Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / testsuite / lib / target-supports.exp
blobee7a8bfc04bafa11261dadfaf5538f6c925348e5
1 # Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2 # Free Software Foundation, Inc.
4 # This program is free software; you can redistribute it and/or modify
5 # it under the terms of the GNU General Public License as published by
6 # the Free Software Foundation; either version 3 of the License, or
7 # (at your option) any later version.
9 # This program is distributed in the hope that it will be useful,
10 # but WITHOUT ANY WARRANTY; without even the implied warranty of
11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 # GNU General Public License for more details.
14 # You should have received a copy of the GNU General Public License
15 # along with GCC; see the file COPYING3. If not see
16 # <http://www.gnu.org/licenses/>.
18 # Please email any bugs, comments, and/or additions to this file to:
19 # gcc-patches@gcc.gnu.org
21 # This file defines procs for determining features supported by the target.
23 # Try to compile the code given by CONTENTS into an output file of
24 # type TYPE, where TYPE is as for target_compile. Return a list
25 # whose first element contains the compiler messages and whose
26 # second element is the name of the output file.
28 # BASENAME is a prefix to use for source and output files.
29 # If ARGS is not empty, its first element is a string that
30 # should be added to the command line.
32 # Assume by default that CONTENTS is C code.
33 # Otherwise, code should contain:
34 # "// C++" for c++,
35 # "! Fortran" for Fortran code,
36 # "/* ObjC", for ObjC
37 # "// ObjC++" for ObjC++
38 # and "// Go" for Go
39 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
40 # allow for ObjC/ObjC++ specific flags.
41 proc check_compile {basename type contents args} {
42 global tool
43 verbose "check_compile tool: $tool for $basename"
45 if { [llength $args] > 0 } {
46 set options [list "additional_flags=[lindex $args 0]"]
47 } else {
48 set options ""
50 switch -glob -- $contents {
51 "*! Fortran*" { set src ${basename}[pid].f90 }
52 "*// C++*" { set src ${basename}[pid].cc }
53 "*// ObjC++*" { set src ${basename}[pid].mm }
54 "*/* ObjC*" { set src ${basename}[pid].m }
55 "*// Go*" { set src ${basename}[pid].go }
56 default {
57 switch -- $tool {
58 "objc" { set src ${basename}[pid].m }
59 "obj-c++" { set src ${basename}[pid].mm }
60 default { set src ${basename}[pid].c }
65 set compile_type $type
66 switch -glob $type {
67 assembly { set output ${basename}[pid].s }
68 object { set output ${basename}[pid].o }
69 executable { set output ${basename}[pid].exe }
70 "rtl-*" {
71 set output ${basename}[pid].s
72 lappend options "additional_flags=-fdump-$type"
73 set compile_type assembly
76 set f [open $src "w"]
77 puts $f $contents
78 close $f
79 set lines [${tool}_target_compile $src $output $compile_type "$options"]
80 file delete $src
82 set scan_output $output
83 # Don't try folding this into the switch above; calling "glob" before the
84 # file is created won't work.
85 if [regexp "rtl-(.*)" $type dummy rtl_type] {
86 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
87 file delete $output
90 return [list $lines $scan_output]
93 proc current_target_name { } {
94 global target_info
95 if [info exists target_info(target,name)] {
96 set answer $target_info(target,name)
97 } else {
98 set answer ""
100 return $answer
103 # Implement an effective-target check for property PROP by invoking
104 # the Tcl command ARGS and seeing if it returns true.
106 proc check_cached_effective_target { prop args } {
107 global et_cache
109 set target [current_target_name]
110 if {![info exists et_cache($prop,target)]
111 || $et_cache($prop,target) != $target} {
112 verbose "check_cached_effective_target $prop: checking $target" 2
113 set et_cache($prop,target) $target
114 set et_cache($prop,value) [uplevel eval $args]
116 set value $et_cache($prop,value)
117 verbose "check_cached_effective_target $prop: returning $value for $target" 2
118 return $value
121 # Like check_compile, but delete the output file and return true if the
122 # compiler printed no messages.
123 proc check_no_compiler_messages_nocache {args} {
124 set result [eval check_compile $args]
125 set lines [lindex $result 0]
126 set output [lindex $result 1]
127 remote_file build delete $output
128 return [string match "" $lines]
131 # Like check_no_compiler_messages_nocache, but cache the result.
132 # PROP is the property we're checking, and doubles as a prefix for
133 # temporary filenames.
134 proc check_no_compiler_messages {prop args} {
135 return [check_cached_effective_target $prop {
136 eval [list check_no_compiler_messages_nocache $prop] $args
140 # Like check_compile, but return true if the compiler printed no
141 # messages and if the contents of the output file satisfy PATTERN.
142 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
143 # don't match regular expression REGEXP, otherwise they satisfy it
144 # if they do match regular expression PATTERN. (PATTERN can start
145 # with something like "[!]" if the regular expression needs to match
146 # "!" as the first character.)
148 # Delete the output file before returning. The other arguments are
149 # as for check_compile.
150 proc check_no_messages_and_pattern_nocache {basename pattern args} {
151 global tool
153 set result [eval [list check_compile $basename] $args]
154 set lines [lindex $result 0]
155 set output [lindex $result 1]
157 set ok 0
158 if { [string match "" $lines] } {
159 set chan [open "$output"]
160 set invert [regexp {^!(.*)} $pattern dummy pattern]
161 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
162 close $chan
165 remote_file build delete $output
166 return $ok
169 # Like check_no_messages_and_pattern_nocache, but cache the result.
170 # PROP is the property we're checking, and doubles as a prefix for
171 # temporary filenames.
172 proc check_no_messages_and_pattern {prop pattern args} {
173 return [check_cached_effective_target $prop {
174 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
178 # Try to compile and run an executable from code CONTENTS. Return true
179 # if the compiler reports no messages and if execution "passes" in the
180 # usual DejaGNU sense. The arguments are as for check_compile, with
181 # TYPE implicitly being "executable".
182 proc check_runtime_nocache {basename contents args} {
183 global tool
185 set result [eval [list check_compile $basename executable $contents] $args]
186 set lines [lindex $result 0]
187 set output [lindex $result 1]
189 set ok 0
190 if { [string match "" $lines] } {
191 # No error messages, everything is OK.
192 set result [remote_load target "./$output" "" ""]
193 set status [lindex $result 0]
194 verbose "check_runtime_nocache $basename: status is <$status>" 2
195 if { $status == "pass" } {
196 set ok 1
199 remote_file build delete $output
200 return $ok
203 # Like check_runtime_nocache, but cache the result. PROP is the
204 # property we're checking, and doubles as a prefix for temporary
205 # filenames.
206 proc check_runtime {prop args} {
207 global tool
209 return [check_cached_effective_target $prop {
210 eval [list check_runtime_nocache $prop] $args
214 ###############################
215 # proc check_weak_available { }
216 ###############################
218 # weak symbols are only supported in some configs/object formats
219 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
221 proc check_weak_available { } {
222 global target_triplet
223 global target_cpu
225 # All mips targets should support it
227 if { [ string first "mips" $target_cpu ] >= 0 } {
228 return 1
231 # All solaris2 targets should support it
233 if { [regexp ".*-solaris2.*" $target_triplet] } {
234 return 1
237 # DEC OSF/1/Digital UNIX/Tru64 UNIX supports it
239 if { [regexp "alpha.*osf.*" $target_triplet] } {
240 return 1
243 # Windows targets Cygwin and MingW32 support it
245 if { [regexp ".*mingw32|.*cygwin" $target_triplet] } {
246 return 1
249 # HP-UX 10.X doesn't support it
251 if { [istarget "hppa*-*-hpux10*"] } {
252 return 0
255 # ELF and ECOFF support it. a.out does with gas/gld but may also with
256 # other linkers, so we should try it
258 set objformat [gcc_target_object_format]
260 switch $objformat {
261 elf { return 1 }
262 ecoff { return 1 }
263 a.out { return 1 }
264 mach-o { return 1 }
265 som { return 1 }
266 unknown { return -1 }
267 default { return 0 }
271 ###############################
272 # proc check_weak_override_available { }
273 ###############################
275 # Like check_weak_available, but return 0 if weak symbol definitions
276 # cannot be overridden.
278 proc check_weak_override_available { } {
279 if { [istarget "*-*-mingw*"] } {
280 return 0
282 return [check_weak_available]
285 ###############################
286 # proc check_visibility_available { what_kind }
287 ###############################
289 # The visibility attribute is only support in some object formats
290 # This proc returns 1 if it is supported, 0 if not.
291 # The argument is the kind of visibility, default/protected/hidden/internal.
293 proc check_visibility_available { what_kind } {
294 global tool
295 global target_triplet
297 # On NetWare, support makes no sense.
298 if { [istarget *-*-netware*] } {
299 return 0
302 if [string match "" $what_kind] { set what_kind "hidden" }
304 return [check_no_compiler_messages visibility_available_$what_kind object "
305 void f() __attribute__((visibility(\"$what_kind\")));
306 void f() {}
310 ###############################
311 # proc check_alias_available { }
312 ###############################
314 # Determine if the target toolchain supports the alias attribute.
316 # Returns 2 if the target supports aliases. Returns 1 if the target
317 # only supports weak aliased. Returns 0 if the target does not
318 # support aliases at all. Returns -1 if support for aliases could not
319 # be determined.
321 proc check_alias_available { } {
322 global alias_available_saved
323 global tool
325 if [info exists alias_available_saved] {
326 verbose "check_alias_available returning saved $alias_available_saved" 2
327 } else {
328 set src alias[pid].c
329 set obj alias[pid].o
330 verbose "check_alias_available compiling testfile $src" 2
331 set f [open $src "w"]
332 # Compile a small test program. The definition of "g" is
333 # necessary to keep the Solaris assembler from complaining
334 # about the program.
335 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
336 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
337 close $f
338 set lines [${tool}_target_compile $src $obj object ""]
339 file delete $src
340 remote_file build delete $obj
342 if [string match "" $lines] then {
343 # No error messages, everything is OK.
344 set alias_available_saved 2
345 } else {
346 if [regexp "alias definitions not supported" $lines] {
347 verbose "check_alias_available target does not support aliases" 2
349 set objformat [gcc_target_object_format]
351 if { $objformat == "elf" } {
352 verbose "check_alias_available but target uses ELF format, so it ought to" 2
353 set alias_available_saved -1
354 } else {
355 set alias_available_saved 0
357 } else {
358 if [regexp "only weak aliases are supported" $lines] {
359 verbose "check_alias_available target supports only weak aliases" 2
360 set alias_available_saved 1
361 } else {
362 set alias_available_saved -1
367 verbose "check_alias_available returning $alias_available_saved" 2
370 return $alias_available_saved
373 ###############################
374 # proc check_ifunc_available { }
375 ###############################
377 # Determine if the target toolchain supports the ifunc attribute.
379 # Returns 1 if the target supports ifunc. Returns 0 if the target
380 # does not support ifunc.
382 proc check_ifunc_available { } {
383 global ifunc_available_saved
384 global tool
386 if [info exists ifunc_available_saved] {
387 verbose "check_ifunc_available returning saved $ifunc_available_saved" 2
388 } else {
389 set src ifunc[pid].c
390 set obj ifunc[pid].o
391 verbose "check_ifunc_available compiling testfile $src" 2
392 set f [open $src "w"]
393 puts $f "#endif"
394 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif"
395 puts $f "void g() {}"
396 puts $f "void f() __attribute__((ifunc(\"g\")));"
397 close $f
398 set lines [${tool}_target_compile $src $obj object ""]
399 file delete $src
400 remote_file build delete $obj
402 if [string match "" $lines] then {
403 set ifunc_available_saved 1
404 } else {
405 set ifunc_available_saved 0
408 verbose "check_ifunc_available returning $ifunc_available_saved" 2
411 return $ifunc_available_saved
414 # Returns true if --gc-sections is supported on the target.
416 proc check_gc_sections_available { } {
417 global gc_sections_available_saved
418 global tool
420 if {![info exists gc_sections_available_saved]} {
421 # Some targets don't support gc-sections despite whatever's
422 # advertised by ld's options.
423 if { [istarget alpha*-*-*]
424 || [istarget ia64-*-*] } {
425 set gc_sections_available_saved 0
426 return 0
429 # elf2flt uses -q (--emit-relocs), which is incompatible with
430 # --gc-sections.
431 if { [board_info target exists ldflags]
432 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
433 set gc_sections_available_saved 0
434 return 0
437 # VxWorks kernel modules are relocatable objects linked with -r,
438 # while RTP executables are linked with -q (--emit-relocs).
439 # Both of these options are incompatible with --gc-sections.
440 if { [istarget *-*-vxworks*] } {
441 set gc_sections_available_saved 0
442 return 0
445 # Check if the ld used by gcc supports --gc-sections.
446 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
447 regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
448 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
449 set ld_output [remote_exec host "$gcc_ld" "--help"]
450 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
451 set gc_sections_available_saved 1
452 } else {
453 set gc_sections_available_saved 0
456 return $gc_sections_available_saved
459 # Return 1 if according to target_info struct and explicit target list
460 # target is supposed to support trampolines.
462 proc check_effective_target_trampolines { } {
463 if [target_info exists no_trampolines] {
464 return 0
466 if { [istarget avr-*-*]
467 || [istarget hppa2.0w-hp-hpux11.23]
468 || [istarget hppa64-hp-hpux11.23] } {
469 return 0;
471 return 1
474 # Return 1 if according to target_info struct and explicit target list
475 # target is supposed to keep null pointer checks. This could be due to
476 # use of option fno-delete-null-pointer-checks or hardwired in target.
478 proc check_effective_target_keeps_null_pointer_checks { } {
479 if [target_info exists keeps_null_pointer_checks] {
480 return 1
482 if { [istarget avr-*-*] } {
483 return 1;
485 return 0
488 # Return true if profiling is supported on the target.
490 proc check_profiling_available { test_what } {
491 global profiling_available_saved
493 verbose "Profiling argument is <$test_what>" 1
495 # These conditions depend on the argument so examine them before
496 # looking at the cache variable.
