Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / ada / sem_util.adb
blob6962018dea7ea1c605105e821413a6d6149ed1ab
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Fname; use Fname;
37 with Freeze; use Freeze;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Nlists; use Nlists;
41 with Output; use Output;
42 with Opt; use Opt;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Attr; use Sem_Attr;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Disp; use Sem_Disp;
49 with Sem_Eval; use Sem_Eval;
50 with Sem_Res; use Sem_Res;
51 with Sem_Type; use Sem_Type;
52 with Sinfo; use Sinfo;
53 with Sinput; use Sinput;
54 with Stand; use Stand;
55 with Style;
56 with Stringt; use Stringt;
57 with Table;
58 with Targparm; use Targparm;
59 with Tbuild; use Tbuild;
60 with Ttypes; use Ttypes;
61 with Uname; use Uname;
63 with GNAT.HTable; use GNAT.HTable;
65 package body Sem_Util is
67 ----------------------------------------
68 -- Global_Variables for New_Copy_Tree --
69 ----------------------------------------
71 -- These global variables are used by New_Copy_Tree. See description
72 -- of the body of this subprogram for details. Global variables can be
73 -- safely used by New_Copy_Tree, since there is no case of a recursive
74 -- call from the processing inside New_Copy_Tree.
76 NCT_Hash_Threshhold : constant := 20;
77 -- If there are more than this number of pairs of entries in the
78 -- map, then Hash_Tables_Used will be set, and the hash tables will
79 -- be initialized and used for the searches.
81 NCT_Hash_Tables_Used : Boolean := False;
82 -- Set to True if hash tables are in use
84 NCT_Table_Entries : Nat;
85 -- Count entries in table to see if threshhold is reached
87 NCT_Hash_Table_Setup : Boolean := False;
88 -- Set to True if hash table contains data. We set this True if we
89 -- setup the hash table with data, and leave it set permanently
90 -- from then on, this is a signal that second and subsequent users
91 -- of the hash table must clear the old entries before reuse.
93 subtype NCT_Header_Num is Int range 0 .. 511;
94 -- Defines range of headers in hash tables (512 headers)
96 ----------------------------------
97 -- Order Dependence (AI05-0144) --
98 ----------------------------------
100 -- Each actual in a call is entered into the table below. A flag indicates
101 -- whether the corresponding formal is OUT or IN OUT. Each top-level call
102 -- (procedure call, condition, assignment) examines all the actuals for a
103 -- possible order dependence. The table is reset after each such check.
104 -- The actuals to be checked in a call to Check_Order_Dependence are at
105 -- positions 1 .. Last.
107 type Actual_Name is record
108 Act : Node_Id;
109 Is_Writable : Boolean;
110 end record;
112 package Actuals_In_Call is new Table.Table (
113 Table_Component_Type => Actual_Name,
114 Table_Index_Type => Int,
115 Table_Low_Bound => 0,
116 Table_Initial => 10,
117 Table_Increment => 100,
118 Table_Name => "Actuals");
120 -----------------------
121 -- Local Subprograms --
122 -----------------------
124 function Build_Component_Subtype
125 (C : List_Id;
126 Loc : Source_Ptr;
127 T : Entity_Id) return Node_Id;
128 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
129 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
130 -- Loc is the source location, T is the original subtype.
132 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
133 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
134 -- with discriminants whose default values are static, examine only the
135 -- components in the selected variant to determine whether all of them
136 -- have a default.
138 function Has_Null_Extension (T : Entity_Id) return Boolean;
139 -- T is a derived tagged type. Check whether the type extension is null.
140 -- If the parent type is fully initialized, T can be treated as such.
142 ------------------------------
143 -- Abstract_Interface_List --
144 ------------------------------
146 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
147 Nod : Node_Id;
149 begin
150 if Is_Concurrent_Type (Typ) then
152 -- If we are dealing with a synchronized subtype, go to the base
153 -- type, whose declaration has the interface list.
155 -- Shouldn't this be Declaration_Node???
157 Nod := Parent (Base_Type (Typ));
159 if Nkind (Nod) = N_Full_Type_Declaration then
160 return Empty_List;
161 end if;
163 elsif Ekind (Typ) = E_Record_Type_With_Private then
164 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
165 Nod := Type_Definition (Parent (Typ));
167 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
168 if Present (Full_View (Typ)) then
169 Nod := Type_Definition (Parent (Full_View (Typ)));
171 -- If the full-view is not available we cannot do anything else
172 -- here (the source has errors).
174 else
175 return Empty_List;
176 end if;
178 -- Support for generic formals with interfaces is still missing ???
180 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
181 return Empty_List;
183 else
184 pragma Assert
185 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
186 Nod := Parent (Typ);
187 end if;
189 elsif Ekind (Typ) = E_Record_Subtype then
190 Nod := Type_Definition (Parent (Etype (Typ)));
192 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
194 -- Recurse, because parent may still be a private extension. Also
195 -- note that the full view of the subtype or the full view of its
196 -- base type may (both) be unavailable.
198 return Abstract_Interface_List (Etype (Typ));
200 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
201 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
202 Nod := Formal_Type_Definition (Parent (Typ));
203 else
204 Nod := Type_Definition (Parent (Typ));
205 end if;
206 end if;
208 return Interface_List (Nod);
209 end Abstract_Interface_List;
211 --------------------------------
212 -- Add_Access_Type_To_Process --
213 --------------------------------
215 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
216 L : Elist_Id;
218 begin
219 Ensure_Freeze_Node (E);
220 L := Access_Types_To_Process (Freeze_Node (E));
222 if No (L) then
223 L := New_Elmt_List;
224 Set_Access_Types_To_Process (Freeze_Node (E), L);
225 end if;
227 Append_Elmt (A, L);
228 end Add_Access_Type_To_Process;
230 ----------------------------
231 -- Add_Global_Declaration --
232 ----------------------------
234 procedure Add_Global_Declaration (N : Node_Id) is
235 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
237 begin
238 if No (Declarations (Aux_Node)) then
239 Set_Declarations (Aux_Node, New_List);
240 end if;
242 Append_To (Declarations (Aux_Node), N);
243 Analyze (N);
244 end Add_Global_Declaration;
246 -----------------
247 -- Addressable --
248 -----------------
250 -- For now, just 8/16/32/64. but analyze later if AAMP is special???
252 function Addressable (V : Uint) return Boolean is
253 begin
254 return V = Uint_8 or else
255 V = Uint_16 or else
256 V = Uint_32 or else
257 V = Uint_64;
258 end Addressable;
260 function Addressable (V : Int) return Boolean is
261 begin
262 return V = 8 or else
263 V = 16 or else
264 V = 32 or else
265 V = 64;
266 end Addressable;
268 -----------------------
269 -- Alignment_In_Bits --
270 -----------------------
272 function Alignment_In_Bits (E : Entity_Id) return Uint is
273 begin
274 return Alignment (E) * System_Storage_Unit;
275 end Alignment_In_Bits;
277 -----------------------------------------
278 -- Apply_Compile_Time_Constraint_Error --
279 -----------------------------------------
281 procedure Apply_Compile_Time_Constraint_Error
282 (N : Node_Id;
283 Msg : String;
284 Reason : RT_Exception_Code;
285 Ent : Entity_Id := Empty;
286 Typ : Entity_Id := Empty;
287 Loc : Source_Ptr := No_Location;
288 Rep : Boolean := True;
289 Warn : Boolean := False)
291 Stat : constant Boolean := Is_Static_Expression (N);
292 R_Stat : constant Node_Id :=
293 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
294 Rtyp : Entity_Id;
296 begin
297 if No (Typ) then
298 Rtyp := Etype (N);
299 else
300 Rtyp := Typ;
301 end if;
303 Discard_Node
304 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
306 if not Rep then
307 return;
308 end if;
310 -- Now we replace the node by an N_Raise_Constraint_Error node
311 -- This does not need reanalyzing, so set it as analyzed now.
313 Rewrite (N, R_Stat);
314 Set_Analyzed (N, True);
316 Set_Etype (N, Rtyp);
317 Set_Raises_Constraint_Error (N);
319 -- Now deal with possible local raise handling
321 Possible_Local_Raise (N, Standard_Constraint_Error);
323 -- If the original expression was marked as static, the result is
324 -- still marked as static, but the Raises_Constraint_Error flag is
325 -- always set so that further static evaluation is not attempted.
327 if Stat then
328 Set_Is_Static_Expression (N);
329 end if;
330 end Apply_Compile_Time_Constraint_Error;
332 --------------------------------
333 -- Bad_Predicated_Subtype_Use --
334 --------------------------------
336 procedure Bad_Predicated_Subtype_Use
337 (Msg : String;
338 N : Node_Id;
339 Typ : Entity_Id)
341 begin
342 if Has_Predicates (Typ) then
343 if Is_Generic_Actual_Type (Typ) then
344 Error_Msg_FE (Msg & '?', N, Typ);
345 Error_Msg_F ("\Program_Error will be raised at run time?", N);
346 Insert_Action (N,
347 Make_Raise_Program_Error (Sloc (N),
348 Reason => PE_Bad_Predicated_Generic_Type));
350 else
351 Error_Msg_FE (Msg, N, Typ);
352 end if;
353 end if;
354 end Bad_Predicated_Subtype_Use;
356 --------------------------
357 -- Build_Actual_Subtype --
358 --------------------------
360 function Build_Actual_Subtype
361 (T : Entity_Id;
362 N : Node_Or_Entity_Id) return Node_Id
364 Loc : Source_Ptr;
365 -- Normally Sloc (N), but may point to corresponding body in some cases
367 Constraints : List_Id;
368 Decl : Node_Id;
369 Discr : Entity_Id;
370 Hi : Node_Id;
371 Lo : Node_Id;
372 Subt : Entity_Id;
373 Disc_Type : Entity_Id;
374 Obj : Node_Id;
376 begin
377 Loc := Sloc (N);
379 if Nkind (N) = N_Defining_Identifier then
380 Obj := New_Reference_To (N, Loc);
382 -- If this is a formal parameter of a subprogram declaration, and
383 -- we are compiling the body, we want the declaration for the
384 -- actual subtype to carry the source position of the body, to
385 -- prevent anomalies in gdb when stepping through the code.
387 if Is_Formal (N) then
388 declare
389 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
390 begin
391 if Nkind (Decl) = N_Subprogram_Declaration
392 and then Present (Corresponding_Body (Decl))
393 then
394 Loc := Sloc (Corresponding_Body (Decl));
395 end if;
396 end;
397 end if;
399 else
400 Obj := N;
401 end if;
403 if Is_Array_Type (T) then
404 Constraints := New_List;
405 for J in 1 .. Number_Dimensions (T) loop
407 -- Build an array subtype declaration with the nominal subtype and
408 -- the bounds of the actual. Add the declaration in front of the
409 -- local declarations for the subprogram, for analysis before any
410 -- reference to the formal in the body.
412 Lo :=
413 Make_Attribute_Reference (Loc,
414 Prefix =>
415 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
416 Attribute_Name => Name_First,
417 Expressions => New_List (
418 Make_Integer_Literal (Loc, J)));
420 Hi :=
421 Make_Attribute_Reference (Loc,
422 Prefix =>
423 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
424 Attribute_Name => Name_Last,
425 Expressions => New_List (
426 Make_Integer_Literal (Loc, J)));
428 Append (Make_Range (Loc, Lo, Hi), Constraints);
429 end loop;
431 -- If the type has unknown discriminants there is no constrained
432 -- subtype to build. This is never called for a formal or for a
433 -- lhs, so returning the type is ok ???
435 elsif Has_Unknown_Discriminants (T) then
436 return T;
438 else
439 Constraints := New_List;
441 -- Type T is a generic derived type, inherit the discriminants from
442 -- the parent type.
444 if Is_Private_Type (T)
445 and then No (Full_View (T))
447 -- T was flagged as an error if it was declared as a formal
448 -- derived type with known discriminants. In this case there
449 -- is no need to look at the parent type since T already carries
450 -- its own discriminants.
452 and then not Error_Posted (T)
453 then
454 Disc_Type := Etype (Base_Type (T));
455 else
456 Disc_Type := T;
457 end if;
459 Discr := First_Discriminant (Disc_Type);
460 while Present (Discr) loop
461 Append_To (Constraints,
462 Make_Selected_Component (Loc,
463 Prefix =>
464 Duplicate_Subexpr_No_Checks (Obj),
465 Selector_Name => New_Occurrence_Of (Discr, Loc)));
466 Next_Discriminant (Discr);
467 end loop;
468 end if;
470 Subt := Make_Temporary (Loc, 'S', Related_Node => N);
471 Set_Is_Internal (Subt);
473 Decl :=
474 Make_Subtype_Declaration (Loc,
475 Defining_Identifier => Subt,
476 Subtype_Indication =>
477 Make_Subtype_Indication (Loc,
478 Subtype_Mark => New_Reference_To (T, Loc),
479 Constraint =>
480 Make_Index_Or_Discriminant_Constraint (Loc,
481 Constraints => Constraints)));
483 Mark_Rewrite_Insertion (Decl);
484 return Decl;
485 end Build_Actual_Subtype;
487 ---------------------------------------
488 -- Build_Actual_Subtype_Of_Component --
489 ---------------------------------------
491 function Build_Actual_Subtype_Of_Component
492 (T : Entity_Id;
493 N : Node_Id) return Node_Id
495 Loc : constant Source_Ptr := Sloc (N);
496 P : constant Node_Id := Prefix (N);
497 D : Elmt_Id;
498 Id : Node_Id;
499 Indx_Type : Entity_Id;
501 Deaccessed_T : Entity_Id;
502 -- This is either a copy of T, or if T is an access type, then it is
503 -- the directly designated type of this access type.
505 function Build_Actual_Array_Constraint return List_Id;
506 -- If one or more of the bounds of the component depends on
507 -- discriminants, build actual constraint using the discriminants
508 -- of the prefix.
510 function Build_Actual_Record_Constraint return List_Id;
511 -- Similar to previous one, for discriminated components constrained
512 -- by the discriminant of the enclosing object.
514 -----------------------------------
515 -- Build_Actual_Array_Constraint --
516 -----------------------------------
518 function Build_Actual_Array_Constraint return List_Id is
519 Constraints : constant List_Id := New_List;
520 Indx : Node_Id;
521 Hi : Node_Id;
522 Lo : Node_Id;
523 Old_Hi : Node_Id;
524 Old_Lo : Node_Id;
526 begin
527 Indx := First_Index (Deaccessed_T);
528 while Present (Indx) loop
529 Old_Lo := Type_Low_Bound (Etype (Indx));
530 Old_Hi := Type_High_Bound (Etype (Indx));
532 if Denotes_Discriminant (Old_Lo) then
533 Lo :=
534 Make_Selected_Component (Loc,
535 Prefix => New_Copy_Tree (P),
536 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
538 else
539 Lo := New_Copy_Tree (Old_Lo);
541 -- The new bound will be reanalyzed in the enclosing
542 -- declaration. For literal bounds that come from a type
543 -- declaration, the type of the context must be imposed, so
544 -- insure that analysis will take place. For non-universal
545 -- types this is not strictly necessary.
547 Set_Analyzed (Lo, False);
548 end if;
550 if Denotes_Discriminant (Old_Hi) then
551 Hi :=
552 Make_Selected_Component (Loc,
553 Prefix => New_Copy_Tree (P),
554 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
556 else
557 Hi := New_Copy_Tree (Old_Hi);
558 Set_Analyzed (Hi, False);
559 end if;
561 Append (Make_Range (Loc, Lo, Hi), Constraints);
562 Next_Index (Indx);
563 end loop;
565 return Constraints;
566 end Build_Actual_Array_Constraint;
568 ------------------------------------
569 -- Build_Actual_Record_Constraint --
570 ------------------------------------
572 function Build_Actual_Record_Constraint return List_Id is
573 Constraints : constant List_Id := New_List;
574 D : Elmt_Id;
575 D_Val : Node_Id;
577 begin
578 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
579 while Present (D) loop
580 if Denotes_Discriminant (Node (D)) then
581 D_Val := Make_Selected_Component (Loc,
582 Prefix => New_Copy_Tree (P),
583 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
585 else
586 D_Val := New_Copy_Tree (Node (D));
587 end if;
589 Append (D_Val, Constraints);
590 Next_Elmt (D);
591 end loop;
593 return Constraints;
594 end Build_Actual_Record_Constraint;
596 -- Start of processing for Build_Actual_Subtype_Of_Component
598 begin
599 -- Why the test for Spec_Expression mode here???
601 if In_Spec_Expression then
602 return Empty;
604 -- More comments for the rest of this body would be good ???
606 elsif Nkind (N) = N_Explicit_Dereference then
607 if Is_Composite_Type (T)
608 and then not Is_Constrained (T)
609 and then not (Is_Class_Wide_Type (T)
610 and then Is_Constrained (Root_Type (T)))
611 and then not Has_Unknown_Discriminants (T)
612 then
613 -- If the type of the dereference is already constrained, it is an
614 -- actual subtype.
616 if Is_Array_Type (Etype (N))
617 and then Is_Constrained (Etype (N))
618 then
619 return Empty;
620 else
621 Remove_Side_Effects (P);
622 return Build_Actual_Subtype (T, N);
623 end if;
624 else
625 return Empty;
626 end if;
627 end if;
629 if Ekind (T) = E_Access_Subtype then
630 Deaccessed_T := Designated_Type (T);
631 else
632 Deaccessed_T := T;
633 end if;
635 if Ekind (Deaccessed_T) = E_Array_Subtype then
636 Id := First_Index (Deaccessed_T);
637 while Present (Id) loop
638 Indx_Type := Underlying_Type (Etype (Id));
640 if Denotes_Discriminant (Type_Low_Bound (Indx_Type))
641 or else
642 Denotes_Discriminant (Type_High_Bound (Indx_Type))
643 then
644 Remove_Side_Effects (P);
645 return
646 Build_Component_Subtype
647 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
648 end if;
650 Next_Index (Id);
651 end loop;
653 elsif Is_Composite_Type (Deaccessed_T)
654 and then Has_Discriminants (Deaccessed_T)
655 and then not Has_Unknown_Discriminants (Deaccessed_T)
656 then
657 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
658 while Present (D) loop
659 if Denotes_Discriminant (Node (D)) then
660 Remove_Side_Effects (P);
661 return
662 Build_Component_Subtype (
663 Build_Actual_Record_Constraint, Loc, Base_Type (T));
664 end if;
666 Next_Elmt (D);
667 end loop;
668 end if;
670 -- If none of the above, the actual and nominal subtypes are the same
672 return Empty;
673 end Build_Actual_Subtype_Of_Component;
675 -----------------------------
676 -- Build_Component_Subtype --
677 -----------------------------
679 function Build_Component_Subtype
680 (C : List_Id;
681 Loc : Source_Ptr;
682 T : Entity_Id) return Node_Id
684 Subt : Entity_Id;
685 Decl : Node_Id;
687 begin
688 -- Unchecked_Union components do not require component subtypes
690 if Is_Unchecked_Union (T) then
691 return Empty;
692 end if;
694 Subt := Make_Temporary (Loc, 'S');
695 Set_Is_Internal (Subt);
697 Decl :=
698 Make_Subtype_Declaration (Loc,
699 Defining_Identifier => Subt,
700 Subtype_Indication =>
701 Make_Subtype_Indication (Loc,
702 Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
703 Constraint =>
704 Make_Index_Or_Discriminant_Constraint (Loc,
705 Constraints => C)));
707 Mark_Rewrite_Insertion (Decl);
708 return Decl;
709 end Build_Component_Subtype;
711 ---------------------------
712 -- Build_Default_Subtype --
713 ---------------------------
715 function Build_Default_Subtype
716 (T : Entity_Id;
717 N : Node_Id) return Entity_Id
719 Loc : constant Source_Ptr := Sloc (N);
720 Disc : Entity_Id;
722 begin
723 if not Has_Discriminants (T) or else Is_Constrained (T) then
724 return T;
725 end if;
727 Disc := First_Discriminant (T);
729 if No (Discriminant_Default_Value (Disc)) then
730 return T;
731 end if;
733 declare
734 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
735 Constraints : constant List_Id := New_List;
736 Decl : Node_Id;
738 begin
739 while Present (Disc) loop
740 Append_To (Constraints,
741 New_Copy_Tree (Discriminant_Default_Value (Disc)));
742 Next_Discriminant (Disc);
743 end loop;
745 Decl :=
746 Make_Subtype_Declaration (Loc,
747 Defining_Identifier => Act,
748 Subtype_Indication =>
749 Make_Subtype_Indication (Loc,
750 Subtype_Mark => New_Occurrence_Of (T, Loc),
751 Constraint =>
752 Make_Index_Or_Discriminant_Constraint (Loc,
753 Constraints => Constraints)));
755 Insert_Action (N, Decl);
756 Analyze (Decl);
757 return Act;
758 end;
759 end Build_Default_Subtype;
761 --------------------------------------------
762 -- Build_Discriminal_Subtype_Of_Component --
763 --------------------------------------------
765 function Build_Discriminal_Subtype_Of_Component
766 (T : Entity_Id) return Node_Id
768 Loc : constant Source_Ptr := Sloc (T);
769 D : Elmt_Id;
770 Id : Node_Id;
772 function Build_Discriminal_Array_Constraint return List_Id;
773 -- If one or more of the bounds of the component depends on
774 -- discriminants, build actual constraint using the discriminants
775 -- of the prefix.
777 function Build_Discriminal_Record_Constraint return List_Id;
778 -- Similar to previous one, for discriminated components constrained
779 -- by the discriminant of the enclosing object.
781 ----------------------------------------
782 -- Build_Discriminal_Array_Constraint --
783 ----------------------------------------
785 function Build_Discriminal_Array_Constraint return List_Id is
786 Constraints : constant List_Id := New_List;
787 Indx : Node_Id;
788 Hi : Node_Id;
789 Lo : Node_Id;
790 Old_Hi : Node_Id;
791 Old_Lo : Node_Id;
793 begin
794 Indx := First_Index (T);
795 while Present (Indx) loop
796 Old_Lo := Type_Low_Bound (Etype (Indx));
797 Old_Hi := Type_High_Bound (Etype (Indx));
799 if Denotes_Discriminant (Old_Lo) then
800 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
802 else
803 Lo := New_Copy_Tree (Old_Lo);
804 end if;
806 if Denotes_Discriminant (Old_Hi) then
807 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
809 else
810 Hi := New_Copy_Tree (Old_Hi);
811 end if;
813 Append (Make_Range (Loc, Lo, Hi), Constraints);
814 Next_Index (Indx);
815 end loop;
817 return Constraints;
818 end Build_Discriminal_Array_Constraint;
820 -----------------------------------------
821 -- Build_Discriminal_Record_Constraint --
822 -----------------------------------------
824 function Build_Discriminal_Record_Constraint return List_Id is
825 Constraints : constant List_Id := New_List;
826 D : Elmt_Id;
827 D_Val : Node_Id;
829 begin
830 D := First_Elmt (Discriminant_Constraint (T));
831 while Present (D) loop
832 if Denotes_Discriminant (Node (D)) then
833 D_Val :=
834 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
836 else
837 D_Val := New_Copy_Tree (Node (D));
838 end if;
840 Append (D_Val, Constraints);
841 Next_Elmt (D);
842 end loop;
844 return Constraints;
845 end Build_Discriminal_Record_Constraint;
847 -- Start of processing for Build_Discriminal_Subtype_Of_Component
849 begin
850 if Ekind (T) = E_Array_Subtype then
851 Id := First_Index (T);
852 while Present (Id) loop
853 if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
854 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
855 then
856 return Build_Component_Subtype
857 (Build_Discriminal_Array_Constraint, Loc, T);
858 end if;
860 Next_Index (Id);
861 end loop;
863 elsif Ekind (T) = E_Record_Subtype
864 and then Has_Discriminants (T)
865 and then not Has_Unknown_Discriminants (T)
866 then
867 D := First_Elmt (Discriminant_Constraint (T));
868 while Present (D) loop
869 if Denotes_Discriminant (Node (D)) then
870 return Build_Component_Subtype
871 (Build_Discriminal_Record_Constraint, Loc, T);
872 end if;
874 Next_Elmt (D);
875 end loop;
876 end if;
878 -- If none of the above, the actual and nominal subtypes are the same
880 return Empty;
881 end Build_Discriminal_Subtype_Of_Component;
883 ------------------------------
884 -- Build_Elaboration_Entity --
885 ------------------------------
887 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
888 Loc : constant Source_Ptr := Sloc (N);
889 Decl : Node_Id;
890 Elab_Ent : Entity_Id;
892 procedure Set_Package_Name (Ent : Entity_Id);
893 -- Given an entity, sets the fully qualified name of the entity in
894 -- Name_Buffer, with components separated by double underscores. This
895 -- is a recursive routine that climbs the scope chain to Standard.
897 ----------------------
898 -- Set_Package_Name --
899 ----------------------
901 procedure Set_Package_Name (Ent : Entity_Id) is
902 begin
903 if Scope (Ent) /= Standard_Standard then
904 Set_Package_Name (Scope (Ent));
906 declare
907 Nam : constant String := Get_Name_String (Chars (Ent));
908 begin
909 Name_Buffer (Name_Len + 1) := '_';
910 Name_Buffer (Name_Len + 2) := '_';
911 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
912 Name_Len := Name_Len + Nam'Length + 2;
913 end;
915 else
916 Get_Name_String (Chars (Ent));
917 end if;
918 end Set_Package_Name;
920 -- Start of processing for Build_Elaboration_Entity
922 begin
923 -- Ignore if already constructed
925 if Present (Elaboration_Entity (Spec_Id)) then
926 return;
927 end if;
929 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
930 -- name with dots replaced by double underscore. We have to manually
931 -- construct this name, since it will be elaborated in the outer scope,
932 -- and thus will not have the unit name automatically prepended.
934 Set_Package_Name (Spec_Id);
936 -- Append _E
938 Name_Buffer (Name_Len + 1) := '_';
939 Name_Buffer (Name_Len + 2) := 'E';
940 Name_Len := Name_Len + 2;
942 -- Create elaboration flag
944 Elab_Ent :=
945 Make_Defining_Identifier (Loc, Chars => Name_Find);
946 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
948 Decl :=
949 Make_Object_Declaration (Loc,
950 Defining_Identifier => Elab_Ent,
951 Object_Definition =>
952 New_Occurrence_Of (Standard_Boolean, Loc),
953 Expression =>
954 New_Occurrence_Of (Standard_False, Loc));
956 Push_Scope (Standard_Standard);
957 Add_Global_Declaration (Decl);
958 Pop_Scope;
960 -- Reset True_Constant indication, since we will indeed assign a value
961 -- to the variable in the binder main. We also kill the Current_Value
962 -- and Last_Assignment fields for the same reason.
964 Set_Is_True_Constant (Elab_Ent, False);
965 Set_Current_Value (Elab_Ent, Empty);
966 Set_Last_Assignment (Elab_Ent, Empty);
968 -- We do not want any further qualification of the name (if we did
969 -- not do this, we would pick up the name of the generic package
970 -- in the case of a library level generic instantiation).
972 Set_Has_Qualified_Name (Elab_Ent);
973 Set_Has_Fully_Qualified_Name (Elab_Ent);
974 end Build_Elaboration_Entity;
976 -----------------------------------
977 -- Cannot_Raise_Constraint_Error --
978 -----------------------------------
980 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
981 begin
982 if Compile_Time_Known_Value (Expr) then
983 return True;
985 elsif Do_Range_Check (Expr) then
986 return False;
988 elsif Raises_Constraint_Error (Expr) then
989 return False;
991 else
992 case Nkind (Expr) is
993 when N_Identifier =>
994 return True;
996 when N_Expanded_Name =>
997 return True;
999 when N_Selected_Component =>
1000 return not Do_Discriminant_Check (Expr);
1002 when N_Attribute_Reference =>
1003 if Do_Overflow_Check (Expr) then
1004 return False;
1006 elsif No (Expressions (Expr)) then
1007 return True;
1009 else
1010 declare
1011 N : Node_Id;
1013 begin
1014 N := First (Expressions (Expr));
1015 while Present (N) loop
1016 if Cannot_Raise_Constraint_Error (N) then
1017 Next (N);
1018 else
1019 return False;
1020 end if;
1021 end loop;
1023 return True;
1024 end;
1025 end if;
1027 when N_Type_Conversion =>
1028 if Do_Overflow_Check (Expr)
1029 or else Do_Length_Check (Expr)
1030 or else Do_Tag_Check (Expr)
1031 then
1032 return False;
1033 else
1034 return
1035 Cannot_Raise_Constraint_Error (Expression (Expr));
1036 end if;
1038 when N_Unchecked_Type_Conversion =>
1039 return Cannot_Raise_Constraint_Error (Expression (Expr));
1041 when N_Unary_Op =>
1042 if Do_Overflow_Check (Expr) then
1043 return False;
1044 else
1045 return
1046 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1047 end if;
1049 when N_Op_Divide |
1050 N_Op_Mod |
1051 N_Op_Rem
1053 if Do_Division_Check (Expr)
1054 or else Do_Overflow_Check (Expr)
1055 then
1056 return False;
1057 else
1058 return
1059 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1060 and then
1061 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1062 end if;
1064 when N_Op_Add |
1065 N_Op_And |
1066 N_Op_Concat |
1067 N_Op_Eq |
1068 N_Op_Expon |
1069 N_Op_Ge |
1070 N_Op_Gt |
1071 N_Op_Le |
1072 N_Op_Lt |
1073 N_Op_Multiply |
1074 N_Op_Ne |
1075 N_Op_Or |
1076 N_Op_Rotate_Left |
1077 N_Op_Rotate_Right |
1078 N_Op_Shift_Left |
1079 N_Op_Shift_Right |
1080 N_Op_Shift_Right_Arithmetic |
1081 N_Op_Subtract |
1082 N_Op_Xor
1084 if Do_Overflow_Check (Expr) then
1085 return False;
1086 else
1087 return
1088 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1089 and then
1090 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1091 end if;
1093 when others =>
1094 return False;
1095 end case;
1096 end if;
1097 end Cannot_Raise_Constraint_Error;
1099 -----------------------------------------
1100 -- Check_Dynamically_Tagged_Expression --
1101 -----------------------------------------
1103 procedure Check_Dynamically_Tagged_Expression
1104 (Expr : Node_Id;
1105 Typ : Entity_Id;
1106 Related_Nod : Node_Id)
1108 begin
1109 pragma Assert (Is_Tagged_Type (Typ));
1111 -- In order to avoid spurious errors when analyzing the expanded code,
1112 -- this check is done only for nodes that come from source and for
1113 -- actuals of generic instantiations.
