Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / config / v850 / v850.h
blob4a288178b7aaf67b6297732b931997eeef93a61d
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_V850_H
23 #define GCC_V850_H
25 /* These are defined in svr4.h but we want to override them. */
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #undef STARTFILE_SPEC
30 #undef ASM_SPEC
32 #define TARGET_CPU_generic 1
33 #define TARGET_CPU_v850e 2
34 #define TARGET_CPU_v850e1 3
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
38 #endif
40 #define MASK_DEFAULT MASK_V850
41 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
42 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
43 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
45 /* Choose which processor will be the default.
46 We must pass a -mv850xx option to the assembler if no explicit -mv* option
47 is given, because the assembler's processor default may not be correct. */
48 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
49 #undef MASK_DEFAULT
50 #define MASK_DEFAULT MASK_V850E
51 #undef SUBTARGET_ASM_SPEC
52 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
53 #undef SUBTARGET_CPP_SPEC
54 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
55 #undef TARGET_VERSION
56 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
57 #endif
59 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
60 #undef MASK_DEFAULT
61 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
62 #undef SUBTARGET_ASM_SPEC
63 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
64 #undef SUBTARGET_CPP_SPEC
65 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
66 #undef TARGET_VERSION
67 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
68 #endif
70 #define ASM_SPEC "%{mv*:-mv%*}"
71 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
73 #define EXTRA_SPECS \
74 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
75 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
77 /* Names to predefine in the preprocessor for this target machine. */
78 #define TARGET_CPU_CPP_BUILTINS() do { \
79 builtin_define( "__v851__" ); \
80 builtin_define( "__v850" ); \
81 builtin_assert( "machine=v850" ); \
82 builtin_assert( "cpu=v850" ); \
83 if (TARGET_EP) \
84 builtin_define ("__EP__"); \
85 } while(0)
87 #define MASK_CPU (MASK_V850 | MASK_V850E)
89 /* Information about the various small memory areas. */
90 struct small_memory_info {
91 const char *name;
92 long max;
93 long physical_max;
96 enum small_memory_type {
97 /* tiny data area, using EP as base register */
98 SMALL_MEMORY_TDA = 0,
99 /* small data area using dp as base register */
100 SMALL_MEMORY_SDA,
101 /* zero data area using r0 as base register */
102 SMALL_MEMORY_ZDA,
103 SMALL_MEMORY_max
106 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
108 /* Show we can debug even without a frame pointer. */
109 #define CAN_DEBUG_WITHOUT_FP
111 /* Some machines may desire to change what optimizations are
112 performed for various optimization levels. This macro, if
113 defined, is executed once just after the optimization level is
114 determined and before the remainder of the command options have
115 been parsed. Values set in this macro are used as the default
116 values for the other command line options.
118 LEVEL is the optimization level specified; 2 if `-O2' is
119 specified, 1 if `-O' is specified, and 0 if neither is specified.
121 SIZE is nonzero if `-Os' is specified, 0 otherwise.
123 You should not use this macro to change options that are not
124 machine-specific. These should uniformly selected by the same
125 optimization level on all supported machines. Use this macro to
126 enable machine-specific optimizations.
128 *Do not examine `write_symbols' in this macro!* The debugging
129 options are not supposed to alter the generated code. */
131 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
133 target_flags |= MASK_STRICT_ALIGN; \
134 if (LEVEL) \
135 /* Note - we no longer enable MASK_EP when optimizing. This is \
136 because of a hardware bug which stops the SLD and SST instructions\
137 from correctly detecting some hazards. If the user is sure that \
138 their hardware is fixed or that their program will not encounter \
139 the conditions that trigger the bug then they can enable -mep by \
140 hand. */ \
141 target_flags |= MASK_PROLOG_FUNCTION; \
145 /* Target machine storage layout */
147 /* Define this if most significant bit is lowest numbered
148 in instructions that operate on numbered bit-fields.
149 This is not true on the NEC V850. */
150 #define BITS_BIG_ENDIAN 0
152 /* Define this if most significant byte of a word is the lowest numbered. */
153 /* This is not true on the NEC V850. */
154 #define BYTES_BIG_ENDIAN 0
156 /* Define this if most significant word of a multiword number is lowest
157 numbered.
