Remove insert_loop_close_phis.
[official-gcc/graphite-test-results.git] / gcc / graphite-clast-to-gimple.c
blob042857fb88ec8db643c6bcb38b2a4dadd3108c4e
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "langhooks.h"
44 #include "sese.h"
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-cloog-util.h"
50 #include "graphite-ppl.h"
51 #include "graphite.h"
52 #include "graphite-poly.h"
53 #include "graphite-scop-detection.h"
54 #include "graphite-clast-to-gimple.h"
55 #include "graphite-dependences.h"
57 /* This flag is set when an error occurred during the translation of
58 CLAST to Gimple. */
59 static bool gloog_error;
61 /* Verifies properties that GRAPHITE should maintain during translation. */
63 static inline void
64 graphite_verify (void)
66 #ifdef ENABLE_CHECKING
67 verify_loop_structure ();
68 verify_dominators (CDI_DOMINATORS);
69 verify_dominators (CDI_POST_DOMINATORS);
70 verify_loop_closed_ssa (true);
71 #endif
74 /* Stores the INDEX in a vector for a given clast NAME. */
76 typedef struct clast_name_index {
77 int index;
78 const char *name;
79 } *clast_name_index_p;
81 /* Returns a pointer to a new element of type clast_name_index_p built
82 from NAME and INDEX. */
84 static inline clast_name_index_p
85 new_clast_name_index (const char *name, int index)
87 clast_name_index_p res = XNEW (struct clast_name_index);
89 res->name = name;
90 res->index = index;
91 return res;
94 /* For a given clast NAME, returns -1 if it does not correspond to any
95 parameter, or otherwise, returns the index in the PARAMS or
96 SCATTERING_DIMENSIONS vector. */
98 static inline int
99 clast_name_to_index (const char *name, htab_t index_table)
101 struct clast_name_index tmp;
102 PTR *slot;
104 tmp.name = name;
105 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
107 if (slot && *slot)
108 return ((struct clast_name_index *) *slot)->index;
110 return -1;
113 /* Records in INDEX_TABLE the INDEX for NAME. */
115 static inline void
116 save_clast_name_index (htab_t index_table, const char *name, int index)
118 struct clast_name_index tmp;
119 PTR *slot;
121 tmp.name = name;
122 slot = htab_find_slot (index_table, &tmp, INSERT);
124 if (slot)
126 if (*slot)
127 free (*slot);
129 *slot = new_clast_name_index (name, index);
133 /* Print to stderr the element ELT. */
135 static inline void
136 debug_clast_name_index (clast_name_index_p elt)
138 fprintf (stderr, "(index = %d, name = %s)\n", elt->index, elt->name);
141 /* Helper function for debug_rename_map. */
143 static inline int
144 debug_clast_name_indexes_1 (void **slot, void *s ATTRIBUTE_UNUSED)
146 struct clast_name_index *entry = (struct clast_name_index *) *slot;
147 debug_clast_name_index (entry);
148 return 1;
151 /* Print to stderr all the elements of MAP. */
153 DEBUG_FUNCTION void
154 debug_clast_name_indexes (htab_t map)
156 htab_traverse (map, debug_clast_name_indexes_1, NULL);
159 /* Computes a hash function for database element ELT. */
161 static inline hashval_t
162 clast_name_index_elt_info (const void *elt)
164 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
167 /* Compares database elements E1 and E2. */
169 static inline int
170 eq_clast_name_indexes (const void *e1, const void *e2)
172 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
173 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
175 return (elt1->name == elt2->name);
179 /* For a given loop DEPTH in the loop nest of the original black box
180 PBB, return the old induction variable associated to that loop. */
182 static inline tree
183 pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth)
185 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
186 sese region = SCOP_REGION (PBB_SCOP (pbb));
187 loop_p loop = gbb_loop_at_index (gbb, region, depth);
189 return loop->single_iv;
192 /* For a given scattering dimension, return the new induction variable
193 associated to it. */
195 static inline tree
196 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
198 return VEC_index (tree, newivs, depth);
203 /* Returns the tree variable from the name NAME that was given in
204 Cloog representation. */
206 static tree
207 clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs,
208 htab_t newivs_index, htab_t params_index)
210 int index;
211 VEC (tree, heap) *params = SESE_PARAMS (region);
213 if (params && params_index)
215 index = clast_name_to_index (name, params_index);
217 if (index >= 0)
218 return VEC_index (tree, params, index);
221 gcc_assert (newivs && newivs_index);
222 index = clast_name_to_index (name, newivs_index);
223 gcc_assert (index >= 0);
225 return newivs_to_depth_to_newiv (newivs, index);
228 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
230 static tree
231 max_signed_precision_type (tree type1, tree type2)
233 int p1 = TYPE_PRECISION (type1);
234 int p2 = TYPE_PRECISION (type2);
235 int precision;
236 tree type;
238 if (p1 > p2)
239 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
240 else
241 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
243 type = lang_hooks.types.type_for_size (precision, false);
245 if (!type)
247 gloog_error = true;
248 return integer_type_node;
250 return type;
253 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
255 static tree
256 max_precision_type (tree type1, tree type2)