1115 if (Comes_From_Source (Related_Nod)
1116 or else In_Generic_Actual (Expr))
1117 and then (Is_Class_Wide_Type (Etype (Expr))
1118 or else Is_Dynamically_Tagged (Expr))
1119 and then Is_Tagged_Type (Typ)
1120 and then not Is_Class_Wide_Type (Typ)
1121 then
1122 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1123 end if;
1124 end Check_Dynamically_Tagged_Expression;
1126 --------------------------
1127 -- Check_Fully_Declared --
1128 --------------------------
1130 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1131 begin
1132 if Ekind (T) = E_Incomplete_Type then
1134 -- Ada 2005 (AI-50217): If the type is available through a limited
1135 -- with_clause, verify that its full view has been analyzed.
1137 if From_With_Type (T)
1138 and then Present (Non_Limited_View (T))
1139 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
1140 then
1141 -- The non-limited view is fully declared
1142 null;
1144 else
1145 Error_Msg_NE
1146 ("premature usage of incomplete}", N, First_Subtype (T));
1147 end if;
1149 -- Need comments for these tests ???
1151 elsif Has_Private_Component (T)
1152 and then not Is_Generic_Type (Root_Type (T))
1153 and then not In_Spec_Expression
1154 then
1155 -- Special case: if T is the anonymous type created for a single
1156 -- task or protected object, use the name of the source object.
1158 if Is_Concurrent_Type (T)
1159 and then not Comes_From_Source (T)
1160 and then Nkind (N) = N_Object_Declaration
1161 then
1162 Error_Msg_NE ("type of& has incomplete component", N,
1163 Defining_Identifier (N));
1165 else
1166 Error_Msg_NE
1167 ("premature usage of incomplete}", N, First_Subtype (T));
1168 end if;
1169 end if;
1170 end Check_Fully_Declared;
1172 -------------------------
1173 -- Check_Nested_Access --
1174 -------------------------
1176 procedure Check_Nested_Access (Ent : Entity_Id) is
1177 Scop : constant Entity_Id := Current_Scope;
1178 Current_Subp : Entity_Id;
1179 Enclosing : Entity_Id;
1181 begin
1182 -- Currently only enabled for VM back-ends for efficiency, should we
1183 -- enable it more systematically ???
1185 -- Check for Is_Imported needs commenting below ???
1187 if VM_Target /= No_VM
1188 and then (Ekind (Ent) = E_Variable
1189 or else
1190 Ekind (Ent) = E_Constant
1191 or else
1192 Ekind (Ent) = E_Loop_Parameter)
1193 and then Scope (Ent) /= Empty
1194 and then not Is_Library_Level_Entity (Ent)
1195 and then not Is_Imported (Ent)
1196 then
1197 if Is_Subprogram (Scop)
1198 or else Is_Generic_Subprogram (Scop)
1199 or else Is_Entry (Scop)
1200 then
1201 Current_Subp := Scop;
1202 else
1203 Current_Subp := Current_Subprogram;
1204 end if;
1206 Enclosing := Enclosing_Subprogram (Ent);
1208 if Enclosing /= Empty
1209 and then Enclosing /= Current_Subp
1210 then
1211 Set_Has_Up_Level_Access (Ent, True);
1212 end if;
1213 end if;
1214 end Check_Nested_Access;
1216 ----------------------------
1217 -- Check_Order_Dependence --
1218 ----------------------------
1220 procedure Check_Order_Dependence is
1221 Act1 : Node_Id;
1222 Act2 : Node_Id;
1224 begin
1225 if Ada_Version < Ada_2012 then
1226 return;
1227 end if;
1229 -- Ada 2012 AI04-0144-2: Dangerous order dependence. Actuals in nested
1230 -- calls within a construct have been collected. If one of them is
1231 -- writable and overlaps with another one, evaluation of the enclosing
1232 -- construct is nondeterministic. This is illegal in Ada 2012, but is
1233 -- treated as a warning for now.
1235 for J in 1 .. Actuals_In_Call.Last loop
1236 if Actuals_In_Call.Table (J).Is_Writable then
1237 Act1 := Actuals_In_Call.Table (J).Act;
1239 if Nkind (Act1) = N_Attribute_Reference then
1240 Act1 := Prefix (Act1);
1241 end if;
1243 for K in 1 .. Actuals_In_Call.Last loop
1244 if K /= J then
1245 Act2 := Actuals_In_Call.Table (K).Act;
1247 if Nkind (Act2) = N_Attribute_Reference then
1248 Act2 := Prefix (Act2);
1249 end if;
1251 if Actuals_In_Call.Table (K).Is_Writable
1252 and then K < J
1253 then
1254 -- Already checked
1256 null;
1258 elsif Denotes_Same_Object (Act1, Act2)
1259 and then Parent (Act1) /= Parent (Act2)
1260 then
1261 Error_Msg_N
1262 ("result may differ if evaluated "
1263 & "after other actual in expression?", Act1);
1264 end if;
1265 end if;
1266 end loop;
1267 end if;
1268 end loop;
1270 -- Remove checked actuals from table
1272 Actuals_In_Call.Set_Last (0);
1273 end Check_Order_Dependence;
1275 ------------------------------------------
1276 -- Check_Potentially_Blocking_Operation --
1277 ------------------------------------------
1279 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
1280 S : Entity_Id;
1282 begin
1283 -- N is one of the potentially blocking operations listed in 9.5.1(8).
1284 -- When pragma Detect_Blocking is active, the run time will raise
1285 -- Program_Error. Here we only issue a warning, since we generally
1286 -- support the use of potentially blocking operations in the absence
1287 -- of the pragma.
1289 -- Indirect blocking through a subprogram call cannot be diagnosed
1290 -- statically without interprocedural analysis, so we do not attempt
1291 -- to do it here.
1293 S := Scope (Current_Scope);
1294 while Present (S) and then S /= Standard_Standard loop
1295 if Is_Protected_Type (S) then
1296 Error_Msg_N
1297 ("potentially blocking operation in protected operation?", N);
1298 return;
1299 end if;
1301 S := Scope (S);
1302 end loop;
1303 end Check_Potentially_Blocking_Operation;
1305 ------------------------------
1306 -- Check_Unprotected_Access --
1307 ------------------------------
1309 procedure Check_Unprotected_Access
1310 (Context : Node_Id;
1311 Expr : Node_Id)
1313 Cont_Encl_Typ : Entity_Id;
1314 Pref_Encl_Typ : Entity_Id;
1316 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
1317 -- Check whether Obj is a private component of a protected object.
1318 -- Return the protected type where the component resides, Empty
1319 -- otherwise.
1321 function Is_Public_Operation return Boolean;
1322 -- Verify that the enclosing operation is callable from outside the
1323 -- protected object, to minimize false positives.
1325 ------------------------------
1326 -- Enclosing_Protected_Type --
1327 ------------------------------
1329 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
1330 begin
1331 if Is_Entity_Name (Obj) then
1332 declare
1333 Ent : Entity_Id := Entity (Obj);
1335 begin
1336 -- The object can be a renaming of a private component, use
1337 -- the original record component.
1339 if Is_Prival (Ent) then
1340 Ent := Prival_Link (Ent);
1341 end if;
1343 if Is_Protected_Type (Scope (Ent)) then
1344 return Scope (Ent);
1345 end if;
1346 end;
1347 end if;
1349 -- For indexed and selected components, recursively check the prefix
1351 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
1352 return Enclosing_Protected_Type (Prefix (Obj));
1354 -- The object does not denote a protected component
1356 else
1357 return Empty;
1358 end if;
1359 end Enclosing_Protected_Type;
1361 -------------------------
1362 -- Is_Public_Operation --
1363 -------------------------
1365 function Is_Public_Operation return Boolean is
1366 S : Entity_Id;
1367 E : Entity_Id;
1369 begin
1370 S := Current_Scope;
1371 while Present (S)
1372 and then S /= Pref_Encl_Typ
1373 loop
1374 if Scope (S) = Pref_Encl_Typ then
1375 E := First_Entity (Pref_Encl_Typ);
1376 while Present (E)
1377 and then E /= First_Private_Entity (Pref_Encl_Typ)
1378 loop
1379 if E = S then
1380 return True;
1381 end if;
1382 Next_Entity (E);
1383 end loop;
1384 end if;
1386 S := Scope (S);
1387 end loop;
1389 return False;
1390 end Is_Public_Operation;
1392 -- Start of processing for Check_Unprotected_Access
1394 begin
1395 if Nkind (Expr) = N_Attribute_Reference
1396 and then Attribute_Name (Expr) = Name_Unchecked_Access
1397 then
1398 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
1399 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
1401 -- Check whether we are trying to export a protected component to a
1402 -- context with an equal or lower access level.
1404 if Present (Pref_Encl_Typ)
1405 and then No (Cont_Encl_Typ)
1406 and then Is_Public_Operation
1407 and then Scope_Depth (Pref_Encl_Typ) >=
1408 Object_Access_Level (Context)
1409 then
1410 Error_Msg_N
1411 ("?possible unprotected access to protected data", Expr);
1412 end if;
1413 end if;
1414 end Check_Unprotected_Access;
1416 ---------------
1417 -- Check_VMS --
1418 ---------------
1420 procedure Check_VMS (Construct : Node_Id) is
1421 begin
1422 if not OpenVMS_On_Target then
1423 Error_Msg_N
1424 ("this construct is allowed only in Open'V'M'S", Construct);
1425 end if;
1426 end Check_VMS;
1428 ------------------------
1429 -- Collect_Interfaces --
1430 ------------------------
1432 procedure Collect_Interfaces
1433 (T : Entity_Id;
1434 Ifaces_List : out Elist_Id;
1435 Exclude_Parents : Boolean := False;
1436 Use_Full_View : Boolean := True)
1438 procedure Collect (Typ : Entity_Id);
1439 -- Subsidiary subprogram used to traverse the whole list
1440 -- of directly and indirectly implemented interfaces
1442 -------------
1443 -- Collect --
1444 -------------
1446 procedure Collect (Typ : Entity_Id) is
1447 Ancestor : Entity_Id;
1448 Full_T : Entity_Id;
1449 Id : Node_Id;
1450 Iface : Entity_Id;
1452 begin
1453 Full_T := Typ;
1455 -- Handle private types
1457 if Use_Full_View
1458 and then Is_Private_Type (Typ)
1459 and then Present (Full_View (Typ))
1460 then
1461 Full_T := Full_View (Typ);
1462 end if;
1464 -- Include the ancestor if we are generating the whole list of
1465 -- abstract interfaces.
1467 if Etype (Full_T) /= Typ
1469 -- Protect the frontend against wrong sources. For example:
1471 -- package P is
1472 -- type A is tagged null record;
1473 -- type B is new A with private;
1474 -- type C is new A with private;
1475 -- private
1476 -- type B is new C with null record;
1477 -- type C is new B with null record;
1478 -- end P;
1480 and then Etype (Full_T) /= T
1481 then
1482 Ancestor := Etype (Full_T);
1483 Collect (Ancestor);
1485 if Is_Interface (Ancestor)
1486 and then not Exclude_Parents
1487 then
1488 Append_Unique_Elmt (Ancestor, Ifaces_List);
1489 end if;
1490 end if;
1492 -- Traverse the graph of ancestor interfaces
1494 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
1495 Id := First (Abstract_Interface_List (Full_T));
1496 while Present (Id) loop
1497 Iface := Etype (Id);
1499 -- Protect against wrong uses. For example:
1500 -- type I is interface;
1501 -- type O is tagged null record;
1502 -- type Wrong is new I and O with null record; -- ERROR
1504 if Is_Interface (Iface) then
1505 if Exclude_Parents
1506 and then Etype (T) /= T
1507 and then Interface_Present_In_Ancestor (Etype (T), Iface)
1508 then
1509 null;
1510 else
1511 Collect (Iface);
1512 Append_Unique_Elmt (Iface, Ifaces_List);
1513 end if;
1514 end if;
1516 Next (Id);
1517 end loop;
1518 end if;
1519 end Collect;
1521 -- Start of processing for Collect_Interfaces
1523 begin
1524 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
1525 Ifaces_List := New_Elmt_List;
1526 Collect (T);
1527 end Collect_Interfaces;
1529 ----------------------------------
1530 -- Collect_Interface_Components --
1531 ----------------------------------
1533 procedure Collect_Interface_Components
1534 (Tagged_Type : Entity_Id;
1535 Components_List : out Elist_Id)
1537 procedure Collect (Typ : Entity_Id);
1538 -- Subsidiary subprogram used to climb to the parents
1540 -------------
1541 -- Collect --
1542 -------------
1544 procedure Collect (Typ : Entity_Id) is
1545 Tag_Comp : Entity_Id;
1546 Parent_Typ : Entity_Id;
1548 begin
1549 -- Handle private types
1551 if Present (Full_View (Etype (Typ))) then
1552 Parent_Typ := Full_View (Etype (Typ));
1553 else
1554 Parent_Typ := Etype (Typ);
1555 end if;
1557 if Parent_Typ /= Typ
1559 -- Protect the frontend against wrong sources. For example:
1561 -- package P is
1562 -- type A is tagged null record;
1563 -- type B is new A with private;
1564 -- type C is new A with private;
1565 -- private
1566 -- type B is new C with null record;
1567 -- type C is new B with null record;
1568 -- end P;
1570 and then Parent_Typ /= Tagged_Type
1571 then
1572 Collect (Parent_Typ);
1573 end if;
1575 -- Collect the components containing tags of secondary dispatch
1576 -- tables.
1578 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
1579 while Present (Tag_Comp) loop
1580 pragma Assert (Present (Related_Type (Tag_Comp)));
1581 Append_Elmt (Tag_Comp, Components_List);
1583 Tag_Comp := Next_Tag_Component (Tag_Comp);
1584 end loop;
1585 end Collect;
1587 -- Start of processing for Collect_Interface_Components
1589 begin
1590 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
1591 and then Is_Tagged_Type (Tagged_Type));
1593 Components_List := New_Elmt_List;
1594 Collect (Tagged_Type);
1595 end Collect_Interface_Components;
1597 -----------------------------
1598 -- Collect_Interfaces_Info --
1599 -----------------------------
1601 procedure Collect_Interfaces_Info
1602 (T : Entity_Id;
1603 Ifaces_List : out Elist_Id;
1604 Components_List : out Elist_Id;
1605 Tags_List : out Elist_Id)
1607 Comps_List : Elist_Id;
1608 Comp_Elmt : Elmt_Id;
1609 Comp_Iface : Entity_Id;
1610 Iface_Elmt : Elmt_Id;
1611 Iface : Entity_Id;
1613 function Search_Tag (Iface : Entity_Id) return Entity_Id;
1614 -- Search for the secondary tag associated with the interface type
1615 -- Iface that is implemented by T.
1617 ----------------
1618 -- Search_Tag --
1619 ----------------
1621 function Search_Tag (Iface : Entity_Id) return Entity_Id is
1622 ADT : Elmt_Id;
1623 begin
1624 if not Is_CPP_Class (T) then
1625 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
1626 else
1627 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
1628 end if;
1630 while Present (ADT)
1631 and then Is_Tag (Node (ADT))
1632 and then Related_Type (Node (ADT)) /= Iface
1633 loop
1634 -- Skip secondary dispatch table referencing thunks to user
1635 -- defined primitives covered by this interface.
1637 pragma Assert (Has_Suffix (Node (ADT), 'P'));
1638 Next_Elmt (ADT);
1640 -- Skip secondary dispatch tables of Ada types
1642 if not Is_CPP_Class (T) then
1644 -- Skip secondary dispatch table referencing thunks to
1645 -- predefined primitives.
1647 pragma Assert (Has_Suffix (Node (ADT), 'Y'));
1648 Next_Elmt (ADT);
1650 -- Skip secondary dispatch table referencing user-defined
1651 -- primitives covered by this interface.
1653 pragma Assert (Has_Suffix (Node (ADT), 'D'));
1654 Next_Elmt (ADT);
1656 -- Skip secondary dispatch table referencing predefined
1657 -- primitives.
1659 pragma Assert (Has_Suffix (Node (ADT), 'Z'));
1660 Next_Elmt (ADT);
1661 end if;
1662 end loop;
1664 pragma Assert (Is_Tag (Node (ADT)));
1665 return Node (ADT);
1666 end Search_Tag;
1668 -- Start of processing for Collect_Interfaces_Info
1670 begin
1671 Collect_Interfaces (T, Ifaces_List);
1672 Collect_Interface_Components (T, Comps_List);
1674 -- Search for the record component and tag associated with each
1675 -- interface type of T.
1677 Components_List := New_Elmt_List;
1678 Tags_List := New_Elmt_List;
1680 Iface_Elmt := First_Elmt (Ifaces_List);
1681 while Present (Iface_Elmt) loop
1682 Iface := Node (Iface_Elmt);
1684 -- Associate the primary tag component and the primary dispatch table
1685 -- with all the interfaces that are parents of T
1687 if Is_Ancestor (Iface, T) then
1688 Append_Elmt (First_Tag_Component (T), Components_List);
1689 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
1691 -- Otherwise search for the tag component and secondary dispatch
1692 -- table of Iface
1694 else
1695 Comp_Elmt := First_Elmt (Comps_List);
1696 while Present (Comp_Elmt) loop
1697 Comp_Iface := Related_Type (Node (Comp_Elmt));
1699 if Comp_Iface = Iface
1700 or else Is_Ancestor (Iface, Comp_Iface)
1701 then
1702 Append_Elmt (Node (Comp_Elmt), Components_List);
1703 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
1704 exit;
1705 end if;
1707 Next_Elmt (Comp_Elmt);
1708 end loop;
1709 pragma Assert (Present (Comp_Elmt));
1710 end if;
1712 Next_Elmt (Iface_Elmt);
1713 end loop;
1714 end Collect_Interfaces_Info;
1716 ---------------------
1717 -- Collect_Parents --
1718 ---------------------
1720 procedure Collect_Parents
1721 (T : Entity_Id;
1722 List : out Elist_Id;
1723 Use_Full_View : Boolean := True)
1725 Current_Typ : Entity_Id := T;
1726 Parent_Typ : Entity_Id;
1728 begin
1729 List := New_Elmt_List;
1731 -- No action if the if the type has no parents
1733 if T = Etype (T) then
1734 return;
1735 end if;
1737 loop
1738 Parent_Typ := Etype (Current_Typ);
1740 if Is_Private_Type (Parent_Typ)
1741 and then Present (Full_View (Parent_Typ))
1742 and then Use_Full_View
1743 then
1744 Parent_Typ := Full_View (Base_Type (Parent_Typ));
1745 end if;
1747 Append_Elmt (Parent_Typ, List);
1749 exit when Parent_Typ = Current_Typ;
1750 Current_Typ := Parent_Typ;
1751 end loop;
1752 end Collect_Parents;
1754 ----------------------------------
1755 -- Collect_Primitive_Operations --
1756 ----------------------------------
1758 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
1759 B_Type : constant Entity_Id := Base_Type (T);
1760 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
1761 B_Scope : Entity_Id := Scope (B_Type);
1762 Op_List : Elist_Id;
1763 Formal : Entity_Id;
1764 Is_Prim : Boolean;
1765 Formal_Derived : Boolean := False;
1766 Id : Entity_Id;
1768 function Match (E : Entity_Id) return Boolean;
1769 -- True if E's base type is B_Type, or E is of an anonymous access type
1770 -- and the base type of its designated type is B_Type.
1772 -----------
1773 -- Match --
1774 -----------
1776 function Match (E : Entity_Id) return Boolean is
1777 Etyp : Entity_Id := Etype (E);
1779 begin
1780 if Ekind (Etyp) = E_Anonymous_Access_Type then
1781 Etyp := Designated_Type (Etyp);
1782 end if;
1784 return Base_Type (Etyp) = B_Type;
1785 end Match;
1787 -- Start of processing for Collect_Primitive_Operations
1789 begin
1790 -- For tagged types, the primitive operations are collected as they
1791 -- are declared, and held in an explicit list which is simply returned.
1793 if Is_Tagged_Type (B_Type) then
1794 return Primitive_Operations (B_Type);
1796 -- An untagged generic type that is a derived type inherits the
1797 -- primitive operations of its parent type. Other formal types only
1798 -- have predefined operators, which are not explicitly represented.
1800 elsif Is_Generic_Type (B_Type) then
1801 if Nkind (B_Decl) = N_Formal_Type_Declaration
1802 and then Nkind (Formal_Type_Definition (B_Decl))
1803 = N_Formal_Derived_Type_Definition
1804 then
1805 Formal_Derived := True;
1806 else
1807 return New_Elmt_List;
1808 end if;
1809 end if;
1811 Op_List := New_Elmt_List;
1813 if B_Scope = Standard_Standard then
1814 if B_Type = Standard_String then
1815 Append_Elmt (Standard_Op_Concat, Op_List);
1817 elsif B_Type = Standard_Wide_String then
1818 Append_Elmt (Standard_Op_Concatw, Op_List);
1820 else
1821 null;
1822 end if;
1824 elsif (Is_Package_Or_Generic_Package (B_Scope)
1825 and then
1826 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
1827 N_Package_Body)
1828 or else Is_Derived_Type (B_Type)
1829 then
1830 -- The primitive operations appear after the base type, except
1831 -- if the derivation happens within the private part of B_Scope
1832 -- and the type is a private type, in which case both the type
1833 -- and some primitive operations may appear before the base
1834 -- type, and the list of candidates starts after the type.
1836 if In_Open_Scopes (B_Scope)
1837 and then Scope (T) = B_Scope
1838 and then In_Private_Part (B_Scope)
1839 then
1840 Id := Next_Entity (T);
1841 else
1842 Id := Next_Entity (B_Type);
1843 end if;
1845 while Present (Id) loop
1847 -- Note that generic formal subprograms are not
1848 -- considered to be primitive operations and thus
1849 -- are never inherited.
1851 if Is_Overloadable (Id)
1852 and then Nkind (Parent (Parent (Id)))
1853 not in N_Formal_Subprogram_Declaration
1854 then
1855 Is_Prim := False;
1857 if Match (Id) then
1858 Is_Prim := True;
1860 else
1861 Formal := First_Formal (Id);
1862 while Present (Formal) loop
1863 if Match (Formal) then
1864 Is_Prim := True;
1865 exit;
1866 end if;
1868 Next_Formal (Formal);
1869 end loop;
1870 end if;
1872 -- For a formal derived type, the only primitives are the
1873 -- ones inherited from the parent type. Operations appearing
1874 -- in the package declaration are not primitive for it.
1876 if Is_Prim
1877 and then (not Formal_Derived
1878 or else Present (Alias (Id)))
1879 then
1880 -- In the special case of an equality operator aliased to
1881 -- an overriding dispatching equality belonging to the same
1882 -- type, we don't include it in the list of primitives.
1883 -- This avoids inheriting multiple equality operators when
1884 -- deriving from untagged private types whose full type is
1885 -- tagged, which can otherwise cause ambiguities. Note that
1886 -- this should only happen for this kind of untagged parent
1887 -- type, since normally dispatching operations are inherited
1888 -- using the type's Primitive_Operations list.
1890 if Chars (Id) = Name_Op_Eq
1891 and then Is_Dispatching_Operation (Id)
1892 and then Present (Alias (Id))
1893 and then Present (Overridden_Operation (Alias (Id)))
1894 and then Base_Type (Etype (First_Entity (Id))) =
1895 Base_Type (Etype (First_Entity (Alias (Id))))
1896 then
1897 null;
1899 -- Include the subprogram in the list of primitives
1901 else
1902 Append_Elmt (Id, Op_List);
1903 end if;
1904 end if;
1905 end if;
1907 Next_Entity (Id);
1909 -- For a type declared in System, some of its operations may
1910 -- appear in the target-specific extension to System.
1912 if No (Id)
1913 and then B_Scope = RTU_Entity (System)
1914 and then Present_System_Aux
1915 then
1916 B_Scope := System_Aux_Id;
1917 Id := First_Entity (System_Aux_Id);
1918 end if;
1919 end loop;
1920 end if;
1922 return Op_List;
1923 end Collect_Primitive_Operations;
1925 -----------------------------------
1926 -- Compile_Time_Constraint_Error --
1927 -----------------------------------
1929 function Compile_Time_Constraint_Error
1930 (N : Node_Id;
1931 Msg : String;
1932 Ent : Entity_Id := Empty;
1933 Loc : Source_Ptr := No_Location;
1934 Warn : Boolean := False) return Node_Id
1936 Msgc : String (1 .. Msg'Length + 2);
1937 -- Copy of message, with room for possible ? and ! at end
1939 Msgl : Natural;
1940 Wmsg : Boolean;
1941 P : Node_Id;
1942 OldP : Node_Id;
1943 Msgs : Boolean;
1944 Eloc : Source_Ptr;
1946 begin
1947 -- A static constraint error in an instance body is not a fatal error.
1948 -- we choose to inhibit the message altogether, because there is no
1949 -- obvious node (for now) on which to post it. On the other hand the
1950 -- offending node must be replaced with a constraint_error in any case.
1952 -- No messages are generated if we already posted an error on this node
1954 if not Error_Posted (N) then
1955 if Loc /= No_Location then
1956 Eloc := Loc;
1957 else
1958 Eloc := Sloc (N);
1959 end if;
1961 Msgc (1 .. Msg'Length) := Msg;
1962 Msgl := Msg'Length;
1964 -- Message is a warning, even in Ada 95 case
1966 if Msg (Msg'Last) = '?' then
1967 Wmsg := True;
1969 -- In Ada 83, all messages are warnings. In the private part and
1970 -- the body of an instance, constraint_checks are only warnings.
1971 -- We also make this a warning if the Warn parameter is set.
1973 elsif Warn
1974 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
1975 then
1976 Msgl := Msgl + 1;
1977 Msgc (Msgl) := '?';
1978 Wmsg := True;
1980 elsif In_Instance_Not_Visible then
1981 Msgl := Msgl + 1;
1982 Msgc (Msgl) := '?';
1983 Wmsg := True;
1985 -- Otherwise we have a real error message (Ada 95 static case)
1986 -- and we make this an unconditional message. Note that in the
1987 -- warning case we do not make the message unconditional, it seems
1988 -- quite reasonable to delete messages like this (about exceptions
1989 -- that will be raised) in dead code.
1991 else
1992 Wmsg := False;
1993 Msgl := Msgl + 1;
1994 Msgc (Msgl) := '!';
1995 end if;
1997 -- Should we generate a warning? The answer is not quite yes. The
1998 -- very annoying exception occurs in the case of a short circuit
1999 -- operator where the left operand is static and decisive. Climb
2000 -- parents to see if that is the case we have here. Conditional
2001 -- expressions with decisive conditions are a similar situation.
2003 Msgs := True;
2004 P := N;
2005 loop
2006 OldP := P;
2007 P := Parent (P);
2009 -- And then with False as left operand
2011 if Nkind (P) = N_And_Then
2012 and then Compile_Time_Known_Value (Left_Opnd (P))
2013 and then Is_False (Expr_Value (Left_Opnd (P)))
2014 then
2015 Msgs := False;
2016 exit;
2018 -- OR ELSE with True as left operand
2020 elsif Nkind (P) = N_Or_Else
2021 and then Compile_Time_Known_Value (Left_Opnd (P))
2022 and then Is_True (Expr_Value (Left_Opnd (P)))
2023 then
2024 Msgs := False;
2025 exit;
2027 -- Conditional expression
2029 elsif Nkind (P) = N_Conditional_Expression then
2030 declare
2031 Cond : constant Node_Id := First (Expressions (P));
2032 Texp : constant Node_Id := Next (Cond);
2033 Fexp : constant Node_Id := Next (Texp);
2035 begin
2036 if Compile_Time_Known_Value (Cond) then
2038 -- Condition is True and we are in the right operand
2040 if Is_True (Expr_Value (Cond))
2041 and then OldP = Fexp
2042 then
2043 Msgs := False;
2044 exit;
2046 -- Condition is False and we are in the left operand
2048 elsif Is_False (Expr_Value (Cond))
2049 and then OldP = Texp
2050 then
2051 Msgs := False;
2052 exit;
2053 end if;
2054 end if;
2055 end;
2057 -- Special case for component association in aggregates, where
2058 -- we want to keep climbing up to the parent aggregate.
