Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / ada / exp_ch5.adb
blob021afbf5282aadb8f08f91a96d593f46ccab9a4b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Exp_Atag; use Exp_Atag;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch11; use Exp_Ch11;
36 with Exp_Dbug; use Exp_Dbug;
37 with Exp_Pakd; use Exp_Pakd;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sinfo; use Sinfo;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Snames; use Snames;
57 with Stand; use Stand;
58 with Stringt; use Stringt;
59 with Targparm; use Targparm;
60 with Tbuild; use Tbuild;
61 with Ttypes; use Ttypes;
62 with Uintp; use Uintp;
63 with Validsw; use Validsw;
65 package body Exp_Ch5 is
67 function Change_Of_Representation (N : Node_Id) return Boolean;
68 -- Determine if the right hand side of the assignment N is a type
69 -- conversion which requires a change of representation. Called
70 -- only for the array and record cases.
72 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
73 -- N is an assignment which assigns an array value. This routine process
74 -- the various special cases and checks required for such assignments,
75 -- including change of representation. Rhs is normally simply the right
76 -- hand side of the assignment, except that if the right hand side is
77 -- a type conversion or a qualified expression, then the Rhs is the
78 -- actual expression inside any such type conversions or qualifications.
80 function Expand_Assign_Array_Loop
81 (N : Node_Id;
82 Larray : Entity_Id;
83 Rarray : Entity_Id;
84 L_Type : Entity_Id;
85 R_Type : Entity_Id;
86 Ndim : Pos;
87 Rev : Boolean) return Node_Id;
88 -- N is an assignment statement which assigns an array value. This routine
89 -- expands the assignment into a loop (or nested loops for the case of a
90 -- multi-dimensional array) to do the assignment component by component.
91 -- Larray and Rarray are the entities of the actual arrays on the left
92 -- hand and right hand sides. L_Type and R_Type are the types of these
93 -- arrays (which may not be the same, due to either sliding, or to a
94 -- change of representation case). Ndim is the number of dimensions and
95 -- the parameter Rev indicates if the loops run normally (Rev = False),
96 -- or reversed (Rev = True). The value returned is the constructed
97 -- loop statement. Auxiliary declarations are inserted before node N
98 -- using the standard Insert_Actions mechanism.
100 procedure Expand_Assign_Record (N : Node_Id);
101 -- N is an assignment of a non-tagged record value. This routine handles
102 -- the case where the assignment must be made component by component,
103 -- either because the target is not byte aligned, or there is a change
104 -- of representation, or when we have a tagged type with a representation
105 -- clause (this last case is required because holes in the tagged type
106 -- might be filled with components from child types).
108 procedure Expand_Non_Function_Return (N : Node_Id);
109 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
110 -- a procedure body, entry body, accept statement, or extended return
111 -- statement. Note that all non-function returns are simple return
112 -- statements.
114 procedure Expand_Simple_Function_Return (N : Node_Id);
115 -- Expand simple return from function. In the case where we are returning
116 -- from a function body this is called by Expand_N_Simple_Return_Statement.
118 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
119 -- Generate the necessary code for controlled and tagged assignment, that
120 -- is to say, finalization of the target before, adjustment of the target
121 -- after and save and restore of the tag and finalization pointers which
122 -- are not 'part of the value' and must not be changed upon assignment. N
123 -- is the original Assignment node.
125 ------------------------------
126 -- Change_Of_Representation --
127 ------------------------------
129 function Change_Of_Representation (N : Node_Id) return Boolean is
130 Rhs : constant Node_Id := Expression (N);
131 begin
132 return
133 Nkind (Rhs) = N_Type_Conversion
134 and then
135 not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
136 end Change_Of_Representation;
138 -------------------------
139 -- Expand_Assign_Array --
140 -------------------------
142 -- There are two issues here. First, do we let Gigi do a block move, or
143 -- do we expand out into a loop? Second, we need to set the two flags
144 -- Forwards_OK and Backwards_OK which show whether the block move (or
145 -- corresponding loops) can be legitimately done in a forwards (low to
146 -- high) or backwards (high to low) manner.
148 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
149 Loc : constant Source_Ptr := Sloc (N);
151 Lhs : constant Node_Id := Name (N);
153 Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
154 Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
156 L_Type : constant Entity_Id :=
157 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
158 R_Type : Entity_Id :=
159 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
161 L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
162 R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
164 Crep : constant Boolean := Change_Of_Representation (N);
166 Larray : Node_Id;
167 Rarray : Node_Id;
169 Ndim : constant Pos := Number_Dimensions (L_Type);
171 Loop_Required : Boolean := False;
172 -- This switch is set to True if the array move must be done using
173 -- an explicit front end generated loop.
175 procedure Apply_Dereference (Arg : Node_Id);
176 -- If the argument is an access to an array, and the assignment is
177 -- converted into a procedure call, apply explicit dereference.
179 function Has_Address_Clause (Exp : Node_Id) return Boolean;
180 -- Test if Exp is a reference to an array whose declaration has
181 -- an address clause, or it is a slice of such an array.
183 function Is_Formal_Array (Exp : Node_Id) return Boolean;
184 -- Test if Exp is a reference to an array which is either a formal
185 -- parameter or a slice of a formal parameter. These are the cases
186 -- where hidden aliasing can occur.
188 function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
189 -- Determine if Exp is a reference to an array variable which is other
190 -- than an object defined in the current scope, or a slice of such
191 -- an object. Such objects can be aliased to parameters (unlike local
192 -- array references).
194 -----------------------
195 -- Apply_Dereference --
196 -----------------------
198 procedure Apply_Dereference (Arg : Node_Id) is
199 Typ : constant Entity_Id := Etype (Arg);
200 begin
201 if Is_Access_Type (Typ) then
202 Rewrite (Arg, Make_Explicit_Dereference (Loc,
203 Prefix => Relocate_Node (Arg)));
204 Analyze_And_Resolve (Arg, Designated_Type (Typ));
205 end if;
206 end Apply_Dereference;
208 ------------------------
209 -- Has_Address_Clause --
210 ------------------------
212 function Has_Address_Clause (Exp : Node_Id) return Boolean is
213 begin
214 return
215 (Is_Entity_Name (Exp) and then
216 Present (Address_Clause (Entity (Exp))))
217 or else
218 (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
219 end Has_Address_Clause;
221 ---------------------
222 -- Is_Formal_Array --
223 ---------------------
225 function Is_Formal_Array (Exp : Node_Id) return Boolean is
226 begin
227 return
228 (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
229 or else
230 (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
231 end Is_Formal_Array;
233 ------------------------
234 -- Is_Non_Local_Array --
235 ------------------------
237 function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
238 begin
239 return (Is_Entity_Name (Exp)
240 and then Scope (Entity (Exp)) /= Current_Scope)
241 or else (Nkind (Exp) = N_Slice
242 and then Is_Non_Local_Array (Prefix (Exp)));
243 end Is_Non_Local_Array;
245 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
247 Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
248 Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
250 Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
251 Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
253 -- Start of processing for Expand_Assign_Array
255 begin
256 -- Deal with length check. Note that the length check is done with
257 -- respect to the right hand side as given, not a possible underlying
258 -- renamed object, since this would generate incorrect extra checks.
260 Apply_Length_Check (Rhs, L_Type);
262 -- We start by assuming that the move can be done in either direction,
263 -- i.e. that the two sides are completely disjoint.
265 Set_Forwards_OK (N, True);
266 Set_Backwards_OK (N, True);
268 -- Normally it is only the slice case that can lead to overlap, and
269 -- explicit checks for slices are made below. But there is one case
270 -- where the slice can be implicit and invisible to us: when we have a
271 -- one dimensional array, and either both operands are parameters, or
272 -- one is a parameter (which can be a slice passed by reference) and the
273 -- other is a non-local variable. In this case the parameter could be a
274 -- slice that overlaps with the other operand.
276 -- However, if the array subtype is a constrained first subtype in the
277 -- parameter case, then we don't have to worry about overlap, since
278 -- slice assignments aren't possible (other than for a slice denoting
279 -- the whole array).
281 -- Note: No overlap is possible if there is a change of representation,
282 -- so we can exclude this case.
284 if Ndim = 1
285 and then not Crep
286 and then
287 ((Lhs_Formal and Rhs_Formal)
288 or else
289 (Lhs_Formal and Rhs_Non_Local_Var)
290 or else
291 (Rhs_Formal and Lhs_Non_Local_Var))
292 and then
293 (not Is_Constrained (Etype (Lhs))
294 or else not Is_First_Subtype (Etype (Lhs)))
296 -- In the case of compiling for the Java or .NET Virtual Machine,
297 -- slices are always passed by making a copy, so we don't have to
298 -- worry about overlap. We also want to prevent generation of "<"
299 -- comparisons for array addresses, since that's a meaningless
300 -- operation on the VM.
302 and then VM_Target = No_VM
303 then
304 Set_Forwards_OK (N, False);
305 Set_Backwards_OK (N, False);
307 -- Note: the bit-packed case is not worrisome here, since if we have
308 -- a slice passed as a parameter, it is always aligned on a byte
309 -- boundary, and if there are no explicit slices, the assignment
310 -- can be performed directly.
311 end if;
313 -- If either operand has an address clause clear Backwards_OK and
314 -- Forwards_OK, since we cannot tell if the operands overlap. We
315 -- exclude this treatment when Rhs is an aggregate, since we know
316 -- that overlap can't occur.
318 if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
319 or else Has_Address_Clause (Rhs)
320 then
321 Set_Forwards_OK (N, False);
322 Set_Backwards_OK (N, False);
323 end if;
325 -- We certainly must use a loop for change of representation and also
326 -- we use the operand of the conversion on the right hand side as the
327 -- effective right hand side (the component types must match in this
328 -- situation).
330 if Crep then
331 Act_Rhs := Get_Referenced_Object (Rhs);
332 R_Type := Get_Actual_Subtype (Act_Rhs);
333 Loop_Required := True;
335 -- We require a loop if the left side is possibly bit unaligned
337 elsif Possible_Bit_Aligned_Component (Lhs)
338 or else
339 Possible_Bit_Aligned_Component (Rhs)
340 then
341 Loop_Required := True;
343 -- Arrays with controlled components are expanded into a loop to force
344 -- calls to Adjust at the component level.
346 elsif Has_Controlled_Component (L_Type) then
347 Loop_Required := True;
349 -- If object is atomic, we cannot tolerate a loop
351 elsif Is_Atomic_Object (Act_Lhs)
352 or else
353 Is_Atomic_Object (Act_Rhs)
354 then
355 return;
357 -- Loop is required if we have atomic components since we have to
358 -- be sure to do any accesses on an element by element basis.
360 elsif Has_Atomic_Components (L_Type)
361 or else Has_Atomic_Components (R_Type)
362 or else Is_Atomic (Component_Type (L_Type))
363 or else Is_Atomic (Component_Type (R_Type))
364 then
365 Loop_Required := True;
367 -- Case where no slice is involved
369 elsif not L_Slice and not R_Slice then
371 -- The following code deals with the case of unconstrained bit packed
372 -- arrays. The problem is that the template for such arrays contains
373 -- the bounds of the actual source level array, but the copy of an
374 -- entire array requires the bounds of the underlying array. It would
375 -- be nice if the back end could take care of this, but right now it
376 -- does not know how, so if we have such a type, then we expand out
377 -- into a loop, which is inefficient but works correctly. If we don't
378 -- do this, we get the wrong length computed for the array to be
379 -- moved. The two cases we need to worry about are:
381 -- Explicit dereference of an unconstrained packed array type as in
382 -- the following example:
384 -- procedure C52 is
385 -- type BITS is array(INTEGER range <>) of BOOLEAN;
386 -- pragma PACK(BITS);
387 -- type A is access BITS;
388 -- P1,P2 : A;
389 -- begin
390 -- P1 := new BITS (1 .. 65_535);
391 -- P2 := new BITS (1 .. 65_535);
392 -- P2.ALL := P1.ALL;
393 -- end C52;
395 -- A formal parameter reference with an unconstrained bit array type
396 -- is the other case we need to worry about (here we assume the same
397 -- BITS type declared above):
399 -- procedure Write_All (File : out BITS; Contents : BITS);
400 -- begin
401 -- File.Storage := Contents;
402 -- end Write_All;
404 -- We expand to a loop in either of these two cases
406 -- Question for future thought. Another potentially more efficient
407 -- approach would be to create the actual subtype, and then do an
408 -- unchecked conversion to this actual subtype ???
410 Check_Unconstrained_Bit_Packed_Array : declare
412 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
413 -- Function to perform required test for the first case, above
414 -- (dereference of an unconstrained bit packed array).
416 -----------------------
417 -- Is_UBPA_Reference --
418 -----------------------
420 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
421 Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
422 P_Type : Entity_Id;
423 Des_Type : Entity_Id;
425 begin
426 if Present (Packed_Array_Type (Typ))
427 and then Is_Array_Type (Packed_Array_Type (Typ))
428 and then not Is_Constrained (Packed_Array_Type (Typ))
429 then
430 return True;
432 elsif Nkind (Opnd) = N_Explicit_Dereference then
433 P_Type := Underlying_Type (Etype (Prefix (Opnd)));
435 if not Is_Access_Type (P_Type) then
436 return False;
438 else
439 Des_Type := Designated_Type (P_Type);
440 return
441 Is_Bit_Packed_Array (Des_Type)
442 and then not Is_Constrained (Des_Type);
443 end if;
445 else
446 return False;
447 end if;
448 end Is_UBPA_Reference;
450 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
452 begin
453 if Is_UBPA_Reference (Lhs)
454 or else
455 Is_UBPA_Reference (Rhs)
456 then
457 Loop_Required := True;
459 -- Here if we do not have the case of a reference to a bit packed
460 -- unconstrained array case. In this case gigi can most certainly
461 -- handle the assignment if a forwards move is allowed.
463 -- (could it handle the backwards case also???)
465 elsif Forwards_OK (N) then
466 return;
467 end if;
468 end Check_Unconstrained_Bit_Packed_Array;
470 -- The back end can always handle the assignment if the right side is a
471 -- string literal (note that overlap is definitely impossible in this
472 -- case). If the type is packed, a string literal is always converted
473 -- into an aggregate, except in the case of a null slice, for which no
474 -- aggregate can be written. In that case, rewrite the assignment as a
475 -- null statement, a length check has already been emitted to verify
476 -- that the range of the left-hand side is empty.
478 -- Note that this code is not executed if we have an assignment of a
479 -- string literal to a non-bit aligned component of a record, a case
480 -- which cannot be handled by the backend.
482 elsif Nkind (Rhs) = N_String_Literal then
483 if String_Length (Strval (Rhs)) = 0
484 and then Is_Bit_Packed_Array (L_Type)
485 then
486 Rewrite (N, Make_Null_Statement (Loc));
487 Analyze (N);
488 end if;
490 return;
492 -- If either operand is bit packed, then we need a loop, since we can't
493 -- be sure that the slice is byte aligned. Similarly, if either operand
494 -- is a possibly unaligned slice, then we need a loop (since the back
495 -- end cannot handle unaligned slices).
497 elsif Is_Bit_Packed_Array (L_Type)
498 or else Is_Bit_Packed_Array (R_Type)
499 or else Is_Possibly_Unaligned_Slice (Lhs)
500 or else Is_Possibly_Unaligned_Slice (Rhs)
501 then
502 Loop_Required := True;
504 -- If we are not bit-packed, and we have only one slice, then no overlap
505 -- is possible except in the parameter case, so we can let the back end
506 -- handle things.
508 elsif not (L_Slice and R_Slice) then
509 if Forwards_OK (N) then
510 return;
511 end if;
512 end if;
514 -- If the right-hand side is a string literal, introduce a temporary for
515 -- it, for use in the generated loop that will follow.
517 if Nkind (Rhs) = N_String_Literal then
518 declare
519 Temp : constant Entity_Id :=
520 Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
521 Decl : Node_Id;
523 begin
524 Decl :=
525 Make_Object_Declaration (Loc,
526 Defining_Identifier => Temp,
527 Object_Definition => New_Occurrence_Of (L_Type, Loc),
528 Expression => Relocate_Node (Rhs));
530 Insert_Action (N, Decl);
531 Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
532 R_Type := Etype (Temp);
533 end;
534 end if;
536 -- Come here to complete the analysis
538 -- Loop_Required: Set to True if we know that a loop is required
539 -- regardless of overlap considerations.
541 -- Forwards_OK: Set to False if we already know that a forwards
542 -- move is not safe, else set to True.
544 -- Backwards_OK: Set to False if we already know that a backwards
545 -- move is not safe, else set to True
547 -- Our task at this stage is to complete the overlap analysis, which can
548 -- result in possibly setting Forwards_OK or Backwards_OK to False, and
549 -- then generating the final code, either by deciding that it is OK
550 -- after all to let Gigi handle it, or by generating appropriate code
551 -- in the front end.
553 declare
554 L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
555 R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
557 Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
558 Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
559 Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
560 Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
562 Act_L_Array : Node_Id;
563 Act_R_Array : Node_Id;
565 Cleft_Lo : Node_Id;
566 Cright_Lo : Node_Id;
567 Condition : Node_Id;
569 Cresult : Compare_Result;
571 begin
572 -- Get the expressions for the arrays. If we are dealing with a
573 -- private type, then convert to the underlying type. We can do
574 -- direct assignments to an array that is a private type, but we
575 -- cannot assign to elements of the array without this extra
576 -- unchecked conversion.
578 if Nkind (Act_Lhs) = N_Slice then
579 Larray := Prefix (Act_Lhs);
580 else
581 Larray := Act_Lhs;
583 if Is_Private_Type (Etype (Larray)) then
584 Larray :=
585 Unchecked_Convert_To
586 (Underlying_Type (Etype (Larray)), Larray);
587 end if;
588 end if;
590 if Nkind (Act_Rhs) = N_Slice then
591 Rarray := Prefix (Act_Rhs);
592 else
593 Rarray := Act_Rhs;
595 if Is_Private_Type (Etype (Rarray)) then
596 Rarray :=
597 Unchecked_Convert_To
598 (Underlying_Type (Etype (Rarray)), Rarray);
599 end if;
600 end if;
602 -- If both sides are slices, we must figure out whether it is safe
603 -- to do the move in one direction or the other. It is always safe
604 -- if there is a change of representation since obviously two arrays
605 -- with different representations cannot possibly overlap.
607 if (not Crep) and L_Slice and R_Slice then
608 Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
609 Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
611 -- If both left and right hand arrays are entity names, and refer
612 -- to different entities, then we know that the move is safe (the
613 -- two storage areas are completely disjoint).
615 if Is_Entity_Name (Act_L_Array)
616 and then Is_Entity_Name (Act_R_Array)
617 and then Entity (Act_L_Array) /= Entity (Act_R_Array)
618 then
619 null;
621 -- Otherwise, we assume the worst, which is that the two arrays
622 -- are the same array. There is no need to check if we know that
623 -- is the case, because if we don't know it, we still have to
624 -- assume it!
626 -- Generally if the same array is involved, then we have an
627 -- overlapping case. We will have to really assume the worst (i.e.
628 -- set neither of the OK flags) unless we can determine the lower
629 -- or upper bounds at compile time and compare them.
631 else
632 Cresult :=
633 Compile_Time_Compare
634 (Left_Lo, Right_Lo, Assume_Valid => True);
636 if Cresult = Unknown then
637 Cresult :=
638 Compile_Time_Compare
639 (Left_Hi, Right_Hi, Assume_Valid => True);
640 end if;
642 case Cresult is
643 when LT | LE | EQ => Set_Backwards_OK (N, False);
644 when GT | GE => Set_Forwards_OK (N, False);
645 when NE | Unknown => Set_Backwards_OK (N, False);
646 Set_Forwards_OK (N, False);
647 end case;
648 end if;
649 end if;
651 -- If after that analysis Loop_Required is False, meaning that we
652 -- have not discovered some non-overlap reason for requiring a loop,
653 -- then the outcome depends on the capabilities of the back end.
655 if not Loop_Required then
657 -- The GCC back end can deal with all cases of overlap by falling
658 -- back to memmove if it cannot use a more efficient approach.
660 if VM_Target = No_VM and not AAMP_On_Target then
661 return;
663 -- Assume other back ends can handle it if Forwards_OK is set
665 elsif Forwards_OK (N) then
666 return;
668 -- If Forwards_OK is not set, the back end will need something
669 -- like memmove to handle the move. For now, this processing is
670 -- activated using the .s debug flag (-gnatd.s).