258 if (POINTER_TYPE_P (type1))
259 return type1;
261 if (POINTER_TYPE_P (type2))
262 return type2;
264 if (!TYPE_UNSIGNED (type1)
265 || !TYPE_UNSIGNED (type2))
266 return max_signed_precision_type (type1, type2);
268 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
271 static tree
272 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
273 htab_t, htab_t);
275 /* Converts a Cloog reduction expression R with reduction operation OP
276 to a GCC expression tree of type TYPE. */
278 static tree
279 clast_to_gcc_expression_red (tree type, enum tree_code op,
280 struct clast_reduction *r,
281 sese region, VEC (tree, heap) *newivs,
282 htab_t newivs_index, htab_t params_index)
284 int i;
285 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
286 newivs_index, params_index);
287 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
289 for (i = 1; i < r->n; i++)
291 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
292 newivs, newivs_index, params_index);
293 res = fold_build2 (op, type, res, t);
296 return res;
299 /* Converts a Cloog AST expression E back to a GCC expression tree of
300 type TYPE. */
302 static tree
303 clast_to_gcc_expression (tree type, struct clast_expr *e,
304 sese region, VEC (tree, heap) *newivs,
305 htab_t newivs_index, htab_t params_index)
307 switch (e->type)
309 case expr_term:
311 struct clast_term *t = (struct clast_term *) e;
313 if (t->var)
315 if (mpz_cmp_si (t->val, 1) == 0)
317 tree name = clast_name_to_gcc (t->var, region, newivs,
318 newivs_index, params_index);
320 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
321 name = fold_convert (sizetype, name);
323 name = fold_convert (type, name);
324 return name;
327 else if (mpz_cmp_si (t->val, -1) == 0)
329 tree name = clast_name_to_gcc (t->var, region, newivs,
330 newivs_index, params_index);
332 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
333 name = fold_convert (sizetype, name);
335 name = fold_convert (type, name);
337 return fold_build1 (NEGATE_EXPR, type, name);
339 else
341 tree name = clast_name_to_gcc (t->var, region, newivs,
342 newivs_index, params_index);
343 tree cst = gmp_cst_to_tree (type, t->val);
345 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
346 name = fold_convert (sizetype, name);
348 name = fold_convert (type, name);
350 if (!POINTER_TYPE_P (type))
351 return fold_build2 (MULT_EXPR, type, cst, name);
353 gloog_error = true;
354 return cst;
357 else
358 return gmp_cst_to_tree (type, t->val);
361 case expr_red:
363 struct clast_reduction *r = (struct clast_reduction *) e;
365 switch (r->type)
367 case clast_red_sum:
368 return clast_to_gcc_expression_red
369 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
370 r, region, newivs, newivs_index, params_index);
372 case clast_red_min:
373 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
374 newivs, newivs_index,
375 params_index);
377 case clast_red_max:
378 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
379 newivs, newivs_index,
380 params_index);
382 default:
383 gcc_unreachable ();
385 break;
388 case expr_bin:
390 struct clast_binary *b = (struct clast_binary *) e;
391 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
392 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
393 newivs_index, params_index);
394 tree tr = gmp_cst_to_tree (type, b->RHS);
396 switch (b->type)
398 case clast_bin_fdiv:
399 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
401 case clast_bin_cdiv:
402 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
404 case clast_bin_div:
405 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
407 case clast_bin_mod:
408 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
410 default:
411 gcc_unreachable ();
415 default:
416 gcc_unreachable ();
419 return NULL_TREE;
422 /* Return the precision needed to represent the value VAL. */
424 static int
425 precision_for_value (mpz_t val)
427 mpz_t x, y, two;
428 int precision;
430 mpz_init (x);
431 mpz_init (y);
432 mpz_init (two);
433 mpz_set_si (x, 2);
434 mpz_set (y, val);
435 mpz_set_si (two, 2);
436 precision = 1;
438 if (mpz_sgn (y) < 0)
439 mpz_neg (y, y);
441 while (mpz_cmp (y, x) > 0)
443 mpz_mul (x, x, two);
444 precision++;
447 mpz_clear (x);
448 mpz_clear (y);
449 mpz_clear (two);
451 return precision;
454 /* Return the precision needed to represent the values between LOW and
455 UP. */
457 static int
458 precision_for_interval (mpz_t low, mpz_t up)
460 mpz_t diff;
461 int precision;
463 gcc_assert (mpz_cmp (low, up) <= 0);
465 mpz_init (diff);
466 mpz_sub (diff, up, low);
467 precision = precision_for_value (diff);
468 mpz_clear (diff);
470 return precision;
473 /* Return a type that could represent the integer value VAL. */
475 static tree
476 gcc_type_for_interval (mpz_t low, mpz_t up)
478 bool unsigned_p = true;
479 int precision, prec_up, prec_int;
480 tree type;
481 enum machine_mode mode;
483 gcc_assert (mpz_cmp (low, up) <= 0);
485 if (mpz_sgn (low) < 0)
486 unsigned_p = false;
488 prec_up = precision_for_value (up);
489 prec_int = precision_for_interval (low, up);
490 precision = MAX (prec_up, prec_int);
492 if (precision > BITS_PER_WORD)
494 gloog_error = true;
495 return integer_type_node;
498 mode = smallest_mode_for_size (precision, MODE_INT);
499 precision = GET_MODE_PRECISION (mode);