498 # Support for -p on solaris2 relies on mcrt1.o which comes with the
499 # vendor compiler. We cannot reliably predict the directory where the
500 # vendor compiler (and thus mcrt1.o) is installed so we can't
501 # necessarily find mcrt1.o even if we have it.
502 if { [istarget *-*-solaris2*] && [lindex $test_what 1] == "-p" } {
503 return 0
506 # Support for -p on irix relies on libprof1.a which doesn't appear to
507 # exist on any irix6 system currently posting testsuite results.
508 # Support for -pg on irix relies on gcrt1.o which doesn't exist yet.
509 # See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html
510 if { [istarget mips*-*-irix*]
511 && ([lindex $test_what 1] == "-p" || [lindex $test_what 1] == "-pg") } {
512 return 0
515 # We don't yet support profiling for MIPS16.
516 if { [istarget mips*-*-*]
517 && ![check_effective_target_nomips16]
518 && ([lindex $test_what 1] == "-p"
519 || [lindex $test_what 1] == "-pg") } {
520 return 0
523 # MinGW does not support -p.
524 if { [istarget *-*-mingw*] && [lindex $test_what 1] == "-p" } {
525 return 0
528 # cygwin does not support -p.
529 if { [istarget *-*-cygwin*] && [lindex $test_what 1] == "-p" } {
530 return 0
533 # uClibc does not have gcrt1.o.
534 if { [check_effective_target_uclibc]
535 && ([lindex $test_what 1] == "-p"
536 || [lindex $test_what 1] == "-pg") } {
537 return 0
540 # Now examine the cache variable.
541 if {![info exists profiling_available_saved]} {
542 # Some targets don't have any implementation of __bb_init_func or are
543 # missing other needed machinery.
544 if { [istarget mmix-*-*]
545 || [istarget arm*-*-eabi*]
546 || [istarget picochip-*-*]
547 || [istarget *-*-netware*]
548 || [istarget arm*-*-elf]
549 || [istarget arm*-*-symbianelf*]
550 || [istarget avr-*-*]
551 || [istarget bfin-*-*]
552 || [istarget powerpc-*-eabi*]
553 || [istarget powerpc-*-elf]
554 || [istarget cris-*-*]
555 || [istarget crisv32-*-*]
556 || [istarget fido-*-elf]
557 || [istarget h8300-*-*]
558 || [istarget lm32-*-*]
559 || [istarget m32c-*-elf]
560 || [istarget m68k-*-elf]
561 || [istarget m68k-*-uclinux*]
562 || [istarget mep-*-elf]
563 || [istarget mips*-*-elf*]
564 || [istarget moxie-*-elf*]
565 || [istarget rx-*-*]
566 || [istarget xstormy16-*]
567 || [istarget xtensa*-*-elf]
568 || [istarget *-*-rtems*]
569 || [istarget *-*-vxworks*] } {
570 set profiling_available_saved 0
571 } else {
572 set profiling_available_saved 1
576 return $profiling_available_saved
579 # Check to see if a target is "freestanding". This is as per the definition
580 # in Section 4 of C99 standard. Effectively, it is a target which supports no
581 # extra headers or libraries other than what is considered essential.
582 proc check_effective_target_freestanding { } {
583 if { [istarget picochip-*-*] } then {
584 return 1
585 } else {
586 return 0
590 # Return 1 if target has packed layout of structure members by
591 # default, 0 otherwise. Note that this is slightly different than
592 # whether the target has "natural alignment": both attributes may be
593 # false.
595 proc check_effective_target_default_packed { } {
596 return [check_no_compiler_messages default_packed assembly {
597 struct x { char a; long b; } c;
598 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
602 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
603 # documentation, where the test also comes from.
605 proc check_effective_target_pcc_bitfield_type_matters { } {
606 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
607 # bitfields, but let's stick to the example code from the docs.
608 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
609 struct foo1 { char x; char :0; char y; };
610 struct foo2 { char x; int :0; char y; };
611 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
615 # Add to FLAGS all the target-specific flags needed to use thread-local storage.
617 proc add_options_for_tls { flags } {
618 # Tru64 UNIX uses emutls, which relies on a couple of pthread functions
619 # which only live in libpthread, so always pass -pthread for TLS.
620 if { [istarget *-*-osf*] } {
621 return "$flags -pthread"
623 # On Solaris 8 and 9, __tls_get_addr/___tls_get_addr only lives in
624 # libthread, so always pass -pthread for native TLS.
625 # Need to duplicate native TLS check from
626 # check_effective_target_tls_native to avoid recursion.
627 if { [istarget *-*-solaris2.\[89\]*] &&
628 [check_no_messages_and_pattern tls_native "!emutls" assembly {
629 __thread int i;
630 int f (void) { return i; }
631 void g (int j) { i = j; }
632 }] } {
633 return "$flags -pthread"
635 return $flags
638 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
640 proc check_effective_target_tls {} {
641 return [check_no_compiler_messages tls assembly {
642 __thread int i;
643 int f (void) { return i; }
644 void g (int j) { i = j; }
648 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
650 proc check_effective_target_tls_native {} {
651 # VxWorks uses emulated TLS machinery, but with non-standard helper
652 # functions, so we fail to automatically detect it.
653 global target_triplet
654 if { [regexp ".*-.*-vxworks.*" $target_triplet] } {
655 return 0
658 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
659 __thread int i;
660 int f (void) { return i; }
661 void g (int j) { i = j; }
665 # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
667 proc check_effective_target_tls_emulated {} {
668 # VxWorks uses emulated TLS machinery, but with non-standard helper
669 # functions, so we fail to automatically detect it.
670 global target_triplet
671 if { [regexp ".*-.*-vxworks.*" $target_triplet] } {
672 return 1
675 return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
676 __thread int i;
677 int f (void) { return i; }
678 void g (int j) { i = j; }
682 # Return 1 if TLS executables can run correctly, 0 otherwise.
684 proc check_effective_target_tls_runtime {} {
685 return [check_runtime tls_runtime {
686 __thread int thr = 0;
687 int main (void) { return thr; }
691 # Return 1 if -ffunction-sections is supported, 0 otherwise.
693 proc check_effective_target_function_sections {} {
694 # Darwin has its own scheme and silently accepts -ffunction-sections.
695 global target_triplet
696 if { [regexp ".*-.*-darwin.*" $target_triplet] } {
697 return 0
700 return [check_no_compiler_messages functionsections assembly {
701 void foo (void) { }
702 } "-ffunction-sections"]
705 # Return 1 if compilation with -fgraphite is error-free for trivial
706 # code, 0 otherwise.
708 proc check_effective_target_fgraphite {} {
709 return [check_no_compiler_messages fgraphite object {
710 void foo (void) { }
711 } "-O1 -fgraphite"]
714 # Return 1 if compilation with -fopenmp is error-free for trivial
715 # code, 0 otherwise.
717 proc check_effective_target_fopenmp {} {
718 return [check_no_compiler_messages fopenmp object {
719 void foo (void) { }
720 } "-fopenmp"]
723 # Return 1 if compilation with -pthread is error-free for trivial
724 # code, 0 otherwise.
726 proc check_effective_target_pthread {} {
727 return [check_no_compiler_messages pthread object {
728 void foo (void) { }
729 } "-pthread"]
732 # Return 1 if compilation with -mpe-aligned-commons is error-free
733 # for trivial code, 0 otherwise.
735 proc check_effective_target_pe_aligned_commons {} {
736 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
737 return [check_no_compiler_messages pe_aligned_commons object {
738 int foo;
739 } "-mpe-aligned-commons"]
741 return 0
744 # Return 1 if the target supports -static
745 proc check_effective_target_static {} {
746 return [check_no_compiler_messages static executable {
747 int main (void) { return 0; }
748 } "-static"]
751 # Return 1 if the target supports -fstack-protector
752 proc check_effective_target_fstack_protector {} {
753 return [check_runtime fstack_protector {
754 int main (void) { return 0; }
755 } "-fstack-protector"]
758 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
759 # for trivial code, 0 otherwise.
761 proc check_effective_target_freorder {} {
762 return [check_no_compiler_messages freorder object {
763 void foo (void) { }
764 } "-freorder-blocks-and-partition"]
767 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
768 # emitted, 0 otherwise. Whether a shared library can actually be built is
769 # out of scope for this test.
771 proc check_effective_target_fpic { } {
772 # Note that M68K has a multilib that supports -fpic but not
773 # -fPIC, so we need to check both. We test with a program that
774 # requires GOT references.
775 foreach arg {fpic fPIC} {
776 if [check_no_compiler_messages $arg object {
777 extern int foo (void); extern int bar;
778 int baz (void) { return foo () + bar; }
779 } "-$arg"] {
780 return 1
783 return 0
786 # Return true if the target supports -mpaired-single (as used on MIPS).
788 proc check_effective_target_mpaired_single { } {
789 return [check_no_compiler_messages mpaired_single object {
790 void foo (void) { }
791 } "-mpaired-single"]
794 # Return true if the target has access to FPU instructions.
796 proc check_effective_target_hard_float { } {
797 if { [istarget mips*-*-*] } {
798 return [check_no_compiler_messages hard_float assembly {
799 #if (defined __mips_soft_float || defined __mips16)
800 #error FOO
801 #endif
805 # This proc is actually checking the availabilty of FPU
806 # support for doubles, so on the RX we must fail if the
807 # 64-bit double multilib has been selected.
808 if { [istarget rx-*-*] } {
809 return 0
810 # return [check_no_compiler_messages hard_float assembly {
811 #if defined __RX_64_BIT_DOUBLES__
812 #error FOO
813 #endif
814 # }]
817 # The generic test equates hard_float with "no call for adding doubles".
818 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
819 double a (double b, double c) { return b + c; }
823 # Return true if the target is a 64-bit MIPS target.
825 proc check_effective_target_mips64 { } {
826 return [check_no_compiler_messages mips64 assembly {
827 #ifndef __mips64
828 #error FOO
829 #endif
833 # Return true if the target is a MIPS target that does not produce
834 # MIPS16 code.
836 proc check_effective_target_nomips16 { } {
837 return [check_no_compiler_messages nomips16 object {
838 #ifndef __mips
839 #error FOO
840 #else
841 /* A cheap way of testing for -mflip-mips16. */
842 void foo (void) { asm ("addiu $20,$20,1"); }
843 void bar (void) { asm ("addiu $20,$20,1"); }
844 #endif
848 # Add the options needed for MIPS16 function attributes. At the moment,
849 # we don't support MIPS16 PIC.
851 proc add_options_for_mips16_attribute { flags } {
852 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
855 # Return true if we can force a mode that allows MIPS16 code generation.
856 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
857 # for o32 and o64.
859 proc check_effective_target_mips16_attribute { } {
860 return [check_no_compiler_messages mips16_attribute assembly {
861 #ifdef PIC
862 #error FOO
863 #endif
864 #if defined __mips_hard_float \
865 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
866 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
867 #error FOO
868 #endif
869 } [add_options_for_mips16_attribute ""]]
872 # Return 1 if the target supports long double larger than double when
873 # using the new ABI, 0 otherwise.
875 proc check_effective_target_mips_newabi_large_long_double { } {
876 return [check_no_compiler_messages mips_newabi_large_long_double object {
877 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
878 } "-mabi=64"]
881 # Return 1 if the current multilib does not generate PIC by default.
883 proc check_effective_target_nonpic { } {
884 return [check_no_compiler_messages nonpic assembly {
885 #if __PIC__
886 #error FOO
887 #endif
891 # Return 1 if the target does not use a status wrapper.
893 proc check_effective_target_unwrapped { } {
894 if { [target_info needs_status_wrapper] != "" \
895 && [target_info needs_status_wrapper] != "0" } {
896 return 0
898 return 1
901 # Return true if iconv is supported on the target. In particular IBM1047.
903 proc check_iconv_available { test_what } {
904 global libiconv
906 # If the tool configuration file has not set libiconv, try "-liconv"
907 if { ![info exists libiconv] } {
908 set libiconv "-liconv"
910 set test_what [lindex $test_what 1]
911 return [check_runtime_nocache $test_what [subst {
912 #include <iconv.h>
913 int main (void)
915 iconv_t cd;
917 cd = iconv_open ("$test_what", "UTF-8");
918 if (cd == (iconv_t) -1)
919 return 1;
920 return 0;
922 }] $libiconv]
925 # Return true if named sections are supported on this target.
927 proc check_named_sections_available { } {
928 return [check_no_compiler_messages named_sections assembly {
929 int __attribute__ ((section("whatever"))) foo;
933 # Return 1 if the target supports Fortran real kinds larger than real(8),
934 # 0 otherwise.
936 # When the target name changes, replace the cached result.
938 proc check_effective_target_fortran_large_real { } {
939 return [check_no_compiler_messages fortran_large_real executable {
940 ! Fortran
941 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
942 real(kind=k) :: x
943 x = cos (x)
948 # Return 1 if the target supports Fortran integer kinds larger than
949 # integer(8), 0 otherwise.
951 # When the target name changes, replace the cached result.
953 proc check_effective_target_fortran_large_int { } {
954 return [check_no_compiler_messages fortran_large_int executable {
955 ! Fortran
956 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
957 integer(kind=k) :: i
962 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
964 # When the target name changes, replace the cached result.
966 proc check_effective_target_fortran_integer_16 { } {
967 return [check_no_compiler_messages fortran_integer_16 executable {
968 ! Fortran
969 integer(16) :: i
974 # Return 1 if we can statically link libgfortran, 0 otherwise.
976 # When the target name changes, replace the cached result.
978 proc check_effective_target_static_libgfortran { } {
979 return [check_no_compiler_messages static_libgfortran executable {
980 ! Fortran
981 print *, 'test'
983 } "-static"]
986 proc check_linker_plugin_available { } {
987 return [check_no_compiler_messages_nocache linker_plugin executable {
988 int main() { return 0; }
989 } "-flto -fuse-linker-plugin"]
992 # Return 1 if the target supports executing 750CL paired-single instructions, 0
993 # otherwise. Cache the result.