672 elsif Debug_Flag_Dot_S then
673 return;
674 end if;
675 end if;
677 -- At this stage we have to generate an explicit loop, and we have
678 -- the following cases:
680 -- Forwards_OK = True
682 -- Rnn : right_index := right_index'First;
683 -- for Lnn in left-index loop
684 -- left (Lnn) := right (Rnn);
685 -- Rnn := right_index'Succ (Rnn);
686 -- end loop;
688 -- Note: the above code MUST be analyzed with checks off, because
689 -- otherwise the Succ could overflow. But in any case this is more
690 -- efficient!
692 -- Forwards_OK = False, Backwards_OK = True
694 -- Rnn : right_index := right_index'Last;
695 -- for Lnn in reverse left-index loop
696 -- left (Lnn) := right (Rnn);
697 -- Rnn := right_index'Pred (Rnn);
698 -- end loop;
700 -- Note: the above code MUST be analyzed with checks off, because
701 -- otherwise the Pred could overflow. But in any case this is more
702 -- efficient!
704 -- Forwards_OK = Backwards_OK = False
706 -- This only happens if we have the same array on each side. It is
707 -- possible to create situations using overlays that violate this,
708 -- but we simply do not promise to get this "right" in this case.
710 -- There are two possible subcases. If the No_Implicit_Conditionals
711 -- restriction is set, then we generate the following code:
713 -- declare
714 -- T : constant <operand-type> := rhs;
715 -- begin
716 -- lhs := T;
717 -- end;
719 -- If implicit conditionals are permitted, then we generate:
721 -- if Left_Lo <= Right_Lo then
722 -- <code for Forwards_OK = True above>
723 -- else
724 -- <code for Backwards_OK = True above>
725 -- end if;
727 -- In order to detect possible aliasing, we examine the renamed
728 -- expression when the source or target is a renaming. However,
729 -- the renaming may be intended to capture an address that may be
730 -- affected by subsequent code, and therefore we must recover
731 -- the actual entity for the expansion that follows, not the
732 -- object it renames. In particular, if source or target designate
733 -- a portion of a dynamically allocated object, the pointer to it
734 -- may be reassigned but the renaming preserves the proper location.
736 if Is_Entity_Name (Rhs)
737 and then
738 Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
739 and then Nkind (Act_Rhs) = N_Slice
740 then
741 Rarray := Rhs;
742 end if;
744 if Is_Entity_Name (Lhs)
745 and then
746 Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
747 and then Nkind (Act_Lhs) = N_Slice
748 then
749 Larray := Lhs;
750 end if;
752 -- Cases where either Forwards_OK or Backwards_OK is true
754 if Forwards_OK (N) or else Backwards_OK (N) then
755 if Needs_Finalization (Component_Type (L_Type))
756 and then Base_Type (L_Type) = Base_Type (R_Type)
757 and then Ndim = 1
758 and then not No_Ctrl_Actions (N)
759 then
760 declare
761 Proc : constant Entity_Id :=
762 TSS (Base_Type (L_Type), TSS_Slice_Assign);
763 Actuals : List_Id;
765 begin
766 Apply_Dereference (Larray);
767 Apply_Dereference (Rarray);
768 Actuals := New_List (
769 Duplicate_Subexpr (Larray, Name_Req => True),
770 Duplicate_Subexpr (Rarray, Name_Req => True),
771 Duplicate_Subexpr (Left_Lo, Name_Req => True),
772 Duplicate_Subexpr (Left_Hi, Name_Req => True),
773 Duplicate_Subexpr (Right_Lo, Name_Req => True),
774 Duplicate_Subexpr (Right_Hi, Name_Req => True));
776 Append_To (Actuals,
777 New_Occurrence_Of (
778 Boolean_Literals (not Forwards_OK (N)), Loc));
780 Rewrite (N,
781 Make_Procedure_Call_Statement (Loc,
782 Name => New_Reference_To (Proc, Loc),
783 Parameter_Associations => Actuals));
784 end;
786 else
787 Rewrite (N,
788 Expand_Assign_Array_Loop
789 (N, Larray, Rarray, L_Type, R_Type, Ndim,
790 Rev => not Forwards_OK (N)));
791 end if;
793 -- Case of both are false with No_Implicit_Conditionals
795 elsif Restriction_Active (No_Implicit_Conditionals) then
796 declare
797 T : constant Entity_Id :=
798 Make_Defining_Identifier (Loc, Chars => Name_T);
800 begin
801 Rewrite (N,
802 Make_Block_Statement (Loc,
803 Declarations => New_List (
804 Make_Object_Declaration (Loc,
805 Defining_Identifier => T,
806 Constant_Present => True,
807 Object_Definition =>
808 New_Occurrence_Of (Etype (Rhs), Loc),
809 Expression => Relocate_Node (Rhs))),
811 Handled_Statement_Sequence =>
812 Make_Handled_Sequence_Of_Statements (Loc,
813 Statements => New_List (
814 Make_Assignment_Statement (Loc,
815 Name => Relocate_Node (Lhs),
816 Expression => New_Occurrence_Of (T, Loc))))));
817 end;
819 -- Case of both are false with implicit conditionals allowed
821 else
822 -- Before we generate this code, we must ensure that the left and
823 -- right side array types are defined. They may be itypes, and we
824 -- cannot let them be defined inside the if, since the first use
825 -- in the then may not be executed.
827 Ensure_Defined (L_Type, N);
828 Ensure_Defined (R_Type, N);
830 -- We normally compare addresses to find out which way round to
831 -- do the loop, since this is reliable, and handles the cases of
832 -- parameters, conversions etc. But we can't do that in the bit
833 -- packed case or the VM case, because addresses don't work there.
835 if not Is_Bit_Packed_Array (L_Type) and then VM_Target = No_VM then
836 Condition :=
837 Make_Op_Le (Loc,
838 Left_Opnd =>
839 Unchecked_Convert_To (RTE (RE_Integer_Address),
840 Make_Attribute_Reference (Loc,
841 Prefix =>
842 Make_Indexed_Component (Loc,
843 Prefix =>
844 Duplicate_Subexpr_Move_Checks (Larray, True),
845 Expressions => New_List (
846 Make_Attribute_Reference (Loc,
847 Prefix =>
848 New_Reference_To
849 (L_Index_Typ, Loc),
850 Attribute_Name => Name_First))),
851 Attribute_Name => Name_Address)),
853 Right_Opnd =>
854 Unchecked_Convert_To (RTE (RE_Integer_Address),
855 Make_Attribute_Reference (Loc,
856 Prefix =>
857 Make_Indexed_Component (Loc,
858 Prefix =>
859 Duplicate_Subexpr_Move_Checks (Rarray, True),
860 Expressions => New_List (
861 Make_Attribute_Reference (Loc,
862 Prefix =>
863 New_Reference_To
864 (R_Index_Typ, Loc),
865 Attribute_Name => Name_First))),
866 Attribute_Name => Name_Address)));
868 -- For the bit packed and VM cases we use the bounds. That's OK,
869 -- because we don't have to worry about parameters, since they
870 -- cannot cause overlap. Perhaps we should worry about weird slice
871 -- conversions ???
873 else
874 -- Copy the bounds
876 Cleft_Lo := New_Copy_Tree (Left_Lo);
877 Cright_Lo := New_Copy_Tree (Right_Lo);
879 -- If the types do not match we add an implicit conversion
880 -- here to ensure proper match
882 if Etype (Left_Lo) /= Etype (Right_Lo) then
883 Cright_Lo :=
884 Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
885 end if;
887 -- Reset the Analyzed flag, because the bounds of the index
888 -- type itself may be universal, and must must be reaanalyzed
889 -- to acquire the proper type for the back end.
891 Set_Analyzed (Cleft_Lo, False);
892 Set_Analyzed (Cright_Lo, False);
894 Condition :=
895 Make_Op_Le (Loc,
896 Left_Opnd => Cleft_Lo,
897 Right_Opnd => Cright_Lo);
898 end if;
900 if Needs_Finalization (Component_Type (L_Type))
901 and then Base_Type (L_Type) = Base_Type (R_Type)
902 and then Ndim = 1
903 and then not No_Ctrl_Actions (N)
904 then
906 -- Call TSS procedure for array assignment, passing the
907 -- explicit bounds of right and left hand sides.
909 declare
910 Proc : constant Entity_Id :=
911 TSS (Base_Type (L_Type), TSS_Slice_Assign);
912 Actuals : List_Id;
914 begin
915 Apply_Dereference (Larray);
916 Apply_Dereference (Rarray);
917 Actuals := New_List (
918 Duplicate_Subexpr (Larray, Name_Req => True),
919 Duplicate_Subexpr (Rarray, Name_Req => True),
920 Duplicate_Subexpr (Left_Lo, Name_Req => True),
921 Duplicate_Subexpr (Left_Hi, Name_Req => True),
922 Duplicate_Subexpr (Right_Lo, Name_Req => True),
923 Duplicate_Subexpr (Right_Hi, Name_Req => True));
925 Append_To (Actuals,
926 Make_Op_Not (Loc,
927 Right_Opnd => Condition));
929 Rewrite (N,
930 Make_Procedure_Call_Statement (Loc,
931 Name => New_Reference_To (Proc, Loc),
932 Parameter_Associations => Actuals));
933 end;
935 else
936 Rewrite (N,
937 Make_Implicit_If_Statement (N,
938 Condition => Condition,
940 Then_Statements => New_List (
941 Expand_Assign_Array_Loop
942 (N, Larray, Rarray, L_Type, R_Type, Ndim,
943 Rev => False)),
945 Else_Statements => New_List (
946 Expand_Assign_Array_Loop
947 (N, Larray, Rarray, L_Type, R_Type, Ndim,
948 Rev => True))));
949 end if;
950 end if;
952 Analyze (N, Suppress => All_Checks);
953 end;
955 exception
956 when RE_Not_Available =>
957 return;
958 end Expand_Assign_Array;
960 ------------------------------
961 -- Expand_Assign_Array_Loop --
962 ------------------------------
964 -- The following is an example of the loop generated for the case of a
965 -- two-dimensional array:
967 -- declare
968 -- R2b : Tm1X1 := 1;
969 -- begin
970 -- for L1b in 1 .. 100 loop
971 -- declare
972 -- R4b : Tm1X2 := 1;
973 -- begin
974 -- for L3b in 1 .. 100 loop
975 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
976 -- R4b := Tm1X2'succ(R4b);
977 -- end loop;
978 -- end;
979 -- R2b := Tm1X1'succ(R2b);
980 -- end loop;
981 -- end;
983 -- Here Rev is False, and Tm1Xn are the subscript types for the right hand
984 -- side. The declarations of R2b and R4b are inserted before the original
985 -- assignment statement.
987 function Expand_Assign_Array_Loop
988 (N : Node_Id;
989 Larray : Entity_Id;
990 Rarray : Entity_Id;
991 L_Type : Entity_Id;
992 R_Type : Entity_Id;
993 Ndim : Pos;
994 Rev : Boolean) return Node_Id
996 Loc : constant Source_Ptr := Sloc (N);
998 Lnn : array (1 .. Ndim) of Entity_Id;
999 Rnn : array (1 .. Ndim) of Entity_Id;
1000 -- Entities used as subscripts on left and right sides
1002 L_Index_Type : array (1 .. Ndim) of Entity_Id;
1003 R_Index_Type : array (1 .. Ndim) of Entity_Id;
1004 -- Left and right index types
1006 Assign : Node_Id;
1008 F_Or_L : Name_Id;
1009 S_Or_P : Name_Id;
1011 begin
1012 if Rev then
1013 F_Or_L := Name_Last;
1014 S_Or_P := Name_Pred;
1015 else
1016 F_Or_L := Name_First;
1017 S_Or_P := Name_Succ;
1018 end if;
1020 -- Setup index types and subscript entities
1022 declare
1023 L_Index : Node_Id;
1024 R_Index : Node_Id;
1026 begin
1027 L_Index := First_Index (L_Type);
1028 R_Index := First_Index (R_Type);
1030 for J in 1 .. Ndim loop
1031 Lnn (J) :=
1032 Make_Defining_Identifier (Loc,
1033 Chars => New_Internal_Name ('L'));
1035 Rnn (J) :=
1036 Make_Defining_Identifier (Loc,
1037 Chars => New_Internal_Name ('R'));
1039 L_Index_Type (J) := Etype (L_Index);
1040 R_Index_Type (J) := Etype (R_Index);
1042 Next_Index (L_Index);
1043 Next_Index (R_Index);
1044 end loop;
1045 end;
1047 -- Now construct the assignment statement
1049 declare
1050 ExprL : constant List_Id := New_List;
1051 ExprR : constant List_Id := New_List;
1053 begin
1054 for J in 1 .. Ndim loop
1055 Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
1056 Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
1057 end loop;
1059 Assign :=
1060 Make_Assignment_Statement (Loc,
1061 Name =>
1062 Make_Indexed_Component (Loc,
1063 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
1064 Expressions => ExprL),
1065 Expression =>
1066 Make_Indexed_Component (Loc,
1067 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
1068 Expressions => ExprR));
1070 -- We set assignment OK, since there are some cases, e.g. in object
1071 -- declarations, where we are actually assigning into a constant.
1072 -- If there really is an illegality, it was caught long before now,
1073 -- and was flagged when the original assignment was analyzed.
1075 Set_Assignment_OK (Name (Assign));
1077 -- Propagate the No_Ctrl_Actions flag to individual assignments
1079 Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1080 end;
1082 -- Now construct the loop from the inside out, with the last subscript
1083 -- varying most rapidly. Note that Assign is first the raw assignment
1084 -- statement, and then subsequently the loop that wraps it up.
1086 for J in reverse 1 .. Ndim loop
1087 Assign :=
1088 Make_Block_Statement (Loc,
1089 Declarations => New_List (
1090 Make_Object_Declaration (Loc,
1091 Defining_Identifier => Rnn (J),
1092 Object_Definition =>
1093 New_Occurrence_Of (R_Index_Type (J), Loc),
1094 Expression =>
1095 Make_Attribute_Reference (Loc,
1096 Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1097 Attribute_Name => F_Or_L))),
1099 Handled_Statement_Sequence =>
1100 Make_Handled_Sequence_Of_Statements (Loc,
1101 Statements => New_List (
1102 Make_Implicit_Loop_Statement (N,
1103 Iteration_Scheme =>
1104 Make_Iteration_Scheme (Loc,
1105 Loop_Parameter_Specification =>
1106 Make_Loop_Parameter_Specification (Loc,
1107 Defining_Identifier => Lnn (J),
1108 Reverse_Present => Rev,
1109 Discrete_Subtype_Definition =>
1110 New_Reference_To (L_Index_Type (J), Loc))),
1112 Statements => New_List (
1113 Assign,
1115 Make_Assignment_Statement (Loc,
1116 Name => New_Occurrence_Of (Rnn (J), Loc),
1117 Expression =>
1118 Make_Attribute_Reference (Loc,
1119 Prefix =>
1120 New_Occurrence_Of (R_Index_Type (J), Loc),
1121 Attribute_Name => S_Or_P,
1122 Expressions => New_List (
1123 New_Occurrence_Of (Rnn (J), Loc)))))))));
1124 end loop;
1126 return Assign;
1127 end Expand_Assign_Array_Loop;
1129 --------------------------
1130 -- Expand_Assign_Record --
1131 --------------------------
1133 procedure Expand_Assign_Record (N : Node_Id) is
1134 Lhs : constant Node_Id := Name (N);
1135 Rhs : Node_Id := Expression (N);
1136 L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
1138 begin
1139 -- If change of representation, then extract the real right hand side
1140 -- from the type conversion, and proceed with component-wise assignment,
1141 -- since the two types are not the same as far as the back end is
1142 -- concerned.
1144 if Change_Of_Representation (N) then
1145 Rhs := Expression (Rhs);
1147 -- If this may be a case of a large bit aligned component, then proceed
1148 -- with component-wise assignment, to avoid possible clobbering of other
1149 -- components sharing bits in the first or last byte of the component to
1150 -- be assigned.
1152 elsif Possible_Bit_Aligned_Component (Lhs)
1154 Possible_Bit_Aligned_Component (Rhs)
1155 then
1156 null;
1158 -- If we have a tagged type that has a complete record representation
1159 -- clause, we must do we must do component-wise assignments, since child
1160 -- types may have used gaps for their components, and we might be
1161 -- dealing with a view conversion.
1163 elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
1164 null;
1166 -- If neither condition met, then nothing special to do, the back end
1167 -- can handle assignment of the entire component as a single entity.
1169 else
1170 return;
1171 end if;
1173 -- At this stage we know that we must do a component wise assignment
1175 declare
1176 Loc : constant Source_Ptr := Sloc (N);
1177 R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
1178 Decl : constant Node_Id := Declaration_Node (R_Typ);
1179 RDef : Node_Id;
1180 F : Entity_Id;
1182 function Find_Component
1183 (Typ : Entity_Id;
1184 Comp : Entity_Id) return Entity_Id;
1185 -- Find the component with the given name in the underlying record
1186 -- declaration for Typ. We need to use the actual entity because the
1187 -- type may be private and resolution by identifier alone would fail.
1189 function Make_Component_List_Assign
1190 (CL : Node_Id;
1191 U_U : Boolean := False) return List_Id;
1192 -- Returns a sequence of statements to assign the components that
1193 -- are referenced in the given component list. The flag U_U is
1194 -- used to force the usage of the inferred value of the variant
1195 -- part expression as the switch for the generated case statement.
1197 function Make_Field_Assign
1198 (C : Entity_Id;
1199 U_U : Boolean := False) return Node_Id;
1200 -- Given C, the entity for a discriminant or component, build an
1201 -- assignment for the corresponding field values. The flag U_U
1202 -- signals the presence of an Unchecked_Union and forces the usage
1203 -- of the inferred discriminant value of C as the right hand side
1204 -- of the assignment.
1206 function Make_Field_Assigns (CI : List_Id) return List_Id;
1207 -- Given CI, a component items list, construct series of statements
1208 -- for fieldwise assignment of the corresponding components.
1210 --------------------
1211 -- Find_Component --
1212 --------------------
1214 function Find_Component
1215 (Typ : Entity_Id;
1216 Comp : Entity_Id) return Entity_Id
1218 Utyp : constant Entity_Id := Underlying_Type (Typ);
1219 C : Entity_Id;
1221 begin
1222 C := First_Entity (Utyp);
1223 while Present (C) loop
1224 if Chars (C) = Chars (Comp) then
1225 return C;
1226 end if;
1228 Next_Entity (C);
1229 end loop;
1231 raise Program_Error;
1232 end Find_Component;
1234 --------------------------------
1235 -- Make_Component_List_Assign --
1236 --------------------------------
1238 function Make_Component_List_Assign
1239 (CL : Node_Id;
1240 U_U : Boolean := False) return List_Id
1242 CI : constant List_Id := Component_Items (CL);
1243 VP : constant Node_Id := Variant_Part (CL);
1245 Alts : List_Id;
1246 DC : Node_Id;
1247 DCH : List_Id;
1248 Expr : Node_Id;
1249 Result : List_Id;
1250 V : Node_Id;
1252 begin
1253 Result := Make_Field_Assigns (CI);
1255 if Present (VP) then
1256 V := First_Non_Pragma (Variants (VP));
1257 Alts := New_List;
1258 while Present (V) loop
1259 DCH := New_List;
1260 DC := First (Discrete_Choices (V));
1261 while Present (DC) loop
1262 Append_To (DCH, New_Copy_Tree (DC));
1263 Next (DC);
1264 end loop;
1266 Append_To (Alts,
1267 Make_Case_Statement_Alternative (Loc,
1268 Discrete_Choices => DCH,
1269 Statements =>
1270 Make_Component_List_Assign (Component_List (V))));
1271 Next_Non_Pragma (V);
1272 end loop;
1274 -- If we have an Unchecked_Union, use the value of the inferred
1275 -- discriminant of the variant part expression as the switch
1276 -- for the case statement. The case statement may later be
1277 -- folded.
1279 if U_U then
1280 Expr :=
1281 New_Copy (Get_Discriminant_Value (
1282 Entity (Name (VP)),
1283 Etype (Rhs),
1284 Discriminant_Constraint (Etype (Rhs))));
1285 else
1286 Expr :=
1287 Make_Selected_Component (Loc,
1288 Prefix => Duplicate_Subexpr (Rhs),
1289 Selector_Name =>
1290 Make_Identifier (Loc, Chars (Name (VP))));
1291 end if;
1293 Append_To (Result,
1294 Make_Case_Statement (Loc,
1295 Expression => Expr,
1296 Alternatives => Alts));
1297 end if;
1299 return Result;
1300 end Make_Component_List_Assign;
1302 -----------------------
1303 -- Make_Field_Assign --
1304 -----------------------
1306 function Make_Field_Assign
1307 (C : Entity_Id;
1308 U_U : Boolean := False) return Node_Id
1310 A : Node_Id;
1311 Expr : Node_Id;
1313 begin
1314 -- In the case of an Unchecked_Union, use the discriminant
1315 -- constraint value as on the right hand side of the assignment.