500 type = build_nonstandard_integer_type (precision, unsigned_p);
502 if (!type)
504 gloog_error = true;
505 return integer_type_node;
508 return type;
511 /* Return a type that could represent the integer value VAL, or
512 otherwise return NULL_TREE. */
514 static tree
515 gcc_type_for_value (mpz_t val)
517 return gcc_type_for_interval (val, val);
520 /* Return the type for the clast_term T used in STMT. */
522 static tree
523 gcc_type_for_clast_term (struct clast_term *t,
524 sese region, VEC (tree, heap) *newivs,
525 htab_t newivs_index, htab_t params_index)
527 gcc_assert (t->expr.type == expr_term);
529 if (!t->var)
530 return gcc_type_for_value (t->val);
532 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
533 newivs_index, params_index));
536 static tree
537 gcc_type_for_clast_expr (struct clast_expr *, sese,
538 VEC (tree, heap) *, htab_t, htab_t);
540 /* Return the type for the clast_reduction R used in STMT. */
542 static tree
543 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
544 VEC (tree, heap) *newivs,
545 htab_t newivs_index, htab_t params_index)
547 int i;
548 tree type = NULL_TREE;
550 if (r->n == 1)
551 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
552 newivs_index, params_index);
554 switch (r->type)
556 case clast_red_sum:
557 case clast_red_min:
558 case clast_red_max:
559 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
560 newivs_index, params_index);
561 for (i = 1; i < r->n; i++)
562 type = max_precision_type (type, gcc_type_for_clast_expr
563 (r->elts[i], region, newivs,
564 newivs_index, params_index));
566 return type;
568 default:
569 break;
572 gcc_unreachable ();
573 return NULL_TREE;
576 /* Return the type for the clast_binary B used in STMT. */
578 static tree
579 gcc_type_for_clast_bin (struct clast_binary *b,
580 sese region, VEC (tree, heap) *newivs,
581 htab_t newivs_index, htab_t params_index)
583 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
584 newivs, newivs_index, params_index);
585 tree r = gcc_type_for_value (b->RHS);
586 return max_signed_precision_type (l, r);
589 /* Returns the type for the CLAST expression E when used in statement
590 STMT. */
592 static tree
593 gcc_type_for_clast_expr (struct clast_expr *e,
594 sese region, VEC (tree, heap) *newivs,
595 htab_t newivs_index, htab_t params_index)
597 switch (e->type)
599 case expr_term:
600 return gcc_type_for_clast_term ((struct clast_term *) e, region,
601 newivs, newivs_index, params_index);
603 case expr_red:
604 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
605 newivs, newivs_index, params_index);
607 case expr_bin:
608 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
609 newivs, newivs_index, params_index);
611 default:
612 gcc_unreachable ();
615 return NULL_TREE;
618 /* Returns the type for the equation CLEQ. */
620 static tree
621 gcc_type_for_clast_eq (struct clast_equation *cleq,
622 sese region, VEC (tree, heap) *newivs,
623 htab_t newivs_index, htab_t params_index)
625 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
626 newivs_index, params_index);
627 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
628 newivs_index, params_index);
629 return max_precision_type (l, r);
632 /* Translates a clast equation CLEQ to a tree. */
634 static tree
635 graphite_translate_clast_equation (sese region,
636 struct clast_equation *cleq,
637 VEC (tree, heap) *newivs,
638 htab_t newivs_index, htab_t params_index)
640 enum tree_code comp;
641 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
642 params_index);
643 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
644 newivs_index, params_index);
645 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
646 newivs_index, params_index);
648 if (cleq->sign == 0)
649 comp = EQ_EXPR;
651 else if (cleq->sign > 0)
652 comp = GE_EXPR;
654 else
655 comp = LE_EXPR;
657 return fold_build2 (comp, boolean_type_node, lhs, rhs);
660 /* Creates the test for the condition in STMT. */
662 static tree
663 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
664 VEC (tree, heap) *newivs,
665 htab_t newivs_index, htab_t params_index)
667 tree cond = NULL;
668 int i;
670 for (i = 0; i < stmt->n; i++)
672 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
673 newivs, newivs_index,
674 params_index);
676 if (cond)
677 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
678 else
679 cond = eq;
682 return cond;
685 /* Creates a new if region corresponding to Cloog's guard. */
687 static edge
688 graphite_create_new_guard (sese region, edge entry_edge,
689 struct clast_guard *stmt,
690 VEC (tree, heap) *newivs,
691 htab_t newivs_index, htab_t params_index)
693 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
694 newivs_index, params_index);
695 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
696 return exit_edge;
699 /* Compute the lower bound LOW and upper bound UP for the induction
700 variable at LEVEL for the statement PBB, based on the transformed
701 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
702 the iteration domain, and G the context parameters. */
704 static void
705 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
707 ppl_Pointset_Powerset_C_Polyhedron_t ps;
708 ppl_Linear_Expression_t le;
710 combine_context_id_scat (&ps, pbb, false);
712 /* Prepare the linear expression corresponding to the level that we