2060 elsif Nkind (P) = N_Component_Association
2061 and then Nkind (Parent (P)) = N_Aggregate
2062 then
2063 null;
2065 -- Keep going if within subexpression
2067 else
2068 exit when Nkind (P) not in N_Subexpr;
2069 end if;
2070 end loop;
2072 if Msgs then
2073 if Present (Ent) then
2074 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
2075 else
2076 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
2077 end if;
2079 if Wmsg then
2080 if Inside_Init_Proc then
2081 Error_Msg_NEL
2082 ("\?& will be raised for objects of this type",
2083 N, Standard_Constraint_Error, Eloc);
2084 else
2085 Error_Msg_NEL
2086 ("\?& will be raised at run time",
2087 N, Standard_Constraint_Error, Eloc);
2088 end if;
2090 else
2091 Error_Msg
2092 ("\static expression fails Constraint_Check", Eloc);
2093 Set_Error_Posted (N);
2094 end if;
2095 end if;
2096 end if;
2098 return N;
2099 end Compile_Time_Constraint_Error;
2101 -----------------------
2102 -- Conditional_Delay --
2103 -----------------------
2105 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
2106 begin
2107 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
2108 Set_Has_Delayed_Freeze (New_Ent);
2109 end if;
2110 end Conditional_Delay;
2112 -------------------------
2113 -- Copy_Parameter_List --
2114 -------------------------
2116 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
2117 Loc : constant Source_Ptr := Sloc (Subp_Id);
2118 Plist : List_Id;
2119 Formal : Entity_Id;
2121 begin
2122 if No (First_Formal (Subp_Id)) then
2123 return No_List;
2124 else
2125 Plist := New_List;
2126 Formal := First_Formal (Subp_Id);
2127 while Present (Formal) loop
2128 Append
2129 (Make_Parameter_Specification (Loc,
2130 Defining_Identifier =>
2131 Make_Defining_Identifier (Sloc (Formal),
2132 Chars => Chars (Formal)),
2133 In_Present => In_Present (Parent (Formal)),
2134 Out_Present => Out_Present (Parent (Formal)),
2135 Parameter_Type =>
2136 New_Reference_To (Etype (Formal), Loc),
2137 Expression =>
2138 New_Copy_Tree (Expression (Parent (Formal)))),
2139 Plist);
2141 Next_Formal (Formal);
2142 end loop;
2143 end if;
2145 return Plist;
2146 end Copy_Parameter_List;
2148 --------------------
2149 -- Current_Entity --
2150 --------------------
2152 -- The currently visible definition for a given identifier is the
2153 -- one most chained at the start of the visibility chain, i.e. the
2154 -- one that is referenced by the Node_Id value of the name of the
2155 -- given identifier.
2157 function Current_Entity (N : Node_Id) return Entity_Id is
2158 begin
2159 return Get_Name_Entity_Id (Chars (N));
2160 end Current_Entity;
2162 -----------------------------
2163 -- Current_Entity_In_Scope --
2164 -----------------------------
2166 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
2167 E : Entity_Id;
2168 CS : constant Entity_Id := Current_Scope;
2170 Transient_Case : constant Boolean := Scope_Is_Transient;
2172 begin
2173 E := Get_Name_Entity_Id (Chars (N));
2174 while Present (E)
2175 and then Scope (E) /= CS
2176 and then (not Transient_Case or else Scope (E) /= Scope (CS))
2177 loop
2178 E := Homonym (E);
2179 end loop;
2181 return E;
2182 end Current_Entity_In_Scope;
2184 -------------------
2185 -- Current_Scope --
2186 -------------------
2188 function Current_Scope return Entity_Id is
2189 begin
2190 if Scope_Stack.Last = -1 then
2191 return Standard_Standard;
2192 else
2193 declare
2194 C : constant Entity_Id :=
2195 Scope_Stack.Table (Scope_Stack.Last).Entity;
2196 begin
2197 if Present (C) then
2198 return C;
2199 else
2200 return Standard_Standard;
2201 end if;
2202 end;
2203 end if;
2204 end Current_Scope;
2206 ------------------------
2207 -- Current_Subprogram --
2208 ------------------------
2210 function Current_Subprogram return Entity_Id is
2211 Scop : constant Entity_Id := Current_Scope;
2212 begin
2213 if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
2214 return Scop;
2215 else
2216 return Enclosing_Subprogram (Scop);
2217 end if;
2218 end Current_Subprogram;
2220 ---------------------
2221 -- Defining_Entity --
2222 ---------------------
2224 function Defining_Entity (N : Node_Id) return Entity_Id is
2225 K : constant Node_Kind := Nkind (N);
2226 Err : Entity_Id := Empty;
2228 begin
2229 case K is
2230 when
2231 N_Subprogram_Declaration |
2232 N_Abstract_Subprogram_Declaration |
2233 N_Subprogram_Body |
2234 N_Package_Declaration |
2235 N_Subprogram_Renaming_Declaration |
2236 N_Subprogram_Body_Stub |
2237 N_Generic_Subprogram_Declaration |
2238 N_Generic_Package_Declaration |
2239 N_Formal_Subprogram_Declaration
2241 return Defining_Entity (Specification (N));
2243 when
2244 N_Component_Declaration |
2245 N_Defining_Program_Unit_Name |
2246 N_Discriminant_Specification |
2247 N_Entry_Body |
2248 N_Entry_Declaration |
2249 N_Entry_Index_Specification |
2250 N_Exception_Declaration |
2251 N_Exception_Renaming_Declaration |
2252 N_Formal_Object_Declaration |
2253 N_Formal_Package_Declaration |
2254 N_Formal_Type_Declaration |
2255 N_Full_Type_Declaration |
2256 N_Implicit_Label_Declaration |
2257 N_Incomplete_Type_Declaration |
2258 N_Loop_Parameter_Specification |
2259 N_Number_Declaration |
2260 N_Object_Declaration |
2261 N_Object_Renaming_Declaration |
2262 N_Package_Body_Stub |
2263 N_Parameter_Specification |
2264 N_Private_Extension_Declaration |
2265 N_Private_Type_Declaration |
2266 N_Protected_Body |
2267 N_Protected_Body_Stub |
2268 N_Protected_Type_Declaration |
2269 N_Single_Protected_Declaration |
2270 N_Single_Task_Declaration |
2271 N_Subtype_Declaration |
2272 N_Task_Body |
2273 N_Task_Body_Stub |
2274 N_Task_Type_Declaration
2276 return Defining_Identifier (N);
2278 when N_Subunit =>
2279 return Defining_Entity (Proper_Body (N));
2281 when
2282 N_Function_Instantiation |
2283 N_Function_Specification |
2284 N_Generic_Function_Renaming_Declaration |
2285 N_Generic_Package_Renaming_Declaration |
2286 N_Generic_Procedure_Renaming_Declaration |
2287 N_Package_Body |
2288 N_Package_Instantiation |
2289 N_Package_Renaming_Declaration |
2290 N_Package_Specification |
2291 N_Procedure_Instantiation |
2292 N_Procedure_Specification
2294 declare
2295 Nam : constant Node_Id := Defining_Unit_Name (N);
2297 begin
2298 if Nkind (Nam) in N_Entity then
2299 return Nam;
2301 -- For Error, make up a name and attach to declaration
2302 -- so we can continue semantic analysis
2304 elsif Nam = Error then
2305 Err := Make_Temporary (Sloc (N), 'T');
2306 Set_Defining_Unit_Name (N, Err);
2308 return Err;
2309 -- If not an entity, get defining identifier
2311 else
2312 return Defining_Identifier (Nam);
2313 end if;
2314 end;
2316 when N_Block_Statement =>
2317 return Entity (Identifier (N));
2319 when others =>
2320 raise Program_Error;
2322 end case;
2323 end Defining_Entity;
2325 --------------------------
2326 -- Denotes_Discriminant --
2327 --------------------------
2329 function Denotes_Discriminant
2330 (N : Node_Id;
2331 Check_Concurrent : Boolean := False) return Boolean
2333 E : Entity_Id;
2334 begin
2335 if not Is_Entity_Name (N)
2336 or else No (Entity (N))
2337 then
2338 return False;
2339 else
2340 E := Entity (N);
2341 end if;
2343 -- If we are checking for a protected type, the discriminant may have
2344 -- been rewritten as the corresponding discriminal of the original type
2345 -- or of the corresponding concurrent record, depending on whether we
2346 -- are in the spec or body of the protected type.
2348 return Ekind (E) = E_Discriminant
2349 or else
2350 (Check_Concurrent
2351 and then Ekind (E) = E_In_Parameter
2352 and then Present (Discriminal_Link (E))
2353 and then
2354 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
2355 or else
2356 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
2358 end Denotes_Discriminant;
2360 -------------------------
2361 -- Denotes_Same_Object --
2362 -------------------------
2364 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
2365 Obj1 : Node_Id := A1;
2366 Obj2 : Node_Id := A2;
2368 procedure Check_Renaming (Obj : in out Node_Id);
2369 -- If an object is a renaming, examine renamed object. If it is a
2370 -- dereference of a variable, or an indexed expression with non-constant
2371 -- indexes, no overlap check can be reported.
2373 --------------------
2374 -- Check_Renaming --
2375 --------------------
2377 procedure Check_Renaming (Obj : in out Node_Id) is
2378 begin
2379 if Is_Entity_Name (Obj)
2380 and then Present (Renamed_Entity (Entity (Obj)))
2381 then
2382 Obj := Renamed_Entity (Entity (Obj));
2383 if Nkind (Obj) = N_Explicit_Dereference
2384 and then Is_Variable (Prefix (Obj))
2385 then
2386 Obj := Empty;
2388 elsif Nkind (Obj) = N_Indexed_Component then
2389 declare
2390 Indx : Node_Id;
2392 begin
2393 Indx := First (Expressions (Obj));
2394 while Present (Indx) loop
2395 if not Is_OK_Static_Expression (Indx) then
2396 Obj := Empty;
2397 exit;
2398 end if;
2400 Next_Index (Indx);
2401 end loop;
2402 end;
2403 end if;
2404 end if;
2405 end Check_Renaming;
2407 -- Start of processing for Denotes_Same_Object
2409 begin
2410 Check_Renaming (Obj1);
2411 Check_Renaming (Obj2);
2413 if No (Obj1)
2414 or else No (Obj2)
2415 then
2416 return False;
2417 end if;
2419 -- If we have entity names, then must be same entity
2421 if Is_Entity_Name (Obj1) then
2422 if Is_Entity_Name (Obj2) then
2423 return Entity (Obj1) = Entity (Obj2);
2424 else
2425 return False;
2426 end if;
2428 -- No match if not same node kind
2430 elsif Nkind (Obj1) /= Nkind (Obj2) then
2431 return False;
2433 -- For selected components, must have same prefix and selector
2435 elsif Nkind (Obj1) = N_Selected_Component then
2436 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
2437 and then
2438 Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
2440 -- For explicit dereferences, prefixes must be same
2442 elsif Nkind (Obj1) = N_Explicit_Dereference then
2443 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
2445 -- For indexed components, prefixes and all subscripts must be the same
2447 elsif Nkind (Obj1) = N_Indexed_Component then
2448 if Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
2449 declare
2450 Indx1 : Node_Id;
2451 Indx2 : Node_Id;
2453 begin
2454 Indx1 := First (Expressions (Obj1));
2455 Indx2 := First (Expressions (Obj2));
2456 while Present (Indx1) loop
2458 -- Indexes must denote the same static value or same object
2460 if Is_OK_Static_Expression (Indx1) then
2461 if not Is_OK_Static_Expression (Indx2) then
2462 return False;
2464 elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
2465 return False;
2466 end if;
2468 elsif not Denotes_Same_Object (Indx1, Indx2) then
2469 return False;
2470 end if;
2472 Next (Indx1);
2473 Next (Indx2);
2474 end loop;
2476 return True;
2477 end;
2478 else
2479 return False;
2480 end if;
2482 -- For slices, prefixes must match and bounds must match
2484 elsif Nkind (Obj1) = N_Slice
2485 and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
2486 then
2487 declare
2488 Lo1, Lo2, Hi1, Hi2 : Node_Id;
2490 begin
2491 Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
2492 Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
2494 -- Check whether bounds are statically identical. There is no
2495 -- attempt to detect partial overlap of slices.
2497 return Denotes_Same_Object (Lo1, Lo2)
2498 and then Denotes_Same_Object (Hi1, Hi2);
2499 end;
2501 -- Literals will appear as indexes. Isn't this where we should check
2502 -- Known_At_Compile_Time at least if we are generating warnings ???
2504 elsif Nkind (Obj1) = N_Integer_Literal then
2505 return Intval (Obj1) = Intval (Obj2);
2507 else
2508 return False;
2509 end if;
2510 end Denotes_Same_Object;
2512 -------------------------
2513 -- Denotes_Same_Prefix --
2514 -------------------------
2516 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
2518 begin
2519 if Is_Entity_Name (A1) then
2520 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
2521 and then not Is_Access_Type (Etype (A1))
2522 then
2523 return Denotes_Same_Object (A1, Prefix (A2))
2524 or else Denotes_Same_Prefix (A1, Prefix (A2));
2525 else
2526 return False;
2527 end if;
2529 elsif Is_Entity_Name (A2) then
2530 return Denotes_Same_Prefix (A2, A1);
2532 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
2533 and then
2534 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
2535 then
2536 declare
2537 Root1, Root2 : Node_Id;
2538 Depth1, Depth2 : Int := 0;
2540 begin
2541 Root1 := Prefix (A1);
2542 while not Is_Entity_Name (Root1) loop
2543 if not Nkind_In
2544 (Root1, N_Selected_Component, N_Indexed_Component)
2545 then
2546 return False;
2547 else
2548 Root1 := Prefix (Root1);
2549 end if;
2551 Depth1 := Depth1 + 1;
2552 end loop;
2554 Root2 := Prefix (A2);
2555 while not Is_Entity_Name (Root2) loop
2556 if not Nkind_In
2557 (Root2, N_Selected_Component, N_Indexed_Component)
2558 then
2559 return False;
2560 else
2561 Root2 := Prefix (Root2);
2562 end if;
2564 Depth2 := Depth2 + 1;
2565 end loop;
2567 -- If both have the same depth and they do not denote the same
2568 -- object, they are disjoint and not warning is needed.
2570 if Depth1 = Depth2 then
2571 return False;
2573 elsif Depth1 > Depth2 then
2574 Root1 := Prefix (A1);
2575 for I in 1 .. Depth1 - Depth2 - 1 loop
2576 Root1 := Prefix (Root1);
2577 end loop;
2579 return Denotes_Same_Object (Root1, A2);
2581 else
2582 Root2 := Prefix (A2);
2583 for I in 1 .. Depth2 - Depth1 - 1 loop
2584 Root2 := Prefix (Root2);
2585 end loop;
2587 return Denotes_Same_Object (A1, Root2);
2588 end if;
2589 end;
2591 else
2592 return False;
2593 end if;
2594 end Denotes_Same_Prefix;
2596 ----------------------
2597 -- Denotes_Variable --
2598 ----------------------
2600 function Denotes_Variable (N : Node_Id) return Boolean is
2601 begin
2602 return Is_Variable (N) and then Paren_Count (N) = 0;
2603 end Denotes_Variable;
2605 -----------------------------
2606 -- Depends_On_Discriminant --
2607 -----------------------------
2609 function Depends_On_Discriminant (N : Node_Id) return Boolean is
2610 L : Node_Id;
2611 H : Node_Id;
2613 begin
2614 Get_Index_Bounds (N, L, H);
2615 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
2616 end Depends_On_Discriminant;
2618 -------------------------
2619 -- Designate_Same_Unit --
2620 -------------------------
2622 function Designate_Same_Unit
2623 (Name1 : Node_Id;
2624 Name2 : Node_Id) return Boolean
2626 K1 : constant Node_Kind := Nkind (Name1);
2627 K2 : constant Node_Kind := Nkind (Name2);
2629 function Prefix_Node (N : Node_Id) return Node_Id;
2630 -- Returns the parent unit name node of a defining program unit name
2631 -- or the prefix if N is a selected component or an expanded name.
2633 function Select_Node (N : Node_Id) return Node_Id;
2634 -- Returns the defining identifier node of a defining program unit
2635 -- name or the selector node if N is a selected component or an
2636 -- expanded name.
2638 -----------------
2639 -- Prefix_Node --
2640 -----------------
2642 function Prefix_Node (N : Node_Id) return Node_Id is
2643 begin
2644 if Nkind (N) = N_Defining_Program_Unit_Name then
2645 return Name (N);
2647 else
2648 return Prefix (N);
2649 end if;
2650 end Prefix_Node;
2652 -----------------
2653 -- Select_Node --
2654 -----------------
2656 function Select_Node (N : Node_Id) return Node_Id is
2657 begin
2658 if Nkind (N) = N_Defining_Program_Unit_Name then
2659 return Defining_Identifier (N);
2661 else
2662 return Selector_Name (N);
2663 end if;
2664 end Select_Node;
2666 -- Start of processing for Designate_Next_Unit
2668 begin
2669 if (K1 = N_Identifier or else
2670 K1 = N_Defining_Identifier)
2671 and then
2672 (K2 = N_Identifier or else
2673 K2 = N_Defining_Identifier)
2674 then
2675 return Chars (Name1) = Chars (Name2);
2677 elsif
2678 (K1 = N_Expanded_Name or else
2679 K1 = N_Selected_Component or else
2680 K1 = N_Defining_Program_Unit_Name)
2681 and then
2682 (K2 = N_Expanded_Name or else
2683 K2 = N_Selected_Component or else
2684 K2 = N_Defining_Program_Unit_Name)
2685 then
2686 return
2687 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
2688 and then
2689 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
2691 else
2692 return False;
2693 end if;
2694 end Designate_Same_Unit;
2696 --------------------------
2697 -- Enclosing_CPP_Parent --
2698 --------------------------
2700 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
2701 Parent_Typ : Entity_Id := Typ;
2703 begin
2704 while not Is_CPP_Class (Parent_Typ)
2705 and then Etype (Parent_Typ) /= Parent_Typ
2706 loop
2707 Parent_Typ := Etype (Parent_Typ);
2709 if Is_Private_Type (Parent_Typ) then
2710 Parent_Typ := Full_View (Base_Type (Parent_Typ));
2711 end if;
2712 end loop;
2714 pragma Assert (Is_CPP_Class (Parent_Typ));
2715 return Parent_Typ;
2716 end Enclosing_CPP_Parent;
2718 ----------------------------
2719 -- Enclosing_Generic_Body --
2720 ----------------------------
2722 function Enclosing_Generic_Body
2723 (N : Node_Id) return Node_Id
2725 P : Node_Id;
2726 Decl : Node_Id;
2727 Spec : Node_Id;
2729 begin
2730 P := Parent (N);
2731 while Present (P) loop
2732 if Nkind (P) = N_Package_Body
2733 or else Nkind (P) = N_Subprogram_Body
2734 then
2735 Spec := Corresponding_Spec (P);
2737 if Present (Spec) then
2738 Decl := Unit_Declaration_Node (Spec);
2740 if Nkind (Decl) = N_Generic_Package_Declaration
2741 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2742 then
2743 return P;
2744 end if;
2745 end if;
2746 end if;
2748 P := Parent (P);
2749 end loop;
2751 return Empty;
2752 end Enclosing_Generic_Body;
2754 ----------------------------
2755 -- Enclosing_Generic_Unit --
2756 ----------------------------
2758 function Enclosing_Generic_Unit
2759 (N : Node_Id) return Node_Id
2761 P : Node_Id;
2762 Decl : Node_Id;
2763 Spec : Node_Id;
2765 begin
2766 P := Parent (N);
2767 while Present (P) loop
2768 if Nkind (P) = N_Generic_Package_Declaration
2769 or else Nkind (P) = N_Generic_Subprogram_Declaration
2770 then
2771 return P;
2773 elsif Nkind (P) = N_Package_Body
2774 or else Nkind (P) = N_Subprogram_Body
2775 then
2776 Spec := Corresponding_Spec (P);
2778 if Present (Spec) then
2779 Decl := Unit_Declaration_Node (Spec);
2781 if Nkind (Decl) = N_Generic_Package_Declaration
2782 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2783 then
2784 return Decl;
2785 end if;
2786 end if;
2787 end if;
2789 P := Parent (P);
2790 end loop;
2792 return Empty;
2793 end Enclosing_Generic_Unit;
2795 -------------------------------
2796 -- Enclosing_Lib_Unit_Entity --
2797 -------------------------------
2799 function Enclosing_Lib_Unit_Entity return Entity_Id is
2800 Unit_Entity : Entity_Id;
2802 begin
2803 -- Look for enclosing library unit entity by following scope links.
2804 -- Equivalent to, but faster than indexing through the scope stack.
2806 Unit_Entity := Current_Scope;
2807 while (Present (Scope (Unit_Entity))
2808 and then Scope (Unit_Entity) /= Standard_Standard)
2809 and not Is_Child_Unit (Unit_Entity)
2810 loop
2811 Unit_Entity := Scope (Unit_Entity);
2812 end loop;
2814 return Unit_Entity;
2815 end Enclosing_Lib_Unit_Entity;
2817 -----------------------------
2818 -- Enclosing_Lib_Unit_Node --
2819 -----------------------------
2821 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
2822 Current_Node : Node_Id;
2824 begin
2825 Current_Node := N;
2826 while Present (Current_Node)
2827 and then Nkind (Current_Node) /= N_Compilation_Unit
2828 loop
2829 Current_Node := Parent (Current_Node);
2830 end loop;
2832 if Nkind (Current_Node) /= N_Compilation_Unit then
2833 return Empty;
2834 end if;
2836 return Current_Node;
2837 end Enclosing_Lib_Unit_Node;
2839 --------------------------
2840 -- Enclosing_Subprogram --
2841 --------------------------
2843 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
2844 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
2846 begin
2847 if Dynamic_Scope = Standard_Standard then
2848 return Empty;
2850 elsif Dynamic_Scope = Empty then
2851 return Empty;
2853 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
2854 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
2856 elsif Ekind (Dynamic_Scope) = E_Block
2857 or else Ekind (Dynamic_Scope) = E_Return_Statement
2858 then
2859 return Enclosing_Subprogram (Dynamic_Scope);
2861 elsif Ekind (Dynamic_Scope) = E_Task_Type then
2862 return Get_Task_Body_Procedure (Dynamic_Scope);
2864 elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
2865 and then Present (Full_View (Dynamic_Scope))
2866 and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
2867 then
2868 return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
2870 -- No body is generated if the protected operation is eliminated
2872 elsif Convention (Dynamic_Scope) = Convention_Protected
2873 and then not Is_Eliminated (Dynamic_Scope)
2874 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
2875 then
2876 return Protected_Body_Subprogram (Dynamic_Scope);
2878 else
2879 return Dynamic_Scope;
2880 end if;
2881 end Enclosing_Subprogram;
2883 ------------------------
2884 -- Ensure_Freeze_Node --
2885 ------------------------
2887 procedure Ensure_Freeze_Node (E : Entity_Id) is
2888 FN : Node_Id;
2890 begin
2891 if No (Freeze_Node (E)) then
2892 FN := Make_Freeze_Entity (Sloc (E));
2893 Set_Has_Delayed_Freeze (E);
2894 Set_Freeze_Node (E, FN);
2895 Set_Access_Types_To_Process (FN, No_Elist);
2896 Set_TSS_Elist (FN, No_Elist);
2897 Set_Entity (FN, E);
2898 end if;
2899 end Ensure_Freeze_Node;
2901 ----------------
2902 -- Enter_Name --
2903 ----------------
2905 procedure Enter_Name (Def_Id : Entity_Id) is
2906 C : constant Entity_Id := Current_Entity (Def_Id);
2907 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
2908 S : constant Entity_Id := Current_Scope;
2910 begin
2911 Generate_Definition (Def_Id);
2913 -- Add new name to current scope declarations. Check for duplicate
2914 -- declaration, which may or may not be a genuine error.
2916 if Present (E) then
2918 -- Case of previous entity entered because of a missing declaration
2919 -- or else a bad subtype indication. Best is to use the new entity,
2920 -- and make the previous one invisible.
2922 if Etype (E) = Any_Type then
2923 Set_Is_Immediately_Visible (E, False);
2925 -- Case of renaming declaration constructed for package instances.
2926 -- if there is an explicit declaration with the same identifier,
2927 -- the renaming is not immediately visible any longer, but remains
2928 -- visible through selected component notation.
2930 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
2931 and then not Comes_From_Source (E)
2932 then
2933 Set_Is_Immediately_Visible (E, False);
2935 -- The new entity may be the package renaming, which has the same
2936 -- same name as a generic formal which has been seen already.
2938 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
2939 and then not Comes_From_Source (Def_Id)
2940 then
2941 Set_Is_Immediately_Visible (E, False);
2943 -- For a fat pointer corresponding to a remote access to subprogram,
2944 -- we use the same identifier as the RAS type, so that the proper
2945 -- name appears in the stub. This type is only retrieved through
2946 -- the RAS type and never by visibility, and is not added to the
2947 -- visibility list (see below).
2949 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
2950 and then Present (Corresponding_Remote_Type (Def_Id))
2951 then
2952 null;
2954 -- A controller component for a type extension overrides the
2955 -- inherited component.
2957 elsif Chars (E) = Name_uController then
2958 null;
2960 -- Case of an implicit operation or derived literal. The new entity
2961 -- hides the implicit one, which is removed from all visibility,
2962 -- i.e. the entity list of its scope, and homonym chain of its name.
2964 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
2965 or else Is_Internal (E)
2966 then
2967 declare
2968 Prev : Entity_Id;
2969 Prev_Vis : Entity_Id;
2970 Decl : constant Node_Id := Parent (E);
2972 begin
2973 -- If E is an implicit declaration, it cannot be the first
2974 -- entity in the scope.
2976 Prev := First_Entity (Current_Scope);
2977 while Present (Prev)
2978 and then Next_Entity (Prev) /= E
2979 loop
2980 Next_Entity (Prev);
2981 end loop;
2983 if No (Prev) then
2985 -- If E is not on the entity chain of the current scope,
2986 -- it is an implicit declaration in the generic formal
2987 -- part of a generic subprogram. When analyzing the body,
2988 -- the generic formals are visible but not on the entity
2989 -- chain of the subprogram. The new entity will become
2990 -- the visible one in the body.
2992 pragma Assert
2993 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
2994 null;
2996 else
2997 Set_Next_Entity (Prev, Next_Entity (E));
2999 if No (Next_Entity (Prev)) then
3000 Set_Last_Entity (Current_Scope, Prev);
3001 end if;
3003 if E = Current_Entity (E) then
3004 Prev_Vis := Empty;
3006 else
3007 Prev_Vis := Current_Entity (E);
3008 while Homonym (Prev_Vis) /= E loop
3009 Prev_Vis := Homonym (Prev_Vis);
3010 end loop;
3011 end if;
3013 if Present (Prev_Vis) then
3015 -- Skip E in the visibility chain
3017 Set_Homonym (Prev_Vis, Homonym (E));
3019 else
3020 Set_Name_Entity_Id (Chars (E), Homonym (E));
3021 end if;
3022 end if;
3023 end;
3025 -- This section of code could use a comment ???
3027 elsif Present (Etype (E))
3028 and then Is_Concurrent_Type (Etype (E))
3029 and then E = Def_Id
3030 then
3031 return;
3033 -- If the homograph is a protected component renaming, it should not
3034 -- be hiding the current entity. Such renamings are treated as weak
3035 -- declarations.
3037 elsif Is_Prival (E) then
3038 Set_Is_Immediately_Visible (E, False);
3040 -- In this case the current entity is a protected component renaming.
3041 -- Perform minimal decoration by setting the scope and return since
3042 -- the prival should not be hiding other visible entities.
3044 elsif Is_Prival (Def_Id) then
3045 Set_Scope (Def_Id, Current_Scope);
3046 return;
3048 -- Analogous to privals, the discriminal generated for an entry index
3049 -- parameter acts as a weak declaration. Perform minimal decoration
3050 -- to avoid bogus errors.
3052 elsif Is_Discriminal (Def_Id)
3053 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
3054 then
3055 Set_Scope (Def_Id, Current_Scope);
3056 return;
3058 -- In the body or private part of an instance, a type extension may
3059 -- introduce a component with the same name as that of an actual. The
3060 -- legality rule is not enforced, but the semantics of the full type
3061 -- with two components of same name are not clear at this point???
3063 elsif In_Instance_Not_Visible then
3064 null;
3066 -- When compiling a package body, some child units may have become
3067 -- visible. They cannot conflict with local entities that hide them.
3069 elsif Is_Child_Unit (E)
3070 and then In_Open_Scopes (Scope (E))
3071 and then not Is_Immediately_Visible (E)
3072 then
3073 null;
3075 -- Conversely, with front-end inlining we may compile the parent body
3076 -- first, and a child unit subsequently. The context is now the
3077 -- parent spec, and body entities are not visible.