158 This is not true on the NEC V850. */
159 #define WORDS_BIG_ENDIAN 0
161 /* Width of a word, in units (bytes). */
162 #define UNITS_PER_WORD 4
164 /* Define this macro if it is advisable to hold scalars in registers
165 in a wider mode than that declared by the program. In such cases,
166 the value is constrained to be within the bounds of the declared
167 type, but kept valid in the wider mode. The signedness of the
168 extension may differ from that of the type.
170 Some simple experiments have shown that leaving UNSIGNEDP alone
171 generates the best overall code. */
173 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
174 if (GET_MODE_CLASS (MODE) == MODE_INT \
175 && GET_MODE_SIZE (MODE) < 4) \
176 { (MODE) = SImode; }
178 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
179 #define PARM_BOUNDARY 32
181 /* The stack goes in 32-bit lumps. */
182 #define STACK_BOUNDARY 32
184 /* Allocation boundary (in *bits*) for the code of a function.
185 16 is the minimum boundary; 32 would give better performance. */
186 #define FUNCTION_BOUNDARY 16
188 /* No data type wants to be aligned rounder than this. */
189 #define BIGGEST_ALIGNMENT 32
191 /* Alignment of field after `int : 0' in a structure. */
192 #define EMPTY_FIELD_BOUNDARY 32
194 /* No structure field wants to be aligned rounder than this. */
195 #define BIGGEST_FIELD_ALIGNMENT 32
197 /* Define this if move instructions will actually fail to work
198 when given unaligned data. */
199 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
201 /* Define this as 1 if `char' should by default be signed; else as 0.
203 On the NEC V850, loads do sign extension, so make this default. */
204 #define DEFAULT_SIGNED_CHAR 1
206 /* Standard register usage. */
208 /* Number of actual hardware registers.
209 The hardware registers are assigned numbers for the compiler
210 from 0 to just below FIRST_PSEUDO_REGISTER.
212 All registers that the compiler knows about must be given numbers,
213 even those that are not normally considered general registers. */
215 #define FIRST_PSEUDO_REGISTER 34
217 /* 1 for registers that have pervasive standard uses
218 and are not available for the register allocator. */
220 #define FIXED_REGISTERS \
221 { 1, 1, 0, 1, 1, 0, 0, 0, \
222 0, 0, 0, 0, 0, 0, 0, 0, \
223 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 1, 0, \
225 1, 1}
227 /* 1 for registers not available across function calls.
228 These must include the FIXED_REGISTERS and also any
229 registers that can be used without being saved.
230 The latter must include the registers where values are returned
231 and the register where structure-value addresses are passed.
232 Aside from that, you can include as many other registers as you
233 like. */
235 #define CALL_USED_REGISTERS \
236 { 1, 1, 0, 1, 1, 1, 1, 1, \
237 1, 1, 1, 1, 1, 1, 1, 1, \
238 1, 1, 1, 1, 0, 0, 0, 0, \
239 0, 0, 0, 0, 0, 0, 1, 1, \
240 1, 1}
242 /* List the order in which to allocate registers. Each register must be
243 listed once, even those in FIXED_REGISTERS.
245 On the 850, we make the return registers first, then all of the volatile
246 registers, then the saved registers in reverse order to better save the
247 registers with an out of line function, and finally the fixed
248 registers. */
250 #define REG_ALLOC_ORDER \
252 10, 11, /* return registers */ \
253 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
254 6, 7, 8, 9, 31, /* argument registers */ \
255 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
256 21, 20, 2, \
257 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
260 /* If TARGET_APP_REGS is not defined then add r2 and r5 to
261 the pool of fixed registers. See PR 14505. */
262 #define CONDITIONAL_REGISTER_USAGE \
264 if (!TARGET_APP_REGS) \
266 fixed_regs[2] = 1; call_used_regs[2] = 1; \
267 fixed_regs[5] = 1; call_used_regs[5] = 1; \
271 /* Return number of consecutive hard regs needed starting at reg REGNO
272 to hold something of mode MODE.