713 want to maximize/minimize. */
715 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
716 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
718 ppl_new_Linear_Expression_with_dimension (&le, dim);
719 ppl_set_coef (le, 2 * level + 1, 1);
722 ppl_max_for_le_pointset (ps, le, up);
723 ppl_min_for_le_pointset (ps, le, low);
726 /* Compute the type for the induction variable at LEVEL for the
727 statement PBB, based on the transformed schedule of PBB. */
729 static tree
730 compute_type_for_level (poly_bb_p pbb, int level)
732 mpz_t low, up;
733 tree type;
735 mpz_init (low);
736 mpz_init (up);
738 compute_bounds_for_level (pbb, level, low, up);
739 type = gcc_type_for_interval (low, up);
741 mpz_clear (low);
742 mpz_clear (up);
743 return type;
746 /* Walks a CLAST and returns the first statement in the body of a
747 loop. */
749 static struct clast_user_stmt *
750 clast_get_body_of_loop (struct clast_stmt *stmt)
752 if (!stmt
753 || CLAST_STMT_IS_A (stmt, stmt_user))
754 return (struct clast_user_stmt *) stmt;
756 if (CLAST_STMT_IS_A (stmt, stmt_for))
757 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
759 if (CLAST_STMT_IS_A (stmt, stmt_guard))
760 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
762 if (CLAST_STMT_IS_A (stmt, stmt_block))
763 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
765 gcc_unreachable ();
768 /* Returns the type for the induction variable for the loop translated
769 from STMT_FOR. */
771 static tree
772 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
773 tree lb_type, tree ub_type)
775 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
776 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
777 CloogStatement *cs = body->statement;
778 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
780 return max_signed_precision_type (lb_type, max_precision_type
781 (ub_type, compute_type_for_level
782 (pbb, level - 1)));
785 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
786 induction variable for the new LOOP. New LOOP is attached to CFG
787 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
788 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
789 CLooG's scattering name to the induction variable created for the
790 loop of STMT. The new induction variable is inserted in the NEWIVS
791 vector. */
793 static struct loop *
794 graphite_create_new_loop (sese region, edge entry_edge,
795 struct clast_for *stmt,
796 loop_p outer, VEC (tree, heap) **newivs,
797 htab_t newivs_index, htab_t params_index, int level)
799 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
800 newivs_index, params_index);
801 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
802 newivs_index, params_index);
803 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
804 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
805 newivs_index, params_index);
806 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
807 newivs_index, params_index);
808 tree stride = gmp_cst_to_tree (type, stmt->stride);
809 tree ivvar = create_tmp_var (type, "graphite_IV");
810 tree iv, iv_after_increment;
811 loop_p loop = create_empty_loop_on_edge
812 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
813 outer ? outer : entry_edge->src->loop_father);
815 add_referenced_var (ivvar);
817 save_clast_name_index (newivs_index, stmt->iterator,
818 VEC_length (tree, *newivs));
819 VEC_safe_push (tree, heap, *newivs, iv);
820 return loop;
823 /* Inserts in RENAME_MAP a tuple (OLD_NAME, NEW_NAME) for the induction
824 variables of the loops around GBB in SESE. */
826 static void
827 build_iv_mapping (htab_t rename_map, sese region,
828 VEC (tree, heap) *newivs, htab_t newivs_index,
829 struct clast_user_stmt *user_stmt,
830 htab_t params_index)
832 struct clast_stmt *t;
833 int index = 0;
834 CloogStatement *cs = user_stmt->statement;
835 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
837 for (t = user_stmt->substitutions; t; t = t->next, index++)
839 struct clast_expr *expr = (struct clast_expr *)
840 ((struct clast_assignment *)t)->RHS;
841 tree type = gcc_type_for_clast_expr (expr, region, newivs,
842 newivs_index, params_index);
843 tree old_name = pbb_to_depth_to_oldiv (pbb, index);
844 tree e = clast_to_gcc_expression (type, expr, region, newivs,
845 newivs_index, params_index);
846 set_rename (rename_map, old_name, e);
850 /* Construct bb_pbb_def with BB and PBB. */
852 static bb_pbb_def *
853 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
855 bb_pbb_def *bb_pbb_p;
857 bb_pbb_p = XNEW (bb_pbb_def);
858 bb_pbb_p->bb = bb;
859 bb_pbb_p->pbb = pbb;
861 return bb_pbb_p;
864 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
866 static void
867 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
869 bb_pbb_def tmp;
870 PTR *x;
872 tmp.bb = bb;
873 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
875 if (x && !*x)
876 *x = new_bb_pbb_def (bb, pbb);
879 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
881 static poly_bb_p
882 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
884 bb_pbb_def tmp;
885 PTR *slot;
887 tmp.bb = bb;
888 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
890 if (slot && *slot)
891 return ((bb_pbb_def *) *slot)->pbb;
893 return NULL;
896 /* Check data dependency in LOOP at scattering level LEVEL.