3079 elsif Is_Child_Unit (Def_Id)
3080 and then Is_Package_Body_Entity (E)
3081 and then not In_Package_Body (Current_Scope)
3082 then
3083 null;
3085 -- Case of genuine duplicate declaration
3087 else
3088 Error_Msg_Sloc := Sloc (E);
3090 -- If the previous declaration is an incomplete type declaration
3091 -- this may be an attempt to complete it with a private type. The
3092 -- following avoids confusing cascaded errors.
3094 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
3095 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
3096 then
3097 Error_Msg_N
3098 ("incomplete type cannot be completed with a private " &
3099 "declaration", Parent (Def_Id));
3100 Set_Is_Immediately_Visible (E, False);
3101 Set_Full_View (E, Def_Id);
3103 -- An inherited component of a record conflicts with a new
3104 -- discriminant. The discriminant is inserted first in the scope,
3105 -- but the error should be posted on it, not on the component.
3107 elsif Ekind (E) = E_Discriminant
3108 and then Present (Scope (Def_Id))
3109 and then Scope (Def_Id) /= Current_Scope
3110 then
3111 Error_Msg_Sloc := Sloc (Def_Id);
3112 Error_Msg_N ("& conflicts with declaration#", E);
3113 return;
3115 -- If the name of the unit appears in its own context clause, a
3116 -- dummy package with the name has already been created, and the
3117 -- error emitted. Try to continue quietly.
3119 elsif Error_Posted (E)
3120 and then Sloc (E) = No_Location
3121 and then Nkind (Parent (E)) = N_Package_Specification
3122 and then Current_Scope = Standard_Standard
3123 then
3124 Set_Scope (Def_Id, Current_Scope);
3125 return;
3127 else
3128 Error_Msg_N ("& conflicts with declaration#", Def_Id);
3130 -- Avoid cascaded messages with duplicate components in
3131 -- derived types.
3133 if Ekind_In (E, E_Component, E_Discriminant) then
3134 return;
3135 end if;
3136 end if;
3138 if Nkind (Parent (Parent (Def_Id))) =
3139 N_Generic_Subprogram_Declaration
3140 and then Def_Id =
3141 Defining_Entity (Specification (Parent (Parent (Def_Id))))
3142 then
3143 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
3144 end if;
3146 -- If entity is in standard, then we are in trouble, because it
3147 -- means that we have a library package with a duplicated name.
3148 -- That's hard to recover from, so abort!
3150 if S = Standard_Standard then
3151 raise Unrecoverable_Error;
3153 -- Otherwise we continue with the declaration. Having two
3154 -- identical declarations should not cause us too much trouble!
3156 else
3157 null;
3158 end if;
3159 end if;
3160 end if;
3162 -- If we fall through, declaration is OK, at least OK enough to continue
3164 -- If Def_Id is a discriminant or a record component we are in the midst
3165 -- of inheriting components in a derived record definition. Preserve
3166 -- their Ekind and Etype.
3168 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
3169 null;
3171 -- If a type is already set, leave it alone (happens when a type
3172 -- declaration is reanalyzed following a call to the optimizer).
3174 elsif Present (Etype (Def_Id)) then
3175 null;
3177 -- Otherwise, the kind E_Void insures that premature uses of the entity
3178 -- will be detected. Any_Type insures that no cascaded errors will occur
3180 else
3181 Set_Ekind (Def_Id, E_Void);
3182 Set_Etype (Def_Id, Any_Type);
3183 end if;
3185 -- Inherited discriminants and components in derived record types are
3186 -- immediately visible. Itypes are not.
3188 if Ekind_In (Def_Id, E_Discriminant, E_Component)
3189 or else (No (Corresponding_Remote_Type (Def_Id))
3190 and then not Is_Itype (Def_Id))
3191 then
3192 Set_Is_Immediately_Visible (Def_Id);
3193 Set_Current_Entity (Def_Id);
3194 end if;
3196 Set_Homonym (Def_Id, C);
3197 Append_Entity (Def_Id, S);
3198 Set_Public_Status (Def_Id);
3200 -- Warn if new entity hides an old one
3202 if Warn_On_Hiding and then Present (C)
3204 -- Don't warn for record components since they always have a well
3205 -- defined scope which does not confuse other uses. Note that in
3206 -- some cases, Ekind has not been set yet.
3208 and then Ekind (C) /= E_Component
3209 and then Ekind (C) /= E_Discriminant
3210 and then Nkind (Parent (C)) /= N_Component_Declaration
3211 and then Ekind (Def_Id) /= E_Component
3212 and then Ekind (Def_Id) /= E_Discriminant
3213 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
3215 -- Don't warn for one character variables. It is too common to use
3216 -- such variables as locals and will just cause too many false hits.
3218 and then Length_Of_Name (Chars (C)) /= 1
3220 -- Don't warn for non-source entities
3222 and then Comes_From_Source (C)
3223 and then Comes_From_Source (Def_Id)
3225 -- Don't warn unless entity in question is in extended main source
3227 and then In_Extended_Main_Source_Unit (Def_Id)
3229 -- Finally, the hidden entity must be either immediately visible or
3230 -- use visible (i.e. from a used package).
3232 and then
3233 (Is_Immediately_Visible (C)
3234 or else
3235 Is_Potentially_Use_Visible (C))
3236 then
3237 Error_Msg_Sloc := Sloc (C);
3238 Error_Msg_N ("declaration hides &#?", Def_Id);
3239 end if;
3240 end Enter_Name;
3242 --------------------------
3243 -- Explain_Limited_Type --
3244 --------------------------
3246 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
3247 C : Entity_Id;
3249 begin
3250 -- For array, component type must be limited
3252 if Is_Array_Type (T) then
3253 Error_Msg_Node_2 := T;
3254 Error_Msg_NE
3255 ("\component type& of type& is limited", N, Component_Type (T));
3256 Explain_Limited_Type (Component_Type (T), N);
3258 elsif Is_Record_Type (T) then
3260 -- No need for extra messages if explicit limited record
3262 if Is_Limited_Record (Base_Type (T)) then
3263 return;
3264 end if;
3266 -- Otherwise find a limited component. Check only components that
3267 -- come from source, or inherited components that appear in the
3268 -- source of the ancestor.
3270 C := First_Component (T);
3271 while Present (C) loop
3272 if Is_Limited_Type (Etype (C))
3273 and then
3274 (Comes_From_Source (C)
3275 or else
3276 (Present (Original_Record_Component (C))
3277 and then
3278 Comes_From_Source (Original_Record_Component (C))))
3279 then
3280 Error_Msg_Node_2 := T;
3281 Error_Msg_NE ("\component& of type& has limited type", N, C);
3282 Explain_Limited_Type (Etype (C), N);
3283 return;
3284 end if;
3286 Next_Component (C);
3287 end loop;
3289 -- The type may be declared explicitly limited, even if no component
3290 -- of it is limited, in which case we fall out of the loop.
3291 return;
3292 end if;
3293 end Explain_Limited_Type;
3295 -----------------
3296 -- Find_Actual --
3297 -----------------
3299 procedure Find_Actual
3300 (N : Node_Id;
3301 Formal : out Entity_Id;
3302 Call : out Node_Id)
3304 Parnt : constant Node_Id := Parent (N);
3305 Actual : Node_Id;
3307 begin
3308 if (Nkind (Parnt) = N_Indexed_Component
3309 or else
3310 Nkind (Parnt) = N_Selected_Component)
3311 and then N = Prefix (Parnt)
3312 then
3313 Find_Actual (Parnt, Formal, Call);
3314 return;
3316 elsif Nkind (Parnt) = N_Parameter_Association
3317 and then N = Explicit_Actual_Parameter (Parnt)
3318 then
3319 Call := Parent (Parnt);
3321 elsif Nkind (Parnt) = N_Procedure_Call_Statement then
3322 Call := Parnt;
3324 else
3325 Formal := Empty;
3326 Call := Empty;
3327 return;
3328 end if;
3330 -- If we have a call to a subprogram look for the parameter. Note that
3331 -- we exclude overloaded calls, since we don't know enough to be sure
3332 -- of giving the right answer in this case.
3334 if Is_Entity_Name (Name (Call))
3335 and then Present (Entity (Name (Call)))
3336 and then Is_Overloadable (Entity (Name (Call)))
3337 and then not Is_Overloaded (Name (Call))
3338 then
3339 -- Fall here if we are definitely a parameter
3341 Actual := First_Actual (Call);
3342 Formal := First_Formal (Entity (Name (Call)));
3343 while Present (Formal) and then Present (Actual) loop
3344 if Actual = N then
3345 return;
3346 else
3347 Actual := Next_Actual (Actual);
3348 Formal := Next_Formal (Formal);
3349 end if;
3350 end loop;
3351 end if;
3353 -- Fall through here if we did not find matching actual
3355 Formal := Empty;
3356 Call := Empty;
3357 end Find_Actual;
3359 ---------------------------
3360 -- Find_Body_Discriminal --
3361 ---------------------------
3363 function Find_Body_Discriminal
3364 (Spec_Discriminant : Entity_Id) return Entity_Id
3366 pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
3368 Tsk : constant Entity_Id :=
3369 Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
3370 Disc : Entity_Id;
3372 begin
3373 -- Find discriminant of original concurrent type, and use its current
3374 -- discriminal, which is the renaming within the task/protected body.
3376 Disc := First_Discriminant (Tsk);
3377 while Present (Disc) loop
3378 if Chars (Disc) = Chars (Spec_Discriminant) then
3379 return Discriminal (Disc);
3380 end if;
3382 Next_Discriminant (Disc);
3383 end loop;
3385 -- That loop should always succeed in finding a matching entry and
3386 -- returning. Fatal error if not.
3388 raise Program_Error;
3389 end Find_Body_Discriminal;
3391 -------------------------------------
3392 -- Find_Corresponding_Discriminant --
3393 -------------------------------------
3395 function Find_Corresponding_Discriminant
3396 (Id : Node_Id;
3397 Typ : Entity_Id) return Entity_Id
3399 Par_Disc : Entity_Id;
3400 Old_Disc : Entity_Id;
3401 New_Disc : Entity_Id;
3403 begin
3404 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
3406 -- The original type may currently be private, and the discriminant
3407 -- only appear on its full view.
3409 if Is_Private_Type (Scope (Par_Disc))
3410 and then not Has_Discriminants (Scope (Par_Disc))
3411 and then Present (Full_View (Scope (Par_Disc)))
3412 then
3413 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
3414 else
3415 Old_Disc := First_Discriminant (Scope (Par_Disc));
3416 end if;
3418 if Is_Class_Wide_Type (Typ) then
3419 New_Disc := First_Discriminant (Root_Type (Typ));
3420 else
3421 New_Disc := First_Discriminant (Typ);
3422 end if;
3424 while Present (Old_Disc) and then Present (New_Disc) loop
3425 if Old_Disc = Par_Disc then
3426 return New_Disc;
3427 else
3428 Next_Discriminant (Old_Disc);
3429 Next_Discriminant (New_Disc);
3430 end if;
3431 end loop;
3433 -- Should always find it
3435 raise Program_Error;
3436 end Find_Corresponding_Discriminant;
3438 --------------------------
3439 -- Find_Overlaid_Entity --
3440 --------------------------
3442 procedure Find_Overlaid_Entity
3443 (N : Node_Id;
3444 Ent : out Entity_Id;
3445 Off : out Boolean)
3447 Expr : Node_Id;
3449 begin
3450 -- We are looking for one of the two following forms:
3452 -- for X'Address use Y'Address
3454 -- or
3456 -- Const : constant Address := expr;
3457 -- ...
3458 -- for X'Address use Const;
3460 -- In the second case, the expr is either Y'Address, or recursively a
3461 -- constant that eventually references Y'Address.
3463 Ent := Empty;
3464 Off := False;
3466 if Nkind (N) = N_Attribute_Definition_Clause
3467 and then Chars (N) = Name_Address
3468 then
3469 Expr := Expression (N);
3471 -- This loop checks the form of the expression for Y'Address,
3472 -- using recursion to deal with intermediate constants.
3474 loop
3475 -- Check for Y'Address
3477 if Nkind (Expr) = N_Attribute_Reference
3478 and then Attribute_Name (Expr) = Name_Address
3479 then
3480 Expr := Prefix (Expr);
3481 exit;
3483 -- Check for Const where Const is a constant entity
3485 elsif Is_Entity_Name (Expr)
3486 and then Ekind (Entity (Expr)) = E_Constant
3487 then
3488 Expr := Constant_Value (Entity (Expr));
3490 -- Anything else does not need checking
3492 else
3493 return;
3494 end if;
3495 end loop;
3497 -- This loop checks the form of the prefix for an entity,
3498 -- using recursion to deal with intermediate components.
3500 loop
3501 -- Check for Y where Y is an entity
3503 if Is_Entity_Name (Expr) then
3504 Ent := Entity (Expr);
3505 return;
3507 -- Check for components
3509 elsif
3510 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component) then
3512 Expr := Prefix (Expr);
3513 Off := True;
3515 -- Anything else does not need checking
3517 else
3518 return;
3519 end if;
3520 end loop;
3521 end if;
3522 end Find_Overlaid_Entity;
3524 -------------------------
3525 -- Find_Parameter_Type --
3526 -------------------------
3528 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
3529 begin
3530 if Nkind (Param) /= N_Parameter_Specification then
3531 return Empty;
3533 -- For an access parameter, obtain the type from the formal entity
3534 -- itself, because access to subprogram nodes do not carry a type.
3535 -- Shouldn't we always use the formal entity ???
3537 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
3538 return Etype (Defining_Identifier (Param));
3540 else
3541 return Etype (Parameter_Type (Param));
3542 end if;
3543 end Find_Parameter_Type;
3545 -----------------------------
3546 -- Find_Static_Alternative --
3547 -----------------------------
3549 function Find_Static_Alternative (N : Node_Id) return Node_Id is
3550 Expr : constant Node_Id := Expression (N);
3551 Val : constant Uint := Expr_Value (Expr);
3552 Alt : Node_Id;
3553 Choice : Node_Id;
3555 begin
3556 Alt := First (Alternatives (N));
3558 Search : loop
3559 if Nkind (Alt) /= N_Pragma then
3560 Choice := First (Discrete_Choices (Alt));
3561 while Present (Choice) loop
3563 -- Others choice, always matches
3565 if Nkind (Choice) = N_Others_Choice then
3566 exit Search;
3568 -- Range, check if value is in the range
3570 elsif Nkind (Choice) = N_Range then
3571 exit Search when
3572 Val >= Expr_Value (Low_Bound (Choice))
3573 and then
3574 Val <= Expr_Value (High_Bound (Choice));
3576 -- Choice is a subtype name. Note that we know it must
3577 -- be a static subtype, since otherwise it would have
3578 -- been diagnosed as illegal.
3580 elsif Is_Entity_Name (Choice)
3581 and then Is_Type (Entity (Choice))
3582 then
3583 exit Search when Is_In_Range (Expr, Etype (Choice),
3584 Assume_Valid => False);
3586 -- Choice is a subtype indication
3588 elsif Nkind (Choice) = N_Subtype_Indication then
3589 declare
3590 C : constant Node_Id := Constraint (Choice);
3591 R : constant Node_Id := Range_Expression (C);
3593 begin
3594 exit Search when
3595 Val >= Expr_Value (Low_Bound (R))
3596 and then
3597 Val <= Expr_Value (High_Bound (R));
3598 end;
3600 -- Choice is a simple expression
3602 else
3603 exit Search when Val = Expr_Value (Choice);
3604 end if;
3606 Next (Choice);
3607 end loop;
3608 end if;
3610 Next (Alt);
3611 pragma Assert (Present (Alt));
3612 end loop Search;
3614 -- The above loop *must* terminate by finding a match, since
3615 -- we know the case statement is valid, and the value of the
3616 -- expression is known at compile time. When we fall out of
3617 -- the loop, Alt points to the alternative that we know will
3618 -- be selected at run time.
3620 return Alt;
3621 end Find_Static_Alternative;
3623 ------------------
3624 -- First_Actual --
3625 ------------------
3627 function First_Actual (Node : Node_Id) return Node_Id is
3628 N : Node_Id;
3630 begin
3631 if No (Parameter_Associations (Node)) then
3632 return Empty;
3633 end if;
3635 N := First (Parameter_Associations (Node));
3637 if Nkind (N) = N_Parameter_Association then
3638 return First_Named_Actual (Node);
3639 else
3640 return N;
3641 end if;
3642 end First_Actual;
3644 -----------------------
3645 -- Gather_Components --
3646 -----------------------
3648 procedure Gather_Components
3649 (Typ : Entity_Id;
3650 Comp_List : Node_Id;
3651 Governed_By : List_Id;
3652 Into : Elist_Id;
3653 Report_Errors : out Boolean)
3655 Assoc : Node_Id;
3656 Variant : Node_Id;
3657 Discrete_Choice : Node_Id;
3658 Comp_Item : Node_Id;
3660 Discrim : Entity_Id;
3661 Discrim_Name : Node_Id;
3662 Discrim_Value : Node_Id;
3664 begin
3665 Report_Errors := False;
3667 if No (Comp_List) or else Null_Present (Comp_List) then
3668 return;
3670 elsif Present (Component_Items (Comp_List)) then
3671 Comp_Item := First (Component_Items (Comp_List));
3673 else
3674 Comp_Item := Empty;
3675 end if;
3677 while Present (Comp_Item) loop
3679 -- Skip the tag of a tagged record, the interface tags, as well
3680 -- as all items that are not user components (anonymous types,
3681 -- rep clauses, Parent field, controller field).
3683 if Nkind (Comp_Item) = N_Component_Declaration then
3684 declare
3685 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
3686 begin
3687 if not Is_Tag (Comp)
3688 and then Chars (Comp) /= Name_uParent
3689 and then Chars (Comp) /= Name_uController
3690 then
3691 Append_Elmt (Comp, Into);
3692 end if;
3693 end;
3694 end if;
3696 Next (Comp_Item);
3697 end loop;
3699 if No (Variant_Part (Comp_List)) then
3700 return;
3701 else
3702 Discrim_Name := Name (Variant_Part (Comp_List));
3703 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3704 end if;
3706 -- Look for the discriminant that governs this variant part.
3707 -- The discriminant *must* be in the Governed_By List
3709 Assoc := First (Governed_By);
3710 Find_Constraint : loop
3711 Discrim := First (Choices (Assoc));
3712 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
3713 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
3714 and then
3715 Chars (Corresponding_Discriminant (Entity (Discrim)))
3716 = Chars (Discrim_Name))
3717 or else Chars (Original_Record_Component (Entity (Discrim)))
3718 = Chars (Discrim_Name);
3720 if No (Next (Assoc)) then
3721 if not Is_Constrained (Typ)
3722 and then Is_Derived_Type (Typ)
3723 and then Present (Stored_Constraint (Typ))
3724 then
3725 -- If the type is a tagged type with inherited discriminants,
3726 -- use the stored constraint on the parent in order to find
3727 -- the values of discriminants that are otherwise hidden by an
3728 -- explicit constraint. Renamed discriminants are handled in
3729 -- the code above.
3731 -- If several parent discriminants are renamed by a single
3732 -- discriminant of the derived type, the call to obtain the
3733 -- Corresponding_Discriminant field only retrieves the last
3734 -- of them. We recover the constraint on the others from the
3735 -- Stored_Constraint as well.
3737 declare
3738 D : Entity_Id;
3739 C : Elmt_Id;
3741 begin
3742 D := First_Discriminant (Etype (Typ));
3743 C := First_Elmt (Stored_Constraint (Typ));
3744 while Present (D) and then Present (C) loop
3745 if Chars (Discrim_Name) = Chars (D) then
3746 if Is_Entity_Name (Node (C))
3747 and then Entity (Node (C)) = Entity (Discrim)
3748 then
3749 -- D is renamed by Discrim, whose value is given in
3750 -- Assoc.
3752 null;
3754 else
3755 Assoc :=
3756 Make_Component_Association (Sloc (Typ),
3757 New_List
3758 (New_Occurrence_Of (D, Sloc (Typ))),
3759 Duplicate_Subexpr_No_Checks (Node (C)));
3760 end if;
3761 exit Find_Constraint;
3762 end if;
3764 Next_Discriminant (D);
3765 Next_Elmt (C);
3766 end loop;
3767 end;
3768 end if;
3769 end if;
3771 if No (Next (Assoc)) then
3772 Error_Msg_NE (" missing value for discriminant&",
3773 First (Governed_By), Discrim_Name);
3774 Report_Errors := True;
3775 return;
3776 end if;
3778 Next (Assoc);
3779 end loop Find_Constraint;
3781 Discrim_Value := Expression (Assoc);
3783 if not Is_OK_Static_Expression (Discrim_Value) then
3784 Error_Msg_FE
3785 ("value for discriminant & must be static!",
3786 Discrim_Value, Discrim);
3787 Why_Not_Static (Discrim_Value);
3788 Report_Errors := True;
3789 return;
3790 end if;
3792 Search_For_Discriminant_Value : declare
3793 Low : Node_Id;
3794 High : Node_Id;
3796 UI_High : Uint;
3797 UI_Low : Uint;
3798 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
3800 begin
3801 Find_Discrete_Value : while Present (Variant) loop
3802 Discrete_Choice := First (Discrete_Choices (Variant));
3803 while Present (Discrete_Choice) loop
3805 exit Find_Discrete_Value when
3806 Nkind (Discrete_Choice) = N_Others_Choice;
3808 Get_Index_Bounds (Discrete_Choice, Low, High);
3810 UI_Low := Expr_Value (Low);
3811 UI_High := Expr_Value (High);
3813 exit Find_Discrete_Value when
3814 UI_Low <= UI_Discrim_Value
3815 and then
3816 UI_High >= UI_Discrim_Value;
3818 Next (Discrete_Choice);
3819 end loop;
3821 Next_Non_Pragma (Variant);
3822 end loop Find_Discrete_Value;
3823 end Search_For_Discriminant_Value;
3825 if No (Variant) then
3826 Error_Msg_NE
3827 ("value of discriminant & is out of range", Discrim_Value, Discrim);
3828 Report_Errors := True;
3829 return;
3830 end if;
3832 -- If we have found the corresponding choice, recursively add its
3833 -- components to the Into list.
3835 Gather_Components (Empty,
3836 Component_List (Variant), Governed_By, Into, Report_Errors);
3837 end Gather_Components;
3839 ------------------------
3840 -- Get_Actual_Subtype --
3841 ------------------------
3843 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
3844 Typ : constant Entity_Id := Etype (N);
3845 Utyp : Entity_Id := Underlying_Type (Typ);
3846 Decl : Node_Id;
3847 Atyp : Entity_Id;
3849 begin
3850 if No (Utyp) then
3851 Utyp := Typ;
3852 end if;
3854 -- If what we have is an identifier that references a subprogram
3855 -- formal, or a variable or constant object, then we get the actual
3856 -- subtype from the referenced entity if one has been built.
3858 if Nkind (N) = N_Identifier
3859 and then
3860 (Is_Formal (Entity (N))
3861 or else Ekind (Entity (N)) = E_Constant
3862 or else Ekind (Entity (N)) = E_Variable)
3863 and then Present (Actual_Subtype (Entity (N)))
3864 then
3865 return Actual_Subtype (Entity (N));
3867 -- Actual subtype of unchecked union is always itself. We never need
3868 -- the "real" actual subtype. If we did, we couldn't get it anyway
3869 -- because the discriminant is not available. The restrictions on
3870 -- Unchecked_Union are designed to make sure that this is OK.
3872 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
3873 return Typ;
3875 -- Here for the unconstrained case, we must find actual subtype
3876 -- No actual subtype is available, so we must build it on the fly.
3878 -- Checking the type, not the underlying type, for constrainedness
3879 -- seems to be necessary. Maybe all the tests should be on the type???
3881 elsif (not Is_Constrained (Typ))
3882 and then (Is_Array_Type (Utyp)
3883 or else (Is_Record_Type (Utyp)
3884 and then Has_Discriminants (Utyp)))
3885 and then not Has_Unknown_Discriminants (Utyp)
3886 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
3887 then
3888 -- Nothing to do if in spec expression (why not???)
3890 if In_Spec_Expression then
3891 return Typ;
3893 elsif Is_Private_Type (Typ)
3894 and then not Has_Discriminants (Typ)
3895 then
3896 -- If the type has no discriminants, there is no subtype to
3897 -- build, even if the underlying type is discriminated.
3899 return Typ;
3901 -- Else build the actual subtype
3903 else
3904 Decl := Build_Actual_Subtype (Typ, N);
3905 Atyp := Defining_Identifier (Decl);
3907 -- If Build_Actual_Subtype generated a new declaration then use it
3909 if Atyp /= Typ then
3911 -- The actual subtype is an Itype, so analyze the declaration,
3912 -- but do not attach it to the tree, to get the type defined.
3914 Set_Parent (Decl, N);
3915 Set_Is_Itype (Atyp);
3916 Analyze (Decl, Suppress => All_Checks);
3917 Set_Associated_Node_For_Itype (Atyp, N);
3918 Set_Has_Delayed_Freeze (Atyp, False);
3920 -- We need to freeze the actual subtype immediately. This is
3921 -- needed, because otherwise this Itype will not get frozen
3922 -- at all, and it is always safe to freeze on creation because
3923 -- any associated types must be frozen at this point.
3925 Freeze_Itype (Atyp, N);
3926 return Atyp;
3928 -- Otherwise we did not build a declaration, so return original
3930 else
3931 return Typ;
3932 end if;
3933 end if;
3935 -- For all remaining cases, the actual subtype is the same as
3936 -- the nominal type.
3938 else
3939 return Typ;
3940 end if;
3941 end Get_Actual_Subtype;
3943 -------------------------------------
3944 -- Get_Actual_Subtype_If_Available --
3945 -------------------------------------
3947 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
3948 Typ : constant Entity_Id := Etype (N);
3950 begin
3951 -- If what we have is an identifier that references a subprogram
3952 -- formal, or a variable or constant object, then we get the actual
3953 -- subtype from the referenced entity if one has been built.
3955 if Nkind (N) = N_Identifier
3956 and then
3957 (Is_Formal (Entity (N))
3958 or else Ekind (Entity (N)) = E_Constant
3959 or else Ekind (Entity (N)) = E_Variable)
3960 and then Present (Actual_Subtype (Entity (N)))
3961 then
3962 return Actual_Subtype (Entity (N));
3964 -- Otherwise the Etype of N is returned unchanged
3966 else
3967 return Typ;
3968 end if;
3969 end Get_Actual_Subtype_If_Available;
3971 -------------------------------
3972 -- Get_Default_External_Name --
3973 -------------------------------
3975 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
3976 begin
3977 Get_Decoded_Name_String (Chars (E));
3979 if Opt.External_Name_Imp_Casing = Uppercase then
3980 Set_Casing (All_Upper_Case);
3981 else
3982 Set_Casing (All_Lower_Case);
3983 end if;
3985 return
3986 Make_String_Literal (Sloc (E),
3987 Strval => String_From_Name_Buffer);
3988 end Get_Default_External_Name;
3990 ---------------------------
3991 -- Get_Enum_Lit_From_Pos --
3992 ---------------------------
3994 function Get_Enum_Lit_From_Pos
3995 (T : Entity_Id;
3996 Pos : Uint;
3997 Loc : Source_Ptr) return Node_Id
3999 Lit : Node_Id;
4001 begin
4002 -- In the case where the literal is of type Character, Wide_Character
4003 -- or Wide_Wide_Character or of a type derived from them, there needs
4004 -- to be some special handling since there is no explicit chain of
4005 -- literals to search. Instead, an N_Character_Literal node is created
4006 -- with the appropriate Char_Code and Chars fields.
4008 if Is_Standard_Character_Type (T) then
4009 Set_Character_Literal_Name (UI_To_CC (Pos));
4010 return
4011 Make_Character_Literal (Loc,
4012 Chars => Name_Find,
4013 Char_Literal_Value => Pos);
4015 -- For all other cases, we have a complete table of literals, and
4016 -- we simply iterate through the chain of literal until the one
4017 -- with the desired position value is found.
