1851 @code{G}. 
1852 @end deftypefn
1855 @node @code{GIMPLE_OMP_SINGLE}
1856 @subsection @code{GIMPLE_OMP_SINGLE}
1857 @cindex @code{GIMPLE_OMP_SINGLE}
1859 @deftypefn {GIMPLE function} gimple gimple_build_omp_single (gimple_seq body, tree clauses)
1860 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
1861 statements that will be executed once.  @code{CLAUSES} are any of the
1862 @code{OMP} single construct's clauses: private, firstprivate,
1863 copyprivate, nowait.
1864 @end deftypefn
1866 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
1867 Return the clauses associated with @code{OMP_SINGLE} @code{G}. 
1868 @end deftypefn
1870 @deftypefn {GIMPLE function} tree *gimple_omp_single_clauses_ptr (gimple g)
1871 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}. 
1872 @end deftypefn
1874 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses (gimple g, tree clauses)
1875 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}. 
1876 @end deftypefn
1879 @node @code{GIMPLE_PHI}
1880 @subsection @code{GIMPLE_PHI}
1881 @cindex @code{GIMPLE_PHI}
1883 @deftypefn {GIMPLE function} gimple make_phi_node (tree var, int len)
1884 Build a @code{PHI} node with len argument slots for variable var.
1885 @end deftypefn
1887 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
1888 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}. 
1889 @end deftypefn
1891 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
1892 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
1893 be exactly the number of incoming edges for the basic block
1894 holding @code{G}. 
1895 @end deftypefn
1897 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
1898 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}. 
1899 @end deftypefn
1901 @deftypefn {GIMPLE function} tree *gimple_phi_result_ptr (gimple g)
1902 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}. 
1903 @end deftypefn
1905 @deftypefn {GIMPLE function} void gimple_phi_set_result (gimple g, tree result)
1906 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}. 
1907 @end deftypefn
1909 @deftypefn {GIMPLE function} struct phi_arg_d *gimple_phi_arg (gimple g, index)
1910 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
1911 @code{GIMPLE_PHI} @code{G}. 
1912 @end deftypefn
1914 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg)
1915 Set @code{PHIARG} to be the argument corresponding to incoming edge
1916 @code{INDEX} for @code{GIMPLE_PHI} @code{G}. 
1917 @end deftypefn
1919 @node @code{GIMPLE_RESX}
1920 @subsection @code{GIMPLE_RESX}
1921 @cindex @code{GIMPLE_RESX}
1923 @deftypefn {GIMPLE function} gimple gimple_build_resx (int region)
1924 Build a @code{GIMPLE_RESX} statement which is a statement.  This
1925 statement is a placeholder for _Unwind_Resume before we know if a
1926 function call or a branch is needed.  @code{REGION} is the exception
1927 region from which control is flowing.
1928 @end deftypefn
1930 @deftypefn {GIMPLE function} int gimple_resx_region (gimple g)
1931 Return the region number for @code{GIMPLE_RESX} @code{G}. 
1932 @end deftypefn
1934 @deftypefn {GIMPLE function} void gimple_resx_set_region (gimple g, int region)
1935 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}. 
1936 @end deftypefn
1938 @node @code{GIMPLE_RETURN}
1939 @subsection @code{GIMPLE_RETURN}
1940 @cindex @code{GIMPLE_RETURN}
1942 @deftypefn {GIMPLE function} gimple gimple_build_return (tree retval)
1943 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
1944 @end deftypefn
1946 @deftypefn {GIMPLE function} tree gimple_return_retval (gimple g)
1947 Return the return value for @code{GIMPLE_RETURN} @code{G}. 
1948 @end deftypefn
1950 @deftypefn {GIMPLE function} void gimple_return_set_retval (gimple g, tree retval)
1951 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}. 
1952 @end deftypefn
1954 @node @code{GIMPLE_SWITCH}
1955 @subsection @code{GIMPLE_SWITCH}
1956 @cindex @code{GIMPLE_SWITCH}
1958 @deftypefn {GIMPLE function} gimple gimple_build_switch ( nlabels, tree index, tree default_label, ...)