897 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
898 mapping. */
900 static bool
901 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
903 unsigned i,j;
904 basic_block *bbs = get_loop_body_in_dom_order (loop);
906 for (i = 0; i < loop->num_nodes; i++)
908 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
910 if (pbb1 == NULL)
911 continue;
913 for (j = 0; j < loop->num_nodes; j++)
915 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
917 if (pbb2 == NULL)
918 continue;
920 if (dependency_between_pbbs_p (pbb1, pbb2, level))
922 free (bbs);
923 return true;
928 free (bbs);
930 return false;
933 static edge
934 translate_clast (sese, loop_p, struct clast_stmt *, edge, htab_t,
935 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
937 /* Translates a clast user statement STMT to gimple.
939 - REGION is the sese region we used to generate the scop.
940 - NEXT_E is the edge where new generated code should be attached.
941 - CONTEXT_LOOP is the loop in which the generated code will be placed
942 - RENAME_MAP contains a set of tuples of new names associated to
943 the original variables names.
944 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
945 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
946 the sese region. */
947 static edge
948 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
949 htab_t rename_map, VEC (tree, heap) **newivs,
950 htab_t newivs_index, htab_t bb_pbb_mapping,
951 htab_t params_index)
953 gimple_bb_p gbb;
954 basic_block new_bb;
955 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
956 gbb = PBB_BLACK_BOX (pbb);
958 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
959 return next_e;
961 build_iv_mapping (rename_map, region, *newivs, newivs_index, stmt,
962 params_index);
963 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
964 next_e, rename_map);
965 new_bb = next_e->src;
966 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
967 update_ssa (TODO_update_ssa);
969 return next_e;
972 /* Creates a new if region protecting the loop to be executed, if the execution
973 count is zero (lb > ub). */
974 static edge
975 graphite_create_new_loop_guard (sese region, edge entry_edge,
976 struct clast_for *stmt,
977 VEC (tree, heap) *newivs,
978 htab_t newivs_index, htab_t params_index)
980 tree cond_expr;
981 edge exit_edge;
982 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
983 newivs_index, params_index);
984 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
985 newivs_index, params_index);
986 tree type = max_precision_type (lb_type, ub_type);
987 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
988 newivs_index, params_index);
989 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
990 newivs_index, params_index);
991 tree ub_one;
993 /* Adding +1 and using LT_EXPR helps with loop latches that have a
994 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
995 2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
996 However lb < ub + 1 is false, as expected. */
997 if (POINTER_TYPE_P (type))
998 ub_one = fold_build2 (POINTER_PLUS_EXPR, type, ub, size_one_node);
999 else
1000 ub_one = fold_build2 (PLUS_EXPR, type, ub,
1001 fold_convert (type, integer_one_node));
1003 /* When ub + 1 wraps around, use lb <= ub. */
1004 if (integer_zerop (ub_one))
1005 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
1006 else
1007 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
1009 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
1011 return exit_edge;
1015 /* Create the loop for a clast for statement.
1017 - REGION is the sese region we used to generate the scop.
1018 - NEXT_E is the edge where new generated code should be attached.
1019 - RENAME_MAP contains a set of tuples of new names associated to
1020 the original variables names.
1021 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1022 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1023 the sese region. */
1024 static edge
1025 translate_clast_for_loop (sese region, loop_p context_loop,
1026 struct clast_for *stmt, edge next_e,
1027 htab_t rename_map, VEC (tree, heap) **newivs,
1028 htab_t newivs_index, htab_t bb_pbb_mapping,
1029 int level, htab_t params_index)
1031 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1032 context_loop, newivs,
1033 newivs_index, params_index,
1034 level);
1035 edge last_e = single_exit (loop);
1036 edge to_body = single_succ_edge (loop->header);
1037 basic_block after = to_body->dest;
1039 /* Create a basic block for loop close phi nodes. */
1040 last_e = single_succ_edge (split_edge (last_e));
1042 /* Translate the body of the loop. */
1043 next_e = translate_clast (region, loop, stmt->body, to_body, rename_map,
1044 newivs, newivs_index, bb_pbb_mapping, level + 1,
1045 params_index);
1046 redirect_edge_succ_nodup (next_e, after);
1047 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1049 if (flag_loop_parallelize_all
1050 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1051 get_scattering_level (level)))
1052 loop->can_be_parallel = true;
1054 return last_e;
1057 /* Translates a clast for statement STMT to gimple. First a guard is created
1058 protecting the loop, if it is executed zero times. In this guard we create
1059 the real loop structure.