4020 else
4021 Lit := First_Literal (Base_Type (T));
4022 for J in 1 .. UI_To_Int (Pos) loop
4023 Next_Literal (Lit);
4024 end loop;
4026 return New_Occurrence_Of (Lit, Loc);
4027 end if;
4028 end Get_Enum_Lit_From_Pos;
4030 ------------------------
4031 -- Get_Generic_Entity --
4032 ------------------------
4034 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
4035 Ent : constant Entity_Id := Entity (Name (N));
4036 begin
4037 if Present (Renamed_Object (Ent)) then
4038 return Renamed_Object (Ent);
4039 else
4040 return Ent;
4041 end if;
4042 end Get_Generic_Entity;
4044 ----------------------
4045 -- Get_Index_Bounds --
4046 ----------------------
4048 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
4049 Kind : constant Node_Kind := Nkind (N);
4050 R : Node_Id;
4052 begin
4053 if Kind = N_Range then
4054 L := Low_Bound (N);
4055 H := High_Bound (N);
4057 elsif Kind = N_Subtype_Indication then
4058 R := Range_Expression (Constraint (N));
4060 if R = Error then
4061 L := Error;
4062 H := Error;
4063 return;
4065 else
4066 L := Low_Bound (Range_Expression (Constraint (N)));
4067 H := High_Bound (Range_Expression (Constraint (N)));
4068 end if;
4070 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
4071 if Error_Posted (Scalar_Range (Entity (N))) then
4072 L := Error;
4073 H := Error;
4075 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
4076 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
4078 else
4079 L := Low_Bound (Scalar_Range (Entity (N)));
4080 H := High_Bound (Scalar_Range (Entity (N)));
4081 end if;
4083 else
4084 -- N is an expression, indicating a range with one value
4086 L := N;
4087 H := N;
4088 end if;
4089 end Get_Index_Bounds;
4091 ----------------------------------
4092 -- Get_Library_Unit_Name_string --
4093 ----------------------------------
4095 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
4096 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
4098 begin
4099 Get_Unit_Name_String (Unit_Name_Id);
4101 -- Remove seven last character (" (spec)" or " (body)")
4103 Name_Len := Name_Len - 7;
4104 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
4105 end Get_Library_Unit_Name_String;
4107 ------------------------
4108 -- Get_Name_Entity_Id --
4109 ------------------------
4111 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
4112 begin
4113 return Entity_Id (Get_Name_Table_Info (Id));
4114 end Get_Name_Entity_Id;
4116 -------------------
4117 -- Get_Pragma_Id --
4118 -------------------
4120 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
4121 begin
4122 return Get_Pragma_Id (Pragma_Name (N));
4123 end Get_Pragma_Id;
4125 ---------------------------
4126 -- Get_Referenced_Object --
4127 ---------------------------
4129 function Get_Referenced_Object (N : Node_Id) return Node_Id is
4130 R : Node_Id;
4132 begin
4133 R := N;
4134 while Is_Entity_Name (R)
4135 and then Present (Renamed_Object (Entity (R)))
4136 loop
4137 R := Renamed_Object (Entity (R));
4138 end loop;
4140 return R;
4141 end Get_Referenced_Object;
4143 ------------------------
4144 -- Get_Renamed_Entity --
4145 ------------------------
4147 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
4148 R : Entity_Id;
4150 begin
4151 R := E;
4152 while Present (Renamed_Entity (R)) loop
4153 R := Renamed_Entity (R);
4154 end loop;
4156 return R;
4157 end Get_Renamed_Entity;
4159 -------------------------
4160 -- Get_Subprogram_Body --
4161 -------------------------
4163 function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
4164 Decl : Node_Id;
4166 begin
4167 Decl := Unit_Declaration_Node (E);
4169 if Nkind (Decl) = N_Subprogram_Body then
4170 return Decl;
4172 -- The below comment is bad, because it is possible for
4173 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
4175 else -- Nkind (Decl) = N_Subprogram_Declaration
4177 if Present (Corresponding_Body (Decl)) then
4178 return Unit_Declaration_Node (Corresponding_Body (Decl));
4180 -- Imported subprogram case
4182 else
4183 return Empty;
4184 end if;
4185 end if;
4186 end Get_Subprogram_Body;
4188 ---------------------------
4189 -- Get_Subprogram_Entity --
4190 ---------------------------
4192 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
4193 Nam : Node_Id;
4194 Proc : Entity_Id;
4196 begin
4197 if Nkind (Nod) = N_Accept_Statement then
4198 Nam := Entry_Direct_Name (Nod);
4200 -- For an entry call, the prefix of the call is a selected component.
4201 -- Need additional code for internal calls ???
4203 elsif Nkind (Nod) = N_Entry_Call_Statement then
4204 if Nkind (Name (Nod)) = N_Selected_Component then
4205 Nam := Entity (Selector_Name (Name (Nod)));
4206 else
4207 Nam := Empty;
4208 end if;
4210 else
4211 Nam := Name (Nod);
4212 end if;
4214 if Nkind (Nam) = N_Explicit_Dereference then
4215 Proc := Etype (Prefix (Nam));
4216 elsif Is_Entity_Name (Nam) then
4217 Proc := Entity (Nam);
4218 else
4219 return Empty;
4220 end if;
4222 if Is_Object (Proc) then
4223 Proc := Etype (Proc);
4224 end if;
4226 if Ekind (Proc) = E_Access_Subprogram_Type then
4227 Proc := Directly_Designated_Type (Proc);
4228 end if;
4230 if not Is_Subprogram (Proc)
4231 and then Ekind (Proc) /= E_Subprogram_Type
4232 then
4233 return Empty;
4234 else
4235 return Proc;
4236 end if;
4237 end Get_Subprogram_Entity;
4239 -----------------------------
4240 -- Get_Task_Body_Procedure --
4241 -----------------------------
4243 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
4244 begin
4245 -- Note: A task type may be the completion of a private type with
4246 -- discriminants. When performing elaboration checks on a task
4247 -- declaration, the current view of the type may be the private one,
4248 -- and the procedure that holds the body of the task is held in its
4249 -- underlying type.
4251 -- This is an odd function, why not have Task_Body_Procedure do
4252 -- the following digging???
4254 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
4255 end Get_Task_Body_Procedure;
4257 -----------------------
4258 -- Has_Access_Values --
4259 -----------------------
4261 function Has_Access_Values (T : Entity_Id) return Boolean is
4262 Typ : constant Entity_Id := Underlying_Type (T);
4264 begin
4265 -- Case of a private type which is not completed yet. This can only
4266 -- happen in the case of a generic format type appearing directly, or
4267 -- as a component of the type to which this function is being applied
4268 -- at the top level. Return False in this case, since we certainly do
4269 -- not know that the type contains access types.
4271 if No (Typ) then
4272 return False;
4274 elsif Is_Access_Type (Typ) then
4275 return True;
4277 elsif Is_Array_Type (Typ) then
4278 return Has_Access_Values (Component_Type (Typ));
4280 elsif Is_Record_Type (Typ) then
4281 declare
4282 Comp : Entity_Id;
4284 begin
4285 -- Loop to Check components
4287 Comp := First_Component_Or_Discriminant (Typ);
4288 while Present (Comp) loop
4290 -- Check for access component, tag field does not count, even
4291 -- though it is implemented internally using an access type.
4293 if Has_Access_Values (Etype (Comp))
4294 and then Chars (Comp) /= Name_uTag
4295 then
4296 return True;
4297 end if;
4299 Next_Component_Or_Discriminant (Comp);
4300 end loop;
4301 end;
4303 return False;
4305 else
4306 return False;
4307 end if;
4308 end Has_Access_Values;
4310 ------------------------------
4311 -- Has_Compatible_Alignment --
4312 ------------------------------
4314 function Has_Compatible_Alignment
4315 (Obj : Entity_Id;
4316 Expr : Node_Id) return Alignment_Result
4318 function Has_Compatible_Alignment_Internal
4319 (Obj : Entity_Id;
4320 Expr : Node_Id;
4321 Default : Alignment_Result) return Alignment_Result;
4322 -- This is the internal recursive function that actually does the work.
4323 -- There is one additional parameter, which says what the result should
4324 -- be if no alignment information is found, and there is no definite
4325 -- indication of compatible alignments. At the outer level, this is set
4326 -- to Unknown, but for internal recursive calls in the case where types
4327 -- are known to be correct, it is set to Known_Compatible.
4329 ---------------------------------------
4330 -- Has_Compatible_Alignment_Internal --
4331 ---------------------------------------
4333 function Has_Compatible_Alignment_Internal
4334 (Obj : Entity_Id;
4335 Expr : Node_Id;
4336 Default : Alignment_Result) return Alignment_Result
4338 Result : Alignment_Result := Known_Compatible;
4339 -- Holds the current status of the result. Note that once a value of
4340 -- Known_Incompatible is set, it is sticky and does not get changed
4341 -- to Unknown (the value in Result only gets worse as we go along,
4342 -- never better).
4344 Offs : Uint := No_Uint;
4345 -- Set to a factor of the offset from the base object when Expr is a
4346 -- selected or indexed component, based on Component_Bit_Offset and
4347 -- Component_Size respectively. A negative value is used to represent
4348 -- a value which is not known at compile time.
4350 procedure Check_Prefix;
4351 -- Checks the prefix recursively in the case where the expression
4352 -- is an indexed or selected component.
4354 procedure Set_Result (R : Alignment_Result);
4355 -- If R represents a worse outcome (unknown instead of known
4356 -- compatible, or known incompatible), then set Result to R.
4358 ------------------
4359 -- Check_Prefix --
4360 ------------------
4362 procedure Check_Prefix is
4363 begin
4364 -- The subtlety here is that in doing a recursive call to check
4365 -- the prefix, we have to decide what to do in the case where we
4366 -- don't find any specific indication of an alignment problem.
4368 -- At the outer level, we normally set Unknown as the result in
4369 -- this case, since we can only set Known_Compatible if we really
4370 -- know that the alignment value is OK, but for the recursive
4371 -- call, in the case where the types match, and we have not
4372 -- specified a peculiar alignment for the object, we are only
4373 -- concerned about suspicious rep clauses, the default case does
4374 -- not affect us, since the compiler will, in the absence of such
4375 -- rep clauses, ensure that the alignment is correct.
4377 if Default = Known_Compatible
4378 or else
4379 (Etype (Obj) = Etype (Expr)
4380 and then (Unknown_Alignment (Obj)
4381 or else
4382 Alignment (Obj) = Alignment (Etype (Obj))))
4383 then
4384 Set_Result
4385 (Has_Compatible_Alignment_Internal
4386 (Obj, Prefix (Expr), Known_Compatible));
4388 -- In all other cases, we need a full check on the prefix
4390 else
4391 Set_Result
4392 (Has_Compatible_Alignment_Internal
4393 (Obj, Prefix (Expr), Unknown));
4394 end if;
4395 end Check_Prefix;
4397 ----------------
4398 -- Set_Result --
4399 ----------------
4401 procedure Set_Result (R : Alignment_Result) is
4402 begin
4403 if R > Result then
4404 Result := R;
4405 end if;
4406 end Set_Result;
4408 -- Start of processing for Has_Compatible_Alignment_Internal
4410 begin
4411 -- If Expr is a selected component, we must make sure there is no
4412 -- potentially troublesome component clause, and that the record is
4413 -- not packed.
4415 if Nkind (Expr) = N_Selected_Component then
4417 -- Packed record always generate unknown alignment
4419 if Is_Packed (Etype (Prefix (Expr))) then
4420 Set_Result (Unknown);
4421 end if;
4423 -- Check prefix and component offset
4425 Check_Prefix;
4426 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
4428 -- If Expr is an indexed component, we must make sure there is no
4429 -- potentially troublesome Component_Size clause and that the array
4430 -- is not bit-packed.
4432 elsif Nkind (Expr) = N_Indexed_Component then
4433 declare
4434 Typ : constant Entity_Id := Etype (Prefix (Expr));
4435 Ind : constant Node_Id := First_Index (Typ);
4437 begin
4438 -- Bit packed array always generates unknown alignment
4440 if Is_Bit_Packed_Array (Typ) then
4441 Set_Result (Unknown);
4442 end if;
4444 -- Check prefix and component offset
4446 Check_Prefix;
4447 Offs := Component_Size (Typ);
4449 -- Small optimization: compute the full offset when possible
4451 if Offs /= No_Uint
4452 and then Offs > Uint_0
4453 and then Present (Ind)
4454 and then Nkind (Ind) = N_Range
4455 and then Compile_Time_Known_Value (Low_Bound (Ind))
4456 and then Compile_Time_Known_Value (First (Expressions (Expr)))
4457 then
4458 Offs := Offs * (Expr_Value (First (Expressions (Expr)))
4459 - Expr_Value (Low_Bound ((Ind))));
4460 end if;
4461 end;
4462 end if;
4464 -- If we have a null offset, the result is entirely determined by
4465 -- the base object and has already been computed recursively.
4467 if Offs = Uint_0 then
4468 null;
4470 -- Case where we know the alignment of the object
4472 elsif Known_Alignment (Obj) then
4473 declare
4474 ObjA : constant Uint := Alignment (Obj);
4475 ExpA : Uint := No_Uint;
4476 SizA : Uint := No_Uint;
4478 begin
4479 -- If alignment of Obj is 1, then we are always OK
4481 if ObjA = 1 then
4482 Set_Result (Known_Compatible);
4484 -- Alignment of Obj is greater than 1, so we need to check
4486 else
4487 -- If we have an offset, see if it is compatible
4489 if Offs /= No_Uint and Offs > Uint_0 then
4490 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
4491 Set_Result (Known_Incompatible);
4492 end if;
4494 -- See if Expr is an object with known alignment
4496 elsif Is_Entity_Name (Expr)
4497 and then Known_Alignment (Entity (Expr))
4498 then
4499 ExpA := Alignment (Entity (Expr));
4501 -- Otherwise, we can use the alignment of the type of
4502 -- Expr given that we already checked for
4503 -- discombobulating rep clauses for the cases of indexed
4504 -- and selected components above.
4506 elsif Known_Alignment (Etype (Expr)) then
4507 ExpA := Alignment (Etype (Expr));
4509 -- Otherwise the alignment is unknown
4511 else
4512 Set_Result (Default);
4513 end if;
4515 -- If we got an alignment, see if it is acceptable
4517 if ExpA /= No_Uint and then ExpA < ObjA then
4518 Set_Result (Known_Incompatible);
4519 end if;
4521 -- If Expr is not a piece of a larger object, see if size
4522 -- is given. If so, check that it is not too small for the
4523 -- required alignment.
4525 if Offs /= No_Uint then
4526 null;
4528 -- See if Expr is an object with known size
4530 elsif Is_Entity_Name (Expr)
4531 and then Known_Static_Esize (Entity (Expr))
4532 then
4533 SizA := Esize (Entity (Expr));
4535 -- Otherwise, we check the object size of the Expr type
4537 elsif Known_Static_Esize (Etype (Expr)) then
4538 SizA := Esize (Etype (Expr));
4539 end if;
4541 -- If we got a size, see if it is a multiple of the Obj
4542 -- alignment, if not, then the alignment cannot be
4543 -- acceptable, since the size is always a multiple of the
4544 -- alignment.
4546 if SizA /= No_Uint then
4547 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
4548 Set_Result (Known_Incompatible);
4549 end if;
4550 end if;
4551 end if;
4552 end;
4554 -- If we do not know required alignment, any non-zero offset is a
4555 -- potential problem (but certainly may be OK, so result is unknown).
4557 elsif Offs /= No_Uint then
4558 Set_Result (Unknown);
4560 -- If we can't find the result by direct comparison of alignment
4561 -- values, then there is still one case that we can determine known
4562 -- result, and that is when we can determine that the types are the
4563 -- same, and no alignments are specified. Then we known that the
4564 -- alignments are compatible, even if we don't know the alignment
4565 -- value in the front end.
4567 elsif Etype (Obj) = Etype (Expr) then
4569 -- Types are the same, but we have to check for possible size
4570 -- and alignments on the Expr object that may make the alignment
4571 -- different, even though the types are the same.
4573 if Is_Entity_Name (Expr) then
4575 -- First check alignment of the Expr object. Any alignment less
4576 -- than Maximum_Alignment is worrisome since this is the case
4577 -- where we do not know the alignment of Obj.
4579 if Known_Alignment (Entity (Expr))
4580 and then
4581 UI_To_Int (Alignment (Entity (Expr))) <
4582 Ttypes.Maximum_Alignment
4583 then
4584 Set_Result (Unknown);
4586 -- Now check size of Expr object. Any size that is not an
4587 -- even multiple of Maximum_Alignment is also worrisome
4588 -- since it may cause the alignment of the object to be less
4589 -- than the alignment of the type.
4591 elsif Known_Static_Esize (Entity (Expr))
4592 and then
4593 (UI_To_Int (Esize (Entity (Expr))) mod
4594 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
4595 /= 0
4596 then
4597 Set_Result (Unknown);
4599 -- Otherwise same type is decisive
4601 else
4602 Set_Result (Known_Compatible);
4603 end if;
4604 end if;
4606 -- Another case to deal with is when there is an explicit size or
4607 -- alignment clause when the types are not the same. If so, then the
4608 -- result is Unknown. We don't need to do this test if the Default is
4609 -- Unknown, since that result will be set in any case.
4611 elsif Default /= Unknown
4612 and then (Has_Size_Clause (Etype (Expr))
4613 or else
4614 Has_Alignment_Clause (Etype (Expr)))
4615 then
4616 Set_Result (Unknown);
4618 -- If no indication found, set default
4620 else
4621 Set_Result (Default);
4622 end if;
4624 -- Return worst result found
4626 return Result;
4627 end Has_Compatible_Alignment_Internal;
4629 -- Start of processing for Has_Compatible_Alignment
4631 begin
4632 -- If Obj has no specified alignment, then set alignment from the type
4633 -- alignment. Perhaps we should always do this, but for sure we should
4634 -- do it when there is an address clause since we can do more if the
4635 -- alignment is known.
4637 if Unknown_Alignment (Obj) then
4638 Set_Alignment (Obj, Alignment (Etype (Obj)));
4639 end if;
4641 -- Now do the internal call that does all the work
4643 return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
4644 end Has_Compatible_Alignment;
4646 ----------------------
4647 -- Has_Declarations --
4648 ----------------------
4650 function Has_Declarations (N : Node_Id) return Boolean is
4651 begin
4652 return Nkind_In (Nkind (N), N_Accept_Statement,
4653 N_Block_Statement,
4654 N_Compilation_Unit_Aux,
4655 N_Entry_Body,
4656 N_Package_Body,
4657 N_Protected_Body,
4658 N_Subprogram_Body,
4659 N_Task_Body,
4660 N_Package_Specification);
4661 end Has_Declarations;
4663 -------------------------------------------
4664 -- Has_Discriminant_Dependent_Constraint --
4665 -------------------------------------------
4667 function Has_Discriminant_Dependent_Constraint
4668 (Comp : Entity_Id) return Boolean
4670 Comp_Decl : constant Node_Id := Parent (Comp);
4671 Subt_Indic : constant Node_Id :=
4672 Subtype_Indication (Component_Definition (Comp_Decl));
4673 Constr : Node_Id;
4674 Assn : Node_Id;
4676 begin
4677 if Nkind (Subt_Indic) = N_Subtype_Indication then
4678 Constr := Constraint (Subt_Indic);
4680 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
4681 Assn := First (Constraints (Constr));
4682 while Present (Assn) loop
4683 case Nkind (Assn) is
4684 when N_Subtype_Indication |
4685 N_Range |
4686 N_Identifier
4688 if Depends_On_Discriminant (Assn) then
4689 return True;
4690 end if;
4692 when N_Discriminant_Association =>
4693 if Depends_On_Discriminant (Expression (Assn)) then
4694 return True;
4695 end if;
4697 when others =>
4698 null;
4700 end case;
4702 Next (Assn);
4703 end loop;
4704 end if;
4705 end if;
4707 return False;
4708 end Has_Discriminant_Dependent_Constraint;
4710 --------------------
4711 -- Has_Infinities --
4712 --------------------
4714 function Has_Infinities (E : Entity_Id) return Boolean is
4715 begin
4716 return
4717 Is_Floating_Point_Type (E)
4718 and then Nkind (Scalar_Range (E)) = N_Range
4719 and then Includes_Infinities (Scalar_Range (E));
4720 end Has_Infinities;
4722 --------------------
4723 -- Has_Interfaces --
4724 --------------------
4726 function Has_Interfaces
4727 (T : Entity_Id;
4728 Use_Full_View : Boolean := True) return Boolean
4730 Typ : Entity_Id := Base_Type (T);
4732 begin
4733 -- Handle concurrent types
4735 if Is_Concurrent_Type (Typ) then
4736 Typ := Corresponding_Record_Type (Typ);
4737 end if;
4739 if not Present (Typ)
4740 or else not Is_Record_Type (Typ)
4741 or else not Is_Tagged_Type (Typ)
4742 then
4743 return False;
4744 end if;
4746 -- Handle private types
4748 if Use_Full_View
4749 and then Present (Full_View (Typ))
4750 then
4751 Typ := Full_View (Typ);
4752 end if;
4754 -- Handle concurrent record types
4756 if Is_Concurrent_Record_Type (Typ)
4757 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
4758 then
4759 return True;
4760 end if;
4762 loop
4763 if Is_Interface (Typ)
4764 or else
4765 (Is_Record_Type (Typ)
4766 and then Present (Interfaces (Typ))
4767 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
4768 then
4769 return True;
4770 end if;
4772 exit when Etype (Typ) = Typ
4774 -- Handle private types
4776 or else (Present (Full_View (Etype (Typ)))
4777 and then Full_View (Etype (Typ)) = Typ)
4779 -- Protect the frontend against wrong source with cyclic
4780 -- derivations
4782 or else Etype (Typ) = T;
4784 -- Climb to the ancestor type handling private types
4786 if Present (Full_View (Etype (Typ))) then
4787 Typ := Full_View (Etype (Typ));
4788 else
4789 Typ := Etype (Typ);
4790 end if;
4791 end loop;
4793 return False;
4794 end Has_Interfaces;
4796 ------------------------
4797 -- Has_Null_Exclusion --
4798 ------------------------
4800 function Has_Null_Exclusion (N : Node_Id) return Boolean is
4801 begin
4802 case Nkind (N) is
4803 when N_Access_Definition |
4804 N_Access_Function_Definition |
4805 N_Access_Procedure_Definition |
4806 N_Access_To_Object_Definition |
4807 N_Allocator |
4808 N_Derived_Type_Definition |
4809 N_Function_Specification |
4810 N_Subtype_Declaration =>
4811 return Null_Exclusion_Present (N);
4813 when N_Component_Definition |
4814 N_Formal_Object_Declaration |
4815 N_Object_Renaming_Declaration =>
4816 if Present (Subtype_Mark (N)) then
4817 return Null_Exclusion_Present (N);
4818 else pragma Assert (Present (Access_Definition (N)));
4819 return Null_Exclusion_Present (Access_Definition (N));
4820 end if;
4822 when N_Discriminant_Specification =>
4823 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
4824 return Null_Exclusion_Present (Discriminant_Type (N));
4825 else
4826 return Null_Exclusion_Present (N);
4827 end if;
4829 when N_Object_Declaration =>
4830 if Nkind (Object_Definition (N)) = N_Access_Definition then
4831 return Null_Exclusion_Present (Object_Definition (N));
4832 else
4833 return Null_Exclusion_Present (N);
4834 end if;
4836 when N_Parameter_Specification =>
4837 if Nkind (Parameter_Type (N)) = N_Access_Definition then
4838 return Null_Exclusion_Present (Parameter_Type (N));
4839 else
4840 return Null_Exclusion_Present (N);
4841 end if;
4843 when others =>
4844 return False;
4846 end case;
4847 end Has_Null_Exclusion;
4849 ------------------------
4850 -- Has_Null_Extension --
4851 ------------------------
4853 function Has_Null_Extension (T : Entity_Id) return Boolean is
4854 B : constant Entity_Id := Base_Type (T);
4855 Comps : Node_Id;
4856 Ext : Node_Id;
4858 begin
4859 if Nkind (Parent (B)) = N_Full_Type_Declaration
4860 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
4861 then
4862 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
4864 if Present (Ext) then
4865 if Null_Present (Ext) then
4866 return True;
4867 else
4868 Comps := Component_List (Ext);
4870 -- The null component list is rewritten during analysis to
4871 -- include the parent component. Any other component indicates
4872 -- that the extension was not originally null.
4874 return Null_Present (Comps)
4875 or else No (Next (First (Component_Items (Comps))));
4876 end if;
4877 else
4878 return False;
4879 end if;
4881 else
4882 return False;
4883 end if;
4884 end Has_Null_Extension;
4886 -------------------------------
4887 -- Has_Overriding_Initialize --
4888 -------------------------------
4890 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
4891 BT : constant Entity_Id := Base_Type (T);
4892 Comp : Entity_Id;
4893 P : Elmt_Id;
4895 begin
4896 if Is_Controlled (BT) then
4898 -- For derived types, check immediate ancestor, excluding
4899 -- Controlled itself.
4901 if Is_Derived_Type (BT)
4902 and then not In_Predefined_Unit (Etype (BT))
4903 and then Has_Overriding_Initialize (Etype (BT))
4904 then
4905 return True;
4907 elsif Present (Primitive_Operations (BT)) then
4908 P := First_Elmt (Primitive_Operations (BT));
4909 while Present (P) loop
4910 if Chars (Node (P)) = Name_Initialize
4911 and then Comes_From_Source (Node (P))
4912 then
4913 return True;
4914 end if;
4916 Next_Elmt (P);
4917 end loop;
4918 end if;
4920 return False;
4922 elsif Has_Controlled_Component (BT) then
4923 Comp := First_Component (BT);
4924 while Present (Comp) loop
4925 if Has_Overriding_Initialize (Etype (Comp)) then
4926 return True;
4927 end if;
4929 Next_Component (Comp);
4930 end loop;
4932 return False;
4934 else
4935 return False;
4936 end if;
4937 end Has_Overriding_Initialize;
4939 --------------------------------------
4940 -- Has_Preelaborable_Initialization --
4941 --------------------------------------
4943 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
4944 Has_PE : Boolean;
4946 procedure Check_Components (E : Entity_Id);
4947 -- Check component/discriminant chain, sets Has_PE False if a component
4948 -- or discriminant does not meet the preelaborable initialization rules.
4950 ----------------------
4951 -- Check_Components --
4952 ----------------------
4954 procedure Check_Components (E : Entity_Id) is
4955 Ent : Entity_Id;
4956 Exp : Node_Id;
4958 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
4959 -- Returns True if and only if the expression denoted by N does not
4960 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
4962 ---------------------------------
4963 -- Is_Preelaborable_Expression --
4964 ---------------------------------
4966 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
4967 Exp : Node_Id;
4968 Assn : Node_Id;
4969 Choice : Node_Id;
4970 Comp_Type : Entity_Id;
4971 Is_Array_Aggr : Boolean;
4973 begin
4974 if Is_Static_Expression (N) then
4975 return True;
4977 elsif Nkind (N) = N_Null then
4978 return True;
4980 -- Attributes are allowed in general, even if their prefix is a
4981 -- formal type. (It seems that certain attributes known not to be
4982 -- static might not be allowed, but there are no rules to prevent
4983 -- them.)
4985 elsif Nkind (N) = N_Attribute_Reference then
4986 return True;
4988 -- The name of a discriminant evaluated within its parent type is
4989 -- defined to be preelaborable (10.2.1(8)). Note that we test for
4990 -- names that denote discriminals as well as discriminants to
4991 -- catch references occurring within init procs.
4993 elsif Is_Entity_Name (N)
4994 and then
4995 (Ekind (Entity (N)) = E_Discriminant
4996 or else
4997 ((Ekind (Entity (N)) = E_Constant
4998 or else Ekind (Entity (N)) = E_In_Parameter)
4999 and then Present (Discriminal_Link (Entity (N)))))
5000 then
5001 return True;
5003 elsif Nkind (N) = N_Qualified_Expression then
5004 return Is_Preelaborable_Expression (Expression (N));
5006 -- For aggregates we have to check that each of the associations
5007 -- is preelaborable.
5009 elsif Nkind (N) = N_Aggregate
5010 or else Nkind (N) = N_Extension_Aggregate
5011 then
5012 Is_Array_Aggr := Is_Array_Type (Etype (N));
5014 if Is_Array_Aggr then
5015 Comp_Type := Component_Type (Etype (N));
5016 end if;
5018 -- Check the ancestor part of extension aggregates, which must
5019 -- be either the name of a type that has preelaborable init or
5020 -- an expression that is preelaborable.
5022 if Nkind (N) = N_Extension_Aggregate then
5023 declare
5024 Anc_Part : constant Node_Id := Ancestor_Part (N);
5026 begin
5027 if Is_Entity_Name (Anc_Part)
5028 and then Is_Type (Entity (Anc_Part))
5029 then
5030 if not Has_Preelaborable_Initialization
5031 (Entity (Anc_Part))
5032 then
5033 return False;
5034 end if;
5036 elsif not Is_Preelaborable_Expression (Anc_Part) then
5037 return False;
5038 end if;
5039 end;
5040 end if;
5042 -- Check positional associations
5044 Exp := First (Expressions (N));
5045 while Present (Exp) loop
5046 if not Is_Preelaborable_Expression (Exp) then
5047 return False;
5048 end if;
5050 Next (Exp);
5051 end loop;
5053 -- Check named associations
5055 Assn := First (Component_Associations (N));
5056 while Present (Assn) loop
5057 Choice := First (Choices (Assn));
5058 while Present (Choice) loop
5059 if Is_Array_Aggr then
5060 if Nkind (Choice) = N_Others_Choice then
5061 null;
5063 elsif Nkind (Choice) = N_Range then
5064 if not Is_Static_Range (Choice) then
5065 return False;
5066 end if;
5068 elsif not Is_Static_Expression (Choice) then
5069 return False;
5070 end if;
5072 else
5073 Comp_Type := Etype (Choice);
5074 end if;
5076 Next (Choice);
5077 end loop;
5079 -- If the association has a <> at this point, then we have
5080 -- to check whether the component's type has preelaborable
5081 -- initialization. Note that this only occurs when the
5082 -- association's corresponding component does not have a
5083 -- default expression, the latter case having already been
5084 -- expanded as an expression for the association.
5086 if Box_Present (Assn) then
5087 if not Has_Preelaborable_Initialization (Comp_Type) then
5088 return False;
5089 end if;
5091 -- In the expression case we check whether the expression
5092 -- is preelaborable.