995 proc check_750cl_hw_available { } {
996 return [check_cached_effective_target 750cl_hw_available {
997 # If this is not the right target then we can skip the test.
998 if { ![istarget powerpc-*paired*] } {
999 expr 0
1000 } else {
1001 check_runtime_nocache 750cl_hw_available {
1002 int main()
1004 #ifdef __MACH__
1005 asm volatile ("ps_mul v0,v0,v0");
1006 #else
1007 asm volatile ("ps_mul 0,0,0");
1008 #endif
1009 return 0;
1011 } "-mpaired"
1016 # Return 1 if the target OS supports running SSE executables, 0
1017 # otherwise. Cache the result.
1019 proc check_sse_os_support_available { } {
1020 return [check_cached_effective_target sse_os_support_available {
1021 # If this is not the right target then we can skip the test.
1022 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1023 expr 0
1024 } elseif { [istarget i?86-*-solaris2*] } {
1025 # The Solaris 2 kernel doesn't save and restore SSE registers
1026 # before Solaris 9 4/04. Before that, executables die with SIGILL.
1027 check_runtime_nocache sse_os_support_available {
1028 int main ()
1030 __asm__ volatile ("movss %xmm2,%xmm1");
1031 return 0;
1033 } "-msse"
1034 } else {
1035 expr 1
1040 # Return 1 if the target supports executing SSE instructions, 0
1041 # otherwise. Cache the result.
1043 proc check_sse_hw_available { } {
1044 return [check_cached_effective_target sse_hw_available {
1045 # If this is not the right target then we can skip the test.
1046 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1047 expr 0
1048 } else {
1049 check_runtime_nocache sse_hw_available {
1050 #include "cpuid.h"
1051 int main ()
1053 unsigned int eax, ebx, ecx, edx;
1054 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1055 return !(edx & bit_SSE);
1056 return 1;
1058 } ""
1063 # Return 1 if the target supports executing SSE2 instructions, 0
1064 # otherwise. Cache the result.
1066 proc check_sse2_hw_available { } {
1067 return [check_cached_effective_target sse2_hw_available {
1068 # If this is not the right target then we can skip the test.
1069 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1070 expr 0
1071 } else {
1072 check_runtime_nocache sse2_hw_available {
1073 #include "cpuid.h"
1074 int main ()
1076 unsigned int eax, ebx, ecx, edx;
1077 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1078 return !(edx & bit_SSE2);
1079 return 1;
1081 } ""
1086 # Return 1 if the target supports executing AVX instructions, 0
1087 # otherwise. Cache the result.
1089 proc check_avx_hw_available { } {
1090 return [check_cached_effective_target avx_hw_available {
1091 # If this is not the right target then we can skip the test.
1092 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1093 expr 0
1094 } else {
1095 check_runtime_nocache avx_hw_available {
1096 #include "cpuid.h"
1097 int main ()
1099 unsigned int eax, ebx, ecx, edx;
1100 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1101 return ((ecx & (bit_AVX | bit_OSXSAVE))
1102 != (bit_AVX | bit_OSXSAVE));
1103 return 1;
1105 } ""
1110 # Return 1 if the target supports running SSE executables, 0 otherwise.
1112 proc check_effective_target_sse_runtime { } {
1113 if { [check_effective_target_sse]
1114 && [check_sse_hw_available]
1115 && [check_sse_os_support_available] } {
1116 return 1
1118 return 0
1121 # Return 1 if the target supports running SSE2 executables, 0 otherwise.
1123 proc check_effective_target_sse2_runtime { } {
1124 if { [check_effective_target_sse2]
1125 && [check_sse2_hw_available]
1126 && [check_sse_os_support_available] } {
1127 return 1
1129 return 0
1132 # Return 1 if the target supports running AVX executables, 0 otherwise.
1134 proc check_effective_target_avx_runtime { } {
1135 if { [check_effective_target_avx]
1136 && [check_avx_hw_available] } {
1137 return 1
1139 return 0
1142 # Return 1 if the target supports executing VSX instructions, 0
1143 # otherwise. Cache the result.
1145 proc check_vsx_hw_available { } {
1146 return [check_cached_effective_target vsx_hw_available {
1147 # Some simulators are known to not support VSX instructions.
1148 # For now, disable on Darwin
1149 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1150 expr 0
1151 } else {
1152 set options "-mvsx"
1153 check_runtime_nocache vsx_hw_available {
1154 int main()
1156 #ifdef __MACH__
1157 asm volatile ("xxlor vs0,vs0,vs0");
1158 #else
1159 asm volatile ("xxlor 0,0,0");
1160 #endif
1161 return 0;
1163 } $options
1168 # Return 1 if the target supports executing AltiVec instructions, 0
1169 # otherwise. Cache the result.
1171 proc check_vmx_hw_available { } {
1172 return [check_cached_effective_target vmx_hw_available {
1173 # Some simulators are known to not support VMX instructions.
1174 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
1175 expr 0
1176 } else {
1177 # Most targets don't require special flags for this test case, but
1178 # Darwin does. Just to be sure, make sure VSX is not enabled for
1179 # the altivec tests.
1180 if { [istarget *-*-darwin*]
1181 || [istarget *-*-aix*] } {
1182 set options "-maltivec -mno-vsx"
1183 } else {
1184 set options "-mno-vsx"
1186 check_runtime_nocache vmx_hw_available {
1187 int main()
1189 #ifdef __MACH__
1190 asm volatile ("vor v0,v0,v0");
1191 #else
1192 asm volatile ("vor 0,0,0");
1193 #endif
1194 return 0;
1196 } $options
1201 proc check_ppc_recip_hw_available { } {
1202 return [check_cached_effective_target ppc_recip_hw_available {
1203 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
1204 # For now, disable on Darwin
1205 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1206 expr 0
1207 } else {
1208 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
1209 check_runtime_nocache ppc_recip_hw_available {
1210 volatile double d_recip, d_rsqrt, d_four = 4.0;
1211 volatile float f_recip, f_rsqrt, f_four = 4.0f;
1212 int main()
1214 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
1215 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
1216 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
1217 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
1218 return 0;
1220 } $options
1225 # Return 1 if the target supports executing AltiVec and Cell PPU
1226 # instructions, 0 otherwise. Cache the result.
1228 proc check_effective_target_cell_hw { } {
1229 return [check_cached_effective_target cell_hw_available {
1230 # Some simulators are known to not support VMX and PPU instructions.
1231 if { [istarget powerpc-*-eabi*] } {
1232 expr 0
1233 } else {
1234 # Most targets don't require special flags for this test
1235 # case, but Darwin and AIX do.
1236 if { [istarget *-*-darwin*]
1237 || [istarget *-*-aix*] } {
1238 set options "-maltivec -mcpu=cell"
1239 } else {
1240 set options "-mcpu=cell"
1242 check_runtime_nocache cell_hw_available {
1243 int main()
1245 #ifdef __MACH__
1246 asm volatile ("vor v0,v0,v0");
1247 asm volatile ("lvlx v0,r0,r0");
1248 #else
1249 asm volatile ("vor 0,0,0");
1250 asm volatile ("lvlx 0,0,0");
1251 #endif
1252 return 0;
1254 } $options
1259 # Return 1 if the target supports executing 64-bit instructions, 0
1260 # otherwise. Cache the result.
1262 proc check_effective_target_powerpc64 { } {
1263 global powerpc64_available_saved
1264 global tool
1266 if [info exists powerpc64_available_saved] {
1267 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1268 } else {
1269 set powerpc64_available_saved 0
1271 # Some simulators are known to not support powerpc64 instructions.
1272 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1273 verbose "check_effective_target_powerpc64 returning 0" 2
1274 return $powerpc64_available_saved
1277 # Set up, compile, and execute a test program containing a 64-bit
1278 # instruction. Include the current process ID in the file
1279 # names to prevent conflicts with invocations for multiple
1280 # testsuites.
1281 set src ppc[pid].c
1282 set exe ppc[pid].x
1284 set f [open $src "w"]
1285 puts $f "int main() {"
1286 puts $f "#ifdef __MACH__"
1287 puts $f " asm volatile (\"extsw r0,r0\");"
1288 puts $f "#else"
1289 puts $f " asm volatile (\"extsw 0,0\");"
1290 puts $f "#endif"
1291 puts $f " return 0; }"
1292 close $f
1294 set opts "additional_flags=-mcpu=G5"
1296 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1297 set lines [${tool}_target_compile $src $exe executable "$opts"]
1298 file delete $src
1300 if [string match "" $lines] then {
1301 # No error message, compilation succeeded.
1302 set result [${tool}_load "./$exe" "" ""]
1303 set status [lindex $result 0]
1304 remote_file build delete $exe
1305 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1307 if { $status == "pass" } then {
1308 set powerpc64_available_saved 1
1310 } else {
1311 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1315 return $powerpc64_available_saved
1318 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1319 # complex float arguments. This affects gfortran tests that call cabsf
1320 # in libm built by an earlier compiler. Return 1 if libm uses the same
1321 # argument passing as the compiler under test, 0 otherwise.
1323 # When the target name changes, replace the cached result.
1325 proc check_effective_target_broken_cplxf_arg { } {
1326 return [check_cached_effective_target broken_cplxf_arg {
1327 # Skip the work for targets known not to be affected.
1328 if { ![istarget powerpc64-*-linux*] } {
1329 expr 0
1330 } elseif { ![is-effective-target lp64] } {
1331 expr 0
1332 } else {
1333 check_runtime_nocache broken_cplxf_arg {
1334 #include <complex.h>
1335 extern void abort (void);
1336 float fabsf (float);
1337 float cabsf (_Complex float);
1338 int main ()
1340 _Complex float cf;
1341 float f;
1342 cf = 3 + 4.0fi;
1343 f = cabsf (cf);
1344 if (fabsf (f - 5.0) > 0.0001)
1345 abort ();
1346 return 0;
1348 } "-lm"
1353 proc check_alpha_max_hw_available { } {
1354 return [check_runtime alpha_max_hw_available {
1355 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1359 # Returns true iff the FUNCTION is available on the target system.
1360 # (This is essentially a Tcl implementation of Autoconf's
1361 # AC_CHECK_FUNC.)
1363 proc check_function_available { function } {
1364 return [check_no_compiler_messages ${function}_available \
1365 executable [subst {
1366 #ifdef __cplusplus
1367 extern "C"
1368 #endif
1369 char $function ();
1370 int main () { $function (); }
1371 }] "-fno-builtin" ]
1374 # Returns true iff "fork" is available on the target system.
1376 proc check_fork_available {} {
1377 return [check_function_available "fork"]
1380 # Returns true iff "mkfifo" is available on the target system.
1382 proc check_mkfifo_available {} {
1383 if {[istarget *-*-cygwin*]} {
1384 # Cygwin has mkfifo, but support is incomplete.
1385 return 0
1388 return [check_function_available "mkfifo"]
1391 # Returns true iff "__cxa_atexit" is used on the target system.
1393 proc check_cxa_atexit_available { } {
1394 return [check_cached_effective_target cxa_atexit_available {
1395 if { [istarget "hppa*-*-hpux10*"] } {
1396 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1397 expr 0
1398 } elseif { [istarget "*-*-vxworks"] } {
1399 # vxworks doesn't have __cxa_atexit but subsequent test passes.
1400 expr 0
1401 } else {
1402 check_runtime_nocache cxa_atexit_available {
1403 // C++
1404 #include <stdlib.h>
1405 static unsigned int count;
1406 struct X
1408 X() { count = 1; }
1409 ~X()
1411 if (count != 3)
1412 exit(1);
1413 count = 4;
1416 void f()
1418 static X x;
1420 struct Y
1422 Y() { f(); count = 2; }
1423 ~Y()
1425 if (count != 2)
1426 exit(1);
1427 count = 3;
1430 Y y;
1431 int main() { return 0; }
1437 proc check_effective_target_objc2 { } {
1438 return [check_no_compiler_messages objc2 object {
1439 #ifdef __OBJC2__
1440 int dummy[1];
1441 #else
1442 #error
1443 #endif
1447 proc check_effective_target_next_runtime { } {
1448 return [check_no_compiler_messages objc2 object {
1449 #ifdef __NEXT_RUNTIME__
1450 int dummy[1];
1451 #else
1452 #error
1453 #endif
1457 # Return 1 if we're generating 32-bit code using default options, 0
1458 # otherwise.
1460 proc check_effective_target_ilp32 { } {
1461 return [check_no_compiler_messages ilp32 object {
1462 int dummy[sizeof (int) == 4
1463 && sizeof (void *) == 4
1464 && sizeof (long) == 4 ? 1 : -1];
1468 # Return 1 if we're generating 32-bit or larger integers using default
1469 # options, 0 otherwise.
1471 proc check_effective_target_int32plus { } {
1472 return [check_no_compiler_messages int32plus object {
1473 int dummy[sizeof (int) >= 4 ? 1 : -1];
1477 # Return 1 if we're generating 32-bit or larger pointers using default
1478 # options, 0 otherwise.
1480 proc check_effective_target_ptr32plus { } {
1481 return [check_no_compiler_messages ptr32plus object {
1482 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1486 # Return 1 if we support 32-bit or larger array and structure sizes
1487 # using default options, 0 otherwise.
1489 proc check_effective_target_size32plus { } {
1490 return [check_no_compiler_messages size32plus object {
1491 char dummy[65537];
1495 # Returns 1 if we're generating 16-bit or smaller integers with the
1496 # default options, 0 otherwise.
1498 proc check_effective_target_int16 { } {
1499 return [check_no_compiler_messages int16 object {
1500 int dummy[sizeof (int) < 4 ? 1 : -1];
1504 # Return 1 if we're generating 64-bit code using default options, 0
1505 # otherwise.