274 This is ordinarily the length in words of a value of mode MODE
275 but can be less for certain modes in special long registers. */
277 #define HARD_REGNO_NREGS(REGNO, MODE) \
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280 /* Value is 1 if hard register REGNO can hold a value of machine-mode
281 MODE. */
283 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
284 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
286 /* Value is 1 if it is a good idea to tie two pseudo registers
287 when one has mode MODE1 and one has mode MODE2.
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
289 for any hard reg, then this must be 0 for correct output. */
290 #define MODES_TIEABLE_P(MODE1, MODE2) \
291 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
294 /* Define the classes of registers for register constraints in the
295 machine description. Also define ranges of constants.
297 One of the classes must always be named ALL_REGS and include all hard regs.
298 If there is more than one class, another class must be named NO_REGS
299 and contain no registers.
301 The name GENERAL_REGS must be the name of a class (or an alias for
302 another name such as ALL_REGS). This is the class of registers
303 that is allowed by "g" or "r" in a register constraint.
304 Also, registers outside this class are allocated only when
305 instructions express preferences for them.
307 The classes must be numbered in nondecreasing order; that is,
308 a larger-numbered class must never be contained completely
309 in a smaller-numbered class.
311 For any two classes, it is very desirable that there be another
312 class that represents their union. */
314 enum reg_class
316 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES
321 #define IRA_COVER_CLASSES \
323 GENERAL_REGS, LIM_REG_CLASSES \
326 /* Give names of register classes as strings for dump file. */
328 #define REG_CLASS_NAMES \
329 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
331 /* Define which registers fit in which classes.
332 This is an initializer for a vector of HARD_REG_SET
333 of length N_REG_CLASSES. */
335 #define REG_CLASS_CONTENTS \
337 { 0x00000000 }, /* NO_REGS */ \
338 { 0xffffffff }, /* GENERAL_REGS */ \
339 { 0xffffffff }, /* ALL_REGS */ \
342 /* The same information, inverted:
343 Return the class number of the smallest class containing
344 reg number REGNO. This could be a conditional expression
345 or could index an array. */
347 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
349 /* The class value for index registers, and the one for base regs. */
351 #define INDEX_REG_CLASS NO_REGS
352 #define BASE_REG_CLASS GENERAL_REGS
354 /* Get reg_class from a letter such as appears in the machine description. */
356 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
358 /* Macros to check register numbers against specific register classes. */
360 /* These assume that REGNO is a hard or pseudo reg number.
361 They give nonzero only if REGNO is a hard reg of the suitable class
362 or a pseudo reg currently allocated to a suitable hard reg.
363 Since they use reg_renumber, they are safe only once reg_renumber
364 has been allocated, which happens in local-alloc.c. */
366 #define REGNO_OK_FOR_BASE_P(regno) \
367 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
369 #define REGNO_OK_FOR_INDEX_P(regno) 0
371 /* Given an rtx X being reloaded into a reg required to be
372 in class CLASS, return the class of reg to actually use.
373 In general this is just CLASS; but on some machines
374 in some cases it is preferable to use a more restrictive class. */
376 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
378 /* Return the maximum number of consecutive registers
379 needed to represent mode MODE in a register of class CLASS. */
381 #define CLASS_MAX_NREGS(CLASS, MODE) \
382 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
384 /* The letters I, J, K, L, M, N, O, P in a register constraint string
385 can be used to stand for particular ranges of immediate operands.
386 This macro defines what the ranges are.
387 C is the letter, and VALUE is a constant value.
388 Return 1 if VALUE is in the range specified by C. */
390 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
391 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
392 /* zero */
393 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
394 /* 5-bit signed immediate */
395 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
396 /* 16-bit signed immediate */
397 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
398 /* valid constant for movhi instruction. */
399 #define CONST_OK_FOR_L(VALUE) \
400 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
401 && CONST_OK_FOR_I ((VALUE & 0xffff)))
402 /* 16-bit unsigned immediate */
403 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
404 /* 5-bit unsigned immediate in shift instructions */
405 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
406 /* 9-bit signed immediate for word multiply instruction. */
407 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
409 #define CONST_OK_FOR_P(VALUE) 0
411 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
412 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
413 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
414 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
415 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
416 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
417 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
418 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
419 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
422 /* Similar, but for floating constants, and defining letters G and H.