1317 if U_U then
1318 Expr :=
1319 New_Copy (Get_Discriminant_Value (C,
1320 Etype (Rhs),
1321 Discriminant_Constraint (Etype (Rhs))));
1322 else
1323 Expr :=
1324 Make_Selected_Component (Loc,
1325 Prefix => Duplicate_Subexpr (Rhs),
1326 Selector_Name => New_Occurrence_Of (C, Loc));
1327 end if;
1329 A :=
1330 Make_Assignment_Statement (Loc,
1331 Name =>
1332 Make_Selected_Component (Loc,
1333 Prefix => Duplicate_Subexpr (Lhs),
1334 Selector_Name =>
1335 New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1336 Expression => Expr);
1338 -- Set Assignment_OK, so discriminants can be assigned
1340 Set_Assignment_OK (Name (A), True);
1342 if Componentwise_Assignment (N)
1343 and then Nkind (Name (A)) = N_Selected_Component
1344 and then Chars (Selector_Name (Name (A))) = Name_uParent
1345 then
1346 Set_Componentwise_Assignment (A);
1347 end if;
1349 return A;
1350 end Make_Field_Assign;
1352 ------------------------
1353 -- Make_Field_Assigns --
1354 ------------------------
1356 function Make_Field_Assigns (CI : List_Id) return List_Id is
1357 Item : Node_Id;
1358 Result : List_Id;
1360 begin
1361 Item := First (CI);
1362 Result := New_List;
1363 while Present (Item) loop
1365 -- Look for components, but exclude _tag field assignment if
1366 -- the special Componentwise_Assignment flag is set.
1368 if Nkind (Item) = N_Component_Declaration
1369 and then not (Is_Tag (Defining_Identifier (Item))
1370 and then Componentwise_Assignment (N))
1371 then
1372 Append_To
1373 (Result, Make_Field_Assign (Defining_Identifier (Item)));
1374 end if;
1376 Next (Item);
1377 end loop;
1379 return Result;
1380 end Make_Field_Assigns;
1382 -- Start of processing for Expand_Assign_Record
1384 begin
1385 -- Note that we use the base types for this processing. This results
1386 -- in some extra work in the constrained case, but the change of
1387 -- representation case is so unusual that it is not worth the effort.
1389 -- First copy the discriminants. This is done unconditionally. It
1390 -- is required in the unconstrained left side case, and also in the
1391 -- case where this assignment was constructed during the expansion
1392 -- of a type conversion (since initialization of discriminants is
1393 -- suppressed in this case). It is unnecessary but harmless in
1394 -- other cases.
1396 if Has_Discriminants (L_Typ) then
1397 F := First_Discriminant (R_Typ);
1398 while Present (F) loop
1400 -- If we are expanding the initialization of a derived record
1401 -- that constrains or renames discriminants of the parent, we
1402 -- must use the corresponding discriminant in the parent.
1404 declare
1405 CF : Entity_Id;
1407 begin
1408 if Inside_Init_Proc
1409 and then Present (Corresponding_Discriminant (F))
1410 then
1411 CF := Corresponding_Discriminant (F);
1412 else
1413 CF := F;
1414 end if;
1416 if Is_Unchecked_Union (Base_Type (R_Typ)) then
1417 Insert_Action (N, Make_Field_Assign (CF, True));
1418 else
1419 Insert_Action (N, Make_Field_Assign (CF));
1420 end if;
1422 Next_Discriminant (F);
1423 end;
1424 end loop;
1425 end if;
1427 -- We know the underlying type is a record, but its current view
1428 -- may be private. We must retrieve the usable record declaration.
1430 if Nkind_In (Decl, N_Private_Type_Declaration,
1431 N_Private_Extension_Declaration)
1432 and then Present (Full_View (R_Typ))
1433 then
1434 RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1435 else
1436 RDef := Type_Definition (Decl);
1437 end if;
1439 if Nkind (RDef) = N_Derived_Type_Definition then
1440 RDef := Record_Extension_Part (RDef);
1441 end if;
1443 if Nkind (RDef) = N_Record_Definition
1444 and then Present (Component_List (RDef))
1445 then
1446 if Is_Unchecked_Union (R_Typ) then
1447 Insert_Actions (N,
1448 Make_Component_List_Assign (Component_List (RDef), True));
1449 else
1450 Insert_Actions
1451 (N, Make_Component_List_Assign (Component_List (RDef)));
1452 end if;
1454 Rewrite (N, Make_Null_Statement (Loc));
1455 end if;
1456 end;
1457 end Expand_Assign_Record;
1459 -----------------------------------
1460 -- Expand_N_Assignment_Statement --
1461 -----------------------------------
1463 -- This procedure implements various cases where an assignment statement
1464 -- cannot just be passed on to the back end in untransformed state.
1466 procedure Expand_N_Assignment_Statement (N : Node_Id) is
1467 Loc : constant Source_Ptr := Sloc (N);
1468 Lhs : constant Node_Id := Name (N);
1469 Rhs : constant Node_Id := Expression (N);
1470 Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
1471 Exp : Node_Id;
1473 begin
1474 -- Special case to check right away, if the Componentwise_Assignment
1475 -- flag is set, this is a reanalysis from the expansion of the primitive
1476 -- assignment procedure for a tagged type, and all we need to do is to
1477 -- expand to assignment of components, because otherwise, we would get
1478 -- infinite recursion (since this looks like a tagged assignment which
1479 -- would normally try to *call* the primitive assignment procedure).
1481 if Componentwise_Assignment (N) then
1482 Expand_Assign_Record (N);
1483 return;
1484 end if;
1486 -- Defend against invalid subscripts on left side if we are in standard
1487 -- validity checking mode. No need to do this if we are checking all
1488 -- subscripts.
1490 -- Note that we do this right away, because there are some early return
1491 -- paths in this procedure, and this is required on all paths.
1493 if Validity_Checks_On
1494 and then Validity_Check_Default
1495 and then not Validity_Check_Subscripts
1496 then
1497 Check_Valid_Lvalue_Subscripts (Lhs);
1498 end if;
1500 -- Ada 2005 (AI-327): Handle assignment to priority of protected object
1502 -- Rewrite an assignment to X'Priority into a run-time call
1504 -- For example: X'Priority := New_Prio_Expr;
1505 -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
1507 -- Note that although X'Priority is notionally an object, it is quite
1508 -- deliberately not defined as an aliased object in the RM. This means
1509 -- that it works fine to rewrite it as a call, without having to worry
1510 -- about complications that would other arise from X'Priority'Access,
1511 -- which is illegal, because of the lack of aliasing.
1513 if Ada_Version >= Ada_05 then
1514 declare
1515 Call : Node_Id;
1516 Conctyp : Entity_Id;
1517 Ent : Entity_Id;
1518 Subprg : Entity_Id;
1519 RT_Subprg_Name : Node_Id;
1521 begin
1522 -- Handle chains of renamings
1524 Ent := Name (N);
1525 while Nkind (Ent) in N_Has_Entity
1526 and then Present (Entity (Ent))
1527 and then Present (Renamed_Object (Entity (Ent)))
1528 loop
1529 Ent := Renamed_Object (Entity (Ent));
1530 end loop;
1532 -- The attribute Priority applied to protected objects has been
1533 -- previously expanded into a call to the Get_Ceiling run-time
1534 -- subprogram.
1536 if Nkind (Ent) = N_Function_Call
1537 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
1538 or else
1539 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling))
1540 then
1541 -- Look for the enclosing concurrent type
1543 Conctyp := Current_Scope;
1544 while not Is_Concurrent_Type (Conctyp) loop
1545 Conctyp := Scope (Conctyp);
1546 end loop;
1548 pragma Assert (Is_Protected_Type (Conctyp));
1550 -- Generate the first actual of the call
1552 Subprg := Current_Scope;
1553 while not Present (Protected_Body_Subprogram (Subprg)) loop
1554 Subprg := Scope (Subprg);
1555 end loop;
1557 -- Select the appropriate run-time call
1559 if Number_Entries (Conctyp) = 0 then
1560 RT_Subprg_Name :=
1561 New_Reference_To (RTE (RE_Set_Ceiling), Loc);
1562 else
1563 RT_Subprg_Name :=
1564 New_Reference_To (RTE (RO_PE_Set_Ceiling), Loc);
1565 end if;
1567 Call :=
1568 Make_Procedure_Call_Statement (Loc,
1569 Name => RT_Subprg_Name,
1570 Parameter_Associations => New_List (
1571 New_Copy_Tree (First (Parameter_Associations (Ent))),
1572 Relocate_Node (Expression (N))));
1574 Rewrite (N, Call);
1575 Analyze (N);
1576 return;
1577 end if;
1578 end;
1579 end if;
1581 -- First deal with generation of range check if required
1583 if Do_Range_Check (Rhs) then
1584 Set_Do_Range_Check (Rhs, False);
1585 Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1586 end if;
1588 -- Check for a special case where a high level transformation is
1589 -- required. If we have either of:
1591 -- P.field := rhs;
1592 -- P (sub) := rhs;
1594 -- where P is a reference to a bit packed array, then we have to unwind
1595 -- the assignment. The exact meaning of being a reference to a bit
1596 -- packed array is as follows:
1598 -- An indexed component whose prefix is a bit packed array is a
1599 -- reference to a bit packed array.
1601 -- An indexed component or selected component whose prefix is a
1602 -- reference to a bit packed array is itself a reference ot a
1603 -- bit packed array.
1605 -- The required transformation is
1607 -- Tnn : prefix_type := P;
1608 -- Tnn.field := rhs;
1609 -- P := Tnn;
1611 -- or
1613 -- Tnn : prefix_type := P;
1614 -- Tnn (subscr) := rhs;
1615 -- P := Tnn;
1617 -- Since P is going to be evaluated more than once, any subscripts
1618 -- in P must have their evaluation forced.
1620 if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
1621 and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1622 then
1623 declare
1624 BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
1625 BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
1626 Tnn : constant Entity_Id :=
1627 Make_Defining_Identifier (Loc,
1628 Chars => New_Internal_Name ('T'));
1630 begin
1631 -- Insert the post assignment first, because we want to copy the
1632 -- BPAR_Expr tree before it gets analyzed in the context of the
1633 -- pre assignment. Note that we do not analyze the post assignment
1634 -- yet (we cannot till we have completed the analysis of the pre
1635 -- assignment). As usual, the analysis of this post assignment
1636 -- will happen on its own when we "run into" it after finishing
1637 -- the current assignment.
1639 Insert_After (N,
1640 Make_Assignment_Statement (Loc,
1641 Name => New_Copy_Tree (BPAR_Expr),
1642 Expression => New_Occurrence_Of (Tnn, Loc)));
1644 -- At this stage BPAR_Expr is a reference to a bit packed array
1645 -- where the reference was not expanded in the original tree,
1646 -- since it was on the left side of an assignment. But in the
1647 -- pre-assignment statement (the object definition), BPAR_Expr
1648 -- will end up on the right hand side, and must be reexpanded. To
1649 -- achieve this, we reset the analyzed flag of all selected and
1650 -- indexed components down to the actual indexed component for
1651 -- the packed array.
1653 Exp := BPAR_Expr;
1654 loop
1655 Set_Analyzed (Exp, False);
1657 if Nkind_In
1658 (Exp, N_Selected_Component, N_Indexed_Component)
1659 then
1660 Exp := Prefix (Exp);
1661 else
1662 exit;
1663 end if;
1664 end loop;
1666 -- Now we can insert and analyze the pre-assignment
1668 -- If the right-hand side requires a transient scope, it has
1669 -- already been placed on the stack. However, the declaration is
1670 -- inserted in the tree outside of this scope, and must reflect
1671 -- the proper scope for its variable. This awkward bit is forced
1672 -- by the stricter scope discipline imposed by GCC 2.97.
1674 declare
1675 Uses_Transient_Scope : constant Boolean :=
1676 Scope_Is_Transient
1677 and then N = Node_To_Be_Wrapped;
1679 begin
1680 if Uses_Transient_Scope then
1681 Push_Scope (Scope (Current_Scope));
1682 end if;
1684 Insert_Before_And_Analyze (N,
1685 Make_Object_Declaration (Loc,
1686 Defining_Identifier => Tnn,
1687 Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
1688 Expression => BPAR_Expr));
1690 if Uses_Transient_Scope then
1691 Pop_Scope;
1692 end if;
1693 end;
1695 -- Now fix up the original assignment and continue processing
1697 Rewrite (Prefix (Lhs),
1698 New_Occurrence_Of (Tnn, Loc));
1700 -- We do not need to reanalyze that assignment, and we do not need
1701 -- to worry about references to the temporary, but we do need to
1702 -- make sure that the temporary is not marked as a true constant
1703 -- since we now have a generated assignment to it!
1705 Set_Is_True_Constant (Tnn, False);
1706 end;
1707 end if;
1709 -- When we have the appropriate type of aggregate in the expression (it
1710 -- has been determined during analysis of the aggregate by setting the
1711 -- delay flag), let's perform in place assignment and thus avoid
1712 -- creating a temporary.
1714 if Is_Delayed_Aggregate (Rhs) then
1715 Convert_Aggr_In_Assignment (N);
1716 Rewrite (N, Make_Null_Statement (Loc));
1717 Analyze (N);
1718 return;
1719 end if;
1721 -- Apply discriminant check if required. If Lhs is an access type to a
1722 -- designated type with discriminants, we must always check.
1724 if Has_Discriminants (Etype (Lhs)) then
1726 -- Skip discriminant check if change of representation. Will be
1727 -- done when the change of representation is expanded out.
1729 if not Change_Of_Representation (N) then
1730 Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1731 end if;
1733 -- If the type is private without discriminants, and the full type
1734 -- has discriminants (necessarily with defaults) a check may still be
1735 -- necessary if the Lhs is aliased. The private determinants must be
1736 -- visible to build the discriminant constraints.
1738 -- Only an explicit dereference that comes from source indicates
1739 -- aliasing. Access to formals of protected operations and entries
1740 -- create dereferences but are not semantic aliasings.
1742 elsif Is_Private_Type (Etype (Lhs))
1743 and then Has_Discriminants (Typ)
1744 and then Nkind (Lhs) = N_Explicit_Dereference
1745 and then Comes_From_Source (Lhs)
1746 then
1747 declare
1748 Lt : constant Entity_Id := Etype (Lhs);
1749 begin
1750 Set_Etype (Lhs, Typ);
1751 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1752 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1753 Set_Etype (Lhs, Lt);
1754 end;
1756 -- If the Lhs has a private type with unknown discriminants, it
1757 -- may have a full view with discriminants, but those are nameable
1758 -- only in the underlying type, so convert the Rhs to it before
1759 -- potential checking.
1761 elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1762 and then Has_Discriminants (Typ)
1763 then
1764 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1765 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1767 -- In the access type case, we need the same discriminant check, and
1768 -- also range checks if we have an access to constrained array.
1770 elsif Is_Access_Type (Etype (Lhs))
1771 and then Is_Constrained (Designated_Type (Etype (Lhs)))
1772 then
1773 if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1775 -- Skip discriminant check if change of representation. Will be
1776 -- done when the change of representation is expanded out.
1778 if not Change_Of_Representation (N) then
1779 Apply_Discriminant_Check (Rhs, Etype (Lhs));
1780 end if;
1782 elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1783 Apply_Range_Check (Rhs, Etype (Lhs));
1785 if Is_Constrained (Etype (Lhs)) then
1786 Apply_Length_Check (Rhs, Etype (Lhs));
1787 end if;
1789 if Nkind (Rhs) = N_Allocator then
1790 declare
1791 Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1792 C_Es : Check_Result;
1794 begin
1795 C_Es :=
1796 Get_Range_Checks
1797 (Lhs,
1798 Target_Typ,
1799 Etype (Designated_Type (Etype (Lhs))));
1801 Insert_Range_Checks
1802 (C_Es,
1804 Target_Typ,
1805 Sloc (Lhs),
1806 Lhs);
1807 end;
1808 end if;
1809 end if;
1811 -- Apply range check for access type case
1813 elsif Is_Access_Type (Etype (Lhs))
1814 and then Nkind (Rhs) = N_Allocator
1815 and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1816 then
1817 Analyze_And_Resolve (Expression (Rhs));
1818 Apply_Range_Check
1819 (Expression (Rhs), Designated_Type (Etype (Lhs)));
1820 end if;
1822 -- Ada 2005 (AI-231): Generate the run-time check
1824 if Is_Access_Type (Typ)
1825 and then Can_Never_Be_Null (Etype (Lhs))
1826 and then not Can_Never_Be_Null (Etype (Rhs))
1827 then
1828 Apply_Constraint_Check (Rhs, Etype (Lhs));
1829 end if;
1831 -- Case of assignment to a bit packed array element
1833 if Nkind (Lhs) = N_Indexed_Component
1834 and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
1835 then
1836 Expand_Bit_Packed_Element_Set (N);
1837 return;
1839 -- Build-in-place function call case. Note that we're not yet doing
1840 -- build-in-place for user-written assignment statements (the assignment
1841 -- here came from an aggregate.)
1843 elsif Ada_Version >= Ada_05
1844 and then Is_Build_In_Place_Function_Call (Rhs)
1845 then
1846 Make_Build_In_Place_Call_In_Assignment (N, Rhs);
1848 elsif Is_Tagged_Type (Typ) and then Is_Value_Type (Etype (Lhs)) then
1850 -- Nothing to do for valuetypes
1851 -- ??? Set_Scope_Is_Transient (False);
1853 return;
1855 elsif Is_Tagged_Type (Typ)
1856 or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
1857 then
1858 Tagged_Case : declare
1859 L : List_Id := No_List;
1860 Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
1862 begin
1863 -- In the controlled case, we ensure that function calls are
1864 -- evaluated before finalizing the target. In all cases, it makes
1865 -- the expansion easier if the side-effects are removed first.
1867 Remove_Side_Effects (Lhs);
1868 Remove_Side_Effects (Rhs);
1870 -- Avoid recursion in the mechanism
1872 Set_Analyzed (N);
1874 -- If dispatching assignment, we need to dispatch to _assign
1876 if Is_Class_Wide_Type (Typ)
1878 -- If the type is tagged, we may as well use the predefined
1879 -- primitive assignment. This avoids inlining a lot of code
1880 -- and in the class-wide case, the assignment is replaced by
1881 -- dispatch call to _assign. Note that this cannot be done when
1882 -- discriminant checks are locally suppressed (as in extension
1883 -- aggregate expansions) because otherwise the discriminant
1884 -- check will be performed within the _assign call. It is also
1885 -- suppressed for assignments created by the expander that
1886 -- correspond to initializations, where we do want to copy the
1887 -- tag (No_Ctrl_Actions flag set True) by the expander and we
1888 -- do not need to mess with tags ever (Expand_Ctrl_Actions flag
1889 -- is set True in this case).
1891 or else (Is_Tagged_Type (Typ)
1892 and then not Is_Value_Type (Etype (Lhs))
1893 and then Chars (Current_Scope) /= Name_uAssign
1894 and then Expand_Ctrl_Actions
1895 and then not Discriminant_Checks_Suppressed (Empty))
1896 then
1897 -- Fetch the primitive op _assign and proper type to call it.
1898 -- Because of possible conflicts between private and full view,
1899 -- fetch the proper type directly from the operation profile.
1901 declare
1902 Op : constant Entity_Id :=
1903 Find_Prim_Op (Typ, Name_uAssign);
1904 F_Typ : Entity_Id := Etype (First_Formal (Op));
1906 begin
1907 -- If the assignment is dispatching, make sure to use the
1908 -- proper type.
1910 if Is_Class_Wide_Type (Typ) then
1911 F_Typ := Class_Wide_Type (F_Typ);
1912 end if;
1914 L := New_List;
1916 -- In case of assignment to a class-wide tagged type, before
1917 -- the assignment we generate run-time check to ensure that
1918 -- the tags of source and target match.