1507 proc check_effective_target_lp64 { } {
1508 return [check_no_compiler_messages lp64 object {
1509 int dummy[sizeof (int) == 4
1510 && sizeof (void *) == 8
1511 && sizeof (long) == 8 ? 1 : -1];
1515 # Return 1 if we're generating 64-bit code using default llp64 options,
1516 # 0 otherwise.
1518 proc check_effective_target_llp64 { } {
1519 return [check_no_compiler_messages llp64 object {
1520 int dummy[sizeof (int) == 4
1521 && sizeof (void *) == 8
1522 && sizeof (long long) == 8
1523 && sizeof (long) == 4 ? 1 : -1];
1527 # Return 1 if the target supports long double larger than double,
1528 # 0 otherwise.
1530 proc check_effective_target_large_long_double { } {
1531 return [check_no_compiler_messages large_long_double object {
1532 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1536 # Return 1 if the target supports double larger than float,
1537 # 0 otherwise.
1539 proc check_effective_target_large_double { } {
1540 return [check_no_compiler_messages large_double object {
1541 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
1545 # Return 1 if the target supports double of 64 bits,
1546 # 0 otherwise.
1548 proc check_effective_target_double64 { } {
1549 return [check_no_compiler_messages double64 object {
1550 int dummy[sizeof(double) == 8 ? 1 : -1];
1554 # Return 1 if the target supports double of at least 64 bits,
1555 # 0 otherwise.
1557 proc check_effective_target_double64plus { } {
1558 return [check_no_compiler_messages double64plus object {
1559 int dummy[sizeof(double) >= 8 ? 1 : -1];
1563 # Return 1 if the target supports compiling fixed-point,
1564 # 0 otherwise.
1566 proc check_effective_target_fixed_point { } {
1567 return [check_no_compiler_messages fixed_point object {
1568 _Sat _Fract x; _Sat _Accum y;
1572 # Return 1 if the target supports compiling decimal floating point,
1573 # 0 otherwise.
1575 proc check_effective_target_dfp_nocache { } {
1576 verbose "check_effective_target_dfp_nocache: compiling source" 2
1577 set ret [check_no_compiler_messages_nocache dfp object {
1578 float x __attribute__((mode(DD)));
1580 verbose "check_effective_target_dfp_nocache: returning $ret" 2
1581 return $ret
1584 proc check_effective_target_dfprt_nocache { } {
1585 return [check_runtime_nocache dfprt {
1586 typedef float d64 __attribute__((mode(DD)));
1587 d64 x = 1.2df, y = 2.3dd, z;
1588 int main () { z = x + y; return 0; }
1592 # Return 1 if the target supports compiling Decimal Floating Point,
1593 # 0 otherwise.
1595 # This won't change for different subtargets so cache the result.
1597 proc check_effective_target_dfp { } {
1598 return [check_cached_effective_target dfp {
1599 check_effective_target_dfp_nocache
1603 # Return 1 if the target supports linking and executing Decimal Floating
1604 # Point, 0 otherwise.
1606 # This won't change for different subtargets so cache the result.
1608 proc check_effective_target_dfprt { } {
1609 return [check_cached_effective_target dfprt {
1610 check_effective_target_dfprt_nocache
1614 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1616 proc check_effective_target_ucn_nocache { } {
1617 # -std=c99 is only valid for C
1618 if [check_effective_target_c] {
1619 set ucnopts "-std=c99"
1621 append ucnopts " -fextended-identifiers"
1622 verbose "check_effective_target_ucn_nocache: compiling source" 2
1623 set ret [check_no_compiler_messages_nocache ucn object {
1624 int \u00C0;
1625 } $ucnopts]
1626 verbose "check_effective_target_ucn_nocache: returning $ret" 2
1627 return $ret
1630 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1632 # This won't change for different subtargets, so cache the result.
1634 proc check_effective_target_ucn { } {
1635 return [check_cached_effective_target ucn {
1636 check_effective_target_ucn_nocache
1640 # Return 1 if the target needs a command line argument to enable a SIMD
1641 # instruction set.
1643 proc check_effective_target_vect_cmdline_needed { } {
1644 global et_vect_cmdline_needed_saved
1645 global et_vect_cmdline_needed_target_name
1647 if { ![info exists et_vect_cmdline_needed_target_name] } {
1648 set et_vect_cmdline_needed_target_name ""
1651 # If the target has changed since we set the cached value, clear it.
1652 set current_target [current_target_name]
1653 if { $current_target != $et_vect_cmdline_needed_target_name } {
1654 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
1655 set et_vect_cmdline_needed_target_name $current_target
1656 if { [info exists et_vect_cmdline_needed_saved] } {
1657 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
1658 unset et_vect_cmdline_needed_saved
1662 if [info exists et_vect_cmdline_needed_saved] {
1663 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
1664 } else {
1665 set et_vect_cmdline_needed_saved 1
1666 if { [istarget alpha*-*-*]
1667 || [istarget ia64-*-*]
1668 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
1669 && [check_effective_target_lp64])
1670 || ([istarget powerpc*-*-*]
1671 && ([check_effective_target_powerpc_spe]
1672 || [check_effective_target_powerpc_altivec]))
1673 || [istarget spu-*-*]
1674 || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
1675 set et_vect_cmdline_needed_saved 0
1679 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
1680 return $et_vect_cmdline_needed_saved
1683 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
1685 # This won't change for different subtargets so cache the result.
1687 proc check_effective_target_vect_int { } {
1688 global et_vect_int_saved
1690 if [info exists et_vect_int_saved] {
1691 verbose "check_effective_target_vect_int: using cached result" 2
1692 } else {
1693 set et_vect_int_saved 0
1694 if { [istarget i?86-*-*]
1695 || ([istarget powerpc*-*-*]
1696 && ![istarget powerpc-*-linux*paired*])
1697 || [istarget spu-*-*]
1698 || [istarget x86_64-*-*]
1699 || [istarget sparc*-*-*]
1700 || [istarget alpha*-*-*]
1701 || [istarget ia64-*-*]
1702 || [check_effective_target_arm32]
1703 || ([istarget mips*-*-*]
1704 && [check_effective_target_mips_loongson]) } {
1705 set et_vect_int_saved 1
1709 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
1710 return $et_vect_int_saved
1713 # Return 1 if the target supports signed int->float conversion
1716 proc check_effective_target_vect_intfloat_cvt { } {
1717 global et_vect_intfloat_cvt_saved
1719 if [info exists et_vect_intfloat_cvt_saved] {
1720 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
1721 } else {
1722 set et_vect_intfloat_cvt_saved 0
1723 if { [istarget i?86-*-*]
1724 || ([istarget powerpc*-*-*]
1725 && ![istarget powerpc-*-linux*paired*])
1726 || [istarget x86_64-*-*] } {
1727 set et_vect_intfloat_cvt_saved 1
1731 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
1732 return $et_vect_intfloat_cvt_saved
1735 #Return 1 if we're supporting __int128 for target, 0 otherwise.
1737 proc check_effective_target_int128 { } {
1738 return [check_no_compiler_messages int128 object {
1739 int dummy[
1740 #ifndef __SIZEOF_INT128__
1742 #else
1744 #endif
1749 # Return 1 if the target supports unsigned int->float conversion
1752 proc check_effective_target_vect_uintfloat_cvt { } {
1753 global et_vect_uintfloat_cvt_saved
1755 if [info exists et_vect_uintfloat_cvt_saved] {
1756 verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
1757 } else {
1758 set et_vect_uintfloat_cvt_saved 0
1759 if { [istarget i?86-*-*]
1760 || ([istarget powerpc*-*-*]
1761 && ![istarget powerpc-*-linux*paired*])
1762 || [istarget x86_64-*-*] } {
1763 set et_vect_uintfloat_cvt_saved 1
1767 verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
1768 return $et_vect_uintfloat_cvt_saved
1772 # Return 1 if the target supports signed float->int conversion
1775 proc check_effective_target_vect_floatint_cvt { } {
1776 global et_vect_floatint_cvt_saved
1778 if [info exists et_vect_floatint_cvt_saved] {
1779 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
1780 } else {
1781 set et_vect_floatint_cvt_saved 0
1782 if { [istarget i?86-*-*]
1783 || ([istarget powerpc*-*-*]
1784 && ![istarget powerpc-*-linux*paired*])
1785 || [istarget x86_64-*-*] } {
1786 set et_vect_floatint_cvt_saved 1
1790 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
1791 return $et_vect_floatint_cvt_saved
1794 # Return 1 if the target supports unsigned float->int conversion
1797 proc check_effective_target_vect_floatuint_cvt { } {
1798 global et_vect_floatuint_cvt_saved
1800 if [info exists et_vect_floatuint_cvt_saved] {
1801 verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
1802 } else {
1803 set et_vect_floatuint_cvt_saved 0
1804 if { ([istarget powerpc*-*-*]
1805 && ![istarget powerpc-*-linux*paired*]) } {
1806 set et_vect_floatuint_cvt_saved 1
1810 verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
1811 return $et_vect_floatuint_cvt_saved
1814 # Return 1 is this is an arm target using 32-bit instructions
1815 proc check_effective_target_arm32 { } {
1816 return [check_no_compiler_messages arm32 assembly {
1817 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
1818 #error FOO
1819 #endif
1823 # Return 1 if this is an ARM target that only supports aligned vector accesses
1824 proc check_effective_target_arm_vect_no_misalign { } {
1825 return [check_no_compiler_messages arm_vect_no_misalign assembly {
1826 #if !defined(__arm__) \
1827 || (defined(__ARMEL__) \
1828 && (!defined(__thumb__) || defined(__thumb2__)))
1829 #error FOO
1830 #endif
1835 # Return 1 if this is an ARM target supporting -mfpu=vfp
1836 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
1837 # options.
1839 proc check_effective_target_arm_vfp_ok { } {
1840 if { [check_effective_target_arm32] } {
1841 return [check_no_compiler_messages arm_vfp_ok object {
1842 int dummy;
1843 } "-mfpu=vfp -mfloat-abi=softfp"]
1844 } else {
1845 return 0
1849 # Return 1 if this is an ARM target supporting -mfpu=vfp
1850 # -mfloat-abi=hard. Some multilibs may be incompatible with these
1851 # options.
1853 proc check_effective_target_arm_hard_vfp_ok { } {
1854 if { [check_effective_target_arm32] } {
1855 return [check_no_compiler_messages arm_hard_vfp_ok executable {
1856 int main() { return 0;}
1857 } "-mfpu=vfp -mfloat-abi=hard"]
1858 } else {
1859 return 0
1863 # Add the options needed for NEON. We need either -mfloat-abi=softfp
1864 # or -mfloat-abi=hard, but if one is already specified by the
1865 # multilib, use it. Similarly, if a -mfpu option already enables
1866 # NEON, do not add -mfpu=neon.
1868 proc add_options_for_arm_neon { flags } {
1869 if { ! [check_effective_target_arm_neon_ok] } {
1870 return "$flags"
1872 global et_arm_neon_flags
1873 return "$flags $et_arm_neon_flags"
1876 # Return 1 if this is an ARM target supporting -mfpu=neon
1877 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
1878 # incompatible with these options. Also set et_arm_neon_flags to the
1879 # best options to add.
1881 proc check_effective_target_arm_neon_ok_nocache { } {
1882 global et_arm_neon_flags
1883 set et_arm_neon_flags ""
1884 if { [check_effective_target_arm32] } {
1885 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
1886 if { [check_no_compiler_messages_nocache arm_neon_ok object {
1887 #include "arm_neon.h"
1888 int dummy;
1889 } "$flags"] } {
1890 set et_arm_neon_flags $flags
1891 return 1
1896 return 0
1899 proc check_effective_target_arm_neon_ok { } {
1900 return [check_cached_effective_target arm_neon_ok \
1901 check_effective_target_arm_neon_ok_nocache]
1904 # Add the options needed for NEON. We need either -mfloat-abi=softfp
1905 # or -mfloat-abi=hard, but if one is already specified by the
1906 # multilib, use it.
1908 proc add_options_for_arm_neon_fp16 { flags } {
1909 if { ! [check_effective_target_arm_neon_fp16_ok] } {
1910 return "$flags"
1912 global et_arm_neon_fp16_flags
1913 return "$flags $et_arm_neon_fp16_flags"
1916 # Return 1 if this is an ARM target supporting -mfpu=neon-fp16
1917 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
1918 # incompatible with these options. Also set et_arm_neon_flags to the
1919 # best options to add.
1921 proc check_effective_target_arm_neon_fp16_ok_nocache { } {
1922 global et_arm_neon_fp16_flags
1923 set et_arm_neon_fp16_flags ""
1924 if { [check_effective_target_arm32] } {
1925 # Always add -mfpu=neon-fp16, since there is no preprocessor
1926 # macro for FP16 support.
1927 foreach flags {"-mfpu=neon-fp16" "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
1928 if { [check_no_compiler_messages_nocache arm_neon_fp16_ok object {
1929 #include "arm_neon.h"
1930 int dummy;
1931 } "$flags"] } {
1932 set et_arm_neon_fp16_flags $flags
1933 return 1
1938 return 0
1941 proc check_effective_target_arm_neon_fp16_ok { } {
1942 return [check_cached_effective_target arm_neon_fp16_ok \
1943 check_effective_target_arm_neon_fp16_ok_nocache]
1946 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
1947 # used.
1949 proc check_effective_target_arm_thumb1_ok { } {
1950 return [check_no_compiler_messages arm_thumb1_ok assembly {
1951 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
1952 #error FOO
1953 #endif
1954 } "-mthumb"]
1957 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
1958 # used.
1960 proc check_effective_target_arm_thumb2_ok { } {
1961 return [check_no_compiler_messages arm_thumb2_ok assembly {
1962 #if !defined(__thumb2__)
1963 #error FOO
1964 #endif
1965 } "-mthumb"]
1968 # Return 1 if the target supports executing NEON instructions, 0
1969 # otherwise. Cache the result.