423 Here VALUE is the CONST_DOUBLE rtx itself.
425 `G' is a zero of some form. */
427 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
428 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
429 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
430 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
431 && CONST_DOUBLE_LOW (VALUE) == 0 \
432 && CONST_DOUBLE_HIGH (VALUE) == 0))
434 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
436 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
437 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
438 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
439 : 0)
442 /* Stack layout; function entry, exit and calling. */
444 /* Define this if pushing a word on the stack
445 makes the stack pointer a smaller address. */
447 #define STACK_GROWS_DOWNWARD
449 /* Define this to nonzero if the nominal address of the stack frame
450 is at the high-address end of the local variables;
451 that is, each additional local variable allocated
452 goes at a more negative offset in the frame. */
454 #define FRAME_GROWS_DOWNWARD 1
456 /* Offset within stack frame to start allocating local variables at.
457 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
458 first local allocated. Otherwise, it is the offset to the BEGINNING
459 of the first local allocated. */
461 #define STARTING_FRAME_OFFSET 0
463 /* Offset of first parameter from the argument pointer register value. */
464 /* Is equal to the size of the saved fp + pc, even if an fp isn't
465 saved since the value is used before we know. */
467 #define FIRST_PARM_OFFSET(FNDECL) 0
469 /* Specify the registers used for certain standard purposes.
470 The values of these macros are register numbers. */
472 /* Register to use for pushing function arguments. */
473 #define STACK_POINTER_REGNUM 3
475 /* Base register for access to local variables of the function. */
476 #define FRAME_POINTER_REGNUM 32
478 /* Register containing return address from latest function call. */
479 #define LINK_POINTER_REGNUM 31
481 /* On some machines the offset between the frame pointer and starting
482 offset of the automatic variables is not known until after register
483 allocation has been done (for example, because the saved registers
484 are between these two locations). On those machines, define
485 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
486 be used internally until the offset is known, and define
487 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
488 used for the frame pointer.
490 You should define this macro only in the very rare circumstances
491 when it is not possible to calculate the offset between the frame
492 pointer and the automatic variables until after register
493 allocation has been completed. When this macro is defined, you
494 must also indicate in your definition of `ELIMINABLE_REGS' how to
495 eliminate `FRAME_POINTER_REGNUM' into either
496 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
498 Do not define this macro if it would be the same as
499 `FRAME_POINTER_REGNUM'. */
500 #undef HARD_FRAME_POINTER_REGNUM
501 #define HARD_FRAME_POINTER_REGNUM 29
503 /* Base register for access to arguments of the function. */
504 #define ARG_POINTER_REGNUM 33
506 /* Register in which static-chain is passed to a function. */
507 #define STATIC_CHAIN_REGNUM 20
509 /* If defined, this macro specifies a table of register pairs used to
510 eliminate unneeded registers that point into the stack frame. If
511 it is not defined, the only elimination attempted by the compiler
512 is to replace references to the frame pointer with references to
513 the stack pointer.
515 The definition of this macro is a list of structure
516 initializations, each of which specifies an original and
517 replacement register.
519 On some machines, the position of the argument pointer is not
520 known until the compilation is completed. In such a case, a
521 separate hard register must be used for the argument pointer.
522 This register can be eliminated by replacing it with either the
523 frame pointer or the argument pointer, depending on whether or not
524 the frame pointer has been eliminated.
526 In this case, you might specify:
527 #define ELIMINABLE_REGS \
528 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
529 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
530 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
532 Note that the elimination of the argument pointer with the stack
533 pointer is specified first since that is the preferred elimination. */
535 #define ELIMINABLE_REGS \
536 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
537 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
538 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
539 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
541 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
542 specifies the initial difference between the specified pair of
543 registers. This macro must be defined if `ELIMINABLE_REGS' is
544 defined. */
546 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
548 if ((FROM) == FRAME_POINTER_REGNUM) \
549 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \
550 else if ((FROM) == ARG_POINTER_REGNUM) \
551 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
552 else \
553 gcc_unreachable (); \
556 /* Keep the stack pointer constant throughout the function. */
557 #define ACCUMULATE_OUTGOING_ARGS 1
559 /* Value is the number of bytes of arguments automatically
560 popped when returning from a subroutine call.