1920 if Is_Class_Wide_Type (Typ)
1921 and then Is_Tagged_Type (Typ)
1922 and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
1923 then
1924 Append_To (L,
1925 Make_Raise_Constraint_Error (Loc,
1926 Condition =>
1927 Make_Op_Ne (Loc,
1928 Left_Opnd =>
1929 Make_Selected_Component (Loc,
1930 Prefix => Duplicate_Subexpr (Lhs),
1931 Selector_Name =>
1932 Make_Identifier (Loc,
1933 Chars => Name_uTag)),
1934 Right_Opnd =>
1935 Make_Selected_Component (Loc,
1936 Prefix => Duplicate_Subexpr (Rhs),
1937 Selector_Name =>
1938 Make_Identifier (Loc,
1939 Chars => Name_uTag))),
1940 Reason => CE_Tag_Check_Failed));
1941 end if;
1943 Append_To (L,
1944 Make_Procedure_Call_Statement (Loc,
1945 Name => New_Reference_To (Op, Loc),
1946 Parameter_Associations => New_List (
1947 Unchecked_Convert_To (F_Typ,
1948 Duplicate_Subexpr (Lhs)),
1949 Unchecked_Convert_To (F_Typ,
1950 Duplicate_Subexpr (Rhs)))));
1951 end;
1953 else
1954 L := Make_Tag_Ctrl_Assignment (N);
1956 -- We can't afford to have destructive Finalization Actions in
1957 -- the Self assignment case, so if the target and the source
1958 -- are not obviously different, code is generated to avoid the
1959 -- self assignment case:
1961 -- if lhs'address /= rhs'address then
1962 -- <code for controlled and/or tagged assignment>
1963 -- end if;
1965 -- Skip this if Restriction (No_Finalization) is active
1967 if not Statically_Different (Lhs, Rhs)
1968 and then Expand_Ctrl_Actions
1969 and then not Restriction_Active (No_Finalization)
1970 then
1971 L := New_List (
1972 Make_Implicit_If_Statement (N,
1973 Condition =>
1974 Make_Op_Ne (Loc,
1975 Left_Opnd =>
1976 Make_Attribute_Reference (Loc,
1977 Prefix => Duplicate_Subexpr (Lhs),
1978 Attribute_Name => Name_Address),
1980 Right_Opnd =>
1981 Make_Attribute_Reference (Loc,
1982 Prefix => Duplicate_Subexpr (Rhs),
1983 Attribute_Name => Name_Address)),
1985 Then_Statements => L));
1986 end if;
1988 -- We need to set up an exception handler for implementing
1989 -- 7.6.1(18). The remaining adjustments are tackled by the
1990 -- implementation of adjust for record_controllers (see
1991 -- s-finimp.adb).
1993 -- This is skipped if we have no finalization
1995 if Expand_Ctrl_Actions
1996 and then not Restriction_Active (No_Finalization)
1997 then
1998 L := New_List (
1999 Make_Block_Statement (Loc,
2000 Handled_Statement_Sequence =>
2001 Make_Handled_Sequence_Of_Statements (Loc,
2002 Statements => L,
2003 Exception_Handlers => New_List (
2004 Make_Handler_For_Ctrl_Operation (Loc)))));
2005 end if;
2006 end if;
2008 Rewrite (N,
2009 Make_Block_Statement (Loc,
2010 Handled_Statement_Sequence =>
2011 Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
2013 -- If no restrictions on aborts, protect the whole assignment
2014 -- for controlled objects as per 9.8(11).
2016 if Needs_Finalization (Typ)
2017 and then Expand_Ctrl_Actions
2018 and then Abort_Allowed
2019 then
2020 declare
2021 Blk : constant Entity_Id :=
2022 New_Internal_Entity
2023 (E_Block, Current_Scope, Sloc (N), 'B');
2025 begin
2026 Set_Scope (Blk, Current_Scope);
2027 Set_Etype (Blk, Standard_Void_Type);
2028 Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
2030 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2031 Set_At_End_Proc (Handled_Statement_Sequence (N),
2032 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
2033 Expand_At_End_Handler
2034 (Handled_Statement_Sequence (N), Blk);
2035 end;
2036 end if;
2038 -- N has been rewritten to a block statement for which it is
2039 -- known by construction that no checks are necessary: analyze
2040 -- it with all checks suppressed.
2042 Analyze (N, Suppress => All_Checks);
2043 return;
2044 end Tagged_Case;
2046 -- Array types
2048 elsif Is_Array_Type (Typ) then
2049 declare
2050 Actual_Rhs : Node_Id := Rhs;
2052 begin
2053 while Nkind_In (Actual_Rhs, N_Type_Conversion,
2054 N_Qualified_Expression)
2055 loop
2056 Actual_Rhs := Expression (Actual_Rhs);
2057 end loop;
2059 Expand_Assign_Array (N, Actual_Rhs);
2060 return;
2061 end;
2063 -- Record types
2065 elsif Is_Record_Type (Typ) then
2066 Expand_Assign_Record (N);
2067 return;
2069 -- Scalar types. This is where we perform the processing related to the
2070 -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2071 -- scalar values.
2073 elsif Is_Scalar_Type (Typ) then
2075 -- Case where right side is known valid
2077 if Expr_Known_Valid (Rhs) then
2079 -- Here the right side is valid, so it is fine. The case to deal
2080 -- with is when the left side is a local variable reference whose
2081 -- value is not currently known to be valid. If this is the case,
2082 -- and the assignment appears in an unconditional context, then
2083 -- we can mark the left side as now being valid if one of these
2084 -- conditions holds:
2086 -- The expression of the right side has Do_Range_Check set so
2087 -- that we know a range check will be performed. Note that it
2088 -- can be the case that a range check is omitted because we
2089 -- make the assumption that we can assume validity for operands
2090 -- appearing in the right side in determining whether a range
2091 -- check is required
2093 -- The subtype of the right side matches the subtype of the
2094 -- left side. In this case, even though we have not checked
2095 -- the range of the right side, we know it is in range of its
2096 -- subtype if the expression is valid.
2098 if Is_Local_Variable_Reference (Lhs)
2099 and then not Is_Known_Valid (Entity (Lhs))
2100 and then In_Unconditional_Context (N)
2101 then
2102 if Do_Range_Check (Rhs)
2103 or else Etype (Lhs) = Etype (Rhs)
2104 then
2105 Set_Is_Known_Valid (Entity (Lhs), True);
2106 end if;
2107 end if;
2109 -- Case where right side may be invalid in the sense of the RM
2110 -- reference above. The RM does not require that we check for the
2111 -- validity on an assignment, but it does require that the assignment
2112 -- of an invalid value not cause erroneous behavior.
2114 -- The general approach in GNAT is to use the Is_Known_Valid flag
2115 -- to avoid the need for validity checking on assignments. However
2116 -- in some cases, we have to do validity checking in order to make
2117 -- sure that the setting of this flag is correct.
2119 else
2120 -- Validate right side if we are validating copies
2122 if Validity_Checks_On
2123 and then Validity_Check_Copies
2124 then
2125 -- Skip this if left hand side is an array or record component
2126 -- and elementary component validity checks are suppressed.
2128 if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
2129 and then not Validity_Check_Components
2130 then
2131 null;
2132 else
2133 Ensure_Valid (Rhs);
2134 end if;
2136 -- We can propagate this to the left side where appropriate
2138 if Is_Local_Variable_Reference (Lhs)
2139 and then not Is_Known_Valid (Entity (Lhs))
2140 and then In_Unconditional_Context (N)
2141 then
2142 Set_Is_Known_Valid (Entity (Lhs), True);
2143 end if;
2145 -- Otherwise check to see what should be done
2147 -- If left side is a local variable, then we just set its flag to
2148 -- indicate that its value may no longer be valid, since we are
2149 -- copying a potentially invalid value.
2151 elsif Is_Local_Variable_Reference (Lhs) then
2152 Set_Is_Known_Valid (Entity (Lhs), False);
2154 -- Check for case of a nonlocal variable on the left side which
2155 -- is currently known to be valid. In this case, we simply ensure
2156 -- that the right side is valid. We only play the game of copying
2157 -- validity status for local variables, since we are doing this
2158 -- statically, not by tracing the full flow graph.
2160 elsif Is_Entity_Name (Lhs)
2161 and then Is_Known_Valid (Entity (Lhs))
2162 then
2163 -- Note: If Validity_Checking mode is set to none, we ignore
2164 -- the Ensure_Valid call so don't worry about that case here.
2166 Ensure_Valid (Rhs);
2168 -- In all other cases, we can safely copy an invalid value without
2169 -- worrying about the status of the left side. Since it is not a
2170 -- variable reference it will not be considered
2171 -- as being known to be valid in any case.
2173 else
2174 null;
2175 end if;
2176 end if;
2177 end if;
2179 exception
2180 when RE_Not_Available =>
2181 return;
2182 end Expand_N_Assignment_Statement;
2184 ------------------------------
2185 -- Expand_N_Block_Statement --
2186 ------------------------------
2188 -- Encode entity names defined in block statement
2190 procedure Expand_N_Block_Statement (N : Node_Id) is
2191 begin
2192 Qualify_Entity_Names (N);
2193 end Expand_N_Block_Statement;
2195 -----------------------------
2196 -- Expand_N_Case_Statement --
2197 -----------------------------
2199 procedure Expand_N_Case_Statement (N : Node_Id) is
2200 Loc : constant Source_Ptr := Sloc (N);
2201 Expr : constant Node_Id := Expression (N);
2202 Alt : Node_Id;
2203 Len : Nat;
2204 Cond : Node_Id;
2205 Choice : Node_Id;
2206 Chlist : List_Id;
2208 begin
2209 -- Check for the situation where we know at compile time which branch
2210 -- will be taken
2212 if Compile_Time_Known_Value (Expr) then
2213 Alt := Find_Static_Alternative (N);
2215 -- Move statements from this alternative after the case statement.
2216 -- They are already analyzed, so will be skipped by the analyzer.
2218 Insert_List_After (N, Statements (Alt));
2220 -- That leaves the case statement as a shell. So now we can kill all
2221 -- other alternatives in the case statement.
2223 Kill_Dead_Code (Expression (N));
2225 declare
2226 A : Node_Id;
2228 begin
2229 -- Loop through case alternatives, skipping pragmas, and skipping
2230 -- the one alternative that we select (and therefore retain).
2232 A := First (Alternatives (N));
2233 while Present (A) loop
2234 if A /= Alt
2235 and then Nkind (A) = N_Case_Statement_Alternative
2236 then
2237 Kill_Dead_Code (Statements (A), Warn_On_Deleted_Code);
2238 end if;
2240 Next (A);
2241 end loop;
2242 end;
2244 Rewrite (N, Make_Null_Statement (Loc));
2245 return;
2246 end if;
2248 -- Here if the choice is not determined at compile time
2250 declare
2251 Last_Alt : constant Node_Id := Last (Alternatives (N));
2253 Others_Present : Boolean;
2254 Others_Node : Node_Id;
2256 Then_Stms : List_Id;
2257 Else_Stms : List_Id;
2259 begin
2260 if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2261 Others_Present := True;
2262 Others_Node := Last_Alt;
2263 else
2264 Others_Present := False;
2265 end if;
2267 -- First step is to worry about possible invalid argument. The RM
2268 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2269 -- outside the base range), then Constraint_Error must be raised.
2271 -- Case of validity check required (validity checks are on, the
2272 -- expression is not known to be valid, and the case statement
2273 -- comes from source -- no need to validity check internally
2274 -- generated case statements).
2276 if Validity_Check_Default then
2277 Ensure_Valid (Expr);
2278 end if;
2280 -- If there is only a single alternative, just replace it with the
2281 -- sequence of statements since obviously that is what is going to
2282 -- be executed in all cases.
2284 Len := List_Length (Alternatives (N));
2286 if Len = 1 then
2287 -- We still need to evaluate the expression if it has any
2288 -- side effects.
2290 Remove_Side_Effects (Expression (N));
2292 Insert_List_After (N, Statements (First (Alternatives (N))));
2294 -- That leaves the case statement as a shell. The alternative that
2295 -- will be executed is reset to a null list. So now we can kill
2296 -- the entire case statement.
2298 Kill_Dead_Code (Expression (N));
2299 Rewrite (N, Make_Null_Statement (Loc));
2300 return;
2301 end if;
2303 -- An optimization. If there are only two alternatives, and only
2304 -- a single choice, then rewrite the whole case statement as an
2305 -- if statement, since this can result in subsequent optimizations.
2306 -- This helps not only with case statements in the source of a
2307 -- simple form, but also with generated code (discriminant check
2308 -- functions in particular)
2310 if Len = 2 then
2311 Chlist := Discrete_Choices (First (Alternatives (N)));
2313 if List_Length (Chlist) = 1 then
2314 Choice := First (Chlist);
2316 Then_Stms := Statements (First (Alternatives (N)));
2317 Else_Stms := Statements (Last (Alternatives (N)));
2319 -- For TRUE, generate "expression", not expression = true
2321 if Nkind (Choice) = N_Identifier
2322 and then Entity (Choice) = Standard_True
2323 then
2324 Cond := Expression (N);
2326 -- For FALSE, generate "expression" and switch then/else
2328 elsif Nkind (Choice) = N_Identifier
2329 and then Entity (Choice) = Standard_False
2330 then
2331 Cond := Expression (N);
2332 Else_Stms := Statements (First (Alternatives (N)));
2333 Then_Stms := Statements (Last (Alternatives (N)));
2335 -- For a range, generate "expression in range"
2337 elsif Nkind (Choice) = N_Range
2338 or else (Nkind (Choice) = N_Attribute_Reference
2339 and then Attribute_Name (Choice) = Name_Range)
2340 or else (Is_Entity_Name (Choice)
2341 and then Is_Type (Entity (Choice)))
2342 or else Nkind (Choice) = N_Subtype_Indication
2343 then
2344 Cond :=
2345 Make_In (Loc,
2346 Left_Opnd => Expression (N),
2347 Right_Opnd => Relocate_Node (Choice));
2349 -- For any other subexpression "expression = value"
2351 else
2352 Cond :=
2353 Make_Op_Eq (Loc,
2354 Left_Opnd => Expression (N),
2355 Right_Opnd => Relocate_Node (Choice));
2356 end if;
2358 -- Now rewrite the case as an IF
2360 Rewrite (N,
2361 Make_If_Statement (Loc,
2362 Condition => Cond,
2363 Then_Statements => Then_Stms,
2364 Else_Statements => Else_Stms));
2365 Analyze (N);
2366 return;
2367 end if;
2368 end if;
2370 -- If the last alternative is not an Others choice, replace it with
2371 -- an N_Others_Choice. Note that we do not bother to call Analyze on
2372 -- the modified case statement, since it's only effect would be to
2373 -- compute the contents of the Others_Discrete_Choices which is not
2374 -- needed by the back end anyway.
2376 -- The reason we do this is that the back end always needs some
2377 -- default for a switch, so if we have not supplied one in the
2378 -- processing above for validity checking, then we need to supply
2379 -- one here.
2381 if not Others_Present then
2382 Others_Node := Make_Others_Choice (Sloc (Last_Alt));
2383 Set_Others_Discrete_Choices
2384 (Others_Node, Discrete_Choices (Last_Alt));
2385 Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
2386 end if;
2387 end;
2388 end Expand_N_Case_Statement;
2390 -----------------------------
2391 -- Expand_N_Exit_Statement --
2392 -----------------------------
2394 -- The only processing required is to deal with a possible C/Fortran
2395 -- boolean value used as the condition for the exit statement.
2397 procedure Expand_N_Exit_Statement (N : Node_Id) is
2398 begin
2399 Adjust_Condition (Condition (N));
2400 end Expand_N_Exit_Statement;
2402 ----------------------------------------
2403 -- Expand_N_Extended_Return_Statement --
2404 ----------------------------------------
2406 -- If there is a Handled_Statement_Sequence, we rewrite this:
2408 -- return Result : T := <expression> do
2409 -- <handled_seq_of_stms>
2410 -- end return;
2412 -- to be:
2414 -- declare
2415 -- Result : T := <expression>;
2416 -- begin
2417 -- <handled_seq_of_stms>
2418 -- return Result;
2419 -- end;
2421 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
2423 -- return Result : T := <expression>;
2425 -- to be:
2427 -- return <expression>;
2429 -- unless it's build-in-place or there's no <expression>, in which case
2430 -- we generate:
2432 -- declare
2433 -- Result : T := <expression>;
2434 -- begin
2435 -- return Result;
2436 -- end;
2438 -- Note that this case could have been written by the user as an extended
2439 -- return statement, or could have been transformed to this from a simple
2440 -- return statement.
2442 -- That is, we need to have a reified return object if there are statements
2443 -- (which might refer to it) or if we're doing build-in-place (so we can
2444 -- set its address to the final resting place or if there is no expression
2445 -- (in which case default initial values might need to be set).
2447 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
2448 Loc : constant Source_Ptr := Sloc (N);
2450 Return_Object_Entity : constant Entity_Id :=
2451 First_Entity (Return_Statement_Entity (N));
2452 Return_Object_Decl : constant Node_Id :=
2453 Parent (Return_Object_Entity);
2454 Parent_Function : constant Entity_Id :=
2455 Return_Applies_To (Return_Statement_Entity (N));
2456 Parent_Function_Typ : constant Entity_Id := Etype (Parent_Function);
2457 Is_Build_In_Place : constant Boolean :=
2458 Is_Build_In_Place_Function (Parent_Function);
2460 Return_Stm : Node_Id;
2461 Statements : List_Id;
2462 Handled_Stm_Seq : Node_Id;
2463 Result : Node_Id;
2464 Exp : Node_Id;
2466 function Has_Controlled_Parts (Typ : Entity_Id) return Boolean;
2467 -- Determine whether type Typ is controlled or contains a controlled
2468 -- subcomponent.
2470 function Move_Activation_Chain return Node_Id;
2471 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
2472 -- with parameters:
2473 -- From current activation chain
2474 -- To activation chain passed in by the caller
2475 -- New_Master master passed in by the caller
2477 function Move_Final_List return Node_Id;
2478 -- Construct call to System.Finalization_Implementation.Move_Final_List
2479 -- with parameters:
2481 -- From finalization list of the return statement
2482 -- To finalization list passed in by the caller
2484 --------------------------
2485 -- Has_Controlled_Parts --
2486 --------------------------
2488 function Has_Controlled_Parts (Typ : Entity_Id) return Boolean is
2489 begin
2490 return
2491 Is_Controlled (Typ)
2492 or else Has_Controlled_Component (Typ);
2493 end Has_Controlled_Parts;
2495 ---------------------------
2496 -- Move_Activation_Chain --
2497 ---------------------------
2499 function Move_Activation_Chain return Node_Id is
2500 Activation_Chain_Formal : constant Entity_Id :=
2501 Build_In_Place_Formal
2502 (Parent_Function, BIP_Activation_Chain);
2503 To : constant Node_Id :=
2504 New_Reference_To
2505 (Activation_Chain_Formal, Loc);
2506 Master_Formal : constant Entity_Id :=
2507 Build_In_Place_Formal
2508 (Parent_Function, BIP_Master);
2509 New_Master : constant Node_Id :=
2510 New_Reference_To (Master_Formal, Loc);
2512 Chain_Entity : Entity_Id;
2513 From : Node_Id;
2515 begin
2516 Chain_Entity := First_Entity (Return_Statement_Entity (N));
2517 while Chars (Chain_Entity) /= Name_uChain loop
2518 Chain_Entity := Next_Entity (Chain_Entity);
2519 end loop;
2521 From :=
2522 Make_Attribute_Reference (Loc,
2523 Prefix => New_Reference_To (Chain_Entity, Loc),
2524 Attribute_Name => Name_Unrestricted_Access);
2525 -- ??? Not clear why "Make_Identifier (Loc, Name_uChain)" doesn't
2526 -- work, instead of "New_Reference_To (Chain_Entity, Loc)" above.
2528 return
2529 Make_Procedure_Call_Statement (Loc,
2530 Name => New_Reference_To (RTE (RE_Move_Activation_Chain), Loc),
2531 Parameter_Associations => New_List (From, To, New_Master));
2532 end Move_Activation_Chain;
2534 ---------------------
2535 -- Move_Final_List --
2536 ---------------------
2538 function Move_Final_List return Node_Id is
2539 Flist : constant Entity_Id :=
2540 Finalization_Chain_Entity (Return_Statement_Entity (N));
2542 From : constant Node_Id := New_Reference_To (Flist, Loc);
2544 Caller_Final_List : constant Entity_Id :=
2545 Build_In_Place_Formal
2546 (Parent_Function, BIP_Final_List);
2548 To : constant Node_Id := New_Reference_To (Caller_Final_List, Loc);
2550 begin
2551 -- Catch cases where a finalization chain entity has not been
2552 -- associated with the return statement entity.