1061 - REGION is the sese region we used to generate the scop.
1062 - NEXT_E is the edge where new generated code should be attached.
1063 - RENAME_MAP contains a set of tuples of new names associated to
1064 the original variables names.
1065 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1066 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1067 the sese region. */
1068 static edge
1069 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1070 edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
1071 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1072 htab_t params_index)
1074 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1075 newivs_index, params_index);
1076 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1078 translate_clast_for_loop (region, context_loop, stmt, true_e,
1079 rename_map, newivs,
1080 newivs_index, bb_pbb_mapping, level,
1081 params_index);
1082 return last_e;
1085 /* Translates a clast guard statement STMT to gimple.
1087 - REGION is the sese region we used to generate the scop.
1088 - NEXT_E is the edge where new generated code should be attached.
1089 - CONTEXT_LOOP is the loop in which the generated code will be placed
1090 - RENAME_MAP contains a set of tuples of new names associated to
1091 the original variables names.
1092 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1093 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1094 the sese region. */
1095 static edge
1096 translate_clast_guard (sese region, loop_p context_loop,
1097 struct clast_guard *stmt, edge next_e,
1098 htab_t rename_map, VEC (tree, heap) **newivs,
1099 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1100 htab_t params_index)
1102 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1103 newivs_index, params_index);
1104 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1106 translate_clast (region, context_loop, stmt->then, true_e,
1107 rename_map, newivs, newivs_index, bb_pbb_mapping,
1108 level, params_index);
1109 return last_e;
1112 /* Translates a CLAST statement STMT to GCC representation in the
1113 context of a SESE.
1115 - NEXT_E is the edge where new generated code should be attached.
1116 - CONTEXT_LOOP is the loop in which the generated code will be placed
1117 - RENAME_MAP contains a set of tuples of new names associated to
1118 the original variables names.
1119 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1120 static edge
1121 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1122 edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
1123 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1124 htab_t params_index)
1126 if (!stmt)
1127 return next_e;
1129 if (CLAST_STMT_IS_A (stmt, stmt_root))
1130 ; /* Do nothing. */
1132 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1133 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1134 next_e, rename_map, newivs, newivs_index,
1135 bb_pbb_mapping, params_index);
1137 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1138 next_e = translate_clast_for (region, context_loop,
1139 (struct clast_for *) stmt, next_e,
1140 rename_map, newivs, newivs_index,
1141 bb_pbb_mapping, level, params_index);
1143 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1144 next_e = translate_clast_guard (region, context_loop,
1145 (struct clast_guard *) stmt, next_e,
1146 rename_map, newivs, newivs_index,
1147 bb_pbb_mapping, level, params_index);
1149 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1150 next_e = translate_clast (region, context_loop,
1151 ((struct clast_block *) stmt)->body,
1152 next_e, rename_map, newivs, newivs_index,
1153 bb_pbb_mapping, level, params_index);
1154 else
1155 gcc_unreachable();
1157 recompute_all_dominators ();
1158 graphite_verify ();
1160 return translate_clast (region, context_loop, stmt->next, next_e,
1161 rename_map, newivs, newivs_index,
1162 bb_pbb_mapping, level, params_index);
1165 /* Free the SCATTERING domain list. */
1167 static void
1168 free_scattering (CloogDomainList *scattering)
1170 while (scattering)
1172 CloogDomain *dom = cloog_domain (scattering);
1173 CloogDomainList *next = cloog_next_domain (scattering);
1175 cloog_domain_free (dom);
1176 free (scattering);
1177 scattering = next;
1181 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1182 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1183 from 0 to scop_nb_loops (scop). */
1185 static void
1186 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1188 sese region = SCOP_REGION (scop);
1189 int i;
1190 int nb_iterators = scop_max_loop_depth (scop);
1191 int nb_scattering = cloog_program_nb_scattdims (prog);
1192 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1193 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1194 char **scattering = XNEWVEC (char *, nb_scattering);
1195 char **parameters= XNEWVEC (char *, nb_parameters);
1197 cloog_program_set_names (prog, cloog_names_malloc ());
1199 for (i = 0; i < nb_parameters; i++)
1201 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1202 const char *name = get_name (param);
1203 int len;
1205 if (!name)
1206 name = "T";
1208 len = strlen (name);