561 FUNDECL is the declaration node of the function (as a tree),
562 FUNTYPE is the data type of the function (as a tree),
563 or for a library call it is an identifier node for the subroutine name.
564 SIZE is the number of bytes of arguments passed on the stack. */
566 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
568 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
570 /* Define a data type for recording info about an argument list
571 during the scan of that argument list. This data type should
572 hold all necessary information about the function itself
573 and about the args processed so far, enough to enable macros
574 such as FUNCTION_ARG to determine where the next arg should go. */
576 #define CUMULATIVE_ARGS struct cum_arg
577 struct cum_arg { int nbytes; int anonymous_args; };
579 /* Define where to put the arguments to a function.
580 Value is zero to push the argument on the stack,
581 or a hard register in which to store the argument.
583 MODE is the argument's machine mode.
584 TYPE is the data type of the argument (as a tree).
585 This is null for libcalls where that information may
586 not be available.
587 CUM is a variable of type CUMULATIVE_ARGS which gives info about
588 the preceding args and about the function being called.
589 NAMED is nonzero if this argument is a named parameter
590 (otherwise it is an extra parameter matching an ellipsis). */
592 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
593 function_arg (&CUM, MODE, TYPE, NAMED)
595 /* Initialize a variable CUM of type CUMULATIVE_ARGS
596 for a call to a function whose data type is FNTYPE.
597 For a library call, FNTYPE is 0. */
599 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
600 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
602 /* Update the data in CUM to advance over an argument
603 of mode MODE and data type TYPE.
604 (TYPE is null for libcalls where that information may not be available.) */
606 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
607 ((CUM).nbytes += ((MODE) != BLKmode \
608 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
609 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
611 /* When a parameter is passed in a register, stack space is still
612 allocated for it. */
613 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
615 /* Define this if the above stack space is to be considered part of the
616 space allocated by the caller. */
617 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
619 /* 1 if N is a possible register number for function argument passing. */
621 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
623 /* Define how to find the value returned by a library function
624 assuming the value has mode MODE. */
626 #define LIBCALL_VALUE(MODE) \
627 gen_rtx_REG (MODE, 10)
629 /* 1 if N is a possible register number for a function value. */
631 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
633 #define DEFAULT_PCC_STRUCT_RETURN 0
635 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
636 the stack pointer does not matter. The value is tested only in
637 functions that have frame pointers.
638 No definition is equivalent to always zero. */
640 #define EXIT_IGNORE_STACK 1
642 /* Define this macro as a C expression that is nonzero for registers
643 used by the epilogue or the `return' pattern. */
645 #define EPILOGUE_USES(REGNO) \
646 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
648 /* Output assembler code to FILE to increment profiler label # LABELNO
649 for profiling a function entry. */
651 #define FUNCTION_PROFILER(FILE, LABELNO) ;
653 /* Length in units of the trampoline for entering a nested function. */
655 #define TRAMPOLINE_SIZE 24
657 /* Addressing modes, and classification of registers for them. */
660 /* 1 if X is an rtx for a constant that is a valid address. */
662 /* ??? This seems too exclusive. May get better code by accepting more
663 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
665 #define CONSTANT_ADDRESS_P(X) \
666 (GET_CODE (X) == CONST_INT \
667 && CONST_OK_FOR_K (INTVAL (X)))
669 /* Maximum number of registers that can appear in a valid memory address. */
671 #define MAX_REGS_PER_ADDRESS 1
673 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
674 and check its validity for a certain class.
675 We have two alternate definitions for each of them.
676 The usual definition accepts all pseudo regs; the other rejects
677 them unless they have been allocated suitable hard regs.
678 The symbol REG_OK_STRICT causes the latter definition to be used.
680 Most source files want to accept pseudo regs in the hope that
681 they will get allocated to the class that the insn wants them to be in.