1971 proc check_effective_target_arm_neon_hw { } {
1972 return [check_runtime arm_neon_hw_available {
1974 main (void)
1976 long long a = 0, b = 1;
1977 asm ("vorr %P0, %P1, %P2"
1978 : "=w" (a)
1979 : "0" (a), "w" (b));
1980 return (a != 1);
1982 } [add_options_for_arm_neon ""]]
1985 # Return 1 if this is a ARM target with NEON enabled.
1987 proc check_effective_target_arm_neon { } {
1988 if { [check_effective_target_arm32] } {
1989 return [check_no_compiler_messages arm_neon object {
1990 #ifndef __ARM_NEON__
1991 #error not NEON
1992 #else
1993 int dummy;
1994 #endif
1996 } else {
1997 return 0
2001 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
2002 # the Loongson vector modes.
2004 proc check_effective_target_mips_loongson { } {
2005 return [check_no_compiler_messages loongson assembly {
2006 #if !defined(__mips_loongson_vector_rev)
2007 #error FOO
2008 #endif
2012 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
2013 # Architecture.
2015 proc check_effective_target_arm_eabi { } {
2016 return [check_no_compiler_messages arm_eabi object {
2017 #ifndef __ARM_EABI__
2018 #error not EABI
2019 #else
2020 int dummy;
2021 #endif
2025 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
2026 # Some multilibs may be incompatible with this option.
2028 proc check_effective_target_arm_iwmmxt_ok { } {
2029 if { [check_effective_target_arm32] } {
2030 return [check_no_compiler_messages arm_iwmmxt_ok object {
2031 int dummy;
2032 } "-mcpu=iwmmxt"]
2033 } else {
2034 return 0
2038 # Return 1 if this is a PowerPC target with floating-point registers.
2040 proc check_effective_target_powerpc_fprs { } {
2041 if { [istarget powerpc*-*-*]
2042 || [istarget rs6000-*-*] } {
2043 return [check_no_compiler_messages powerpc_fprs object {
2044 #ifdef __NO_FPRS__
2045 #error no FPRs
2046 #else
2047 int dummy;
2048 #endif
2050 } else {
2051 return 0
2055 # Return 1 if this is a PowerPC target with hardware double-precision
2056 # floating point.
2058 proc check_effective_target_powerpc_hard_double { } {
2059 if { [istarget powerpc*-*-*]
2060 || [istarget rs6000-*-*] } {
2061 return [check_no_compiler_messages powerpc_hard_double object {
2062 #ifdef _SOFT_DOUBLE
2063 #error soft double
2064 #else
2065 int dummy;
2066 #endif
2068 } else {
2069 return 0
2073 # Return 1 if this is a PowerPC target supporting -maltivec.
2075 proc check_effective_target_powerpc_altivec_ok { } {
2076 if { ([istarget powerpc*-*-*]
2077 && ![istarget powerpc-*-linux*paired*])
2078 || [istarget rs6000-*-*] } {
2079 # AltiVec is not supported on AIX before 5.3.
2080 if { [istarget powerpc*-*-aix4*]
2081 || [istarget powerpc*-*-aix5.1*]
2082 || [istarget powerpc*-*-aix5.2*] } {
2083 return 0
2085 return [check_no_compiler_messages powerpc_altivec_ok object {
2086 int dummy;
2087 } "-maltivec"]
2088 } else {
2089 return 0
2093 # Return 1 if this is a PowerPC target supporting -mvsx
2095 proc check_effective_target_powerpc_vsx_ok { } {
2096 if { ([istarget powerpc*-*-*]
2097 && ![istarget powerpc-*-linux*paired*])
2098 || [istarget rs6000-*-*] } {
2099 # AltiVec is not supported on AIX before 5.3.
2100 if { [istarget powerpc*-*-aix4*]
2101 || [istarget powerpc*-*-aix5.1*]
2102 || [istarget powerpc*-*-aix5.2*] } {
2103 return 0
2105 return [check_no_compiler_messages powerpc_vsx_ok object {
2106 int main (void) {
2107 #ifdef __MACH__
2108 asm volatile ("xxlor vs0,vs0,vs0");
2109 #else
2110 asm volatile ("xxlor 0,0,0");
2111 #endif
2112 return 0;
2114 } "-mvsx"]
2115 } else {
2116 return 0
2120 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
2122 proc check_effective_target_powerpc_ppu_ok { } {
2123 if [check_effective_target_powerpc_altivec_ok] {
2124 return [check_no_compiler_messages cell_asm_available object {
2125 int main (void) {
2126 #ifdef __MACH__
2127 asm volatile ("lvlx v0,v0,v0");
2128 #else
2129 asm volatile ("lvlx 0,0,0");
2130 #endif
2131 return 0;
2134 } else {
2135 return 0
2139 # Return 1 if this is a PowerPC target that supports SPU.
2141 proc check_effective_target_powerpc_spu { } {
2142 if [istarget powerpc*-*-linux*] {
2143 return [check_effective_target_powerpc_altivec_ok]
2144 } else {
2145 return 0
2149 # Return 1 if this is a PowerPC SPE target. The check includes options
2150 # specified by dg-options for this test, so don't cache the result.
2152 proc check_effective_target_powerpc_spe_nocache { } {
2153 if { [istarget powerpc*-*-*] } {
2154 return [check_no_compiler_messages_nocache powerpc_spe object {
2155 #ifndef __SPE__
2156 #error not SPE
2157 #else
2158 int dummy;
2159 #endif
2160 } [current_compiler_flags]]
2161 } else {
2162 return 0
2166 # Return 1 if this is a PowerPC target with SPE enabled.
2168 proc check_effective_target_powerpc_spe { } {
2169 if { [istarget powerpc*-*-*] } {
2170 return [check_no_compiler_messages powerpc_spe object {
2171 #ifndef __SPE__
2172 #error not SPE
2173 #else
2174 int dummy;
2175 #endif
2177 } else {
2178 return 0
2182 # Return 1 if this is a PowerPC target with Altivec enabled.
2184 proc check_effective_target_powerpc_altivec { } {
2185 if { [istarget powerpc*-*-*] } {
2186 return [check_no_compiler_messages powerpc_altivec object {
2187 #ifndef __ALTIVEC__
2188 #error not Altivec
2189 #else
2190 int dummy;
2191 #endif
2193 } else {
2194 return 0
2198 # Return 1 if this is a PowerPC 405 target. The check includes options
2199 # specified by dg-options for this test, so don't cache the result.
2201 proc check_effective_target_powerpc_405_nocache { } {
2202 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
2203 return [check_no_compiler_messages_nocache powerpc_405 object {
2204 #ifdef __PPC405__
2205 int dummy;
2206 #else
2207 #error not a PPC405
2208 #endif
2209 } [current_compiler_flags]]
2210 } else {
2211 return 0
2215 # Return 1 if this is a SPU target with a toolchain that
2216 # supports automatic overlay generation.
2218 proc check_effective_target_spu_auto_overlay { } {
2219 if { [istarget spu*-*-elf*] } {
2220 return [check_no_compiler_messages spu_auto_overlay executable {
2221 int main (void) { }
2222 } "-Wl,--auto-overlay" ]
2223 } else {
2224 return 0
2228 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
2229 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
2230 # test environment appears to run executables on such a simulator.
2232 proc check_effective_target_ultrasparc_hw { } {
2233 return [check_runtime ultrasparc_hw {
2234 int main() { return 0; }
2235 } "-mcpu=ultrasparc"]
2238 # Return 1 if the target supports hardware vector shift operation.
2240 proc check_effective_target_vect_shift { } {
2241 global et_vect_shift_saved
2243 if [info exists et_vect_shift_saved] {
2244 verbose "check_effective_target_vect_shift: using cached result" 2
2245 } else {
2246 set et_vect_shift_saved 0
2247 if { ([istarget powerpc*-*-*]
2248 && ![istarget powerpc-*-linux*paired*])
2249 || [istarget ia64-*-*]
2250 || [istarget i?86-*-*]
2251 || [istarget x86_64-*-*]
2252 || [check_effective_target_arm32]
2253 || ([istarget mips*-*-*]
2254 && [check_effective_target_mips_loongson]) } {
2255 set et_vect_shift_saved 1
2259 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
2260 return $et_vect_shift_saved
2263 # Return 1 if the target supports hardware vector shift operation with
2264 # scalar shift argument.
2266 proc check_effective_target_vect_shift_scalar { } {
2267 global et_vect_shift_scalar_saved
2269 if [info exists et_vect_shift_scalar_saved] {
2270 verbose "check_effective_target_vect_shift_scalar: using cached result" 2
2271 } else {
2272 set et_vect_shift_scalar_saved 0
2273 if { [istarget x86_64-*-*]
2274 || [istarget i?86-*-*] } {
2275 set et_vect_shift_scalar_saved 1
2279 verbose "check_effective_target_vect_shift_scalar: returning $et_vect_shift_scalar_saved" 2
2280 return $et_vect_shift_scalar_saved
2284 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
2286 # This can change for different subtargets so do not cache the result.
2288 proc check_effective_target_vect_long { } {
2289 if { [istarget i?86-*-*]
2290 || (([istarget powerpc*-*-*]
2291 && ![istarget powerpc-*-linux*paired*])
2292 && [check_effective_target_ilp32])
2293 || [istarget x86_64-*-*]
2294 || [check_effective_target_arm32]
2295 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
2296 set answer 1
2297 } else {
2298 set answer 0
2301 verbose "check_effective_target_vect_long: returning $answer" 2
2302 return $answer
2305 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
2307 # This won't change for different subtargets so cache the result.
2309 proc check_effective_target_vect_float { } {
2310 global et_vect_float_saved
2312 if [info exists et_vect_float_saved] {
2313 verbose "check_effective_target_vect_float: using cached result" 2
2314 } else {
2315 set et_vect_float_saved 0
2316 if { [istarget i?86-*-*]
2317 || [istarget powerpc*-*-*]
2318 || [istarget spu-*-*]
2319 || [istarget mipsisa64*-*-*]
2320 || [istarget x86_64-*-*]
2321 || [istarget ia64-*-*]
2322 || [check_effective_target_arm32] } {
2323 set et_vect_float_saved 1
2327 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
2328 return $et_vect_float_saved
2331 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
2333 # This won't change for different subtargets so cache the result.
2335 proc check_effective_target_vect_double { } {
2336 global et_vect_double_saved
2338 if [info exists et_vect_double_saved] {
2339 verbose "check_effective_target_vect_double: using cached result" 2
2340 } else {
2341 set et_vect_double_saved 0
2342 if { [istarget i?86-*-*]
2343 || [istarget x86_64-*-*] } {
2344 if { [check_no_compiler_messages vect_double assembly {
2345 #ifdef __tune_atom__
2346 # error No double vectorizer support.
2347 #endif
2348 }] } {
2349 set et_vect_double_saved 1
2350 } else {
2351 set et_vect_double_saved 0
2353 } elseif { [istarget spu-*-*] } {
2354 set et_vect_double_saved 1
2358 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
2359 return $et_vect_double_saved
2362 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
2364 # This won't change for different subtargets so cache the result.
2366 proc check_effective_target_vect_long_long { } {
2367 global et_vect_long_long_saved
2369 if [info exists et_vect_long_long_saved] {
2370 verbose "check_effective_target_vect_long_long: using cached result" 2
2371 } else {
2372 set et_vect_long_long_saved 0
2373 if { [istarget i?86-*-*]
2374 || [istarget x86_64-*-*] } {
2375 set et_vect_long_long_saved 1
2379 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
2380 return $et_vect_long_long_saved
2384 # Return 1 if the target plus current options does not support a vector
2385 # max instruction on "int", 0 otherwise.
2387 # This won't change for different subtargets so cache the result.
2389 proc check_effective_target_vect_no_int_max { } {
2390 global et_vect_no_int_max_saved
2392 if [info exists et_vect_no_int_max_saved] {
2393 verbose "check_effective_target_vect_no_int_max: using cached result" 2
2394 } else {
2395 set et_vect_no_int_max_saved 0
2396 if { [istarget sparc*-*-*]
2397 || [istarget spu-*-*]
2398 || [istarget alpha*-*-*]
2399 || ([istarget mips*-*-*]
2400 && [check_effective_target_mips_loongson]) } {
2401 set et_vect_no_int_max_saved 1
2404 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
2405 return $et_vect_no_int_max_saved
2408 # Return 1 if the target plus current options does not support a vector
2409 # add instruction on "int", 0 otherwise.
2411 # This won't change for different subtargets so cache the result.
2413 proc check_effective_target_vect_no_int_add { } {
2414 global et_vect_no_int_add_saved
2416 if [info exists et_vect_no_int_add_saved] {
2417 verbose "check_effective_target_vect_no_int_add: using cached result" 2
2418 } else {
2419 set et_vect_no_int_add_saved 0
2420 # Alpha only supports vector add on V8QI and V4HI.
2421 if { [istarget alpha*-*-*] } {
2422 set et_vect_no_int_add_saved 1
2425 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
2426 return $et_vect_no_int_add_saved
2429 # Return 1 if the target plus current options does not support vector
2430 # bitwise instructions, 0 otherwise.
2432 # This won't change for different subtargets so cache the result.
2434 proc check_effective_target_vect_no_bitwise { } {
2435 global et_vect_no_bitwise_saved
2437 if [info exists et_vect_no_bitwise_saved] {
2438 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
2439 } else {
2440 set et_vect_no_bitwise_saved 0
2442 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
2443 return $et_vect_no_bitwise_saved
2446 # Return 1 if the target plus current options supports vector permutation,
2447 # 0 otherwise.
2449 # This won't change for different subtargets so cache the result.
2451 proc check_effective_target_vect_perm { } {
2452 global et_vect_perm
2454 if [info exists et_vect_perm_saved] {
2455 verbose "check_effective_target_vect_perm: using cached result" 2
2456 } else {
2457 set et_vect_perm_saved 0
2458 if { [istarget powerpc*-*-*]
2459 || [istarget spu-*-*]
2460 || [istarget i?86-*-*]
2461 || [istarget x86_64-*-*] } {
2462 set et_vect_perm_saved 1
2465 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
2466 return $et_vect_perm_saved
2469 # Return 1 if the target plus current options supports vector permutation
2470 # on byte-sized elements, 0 otherwise.