1209 len += 17;
1210 parameters[i] = XNEWVEC (char, len + 1);
1211 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1214 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1215 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1217 for (i = 0; i < nb_iterators; i++)
1219 int len = 4 + 16;
1220 iterators[i] = XNEWVEC (char, len);
1221 snprintf (iterators[i], len, "git_%d", i);
1224 cloog_names_set_nb_iterators (cloog_program_names (prog),
1225 nb_iterators);
1226 cloog_names_set_iterators (cloog_program_names (prog),
1227 iterators);
1229 for (i = 0; i < nb_scattering; i++)
1231 int len = 5 + 16;
1232 scattering[i] = XNEWVEC (char, len);
1233 snprintf (scattering[i], len, "scat_%d", i);
1236 cloog_names_set_nb_scattering (cloog_program_names (prog),
1237 nb_scattering);
1238 cloog_names_set_scattering (cloog_program_names (prog),
1239 scattering);
1242 /* Build cloog program for SCoP. */
1244 static void
1245 build_cloog_prog (scop_p scop, CloogProgram *prog)
1247 int i;
1248 int max_nb_loops = scop_max_loop_depth (scop);
1249 poly_bb_p pbb;
1250 CloogLoop *loop_list = NULL;
1251 CloogBlockList *block_list = NULL;
1252 CloogDomainList *scattering = NULL;
1253 int nbs = 2 * max_nb_loops + 1;
1254 int *scaldims;
1256 cloog_program_set_context
1257 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop)));
1258 nbs = unify_scattering_dimensions (scop);
1259 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1260 cloog_program_set_nb_scattdims (prog, nbs);
1261 initialize_cloog_names (scop, prog);
1263 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1265 CloogStatement *stmt;
1266 CloogBlock *block;
1268 /* Dead code elimination: when the domain of a PBB is empty,
1269 don't generate code for the PBB. */
1270 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1271 continue;
1273 /* Build the new statement and its block. */
1274 stmt = cloog_statement_alloc (pbb_index (pbb));
1275 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1276 cloog_statement_set_usr (stmt, pbb);
1278 /* Build loop list. */
1280 CloogLoop *new_loop_list = cloog_loop_malloc ();
1281 cloog_loop_set_next (new_loop_list, loop_list);
1282 cloog_loop_set_domain
1283 (new_loop_list,
1284 new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb)));
1285 cloog_loop_set_block (new_loop_list, block);
1286 loop_list = new_loop_list;
1289 /* Build block list. */
1291 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1293 cloog_block_list_set_next (new_block_list, block_list);
1294 cloog_block_list_set_block (new_block_list, block);
1295 block_list = new_block_list;
1298 /* Build scattering list. */
1300 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1301 CloogDomainList *new_scattering
1302 = (CloogDomainList *) xmalloc (sizeof (CloogDomainList));
1303 ppl_Polyhedron_t scat;
1304 CloogDomain *dom;
1306 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1307 dom = new_Cloog_Domain_from_ppl_Polyhedron (scat);
1309 cloog_set_next_domain (new_scattering, scattering);
1310 cloog_set_domain (new_scattering, dom);
1311 scattering = new_scattering;
1315 cloog_program_set_loop (prog, loop_list);
1316 cloog_program_set_blocklist (prog, block_list);
1318 for (i = 0; i < nbs; i++)
1319 scaldims[i] = 0 ;
1321 cloog_program_set_scaldims (prog, scaldims);
1323 /* Extract scalar dimensions to simplify the code generation problem. */
1324 cloog_program_extract_scalars (prog, scattering);
1326 /* Apply scattering. */
1327 cloog_program_scatter (prog, scattering);
1328 free_scattering (scattering);
1330 /* Iterators corresponding to scalar dimensions have to be extracted. */
1331 cloog_names_scalarize (cloog_program_names (prog), nbs,
1332 cloog_program_scaldims (prog));
1334 /* Free blocklist. */
1336 CloogBlockList *next = cloog_program_blocklist (prog);
1338 while (next)
1340 CloogBlockList *toDelete = next;
1341 next = cloog_block_list_next (next);
1342 cloog_block_list_set_next (toDelete, NULL);
1343 cloog_block_list_set_block (toDelete, NULL);
1344 cloog_block_list_free (toDelete);
1346 cloog_program_set_blocklist (prog, NULL);
1350 /* Return the options that will be used in GLOOG. */
1352 static CloogOptions *
1353 set_cloog_options (void)
1355 CloogOptions *options = cloog_options_malloc ();
1357 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1358 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1359 we pass an incomplete program to cloog. */
1360 options->language = LANGUAGE_C;
1362 /* Enable complex equality spreading: removes dummy statements
1363 (assignments) in the generated code which repeats the
1364 substitution equations for statements. This is useless for
1365 GLooG. */
1366 options->esp = 1;
1368 /* Enable C pretty-printing mode: normalizes the substitution
1369 equations for statements. */
1370 options->cpp = 1;
1372 /* Allow cloog to build strides with a stride width different to one.
1373 This example has stride = 4:
1375 for (i = 0; i < 20; i += 4)
1376 A */
1377 options->strides = 1;
1379 /* Disable optimizations and make cloog generate source code closer to the
1380 input. This is useful for debugging, but later we want the optimized
1381 code.