682 Source files for reload pass need to be strict.
683 After reload, it makes no difference, since pseudo regs have
684 been eliminated by then. */
686 #ifndef REG_OK_STRICT
688 /* Nonzero if X is a hard reg that can be used as an index
689 or if it is a pseudo reg. */
690 #define REG_OK_FOR_INDEX_P(X) 0
691 /* Nonzero if X is a hard reg that can be used as a base reg
692 or if it is a pseudo reg. */
693 #define REG_OK_FOR_BASE_P(X) 1
694 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
695 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
696 #define STRICT 0
698 #else
700 /* Nonzero if X is a hard reg that can be used as an index. */
701 #define REG_OK_FOR_INDEX_P(X) 0
702 /* Nonzero if X is a hard reg that can be used as a base reg. */
703 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
704 #define STRICT 1
706 #endif
708 /* A C expression that defines the optional machine-dependent
709 constraint letters that can be used to segregate specific types of
710 operands, usually memory references, for the target machine.
711 Normally this macro will not be defined. If it is required for a
712 particular target machine, it should return 1 if VALUE corresponds
713 to the operand type represented by the constraint letter C. If C
714 is not defined as an extra constraint, the value returned should
715 be 0 regardless of VALUE.
717 For example, on the ROMP, load instructions cannot have their
718 output in r0 if the memory reference contains a symbolic address.
719 Constraint letter `Q' is defined as representing a memory address
720 that does *not* contain a symbolic address. An alternative is
721 specified with a `Q' constraint on the input and `r' on the
722 output. The next alternative specifies `m' on the input and a
723 register class that does not include r0 on the output. */
725 #define EXTRA_CONSTRAINT(OP, C) \
726 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
727 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
728 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
729 && !SYMBOL_REF_ZDA_P (OP)) \
730 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
731 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
732 && SYMBOL_REF_ZDA_P (OP)) \
733 || (GET_CODE (OP) == CONST \
734 && GET_CODE (XEXP (OP, 0)) == PLUS \
735 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
736 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
737 : 0)
739 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
740 that is a valid memory address for an instruction.
741 The MODE argument is the machine mode for the MEM expression
742 that wants to use this address.
744 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
745 except for CONSTANT_ADDRESS_P which is actually
746 machine-independent. */
748 /* Accept either REG or SUBREG where a register is valid. */
750 #define RTX_OK_FOR_BASE_P(X) \
751 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
752 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
753 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
755 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
756 do { \
757 if (RTX_OK_FOR_BASE_P (X)) \
758 goto ADDR; \
759 if (CONSTANT_ADDRESS_P (X) \
760 && (MODE == QImode || INTVAL (X) % 2 == 0) \
761 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
762 goto ADDR; \
763 if (GET_CODE (X) == LO_SUM \
764 && REG_P (XEXP (X, 0)) \
765 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
766 && CONSTANT_P (XEXP (X, 1)) \
767 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
768 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
769 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
770 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
771 goto ADDR; \
772 if (special_symbolref_operand (X, MODE) \
773 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
774 goto ADDR; \
775 if (GET_CODE (X) == PLUS \
776 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
777 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
778 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
779 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
780 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
781 goto ADDR; \
782 } while (0)
785 /* Nonzero if the constant value X is a legitimate general operand.
786 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
788 #define LEGITIMATE_CONSTANT_P(X) \
789 (GET_CODE (X) == CONST_DOUBLE \
790 || !(GET_CODE (X) == CONST \
791 && GET_CODE (XEXP (X, 0)) == PLUS \
792 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
793 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
794 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
796 /* Tell final.c how to eliminate redundant test instructions. */
798 /* Here we define machine-dependent flags and fields in cc_status
799 (see `conditions.h'). No extra ones are needed for the VAX. */
801 /* Store in cc_status the expressions
802 that the condition codes will describe
803 after execution of an instruction whose pattern is EXP.