5094 elsif
5095 not Is_Preelaborable_Expression (Expression (Assn))
5096 then
5097 return False;
5098 end if;
5100 Next (Assn);
5101 end loop;
5103 -- If we get here then aggregate as a whole is preelaborable
5105 return True;
5107 -- All other cases are not preelaborable
5109 else
5110 return False;
5111 end if;
5112 end Is_Preelaborable_Expression;
5114 -- Start of processing for Check_Components
5116 begin
5117 -- Loop through entities of record or protected type
5119 Ent := E;
5120 while Present (Ent) loop
5122 -- We are interested only in components and discriminants
5124 Exp := Empty;
5126 case Ekind (Ent) is
5127 when E_Component =>
5129 -- Get default expression if any. If there is no declaration
5130 -- node, it means we have an internal entity. The parent and
5131 -- tag fields are examples of such entities. For such cases,
5132 -- we just test the type of the entity.
5134 if Present (Declaration_Node (Ent)) then
5135 Exp := Expression (Declaration_Node (Ent));
5136 end if;
5138 when E_Discriminant =>
5140 -- Note: for a renamed discriminant, the Declaration_Node
5141 -- may point to the one from the ancestor, and have a
5142 -- different expression, so use the proper attribute to
5143 -- retrieve the expression from the derived constraint.
5145 Exp := Discriminant_Default_Value (Ent);
5147 when others =>
5148 goto Check_Next_Entity;
5149 end case;
5151 -- A component has PI if it has no default expression and the
5152 -- component type has PI.
5154 if No (Exp) then
5155 if not Has_Preelaborable_Initialization (Etype (Ent)) then
5156 Has_PE := False;
5157 exit;
5158 end if;
5160 -- Require the default expression to be preelaborable
5162 elsif not Is_Preelaborable_Expression (Exp) then
5163 Has_PE := False;
5164 exit;
5165 end if;
5167 <<Check_Next_Entity>>
5168 Next_Entity (Ent);
5169 end loop;
5170 end Check_Components;
5172 -- Start of processing for Has_Preelaborable_Initialization
5174 begin
5175 -- Immediate return if already marked as known preelaborable init. This
5176 -- covers types for which this function has already been called once
5177 -- and returned True (in which case the result is cached), and also
5178 -- types to which a pragma Preelaborable_Initialization applies.
5180 if Known_To_Have_Preelab_Init (E) then
5181 return True;
5182 end if;
5184 -- If the type is a subtype representing a generic actual type, then
5185 -- test whether its base type has preelaborable initialization since
5186 -- the subtype representing the actual does not inherit this attribute
5187 -- from the actual or formal. (but maybe it should???)
5189 if Is_Generic_Actual_Type (E) then
5190 return Has_Preelaborable_Initialization (Base_Type (E));
5191 end if;
5193 -- All elementary types have preelaborable initialization
5195 if Is_Elementary_Type (E) then
5196 Has_PE := True;
5198 -- Array types have PI if the component type has PI
5200 elsif Is_Array_Type (E) then
5201 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
5203 -- A derived type has preelaborable initialization if its parent type
5204 -- has preelaborable initialization and (in the case of a derived record
5205 -- extension) if the non-inherited components all have preelaborable
5206 -- initialization. However, a user-defined controlled type with an
5207 -- overriding Initialize procedure does not have preelaborable
5208 -- initialization.
5210 elsif Is_Derived_Type (E) then
5212 -- If the derived type is a private extension then it doesn't have
5213 -- preelaborable initialization.
5215 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
5216 return False;
5217 end if;
5219 -- First check whether ancestor type has preelaborable initialization
5221 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
5223 -- If OK, check extension components (if any)
5225 if Has_PE and then Is_Record_Type (E) then
5226 Check_Components (First_Entity (E));
5227 end if;
5229 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
5230 -- with a user defined Initialize procedure does not have PI.
5232 if Has_PE
5233 and then Is_Controlled (E)
5234 and then Has_Overriding_Initialize (E)
5235 then
5236 Has_PE := False;
5237 end if;
5239 -- Private types not derived from a type having preelaborable init and
5240 -- that are not marked with pragma Preelaborable_Initialization do not
5241 -- have preelaborable initialization.
5243 elsif Is_Private_Type (E) then
5244 return False;
5246 -- Record type has PI if it is non private and all components have PI
5248 elsif Is_Record_Type (E) then
5249 Has_PE := True;
5250 Check_Components (First_Entity (E));
5252 -- Protected types must not have entries, and components must meet
5253 -- same set of rules as for record components.
5255 elsif Is_Protected_Type (E) then
5256 if Has_Entries (E) then
5257 Has_PE := False;
5258 else
5259 Has_PE := True;
5260 Check_Components (First_Entity (E));
5261 Check_Components (First_Private_Entity (E));
5262 end if;
5264 -- Type System.Address always has preelaborable initialization
5266 elsif Is_RTE (E, RE_Address) then
5267 Has_PE := True;
5269 -- In all other cases, type does not have preelaborable initialization
5271 else
5272 return False;
5273 end if;
5275 -- If type has preelaborable initialization, cache result
5277 if Has_PE then
5278 Set_Known_To_Have_Preelab_Init (E);
5279 end if;
5281 return Has_PE;
5282 end Has_Preelaborable_Initialization;
5284 ---------------------------
5285 -- Has_Private_Component --
5286 ---------------------------
5288 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
5289 Btype : Entity_Id := Base_Type (Type_Id);
5290 Component : Entity_Id;
5292 begin
5293 if Error_Posted (Type_Id)
5294 or else Error_Posted (Btype)
5295 then
5296 return False;
5297 end if;
5299 if Is_Class_Wide_Type (Btype) then
5300 Btype := Root_Type (Btype);
5301 end if;
5303 if Is_Private_Type (Btype) then
5304 declare
5305 UT : constant Entity_Id := Underlying_Type (Btype);
5306 begin
5307 if No (UT) then
5308 if No (Full_View (Btype)) then
5309 return not Is_Generic_Type (Btype)
5310 and then not Is_Generic_Type (Root_Type (Btype));
5311 else
5312 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
5313 end if;
5314 else
5315 return not Is_Frozen (UT) and then Has_Private_Component (UT);
5316 end if;
5317 end;
5319 elsif Is_Array_Type (Btype) then
5320 return Has_Private_Component (Component_Type (Btype));
5322 elsif Is_Record_Type (Btype) then
5323 Component := First_Component (Btype);
5324 while Present (Component) loop
5325 if Has_Private_Component (Etype (Component)) then
5326 return True;
5327 end if;
5329 Next_Component (Component);
5330 end loop;
5332 return False;
5334 elsif Is_Protected_Type (Btype)
5335 and then Present (Corresponding_Record_Type (Btype))
5336 then
5337 return Has_Private_Component (Corresponding_Record_Type (Btype));
5339 else
5340 return False;
5341 end if;
5342 end Has_Private_Component;
5344 ----------------
5345 -- Has_Stream --
5346 ----------------
5348 function Has_Stream (T : Entity_Id) return Boolean is
5349 E : Entity_Id;
5351 begin
5352 if No (T) then
5353 return False;
5355 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
5356 return True;
5358 elsif Is_Array_Type (T) then
5359 return Has_Stream (Component_Type (T));
5361 elsif Is_Record_Type (T) then
5362 E := First_Component (T);
5363 while Present (E) loop
5364 if Has_Stream (Etype (E)) then
5365 return True;
5366 else
5367 Next_Component (E);
5368 end if;
5369 end loop;
5371 return False;
5373 elsif Is_Private_Type (T) then
5374 return Has_Stream (Underlying_Type (T));
5376 else
5377 return False;
5378 end if;
5379 end Has_Stream;
5381 ----------------
5382 -- Has_Suffix --
5383 ----------------
5385 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
5386 begin
5387 Get_Name_String (Chars (E));
5388 return Name_Buffer (Name_Len) = Suffix;
5389 end Has_Suffix;
5391 --------------------------
5392 -- Has_Tagged_Component --
5393 --------------------------
5395 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
5396 Comp : Entity_Id;
5398 begin
5399 if Is_Private_Type (Typ)
5400 and then Present (Underlying_Type (Typ))
5401 then
5402 return Has_Tagged_Component (Underlying_Type (Typ));
5404 elsif Is_Array_Type (Typ) then
5405 return Has_Tagged_Component (Component_Type (Typ));
5407 elsif Is_Tagged_Type (Typ) then
5408 return True;
5410 elsif Is_Record_Type (Typ) then
5411 Comp := First_Component (Typ);
5412 while Present (Comp) loop
5413 if Has_Tagged_Component (Etype (Comp)) then
5414 return True;
5415 end if;
5417 Next_Component (Comp);
5418 end loop;
5420 return False;
5422 else
5423 return False;
5424 end if;
5425 end Has_Tagged_Component;
5427 -------------------------
5428 -- Implementation_Kind --
5429 -------------------------
5431 function Implementation_Kind (Subp : Entity_Id) return Name_Id is
5432 Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
5433 begin
5434 pragma Assert (Present (Impl_Prag));
5435 return
5436 Chars (Expression (Last (Pragma_Argument_Associations (Impl_Prag))));
5437 end Implementation_Kind;
5439 --------------------------
5440 -- Implements_Interface --
5441 --------------------------
5443 function Implements_Interface
5444 (Typ_Ent : Entity_Id;
5445 Iface_Ent : Entity_Id;
5446 Exclude_Parents : Boolean := False) return Boolean
5448 Ifaces_List : Elist_Id;
5449 Elmt : Elmt_Id;
5450 Iface : Entity_Id := Base_Type (Iface_Ent);
5451 Typ : Entity_Id := Base_Type (Typ_Ent);
5453 begin
5454 if Is_Class_Wide_Type (Typ) then
5455 Typ := Root_Type (Typ);
5456 end if;
5458 if not Has_Interfaces (Typ) then
5459 return False;
5460 end if;
5462 if Is_Class_Wide_Type (Iface) then
5463 Iface := Root_Type (Iface);
5464 end if;
5466 Collect_Interfaces (Typ, Ifaces_List);
5468 Elmt := First_Elmt (Ifaces_List);
5469 while Present (Elmt) loop
5470 if Is_Ancestor (Node (Elmt), Typ)
5471 and then Exclude_Parents
5472 then
5473 null;
5475 elsif Node (Elmt) = Iface then
5476 return True;
5477 end if;
5479 Next_Elmt (Elmt);
5480 end loop;
5482 return False;
5483 end Implements_Interface;
5485 -----------------
5486 -- In_Instance --
5487 -----------------
5489 function In_Instance return Boolean is
5490 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
5491 S : Entity_Id;
5493 begin
5494 S := Current_Scope;
5495 while Present (S)
5496 and then S /= Standard_Standard
5497 loop
5498 if (Ekind (S) = E_Function
5499 or else Ekind (S) = E_Package
5500 or else Ekind (S) = E_Procedure)
5501 and then Is_Generic_Instance (S)
5502 then
5503 -- A child instance is always compiled in the context of a parent
5504 -- instance. Nevertheless, the actuals are not analyzed in an
5505 -- instance context. We detect this case by examining the current
5506 -- compilation unit, which must be a child instance, and checking
5507 -- that it is not currently on the scope stack.
5509 if Is_Child_Unit (Curr_Unit)
5510 and then
5511 Nkind (Unit (Cunit (Current_Sem_Unit)))
5512 = N_Package_Instantiation
5513 and then not In_Open_Scopes (Curr_Unit)
5514 then
5515 return False;
5516 else
5517 return True;
5518 end if;
5519 end if;
5521 S := Scope (S);
5522 end loop;
5524 return False;
5525 end In_Instance;
5527 ----------------------
5528 -- In_Instance_Body --
5529 ----------------------
5531 function In_Instance_Body return Boolean is
5532 S : Entity_Id;
5534 begin
5535 S := Current_Scope;
5536 while Present (S)
5537 and then S /= Standard_Standard
5538 loop
5539 if (Ekind (S) = E_Function
5540 or else Ekind (S) = E_Procedure)
5541 and then Is_Generic_Instance (S)
5542 then
5543 return True;
5545 elsif Ekind (S) = E_Package
5546 and then In_Package_Body (S)
5547 and then Is_Generic_Instance (S)
5548 then
5549 return True;
5550 end if;
5552 S := Scope (S);
5553 end loop;
5555 return False;
5556 end In_Instance_Body;
5558 -----------------------------
5559 -- In_Instance_Not_Visible --
5560 -----------------------------
5562 function In_Instance_Not_Visible return Boolean is
5563 S : Entity_Id;
5565 begin
5566 S := Current_Scope;
5567 while Present (S)
5568 and then S /= Standard_Standard
5569 loop
5570 if (Ekind (S) = E_Function
5571 or else Ekind (S) = E_Procedure)
5572 and then Is_Generic_Instance (S)
5573 then
5574 return True;
5576 elsif Ekind (S) = E_Package
5577 and then (In_Package_Body (S) or else In_Private_Part (S))
5578 and then Is_Generic_Instance (S)
5579 then
5580 return True;
5581 end if;
5583 S := Scope (S);
5584 end loop;
5586 return False;
5587 end In_Instance_Not_Visible;
5589 ------------------------------
5590 -- In_Instance_Visible_Part --
5591 ------------------------------
5593 function In_Instance_Visible_Part return Boolean is
5594 S : Entity_Id;
5596 begin
5597 S := Current_Scope;
5598 while Present (S)
5599 and then S /= Standard_Standard
5600 loop
5601 if Ekind (S) = E_Package
5602 and then Is_Generic_Instance (S)
5603 and then not In_Package_Body (S)
5604 and then not In_Private_Part (S)
5605 then
5606 return True;
5607 end if;
5609 S := Scope (S);
5610 end loop;
5612 return False;
5613 end In_Instance_Visible_Part;
5615 ---------------------
5616 -- In_Package_Body --
5617 ---------------------
5619 function In_Package_Body return Boolean is
5620 S : Entity_Id;
5622 begin
5623 S := Current_Scope;
5624 while Present (S)
5625 and then S /= Standard_Standard
5626 loop
5627 if Ekind (S) = E_Package
5628 and then In_Package_Body (S)
5629 then
5630 return True;
5631 else
5632 S := Scope (S);
5633 end if;
5634 end loop;
5636 return False;
5637 end In_Package_Body;
5639 --------------------------------
5640 -- In_Parameter_Specification --
5641 --------------------------------
5643 function In_Parameter_Specification (N : Node_Id) return Boolean is
5644 PN : Node_Id;
5646 begin
5647 PN := Parent (N);
5648 while Present (PN) loop
5649 if Nkind (PN) = N_Parameter_Specification then
5650 return True;
5651 end if;
5653 PN := Parent (PN);
5654 end loop;
5656 return False;
5657 end In_Parameter_Specification;
5659 --------------------------------------
5660 -- In_Subprogram_Or_Concurrent_Unit --
5661 --------------------------------------
5663 function In_Subprogram_Or_Concurrent_Unit return Boolean is
5664 E : Entity_Id;
5665 K : Entity_Kind;
5667 begin
5668 -- Use scope chain to check successively outer scopes
5670 E := Current_Scope;
5671 loop
5672 K := Ekind (E);
5674 if K in Subprogram_Kind
5675 or else K in Concurrent_Kind
5676 or else K in Generic_Subprogram_Kind
5677 then
5678 return True;
5680 elsif E = Standard_Standard then
5681 return False;
5682 end if;
5684 E := Scope (E);
5685 end loop;
5686 end In_Subprogram_Or_Concurrent_Unit;
5688 ---------------------
5689 -- In_Visible_Part --
5690 ---------------------
5692 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
5693 begin
5694 return
5695 Is_Package_Or_Generic_Package (Scope_Id)
5696 and then In_Open_Scopes (Scope_Id)
5697 and then not In_Package_Body (Scope_Id)
5698 and then not In_Private_Part (Scope_Id);
5699 end In_Visible_Part;
5701 ---------------------------------
5702 -- Insert_Explicit_Dereference --
5703 ---------------------------------
5705 procedure Insert_Explicit_Dereference (N : Node_Id) is
5706 New_Prefix : constant Node_Id := Relocate_Node (N);
5707 Ent : Entity_Id := Empty;
5708 Pref : Node_Id;
5709 I : Interp_Index;
5710 It : Interp;
5711 T : Entity_Id;
5713 begin
5714 Save_Interps (N, New_Prefix);
5716 Rewrite (N,
5717 Make_Explicit_Dereference (Sloc (Parent (N)),
5718 Prefix => New_Prefix));
5720 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
5722 if Is_Overloaded (New_Prefix) then
5724 -- The dereference is also overloaded, and its interpretations are
5725 -- the designated types of the interpretations of the original node.
5727 Set_Etype (N, Any_Type);
5729 Get_First_Interp (New_Prefix, I, It);
5730 while Present (It.Nam) loop
5731 T := It.Typ;
5733 if Is_Access_Type (T) then
5734 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
5735 end if;
5737 Get_Next_Interp (I, It);
5738 end loop;
5740 End_Interp_List;
5742 else
5743 -- Prefix is unambiguous: mark the original prefix (which might
5744 -- Come_From_Source) as a reference, since the new (relocated) one
5745 -- won't be taken into account.
5747 if Is_Entity_Name (New_Prefix) then
5748 Ent := Entity (New_Prefix);
5749 Pref := New_Prefix;
5751 -- For a retrieval of a subcomponent of some composite object,
5752 -- retrieve the ultimate entity if there is one.
5754 elsif Nkind (New_Prefix) = N_Selected_Component
5755 or else Nkind (New_Prefix) = N_Indexed_Component
5756 then
5757 Pref := Prefix (New_Prefix);
5758 while Present (Pref)
5759 and then
5760 (Nkind (Pref) = N_Selected_Component
5761 or else Nkind (Pref) = N_Indexed_Component)
5762 loop
5763 Pref := Prefix (Pref);
5764 end loop;
5766 if Present (Pref) and then Is_Entity_Name (Pref) then
5767 Ent := Entity (Pref);
5768 end if;
5769 end if;
5771 -- Place the reference on the entity node
5773 if Present (Ent) then
5774 Generate_Reference (Ent, Pref);
5775 end if;
5776 end if;
5777 end Insert_Explicit_Dereference;
5779 ------------------------------------------
5780 -- Inspect_Deferred_Constant_Completion --
5781 ------------------------------------------
5783 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
5784 Decl : Node_Id;
5786 begin
5787 Decl := First (Decls);
5788 while Present (Decl) loop
5790 -- Deferred constant signature
5792 if Nkind (Decl) = N_Object_Declaration
5793 and then Constant_Present (Decl)
5794 and then No (Expression (Decl))
5796 -- No need to check internally generated constants
5798 and then Comes_From_Source (Decl)
5800 -- The constant is not completed. A full object declaration or a
5801 -- pragma Import complete a deferred constant.
5803 and then not Has_Completion (Defining_Identifier (Decl))
5804 then
5805 Error_Msg_N
5806 ("constant declaration requires initialization expression",
5807 Defining_Identifier (Decl));
5808 end if;
5810 Decl := Next (Decl);
5811 end loop;
5812 end Inspect_Deferred_Constant_Completion;
5814 -----------------------------
5815 -- Is_Actual_Out_Parameter --
5816 -----------------------------
5818 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
5819 Formal : Entity_Id;
5820 Call : Node_Id;
5821 begin
5822 Find_Actual (N, Formal, Call);
5823 return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
5824 end Is_Actual_Out_Parameter;
5826 -------------------------
5827 -- Is_Actual_Parameter --
5828 -------------------------
5830 function Is_Actual_Parameter (N : Node_Id) return Boolean is
5831 PK : constant Node_Kind := Nkind (Parent (N));
5833 begin
5834 case PK is
5835 when N_Parameter_Association =>
5836 return N = Explicit_Actual_Parameter (Parent (N));
5838 when N_Function_Call | N_Procedure_Call_Statement =>
5839 return Is_List_Member (N)
5840 and then
5841 List_Containing (N) = Parameter_Associations (Parent (N));
5843 when others =>
5844 return False;
5845 end case;
5846 end Is_Actual_Parameter;
5848 ---------------------
5849 -- Is_Aliased_View --
5850 ---------------------
5852 function Is_Aliased_View (Obj : Node_Id) return Boolean is
5853 E : Entity_Id;
5855 begin
5856 if Is_Entity_Name (Obj) then
5858 E := Entity (Obj);
5860 return
5861 (Is_Object (E)
5862 and then
5863 (Is_Aliased (E)
5864 or else (Present (Renamed_Object (E))
5865 and then Is_Aliased_View (Renamed_Object (E)))))
5867 or else ((Is_Formal (E)
5868 or else Ekind (E) = E_Generic_In_Out_Parameter
5869 or else Ekind (E) = E_Generic_In_Parameter)
5870 and then Is_Tagged_Type (Etype (E)))
5872 or else (Is_Concurrent_Type (E)
5873 and then In_Open_Scopes (E))
5875 -- Current instance of type, either directly or as rewritten
5876 -- reference to the current object.
5878 or else (Is_Entity_Name (Original_Node (Obj))
5879 and then Present (Entity (Original_Node (Obj)))
5880 and then Is_Type (Entity (Original_Node (Obj))))
5882 or else (Is_Type (E) and then E = Current_Scope)
5884 or else (Is_Incomplete_Or_Private_Type (E)
5885 and then Full_View (E) = Current_Scope);
5887 elsif Nkind (Obj) = N_Selected_Component then
5888 return Is_Aliased (Entity (Selector_Name (Obj)));
5890 elsif Nkind (Obj) = N_Indexed_Component then
5891 return Has_Aliased_Components (Etype (Prefix (Obj)))
5892 or else
5893 (Is_Access_Type (Etype (Prefix (Obj)))
5894 and then
5895 Has_Aliased_Components
5896 (Designated_Type (Etype (Prefix (Obj)))));
5898 elsif Nkind (Obj) = N_Unchecked_Type_Conversion
5899 or else Nkind (Obj) = N_Type_Conversion
5900 then
5901 return Is_Tagged_Type (Etype (Obj))
5902 and then Is_Aliased_View (Expression (Obj));
5904 elsif Nkind (Obj) = N_Explicit_Dereference then
5905 return Nkind (Original_Node (Obj)) /= N_Function_Call;
5907 else
5908 return False;
5909 end if;
5910 end Is_Aliased_View;
5912 -------------------------
5913 -- Is_Ancestor_Package --
5914 -------------------------
5916 function Is_Ancestor_Package
5917 (E1 : Entity_Id;
5918 E2 : Entity_Id) return Boolean
5920 Par : Entity_Id;
5922 begin
5923 Par := E2;
5924 while Present (Par)
5925 and then Par /= Standard_Standard
5926 loop
5927 if Par = E1 then
5928 return True;
5929 end if;
5931 Par := Scope (Par);
5932 end loop;
5934 return False;
5935 end Is_Ancestor_Package;
5937 ----------------------
5938 -- Is_Atomic_Object --
5939 ----------------------
5941 function Is_Atomic_Object (N : Node_Id) return Boolean is
5943 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
5944 -- Determines if given object has atomic components
5946 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
5947 -- If prefix is an implicit dereference, examine designated type
5949 ----------------------
5950 -- Is_Atomic_Prefix --
5951 ----------------------
5953 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
5954 begin
5955 if Is_Access_Type (Etype (N)) then
5956 return
5957 Has_Atomic_Components (Designated_Type (Etype (N)));
5958 else
5959 return Object_Has_Atomic_Components (N);
5960 end if;
5961 end Is_Atomic_Prefix;
5963 ----------------------------------
5964 -- Object_Has_Atomic_Components --
5965 ----------------------------------
5967 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
5968 begin
5969 if Has_Atomic_Components (Etype (N))
5970 or else Is_Atomic (Etype (N))
5971 then
5972 return True;
5974 elsif Is_Entity_Name (N)
5975 and then (Has_Atomic_Components (Entity (N))
5976 or else Is_Atomic (Entity (N)))
5977 then
5978 return True;
5980 elsif Nkind (N) = N_Indexed_Component
5981 or else Nkind (N) = N_Selected_Component
5982 then
5983 return Is_Atomic_Prefix (Prefix (N));
5985 else
5986 return False;
5987 end if;
5988 end Object_Has_Atomic_Components;
5990 -- Start of processing for Is_Atomic_Object
5992 begin
5993 -- Predicate is not relevant to subprograms
5995 if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
5996 return False;
5998 elsif Is_Atomic (Etype (N))
5999 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
6000 then
6001 return True;
6003 elsif Nkind (N) = N_Indexed_Component
6004 or else Nkind (N) = N_Selected_Component
6005 then
6006 return Is_Atomic_Prefix (Prefix (N));
6008 else
6009 return False;
6010 end if;
6011 end Is_Atomic_Object;
6013 -------------------------
6014 -- Is_Coextension_Root --
6015 -------------------------
6017 function Is_Coextension_Root (N : Node_Id) return Boolean is
6018 begin
6019 return
6020 Nkind (N) = N_Allocator
6021 and then Present (Coextensions (N))
6023 -- Anonymous access discriminants carry a list of all nested
6024 -- controlled coextensions.
6026 and then not Is_Dynamic_Coextension (N)
6027 and then not Is_Static_Coextension (N);
6028 end Is_Coextension_Root;
6030 -----------------------------
6031 -- Is_Concurrent_Interface --
6032 -----------------------------
6034 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
6035 begin
6036 return
6037 Is_Interface (T)
6038 and then
6039 (Is_Protected_Interface (T)
6040 or else Is_Synchronized_Interface (T)
6041 or else Is_Task_Interface (T));
6042 end Is_Concurrent_Interface;
6044 --------------------------------------
6045 -- Is_Controlling_Limited_Procedure --
6046 --------------------------------------
6048 function Is_Controlling_Limited_Procedure
6049 (Proc_Nam : Entity_Id) return Boolean
6051 Param_Typ : Entity_Id := Empty;
6053 begin
6054 if Ekind (Proc_Nam) = E_Procedure
6055 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
6056 then
6057 Param_Typ := Etype (Parameter_Type (First (
6058 Parameter_Specifications (Parent (Proc_Nam)))));
6060 -- In this case where an Itype was created, the procedure call has been
6061 -- rewritten.
6063 elsif Present (Associated_Node_For_Itype (Proc_Nam))
6064 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
6065 and then
6066 Present (Parameter_Associations
6067 (Associated_Node_For_Itype (Proc_Nam)))
6068 then
6069 Param_Typ :=
6070 Etype (First (Parameter_Associations
6071 (Associated_Node_For_Itype (Proc_Nam))));
6072 end if;
6074 if Present (Param_Typ) then
6075 return
6076 Is_Interface (Param_Typ)
6077 and then Is_Limited_Record (Param_Typ);
6078 end if;
6080 return False;
6081 end Is_Controlling_Limited_Procedure;
6083 -----------------------------
6084 -- Is_CPP_Constructor_Call --
6085 -----------------------------
6087 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
6088 begin
6089 return Nkind (N) = N_Function_Call
6090 and then Is_CPP_Class (Etype (Etype (N)))
6091 and then Is_Constructor (Entity (Name (N)))
6092 and then Is_Imported (Entity (Name (N)));
6093 end Is_CPP_Constructor_Call;
6095 -----------------
6096 -- Is_Delegate --
6097 -----------------
6099 function Is_Delegate (T : Entity_Id) return Boolean is
6100 Desig_Type : Entity_Id;
6102 begin
6103 if VM_Target /= CLI_Target then
6104 return False;
6105 end if;
6107 -- Access-to-subprograms are delegates in CIL
6109 if Ekind (T) = E_Access_Subprogram_Type then
6110 return True;
6111 end if;
6113 if Ekind (T) not in Access_Kind then
6115 -- A delegate is a managed pointer. If no designated type is defined
6116 -- it means that it's not a delegate.
6118 return False;
6119 end if;
6121 Desig_Type := Etype (Directly_Designated_Type (T));
6123 if not Is_Tagged_Type (Desig_Type) then
6124 return False;
6125 end if;
6127 -- Test if the type is inherited from [mscorlib]System.Delegate
6129 while Etype (Desig_Type) /= Desig_Type loop
6130 if Chars (Scope (Desig_Type)) /= No_Name
6131 and then Is_Imported (Scope (Desig_Type))
6132 and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
6133 then
6134 return True;
6135 end if;
6137 Desig_Type := Etype (Desig_Type);
6138 end loop;
6140 return False;
6141 end Is_Delegate;
6143 ----------------------------------------------
6144 -- Is_Dependent_Component_Of_Mutable_Object --
6145 ----------------------------------------------
6147 function Is_Dependent_Component_Of_Mutable_Object
6148 (Object : Node_Id) return Boolean
6150 P : Node_Id;
6151 Prefix_Type : Entity_Id;
6152 P_Aliased : Boolean := False;
6153 Comp : Entity_Id;
6155 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
6156 -- Returns True if and only if Comp is declared within a variant part
6158 --------------------------------
6159 -- Is_Declared_Within_Variant --
6160 --------------------------------
6162 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
6163 Comp_Decl : constant Node_Id := Parent (Comp);
6164 Comp_List : constant Node_Id := Parent (Comp_Decl);
6165 begin
6166 return Nkind (Parent (Comp_List)) = N_Variant;
6167 end Is_Declared_Within_Variant;
6169 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
6171 begin
6172 if Is_Variable (Object) then
6174 if Nkind (Object) = N_Selected_Component then
6175 P := Prefix (Object);
6176 Prefix_Type := Etype (P);
6178 if Is_Entity_Name (P) then
6180 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
6181 Prefix_Type := Base_Type (Prefix_Type);
6182 end if;
6184 if Is_Aliased (Entity (P)) then
6185 P_Aliased := True;
6186 end if;
6188 -- A discriminant check on a selected component may be expanded
6189 -- into a dereference when removing side-effects. Recover the
6190 -- original node and its type, which may be unconstrained.