1383 XXX: We can not disable optimizations, as loop blocking is not working
1384 without them. */
1385 if (!flag_graphite_cloog_opts)
1387 options->f = -1;
1388 options->l = INT_MAX;
1391 return options;
1394 /* Prints STMT to STDERR. */
1396 void
1397 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1399 CloogOptions *options = set_cloog_options ();
1401 pprint (file, stmt, 0, options);
1402 cloog_options_free (options);
1405 /* Prints STMT to STDERR. */
1407 DEBUG_FUNCTION void
1408 debug_clast_stmt (struct clast_stmt *stmt)
1410 print_clast_stmt (stderr, stmt);
1413 /* Translate SCOP to a CLooG program and clast. These two
1414 representations should be freed together: a clast cannot be used
1415 without a program. */
1417 cloog_prog_clast
1418 scop_to_clast (scop_p scop)
1420 CloogOptions *options = set_cloog_options ();
1421 cloog_prog_clast pc;
1423 /* Connect new cloog prog generation to graphite. */
1424 pc.prog = cloog_program_malloc ();
1425 build_cloog_prog (scop, pc.prog);
1426 pc.prog = cloog_program_generate (pc.prog, options);
1427 pc.stmt = cloog_clast_create (pc.prog, options);
1429 cloog_options_free (options);
1430 return pc;
1433 /* Prints to FILE the code generated by CLooG for SCOP. */
1435 void
1436 print_generated_program (FILE *file, scop_p scop)
1438 CloogOptions *options = set_cloog_options ();
1439 cloog_prog_clast pc = scop_to_clast (scop);
1441 fprintf (file, " (prog: \n");
1442 cloog_program_print (file, pc.prog);
1443 fprintf (file, " )\n");
1445 fprintf (file, " (clast: \n");
1446 pprint (file, pc.stmt, 0, options);
1447 fprintf (file, " )\n");
1449 cloog_options_free (options);
1450 cloog_clast_free (pc.stmt);
1451 cloog_program_free (pc.prog);
1454 /* Prints to STDERR the code generated by CLooG for SCOP. */
1456 DEBUG_FUNCTION void
1457 debug_generated_program (scop_p scop)
1459 print_generated_program (stderr, scop);
1462 /* Add CLooG names to parameter index. The index is used to translate
1463 back from CLooG names to GCC trees. */
1465 static void
1466 create_params_index (htab_t index_table, CloogProgram *prog) {
1467 CloogNames* names = cloog_program_names (prog);
1468 int nb_parameters = cloog_names_nb_parameters (names);
1469 char **parameters = cloog_names_parameters (names);
1470 int i;
1472 for (i = 0; i < nb_parameters; i++)
1473 save_clast_name_index (index_table, parameters[i], i);
1476 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1477 the given SCOP. Return true if code generation succeeded.
1478 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1481 bool
1482 gloog (scop_p scop, htab_t bb_pbb_mapping)
1484 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1485 loop_p context_loop;
1486 sese region = SCOP_REGION (scop);
1487 ifsese if_region = NULL;
1488 htab_t rename_map, newivs_index, params_index;
1489 cloog_prog_clast pc;
1491 timevar_push (TV_GRAPHITE_CODE_GEN);
1492 gloog_error = false;
1494 pc = scop_to_clast (scop);
1496 if (dump_file && (dump_flags & TDF_DETAILS))
1498 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1499 print_clast_stmt (dump_file, pc.stmt);
1500 fprintf (dump_file, "\n");
1503 recompute_all_dominators ();
1504 graphite_verify ();
1506 if_region = move_sese_in_condition (region);
1507 sese_insert_phis_for_liveouts (region,
1508 if_region->region->exit->src,
1509 if_region->false_region->exit,
1510 if_region->true_region->exit);
1511 recompute_all_dominators ();
1512 graphite_verify ();
1514 context_loop = SESE_ENTRY (region)->src->loop_father;
1515 rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free);
1516 newivs_index = htab_create (10, clast_name_index_elt_info,
1517 eq_clast_name_indexes, free);
1518 params_index = htab_create (10, clast_name_index_elt_info,
1519 eq_clast_name_indexes, free);
1521 create_params_index (params_index, pc.prog);
1523 translate_clast (region, context_loop, pc.stmt,
1524 if_region->true_region->entry,
1525 rename_map, &newivs, newivs_index,
1526 bb_pbb_mapping, 1, params_index);
1527 graphite_verify ();
1528 scev_reset_htab ();
1529 recompute_all_dominators ();
1530 graphite_verify ();
1532 if (gloog_error)
1533 set_ifsese_condition (if_region, integer_zero_node);
1535 free (if_region->true_region);
1536 free (if_region->region);
1537 free (if_region);
1539 htab_delete (rename_map);
1540 htab_delete (newivs_index);
1541 htab_delete (params_index);
1542 VEC_free (tree, heap, newivs);
1543 cloog_clast_free (pc.stmt);
1544 cloog_program_free (pc.prog);
1545 timevar_pop (TV_GRAPHITE_CODE_GEN);
1547 if (dump_file && (dump_flags & TDF_DETAILS))
1549 loop_p loop;
1550 loop_iterator li;
1551 int num_no_dependency = 0;
1553 FOR_EACH_LOOP (li, loop, 0)
1554 if (loop->can_be_parallel)
1555 num_no_dependency++;
1557 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1558 num_no_dependency);
1561 return !gloog_error;
1564 #endif