804 Do not alter them if the instruction would not alter the cc's. */
806 #define CC_OVERFLOW_UNUSABLE 0x200
807 #define CC_NO_CARRY CC_NO_OVERFLOW
808 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
810 /* Nonzero if access to memory by bytes or half words is no faster
811 than accessing full words. */
812 #define SLOW_BYTE_ACCESS 1
814 /* According expr.c, a value of around 6 should minimize code size, and
815 for the V850 series, that's our primary concern. */
816 #define MOVE_RATIO(speed) 6
818 /* Indirect calls are expensive, never turn a direct call
819 into an indirect call. */
820 #define NO_FUNCTION_CSE
822 /* The four different data regions on the v850. */
823 typedef enum
825 DATA_AREA_NORMAL,
826 DATA_AREA_SDA,
827 DATA_AREA_TDA,
828 DATA_AREA_ZDA
829 } v850_data_area;
831 #define TEXT_SECTION_ASM_OP "\t.section .text"
832 #define DATA_SECTION_ASM_OP "\t.section .data"
833 #define BSS_SECTION_ASM_OP "\t.section .bss"
834 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
835 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
837 #define SCOMMON_ASM_OP "\t.scomm\t"
838 #define ZCOMMON_ASM_OP "\t.zcomm\t"
839 #define TCOMMON_ASM_OP "\t.tcomm\t"
841 #define ASM_COMMENT_START "#"
843 /* Output to assembler file text saying following lines
844 may contain character constants, extra white space, comments, etc. */
846 #define ASM_APP_ON "#APP\n"
848 /* Output to assembler file text saying following lines
849 no longer contain unusual constructs. */
851 #define ASM_APP_OFF "#NO_APP\n"
853 #undef USER_LABEL_PREFIX
854 #define USER_LABEL_PREFIX "_"
856 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
857 if (! v850_output_addr_const_extra (FILE, X)) \
858 goto FAIL
860 /* This says how to output the assembler to define a global
861 uninitialized but not common symbol. */
863 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
864 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
866 #undef ASM_OUTPUT_ALIGNED_BSS
867 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
868 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
870 /* This says how to output the assembler to define a global
871 uninitialized, common symbol. */
872 #undef ASM_OUTPUT_ALIGNED_COMMON
873 #undef ASM_OUTPUT_COMMON
874 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
875 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
877 /* This says how to output the assembler to define a local
878 uninitialized symbol. */
879 #undef ASM_OUTPUT_ALIGNED_LOCAL
880 #undef ASM_OUTPUT_LOCAL
881 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
882 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
884 /* Globalizing directive for a label. */
885 #define GLOBAL_ASM_OP "\t.global "
887 #define ASM_PN_FORMAT "%s___%lu"
889 /* This is how we tell the assembler that two symbols have the same value. */
891 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
892 do { assemble_name(FILE, NAME1); \
893 fputs(" = ", FILE); \
894 assemble_name(FILE, NAME2); \
895 fputc('\n', FILE); } while (0)
898 /* How to refer to registers in assembler output.
899 This sequence is indexed by compiler's hard-register-number (see above). */
901 #define REGISTER_NAMES \
902 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
903 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
904 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
905 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
906 ".fp", ".ap"}
908 #define ADDITIONAL_REGISTER_NAMES \
909 { { "zero", 0 }, \
910 { "hp", 2 }, \
911 { "r3", 3 }, \
912 { "r4", 4 }, \
913 { "tp", 5 }, \
914 { "fp", 29 }, \
915 { "r30", 30 }, \
916 { "lp", 31} }
918 /* Print an instruction operand X on file FILE.
919 look in v850.c for details */
921 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
923 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
924 ((CODE) == '.')
926 /* Print a memory operand whose address is X, on file FILE.
927 This uses a function in output-vax.c. */
929 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
931 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
932 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
934 /* This is how to output an element of a case-vector that is absolute. */
936 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
937 fprintf (FILE, "\t%s .L%d\n", \
938 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
940 /* This is how to output an element of a case-vector that is relative. */
942 /* Disable the shift, which is for the currently disabled "switch"
943 opcode. Se casesi in v850.md. */
944 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
945 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
946 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
947 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
948 VALUE, REL, \
949 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
951 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
952 if ((LOG) != 0) \
953 fprintf (FILE, "\t.align %d\n", (LOG))
955 /* We don't have to worry about dbx compatibility for the v850. */
956 #define DEFAULT_GDB_EXTENSIONS 1
958 /* Use stabs debugging info by default. */
959 #undef PREFERRED_DEBUGGING_TYPE
960 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
962 /* Specify the machine mode that this machine uses
963 for the index in the tablejump instruction. */
964 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
966 /* Define as C expression which evaluates to nonzero if the tablejump
967 instruction expects the table to contain offsets from the address of the
968 table.