6192 elsif Nkind (P) = N_Explicit_Dereference
6193 and then not (Comes_From_Source (P))
6194 then
6195 P := Original_Node (P);
6196 Prefix_Type := Etype (P);
6198 else
6199 -- Check for prefix being an aliased component???
6201 null;
6203 end if;
6205 -- A heap object is constrained by its initial value
6207 -- Ada 2005 (AI-363): Always assume the object could be mutable in
6208 -- the dereferenced case, since the access value might denote an
6209 -- unconstrained aliased object, whereas in Ada 95 the designated
6210 -- object is guaranteed to be constrained. A worst-case assumption
6211 -- has to apply in Ada 2005 because we can't tell at compile time
6212 -- whether the object is "constrained by its initial value"
6213 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
6214 -- semantic rules -- these rules are acknowledged to need fixing).
6216 if Ada_Version < Ada_2005 then
6217 if Is_Access_Type (Prefix_Type)
6218 or else Nkind (P) = N_Explicit_Dereference
6219 then
6220 return False;
6221 end if;
6223 elsif Ada_Version >= Ada_2005 then
6224 if Is_Access_Type (Prefix_Type) then
6226 -- If the access type is pool-specific, and there is no
6227 -- constrained partial view of the designated type, then the
6228 -- designated object is known to be constrained.
6230 if Ekind (Prefix_Type) = E_Access_Type
6231 and then not Has_Constrained_Partial_View
6232 (Designated_Type (Prefix_Type))
6233 then
6234 return False;
6236 -- Otherwise (general access type, or there is a constrained
6237 -- partial view of the designated type), we need to check
6238 -- based on the designated type.
6240 else
6241 Prefix_Type := Designated_Type (Prefix_Type);
6242 end if;
6243 end if;
6244 end if;
6246 Comp :=
6247 Original_Record_Component (Entity (Selector_Name (Object)));
6249 -- As per AI-0017, the renaming is illegal in a generic body, even
6250 -- if the subtype is indefinite.
6252 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
6254 if not Is_Constrained (Prefix_Type)
6255 and then (not Is_Indefinite_Subtype (Prefix_Type)
6256 or else
6257 (Is_Generic_Type (Prefix_Type)
6258 and then Ekind (Current_Scope) = E_Generic_Package
6259 and then In_Package_Body (Current_Scope)))
6261 and then (Is_Declared_Within_Variant (Comp)
6262 or else Has_Discriminant_Dependent_Constraint (Comp))
6263 and then (not P_Aliased or else Ada_Version >= Ada_2005)
6264 then
6265 return True;
6267 else
6268 return
6269 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
6271 end if;
6273 elsif Nkind (Object) = N_Indexed_Component
6274 or else Nkind (Object) = N_Slice
6275 then
6276 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
6278 -- A type conversion that Is_Variable is a view conversion:
6279 -- go back to the denoted object.
6281 elsif Nkind (Object) = N_Type_Conversion then
6282 return
6283 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
6284 end if;
6285 end if;
6287 return False;
6288 end Is_Dependent_Component_Of_Mutable_Object;
6290 ---------------------
6291 -- Is_Dereferenced --
6292 ---------------------
6294 function Is_Dereferenced (N : Node_Id) return Boolean is
6295 P : constant Node_Id := Parent (N);
6296 begin
6297 return
6298 (Nkind (P) = N_Selected_Component
6299 or else
6300 Nkind (P) = N_Explicit_Dereference
6301 or else
6302 Nkind (P) = N_Indexed_Component
6303 or else
6304 Nkind (P) = N_Slice)
6305 and then Prefix (P) = N;
6306 end Is_Dereferenced;
6308 ----------------------
6309 -- Is_Descendent_Of --
6310 ----------------------
6312 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
6313 T : Entity_Id;
6314 Etyp : Entity_Id;
6316 begin
6317 pragma Assert (Nkind (T1) in N_Entity);
6318 pragma Assert (Nkind (T2) in N_Entity);
6320 T := Base_Type (T1);
6322 -- Immediate return if the types match
6324 if T = T2 then
6325 return True;
6327 -- Comment needed here ???
6329 elsif Ekind (T) = E_Class_Wide_Type then
6330 return Etype (T) = T2;
6332 -- All other cases
6334 else
6335 loop
6336 Etyp := Etype (T);
6338 -- Done if we found the type we are looking for
6340 if Etyp = T2 then
6341 return True;
6343 -- Done if no more derivations to check
6345 elsif T = T1
6346 or else T = Etyp
6347 then
6348 return False;
6350 -- Following test catches error cases resulting from prev errors
6352 elsif No (Etyp) then
6353 return False;
6355 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
6356 return False;
6358 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
6359 return False;
6360 end if;
6362 T := Base_Type (Etyp);
6363 end loop;
6364 end if;
6365 end Is_Descendent_Of;
6367 --------------
6368 -- Is_False --
6369 --------------
6371 function Is_False (U : Uint) return Boolean is
6372 begin
6373 return (U = 0);
6374 end Is_False;
6376 ---------------------------
6377 -- Is_Fixed_Model_Number --
6378 ---------------------------
6380 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
6381 S : constant Ureal := Small_Value (T);
6382 M : Urealp.Save_Mark;
6383 R : Boolean;
6384 begin
6385 M := Urealp.Mark;
6386 R := (U = UR_Trunc (U / S) * S);
6387 Urealp.Release (M);
6388 return R;
6389 end Is_Fixed_Model_Number;
6391 -------------------------------
6392 -- Is_Fully_Initialized_Type --
6393 -------------------------------
6395 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
6396 begin
6397 if Is_Scalar_Type (Typ) then
6398 return False;
6400 elsif Is_Access_Type (Typ) then
6401 return True;
6403 elsif Is_Array_Type (Typ) then
6404 if Is_Fully_Initialized_Type (Component_Type (Typ)) then
6405 return True;
6406 end if;
6408 -- An interesting case, if we have a constrained type one of whose
6409 -- bounds is known to be null, then there are no elements to be
6410 -- initialized, so all the elements are initialized!
6412 if Is_Constrained (Typ) then
6413 declare
6414 Indx : Node_Id;
6415 Indx_Typ : Entity_Id;
6416 Lbd, Hbd : Node_Id;
6418 begin
6419 Indx := First_Index (Typ);
6420 while Present (Indx) loop
6421 if Etype (Indx) = Any_Type then
6422 return False;
6424 -- If index is a range, use directly
6426 elsif Nkind (Indx) = N_Range then
6427 Lbd := Low_Bound (Indx);
6428 Hbd := High_Bound (Indx);
6430 else
6431 Indx_Typ := Etype (Indx);
6433 if Is_Private_Type (Indx_Typ) then
6434 Indx_Typ := Full_View (Indx_Typ);
6435 end if;
6437 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
6438 return False;
6439 else
6440 Lbd := Type_Low_Bound (Indx_Typ);
6441 Hbd := Type_High_Bound (Indx_Typ);
6442 end if;
6443 end if;
6445 if Compile_Time_Known_Value (Lbd)
6446 and then Compile_Time_Known_Value (Hbd)
6447 then
6448 if Expr_Value (Hbd) < Expr_Value (Lbd) then
6449 return True;
6450 end if;
6451 end if;
6453 Next_Index (Indx);
6454 end loop;
6455 end;
6456 end if;
6458 -- If no null indexes, then type is not fully initialized
6460 return False;
6462 -- Record types
6464 elsif Is_Record_Type (Typ) then
6465 if Has_Discriminants (Typ)
6466 and then
6467 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
6468 and then Is_Fully_Initialized_Variant (Typ)
6469 then
6470 return True;
6471 end if;
6473 -- Controlled records are considered to be fully initialized if
6474 -- there is a user defined Initialize routine. This may not be
6475 -- entirely correct, but as the spec notes, we are guessing here
6476 -- what is best from the point of view of issuing warnings.
6478 if Is_Controlled (Typ) then
6479 declare
6480 Utyp : constant Entity_Id := Underlying_Type (Typ);
6482 begin
6483 if Present (Utyp) then
6484 declare
6485 Init : constant Entity_Id :=
6486 (Find_Prim_Op
6487 (Underlying_Type (Typ), Name_Initialize));
6489 begin
6490 if Present (Init)
6491 and then Comes_From_Source (Init)
6492 and then not
6493 Is_Predefined_File_Name
6494 (File_Name (Get_Source_File_Index (Sloc (Init))))
6495 then
6496 return True;
6498 elsif Has_Null_Extension (Typ)
6499 and then
6500 Is_Fully_Initialized_Type
6501 (Etype (Base_Type (Typ)))
6502 then
6503 return True;
6504 end if;
6505 end;
6506 end if;
6507 end;
6508 end if;
6510 -- Otherwise see if all record components are initialized
6512 declare
6513 Ent : Entity_Id;
6515 begin
6516 Ent := First_Entity (Typ);
6517 while Present (Ent) loop
6518 if Chars (Ent) = Name_uController then
6519 null;
6521 elsif Ekind (Ent) = E_Component
6522 and then (No (Parent (Ent))
6523 or else No (Expression (Parent (Ent))))
6524 and then not Is_Fully_Initialized_Type (Etype (Ent))
6526 -- Special VM case for tag components, which need to be
6527 -- defined in this case, but are never initialized as VMs
6528 -- are using other dispatching mechanisms. Ignore this
6529 -- uninitialized case. Note that this applies both to the
6530 -- uTag entry and the main vtable pointer (CPP_Class case).
6532 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
6533 then
6534 return False;
6535 end if;
6537 Next_Entity (Ent);
6538 end loop;
6539 end;
6541 -- No uninitialized components, so type is fully initialized.
6542 -- Note that this catches the case of no components as well.
6544 return True;
6546 elsif Is_Concurrent_Type (Typ) then
6547 return True;
6549 elsif Is_Private_Type (Typ) then
6550 declare
6551 U : constant Entity_Id := Underlying_Type (Typ);
6553 begin
6554 if No (U) then
6555 return False;
6556 else
6557 return Is_Fully_Initialized_Type (U);
6558 end if;
6559 end;
6561 else
6562 return False;
6563 end if;
6564 end Is_Fully_Initialized_Type;
6566 ----------------------------------
6567 -- Is_Fully_Initialized_Variant --
6568 ----------------------------------
6570 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
6571 Loc : constant Source_Ptr := Sloc (Typ);
6572 Constraints : constant List_Id := New_List;
6573 Components : constant Elist_Id := New_Elmt_List;
6574 Comp_Elmt : Elmt_Id;
6575 Comp_Id : Node_Id;
6576 Comp_List : Node_Id;
6577 Discr : Entity_Id;
6578 Discr_Val : Node_Id;
6580 Report_Errors : Boolean;
6581 pragma Warnings (Off, Report_Errors);
6583 begin
6584 if Serious_Errors_Detected > 0 then
6585 return False;
6586 end if;
6588 if Is_Record_Type (Typ)
6589 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
6590 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
6591 then
6592 Comp_List := Component_List (Type_Definition (Parent (Typ)));
6594 Discr := First_Discriminant (Typ);
6595 while Present (Discr) loop
6596 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
6597 Discr_Val := Expression (Parent (Discr));
6599 if Present (Discr_Val)
6600 and then Is_OK_Static_Expression (Discr_Val)
6601 then
6602 Append_To (Constraints,
6603 Make_Component_Association (Loc,
6604 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
6605 Expression => New_Copy (Discr_Val)));
6606 else
6607 return False;
6608 end if;
6609 else
6610 return False;
6611 end if;
6613 Next_Discriminant (Discr);
6614 end loop;
6616 Gather_Components
6617 (Typ => Typ,
6618 Comp_List => Comp_List,
6619 Governed_By => Constraints,
6620 Into => Components,
6621 Report_Errors => Report_Errors);
6623 -- Check that each component present is fully initialized
6625 Comp_Elmt := First_Elmt (Components);
6626 while Present (Comp_Elmt) loop
6627 Comp_Id := Node (Comp_Elmt);
6629 if Ekind (Comp_Id) = E_Component
6630 and then (No (Parent (Comp_Id))
6631 or else No (Expression (Parent (Comp_Id))))
6632 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
6633 then
6634 return False;
6635 end if;
6637 Next_Elmt (Comp_Elmt);
6638 end loop;
6640 return True;
6642 elsif Is_Private_Type (Typ) then
6643 declare
6644 U : constant Entity_Id := Underlying_Type (Typ);
6646 begin
6647 if No (U) then
6648 return False;
6649 else
6650 return Is_Fully_Initialized_Variant (U);
6651 end if;
6652 end;
6653 else
6654 return False;
6655 end if;
6656 end Is_Fully_Initialized_Variant;
6658 ------------
6659 -- Is_LHS --
6660 ------------
6662 -- We seem to have a lot of overlapping functions that do similar things
6663 -- (testing for left hand sides or lvalues???). Anyway, since this one is
6664 -- purely syntactic, it should be in Sem_Aux I would think???
6666 function Is_LHS (N : Node_Id) return Boolean is
6667 P : constant Node_Id := Parent (N);
6668 begin
6669 return Nkind (P) = N_Assignment_Statement
6670 and then Name (P) = N;
6671 end Is_LHS;
6673 ----------------------------
6674 -- Is_Inherited_Operation --
6675 ----------------------------
6677 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
6678 Kind : constant Node_Kind := Nkind (Parent (E));
6679 begin
6680 pragma Assert (Is_Overloadable (E));
6681 return Kind = N_Full_Type_Declaration
6682 or else Kind = N_Private_Extension_Declaration
6683 or else Kind = N_Subtype_Declaration
6684 or else (Ekind (E) = E_Enumeration_Literal
6685 and then Is_Derived_Type (Etype (E)));
6686 end Is_Inherited_Operation;
6688 -----------------------------
6689 -- Is_Library_Level_Entity --
6690 -----------------------------
6692 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
6693 begin
6694 -- The following is a small optimization, and it also properly handles
6695 -- discriminals, which in task bodies might appear in expressions before
6696 -- the corresponding procedure has been created, and which therefore do
6697 -- not have an assigned scope.
6699 if Is_Formal (E) then
6700 return False;
6701 end if;
6703 -- Normal test is simply that the enclosing dynamic scope is Standard
6705 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
6706 end Is_Library_Level_Entity;
6708 ---------------------------------
6709 -- Is_Local_Variable_Reference --
6710 ---------------------------------
6712 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
6713 begin
6714 if not Is_Entity_Name (Expr) then
6715 return False;
6717 else
6718 declare
6719 Ent : constant Entity_Id := Entity (Expr);
6720 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
6721 begin
6722 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
6723 return False;
6724 else
6725 return Present (Sub) and then Sub = Current_Subprogram;
6726 end if;
6727 end;
6728 end if;
6729 end Is_Local_Variable_Reference;
6731 -------------------------
6732 -- Is_Object_Reference --
6733 -------------------------
6735 function Is_Object_Reference (N : Node_Id) return Boolean is
6736 begin
6737 if Is_Entity_Name (N) then
6738 return Present (Entity (N)) and then Is_Object (Entity (N));
6740 else
6741 case Nkind (N) is
6742 when N_Indexed_Component | N_Slice =>
6743 return
6744 Is_Object_Reference (Prefix (N))
6745 or else Is_Access_Type (Etype (Prefix (N)));
6747 -- In Ada95, a function call is a constant object; a procedure
6748 -- call is not.
6750 when N_Function_Call =>
6751 return Etype (N) /= Standard_Void_Type;
6753 -- A reference to the stream attribute Input is a function call
6755 when N_Attribute_Reference =>
6756 return Attribute_Name (N) = Name_Input;
6758 when N_Selected_Component =>
6759 return
6760 Is_Object_Reference (Selector_Name (N))
6761 and then
6762 (Is_Object_Reference (Prefix (N))
6763 or else Is_Access_Type (Etype (Prefix (N))));
6765 when N_Explicit_Dereference =>
6766 return True;
6768 -- A view conversion of a tagged object is an object reference
6770 when N_Type_Conversion =>
6771 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
6772 and then Is_Tagged_Type (Etype (Expression (N)))
6773 and then Is_Object_Reference (Expression (N));
6775 -- An unchecked type conversion is considered to be an object if
6776 -- the operand is an object (this construction arises only as a
6777 -- result of expansion activities).
6779 when N_Unchecked_Type_Conversion =>
6780 return True;
6782 when others =>
6783 return False;
6784 end case;
6785 end if;
6786 end Is_Object_Reference;
6788 -----------------------------------
6789 -- Is_OK_Variable_For_Out_Formal --
6790 -----------------------------------
6792 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
6793 begin
6794 Note_Possible_Modification (AV, Sure => True);
6796 -- We must reject parenthesized variable names. The check for
6797 -- Comes_From_Source is present because there are currently
6798 -- cases where the compiler violates this rule (e.g. passing
6799 -- a task object to its controlled Initialize routine).
6801 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
6802 return False;
6804 -- A variable is always allowed
6806 elsif Is_Variable (AV) then
6807 return True;
6809 -- Unchecked conversions are allowed only if they come from the
6810 -- generated code, which sometimes uses unchecked conversions for out
6811 -- parameters in cases where code generation is unaffected. We tell
6812 -- source unchecked conversions by seeing if they are rewrites of an
6813 -- original Unchecked_Conversion function call, or of an explicit
6814 -- conversion of a function call.
6816 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
6817 if Nkind (Original_Node (AV)) = N_Function_Call then
6818 return False;
6820 elsif Comes_From_Source (AV)
6821 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
6822 then
6823 return False;
6825 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
6826 return Is_OK_Variable_For_Out_Formal (Expression (AV));
6828 else
6829 return True;
6830 end if;
6832 -- Normal type conversions are allowed if argument is a variable
6834 elsif Nkind (AV) = N_Type_Conversion then
6835 if Is_Variable (Expression (AV))
6836 and then Paren_Count (Expression (AV)) = 0
6837 then
6838 Note_Possible_Modification (Expression (AV), Sure => True);
6839 return True;
6841 -- We also allow a non-parenthesized expression that raises
6842 -- constraint error if it rewrites what used to be a variable
6844 elsif Raises_Constraint_Error (Expression (AV))
6845 and then Paren_Count (Expression (AV)) = 0
6846 and then Is_Variable (Original_Node (Expression (AV)))
6847 then
6848 return True;
6850 -- Type conversion of something other than a variable
6852 else
6853 return False;
6854 end if;
6856 -- If this node is rewritten, then test the original form, if that is
6857 -- OK, then we consider the rewritten node OK (for example, if the
6858 -- original node is a conversion, then Is_Variable will not be true
6859 -- but we still want to allow the conversion if it converts a variable).
6861 elsif Original_Node (AV) /= AV then
6862 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
6864 -- All other non-variables are rejected
6866 else
6867 return False;
6868 end if;
6869 end Is_OK_Variable_For_Out_Formal;
6871 -----------------------------------
6872 -- Is_Partially_Initialized_Type --
6873 -----------------------------------
6875 function Is_Partially_Initialized_Type
6876 (Typ : Entity_Id;
6877 Include_Implicit : Boolean := True) return Boolean
6879 begin
6880 if Is_Scalar_Type (Typ) then
6881 return False;
6883 elsif Is_Access_Type (Typ) then
6884 return Include_Implicit;
6886 elsif Is_Array_Type (Typ) then
6888 -- If component type is partially initialized, so is array type
6890 if Is_Partially_Initialized_Type
6891 (Component_Type (Typ), Include_Implicit)
6892 then
6893 return True;
6895 -- Otherwise we are only partially initialized if we are fully
6896 -- initialized (this is the empty array case, no point in us
6897 -- duplicating that code here).
6899 else
6900 return Is_Fully_Initialized_Type (Typ);
6901 end if;
6903 elsif Is_Record_Type (Typ) then
6905 -- A discriminated type is always partially initialized if in
6906 -- all mode
6908 if Has_Discriminants (Typ) and then Include_Implicit then
6909 return True;
6911 -- A tagged type is always partially initialized
6913 elsif Is_Tagged_Type (Typ) then
6914 return True;
6916 -- Case of non-discriminated record
6918 else
6919 declare
6920 Ent : Entity_Id;
6922 Component_Present : Boolean := False;
6923 -- Set True if at least one component is present. If no
6924 -- components are present, then record type is fully
6925 -- initialized (another odd case, like the null array).
6927 begin
6928 -- Loop through components
6930 Ent := First_Entity (Typ);
6931 while Present (Ent) loop
6932 if Ekind (Ent) = E_Component then
6933 Component_Present := True;
6935 -- If a component has an initialization expression then
6936 -- the enclosing record type is partially initialized
6938 if Present (Parent (Ent))
6939 and then Present (Expression (Parent (Ent)))
6940 then
6941 return True;
6943 -- If a component is of a type which is itself partially
6944 -- initialized, then the enclosing record type is also.
6946 elsif Is_Partially_Initialized_Type
6947 (Etype (Ent), Include_Implicit)
6948 then
6949 return True;
6950 end if;
6951 end if;
6953 Next_Entity (Ent);
6954 end loop;
6956 -- No initialized components found. If we found any components
6957 -- they were all uninitialized so the result is false.
6959 if Component_Present then
6960 return False;
6962 -- But if we found no components, then all the components are
6963 -- initialized so we consider the type to be initialized.
6965 else
6966 return True;
6967 end if;
6968 end;
6969 end if;
6971 -- Concurrent types are always fully initialized
6973 elsif Is_Concurrent_Type (Typ) then
6974 return True;
6976 -- For a private type, go to underlying type. If there is no underlying
6977 -- type then just assume this partially initialized. Not clear if this
6978 -- can happen in a non-error case, but no harm in testing for this.
6980 elsif Is_Private_Type (Typ) then
6981 declare
6982 U : constant Entity_Id := Underlying_Type (Typ);
6983 begin
6984 if No (U) then
6985 return True;
6986 else
6987 return Is_Partially_Initialized_Type (U, Include_Implicit);
6988 end if;
6989 end;
6991 -- For any other type (are there any?) assume partially initialized
6993 else
6994 return True;
6995 end if;
6996 end Is_Partially_Initialized_Type;
6998 ------------------------------------
6999 -- Is_Potentially_Persistent_Type --
7000 ------------------------------------
7002 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
7003 Comp : Entity_Id;
7004 Indx : Node_Id;
7006 begin
7007 -- For private type, test corresponding full type
7009 if Is_Private_Type (T) then
7010 return Is_Potentially_Persistent_Type (Full_View (T));
7012 -- Scalar types are potentially persistent
7014 elsif Is_Scalar_Type (T) then
7015 return True;
7017 -- Record type is potentially persistent if not tagged and the types of
7018 -- all it components are potentially persistent, and no component has
7019 -- an initialization expression.
7021 elsif Is_Record_Type (T)
7022 and then not Is_Tagged_Type (T)
7023 and then not Is_Partially_Initialized_Type (T)
7024 then
7025 Comp := First_Component (T);
7026 while Present (Comp) loop
7027 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
7028 return False;
7029 else
7030 Next_Entity (Comp);
7031 end if;
7032 end loop;
7034 return True;
7036 -- Array type is potentially persistent if its component type is
7037 -- potentially persistent and if all its constraints are static.
7039 elsif Is_Array_Type (T) then
7040 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
7041 return False;
7042 end if;
7044 Indx := First_Index (T);
7045 while Present (Indx) loop
7046 if not Is_OK_Static_Subtype (Etype (Indx)) then
7047 return False;
7048 else
7049 Next_Index (Indx);
7050 end if;
7051 end loop;
7053 return True;
7055 -- All other types are not potentially persistent
7057 else
7058 return False;
7059 end if;
7060 end Is_Potentially_Persistent_Type;
7062 ---------------------------------
7063 -- Is_Protected_Self_Reference --
7064 ---------------------------------
7066 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
7068 function In_Access_Definition (N : Node_Id) return Boolean;
7069 -- Returns true if N belongs to an access definition
7071 --------------------------
7072 -- In_Access_Definition --
7073 --------------------------
7075 function In_Access_Definition (N : Node_Id) return Boolean is
7076 P : Node_Id;
7078 begin
7079 P := Parent (N);
7080 while Present (P) loop
7081 if Nkind (P) = N_Access_Definition then
7082 return True;
7083 end if;
7085 P := Parent (P);
7086 end loop;
7088 return False;
7089 end In_Access_Definition;
7091 -- Start of processing for Is_Protected_Self_Reference
7093 begin
7094 -- Verify that prefix is analyzed and has the proper form. Note that
7095 -- the attributes Elab_Spec, Elab_Body, and UET_Address, which also
7096 -- produce the address of an entity, do not analyze their prefix
7097 -- because they denote entities that are not necessarily visible.
7098 -- Neither of them can apply to a protected type.
7100 return Ada_Version >= Ada_2005
7101 and then Is_Entity_Name (N)
7102 and then Present (Entity (N))
7103 and then Is_Protected_Type (Entity (N))
7104 and then In_Open_Scopes (Entity (N))
7105 and then not In_Access_Definition (N);
7106 end Is_Protected_Self_Reference;
7108 -----------------------------
7109 -- Is_RCI_Pkg_Spec_Or_Body --
7110 -----------------------------
7112 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
7114 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
7115 -- Return True if the unit of Cunit is an RCI package declaration
7117 ---------------------------
7118 -- Is_RCI_Pkg_Decl_Cunit --
7119 ---------------------------
7121 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
7122 The_Unit : constant Node_Id := Unit (Cunit);
7124 begin
7125 if Nkind (The_Unit) /= N_Package_Declaration then
7126 return False;
7127 end if;
7129 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
7130 end Is_RCI_Pkg_Decl_Cunit;
7132 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
7134 begin
7135 return Is_RCI_Pkg_Decl_Cunit (Cunit)
7136 or else
7137 (Nkind (Unit (Cunit)) = N_Package_Body
7138 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
7139 end Is_RCI_Pkg_Spec_Or_Body;
7141 -----------------------------------------
7142 -- Is_Remote_Access_To_Class_Wide_Type --
7143 -----------------------------------------
7145 function Is_Remote_Access_To_Class_Wide_Type
7146 (E : Entity_Id) return Boolean
7148 begin
7149 -- A remote access to class-wide type is a general access to object type
7150 -- declared in the visible part of a Remote_Types or Remote_Call_
7151 -- Interface unit.
7153 return Ekind (E) = E_General_Access_Type
7154 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
7155 end Is_Remote_Access_To_Class_Wide_Type;
7157 -----------------------------------------
7158 -- Is_Remote_Access_To_Subprogram_Type --
7159 -----------------------------------------
7161 function Is_Remote_Access_To_Subprogram_Type
7162 (E : Entity_Id) return Boolean
7164 begin
7165 return (Ekind (E) = E_Access_Subprogram_Type
7166 or else (Ekind (E) = E_Record_Type
7167 and then Present (Corresponding_Remote_Type (E))))
7168 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
7169 end Is_Remote_Access_To_Subprogram_Type;
7171 --------------------
7172 -- Is_Remote_Call --
7173 --------------------
7175 function Is_Remote_Call (N : Node_Id) return Boolean is
7176 begin
7177 if Nkind (N) /= N_Procedure_Call_Statement
7178 and then Nkind (N) /= N_Function_Call
7179 then
7180 -- An entry call cannot be remote
7182 return False;
7184 elsif Nkind (Name (N)) in N_Has_Entity
7185 and then Is_Remote_Call_Interface (Entity (Name (N)))
7186 then
7187 -- A subprogram declared in the spec of a RCI package is remote
7189 return True;
7191 elsif Nkind (Name (N)) = N_Explicit_Dereference
7192 and then Is_Remote_Access_To_Subprogram_Type
7193 (Etype (Prefix (Name (N))))
7194 then
7195 -- The dereference of a RAS is a remote call
7197 return True;
7199 elsif Present (Controlling_Argument (N))
7200 and then Is_Remote_Access_To_Class_Wide_Type
7201 (Etype (Controlling_Argument (N)))
7202 then
7203 -- Any primitive operation call with a controlling argument of
7204 -- a RACW type is a remote call.
7206 return True;
7207 end if;
7209 -- All other calls are local calls
7211 return False;
7212 end Is_Remote_Call;
7214 ----------------------
7215 -- Is_Renamed_Entry --
7216 ----------------------
7218 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
7219 Orig_Node : Node_Id := Empty;
7220 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
7222 function Is_Entry (Nam : Node_Id) return Boolean;
7223 -- Determine whether Nam is an entry. Traverse selectors if there are
7224 -- nested selected components.