1959 Build a @code{GIMPLE_SWITCH} statement.  @code{NLABELS} are the number of
1960 labels excluding the default label.  The default label is passed
1961 in @code{DEFAULT_LABEL}.  The rest of the arguments are trees
1962 representing the labels.  Each label is a tree of code
1963 @code{CASE_LABEL_EXPR}.
1964 @end deftypefn
1966 @deftypefn {GIMPLE function} gimple gimple_build_switch_vec (tree index, tree default_label, @code{VEC}(tree,heap) *args)
1967 This function is an alternate way of building @code{GIMPLE_SWITCH}
1968 statements.  @code{INDEX} and @code{DEFAULT_LABEL} are as in
1969 gimple_build_switch.  @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees
1970 that contain the labels.
1971 @end deftypefn
1973 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels (gimple g)
1974 Return the number of labels associated with the switch statement
1975 @code{G}. 
1976 @end deftypefn
1978 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gimple g, unsigned nlabels)
1979 Set @code{NLABELS} to be the number of labels for the switch statement
1980 @code{G}. 
1981 @end deftypefn
1983 @deftypefn {GIMPLE function} tree gimple_switch_index (gimple g)
1984 Return the index variable used by the switch statement @code{G}. 
1985 @end deftypefn
1987 @deftypefn {GIMPLE function} void gimple_switch_set_index (gimple g, tree index)
1988 Set @code{INDEX} to be the index variable for switch statement @code{G}. 
1989 @end deftypefn
1991 @deftypefn {GIMPLE function} tree gimple_switch_label (gimple g, unsigned index)
1992 Return the label numbered @code{INDEX}. The default label is 0, followed
1993 by any labels in a switch statement. 
1994 @end deftypefn
1996 @deftypefn {GIMPLE function} void gimple_switch_set_label (gimple g, unsigned index, tree label)
1997 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
1998 label. 
1999 @end deftypefn
2001 @deftypefn {GIMPLE function} tree gimple_switch_default_label (gimple g)
2002 Return the default label for a switch statement. 
2003 @end deftypefn
2005 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gimple g, tree label)
2006 Set the default label for a switch statement. 
2007 @end deftypefn
2010 @node @code{GIMPLE_TRY}
2011 @subsection @code{GIMPLE_TRY}
2012 @cindex @code{GIMPLE_TRY}
2014 @deftypefn {GIMPLE function} gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind)
2015 Build a @code{GIMPLE_TRY} statement.  @code{EVAL} is a sequence with the
2016 expression to evaluate.  @code{CLEANUP} is a sequence of statements to
2017 run at clean-up time.  @code{KIND} is the enumeration value
2018 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2019 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2020 construct.
2021 @end deftypefn
2023 @deftypefn {GIMPLE function} enum gimple_try_flags gimple_try_kind (gimple g)
2024 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2025 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}. 
2026 @end deftypefn
2028 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2029 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag. 
2030 @end deftypefn
2032 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2033 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2034 @code{G}. 
2035 @end deftypefn
2037 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2038 Return the sequence of statements used as the cleanup body for
2039 @code{GIMPLE_TRY} @code{G}. 
2040 @end deftypefn
2042 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup)
2043 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag. 
2044 @end deftypefn
2046 @deftypefn {GIMPLE function} void gimple_try_set_eval (gimple g, gimple_seq eval)
2047 Set @code{EVAL} to be the sequence of statements to use as the body for
2048 @code{GIMPLE_TRY} @code{G}. 
2049 @end deftypefn
2051 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gimple g, gimple_seq cleanup)
2052 Set @code{CLEANUP} to be the sequence of statements to use as the
2053 cleanup body for @code{GIMPLE_TRY} @code{G}. 
2054 @end deftypefn
2056 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2057 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2058 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2060 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2061 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement.  @code{CLEANUP} is the
2062 clean-up expression.
2063 @end deftypefn
2065 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2066 Return the cleanup sequence for cleanup statement @code{G}. 