2554 pragma Assert (Present (Flist));
2556 -- Build required call
2558 return
2559 Make_If_Statement (Loc,
2560 Condition =>
2561 Make_Op_Ne (Loc,
2562 Left_Opnd => New_Copy (From),
2563 Right_Opnd => New_Node (N_Null, Loc)),
2564 Then_Statements =>
2565 New_List (
2566 Make_Procedure_Call_Statement (Loc,
2567 Name => New_Reference_To (RTE (RE_Move_Final_List), Loc),
2568 Parameter_Associations => New_List (From, To))));
2569 end Move_Final_List;
2571 -- Start of processing for Expand_N_Extended_Return_Statement
2573 begin
2574 if Nkind (Return_Object_Decl) = N_Object_Declaration then
2575 Exp := Expression (Return_Object_Decl);
2576 else
2577 Exp := Empty;
2578 end if;
2580 Handled_Stm_Seq := Handled_Statement_Sequence (N);
2582 -- Build a simple_return_statement that returns the return object when
2583 -- there is a statement sequence, or no expression, or the result will
2584 -- be built in place. Note however that we currently do this for all
2585 -- composite cases, even though nonlimited composite results are not yet
2586 -- built in place (though we plan to do so eventually).
2588 if Present (Handled_Stm_Seq)
2589 or else Is_Composite_Type (Etype (Parent_Function))
2590 or else No (Exp)
2591 then
2592 if No (Handled_Stm_Seq) then
2593 Statements := New_List;
2595 -- If the extended return has a handled statement sequence, then wrap
2596 -- it in a block and use the block as the first statement.
2598 else
2599 Statements :=
2600 New_List (Make_Block_Statement (Loc,
2601 Declarations => New_List,
2602 Handled_Statement_Sequence => Handled_Stm_Seq));
2603 end if;
2605 -- If control gets past the above Statements, we have successfully
2606 -- completed the return statement. If the result type has controlled
2607 -- parts and the return is for a build-in-place function, then we
2608 -- call Move_Final_List to transfer responsibility for finalization
2609 -- of the return object to the caller. An alternative would be to
2610 -- declare a Success flag in the function, initialize it to False,
2611 -- and set it to True here. Then move the Move_Final_List call into
2612 -- the cleanup code, and check Success. If Success then make a call
2613 -- to Move_Final_List else do finalization. Then we can remove the
2614 -- abort-deferral and the nulling-out of the From parameter from
2615 -- Move_Final_List. Note that the current method is not quite correct
2616 -- in the rather obscure case of a select-then-abort statement whose
2617 -- abortable part contains the return statement.
2619 -- Check the type of the function to determine whether to move the
2620 -- finalization list. A special case arises when processing a simple
2621 -- return statement which has been rewritten as an extended return.
2622 -- In that case check the type of the returned object or the original
2623 -- expression.
2625 if Is_Build_In_Place
2626 and then
2627 (Has_Controlled_Parts (Parent_Function_Typ)
2628 or else (Is_Class_Wide_Type (Parent_Function_Typ)
2629 and then
2630 Has_Controlled_Parts (Root_Type (Parent_Function_Typ)))
2631 or else Has_Controlled_Parts (Etype (Return_Object_Entity))
2632 or else (Present (Exp)
2633 and then Has_Controlled_Parts (Etype (Exp))))
2634 then
2635 Append_To (Statements, Move_Final_List);
2636 end if;
2638 -- Similarly to the above Move_Final_List, if the result type
2639 -- contains tasks, we call Move_Activation_Chain. Later, the cleanup
2640 -- code will call Complete_Master, which will terminate any
2641 -- unactivated tasks belonging to the return statement master. But
2642 -- Move_Activation_Chain updates their master to be that of the
2643 -- caller, so they will not be terminated unless the return statement
2644 -- completes unsuccessfully due to exception, abort, goto, or exit.
2645 -- As a formality, we test whether the function requires the result
2646 -- to be built in place, though that's necessarily true for the case
2647 -- of result types with task parts.
2649 if Is_Build_In_Place and Has_Task (Etype (Parent_Function)) then
2650 Append_To (Statements, Move_Activation_Chain);
2651 end if;
2653 -- Build a simple_return_statement that returns the return object
2655 Return_Stm :=
2656 Make_Simple_Return_Statement (Loc,
2657 Expression => New_Occurrence_Of (Return_Object_Entity, Loc));
2658 Append_To (Statements, Return_Stm);
2660 Handled_Stm_Seq :=
2661 Make_Handled_Sequence_Of_Statements (Loc, Statements);
2662 end if;
2664 -- Case where we build a block
2666 if Present (Handled_Stm_Seq) then
2667 Result :=
2668 Make_Block_Statement (Loc,
2669 Declarations => Return_Object_Declarations (N),
2670 Handled_Statement_Sequence => Handled_Stm_Seq);
2672 -- We set the entity of the new block statement to be that of the
2673 -- return statement. This is necessary so that various fields, such
2674 -- as Finalization_Chain_Entity carry over from the return statement
2675 -- to the block. Note that this block is unusual, in that its entity
2676 -- is an E_Return_Statement rather than an E_Block.
2678 Set_Identifier
2679 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
2681 -- If the object decl was already rewritten as a renaming, then
2682 -- we don't want to do the object allocation and transformation of
2683 -- of the return object declaration to a renaming. This case occurs
2684 -- when the return object is initialized by a call to another
2685 -- build-in-place function, and that function is responsible for the
2686 -- allocation of the return object.
2688 if Is_Build_In_Place
2689 and then
2690 Nkind (Return_Object_Decl) = N_Object_Renaming_Declaration
2691 then
2692 pragma Assert (Nkind (Original_Node (Return_Object_Decl)) =
2693 N_Object_Declaration
2694 and then Is_Build_In_Place_Function_Call
2695 (Expression (Original_Node (Return_Object_Decl))));
2697 Set_By_Ref (Return_Stm); -- Return build-in-place results by ref
2699 elsif Is_Build_In_Place then
2701 -- Locate the implicit access parameter associated with the
2702 -- caller-supplied return object and convert the return
2703 -- statement's return object declaration to a renaming of a
2704 -- dereference of the access parameter. If the return object's
2705 -- declaration includes an expression that has not already been
2706 -- expanded as separate assignments, then add an assignment
2707 -- statement to ensure the return object gets initialized.
2709 -- declare
2710 -- Result : T [:= <expression>];
2711 -- begin
2712 -- ...
2714 -- is converted to
2716 -- declare
2717 -- Result : T renames FuncRA.all;
2718 -- [Result := <expression;]
2719 -- begin
2720 -- ...
2722 declare
2723 Return_Obj_Id : constant Entity_Id :=
2724 Defining_Identifier (Return_Object_Decl);
2725 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
2726 Return_Obj_Expr : constant Node_Id :=
2727 Expression (Return_Object_Decl);
2728 Result_Subt : constant Entity_Id :=
2729 Etype (Parent_Function);
2730 Constr_Result : constant Boolean :=
2731 Is_Constrained (Result_Subt);
2732 Obj_Alloc_Formal : Entity_Id;
2733 Object_Access : Entity_Id;
2734 Obj_Acc_Deref : Node_Id;
2735 Init_Assignment : Node_Id := Empty;
2737 begin
2738 -- Build-in-place results must be returned by reference
2740 Set_By_Ref (Return_Stm);
2742 -- Retrieve the implicit access parameter passed by the caller
2744 Object_Access :=
2745 Build_In_Place_Formal (Parent_Function, BIP_Object_Access);
2747 -- If the return object's declaration includes an expression
2748 -- and the declaration isn't marked as No_Initialization, then
2749 -- we need to generate an assignment to the object and insert
2750 -- it after the declaration before rewriting it as a renaming
2751 -- (otherwise we'll lose the initialization). The case where
2752 -- the result type is an interface (or class-wide interface)
2753 -- is also excluded because the context of the function call
2754 -- must be unconstrained, so the initialization will always
2755 -- be done as part of an allocator evaluation (storage pool
2756 -- or secondary stack), never to a constrained target object
2757 -- passed in by the caller. Besides the assignment being
2758 -- unneeded in this case, it avoids problems with trying to
2759 -- generate a dispatching assignment when the return expression
2760 -- is a nonlimited descendant of a limited interface (the
2761 -- interface has no assignment operation).
2763 if Present (Return_Obj_Expr)
2764 and then not No_Initialization (Return_Object_Decl)
2765 and then not Is_Interface (Return_Obj_Typ)
2766 then
2767 Init_Assignment :=
2768 Make_Assignment_Statement (Loc,
2769 Name => New_Reference_To (Return_Obj_Id, Loc),
2770 Expression => Relocate_Node (Return_Obj_Expr));
2771 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
2772 Set_Assignment_OK (Name (Init_Assignment));
2773 Set_No_Ctrl_Actions (Init_Assignment);
2775 Set_Parent (Name (Init_Assignment), Init_Assignment);
2776 Set_Parent (Expression (Init_Assignment), Init_Assignment);
2778 Set_Expression (Return_Object_Decl, Empty);
2780 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
2781 and then not Is_Class_Wide_Type
2782 (Etype (Expression (Init_Assignment)))
2783 then
2784 Rewrite (Expression (Init_Assignment),
2785 Make_Type_Conversion (Loc,
2786 Subtype_Mark =>
2787 New_Occurrence_Of
2788 (Etype (Return_Obj_Id), Loc),
2789 Expression =>
2790 Relocate_Node (Expression (Init_Assignment))));
2791 end if;
2793 -- In the case of functions where the calling context can
2794 -- determine the form of allocation needed, initialization
2795 -- is done with each part of the if statement that handles
2796 -- the different forms of allocation (this is true for
2797 -- unconstrained and tagged result subtypes).
2799 if Constr_Result
2800 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
2801 then
2802 Insert_After (Return_Object_Decl, Init_Assignment);
2803 end if;
2804 end if;
2806 -- When the function's subtype is unconstrained, a run-time
2807 -- test is needed to determine the form of allocation to use
2808 -- for the return object. The function has an implicit formal
2809 -- parameter indicating this. If the BIP_Alloc_Form formal has
2810 -- the value one, then the caller has passed access to an
2811 -- existing object for use as the return object. If the value
2812 -- is two, then the return object must be allocated on the
2813 -- secondary stack. Otherwise, the object must be allocated in
2814 -- a storage pool (currently only supported for the global
2815 -- heap, user-defined storage pools TBD ???). We generate an
2816 -- if statement to test the implicit allocation formal and
2817 -- initialize a local access value appropriately, creating
2818 -- allocators in the secondary stack and global heap cases.
2819 -- The special formal also exists and must be tested when the
2820 -- function has a tagged result, even when the result subtype
2821 -- is constrained, because in general such functions can be
2822 -- called in dispatching contexts and must be handled similarly
2823 -- to functions with a class-wide result.
2825 if not Constr_Result
2826 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
2827 then
2828 Obj_Alloc_Formal :=
2829 Build_In_Place_Formal (Parent_Function, BIP_Alloc_Form);
2831 declare
2832 Ref_Type : Entity_Id;
2833 Ptr_Type_Decl : Node_Id;
2834 Alloc_Obj_Id : Entity_Id;
2835 Alloc_Obj_Decl : Node_Id;
2836 Alloc_If_Stmt : Node_Id;
2837 SS_Allocator : Node_Id;
2838 Heap_Allocator : Node_Id;
2840 begin
2841 -- Reuse the itype created for the function's implicit
2842 -- access formal. This avoids the need to create a new
2843 -- access type here, plus it allows assigning the access
2844 -- formal directly without applying a conversion.
2846 -- Ref_Type := Etype (Object_Access);
2848 -- Create an access type designating the function's
2849 -- result subtype.
2851 Ref_Type :=
2852 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
2854 Ptr_Type_Decl :=
2855 Make_Full_Type_Declaration (Loc,
2856 Defining_Identifier => Ref_Type,
2857 Type_Definition =>
2858 Make_Access_To_Object_Definition (Loc,
2859 All_Present => True,
2860 Subtype_Indication =>
2861 New_Reference_To (Return_Obj_Typ, Loc)));
2863 Insert_Before (Return_Object_Decl, Ptr_Type_Decl);
2865 -- Create an access object that will be initialized to an
2866 -- access value denoting the return object, either coming
2867 -- from an implicit access value passed in by the caller
2868 -- or from the result of an allocator.
2870 Alloc_Obj_Id :=
2871 Make_Defining_Identifier (Loc,
2872 Chars => New_Internal_Name ('R'));
2873 Set_Etype (Alloc_Obj_Id, Ref_Type);
2875 Alloc_Obj_Decl :=
2876 Make_Object_Declaration (Loc,
2877 Defining_Identifier => Alloc_Obj_Id,
2878 Object_Definition => New_Reference_To
2879 (Ref_Type, Loc));
2881 Insert_Before (Return_Object_Decl, Alloc_Obj_Decl);
2883 -- Create allocators for both the secondary stack and
2884 -- global heap. If there's an initialization expression,
2885 -- then create these as initialized allocators.
2887 if Present (Return_Obj_Expr)
2888 and then not No_Initialization (Return_Object_Decl)
2889 then
2890 -- Always use the type of the expression for the
2891 -- qualified expression, rather than the result type.
2892 -- In general we cannot always use the result type
2893 -- for the allocator, because the expression might be
2894 -- of a specific type, such as in the case of an
2895 -- aggregate or even a nonlimited object when the
2896 -- result type is a limited class-wide interface type.
2898 Heap_Allocator :=
2899 Make_Allocator (Loc,
2900 Expression =>
2901 Make_Qualified_Expression (Loc,
2902 Subtype_Mark =>
2903 New_Reference_To
2904 (Etype (Return_Obj_Expr), Loc),
2905 Expression =>
2906 New_Copy_Tree (Return_Obj_Expr)));
2908 else
2909 -- If the function returns a class-wide type we cannot
2910 -- use the return type for the allocator. Instead we
2911 -- use the type of the expression, which must be an
2912 -- aggregate of a definite type.
2914 if Is_Class_Wide_Type (Return_Obj_Typ) then
2915 Heap_Allocator :=
2916 Make_Allocator (Loc,
2917 Expression =>
2918 New_Reference_To
2919 (Etype (Return_Obj_Expr), Loc));
2920 else
2921 Heap_Allocator :=
2922 Make_Allocator (Loc,
2923 Expression =>
2924 New_Reference_To (Return_Obj_Typ, Loc));
2925 end if;
2927 -- If the object requires default initialization then
2928 -- that will happen later following the elaboration of
2929 -- the object renaming. If we don't turn it off here
2930 -- then the object will be default initialized twice.
2932 Set_No_Initialization (Heap_Allocator);
2933 end if;
2935 -- If the No_Allocators restriction is active, then only
2936 -- an allocator for secondary stack allocation is needed.
2937 -- It's OK for such allocators to have Comes_From_Source
2938 -- set to False, because gigi knows not to flag them as
2939 -- being a violation of No_Implicit_Heap_Allocations.
2941 if Restriction_Active (No_Allocators) then
2942 SS_Allocator := Heap_Allocator;
2943 Heap_Allocator := Make_Null (Loc);
2945 -- Otherwise the heap allocator may be needed, so we make
2946 -- another allocator for secondary stack allocation.
2948 else
2949 SS_Allocator := New_Copy_Tree (Heap_Allocator);
2951 -- The heap allocator is marked Comes_From_Source
2952 -- since it corresponds to an explicit user-written
2953 -- allocator (that is, it will only be executed on
2954 -- behalf of callers that call the function as
2955 -- initialization for such an allocator). This
2956 -- prevents errors when No_Implicit_Heap_Allocations
2957 -- is in force.
2959 Set_Comes_From_Source (Heap_Allocator, True);
2960 end if;
2962 -- The allocator is returned on the secondary stack. We
2963 -- don't do this on VM targets, since the SS is not used.
2965 if VM_Target = No_VM then
2966 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
2967 Set_Procedure_To_Call
2968 (SS_Allocator, RTE (RE_SS_Allocate));
2970 -- The allocator is returned on the secondary stack,
2971 -- so indicate that the function return, as well as
2972 -- the block that encloses the allocator, must not
2973 -- release it. The flags must be set now because the
2974 -- decision to use the secondary stack is done very
2975 -- late in the course of expanding the return
2976 -- statement, past the point where these flags are
2977 -- normally set.
2979 Set_Sec_Stack_Needed_For_Return (Parent_Function);
2980 Set_Sec_Stack_Needed_For_Return
2981 (Return_Statement_Entity (N));
2982 Set_Uses_Sec_Stack (Parent_Function);
2983 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
2984 end if;
2986 -- Create an if statement to test the BIP_Alloc_Form
2987 -- formal and initialize the access object to either the
2988 -- BIP_Object_Access formal (BIP_Alloc_Form = 0), the
2989 -- result of allocating the object in the secondary stack
2990 -- (BIP_Alloc_Form = 1), or else an allocator to create
2991 -- the return object in the heap (BIP_Alloc_Form = 2).
2993 -- ??? An unchecked type conversion must be made in the
2994 -- case of assigning the access object formal to the
2995 -- local access object, because a normal conversion would
2996 -- be illegal in some cases (such as converting access-
2997 -- to-unconstrained to access-to-constrained), but the
2998 -- the unchecked conversion will presumably fail to work
2999 -- right in just such cases. It's not clear at all how to
3000 -- handle this. ???
3002 Alloc_If_Stmt :=
3003 Make_If_Statement (Loc,
3004 Condition =>
3005 Make_Op_Eq (Loc,
3006 Left_Opnd =>
3007 New_Reference_To (Obj_Alloc_Formal, Loc),
3008 Right_Opnd =>
3009 Make_Integer_Literal (Loc,
3010 UI_From_Int (BIP_Allocation_Form'Pos
3011 (Caller_Allocation)))),
3012 Then_Statements =>
3013 New_List (Make_Assignment_Statement (Loc,
3014 Name =>
3015 New_Reference_To
3016 (Alloc_Obj_Id, Loc),
3017 Expression =>
3018 Make_Unchecked_Type_Conversion (Loc,
3019 Subtype_Mark =>
3020 New_Reference_To (Ref_Type, Loc),
3021 Expression =>
3022 New_Reference_To
3023 (Object_Access, Loc)))),
3024 Elsif_Parts =>
3025 New_List (Make_Elsif_Part (Loc,
3026 Condition =>
3027 Make_Op_Eq (Loc,
3028 Left_Opnd =>
3029 New_Reference_To
3030 (Obj_Alloc_Formal, Loc),
3031 Right_Opnd =>
3032 Make_Integer_Literal (Loc,
3033 UI_From_Int (
3034 BIP_Allocation_Form'Pos
3035 (Secondary_Stack)))),
3036 Then_Statements =>
3037 New_List
3038 (Make_Assignment_Statement (Loc,
3039 Name =>
3040 New_Reference_To
3041 (Alloc_Obj_Id, Loc),
3042 Expression =>
3043 SS_Allocator)))),
3044 Else_Statements =>
3045 New_List (Make_Assignment_Statement (Loc,
3046 Name =>
3047 New_Reference_To
3048 (Alloc_Obj_Id, Loc),
3049 Expression =>
3050 Heap_Allocator)));
3052 -- If a separate initialization assignment was created
3053 -- earlier, append that following the assignment of the
3054 -- implicit access formal to the access object, to ensure
3055 -- that the return object is initialized in that case.
3056 -- In this situation, the target of the assignment must
3057 -- be rewritten to denote a dereference of the access to
3058 -- the return object passed in by the caller.
3060 if Present (Init_Assignment) then
3061 Rewrite (Name (Init_Assignment),
3062 Make_Explicit_Dereference (Loc,
3063 Prefix => New_Reference_To (Alloc_Obj_Id, Loc)));
3064 Set_Etype
3065 (Name (Init_Assignment), Etype (Return_Obj_Id));
3067 Append_To
3068 (Then_Statements (Alloc_If_Stmt),
3069 Init_Assignment);
3070 end if;
3072 Insert_Before (Return_Object_Decl, Alloc_If_Stmt);
3074 -- Remember the local access object for use in the
3075 -- dereference of the renaming created below.
3077 Object_Access := Alloc_Obj_Id;
3078 end;
3079 end if;
3081 -- Replace the return object declaration with a renaming of a
3082 -- dereference of the access value designating the return
3083 -- object.
3085 Obj_Acc_Deref :=
3086 Make_Explicit_Dereference (Loc,
3087 Prefix => New_Reference_To (Object_Access, Loc));
3089 Rewrite (Return_Object_Decl,
3090 Make_Object_Renaming_Declaration (Loc,
3091 Defining_Identifier => Return_Obj_Id,
3092 Access_Definition => Empty,
3093 Subtype_Mark => New_Occurrence_Of
3094 (Return_Obj_Typ, Loc),
3095 Name => Obj_Acc_Deref));
3097 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
3098 end;
3099 end if;
3101 -- Case where we do not build a block
3103 else
3104 -- We're about to drop Return_Object_Declarations on the floor, so
3105 -- we need to insert it, in case it got expanded into useful code.