2472 # This won't change for different subtargets so cache the result.
2474 proc check_effective_target_vect_perm_byte { } {
2475 global et_vect_perm_byte
2477 if [info exists et_vect_perm_byte_saved] {
2478 verbose "check_effective_target_vect_perm_byte: using cached result" 2
2479 } else {
2480 set et_vect_perm_byte_saved 0
2481 if { [istarget powerpc*-*-*]
2482 || [istarget spu-*-*] } {
2483 set et_vect_perm_byte_saved 1
2486 verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
2487 return $et_vect_perm_byte_saved
2490 # Return 1 if the target plus current options supports vector permutation
2491 # on short-sized elements, 0 otherwise.
2493 # This won't change for different subtargets so cache the result.
2495 proc check_effective_target_vect_perm_short { } {
2496 global et_vect_perm_short
2498 if [info exists et_vect_perm_short_saved] {
2499 verbose "check_effective_target_vect_perm_short: using cached result" 2
2500 } else {
2501 set et_vect_perm_short_saved 0
2502 if { [istarget powerpc*-*-*]
2503 || [istarget spu-*-*] } {
2504 set et_vect_perm_short_saved 1
2507 verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
2508 return $et_vect_perm_short_saved
2511 # Return 1 if the target plus current options supports a vector
2512 # widening summation of *short* args into *int* result, 0 otherwise.
2514 # This won't change for different subtargets so cache the result.
2516 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
2517 global et_vect_widen_sum_hi_to_si_pattern
2519 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
2520 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
2521 } else {
2522 set et_vect_widen_sum_hi_to_si_pattern_saved 0
2523 if { [istarget powerpc*-*-*]
2524 || [istarget ia64-*-*] } {
2525 set et_vect_widen_sum_hi_to_si_pattern_saved 1
2528 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
2529 return $et_vect_widen_sum_hi_to_si_pattern_saved
2532 # Return 1 if the target plus current options supports a vector
2533 # widening summation of *short* args into *int* result, 0 otherwise.
2534 # A target can also support this widening summation if it can support
2535 # promotion (unpacking) from shorts to ints.
2537 # This won't change for different subtargets so cache the result.
2539 proc check_effective_target_vect_widen_sum_hi_to_si { } {
2540 global et_vect_widen_sum_hi_to_si
2542 if [info exists et_vect_widen_sum_hi_to_si_saved] {
2543 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
2544 } else {
2545 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
2546 if { [istarget powerpc*-*-*]
2547 || [istarget ia64-*-*] } {
2548 set et_vect_widen_sum_hi_to_si_saved 1
2551 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
2552 return $et_vect_widen_sum_hi_to_si_saved
2555 # Return 1 if the target plus current options supports a vector
2556 # widening summation of *char* args into *short* result, 0 otherwise.
2557 # A target can also support this widening summation if it can support
2558 # promotion (unpacking) from chars to shorts.
2560 # This won't change for different subtargets so cache the result.
2562 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
2563 global et_vect_widen_sum_qi_to_hi
2565 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
2566 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
2567 } else {
2568 set et_vect_widen_sum_qi_to_hi_saved 0
2569 if { [check_effective_target_vect_unpack]
2570 || [istarget ia64-*-*] } {
2571 set et_vect_widen_sum_qi_to_hi_saved 1
2574 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
2575 return $et_vect_widen_sum_qi_to_hi_saved
2578 # Return 1 if the target plus current options supports a vector
2579 # widening summation of *char* args into *int* result, 0 otherwise.
2581 # This won't change for different subtargets so cache the result.
2583 proc check_effective_target_vect_widen_sum_qi_to_si { } {
2584 global et_vect_widen_sum_qi_to_si
2586 if [info exists et_vect_widen_sum_qi_to_si_saved] {
2587 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
2588 } else {
2589 set et_vect_widen_sum_qi_to_si_saved 0
2590 if { [istarget powerpc*-*-*] } {
2591 set et_vect_widen_sum_qi_to_si_saved 1
2594 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
2595 return $et_vect_widen_sum_qi_to_si_saved
2598 # Return 1 if the target plus current options supports a vector
2599 # widening multiplication of *char* args into *short* result, 0 otherwise.
2600 # A target can also support this widening multplication if it can support
2601 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
2602 # multiplication of shorts).
2604 # This won't change for different subtargets so cache the result.
2607 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
2608 global et_vect_widen_mult_qi_to_hi
2610 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
2611 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
2612 } else {
2613 if { [check_effective_target_vect_unpack]
2614 && [check_effective_target_vect_short_mult] } {
2615 set et_vect_widen_mult_qi_to_hi_saved 1
2616 } else {
2617 set et_vect_widen_mult_qi_to_hi_saved 0
2619 if { [istarget powerpc*-*-*] } {
2620 set et_vect_widen_mult_qi_to_hi_saved 1
2623 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
2624 return $et_vect_widen_mult_qi_to_hi_saved
2627 # Return 1 if the target plus current options supports a vector
2628 # widening multiplication of *short* args into *int* result, 0 otherwise.
2629 # A target can also support this widening multplication if it can support
2630 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
2631 # multiplication of ints).
2633 # This won't change for different subtargets so cache the result.
2636 proc check_effective_target_vect_widen_mult_hi_to_si { } {
2637 global et_vect_widen_mult_hi_to_si
2639 if [info exists et_vect_widen_mult_hi_to_si_saved] {
2640 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
2641 } else {
2642 if { [check_effective_target_vect_unpack]
2643 && [check_effective_target_vect_int_mult] } {
2644 set et_vect_widen_mult_hi_to_si_saved 1
2645 } else {
2646 set et_vect_widen_mult_hi_to_si_saved 0
2648 if { [istarget powerpc*-*-*]
2649 || [istarget spu-*-*]
2650 || [istarget ia64-*-*]
2651 || [istarget i?86-*-*]
2652 || [istarget x86_64-*-*] } {
2653 set et_vect_widen_mult_hi_to_si_saved 1
2656 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
2657 return $et_vect_widen_mult_hi_to_si_saved
2660 # Return 1 if the target plus current options supports a vector
2661 # dot-product of signed chars, 0 otherwise.
2663 # This won't change for different subtargets so cache the result.
2665 proc check_effective_target_vect_sdot_qi { } {
2666 global et_vect_sdot_qi
2668 if [info exists et_vect_sdot_qi_saved] {
2669 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
2670 } else {
2671 set et_vect_sdot_qi_saved 0
2672 if { [istarget ia64-*-*] } {
2673 set et_vect_udot_qi_saved 1
2676 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
2677 return $et_vect_sdot_qi_saved
2680 # Return 1 if the target plus current options supports a vector
2681 # dot-product of unsigned chars, 0 otherwise.
2683 # This won't change for different subtargets so cache the result.
2685 proc check_effective_target_vect_udot_qi { } {
2686 global et_vect_udot_qi
2688 if [info exists et_vect_udot_qi_saved] {
2689 verbose "check_effective_target_vect_udot_qi: using cached result" 2
2690 } else {
2691 set et_vect_udot_qi_saved 0
2692 if { [istarget powerpc*-*-*]
2693 || [istarget ia64-*-*] } {
2694 set et_vect_udot_qi_saved 1
2697 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
2698 return $et_vect_udot_qi_saved
2701 # Return 1 if the target plus current options supports a vector
2702 # dot-product of signed shorts, 0 otherwise.
2704 # This won't change for different subtargets so cache the result.
2706 proc check_effective_target_vect_sdot_hi { } {
2707 global et_vect_sdot_hi
2709 if [info exists et_vect_sdot_hi_saved] {
2710 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
2711 } else {
2712 set et_vect_sdot_hi_saved 0
2713 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2714 || [istarget ia64-*-*]
2715 || [istarget i?86-*-*]
2716 || [istarget x86_64-*-*] } {
2717 set et_vect_sdot_hi_saved 1
2720 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
2721 return $et_vect_sdot_hi_saved
2724 # Return 1 if the target plus current options supports a vector
2725 # dot-product of unsigned shorts, 0 otherwise.
2727 # This won't change for different subtargets so cache the result.
2729 proc check_effective_target_vect_udot_hi { } {
2730 global et_vect_udot_hi
2732 if [info exists et_vect_udot_hi_saved] {
2733 verbose "check_effective_target_vect_udot_hi: using cached result" 2
2734 } else {
2735 set et_vect_udot_hi_saved 0
2736 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
2737 set et_vect_udot_hi_saved 1
2740 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
2741 return $et_vect_udot_hi_saved
2745 # Return 1 if the target plus current options supports a vector
2746 # demotion (packing) of shorts (to chars) and ints (to shorts)
2747 # using modulo arithmetic, 0 otherwise.
2749 # This won't change for different subtargets so cache the result.
2751 proc check_effective_target_vect_pack_trunc { } {
2752 global et_vect_pack_trunc
2754 if [info exists et_vect_pack_trunc_saved] {
2755 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
2756 } else {
2757 set et_vect_pack_trunc_saved 0
2758 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2759 || [istarget i?86-*-*]
2760 || [istarget x86_64-*-*]
2761 || [istarget spu-*-*]
2762 || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
2763 set et_vect_pack_trunc_saved 1
2766 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
2767 return $et_vect_pack_trunc_saved
2770 # Return 1 if the target plus current options supports a vector
2771 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
2773 # This won't change for different subtargets so cache the result.
2775 proc check_effective_target_vect_unpack { } {
2776 global et_vect_unpack
2778 if [info exists et_vect_unpack_saved] {
2779 verbose "check_effective_target_vect_unpack: using cached result" 2
2780 } else {
2781 set et_vect_unpack_saved 0
2782 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
2783 || [istarget i?86-*-*]
2784 || [istarget x86_64-*-*]
2785 || [istarget spu-*-*]
2786 || [istarget ia64-*-*]
2787 || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
2788 set et_vect_unpack_saved 1
2791 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
2792 return $et_vect_unpack_saved
2795 # Return 1 if the target plus current options does not guarantee
2796 # that its STACK_BOUNDARY is >= the reguired vector alignment.
2798 # This won't change for different subtargets so cache the result.
2800 proc check_effective_target_unaligned_stack { } {
2801 global et_unaligned_stack_saved
2803 if [info exists et_unaligned_stack_saved] {
2804 verbose "check_effective_target_unaligned_stack: using cached result" 2
2805 } else {
2806 set et_unaligned_stack_saved 0
2808 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
2809 return $et_unaligned_stack_saved
2812 # Return 1 if the target plus current options does not support a vector
2813 # alignment mechanism, 0 otherwise.
2815 # This won't change for different subtargets so cache the result.
2817 proc check_effective_target_vect_no_align { } {
2818 global et_vect_no_align_saved
2820 if [info exists et_vect_no_align_saved] {
2821 verbose "check_effective_target_vect_no_align: using cached result" 2
2822 } else {
2823 set et_vect_no_align_saved 0
2824 if { [istarget mipsisa64*-*-*]
2825 || [istarget sparc*-*-*]
2826 || [istarget ia64-*-*]
2827 || [check_effective_target_arm_vect_no_misalign]
2828 || ([istarget mips*-*-*]
2829 && [check_effective_target_mips_loongson]) } {
2830 set et_vect_no_align_saved 1
2833 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
2834 return $et_vect_no_align_saved
2837 # Return 1 if the target supports a vector misalign access, 0 otherwise.
2839 # This won't change for different subtargets so cache the result.
2841 proc check_effective_target_vect_hw_misalign { } {
2842 global et_vect_hw_misalign_saved
2844 if [info exists et_vect_hw_misalign_saved] {
2845 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
2846 } else {
2847 set et_vect_hw_misalign_saved 0
2848 if { ([istarget x86_64-*-*]
2849 || [istarget i?86-*-*]) } {
2850 set et_vect_hw_misalign_saved 1
2853 verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
2854 return $et_vect_hw_misalign_saved
2858 # Return 1 if arrays are aligned to the vector alignment
2859 # boundary, 0 otherwise.
2861 # This won't change for different subtargets so cache the result.
2863 proc check_effective_target_vect_aligned_arrays { } {
2864 global et_vect_aligned_arrays
2866 if [info exists et_vect_aligned_arrays_saved] {
2867 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
2868 } else {
2869 set et_vect_aligned_arrays_saved 0
2870 if { (([istarget x86_64-*-*]
2871 || [istarget i?86-*-*]) && [is-effective-target lp64])
2872 || [istarget spu-*-*] } {
2873 set et_vect_aligned_arrays_saved 1
2876 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
2877 return $et_vect_aligned_arrays_saved
2880 # Return 1 if types of size 32 bit or less are naturally aligned
2881 # (aligned to their type-size), 0 otherwise.
2883 # This won't change for different subtargets so cache the result.
2885 proc check_effective_target_natural_alignment_32 { } {
2886 global et_natural_alignment_32
2888 if [info exists et_natural_alignment_32_saved] {
2889 verbose "check_effective_target_natural_alignment_32: using cached result" 2
2890 } else {
2891 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
2892 set et_natural_alignment_32_saved 1
2893 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
2894 set et_natural_alignment_32_saved 0
2897 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
2898 return $et_natural_alignment_32_saved
2901 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
2902 # type-size), 0 otherwise.
2904 # This won't change for different subtargets so cache the result.
2906 proc check_effective_target_natural_alignment_64 { } {
2907 global et_natural_alignment_64
2909 if [info exists et_natural_alignment_64_saved] {
2910 verbose "check_effective_target_natural_alignment_64: using cached result" 2
2911 } else {
2912 set et_natural_alignment_64_saved 0
2913 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
2914 || [istarget spu-*-*] } {
2915 set et_natural_alignment_64_saved 1
2918 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
2919 return $et_natural_alignment_64_saved
2922 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
2924 # This won't change for different subtargets so cache the result.