2067 @end deftypefn
2069 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2070 Set @code{CLEANUP} to be the cleanup sequence for @code{G}. 
2071 @end deftypefn
2073 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2074 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple. 
2075 @end deftypefn
2077 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2078 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple. 
2079 @end deftypefn
2082 @node GIMPLE sequences 
2083 @section GIMPLE sequences 
2084 @cindex GIMPLE sequences 
2086 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2087 used in @code{GENERIC}.  They are used to chain statements together, and
2088 when used in conjunction with sequence iterators, provide a
2089 framework for iterating through statements.
2091 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2092 commonly passed by reference to functions dealing with sequences.
2093 The type for a sequence pointer is @code{gimple_seq} which is the same
2094 as struct @code{gimple_sequence} *.  When declaring a local sequence,
2095 you can define a local variable of type struct @code{gimple_sequence}.
2096 When declaring a sequence allocated on the garbage collected
2097 heap, use the function @code{gimple_seq_alloc} documented below.
2099 There are convenience functions for iterating through sequences
2100 in the section entitled Sequence Iterators.
2102 Below is a list of functions to manipulate and query sequences.
2104 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2105 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2106 not @code{NULL}.  If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2107 @end deftypefn
2109 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2110 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2111 @code{NULL}.  If *@code{DEST} is @code{NULL}, allocate a new sequence before
2112 appending.
2113 @end deftypefn
2115 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2116 Perform a deep copy of sequence @code{SRC} and return the result.
2117 @end deftypefn
2119 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2120 Reverse the order of the statements in the sequence @code{SEQ}.  Return
2121 @code{SEQ}.
2122 @end deftypefn
2124 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2125 Return the first statement in sequence @code{S}.
2126 @end deftypefn
2128 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2129 Return the last statement in sequence @code{S}.
2130 @end deftypefn
2132 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2133 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2134 @end deftypefn
2136 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2137 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2138 @end deftypefn
2140 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2141 Initialize sequence @code{S} to an empty sequence.
2142 @end deftypefn
2144 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2145 Allocate a new sequence in the garbage collected store and return
2147 @end deftypefn
2149 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2150 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2151 @end deftypefn
2153 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2154 Return true if the sequence @code{S} is empty.
2155 @end deftypefn
2157 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2158 Returns the sequence of statements in @code{BB}.
2159 @end deftypefn
2161 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2162 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2163 @end deftypefn
2165 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2166 Determine whether @code{SEQ} contains exactly one statement.
2167 @end deftypefn
2169 @node Sequence iterators 
2170 @section Sequence iterators 
2171 @cindex Sequence iterators 
2173 Sequence iterators are convenience constructs for iterating
2174 through statements in a sequence.  Given a sequence @code{SEQ}, here is
2175 a typical use of gimple sequence iterators:
2177 @smallexample
2178 gimple_stmt_iterator gsi;
2180 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2181   @{
2182     gimple g = gsi_stmt (gsi);
2183     /* Do something with gimple statement @code{G}.  */
2184   @}
2185 @end smallexample
2187 Backward iterations are possible:
2189 @smallexample
2190         for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2191 @end smallexample
2193 Forward and backward iterations on basic blocks are possible with
2194 @code{gsi_start_bb} and @code{gsi_last_bb}.
2196 In the documentation below we sometimes refer to enum
2197 @code{gsi_iterator_update}.  The valid options for this enumeration are:
2199 @itemize @bullet
2200 @item @code{GSI_NEW_STMT}
2201 Only valid when a single statement is added.  Move the iterator to it.
2203 @item @code{GSI_SAME_STMT}
2204 Leave the iterator at the same statement.
2206 @item @code{GSI_CONTINUE_LINKING}
2207 Move iterator to whatever position is suitable for linking other
2208 statements in the same direction.
2209 @end itemize
2211 Below is a list of the functions used to manipulate and use
2212 statement iterators.