3107 Insert_List_Before (N, Return_Object_Declarations (N));
3109 -- Build simple_return_statement that returns the expression directly
3111 Return_Stm := Make_Simple_Return_Statement (Loc, Expression => Exp);
3113 Result := Return_Stm;
3114 end if;
3116 -- Set the flag to prevent infinite recursion
3118 Set_Comes_From_Extended_Return_Statement (Return_Stm);
3120 Rewrite (N, Result);
3121 Analyze (N);
3122 end Expand_N_Extended_Return_Statement;
3124 -----------------------------
3125 -- Expand_N_Goto_Statement --
3126 -----------------------------
3128 -- Add poll before goto if polling active
3130 procedure Expand_N_Goto_Statement (N : Node_Id) is
3131 begin
3132 Generate_Poll_Call (N);
3133 end Expand_N_Goto_Statement;
3135 ---------------------------
3136 -- Expand_N_If_Statement --
3137 ---------------------------
3139 -- First we deal with the case of C and Fortran convention boolean values,
3140 -- with zero/non-zero semantics.
3142 -- Second, we deal with the obvious rewriting for the cases where the
3143 -- condition of the IF is known at compile time to be True or False.
3145 -- Third, we remove elsif parts which have non-empty Condition_Actions and
3146 -- rewrite as independent if statements. For example:
3148 -- if x then xs
3149 -- elsif y then ys
3150 -- ...
3151 -- end if;
3153 -- becomes
3155 -- if x then xs
3156 -- else
3157 -- <<condition actions of y>>
3158 -- if y then ys
3159 -- ...
3160 -- end if;
3161 -- end if;
3163 -- This rewriting is needed if at least one elsif part has a non-empty
3164 -- Condition_Actions list. We also do the same processing if there is a
3165 -- constant condition in an elsif part (in conjunction with the first
3166 -- processing step mentioned above, for the recursive call made to deal
3167 -- with the created inner if, this deals with properly optimizing the
3168 -- cases of constant elsif conditions).
3170 procedure Expand_N_If_Statement (N : Node_Id) is
3171 Loc : constant Source_Ptr := Sloc (N);
3172 Hed : Node_Id;
3173 E : Node_Id;
3174 New_If : Node_Id;
3176 Warn_If_Deleted : constant Boolean :=
3177 Warn_On_Deleted_Code and then Comes_From_Source (N);
3178 -- Indicates whether we want warnings when we delete branches of the
3179 -- if statement based on constant condition analysis. We never want
3180 -- these warnings for expander generated code.
3182 begin
3183 Adjust_Condition (Condition (N));
3185 -- The following loop deals with constant conditions for the IF. We
3186 -- need a loop because as we eliminate False conditions, we grab the
3187 -- first elsif condition and use it as the primary condition.
3189 while Compile_Time_Known_Value (Condition (N)) loop
3191 -- If condition is True, we can simply rewrite the if statement now
3192 -- by replacing it by the series of then statements.
3194 if Is_True (Expr_Value (Condition (N))) then
3196 -- All the else parts can be killed
3198 Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
3199 Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
3201 Hed := Remove_Head (Then_Statements (N));
3202 Insert_List_After (N, Then_Statements (N));
3203 Rewrite (N, Hed);
3204 return;
3206 -- If condition is False, then we can delete the condition and
3207 -- the Then statements
3209 else
3210 -- We do not delete the condition if constant condition warnings
3211 -- are enabled, since otherwise we end up deleting the desired
3212 -- warning. Of course the backend will get rid of this True/False
3213 -- test anyway, so nothing is lost here.
3215 if not Constant_Condition_Warnings then
3216 Kill_Dead_Code (Condition (N));
3217 end if;
3219 Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
3221 -- If there are no elsif statements, then we simply replace the
3222 -- entire if statement by the sequence of else statements.
3224 if No (Elsif_Parts (N)) then
3225 if No (Else_Statements (N))
3226 or else Is_Empty_List (Else_Statements (N))
3227 then
3228 Rewrite (N,
3229 Make_Null_Statement (Sloc (N)));
3230 else
3231 Hed := Remove_Head (Else_Statements (N));
3232 Insert_List_After (N, Else_Statements (N));
3233 Rewrite (N, Hed);
3234 end if;
3236 return;
3238 -- If there are elsif statements, the first of them becomes the
3239 -- if/then section of the rebuilt if statement This is the case
3240 -- where we loop to reprocess this copied condition.
3242 else
3243 Hed := Remove_Head (Elsif_Parts (N));
3244 Insert_Actions (N, Condition_Actions (Hed));
3245 Set_Condition (N, Condition (Hed));
3246 Set_Then_Statements (N, Then_Statements (Hed));
3248 -- Hed might have been captured as the condition determining
3249 -- the current value for an entity. Now it is detached from
3250 -- the tree, so a Current_Value pointer in the condition might
3251 -- need to be updated.
3253 Set_Current_Value_Condition (N);
3255 if Is_Empty_List (Elsif_Parts (N)) then
3256 Set_Elsif_Parts (N, No_List);
3257 end if;
3258 end if;
3259 end if;
3260 end loop;
3262 -- Loop through elsif parts, dealing with constant conditions and
3263 -- possible expression actions that are present.
3265 if Present (Elsif_Parts (N)) then
3266 E := First (Elsif_Parts (N));
3267 while Present (E) loop
3268 Adjust_Condition (Condition (E));
3270 -- If there are condition actions, then rewrite the if statement
3271 -- as indicated above. We also do the same rewrite for a True or
3272 -- False condition. The further processing of this constant
3273 -- condition is then done by the recursive call to expand the
3274 -- newly created if statement
3276 if Present (Condition_Actions (E))
3277 or else Compile_Time_Known_Value (Condition (E))
3278 then
3279 -- Note this is not an implicit if statement, since it is part
3280 -- of an explicit if statement in the source (or of an implicit
3281 -- if statement that has already been tested).
3283 New_If :=
3284 Make_If_Statement (Sloc (E),
3285 Condition => Condition (E),
3286 Then_Statements => Then_Statements (E),
3287 Elsif_Parts => No_List,
3288 Else_Statements => Else_Statements (N));
3290 -- Elsif parts for new if come from remaining elsif's of parent
3292 while Present (Next (E)) loop
3293 if No (Elsif_Parts (New_If)) then
3294 Set_Elsif_Parts (New_If, New_List);
3295 end if;
3297 Append (Remove_Next (E), Elsif_Parts (New_If));
3298 end loop;
3300 Set_Else_Statements (N, New_List (New_If));
3302 if Present (Condition_Actions (E)) then
3303 Insert_List_Before (New_If, Condition_Actions (E));
3304 end if;
3306 Remove (E);
3308 if Is_Empty_List (Elsif_Parts (N)) then
3309 Set_Elsif_Parts (N, No_List);
3310 end if;
3312 Analyze (New_If);
3313 return;
3315 -- No special processing for that elsif part, move to next
3317 else
3318 Next (E);
3319 end if;
3320 end loop;
3321 end if;
3323 -- Some more optimizations applicable if we still have an IF statement
3325 if Nkind (N) /= N_If_Statement then
3326 return;
3327 end if;
3329 -- Another optimization, special cases that can be simplified
3331 -- if expression then
3332 -- return true;
3333 -- else
3334 -- return false;
3335 -- end if;
3337 -- can be changed to:
3339 -- return expression;
3341 -- and
3343 -- if expression then
3344 -- return false;
3345 -- else
3346 -- return true;
3347 -- end if;
3349 -- can be changed to:
3351 -- return not (expression);
3353 -- Only do these optimizations if we are at least at -O1 level and
3354 -- do not do them if control flow optimizations are suppressed.
3356 if Optimization_Level > 0
3357 and then not Opt.Suppress_Control_Flow_Optimizations
3358 then
3359 if Nkind (N) = N_If_Statement
3360 and then No (Elsif_Parts (N))
3361 and then Present (Else_Statements (N))
3362 and then List_Length (Then_Statements (N)) = 1
3363 and then List_Length (Else_Statements (N)) = 1
3364 then
3365 declare
3366 Then_Stm : constant Node_Id := First (Then_Statements (N));
3367 Else_Stm : constant Node_Id := First (Else_Statements (N));
3369 begin
3370 if Nkind (Then_Stm) = N_Simple_Return_Statement
3371 and then
3372 Nkind (Else_Stm) = N_Simple_Return_Statement
3373 then
3374 declare
3375 Then_Expr : constant Node_Id := Expression (Then_Stm);
3376 Else_Expr : constant Node_Id := Expression (Else_Stm);
3378 begin
3379 if Nkind (Then_Expr) = N_Identifier
3380 and then
3381 Nkind (Else_Expr) = N_Identifier
3382 then
3383 if Entity (Then_Expr) = Standard_True
3384 and then Entity (Else_Expr) = Standard_False
3385 then
3386 Rewrite (N,
3387 Make_Simple_Return_Statement (Loc,
3388 Expression => Relocate_Node (Condition (N))));
3389 Analyze (N);
3390 return;
3392 elsif Entity (Then_Expr) = Standard_False
3393 and then Entity (Else_Expr) = Standard_True
3394 then
3395 Rewrite (N,
3396 Make_Simple_Return_Statement (Loc,
3397 Expression =>
3398 Make_Op_Not (Loc,
3399 Right_Opnd =>
3400 Relocate_Node (Condition (N)))));
3401 Analyze (N);
3402 return;
3403 end if;
3404 end if;
3405 end;
3406 end if;
3407 end;
3408 end if;
3409 end if;
3410 end Expand_N_If_Statement;
3412 -----------------------------
3413 -- Expand_N_Loop_Statement --
3414 -----------------------------
3416 -- 1. Remove null loop entirely
3417 -- 2. Deal with while condition for C/Fortran boolean
3418 -- 3. Deal with loops with a non-standard enumeration type range
3419 -- 4. Deal with while loops where Condition_Actions is set
3420 -- 5. Insert polling call if required
3422 procedure Expand_N_Loop_Statement (N : Node_Id) is
3423 Loc : constant Source_Ptr := Sloc (N);
3424 Isc : constant Node_Id := Iteration_Scheme (N);
3426 begin
3427 -- Delete null loop
3429 if Is_Null_Loop (N) then
3430 Rewrite (N, Make_Null_Statement (Loc));
3431 return;
3432 end if;
3434 -- Deal with condition for C/Fortran Boolean
3436 if Present (Isc) then
3437 Adjust_Condition (Condition (Isc));
3438 end if;
3440 -- Generate polling call
3442 if Is_Non_Empty_List (Statements (N)) then
3443 Generate_Poll_Call (First (Statements (N)));
3444 end if;
3446 -- Nothing more to do for plain loop with no iteration scheme
3448 if No (Isc) then
3449 return;
3450 end if;
3452 -- Note: we do not have to worry about validity checking of the for loop
3453 -- range bounds here, since they were frozen with constant declarations
3454 -- and it is during that process that the validity checking is done.
3456 -- Handle the case where we have a for loop with the range type being an
3457 -- enumeration type with non-standard representation. In this case we
3458 -- expand:
3460 -- for x in [reverse] a .. b loop
3461 -- ...
3462 -- end loop;
3464 -- to
3466 -- for xP in [reverse] integer
3467 -- range etype'Pos (a) .. etype'Pos (b) loop
3468 -- declare
3469 -- x : constant etype := Pos_To_Rep (xP);
3470 -- begin
3471 -- ...
3472 -- end;
3473 -- end loop;
3475 if Present (Loop_Parameter_Specification (Isc)) then
3476 declare
3477 LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
3478 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
3479 Ltype : constant Entity_Id := Etype (Loop_Id);
3480 Btype : constant Entity_Id := Base_Type (Ltype);
3481 Expr : Node_Id;
3482 New_Id : Entity_Id;
3484 begin
3485 if not Is_Enumeration_Type (Btype)
3486 or else No (Enum_Pos_To_Rep (Btype))
3487 then
3488 return;
3489 end if;
3491 New_Id :=
3492 Make_Defining_Identifier (Loc,
3493 Chars => New_External_Name (Chars (Loop_Id), 'P'));
3495 -- If the type has a contiguous representation, successive values
3496 -- can be generated as offsets from the first literal.
3498 if Has_Contiguous_Rep (Btype) then
3499 Expr :=
3500 Unchecked_Convert_To (Btype,
3501 Make_Op_Add (Loc,
3502 Left_Opnd =>
3503 Make_Integer_Literal (Loc,
3504 Enumeration_Rep (First_Literal (Btype))),
3505 Right_Opnd => New_Reference_To (New_Id, Loc)));
3506 else
3507 -- Use the constructed array Enum_Pos_To_Rep
3509 Expr :=
3510 Make_Indexed_Component (Loc,
3511 Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
3512 Expressions => New_List (New_Reference_To (New_Id, Loc)));
3513 end if;
3515 Rewrite (N,
3516 Make_Loop_Statement (Loc,
3517 Identifier => Identifier (N),
3519 Iteration_Scheme =>
3520 Make_Iteration_Scheme (Loc,
3521 Loop_Parameter_Specification =>
3522 Make_Loop_Parameter_Specification (Loc,
3523 Defining_Identifier => New_Id,
3524 Reverse_Present => Reverse_Present (LPS),
3526 Discrete_Subtype_Definition =>
3527 Make_Subtype_Indication (Loc,
3529 Subtype_Mark =>
3530 New_Reference_To (Standard_Natural, Loc),
3532 Constraint =>
3533 Make_Range_Constraint (Loc,
3534 Range_Expression =>
3535 Make_Range (Loc,
3537 Low_Bound =>
3538 Make_Attribute_Reference (Loc,
3539 Prefix =>
3540 New_Reference_To (Btype, Loc),
3542 Attribute_Name => Name_Pos,
3544 Expressions => New_List (
3545 Relocate_Node
3546 (Type_Low_Bound (Ltype)))),
3548 High_Bound =>
3549 Make_Attribute_Reference (Loc,
3550 Prefix =>
3551 New_Reference_To (Btype, Loc),
3553 Attribute_Name => Name_Pos,
3555 Expressions => New_List (
3556 Relocate_Node
3557 (Type_High_Bound (Ltype))))))))),
3559 Statements => New_List (
3560 Make_Block_Statement (Loc,
3561 Declarations => New_List (
3562 Make_Object_Declaration (Loc,
3563 Defining_Identifier => Loop_Id,
3564 Constant_Present => True,
3565 Object_Definition => New_Reference_To (Ltype, Loc),
3566 Expression => Expr)),
3568 Handled_Statement_Sequence =>
3569 Make_Handled_Sequence_Of_Statements (Loc,
3570 Statements => Statements (N)))),
3572 End_Label => End_Label (N)));
3573 Analyze (N);
3574 end;
3576 -- Second case, if we have a while loop with Condition_Actions set, then
3577 -- we change it into a plain loop:
3579 -- while C loop
3580 -- ...
3581 -- end loop;
3583 -- changed to:
3585 -- loop
3586 -- <<condition actions>>
3587 -- exit when not C;
3588 -- ...
3589 -- end loop
3591 elsif Present (Isc)
3592 and then Present (Condition_Actions (Isc))
3593 then
3594 declare
3595 ES : Node_Id;
3597 begin
3598 ES :=
3599 Make_Exit_Statement (Sloc (Condition (Isc)),
3600 Condition =>
3601 Make_Op_Not (Sloc (Condition (Isc)),
3602 Right_Opnd => Condition (Isc)));
3604 Prepend (ES, Statements (N));
3605 Insert_List_Before (ES, Condition_Actions (Isc));
3607 -- This is not an implicit loop, since it is generated in response
3608 -- to the loop statement being processed. If this is itself
3609 -- implicit, the restriction has already been checked. If not,
3610 -- it is an explicit loop.
3612 Rewrite (N,
3613 Make_Loop_Statement (Sloc (N),
3614 Identifier => Identifier (N),
3615 Statements => Statements (N),
3616 End_Label => End_Label (N)));
3618 Analyze (N);
3619 end;
3620 end if;
3621 end Expand_N_Loop_Statement;
3623 --------------------------------------
3624 -- Expand_N_Simple_Return_Statement --
3625 --------------------------------------
3627 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
3628 begin
3629 -- Defend against previous errors (i.e. the return statement calls a
3630 -- function that is not available in configurable runtime).
3632 if Present (Expression (N))
3633 and then Nkind (Expression (N)) = N_Empty
3634 then
3635 return;
3636 end if;
3638 -- Distinguish the function and non-function cases:
3640 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
3642 when E_Function |
3643 E_Generic_Function =>
3644 Expand_Simple_Function_Return (N);
3646 when E_Procedure |
3647 E_Generic_Procedure |
3648 E_Entry |
3649 E_Entry_Family |
3650 E_Return_Statement =>
3651 Expand_Non_Function_Return (N);
3653 when others =>
3654 raise Program_Error;
3655 end case;
3657 exception
3658 when RE_Not_Available =>
3659 return;
3660 end Expand_N_Simple_Return_Statement;
3662 --------------------------------
3663 -- Expand_Non_Function_Return --
3664 --------------------------------
3666 procedure Expand_Non_Function_Return (N : Node_Id) is
3667 pragma Assert (No (Expression (N)));
3669 Loc : constant Source_Ptr := Sloc (N);
3670 Scope_Id : Entity_Id :=
3671 Return_Applies_To (Return_Statement_Entity (N));
3672 Kind : constant Entity_Kind := Ekind (Scope_Id);
3673 Call : Node_Id;
3674 Acc_Stat : Node_Id;
3675 Goto_Stat : Node_Id;
3676 Lab_Node : Node_Id;
3678 begin
3679 -- Call _Postconditions procedure if procedure with active
3680 -- postconditions. Here, we use the Postcondition_Proc attribute, which
3681 -- is needed for implicitly-generated returns. Functions never
3682 -- have implicitly-generated returns, and there's no room for
3683 -- Postcondition_Proc in E_Function, so we look up the identifier
3684 -- Name_uPostconditions for function returns (see
3685 -- Expand_Simple_Function_Return).
3687 if Ekind (Scope_Id) = E_Procedure
3688 and then Has_Postconditions (Scope_Id)
3689 then
3690 pragma Assert (Present (Postcondition_Proc (Scope_Id)));
3691 Insert_Action (N,
3692 Make_Procedure_Call_Statement (Loc,
3693 Name => New_Reference_To (Postcondition_Proc (Scope_Id), Loc)));
3694 end if;
3696 -- If it is a return from a procedure do no extra steps
3698 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
3699 return;
3701 -- If it is a nested return within an extended one, replace it with a
3702 -- return of the previously declared return object.
3704 elsif Kind = E_Return_Statement then
3705 Rewrite (N,
3706 Make_Simple_Return_Statement (Loc,
3707 Expression =>
3708 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
3709 Set_Comes_From_Extended_Return_Statement (N);
3710 Set_Return_Statement_Entity (N, Scope_Id);
3711 Expand_Simple_Function_Return (N);
3712 return;
3713 end if;
3715 pragma Assert (Is_Entry (Scope_Id));
3717 -- Look at the enclosing block to see whether the return is from an
3718 -- accept statement or an entry body.
3720 for J in reverse 0 .. Scope_Stack.Last loop
3721 Scope_Id := Scope_Stack.Table (J).Entity;
3722 exit when Is_Concurrent_Type (Scope_Id);
3723 end loop;
3725 -- If it is a return from accept statement it is expanded as call to
3726 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
3728 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
3729 -- Expand_N_Accept_Alternative in exp_ch9.adb)
3731 if Is_Task_Type (Scope_Id) then
3733 Call :=
3734 Make_Procedure_Call_Statement (Loc,
3735 Name => New_Reference_To (RTE (RE_Complete_Rendezvous), Loc));
3736 Insert_Before (N, Call);
3737 -- why not insert actions here???
3738 Analyze (Call);
3740 Acc_Stat := Parent (N);
3741 while Nkind (Acc_Stat) /= N_Accept_Statement loop
3742 Acc_Stat := Parent (Acc_Stat);
3743 end loop;
3745 Lab_Node := Last (Statements
3746 (Handled_Statement_Sequence (Acc_Stat)));
3748 Goto_Stat := Make_Goto_Statement (Loc,
3749 Name => New_Occurrence_Of
3750 (Entity (Identifier (Lab_Node)), Loc));
3752 Set_Analyzed (Goto_Stat);
3754 Rewrite (N, Goto_Stat);
3755 Analyze (N);
3757 -- If it is a return from an entry body, put a Complete_Entry_Body call
3758 -- in front of the return.