969 Do not define this if the table should contain absolute addresses. */
970 #define CASE_VECTOR_PC_RELATIVE 1
972 /* The switch instruction requires that the jump table immediately follow
973 it. */
974 #define JUMP_TABLES_IN_TEXT_SECTION 1
976 /* svr4.h defines this assuming that 4 byte alignment is required. */
977 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
978 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
979 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
981 #define WORD_REGISTER_OPERATIONS
983 /* Byte and short loads sign extend the value to a word. */
984 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
986 /* This flag, if defined, says the same insns that convert to a signed fixnum
987 also convert validly to an unsigned one. */
988 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
990 /* Max number of bytes we can move from memory to memory
991 in one reasonably fast instruction. */
992 #define MOVE_MAX 4
994 /* Define if shifts truncate the shift count
995 which implies one can omit a sign-extension or zero-extension
996 of a shift count. */
997 #define SHIFT_COUNT_TRUNCATED 1
999 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1000 is done just by pretending it is already truncated. */
1001 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1003 /* Specify the machine mode that pointers have.
1004 After generation of rtl, the compiler makes no further distinction
1005 between pointers and any other objects of this machine mode. */
1006 #define Pmode SImode
1008 /* A function address in a call instruction
1009 is a byte address (for indexing purposes)
1010 so give the MEM rtx a byte's mode. */
1011 #define FUNCTION_MODE QImode
1013 /* Tell compiler we want to support GHS pragmas */
1014 #define REGISTER_TARGET_PRAGMAS() do { \
1015 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1016 c_register_pragma ("ghs", "section", ghs_pragma_section); \
1017 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
1018 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
1019 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
1020 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
1021 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
1022 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
1023 } while (0)
1025 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1026 can appear in the "ghs section" pragma. These names are used to index
1027 into the GHS_default_section_names[] and GHS_current_section_names[]
1028 that are defined in v850.c, and so the ordering of each must remain
1029 consistent.
1031 These arrays give the default and current names for each kind of
1032 section defined by the GHS pragmas. The current names can be changed
1033 by the "ghs section" pragma. If the current names are null, use
1034 the default names. Note that the two arrays have different types.
1036 For the *normal* section kinds (like .data, .text, etc.) we do not
1037 want to explicitly force the name of these sections, but would rather
1038 let the linker (or at least the back end) choose the name of the
1039 section, UNLESS the user has force a specific name for these section
1040 kinds. To accomplish this set the name in ghs_default_section_names
1041 to null. */
1043 enum GHS_section_kind
1045 GHS_SECTION_KIND_DEFAULT,
1047 GHS_SECTION_KIND_TEXT,
1048 GHS_SECTION_KIND_DATA,
1049 GHS_SECTION_KIND_RODATA,
1050 GHS_SECTION_KIND_BSS,
1051 GHS_SECTION_KIND_SDATA,
1052 GHS_SECTION_KIND_ROSDATA,
1053 GHS_SECTION_KIND_TDATA,
1054 GHS_SECTION_KIND_ZDATA,
1055 GHS_SECTION_KIND_ROZDATA,
1057 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1060 /* The following code is for handling pragmas supported by the
1061 v850 compiler produced by Green Hills Software. This is at
1062 the specific request of a customer. */
1064 typedef struct data_area_stack_element
1066 struct data_area_stack_element * prev;
1067 v850_data_area data_area; /* Current default data area. */
1068 } data_area_stack_element;
1070 /* Track the current data area set by the
1071 data area pragma (which can be nested). */
1072 extern data_area_stack_element * data_area_stack;
1074 /* Names of the various data areas used on the v850. */
1075 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1076 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1078 /* The assembler op to start the file. */
1080 #define FILE_ASM_OP "\t.file\n"
1082 /* Enable the register move pass to improve code. */
1083 #define ENABLE_REGMOVE_PASS
1086 /* Implement ZDA, TDA, and SDA */
1088 #define EP_REGNUM 30 /* ep register number */
1090 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1091 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1092 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1093 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1094 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1095 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1097 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
1099 #endif /* ! GCC_V850_H */