2214 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2215 Return a new iterator pointing to the sequence @code{SEQ}'s first
2216 statement.  If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2217 Use @code{gsi_start_bb} instead when the iterator needs to always have
2218 the correct basic block set.
2219 @end deftypefn
2221 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2222 Return a new iterator pointing to the first statement in basic
2223 block @code{BB}.
2224 @end deftypefn
2226 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2227 Return a new iterator initially pointing to the last statement of
2228 sequence @code{SEQ}.  If @code{SEQ} is empty, the iterator's basic block is
2229 @code{NULL}.  Use @code{gsi_last_bb} instead when the iterator needs to always
2230 have the correct basic block set.
2231 @end deftypefn
2233 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2234 Return a new iterator pointing to the last statement in basic
2235 block @code{BB}.
2236 @end deftypefn
2238 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2239 Return @code{TRUE} if at the end of @code{I}.
2240 @end deftypefn
2242 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2243 Return @code{TRUE} if we're one statement before the end of @code{I}.
2244 @end deftypefn
2246 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2247 Advance the iterator to the next gimple statement.
2248 @end deftypefn
2250 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2251 Advance the iterator to the previous gimple statement.
2252 @end deftypefn
2254 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2255 Return the current stmt.
2256 @end deftypefn
2258 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2259 Return a block statement iterator that points to the first
2260 non-label statement in block @code{BB}.
2261 @end deftypefn
2263 @deftypefn {GIMPLE function} gimple *gsi_stmt_ptr (gimple_stmt_iterator *i)
2264 Return a pointer to the current stmt.
2265 @end deftypefn
2267 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2268 Return the basic block associated with this iterator.
2269 @end deftypefn
2271 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2272 Return the sequence associated with this iterator.
2273 @end deftypefn
2275 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2276 Remove the current stmt from the sequence.  The iterator is
2277 updated to point to the next statement.  When @code{REMOVE_EH_INFO} is
2278 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2279 tables.  Otherwise we do not modify the @code{EH} tables.  Generally,
2280 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2281 removed from the @code{IL} and not reinserted elsewhere.
2282 @end deftypefn
2284 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2285 Links the sequence of statements @code{SEQ} before the statement pointed
2286 by iterator @code{I}.  @code{MODE} indicates what to do with the iterator
2287 after insertion (see @code{enum gsi_iterator_update} above).
2288 @end deftypefn
2290 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2291 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2292 Updates iterator @code{I} according to @code{MODE}.
2293 @end deftypefn
2295 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2296 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2297 @code{MODE} is as in @code{gsi_insert_after}.
2298 @end deftypefn
2300 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2301 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2302 @code{MODE} is as in @code{gsi_insert_after}.
2303 @end deftypefn
2305 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2306 Move all statements in the sequence after @code{I} to a new sequence.
2307 Return this new sequence.
2308 @end deftypefn
2310 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2311 Move all statements in the sequence before @code{I} to a new sequence.
2312 Return this new sequence.
2313 @end deftypefn
2315 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info)
2316 Replace the statement pointed-to by @code{I} to @code{STMT}.  If @code{UPDATE_EH_INFO}
2317 is true, the exception handling information of the original
2318 statement is moved to the new statement.
2319 @end deftypefn
2321 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2322 Insert statement @code{STMT} before the statement pointed-to by iterator
2323 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2324 specifies how to update iterator @code{I} after insertion (see enum
2325 @code{gsi_iterator_update}).
2326 @end deftypefn
2328 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2329 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2330 @end deftypefn
2332 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2333 Insert statement @code{STMT} after the statement pointed-to by iterator
2334 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2335 specifies how to update iterator @code{I} after insertion (see enum
2336 @code{gsi_iterator_update}).
2337 @end deftypefn
2339 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2340 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2341 @end deftypefn
2343 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2344 Finds iterator for @code{STMT}.
2345 @end deftypefn
2347 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2348 Move the statement at @code{FROM} so it comes right after the statement
2349 at @code{TO}.
2350 @end deftypefn
2352 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2353 Move the statement at @code{FROM} so it comes right before the statement
2354 at @code{TO}.