3760 elsif Is_Protected_Type (Scope_Id) then
3761 Call :=
3762 Make_Procedure_Call_Statement (Loc,
3763 Name =>
3764 New_Reference_To (RTE (RE_Complete_Entry_Body), Loc),
3765 Parameter_Associations => New_List (
3766 Make_Attribute_Reference (Loc,
3767 Prefix =>
3768 New_Reference_To
3769 (Find_Protection_Object (Current_Scope), Loc),
3770 Attribute_Name =>
3771 Name_Unchecked_Access)));
3773 Insert_Before (N, Call);
3774 Analyze (Call);
3775 end if;
3776 end Expand_Non_Function_Return;
3778 -----------------------------------
3779 -- Expand_Simple_Function_Return --
3780 -----------------------------------
3782 -- The "simple" comes from the syntax rule simple_return_statement.
3783 -- The semantics are not at all simple!
3785 procedure Expand_Simple_Function_Return (N : Node_Id) is
3786 Loc : constant Source_Ptr := Sloc (N);
3788 Scope_Id : constant Entity_Id :=
3789 Return_Applies_To (Return_Statement_Entity (N));
3790 -- The function we are returning from
3792 R_Type : constant Entity_Id := Etype (Scope_Id);
3793 -- The result type of the function
3795 Utyp : constant Entity_Id := Underlying_Type (R_Type);
3797 Exp : constant Node_Id := Expression (N);
3798 pragma Assert (Present (Exp));
3800 Exptyp : constant Entity_Id := Etype (Exp);
3801 -- The type of the expression (not necessarily the same as R_Type)
3803 Subtype_Ind : Node_Id;
3804 -- If the result type of the function is class-wide and the
3805 -- expression has a specific type, then we use the expression's
3806 -- type as the type of the return object. In cases where the
3807 -- expression is an aggregate that is built in place, this avoids
3808 -- the need for an expensive conversion of the return object to
3809 -- the specific type on assignments to the individual components.
3811 begin
3812 if Is_Class_Wide_Type (R_Type)
3813 and then not Is_Class_Wide_Type (Etype (Exp))
3814 then
3815 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
3816 else
3817 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
3818 end if;
3820 -- For the case of a simple return that does not come from an extended
3821 -- return, in the case of Ada 2005 where we are returning a limited
3822 -- type, we rewrite "return <expression>;" to be:
3824 -- return _anon_ : <return_subtype> := <expression>
3826 -- The expansion produced by Expand_N_Extended_Return_Statement will
3827 -- contain simple return statements (for example, a block containing
3828 -- simple return of the return object), which brings us back here with
3829 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
3830 -- checking for a simple return that does not come from an extended
3831 -- return is to avoid this infinite recursion.
3833 -- The reason for this design is that for Ada 2005 limited returns, we
3834 -- need to reify the return object, so we can build it "in place", and
3835 -- we need a block statement to hang finalization and tasking stuff.
3837 -- ??? In order to avoid disruption, we avoid translating to extended
3838 -- return except in the cases where we really need to (Ada 2005 for
3839 -- inherently limited). We might prefer to do this translation in all
3840 -- cases (except perhaps for the case of Ada 95 inherently limited),
3841 -- in order to fully exercise the Expand_N_Extended_Return_Statement
3842 -- code. This would also allow us to do the build-in-place optimization
3843 -- for efficiency even in cases where it is semantically not required.
3845 -- As before, we check the type of the return expression rather than the
3846 -- return type of the function, because the latter may be a limited
3847 -- class-wide interface type, which is not a limited type, even though
3848 -- the type of the expression may be.
3850 if not Comes_From_Extended_Return_Statement (N)
3851 and then Is_Inherently_Limited_Type (Etype (Expression (N)))
3852 and then Ada_Version >= Ada_05
3853 and then not Debug_Flag_Dot_L
3854 then
3855 declare
3856 Return_Object_Entity : constant Entity_Id :=
3857 Make_Defining_Identifier (Loc,
3858 New_Internal_Name ('R'));
3859 Obj_Decl : constant Node_Id :=
3860 Make_Object_Declaration (Loc,
3861 Defining_Identifier => Return_Object_Entity,
3862 Object_Definition => Subtype_Ind,
3863 Expression => Exp);
3865 Ext : constant Node_Id := Make_Extended_Return_Statement (Loc,
3866 Return_Object_Declarations => New_List (Obj_Decl));
3867 -- Do not perform this high-level optimization if the result type
3868 -- is an interface because the "this" pointer must be displaced.
3870 begin
3871 Rewrite (N, Ext);
3872 Analyze (N);
3873 return;
3874 end;
3875 end if;
3877 -- Here we have a simple return statement that is part of the expansion
3878 -- of an extended return statement (either written by the user, or
3879 -- generated by the above code).
3881 -- Always normalize C/Fortran boolean result. This is not always needed,
3882 -- but it seems a good idea to minimize the passing around of non-
3883 -- normalized values, and in any case this handles the processing of
3884 -- barrier functions for protected types, which turn the condition into
3885 -- a return statement.
3887 if Is_Boolean_Type (Exptyp)
3888 and then Nonzero_Is_True (Exptyp)
3889 then
3890 Adjust_Condition (Exp);
3891 Adjust_Result_Type (Exp, Exptyp);
3892 end if;
3894 -- Do validity check if enabled for returns
3896 if Validity_Checks_On
3897 and then Validity_Check_Returns
3898 then
3899 Ensure_Valid (Exp);
3900 end if;
3902 -- Check the result expression of a scalar function against the subtype
3903 -- of the function by inserting a conversion. This conversion must
3904 -- eventually be performed for other classes of types, but for now it's
3905 -- only done for scalars.
3906 -- ???
3908 if Is_Scalar_Type (Exptyp) then
3909 Rewrite (Exp, Convert_To (R_Type, Exp));
3911 -- The expression is resolved to ensure that the conversion gets
3912 -- expanded to generate a possible constraint check.
3914 Analyze_And_Resolve (Exp, R_Type);
3915 end if;
3917 -- Deal with returning variable length objects and controlled types
3919 -- Nothing to do if we are returning by reference, or this is not a
3920 -- type that requires special processing (indicated by the fact that
3921 -- it requires a cleanup scope for the secondary stack case).
3923 if Is_Inherently_Limited_Type (Exptyp)
3924 or else Is_Limited_Interface (Exptyp)
3925 then
3926 null;
3928 elsif not Requires_Transient_Scope (R_Type) then
3930 -- Mutable records with no variable length components are not
3931 -- returned on the sec-stack, so we need to make sure that the
3932 -- backend will only copy back the size of the actual value, and not
3933 -- the maximum size. We create an actual subtype for this purpose.
3935 declare
3936 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
3937 Decl : Node_Id;
3938 Ent : Entity_Id;
3939 begin
3940 if Has_Discriminants (Ubt)
3941 and then not Is_Constrained (Ubt)
3942 and then not Has_Unchecked_Union (Ubt)
3943 then
3944 Decl := Build_Actual_Subtype (Ubt, Exp);
3945 Ent := Defining_Identifier (Decl);
3946 Insert_Action (Exp, Decl);
3947 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
3948 Analyze_And_Resolve (Exp);
3949 end if;
3950 end;
3952 -- Here if secondary stack is used
3954 else
3955 -- Make sure that no surrounding block will reclaim the secondary
3956 -- stack on which we are going to put the result. Not only may this
3957 -- introduce secondary stack leaks but worse, if the reclamation is
3958 -- done too early, then the result we are returning may get
3959 -- clobbered.
3961 declare
3962 S : Entity_Id;
3963 begin
3964 S := Current_Scope;
3965 while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
3966 Set_Sec_Stack_Needed_For_Return (S, True);
3967 S := Enclosing_Dynamic_Scope (S);
3968 end loop;
3969 end;
3971 -- Optimize the case where the result is a function call. In this
3972 -- case either the result is already on the secondary stack, or is
3973 -- already being returned with the stack pointer depressed and no
3974 -- further processing is required except to set the By_Ref flag to
3975 -- ensure that gigi does not attempt an extra unnecessary copy.
3976 -- (actually not just unnecessary but harmfully wrong in the case
3977 -- of a controlled type, where gigi does not know how to do a copy).
3978 -- To make up for a gcc 2.8.1 deficiency (???), we perform
3979 -- the copy for array types if the constrained status of the
3980 -- target type is different from that of the expression.
3982 if Requires_Transient_Scope (Exptyp)
3983 and then
3984 (not Is_Array_Type (Exptyp)
3985 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
3986 or else CW_Or_Has_Controlled_Part (Utyp))
3987 and then Nkind (Exp) = N_Function_Call
3988 then
3989 Set_By_Ref (N);
3991 -- Remove side effects from the expression now so that other parts
3992 -- of the expander do not have to reanalyze this node without this
3993 -- optimization
3995 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
3997 -- For controlled types, do the allocation on the secondary stack
3998 -- manually in order to call adjust at the right time:
4000 -- type Anon1 is access R_Type;
4001 -- for Anon1'Storage_pool use ss_pool;
4002 -- Anon2 : anon1 := new R_Type'(expr);
4003 -- return Anon2.all;
4005 -- We do the same for classwide types that are not potentially
4006 -- controlled (by the virtue of restriction No_Finalization) because
4007 -- gigi is not able to properly allocate class-wide types.
4009 elsif CW_Or_Has_Controlled_Part (Utyp) then
4010 declare
4011 Loc : constant Source_Ptr := Sloc (N);
4012 Temp : constant Entity_Id :=
4013 Make_Defining_Identifier (Loc,
4014 Chars => New_Internal_Name ('R'));
4015 Acc_Typ : constant Entity_Id :=
4016 Make_Defining_Identifier (Loc,
4017 Chars => New_Internal_Name ('A'));
4018 Alloc_Node : Node_Id;
4020 begin
4021 Set_Ekind (Acc_Typ, E_Access_Type);
4023 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
4025 -- This is an allocator for the secondary stack, and it's fine
4026 -- to have Comes_From_Source set False on it, as gigi knows not
4027 -- to flag it as a violation of No_Implicit_Heap_Allocations.
4029 Alloc_Node :=
4030 Make_Allocator (Loc,
4031 Expression =>
4032 Make_Qualified_Expression (Loc,
4033 Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
4034 Expression => Relocate_Node (Exp)));
4036 -- We do not want discriminant checks on the declaration,
4037 -- given that it gets its value from the allocator.
4039 Set_No_Initialization (Alloc_Node);
4041 Insert_List_Before_And_Analyze (N, New_List (
4042 Make_Full_Type_Declaration (Loc,
4043 Defining_Identifier => Acc_Typ,
4044 Type_Definition =>
4045 Make_Access_To_Object_Definition (Loc,
4046 Subtype_Indication => Subtype_Ind)),
4048 Make_Object_Declaration (Loc,
4049 Defining_Identifier => Temp,
4050 Object_Definition => New_Reference_To (Acc_Typ, Loc),
4051 Expression => Alloc_Node)));
4053 Rewrite (Exp,
4054 Make_Explicit_Dereference (Loc,
4055 Prefix => New_Reference_To (Temp, Loc)));
4057 Analyze_And_Resolve (Exp, R_Type);
4058 end;
4060 -- Otherwise use the gigi mechanism to allocate result on the
4061 -- secondary stack.
4063 else
4064 Check_Restriction (No_Secondary_Stack, N);
4065 Set_Storage_Pool (N, RTE (RE_SS_Pool));
4067 -- If we are generating code for the VM do not use
4068 -- SS_Allocate since everything is heap-allocated anyway.
4070 if VM_Target = No_VM then
4071 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4072 end if;
4073 end if;
4074 end if;
4076 -- Implement the rules of 6.5(8-10), which require a tag check in the
4077 -- case of a limited tagged return type, and tag reassignment for
4078 -- nonlimited tagged results. These actions are needed when the return
4079 -- type is a specific tagged type and the result expression is a
4080 -- conversion or a formal parameter, because in that case the tag of the
4081 -- expression might differ from the tag of the specific result type.
4083 if Is_Tagged_Type (Utyp)
4084 and then not Is_Class_Wide_Type (Utyp)
4085 and then (Nkind_In (Exp, N_Type_Conversion,
4086 N_Unchecked_Type_Conversion)
4087 or else (Is_Entity_Name (Exp)
4088 and then Ekind (Entity (Exp)) in Formal_Kind))
4089 then
4090 -- When the return type is limited, perform a check that the
4091 -- tag of the result is the same as the tag of the return type.
4093 if Is_Limited_Type (R_Type) then
4094 Insert_Action (Exp,
4095 Make_Raise_Constraint_Error (Loc,
4096 Condition =>
4097 Make_Op_Ne (Loc,
4098 Left_Opnd =>
4099 Make_Selected_Component (Loc,
4100 Prefix => Duplicate_Subexpr (Exp),
4101 Selector_Name =>
4102 New_Reference_To (First_Tag_Component (Utyp), Loc)),
4103 Right_Opnd =>
4104 Unchecked_Convert_To (RTE (RE_Tag),
4105 New_Reference_To
4106 (Node (First_Elmt
4107 (Access_Disp_Table (Base_Type (Utyp)))),
4108 Loc))),
4109 Reason => CE_Tag_Check_Failed));
4111 -- If the result type is a specific nonlimited tagged type, then we
4112 -- have to ensure that the tag of the result is that of the result
4113 -- type. This is handled by making a copy of the expression in the
4114 -- case where it might have a different tag, namely when the
4115 -- expression is a conversion or a formal parameter. We create a new
4116 -- object of the result type and initialize it from the expression,
4117 -- which will implicitly force the tag to be set appropriately.
4119 else
4120 declare
4121 Result_Id : constant Entity_Id :=
4122 Make_Defining_Identifier (Loc,
4123 Chars => New_Internal_Name ('R'));
4124 Result_Exp : constant Node_Id :=
4125 New_Reference_To (Result_Id, Loc);
4126 Result_Obj : constant Node_Id :=
4127 Make_Object_Declaration (Loc,
4128 Defining_Identifier => Result_Id,
4129 Object_Definition =>
4130 New_Reference_To (R_Type, Loc),
4131 Constant_Present => True,
4132 Expression => Relocate_Node (Exp));
4134 begin
4135 Set_Assignment_OK (Result_Obj);
4136 Insert_Action (Exp, Result_Obj);
4138 Rewrite (Exp, Result_Exp);
4139 Analyze_And_Resolve (Exp, R_Type);
4140 end;
4141 end if;
4143 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
4144 -- a check that the level of the return expression's underlying type
4145 -- is not deeper than the level of the master enclosing the function.
4146 -- Always generate the check when the type of the return expression
4147 -- is class-wide, when it's a type conversion, or when it's a formal
4148 -- parameter. Otherwise, suppress the check in the case where the
4149 -- return expression has a specific type whose level is known not to
4150 -- be statically deeper than the function's result type.
4152 -- Note: accessibility check is skipped in the VM case, since there
4153 -- does not seem to be any practical way to implement this check.
4155 elsif Ada_Version >= Ada_05
4156 and then Tagged_Type_Expansion
4157 and then Is_Class_Wide_Type (R_Type)
4158 and then not Scope_Suppress (Accessibility_Check)
4159 and then
4160 (Is_Class_Wide_Type (Etype (Exp))
4161 or else Nkind_In (Exp, N_Type_Conversion,
4162 N_Unchecked_Type_Conversion)
4163 or else (Is_Entity_Name (Exp)
4164 and then Ekind (Entity (Exp)) in Formal_Kind)
4165 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
4166 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
4167 then
4168 declare
4169 Tag_Node : Node_Id;
4171 begin
4172 -- Ada 2005 (AI-251): In class-wide interface objects we displace
4173 -- "this" to reference the base of the object --- required to get
4174 -- access to the TSD of the object.
4176 if Is_Class_Wide_Type (Etype (Exp))
4177 and then Is_Interface (Etype (Exp))
4178 and then Nkind (Exp) = N_Explicit_Dereference
4179 then
4180 Tag_Node :=
4181 Make_Explicit_Dereference (Loc,
4182 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
4183 Make_Function_Call (Loc,
4184 Name => New_Reference_To (RTE (RE_Base_Address), Loc),
4185 Parameter_Associations => New_List (
4186 Unchecked_Convert_To (RTE (RE_Address),
4187 Duplicate_Subexpr (Prefix (Exp)))))));
4188 else
4189 Tag_Node :=
4190 Make_Attribute_Reference (Loc,
4191 Prefix => Duplicate_Subexpr (Exp),
4192 Attribute_Name => Name_Tag);
4193 end if;
4195 Insert_Action (Exp,
4196 Make_Raise_Program_Error (Loc,
4197 Condition =>
4198 Make_Op_Gt (Loc,
4199 Left_Opnd =>
4200 Build_Get_Access_Level (Loc, Tag_Node),
4201 Right_Opnd =>
4202 Make_Integer_Literal (Loc,
4203 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
4204 Reason => PE_Accessibility_Check_Failed));
4205 end;
4206 end if;
4208 -- If we are returning an object that may not be bit-aligned, then
4209 -- copy the value into a temporary first. This copy may need to expand
4210 -- to a loop of component operations..
4212 if Is_Possibly_Unaligned_Slice (Exp)
4213 or else Is_Possibly_Unaligned_Object (Exp)
4214 then
4215 declare
4216 Tnn : constant Entity_Id :=
4217 Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
4218 begin
4219 Insert_Action (Exp,
4220 Make_Object_Declaration (Loc,
4221 Defining_Identifier => Tnn,
4222 Constant_Present => True,
4223 Object_Definition => New_Occurrence_Of (R_Type, Loc),
4224 Expression => Relocate_Node (Exp)),
4225 Suppress => All_Checks);
4226 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
4227 end;
4228 end if;
4230 -- Generate call to postcondition checks if they are present
4232 if Ekind (Scope_Id) = E_Function
4233 and then Has_Postconditions (Scope_Id)
4234 then
4235 -- We are going to reference the returned value twice in this case,
4236 -- once in the call to _Postconditions, and once in the actual return
4237 -- statement, but we can't have side effects happening twice, and in
4238 -- any case for efficiency we don't want to do the computation twice.
4240 -- If the returned expression is an entity name, we don't need to
4241 -- worry since it is efficient and safe to reference it twice, that's
4242 -- also true for literals other than string literals, and for the
4243 -- case of X.all where X is an entity name.
4245 if Is_Entity_Name (Exp)
4246 or else Nkind_In (Exp, N_Character_Literal,
4247 N_Integer_Literal,
4248 N_Real_Literal)
4249 or else (Nkind (Exp) = N_Explicit_Dereference
4250 and then Is_Entity_Name (Prefix (Exp)))
4251 then
4252 null;
4254 -- Otherwise we are going to need a temporary to capture the value
4256 else
4257 declare
4258 Tnn : constant Entity_Id :=
4259 Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
4261 begin
4262 -- For a complex expression of an elementary type, capture
4263 -- value in the temporary and use it as the reference.
4265 if Is_Elementary_Type (R_Type) then
4266 Insert_Action (Exp,
4267 Make_Object_Declaration (Loc,
4268 Defining_Identifier => Tnn,
4269 Constant_Present => True,
4270 Object_Definition => New_Occurrence_Of (R_Type, Loc),
4271 Expression => Relocate_Node (Exp)),
4272 Suppress => All_Checks);
4274 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
4276 -- If we have something we can rename, generate a renaming of
4277 -- the object and replace the expression with a reference
4279 elsif Is_Object_Reference (Exp) then
4280 Insert_Action (Exp,
4281 Make_Object_Renaming_Declaration (Loc,
4282 Defining_Identifier => Tnn,
4283 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
4284 Name => Relocate_Node (Exp)),
4285 Suppress => All_Checks);
4287 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
4289 -- Otherwise we have something like a string literal or an
4290 -- aggregate. We could copy the value, but that would be
4291 -- inefficient. Instead we make a reference to the value and
4292 -- capture this reference with a renaming, the expression is
4293 -- then replaced by a dereference of this renaming.
4295 else
4296 -- For now, copy the value, since the code below does not
4297 -- seem to work correctly ???