2926 proc check_effective_target_vector_alignment_reachable { } {
2927 global et_vector_alignment_reachable
2929 if [info exists et_vector_alignment_reachable_saved] {
2930 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
2931 } else {
2932 if { [check_effective_target_vect_aligned_arrays]
2933 || [check_effective_target_natural_alignment_32] } {
2934 set et_vector_alignment_reachable_saved 1
2935 } else {
2936 set et_vector_alignment_reachable_saved 0
2939 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
2940 return $et_vector_alignment_reachable_saved
2943 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
2945 # This won't change for different subtargets so cache the result.
2947 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
2948 global et_vector_alignment_reachable_for_64bit
2950 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
2951 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
2952 } else {
2953 if { [check_effective_target_vect_aligned_arrays]
2954 || [check_effective_target_natural_alignment_64] } {
2955 set et_vector_alignment_reachable_for_64bit_saved 1
2956 } else {
2957 set et_vector_alignment_reachable_for_64bit_saved 0
2960 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
2961 return $et_vector_alignment_reachable_for_64bit_saved
2964 # Return 1 if the target only requires element alignment for vector accesses
2966 proc check_effective_target_vect_element_align { } {
2967 global et_vect_element_align
2969 if [info exists et_vect_element_align] {
2970 verbose "check_effective_target_vect_element_align: using cached result" 2
2971 } else {
2972 set et_vect_element_align 0
2973 if { [istarget arm*-*-*]
2974 || [check_effective_target_vect_hw_misalign] } {
2975 set et_vect_element_align 1
2979 verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
2980 return $et_vect_element_align
2983 # Return 1 if the target supports vector conditional operations, 0 otherwise.
2985 proc check_effective_target_vect_condition { } {
2986 global et_vect_cond_saved
2988 if [info exists et_vect_cond_saved] {
2989 verbose "check_effective_target_vect_cond: using cached result" 2
2990 } else {
2991 set et_vect_cond_saved 0
2992 if { [istarget powerpc*-*-*]
2993 || [istarget ia64-*-*]
2994 || [istarget i?86-*-*]
2995 || [istarget spu-*-*]
2996 || [istarget x86_64-*-*] } {
2997 set et_vect_cond_saved 1
3001 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
3002 return $et_vect_cond_saved
3005 # Return 1 if the target supports vector char multiplication, 0 otherwise.
3007 proc check_effective_target_vect_char_mult { } {
3008 global et_vect_char_mult_saved
3010 if [info exists et_vect_char_mult_saved] {
3011 verbose "check_effective_target_vect_char_mult: using cached result" 2
3012 } else {
3013 set et_vect_char_mult_saved 0
3014 if { [istarget ia64-*-*]
3015 || [istarget i?86-*-*]
3016 || [istarget x86_64-*-*] } {
3017 set et_vect_char_mult_saved 1
3021 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
3022 return $et_vect_char_mult_saved
3025 # Return 1 if the target supports vector short multiplication, 0 otherwise.
3027 proc check_effective_target_vect_short_mult { } {
3028 global et_vect_short_mult_saved
3030 if [info exists et_vect_short_mult_saved] {
3031 verbose "check_effective_target_vect_short_mult: using cached result" 2
3032 } else {
3033 set et_vect_short_mult_saved 0
3034 if { [istarget ia64-*-*]
3035 || [istarget spu-*-*]
3036 || [istarget i?86-*-*]
3037 || [istarget x86_64-*-*]
3038 || [istarget powerpc*-*-*]
3039 || [check_effective_target_arm32]
3040 || ([istarget mips*-*-*]
3041 && [check_effective_target_mips_loongson]) } {
3042 set et_vect_short_mult_saved 1
3046 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
3047 return $et_vect_short_mult_saved
3050 # Return 1 if the target supports vector int multiplication, 0 otherwise.
3052 proc check_effective_target_vect_int_mult { } {
3053 global et_vect_int_mult_saved
3055 if [info exists et_vect_int_mult_saved] {
3056 verbose "check_effective_target_vect_int_mult: using cached result" 2
3057 } else {
3058 set et_vect_int_mult_saved 0
3059 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3060 || [istarget spu-*-*]
3061 || [istarget i?86-*-*]
3062 || [istarget x86_64-*-*]
3063 || [istarget ia64-*-*]
3064 || [check_effective_target_arm32] } {
3065 set et_vect_int_mult_saved 1
3069 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
3070 return $et_vect_int_mult_saved
3073 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
3075 proc check_effective_target_vect_extract_even_odd { } {
3076 global et_vect_extract_even_odd_saved
3078 if [info exists et_vect_extract_even_odd_saved] {
3079 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
3080 } else {
3081 set et_vect_extract_even_odd_saved 0
3082 if { [istarget powerpc*-*-*]
3083 || [istarget i?86-*-*]
3084 || [istarget x86_64-*-*]
3085 || [istarget ia64-*-*]
3086 || [istarget spu-*-*] } {
3087 set et_vect_extract_even_odd_saved 1
3091 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
3092 return $et_vect_extract_even_odd_saved
3095 # Return 1 if the target supports vector even/odd elements extraction of
3096 # vectors with SImode elements or larger, 0 otherwise.
3098 proc check_effective_target_vect_extract_even_odd_wide { } {
3099 global et_vect_extract_even_odd_wide_saved
3101 if [info exists et_vect_extract_even_odd_wide_saved] {
3102 verbose "check_effective_target_vect_extract_even_odd_wide: using cached result" 2
3103 } else {
3104 set et_vect_extract_even_odd_wide_saved 0
3105 if { [istarget powerpc*-*-*]
3106 || [istarget i?86-*-*]
3107 || [istarget x86_64-*-*]
3108 || [istarget ia64-*-*]
3109 || [istarget spu-*-*] } {
3110 set et_vect_extract_even_odd_wide_saved 1
3114 verbose "check_effective_target_vect_extract_even_wide_odd: returning $et_vect_extract_even_odd_wide_saved" 2
3115 return $et_vect_extract_even_odd_wide_saved
3118 # Return 1 if the target supports vector interleaving, 0 otherwise.
3120 proc check_effective_target_vect_interleave { } {
3121 global et_vect_interleave_saved
3123 if [info exists et_vect_interleave_saved] {
3124 verbose "check_effective_target_vect_interleave: using cached result" 2
3125 } else {
3126 set et_vect_interleave_saved 0
3127 if { [istarget powerpc*-*-*]
3128 || [istarget i?86-*-*]
3129 || [istarget x86_64-*-*]
3130 || [istarget ia64-*-*]
3131 || [istarget spu-*-*] } {
3132 set et_vect_interleave_saved 1
3136 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
3137 return $et_vect_interleave_saved
3140 # Return 1 if the target supports vector interleaving and extract even/odd, 0 otherwise.
3141 proc check_effective_target_vect_strided { } {
3142 global et_vect_strided_saved
3144 if [info exists et_vect_strided_saved] {
3145 verbose "check_effective_target_vect_strided: using cached result" 2
3146 } else {
3147 set et_vect_strided_saved 0
3148 if { [check_effective_target_vect_interleave]
3149 && [check_effective_target_vect_extract_even_odd] } {
3150 set et_vect_strided_saved 1
3154 verbose "check_effective_target_vect_strided: returning $et_vect_strided_saved" 2
3155 return $et_vect_strided_saved
3158 # Return 1 if the target supports vector interleaving and extract even/odd
3159 # for wide element types, 0 otherwise.
3160 proc check_effective_target_vect_strided_wide { } {
3161 global et_vect_strided_wide_saved
3163 if [info exists et_vect_strided_wide_saved] {
3164 verbose "check_effective_target_vect_strided_wide: using cached result" 2
3165 } else {
3166 set et_vect_strided_wide_saved 0
3167 if { [check_effective_target_vect_interleave]
3168 && [check_effective_target_vect_extract_even_odd_wide] } {
3169 set et_vect_strided_wide_saved 1
3173 verbose "check_effective_target_vect_strided_wide: returning $et_vect_strided_wide_saved" 2
3174 return $et_vect_strided_wide_saved
3177 # Return 1 if the target supports section-anchors
3179 proc check_effective_target_section_anchors { } {
3180 global et_section_anchors_saved
3182 if [info exists et_section_anchors_saved] {
3183 verbose "check_effective_target_section_anchors: using cached result" 2
3184 } else {
3185 set et_section_anchors_saved 0
3186 if { [istarget powerpc*-*-*]
3187 || [istarget arm*-*-*] } {
3188 set et_section_anchors_saved 1
3192 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
3193 return $et_section_anchors_saved
3196 # Return 1 if the target supports atomic operations on "int" and "long".
3198 proc check_effective_target_sync_int_long { } {
3199 global et_sync_int_long_saved
3201 if [info exists et_sync_int_long_saved] {
3202 verbose "check_effective_target_sync_int_long: using cached result" 2
3203 } else {
3204 set et_sync_int_long_saved 0
3205 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
3206 # load-reserved/store-conditional instructions.
3207 if { [istarget ia64-*-*]
3208 || [istarget i?86-*-*]
3209 || [istarget x86_64-*-*]
3210 || [istarget alpha*-*-*]
3211 || [istarget arm*-*-linux-gnueabi]
3212 || [istarget bfin*-*linux*]
3213 || [istarget hppa*-*linux*]
3214 || [istarget s390*-*-*]
3215 || [istarget powerpc*-*-*]
3216 || [istarget sparc64-*-*]
3217 || [istarget sparcv9-*-*]
3218 || [istarget mips*-*-*] } {
3219 set et_sync_int_long_saved 1
3223 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
3224 return $et_sync_int_long_saved
3227 # Return 1 if the target supports atomic operations on "char" and "short".
3229 proc check_effective_target_sync_char_short { } {
3230 global et_sync_char_short_saved
3232 if [info exists et_sync_char_short_saved] {
3233 verbose "check_effective_target_sync_char_short: using cached result" 2
3234 } else {
3235 set et_sync_char_short_saved 0
3236 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
3237 # load-reserved/store-conditional instructions.
3238 if { [istarget ia64-*-*]
3239 || [istarget i?86-*-*]
3240 || [istarget x86_64-*-*]
3241 || [istarget alpha*-*-*]
3242 || [istarget arm*-*-linux-gnueabi]
3243 || [istarget hppa*-*linux*]
3244 || [istarget s390*-*-*]
3245 || [istarget powerpc*-*-*]
3246 || [istarget sparc64-*-*]
3247 || [istarget sparcv9-*-*]
3248 || [istarget mips*-*-*] } {
3249 set et_sync_char_short_saved 1
3253 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
3254 return $et_sync_char_short_saved
3257 # Return 1 if the target uses a ColdFire FPU.
3259 proc check_effective_target_coldfire_fpu { } {
3260 return [check_no_compiler_messages coldfire_fpu assembly {
3261 #ifndef __mcffpu__
3262 #error FOO
3263 #endif
3267 # Return true if this is a uClibc target.
3269 proc check_effective_target_uclibc {} {
3270 return [check_no_compiler_messages uclibc object {
3271 #include <features.h>
3272 #if !defined (__UCLIBC__)
3273 #error FOO
3274 #endif
3278 # Return true if this is a uclibc target and if the uclibc feature
3279 # described by __$feature__ is not present.
3281 proc check_missing_uclibc_feature {feature} {
3282 return [check_no_compiler_messages $feature object "
3283 #include <features.h>
3284 #if !defined (__UCLIBC) || defined (__${feature}__)
3285 #error FOO
3286 #endif
3290 # Return true if this is a Newlib target.
3292 proc check_effective_target_newlib {} {
3293 return [check_no_compiler_messages newlib object {
3294 #include <newlib.h>
3298 # Return 1 if
3299 # (a) an error of a few ULP is expected in string to floating-point
3300 # conversion functions; and
3301 # (b) overflow is not always detected correctly by those functions.
3303 proc check_effective_target_lax_strtofp {} {
3304 # By default, assume that all uClibc targets suffer from this.
3305 return [check_effective_target_uclibc]
3308 # Return 1 if this is a target for which wcsftime is a dummy
3309 # function that always returns 0.
3311 proc check_effective_target_dummy_wcsftime {} {
3312 # By default, assume that all uClibc targets suffer from this.
3313 return [check_effective_target_uclibc]
3316 # Return 1 if constructors with initialization priority arguments are
3317 # supposed on this target.
3319 proc check_effective_target_init_priority {} {
3320 return [check_no_compiler_messages init_priority assembly "
3321 void f() __attribute__((constructor (1000)));
3322 void f() \{\}
3326 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
3327 # This can be used with any check_* proc that takes no argument and
3328 # returns only 1 or 0. It could be used with check_* procs that take
3329 # arguments with keywords that pass particular arguments.
3331 proc is-effective-target { arg } {
3332 set selected 0
3333 if { [info procs check_effective_target_${arg}] != [list] } {
3334 set selected [check_effective_target_${arg}]
3335 } else {
3336 switch $arg {
3337 "vmx_hw" { set selected [check_vmx_hw_available] }
3338 "vsx_hw" { set selected [check_vsx_hw_available] }
3339 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
3340 "named_sections" { set selected [check_named_sections_available] }
3341 "gc_sections" { set selected [check_gc_sections_available] }
3342 "cxa_atexit" { set selected [check_cxa_atexit_available] }
3343 default { error "unknown effective target keyword `$arg'" }
3346 verbose "is-effective-target: $arg $selected" 2
3347 return $selected
3350 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
3352 proc is-effective-target-keyword { arg } {
3353 if { [info procs check_effective_target_${arg}] != [list] } {
3354 return 1
3355 } else {
3356 # These have different names for their check_* procs.
3357 switch $arg {
3358 "vmx_hw" { return 1 }
3359 "vsx_hw" { return 1 }
3360 "ppc_recip_hw" { return 1 }
3361 "named_sections" { return 1 }
3362 "gc_sections" { return 1 }
3363 "cxa_atexit" { return 1 }
3364 default { return 0 }
3369 # Return 1 if target default to short enums
3371 proc check_effective_target_short_enums { } {
3372 return [check_no_compiler_messages short_enums assembly {
3373 enum foo { bar };
3374 int s[sizeof (enum foo) == 1 ? 1 : -1];
3378 # Return 1 if target supports merging string constants at link time.