2355 @end deftypefn
2357 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
2358 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2359 @end deftypefn
2361 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2362 Add @code{STMT} to the pending list of edge @code{E}.  No actual insertion is
2363 made until a call to @code{gsi_commit_edge_inserts}() is made.
2364 @end deftypefn
2366 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2367 Add the sequence of statements in @code{SEQ} to the pending list of edge
2368 @code{E}.  No actual insertion is made until a call to
2369 @code{gsi_commit_edge_inserts}() is made.
2370 @end deftypefn
2372 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2373 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}.  If a new
2374 block has to be created, it is returned.
2375 @end deftypefn
2377 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2378 Commit insertions pending at edge @code{E}.  If a new block is created,
2379 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2380 @end deftypefn
2382 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2383 This routine will commit all pending edge insertions, creating
2384 any new basic blocks which are necessary.
2385 @end deftypefn
2388 @node Adding a new GIMPLE statement code
2389 @section Adding a new GIMPLE statement code
2390 @cindex Adding a new GIMPLE statement code
2392 The first step in adding a new GIMPLE statement code, is
2393 modifying the file @code{gimple.def}, which contains all the GIMPLE
2394 codes.  Then you must add a corresponding structure, and an entry
2395 in @code{union gimple_statement_d}, both of which are located in
2396 @code{gimple.h}.  This in turn, will require you to add a corresponding
2397 @code{GTY} tag in @code{gsstruct.def}, and code to handle this tag in
2398 @code{gss_for_code} which is located in @code{gimple.c}.
2400 In order for the garbage collector to know the size of the
2401 structure you created in @code{gimple.h}, you need to add a case to
2402 handle your new GIMPLE statement in @code{gimple_size} which is located
2403 in @code{gimple.c}.
2405 You will probably want to create a function to build the new
2406 gimple statement in @code{gimple.c}.  The function should be called
2407 @code{gimple_build_<@code{NEW_TUPLE_NAME}>}, and should return the new tuple
2408 of type gimple.
2410 If your new statement requires accessors for any members or
2411 operands it may have, put simple inline accessors in
2412 @code{gimple.h} and any non-trivial accessors in @code{gimple.c} with a
2413 corresponding prototype in @code{gimple.h}.
2416 @node Statement and operand traversals
2417 @section Statement and operand traversals
2418 @cindex Statement and operand traversals
2420 There are two functions available for walking statements and
2421 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2422 accordingly, and a third function for walking the operands in a
2423 statement: @code{walk_gimple_op}.
2425 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2426 This function is used to walk the current statement in @code{GSI},
2427 optionally using traversal state stored in @code{WI}.  If @code{WI} is @code{NULL}, no
2428 state is kept during the traversal.
2430 The callback @code{CALLBACK_STMT} is called.  If @code{CALLBACK_STMT} returns
2431 true, it means that the callback function has handled all the
2432 operands of the statement and it is not necessary to walk its
2433 operands.
2435 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2436 called on each operand of the statement via @code{walk_gimple_op}.  If
2437 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2438 operands are not scanned.
2440 The return value is that returned by the last call to
2441 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2442 @end deftypefn
2445 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2446 Use this function to walk the operands of statement @code{STMT}.  Every
2447 operand is walked via @code{walk_tree} with optional state information
2448 in @code{WI}.
2450 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2451 Additional parameters to @code{walk_tree} must be stored in @code{WI}.  For
2452 each operand @code{OP}, @code{walk_tree} is called as:
2454 @smallexample
2455     walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{WI}- @code{PSET})
2456 @end smallexample
2458 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2459 operands are not scanned.  The return value is that returned by
2460 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2461 specified.
2462 @end deftypefn
2465 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2466 This function walks all the statements in the sequence @code{SEQ}
2467 calling @code{walk_gimple_stmt} on each one.  @code{WI} is as in
2468 @code{walk_gimple_stmt}.  If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2469 is stopped and the value returned.  Otherwise, all the statements
2470 are walked and @code{NULL_TREE} returned.
2471 @end deftypefn