4299 Insert_Action (Exp,
4300 Make_Object_Declaration (Loc,
4301 Defining_Identifier => Tnn,
4302 Constant_Present => True,
4303 Object_Definition => New_Occurrence_Of (R_Type, Loc),
4304 Expression => Relocate_Node (Exp)),
4305 Suppress => All_Checks);
4307 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
4309 -- Insert_Action (Exp,
4310 -- Make_Object_Renaming_Declaration (Loc,
4311 -- Defining_Identifier => Tnn,
4312 -- Access_Definition =>
4313 -- Make_Access_Definition (Loc,
4314 -- All_Present => True,
4315 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
4316 -- Name =>
4317 -- Make_Reference (Loc,
4318 -- Prefix => Relocate_Node (Exp))),
4319 -- Suppress => All_Checks);
4321 -- Rewrite (Exp,
4322 -- Make_Explicit_Dereference (Loc,
4323 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
4324 end if;
4325 end;
4326 end if;
4328 -- Generate call to _postconditions
4330 Insert_Action (Exp,
4331 Make_Procedure_Call_Statement (Loc,
4332 Name => Make_Identifier (Loc, Name_uPostconditions),
4333 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
4334 end if;
4336 -- Ada 2005 (AI-251): If this return statement corresponds with an
4337 -- simple return statement associated with an extended return statement
4338 -- and the type of the returned object is an interface then generate an
4339 -- implicit conversion to force displacement of the "this" pointer.
4341 if Ada_Version >= Ada_05
4342 and then Comes_From_Extended_Return_Statement (N)
4343 and then Nkind (Expression (N)) = N_Identifier
4344 and then Is_Interface (Utyp)
4345 and then Utyp /= Underlying_Type (Exptyp)
4346 then
4347 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
4348 Analyze_And_Resolve (Exp);
4349 end if;
4350 end Expand_Simple_Function_Return;
4352 ------------------------------
4353 -- Make_Tag_Ctrl_Assignment --
4354 ------------------------------
4356 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
4357 Loc : constant Source_Ptr := Sloc (N);
4358 L : constant Node_Id := Name (N);
4359 T : constant Entity_Id := Underlying_Type (Etype (L));
4361 Ctrl_Act : constant Boolean := Needs_Finalization (T)
4362 and then not No_Ctrl_Actions (N);
4364 Component_Assign : constant Boolean :=
4365 Is_Fully_Repped_Tagged_Type (T);
4367 Save_Tag : constant Boolean := Is_Tagged_Type (T)
4368 and then not Component_Assign
4369 and then not No_Ctrl_Actions (N)
4370 and then Tagged_Type_Expansion;
4371 -- Tags are not saved and restored when VM_Target because VM tags are
4372 -- represented implicitly in objects.
4374 Res : List_Id;
4375 Tag_Tmp : Entity_Id;
4377 Prev_Tmp : Entity_Id;
4378 Next_Tmp : Entity_Id;
4379 Ctrl_Ref : Node_Id;
4381 begin
4382 Res := New_List;
4384 -- Finalize the target of the assignment when controlled
4386 -- We have two exceptions here:
4388 -- 1. If we are in an init proc since it is an initialization more
4389 -- than an assignment.
4391 -- 2. If the left-hand side is a temporary that was not initialized
4392 -- (or the parent part of a temporary since it is the case in
4393 -- extension aggregates). Such a temporary does not come from
4394 -- source. We must examine the original node for the prefix, because
4395 -- it may be a component of an entry formal, in which case it has
4396 -- been rewritten and does not appear to come from source either.
4398 -- Case of init proc
4400 if not Ctrl_Act then
4401 null;
4403 -- The left hand side is an uninitialized temporary object
4405 elsif Nkind (L) = N_Type_Conversion
4406 and then Is_Entity_Name (Expression (L))
4407 and then Nkind (Parent (Entity (Expression (L)))) =
4408 N_Object_Declaration
4409 and then No_Initialization (Parent (Entity (Expression (L))))
4410 then
4411 null;
4413 else
4414 Append_List_To (Res,
4415 Make_Final_Call
4416 (Ref => Duplicate_Subexpr_No_Checks (L),
4417 Typ => Etype (L),
4418 With_Detach => New_Reference_To (Standard_False, Loc)));
4419 end if;
4421 -- Save the Tag in a local variable Tag_Tmp
4423 if Save_Tag then
4424 Tag_Tmp :=
4425 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
4427 Append_To (Res,
4428 Make_Object_Declaration (Loc,
4429 Defining_Identifier => Tag_Tmp,
4430 Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
4431 Expression =>
4432 Make_Selected_Component (Loc,
4433 Prefix => Duplicate_Subexpr_No_Checks (L),
4434 Selector_Name => New_Reference_To (First_Tag_Component (T),
4435 Loc))));
4437 -- Otherwise Tag_Tmp not used
4439 else
4440 Tag_Tmp := Empty;
4441 end if;
4443 if Ctrl_Act then
4444 if VM_Target /= No_VM then
4446 -- Cannot assign part of the object in a VM context, so instead
4447 -- fallback to the previous mechanism, even though it is not
4448 -- completely correct ???
4450 -- Save the Finalization Pointers in local variables Prev_Tmp and
4451 -- Next_Tmp. For objects with Has_Controlled_Component set, these
4452 -- pointers are in the Record_Controller
4454 Ctrl_Ref := Duplicate_Subexpr (L);
4456 if Has_Controlled_Component (T) then
4457 Ctrl_Ref :=
4458 Make_Selected_Component (Loc,
4459 Prefix => Ctrl_Ref,
4460 Selector_Name =>
4461 New_Reference_To (Controller_Component (T), Loc));
4462 end if;
4464 Prev_Tmp :=
4465 Make_Defining_Identifier (Loc, New_Internal_Name ('B'));
4467 Append_To (Res,
4468 Make_Object_Declaration (Loc,
4469 Defining_Identifier => Prev_Tmp,
4471 Object_Definition =>
4472 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
4474 Expression =>
4475 Make_Selected_Component (Loc,
4476 Prefix =>
4477 Unchecked_Convert_To (RTE (RE_Finalizable), Ctrl_Ref),
4478 Selector_Name => Make_Identifier (Loc, Name_Prev))));
4480 Next_Tmp :=
4481 Make_Defining_Identifier (Loc,
4482 Chars => New_Internal_Name ('C'));
4484 Append_To (Res,
4485 Make_Object_Declaration (Loc,
4486 Defining_Identifier => Next_Tmp,
4488 Object_Definition =>
4489 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
4491 Expression =>
4492 Make_Selected_Component (Loc,
4493 Prefix =>
4494 Unchecked_Convert_To (RTE (RE_Finalizable),
4495 New_Copy_Tree (Ctrl_Ref)),
4496 Selector_Name => Make_Identifier (Loc, Name_Next))));
4498 -- Do the Assignment
4500 Append_To (Res, Relocate_Node (N));
4502 else
4503 -- Regular (non VM) processing for controlled types and types with
4504 -- controlled components
4506 -- Variables of such types contain pointers used to chain them in
4507 -- finalization lists, in addition to user data. These pointers
4508 -- are specific to each object of the type, not to the value being
4509 -- assigned.
4511 -- Thus they need to be left intact during the assignment. We
4512 -- achieve this by constructing a Storage_Array subtype, and by
4513 -- overlaying objects of this type on the source and target of the
4514 -- assignment. The assignment is then rewritten to assignments of
4515 -- slices of these arrays, copying the user data, and leaving the
4516 -- pointers untouched.
4518 Controlled_Actions : declare
4519 Prev_Ref : Node_Id;
4520 -- A reference to the Prev component of the record controller
4522 First_After_Root : Node_Id := Empty;
4523 -- Index of first byte to be copied (used to skip
4524 -- Root_Controlled in controlled objects).
4526 Last_Before_Hole : Node_Id := Empty;
4527 -- Index of last byte to be copied before outermost record
4528 -- controller data.
4530 Hole_Length : Node_Id := Empty;
4531 -- Length of record controller data (Prev and Next pointers)
4533 First_After_Hole : Node_Id := Empty;
4534 -- Index of first byte to be copied after outermost record
4535 -- controller data.
4537 Expr, Source_Size : Node_Id;
4538 Source_Actual_Subtype : Entity_Id;
4539 -- Used for computation of the size of the data to be copied
4541 Range_Type : Entity_Id;
4542 Opaque_Type : Entity_Id;
4544 function Build_Slice
4545 (Rec : Entity_Id;
4546 Lo : Node_Id;
4547 Hi : Node_Id) return Node_Id;
4548 -- Build and return a slice of an array of type S overlaid on
4549 -- object Rec, with bounds specified by Lo and Hi. If either
4550 -- bound is empty, a default of S'First (respectively S'Last)
4551 -- is used.
4553 -----------------
4554 -- Build_Slice --
4555 -----------------
4557 function Build_Slice
4558 (Rec : Node_Id;
4559 Lo : Node_Id;
4560 Hi : Node_Id) return Node_Id
4562 Lo_Bound : Node_Id;
4563 Hi_Bound : Node_Id;
4565 Opaque : constant Node_Id :=
4566 Unchecked_Convert_To (Opaque_Type,
4567 Make_Attribute_Reference (Loc,
4568 Prefix => Rec,
4569 Attribute_Name => Name_Address));
4570 -- Access value designating an opaque storage array of type
4571 -- S overlaid on record Rec.
4573 begin
4574 -- Compute slice bounds using S'First (1) and S'Last as
4575 -- default values when not specified by the caller.
4577 if No (Lo) then
4578 Lo_Bound := Make_Integer_Literal (Loc, 1);
4579 else
4580 Lo_Bound := Lo;
4581 end if;
4583 if No (Hi) then
4584 Hi_Bound := Make_Attribute_Reference (Loc,
4585 Prefix => New_Occurrence_Of (Range_Type, Loc),
4586 Attribute_Name => Name_Last);
4587 else
4588 Hi_Bound := Hi;
4589 end if;
4591 return Make_Slice (Loc,
4592 Prefix =>
4593 Opaque,
4594 Discrete_Range => Make_Range (Loc,
4595 Lo_Bound, Hi_Bound));
4596 end Build_Slice;
4598 -- Start of processing for Controlled_Actions
4600 begin
4601 -- Create a constrained subtype of Storage_Array whose size
4602 -- corresponds to the value being assigned.
4604 -- subtype G is Storage_Offset range
4605 -- 1 .. (Expr'Size + Storage_Unit - 1) / Storage_Unit
4607 Expr := Duplicate_Subexpr_No_Checks (Expression (N));
4609 if Nkind (Expr) = N_Qualified_Expression then
4610 Expr := Expression (Expr);
4611 end if;
4613 Source_Actual_Subtype := Etype (Expr);
4615 if Has_Discriminants (Source_Actual_Subtype)
4616 and then not Is_Constrained (Source_Actual_Subtype)
4617 then
4618 Append_To (Res,
4619 Build_Actual_Subtype (Source_Actual_Subtype, Expr));
4620 Source_Actual_Subtype := Defining_Identifier (Last (Res));
4621 end if;
4623 Source_Size :=
4624 Make_Op_Add (Loc,
4625 Left_Opnd =>
4626 Make_Attribute_Reference (Loc,
4627 Prefix =>
4628 New_Occurrence_Of (Source_Actual_Subtype, Loc),
4629 Attribute_Name => Name_Size),
4630 Right_Opnd =>
4631 Make_Integer_Literal (Loc,
4632 Intval => System_Storage_Unit - 1));
4634 Source_Size :=
4635 Make_Op_Divide (Loc,
4636 Left_Opnd => Source_Size,
4637 Right_Opnd =>
4638 Make_Integer_Literal (Loc,
4639 Intval => System_Storage_Unit));
4641 Range_Type :=
4642 Make_Defining_Identifier (Loc,
4643 New_Internal_Name ('G'));
4645 Append_To (Res,
4646 Make_Subtype_Declaration (Loc,
4647 Defining_Identifier => Range_Type,
4648 Subtype_Indication =>
4649 Make_Subtype_Indication (Loc,
4650 Subtype_Mark =>
4651 New_Reference_To (RTE (RE_Storage_Offset), Loc),
4652 Constraint => Make_Range_Constraint (Loc,
4653 Range_Expression =>
4654 Make_Range (Loc,
4655 Low_Bound => Make_Integer_Literal (Loc, 1),
4656 High_Bound => Source_Size)))));
4658 -- subtype S is Storage_Array (G)
4660 Append_To (Res,
4661 Make_Subtype_Declaration (Loc,
4662 Defining_Identifier =>
4663 Make_Defining_Identifier (Loc,
4664 New_Internal_Name ('S')),
4665 Subtype_Indication =>
4666 Make_Subtype_Indication (Loc,
4667 Subtype_Mark =>
4668 New_Reference_To (RTE (RE_Storage_Array), Loc),
4669 Constraint =>
4670 Make_Index_Or_Discriminant_Constraint (Loc,
4671 Constraints =>
4672 New_List (New_Reference_To (Range_Type, Loc))))));
4674 -- type A is access S
4676 Opaque_Type :=
4677 Make_Defining_Identifier (Loc,
4678 Chars => New_Internal_Name ('A'));
4680 Append_To (Res,
4681 Make_Full_Type_Declaration (Loc,
4682 Defining_Identifier => Opaque_Type,
4683 Type_Definition =>
4684 Make_Access_To_Object_Definition (Loc,
4685 Subtype_Indication =>
4686 New_Occurrence_Of (
4687 Defining_Identifier (Last (Res)), Loc))));
4689 -- Generate appropriate slice assignments
4691 First_After_Root := Make_Integer_Literal (Loc, 1);
4693 -- For controlled object, skip Root_Controlled part
4695 if Is_Controlled (T) then
4696 First_After_Root :=
4697 Make_Op_Add (Loc,
4698 First_After_Root,
4699 Make_Op_Divide (Loc,
4700 Make_Attribute_Reference (Loc,
4701 Prefix =>
4702 New_Occurrence_Of (RTE (RE_Root_Controlled), Loc),
4703 Attribute_Name => Name_Size),
4704 Make_Integer_Literal (Loc, System_Storage_Unit)));
4705 end if;
4707 -- For the case of a record with controlled components, skip
4708 -- record controller Prev/Next components. These components
4709 -- constitute a 'hole' in the middle of the data to be copied.
4711 if Has_Controlled_Component (T) then
4712 Prev_Ref :=
4713 Make_Selected_Component (Loc,
4714 Prefix =>
4715 Make_Selected_Component (Loc,
4716 Prefix => Duplicate_Subexpr_No_Checks (L),
4717 Selector_Name =>
4718 New_Reference_To (Controller_Component (T), Loc)),
4719 Selector_Name => Make_Identifier (Loc, Name_Prev));
4721 -- Last index before hole: determined by position of the
4722 -- _Controller.Prev component.
4724 Last_Before_Hole :=
4725 Make_Defining_Identifier (Loc,
4726 New_Internal_Name ('L'));
4728 Append_To (Res,
4729 Make_Object_Declaration (Loc,
4730 Defining_Identifier => Last_Before_Hole,
4731 Object_Definition => New_Occurrence_Of (
4732 RTE (RE_Storage_Offset), Loc),
4733 Constant_Present => True,
4734 Expression => Make_Op_Add (Loc,
4735 Make_Attribute_Reference (Loc,
4736 Prefix => Prev_Ref,
4737 Attribute_Name => Name_Position),
4738 Make_Attribute_Reference (Loc,
4739 Prefix => New_Copy_Tree (Prefix (Prev_Ref)),
4740 Attribute_Name => Name_Position))));
4742 -- Hole length: size of the Prev and Next components
4744 Hole_Length :=
4745 Make_Op_Multiply (Loc,
4746 Left_Opnd => Make_Integer_Literal (Loc, Uint_2),
4747 Right_Opnd =>
4748 Make_Op_Divide (Loc,
4749 Left_Opnd =>
4750 Make_Attribute_Reference (Loc,
4751 Prefix => New_Copy_Tree (Prev_Ref),
4752 Attribute_Name => Name_Size),
4753 Right_Opnd =>
4754 Make_Integer_Literal (Loc,
4755 Intval => System_Storage_Unit)));
4757 -- First index after hole
4759 First_After_Hole :=
4760 Make_Defining_Identifier (Loc,
4761 New_Internal_Name ('F'));
4763 Append_To (Res,
4764 Make_Object_Declaration (Loc,
4765 Defining_Identifier => First_After_Hole,
4766 Object_Definition => New_Occurrence_Of (
4767 RTE (RE_Storage_Offset), Loc),
4768 Constant_Present => True,
4769 Expression =>
4770 Make_Op_Add (Loc,
4771 Left_Opnd =>
4772 Make_Op_Add (Loc,
4773 Left_Opnd =>
4774 New_Occurrence_Of (Last_Before_Hole, Loc),
4775 Right_Opnd => Hole_Length),
4776 Right_Opnd => Make_Integer_Literal (Loc, 1))));
4778 Last_Before_Hole :=
4779 New_Occurrence_Of (Last_Before_Hole, Loc);
4780 First_After_Hole :=
4781 New_Occurrence_Of (First_After_Hole, Loc);
4782 end if;
4784 -- Assign the first slice (possibly skipping Root_Controlled,
4785 -- up to the beginning of the record controller if present,
4786 -- up to the end of the object if not).
4788 Append_To (Res, Make_Assignment_Statement (Loc,
4789 Name => Build_Slice (
4790 Rec => Duplicate_Subexpr_No_Checks (L),
4791 Lo => First_After_Root,
4792 Hi => Last_Before_Hole),
4794 Expression => Build_Slice (
4795 Rec => Expression (N),
4796 Lo => First_After_Root,
4797 Hi => New_Copy_Tree (Last_Before_Hole))));
4799 if Present (First_After_Hole) then
4801 -- If a record controller is present, copy the second slice,
4802 -- from right after the _Controller.Next component up to the
4803 -- end of the object.
4805 Append_To (Res, Make_Assignment_Statement (Loc,
4806 Name => Build_Slice (
4807 Rec => Duplicate_Subexpr_No_Checks (L),
4808 Lo => First_After_Hole,
4809 Hi => Empty),
4810 Expression => Build_Slice (
4811 Rec => Duplicate_Subexpr_No_Checks (Expression (N)),
4812 Lo => New_Copy_Tree (First_After_Hole),
4813 Hi => Empty)));
4814 end if;
4815 end Controlled_Actions;
4816 end if;
4818 -- Not controlled case
4820 else
4821 declare
4822 Asn : constant Node_Id := Relocate_Node (N);
4824 begin
4825 -- If this is the case of a tagged type with a full rep clause,
4826 -- we must expand it into component assignments, so we mark the
4827 -- node as unanalyzed, to get it reanalyzed, but flag it has
4828 -- requiring component-wise assignment so we don't get infinite
4829 -- recursion.
4831 if Component_Assign then
4832 Set_Analyzed (Asn, False);
4833 Set_Componentwise_Assignment (Asn, True);
4834 end if;
4836 Append_To (Res, Asn);
4837 end;
4838 end if;
4840 -- Restore the tag
4842 if Save_Tag then
4843 Append_To (Res,
4844 Make_Assignment_Statement (Loc,
4845 Name =>
4846 Make_Selected_Component (Loc,
4847 Prefix => Duplicate_Subexpr_No_Checks (L),
4848 Selector_Name => New_Reference_To (First_Tag_Component (T),
4849 Loc)),
4850 Expression => New_Reference_To (Tag_Tmp, Loc)));
4851 end if;
4853 if Ctrl_Act then
4854 if VM_Target /= No_VM then
4855 -- Restore the finalization pointers
4857 Append_To (Res,
4858 Make_Assignment_Statement (Loc,
4859 Name =>
4860 Make_Selected_Component (Loc,
4861 Prefix =>
4862 Unchecked_Convert_To (RTE (RE_Finalizable),
4863 New_Copy_Tree (Ctrl_Ref)),
4864 Selector_Name => Make_Identifier (Loc, Name_Prev)),
4865 Expression => New_Reference_To (Prev_Tmp, Loc)));
4867 Append_To (Res,
4868 Make_Assignment_Statement (Loc,
4869 Name =>
4870 Make_Selected_Component (Loc,
4871 Prefix =>
4872 Unchecked_Convert_To (RTE (RE_Finalizable),
4873 New_Copy_Tree (Ctrl_Ref)),
4874 Selector_Name => Make_Identifier (Loc, Name_Next)),
4875 Expression => New_Reference_To (Next_Tmp, Loc)));
4876 end if;
4878 -- Adjust the target after the assignment when controlled (not in the
4879 -- init proc since it is an initialization more than an assignment).
4881 Append_List_To (Res,
4882 Make_Adjust_Call (
4883 Ref => Duplicate_Subexpr_Move_Checks (L),
4884 Typ => Etype (L),
4885 Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
4886 With_Attach => Make_Integer_Literal (Loc, 0)));
4887 end if;
4889 return Res;
4891 exception
4892 -- Could use comment here ???
4894 when RE_Not_Available =>
4895 return Empty_List;
4896 end Make_Tag_Ctrl_Assignment;
4898 end Exp_Ch5;