3380 proc check_effective_target_string_merging { } {
3381 return [check_no_messages_and_pattern string_merging \
3382 "rodata\\.str" assembly {
3383 const char *var = "String";
3384 } {-O2}]
3387 # Return 1 if target has the basic signed and unsigned types in
3388 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
3389 # working <stdint.h> for all targets.
3391 proc check_effective_target_stdint_types { } {
3392 return [check_no_compiler_messages stdint_types assembly {
3393 #include <stdint.h>
3394 int8_t a; int16_t b; int32_t c; int64_t d;
3395 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
3399 # Return 1 if target has the basic signed and unsigned types in
3400 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
3401 # these types agree with those in the header, as some systems have
3402 # only <inttypes.h>.
3404 proc check_effective_target_inttypes_types { } {
3405 return [check_no_compiler_messages inttypes_types assembly {
3406 #include <inttypes.h>
3407 int8_t a; int16_t b; int32_t c; int64_t d;
3408 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
3412 # Return 1 if programs are intended to be run on a simulator
3413 # (i.e. slowly) rather than hardware (i.e. fast).
3415 proc check_effective_target_simulator { } {
3417 # All "src/sim" simulators set this one.
3418 if [board_info target exists is_simulator] {
3419 return [board_info target is_simulator]
3422 # The "sid" simulators don't set that one, but at least they set
3423 # this one.
3424 if [board_info target exists slow_simulator] {
3425 return [board_info target slow_simulator]
3428 return 0
3431 # Return 1 if the target is a VxWorks kernel.
3433 proc check_effective_target_vxworks_kernel { } {
3434 return [check_no_compiler_messages vxworks_kernel assembly {
3435 #if !defined __vxworks || defined __RTP__
3436 #error NO
3437 #endif
3441 # Return 1 if the target is a VxWorks RTP.
3443 proc check_effective_target_vxworks_rtp { } {
3444 return [check_no_compiler_messages vxworks_rtp assembly {
3445 #if !defined __vxworks || !defined __RTP__
3446 #error NO
3447 #endif
3451 # Return 1 if the target is expected to provide wide character support.
3453 proc check_effective_target_wchar { } {
3454 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
3455 return 0
3457 return [check_no_compiler_messages wchar assembly {
3458 #include <wchar.h>
3462 # Return 1 if the target has <pthread.h>.
3464 proc check_effective_target_pthread_h { } {
3465 return [check_no_compiler_messages pthread_h assembly {
3466 #include <pthread.h>
3470 # Return 1 if the target can truncate a file from a file-descriptor,
3471 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
3472 # chsize. We test for a trivially functional truncation; no stubs.
3473 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
3474 # different function to be used.
3476 proc check_effective_target_fd_truncate { } {
3477 set prog {
3478 #define _FILE_OFFSET_BITS 64
3479 #include <unistd.h>
3480 #include <stdio.h>
3481 #include <stdlib.h>
3482 int main ()
3484 FILE *f = fopen ("tst.tmp", "wb");
3485 int fd;
3486 const char t[] = "test writing more than ten characters";
3487 char s[11];
3488 fd = fileno (f);
3489 write (fd, t, sizeof (t) - 1);
3490 lseek (fd, 0, 0);
3491 if (ftruncate (fd, 10) != 0)
3492 exit (1);
3493 close (fd);
3494 f = fopen ("tst.tmp", "rb");
3495 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
3496 exit (1);
3497 exit (0);
3501 if { [check_runtime ftruncate $prog] } {
3502 return 1;
3505 regsub "ftruncate" $prog "chsize" prog
3506 return [check_runtime chsize $prog]
3509 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
3511 proc add_options_for_c99_runtime { flags } {
3512 if { [istarget *-*-solaris2*] } {
3513 return "$flags -std=c99"
3515 if { [istarget powerpc-*-darwin*] } {
3516 return "$flags -mmacosx-version-min=10.3"
3518 return $flags
3521 # Add to FLAGS all the target-specific flags needed to enable
3522 # full IEEE compliance mode.
3524 proc add_options_for_ieee { flags } {
3525 if { [istarget "alpha*-*-*"]
3526 || [istarget "sh*-*-*"] } {
3527 return "$flags -mieee"
3529 return $flags
3532 # Add to FLAGS the flags needed to enable functions to bind locally
3533 # when using pic/PIC passes in the testsuite.
3535 proc add_options_for_bind_pic_locally { flags } {
3536 if {[check_no_compiler_messages using_pic2 assembly {
3537 #if __PIC__ != 2
3538 #error FOO
3539 #endif
3540 }]} {
3541 return "$flags -fPIE"
3543 if {[check_no_compiler_messages using_pic1 assembly {
3544 #if __PIC__ != 1
3545 #error FOO
3546 #endif
3547 }]} {
3548 return "$flags -fpie"
3551 return $flags
3554 # Add to FLAGS the flags needed to enable 128-bit vectors.
3556 proc add_options_for_quad_vectors { flags } {
3557 if [is-effective-target arm_neon_ok] {
3558 return "$flags -mvectorize-with-neon-quad"
3561 return $flags
3564 # Return 1 if the target provides a full C99 runtime.
3566 proc check_effective_target_c99_runtime { } {
3567 return [check_cached_effective_target c99_runtime {
3568 global srcdir
3570 set file [open "$srcdir/gcc.dg/builtins-config.h"]
3571 set contents [read $file]
3572 close $file
3573 append contents {
3574 #ifndef HAVE_C99_RUNTIME
3575 #error FOO
3576 #endif
3578 check_no_compiler_messages_nocache c99_runtime assembly \
3579 $contents [add_options_for_c99_runtime ""]
3583 # Return 1 if target wchar_t is at least 4 bytes.
3585 proc check_effective_target_4byte_wchar_t { } {
3586 return [check_no_compiler_messages 4byte_wchar_t object {
3587 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
3591 # Return 1 if the target supports automatic stack alignment.
3593 proc check_effective_target_automatic_stack_alignment { } {
3594 # Ordinarily x86 supports automatic stack alignment ...
3595 if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
3596 if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
3597 # ... except Win64 SEH doesn't. Succeed for Win32 though.
3598 return [check_effective_target_ilp32];
3600 return 1;
3602 return 0;
3605 # Return 1 if avx instructions can be compiled.
3607 proc check_effective_target_avx { } {
3608 return [check_no_compiler_messages avx object {
3609 void _mm256_zeroall (void)
3611 __builtin_ia32_vzeroall ();
3613 } "-O2 -mavx" ]
3616 # Return 1 if sse instructions can be compiled.
3617 proc check_effective_target_sse { } {
3618 return [check_no_compiler_messages sse object {
3619 int main ()
3621 __builtin_ia32_stmxcsr ();
3622 return 0;
3624 } "-O2 -msse" ]
3627 # Return 1 if sse2 instructions can be compiled.
3628 proc check_effective_target_sse2 { } {
3629 return [check_no_compiler_messages sse2 object {
3630 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
3632 __m128i _mm_srli_si128 (__m128i __A, int __N)
3634 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
3636 } "-O2 -msse2" ]
3639 # Return 1 if F16C instructions can be compiled.
3641 proc check_effective_target_f16c { } {
3642 return [check_no_compiler_messages f16c object {
3643 #include "immintrin.h"
3644 float
3645 foo (unsigned short val)
3647 return _cvtsh_ss (val);
3649 } "-O2 -mf16c" ]
3652 # Return 1 if C wchar_t type is compatible with char16_t.
3654 proc check_effective_target_wchar_t_char16_t_compatible { } {
3655 return [check_no_compiler_messages wchar_t_char16_t object {
3656 __WCHAR_TYPE__ wc;
3657 __CHAR16_TYPE__ *p16 = &wc;
3658 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
3662 # Return 1 if C wchar_t type is compatible with char32_t.
3664 proc check_effective_target_wchar_t_char32_t_compatible { } {
3665 return [check_no_compiler_messages wchar_t_char32_t object {
3666 __WCHAR_TYPE__ wc;
3667 __CHAR32_TYPE__ *p32 = &wc;
3668 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
3672 # Return 1 if pow10 function exists.
3674 proc check_effective_target_pow10 { } {
3675 return [check_runtime pow10 {
3676 #include <math.h>
3677 int main () {
3678 double x;
3679 x = pow10 (1);
3680 return 0;
3682 } "-lm" ]
3685 # Return 1 if current options generate DFP instructions, 0 otherwise.
3687 proc check_effective_target_hard_dfp {} {
3688 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
3689 typedef float d64 __attribute__((mode(DD)));
3690 d64 x, y, z;
3691 void foo (void) { z = x + y; }
3695 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
3696 # for strchr etc. functions.
3698 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
3699 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
3700 #include <string.h>
3701 #include <wchar.h>
3702 #if !defined(__cplusplus) \
3703 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
3704 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
3705 ISO C++ correct string.h and wchar.h protos not supported.
3706 #else
3707 int i;
3708 #endif
3712 # Return 1 if GNU as is used.
3714 proc check_effective_target_gas { } {
3715 global use_gas_saved
3716 global tool
3718 if {![info exists use_gas_saved]} {
3719 # Check if the as used by gcc is GNU as.
3720 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
3721 # Provide /dev/null as input, otherwise gas times out reading from
3722 # stdin.
3723 set status [remote_exec host "$gcc_as" "-v /dev/null"]
3724 set as_output [lindex $status 1]
3725 if { [ string first "GNU" $as_output ] >= 0 } {
3726 set use_gas_saved 1
3727 } else {
3728 set use_gas_saved 0
3731 return $use_gas_saved
3734 # Return 1 if the compiler has been configure with link-time optimization
3735 # (LTO) support.
3737 proc check_effective_target_lto { } {
3738 global ENABLE_LTO
3739 return [info exists ENABLE_LTO]
3742 # Return 1 if this target supports the -fsplit-stack option, 0
3743 # otherwise.
3745 proc check_effective_target_split_stack {} {
3746 return [check_no_compiler_messages split_stack object {
3747 void foo (void) { }
3748 } "-fsplit-stack"]
3751 # Return 1 if the language for the compiler under test is C.
3753 proc check_effective_target_c { } {
3754 global tool
3755 if [string match $tool "gcc"] {
3756 return 1
3758 return 0
3761 # Return 1 if the language for the compiler under test is C++.
3763 proc check_effective_target_c++ { } {
3764 global tool
3765 if [string match $tool "g++"] {
3766 return 1
3768 return 0
3771 # Return 1 if expensive testcases should be run.
3773 proc check_effective_target_run_expensive_tests { } {
3774 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
3775 return 1
3777 return 0
3780 # Returns 1 if "mempcpy" is available on the target system.
3782 proc check_effective_target_mempcpy {} {
3783 return [check_function_available "mempcpy"]
3786 # Check whether the vectorizer tests are supported by the target and
3787 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
3788 # Set dg-do-what-default to either compile or run, depending on target
3789 # capabilities. Return 1 if vectorizer tests are supported by
3790 # target, 0 otherwise.
3792 proc check_vect_support_and_set_flags { } {
3793 global DEFAULT_VECTCFLAGS
3794 global dg-do-what-default
3796 if [istarget "powerpc-*paired*"] {
3797 lappend DEFAULT_VECTCFLAGS "-mpaired"
3798 if [check_750cl_hw_available] {
3799 set dg-do-what-default run
3800 } else {
3801 set dg-do-what-default compile
3803 } elseif [istarget "powerpc*-*-*"] {
3804 # Skip targets not supporting -maltivec.
3805 if ![is-effective-target powerpc_altivec_ok] {
3806 return 0
3809 lappend DEFAULT_VECTCFLAGS "-maltivec"
3810 if [check_vsx_hw_available] {
3811 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
3814 if [check_vmx_hw_available] {
3815 set dg-do-what-default run
3816 } else {
3817 if [is-effective-target ilp32] {
3818 # Specify a cpu that supports VMX for compile-only tests.
3819 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
3821 set dg-do-what-default compile
3823 } elseif { [istarget "spu-*-*"] } {
3824 set dg-do-what-default run
3825 } elseif { [istarget "i?86-*-*"] || [istarget "x86_64-*-*"] } {
3826 lappend DEFAULT_VECTCFLAGS "-msse2"
3827 if { [check_effective_target_sse2_runtime] } {
3828 set dg-do-what-default run
3829 } else {
3830 set dg-do-what-default compile
3832 } elseif { [istarget "mips*-*-*"]
3833 && ([check_effective_target_mpaired_single]
3834 || [check_effective_target_mips_loongson])
3835 && [check_effective_target_nomips16] } {
3836 if { [check_effective_target_mpaired_single] } {
3837 lappend DEFAULT_VECTCFLAGS "-mpaired-single"
3839 set dg-do-what-default run
3840 } elseif [istarget "sparc*-*-*"] {
3841 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
3842 if [check_effective_target_ultrasparc_hw] {
3843 set dg-do-what-default run
3844 } else {
3845 set dg-do-what-default compile
3847 } elseif [istarget "alpha*-*-*"] {
3848 # Alpha's vectorization capabilities are extremely limited.
3849 # It's more effort than its worth disabling all of the tests
3850 # that it cannot pass. But if you actually want to see what
3851 # does work, command out the return.
3852 return 0
3854 lappend DEFAULT_VECTCFLAGS "-mmax"
3855 if [check_alpha_max_hw_available] {
3856 set dg-do-what-default run
3857 } else {
3858 set dg-do-what-default compile
3860 } elseif [istarget "ia64-*-*"] {
3861 set dg-do-what-default run
3862 } elseif [is-effective-target arm_neon_ok] {
3863 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
3864 # NEON does not support denormals, so is not used for vectorization by
3865 # default to avoid loss of precision. We must pass -ffast-math to test
3866 # vectorization of float operations.
3867 lappend DEFAULT_VECTCFLAGS "-ffast-math"
3868 if [is-effective-target arm_neon_hw] {
3869 set dg-do-what-default run
3870 } else {
3871 set dg-do-what-default compile
3873 } else {
3874 return 0
3877 return 1