7226 --------------
7227 -- Is_Entry --
7228 --------------
7230 function Is_Entry (Nam : Node_Id) return Boolean is
7231 begin
7232 if Nkind (Nam) = N_Selected_Component then
7233 return Is_Entry (Selector_Name (Nam));
7234 end if;
7236 return Ekind (Entity (Nam)) = E_Entry;
7237 end Is_Entry;
7239 -- Start of processing for Is_Renamed_Entry
7241 begin
7242 if Present (Alias (Proc_Nam)) then
7243 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
7244 end if;
7246 -- Look for a rewritten subprogram renaming declaration
7248 if Nkind (Subp_Decl) = N_Subprogram_Declaration
7249 and then Present (Original_Node (Subp_Decl))
7250 then
7251 Orig_Node := Original_Node (Subp_Decl);
7252 end if;
7254 -- The rewritten subprogram is actually an entry
7256 if Present (Orig_Node)
7257 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
7258 and then Is_Entry (Name (Orig_Node))
7259 then
7260 return True;
7261 end if;
7263 return False;
7264 end Is_Renamed_Entry;
7266 ----------------------
7267 -- Is_Selector_Name --
7268 ----------------------
7270 function Is_Selector_Name (N : Node_Id) return Boolean is
7271 begin
7272 if not Is_List_Member (N) then
7273 declare
7274 P : constant Node_Id := Parent (N);
7275 K : constant Node_Kind := Nkind (P);
7276 begin
7277 return
7278 (K = N_Expanded_Name or else
7279 K = N_Generic_Association or else
7280 K = N_Parameter_Association or else
7281 K = N_Selected_Component)
7282 and then Selector_Name (P) = N;
7283 end;
7285 else
7286 declare
7287 L : constant List_Id := List_Containing (N);
7288 P : constant Node_Id := Parent (L);
7289 begin
7290 return (Nkind (P) = N_Discriminant_Association
7291 and then Selector_Names (P) = L)
7292 or else
7293 (Nkind (P) = N_Component_Association
7294 and then Choices (P) = L);
7295 end;
7296 end if;
7297 end Is_Selector_Name;
7299 ------------------
7300 -- Is_Statement --
7301 ------------------
7303 function Is_Statement (N : Node_Id) return Boolean is
7304 begin
7305 return
7306 Nkind (N) in N_Statement_Other_Than_Procedure_Call
7307 or else Nkind (N) = N_Procedure_Call_Statement;
7308 end Is_Statement;
7310 ---------------------------------
7311 -- Is_Synchronized_Tagged_Type --
7312 ---------------------------------
7314 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
7315 Kind : constant Entity_Kind := Ekind (Base_Type (E));
7317 begin
7318 -- A task or protected type derived from an interface is a tagged type.
7319 -- Such a tagged type is called a synchronized tagged type, as are
7320 -- synchronized interfaces and private extensions whose declaration
7321 -- includes the reserved word synchronized.
7323 return (Is_Tagged_Type (E)
7324 and then (Kind = E_Task_Type
7325 or else Kind = E_Protected_Type))
7326 or else
7327 (Is_Interface (E)
7328 and then Is_Synchronized_Interface (E))
7329 or else
7330 (Ekind (E) = E_Record_Type_With_Private
7331 and then (Synchronized_Present (Parent (E))
7332 or else Is_Synchronized_Interface (Etype (E))));
7333 end Is_Synchronized_Tagged_Type;
7335 -----------------
7336 -- Is_Transfer --
7337 -----------------
7339 function Is_Transfer (N : Node_Id) return Boolean is
7340 Kind : constant Node_Kind := Nkind (N);
7342 begin
7343 if Kind = N_Simple_Return_Statement
7344 or else
7345 Kind = N_Extended_Return_Statement
7346 or else
7347 Kind = N_Goto_Statement
7348 or else
7349 Kind = N_Raise_Statement
7350 or else
7351 Kind = N_Requeue_Statement
7352 then
7353 return True;
7355 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
7356 and then No (Condition (N))
7357 then
7358 return True;
7360 elsif Kind = N_Procedure_Call_Statement
7361 and then Is_Entity_Name (Name (N))
7362 and then Present (Entity (Name (N)))
7363 and then No_Return (Entity (Name (N)))
7364 then
7365 return True;
7367 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
7368 return True;
7370 else
7371 return False;
7372 end if;
7373 end Is_Transfer;
7375 -------------
7376 -- Is_True --
7377 -------------
7379 function Is_True (U : Uint) return Boolean is
7380 begin
7381 return (U /= 0);
7382 end Is_True;
7384 -------------------------------
7385 -- Is_Universal_Numeric_Type --
7386 -------------------------------
7388 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
7389 begin
7390 return T = Universal_Integer or else T = Universal_Real;
7391 end Is_Universal_Numeric_Type;
7393 -------------------
7394 -- Is_Value_Type --
7395 -------------------
7397 function Is_Value_Type (T : Entity_Id) return Boolean is
7398 begin
7399 return VM_Target = CLI_Target
7400 and then Nkind (T) in N_Has_Chars
7401 and then Chars (T) /= No_Name
7402 and then Get_Name_String (Chars (T)) = "valuetype";
7403 end Is_Value_Type;
7405 ---------------------
7406 -- Is_VMS_Operator --
7407 ---------------------
7409 function Is_VMS_Operator (Op : Entity_Id) return Boolean is
7410 begin
7411 -- The VMS operators are declared in a child of System that is loaded
7412 -- through pragma Extend_System. In some rare cases a program is run
7413 -- with this extension but without indicating that the target is VMS.
7415 return Ekind (Op) = E_Function
7416 and then Is_Intrinsic_Subprogram (Op)
7417 and then
7418 ((Present_System_Aux
7419 and then Scope (Op) = System_Aux_Id)
7420 or else
7421 (True_VMS_Target
7422 and then Scope (Scope (Op)) = RTU_Entity (System)));
7423 end Is_VMS_Operator;
7425 -----------------
7426 -- Is_Variable --
7427 -----------------
7429 function Is_Variable (N : Node_Id) return Boolean is
7431 Orig_Node : constant Node_Id := Original_Node (N);
7432 -- We do the test on the original node, since this is basically a test
7433 -- of syntactic categories, so it must not be disturbed by whatever
7434 -- rewriting might have occurred. For example, an aggregate, which is
7435 -- certainly NOT a variable, could be turned into a variable by
7436 -- expansion.
7438 function In_Protected_Function (E : Entity_Id) return Boolean;
7439 -- Within a protected function, the private components of the enclosing
7440 -- protected type are constants. A function nested within a (protected)
7441 -- procedure is not itself protected.
7443 function Is_Variable_Prefix (P : Node_Id) return Boolean;
7444 -- Prefixes can involve implicit dereferences, in which case we must
7445 -- test for the case of a reference of a constant access type, which can
7446 -- can never be a variable.
7448 ---------------------------
7449 -- In_Protected_Function --
7450 ---------------------------
7452 function In_Protected_Function (E : Entity_Id) return Boolean is
7453 Prot : constant Entity_Id := Scope (E);
7454 S : Entity_Id;
7456 begin
7457 if not Is_Protected_Type (Prot) then
7458 return False;
7459 else
7460 S := Current_Scope;
7461 while Present (S) and then S /= Prot loop
7462 if Ekind (S) = E_Function and then Scope (S) = Prot then
7463 return True;
7464 end if;
7466 S := Scope (S);
7467 end loop;
7469 return False;
7470 end if;
7471 end In_Protected_Function;
7473 ------------------------
7474 -- Is_Variable_Prefix --
7475 ------------------------
7477 function Is_Variable_Prefix (P : Node_Id) return Boolean is
7478 begin
7479 if Is_Access_Type (Etype (P)) then
7480 return not Is_Access_Constant (Root_Type (Etype (P)));
7482 -- For the case of an indexed component whose prefix has a packed
7483 -- array type, the prefix has been rewritten into a type conversion.
7484 -- Determine variable-ness from the converted expression.
7486 elsif Nkind (P) = N_Type_Conversion
7487 and then not Comes_From_Source (P)
7488 and then Is_Array_Type (Etype (P))
7489 and then Is_Packed (Etype (P))
7490 then
7491 return Is_Variable (Expression (P));
7493 else
7494 return Is_Variable (P);
7495 end if;
7496 end Is_Variable_Prefix;
7498 -- Start of processing for Is_Variable
7500 begin
7501 -- Definitely OK if Assignment_OK is set. Since this is something that
7502 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
7504 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
7505 return True;
7507 -- Normally we go to the original node, but there is one exception where
7508 -- we use the rewritten node, namely when it is an explicit dereference.
7509 -- The generated code may rewrite a prefix which is an access type with
7510 -- an explicit dereference. The dereference is a variable, even though
7511 -- the original node may not be (since it could be a constant of the
7512 -- access type).
7514 -- In Ada 2005 we have a further case to consider: the prefix may be a
7515 -- function call given in prefix notation. The original node appears to
7516 -- be a selected component, but we need to examine the call.
7518 elsif Nkind (N) = N_Explicit_Dereference
7519 and then Nkind (Orig_Node) /= N_Explicit_Dereference
7520 and then Present (Etype (Orig_Node))
7521 and then Is_Access_Type (Etype (Orig_Node))
7522 then
7523 -- Note that if the prefix is an explicit dereference that does not
7524 -- come from source, we must check for a rewritten function call in
7525 -- prefixed notation before other forms of rewriting, to prevent a
7526 -- compiler crash.
7528 return
7529 (Nkind (Orig_Node) = N_Function_Call
7530 and then not Is_Access_Constant (Etype (Prefix (N))))
7531 or else
7532 Is_Variable_Prefix (Original_Node (Prefix (N)));
7534 -- A function call is never a variable
7536 elsif Nkind (N) = N_Function_Call then
7537 return False;
7539 -- All remaining checks use the original node
7541 elsif Is_Entity_Name (Orig_Node)
7542 and then Present (Entity (Orig_Node))
7543 then
7544 declare
7545 E : constant Entity_Id := Entity (Orig_Node);
7546 K : constant Entity_Kind := Ekind (E);
7548 begin
7549 return (K = E_Variable
7550 and then Nkind (Parent (E)) /= N_Exception_Handler)
7551 or else (K = E_Component
7552 and then not In_Protected_Function (E))
7553 or else K = E_Out_Parameter
7554 or else K = E_In_Out_Parameter
7555 or else K = E_Generic_In_Out_Parameter
7557 -- Current instance of type:
7559 or else (Is_Type (E) and then In_Open_Scopes (E))
7560 or else (Is_Incomplete_Or_Private_Type (E)
7561 and then In_Open_Scopes (Full_View (E)));
7562 end;
7564 else
7565 case Nkind (Orig_Node) is
7566 when N_Indexed_Component | N_Slice =>
7567 return Is_Variable_Prefix (Prefix (Orig_Node));
7569 when N_Selected_Component =>
7570 return Is_Variable_Prefix (Prefix (Orig_Node))
7571 and then Is_Variable (Selector_Name (Orig_Node));
7573 -- For an explicit dereference, the type of the prefix cannot
7574 -- be an access to constant or an access to subprogram.
7576 when N_Explicit_Dereference =>
7577 declare
7578 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
7579 begin
7580 return Is_Access_Type (Typ)
7581 and then not Is_Access_Constant (Root_Type (Typ))
7582 and then Ekind (Typ) /= E_Access_Subprogram_Type;
7583 end;
7585 -- The type conversion is the case where we do not deal with the
7586 -- context dependent special case of an actual parameter. Thus
7587 -- the type conversion is only considered a variable for the
7588 -- purposes of this routine if the target type is tagged. However,
7589 -- a type conversion is considered to be a variable if it does not
7590 -- come from source (this deals for example with the conversions
7591 -- of expressions to their actual subtypes).
7593 when N_Type_Conversion =>
7594 return Is_Variable (Expression (Orig_Node))
7595 and then
7596 (not Comes_From_Source (Orig_Node)
7597 or else
7598 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
7599 and then
7600 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
7602 -- GNAT allows an unchecked type conversion as a variable. This
7603 -- only affects the generation of internal expanded code, since
7604 -- calls to instantiations of Unchecked_Conversion are never
7605 -- considered variables (since they are function calls).
7606 -- This is also true for expression actions.
7608 when N_Unchecked_Type_Conversion =>
7609 return Is_Variable (Expression (Orig_Node));
7611 when others =>
7612 return False;
7613 end case;
7614 end if;
7615 end Is_Variable;
7617 ---------------------------
7618 -- Is_Visibly_Controlled --
7619 ---------------------------
7621 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
7622 Root : constant Entity_Id := Root_Type (T);
7623 begin
7624 return Chars (Scope (Root)) = Name_Finalization
7625 and then Chars (Scope (Scope (Root))) = Name_Ada
7626 and then Scope (Scope (Scope (Root))) = Standard_Standard;
7627 end Is_Visibly_Controlled;
7629 ------------------------
7630 -- Is_Volatile_Object --
7631 ------------------------
7633 function Is_Volatile_Object (N : Node_Id) return Boolean is
7635 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
7636 -- Determines if given object has volatile components
7638 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
7639 -- If prefix is an implicit dereference, examine designated type
7641 ------------------------
7642 -- Is_Volatile_Prefix --
7643 ------------------------
7645 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
7646 Typ : constant Entity_Id := Etype (N);
7648 begin
7649 if Is_Access_Type (Typ) then
7650 declare
7651 Dtyp : constant Entity_Id := Designated_Type (Typ);
7653 begin
7654 return Is_Volatile (Dtyp)
7655 or else Has_Volatile_Components (Dtyp);
7656 end;
7658 else
7659 return Object_Has_Volatile_Components (N);
7660 end if;
7661 end Is_Volatile_Prefix;
7663 ------------------------------------
7664 -- Object_Has_Volatile_Components --
7665 ------------------------------------
7667 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
7668 Typ : constant Entity_Id := Etype (N);
7670 begin
7671 if Is_Volatile (Typ)
7672 or else Has_Volatile_Components (Typ)
7673 then
7674 return True;
7676 elsif Is_Entity_Name (N)
7677 and then (Has_Volatile_Components (Entity (N))
7678 or else Is_Volatile (Entity (N)))
7679 then
7680 return True;
7682 elsif Nkind (N) = N_Indexed_Component
7683 or else Nkind (N) = N_Selected_Component
7684 then
7685 return Is_Volatile_Prefix (Prefix (N));
7687 else
7688 return False;
7689 end if;
7690 end Object_Has_Volatile_Components;
7692 -- Start of processing for Is_Volatile_Object
7694 begin
7695 if Is_Volatile (Etype (N))
7696 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
7697 then
7698 return True;
7700 elsif Nkind (N) = N_Indexed_Component
7701 or else Nkind (N) = N_Selected_Component
7702 then
7703 return Is_Volatile_Prefix (Prefix (N));
7705 else
7706 return False;
7707 end if;
7708 end Is_Volatile_Object;
7710 -------------------------
7711 -- Kill_Current_Values --
7712 -------------------------
7714 procedure Kill_Current_Values
7715 (Ent : Entity_Id;
7716 Last_Assignment_Only : Boolean := False)
7718 begin
7719 -- ??? do we have to worry about clearing cached checks?
7721 if Is_Assignable (Ent) then
7722 Set_Last_Assignment (Ent, Empty);
7723 end if;
7725 if Is_Object (Ent) then
7726 if not Last_Assignment_Only then
7727 Kill_Checks (Ent);
7728 Set_Current_Value (Ent, Empty);
7730 if not Can_Never_Be_Null (Ent) then
7731 Set_Is_Known_Non_Null (Ent, False);
7732 end if;
7734 Set_Is_Known_Null (Ent, False);
7736 -- Reset Is_Known_Valid unless type is always valid, or if we have
7737 -- a loop parameter (loop parameters are always valid, since their
7738 -- bounds are defined by the bounds given in the loop header).
7740 if not Is_Known_Valid (Etype (Ent))
7741 and then Ekind (Ent) /= E_Loop_Parameter
7742 then
7743 Set_Is_Known_Valid (Ent, False);
7744 end if;
7745 end if;
7746 end if;
7747 end Kill_Current_Values;
7749 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
7750 S : Entity_Id;
7752 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
7753 -- Clear current value for entity E and all entities chained to E
7755 ------------------------------------------
7756 -- Kill_Current_Values_For_Entity_Chain --
7757 ------------------------------------------
7759 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
7760 Ent : Entity_Id;
7761 begin
7762 Ent := E;
7763 while Present (Ent) loop
7764 Kill_Current_Values (Ent, Last_Assignment_Only);
7765 Next_Entity (Ent);
7766 end loop;
7767 end Kill_Current_Values_For_Entity_Chain;
7769 -- Start of processing for Kill_Current_Values
7771 begin
7772 -- Kill all saved checks, a special case of killing saved values
7774 if not Last_Assignment_Only then
7775 Kill_All_Checks;
7776 end if;
7778 -- Loop through relevant scopes, which includes the current scope and
7779 -- any parent scopes if the current scope is a block or a package.
7781 S := Current_Scope;
7782 Scope_Loop : loop
7784 -- Clear current values of all entities in current scope
7786 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
7788 -- If scope is a package, also clear current values of all
7789 -- private entities in the scope.
7791 if Is_Package_Or_Generic_Package (S)
7792 or else Is_Concurrent_Type (S)
7793 then
7794 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
7795 end if;
7797 -- If this is a not a subprogram, deal with parents
7799 if not Is_Subprogram (S) then
7800 S := Scope (S);
7801 exit Scope_Loop when S = Standard_Standard;
7802 else
7803 exit Scope_Loop;
7804 end if;
7805 end loop Scope_Loop;
7806 end Kill_Current_Values;
7808 --------------------------
7809 -- Kill_Size_Check_Code --
7810 --------------------------
7812 procedure Kill_Size_Check_Code (E : Entity_Id) is
7813 begin
7814 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
7815 and then Present (Size_Check_Code (E))
7816 then
7817 Remove (Size_Check_Code (E));
7818 Set_Size_Check_Code (E, Empty);
7819 end if;
7820 end Kill_Size_Check_Code;
7822 --------------------------
7823 -- Known_To_Be_Assigned --
7824 --------------------------
7826 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
7827 P : constant Node_Id := Parent (N);
7829 begin
7830 case Nkind (P) is
7832 -- Test left side of assignment
7834 when N_Assignment_Statement =>
7835 return N = Name (P);
7837 -- Function call arguments are never lvalues
7839 when N_Function_Call =>
7840 return False;
7842 -- Positional parameter for procedure or accept call
7844 when N_Procedure_Call_Statement |
7845 N_Accept_Statement
7847 declare
7848 Proc : Entity_Id;
7849 Form : Entity_Id;
7850 Act : Node_Id;
7852 begin
7853 Proc := Get_Subprogram_Entity (P);
7855 if No (Proc) then
7856 return False;
7857 end if;
7859 -- If we are not a list member, something is strange, so
7860 -- be conservative and return False.
7862 if not Is_List_Member (N) then
7863 return False;
7864 end if;
7866 -- We are going to find the right formal by stepping forward
7867 -- through the formals, as we step backwards in the actuals.
7869 Form := First_Formal (Proc);
7870 Act := N;
7871 loop
7872 -- If no formal, something is weird, so be conservative
7873 -- and return False.
7875 if No (Form) then
7876 return False;
7877 end if;
7879 Prev (Act);
7880 exit when No (Act);
7881 Next_Formal (Form);
7882 end loop;
7884 return Ekind (Form) /= E_In_Parameter;
7885 end;
7887 -- Named parameter for procedure or accept call
7889 when N_Parameter_Association =>
7890 declare
7891 Proc : Entity_Id;
7892 Form : Entity_Id;
7894 begin
7895 Proc := Get_Subprogram_Entity (Parent (P));
7897 if No (Proc) then
7898 return False;
7899 end if;
7901 -- Loop through formals to find the one that matches
7903 Form := First_Formal (Proc);
7904 loop
7905 -- If no matching formal, that's peculiar, some kind of
7906 -- previous error, so return False to be conservative.
7908 if No (Form) then
7909 return False;
7910 end if;
7912 -- Else test for match
7914 if Chars (Form) = Chars (Selector_Name (P)) then
7915 return Ekind (Form) /= E_In_Parameter;
7916 end if;
7918 Next_Formal (Form);
7919 end loop;
7920 end;
7922 -- Test for appearing in a conversion that itself appears
7923 -- in an lvalue context, since this should be an lvalue.
7925 when N_Type_Conversion =>
7926 return Known_To_Be_Assigned (P);
7928 -- All other references are definitely not known to be modifications
7930 when others =>
7931 return False;
7933 end case;
7934 end Known_To_Be_Assigned;
7936 -------------------
7937 -- May_Be_Lvalue --
7938 -------------------
7940 function May_Be_Lvalue (N : Node_Id) return Boolean is
7941 P : constant Node_Id := Parent (N);
7943 begin
7944 case Nkind (P) is
7946 -- Test left side of assignment
7948 when N_Assignment_Statement =>
7949 return N = Name (P);
7951 -- Test prefix of component or attribute. Note that the prefix of an
7952 -- explicit or implicit dereference cannot be an l-value.
7954 when N_Attribute_Reference =>
7955 return N = Prefix (P)
7956 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
7958 -- For an expanded name, the name is an lvalue if the expanded name
7959 -- is an lvalue, but the prefix is never an lvalue, since it is just
7960 -- the scope where the name is found.
7962 when N_Expanded_Name =>
7963 if N = Prefix (P) then
7964 return May_Be_Lvalue (P);
7965 else
7966 return False;
7967 end if;
7969 -- For a selected component A.B, A is certainly an lvalue if A.B is.
7970 -- B is a little interesting, if we have A.B := 3, there is some
7971 -- discussion as to whether B is an lvalue or not, we choose to say
7972 -- it is. Note however that A is not an lvalue if it is of an access
7973 -- type since this is an implicit dereference.
7975 when N_Selected_Component =>
7976 if N = Prefix (P)
7977 and then Present (Etype (N))
7978 and then Is_Access_Type (Etype (N))
7979 then
7980 return False;
7981 else
7982 return May_Be_Lvalue (P);
7983 end if;
7985 -- For an indexed component or slice, the index or slice bounds is
7986 -- never an lvalue. The prefix is an lvalue if the indexed component
7987 -- or slice is an lvalue, except if it is an access type, where we
7988 -- have an implicit dereference.
7990 when N_Indexed_Component =>
7991 if N /= Prefix (P)
7992 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
7993 then
7994 return False;
7995 else
7996 return May_Be_Lvalue (P);
7997 end if;
7999 -- Prefix of a reference is an lvalue if the reference is an lvalue
8001 when N_Reference =>
8002 return May_Be_Lvalue (P);
8004 -- Prefix of explicit dereference is never an lvalue
8006 when N_Explicit_Dereference =>
8007 return False;
8009 -- Positional parameter for subprogram, entry, or accept call.
8010 -- In older versions of Ada function call arguments are never
8011 -- lvalues. In Ada 2012 functions can have in-out parameters.
8013 when N_Function_Call |
8014 N_Procedure_Call_Statement |
8015 N_Entry_Call_Statement |
8016 N_Accept_Statement
8018 if Nkind (P) = N_Function_Call
8019 and then Ada_Version < Ada_2012
8020 then
8021 return False;
8022 end if;
8024 -- The following mechanism is clumsy and fragile. A single
8025 -- flag set in Resolve_Actuals would be preferable ???
8027 declare
8028 Proc : Entity_Id;
8029 Form : Entity_Id;
8030 Act : Node_Id;
8032 begin
8033 Proc := Get_Subprogram_Entity (P);
8035 if No (Proc) then
8036 return True;
8037 end if;
8039 -- If we are not a list member, something is strange, so
8040 -- be conservative and return True.
8042 if not Is_List_Member (N) then
8043 return True;
8044 end if;
8046 -- We are going to find the right formal by stepping forward
8047 -- through the formals, as we step backwards in the actuals.
8049 Form := First_Formal (Proc);
8050 Act := N;
8051 loop
8052 -- If no formal, something is weird, so be conservative
8053 -- and return True.
8055 if No (Form) then
8056 return True;
8057 end if;
8059 Prev (Act);
8060 exit when No (Act);
8061 Next_Formal (Form);
8062 end loop;
8064 return Ekind (Form) /= E_In_Parameter;
8065 end;
8067 -- Named parameter for procedure or accept call
8069 when N_Parameter_Association =>
8070 declare
8071 Proc : Entity_Id;
8072 Form : Entity_Id;
8074 begin
8075 Proc := Get_Subprogram_Entity (Parent (P));
8077 if No (Proc) then
8078 return True;
8079 end if;
8081 -- Loop through formals to find the one that matches
8083 Form := First_Formal (Proc);
8084 loop
8085 -- If no matching formal, that's peculiar, some kind of
8086 -- previous error, so return True to be conservative.
8088 if No (Form) then
8089 return True;
8090 end if;
8092 -- Else test for match
8094 if Chars (Form) = Chars (Selector_Name (P)) then
8095 return Ekind (Form) /= E_In_Parameter;
8096 end if;
8098 Next_Formal (Form);
8099 end loop;
8100 end;
8102 -- Test for appearing in a conversion that itself appears in an
8103 -- lvalue context, since this should be an lvalue.
8105 when N_Type_Conversion =>
8106 return May_Be_Lvalue (P);
8108 -- Test for appearance in object renaming declaration
8110 when N_Object_Renaming_Declaration =>
8111 return True;
8113 -- All other references are definitely not lvalues
8115 when others =>
8116 return False;
8118 end case;
8119 end May_Be_Lvalue;
8121 -----------------------
8122 -- Mark_Coextensions --
8123 -----------------------
8125 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
8126 Is_Dynamic : Boolean;
8127 -- Indicates whether the context causes nested coextensions to be
8128 -- dynamic or static
8130 function Mark_Allocator (N : Node_Id) return Traverse_Result;
8131 -- Recognize an allocator node and label it as a dynamic coextension
8133 --------------------
8134 -- Mark_Allocator --
8135 --------------------
8137 function Mark_Allocator (N : Node_Id) return Traverse_Result is
8138 begin
8139 if Nkind (N) = N_Allocator then
8140 if Is_Dynamic then
8141 Set_Is_Dynamic_Coextension (N);
8143 -- If the allocator expression is potentially dynamic, it may
8144 -- be expanded out of order and require dynamic allocation
8145 -- anyway, so we treat the coextension itself as dynamic.
8146 -- Potential optimization ???
8148 elsif Nkind (Expression (N)) = N_Qualified_Expression
8149 and then Nkind (Expression (Expression (N))) = N_Op_Concat
8150 then
8151 Set_Is_Dynamic_Coextension (N);
8153 else
8154 Set_Is_Static_Coextension (N);
8155 end if;
8156 end if;
8158 return OK;
8159 end Mark_Allocator;
8161 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
8163 -- Start of processing Mark_Coextensions
8165 begin
8166 case Nkind (Context_Nod) is
8167 when N_Assignment_Statement |
8168 N_Simple_Return_Statement =>
8169 Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
8171 when N_Object_Declaration =>
8172 Is_Dynamic := Nkind (Root_Nod) = N_Allocator;
8174 -- This routine should not be called for constructs which may not
8175 -- contain coextensions.
8177 when others =>
8178 raise Program_Error;
8179 end case;
8181 Mark_Allocators (Root_Nod);
8182 end Mark_Coextensions;
8184 ----------------------
8185 -- Needs_One_Actual --
8186 ----------------------
8188 function Needs_One_Actual (E : Entity_Id) return Boolean is
8189 Formal : Entity_Id;
8191 begin
8192 if Ada_Version >= Ada_2005
8193 and then Present (First_Formal (E))
8194 then
8195 Formal := Next_Formal (First_Formal (E));
8196 while Present (Formal) loop
8197 if No (Default_Value (Formal)) then
8198 return False;
8199 end if;
8201 Next_Formal (Formal);
8202 end loop;
8204 return True;
8206 else
8207 return False;
8208 end if;
8209 end Needs_One_Actual;
8211 ------------------------
8212 -- New_Copy_List_Tree --
8213 ------------------------
8215 function New_Copy_List_Tree (List : List_Id) return List_Id is
8216 NL : List_Id;
8217 E : Node_Id;
8219 begin
8220 if List = No_List then
8221 return No_List;
8223 else
8224 NL := New_List;
8225 E := First (List);
8227 while Present (E) loop
8228 Append (New_Copy_Tree (E), NL);
8229 E := Next (E);
8230 end loop;
8232 return NL;
8233 end if;
8234 end New_Copy_List_Tree;
8236 -------------------
8237 -- New_Copy_Tree --
8238 -------------------
8240 use Atree.Unchecked_Access;
8241 use Atree_Private_Part;
8243 -- Our approach here requires a two pass traversal of the tree. The
8244 -- first pass visits all nodes that eventually will be copied looking
8245 -- for defining Itypes. If any defining Itypes are found, then they are
8246 -- copied, and an entry is added to the replacement map. In the second
8247 -- phase, the tree is copied, using the replacement map to replace any
8248 -- Itype references within the copied tree.
8250 -- The following hash tables are used if the Map supplied has more
8251 -- than hash threshhold entries to speed up access to the map. If
8252 -- there are fewer entries, then the map is searched sequentially
8253 -- (because setting up a hash table for only a few entries takes
8254 -- more time than it saves.
8256 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
8257 -- Hash function used for hash operations
8259 -------------------
8260 -- New_Copy_Hash --
8261 -------------------
8263 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
8264 begin
8265 return Nat (E) mod (NCT_Header_Num'Last + 1);
8266 end New_Copy_Hash;
8268 ---------------
8269 -- NCT_Assoc --
8270 ---------------
8272 -- The hash table NCT_Assoc associates old entities in the table
8273 -- with their corresponding new entities (i.e. the pairs of entries
8274 -- presented in the original Map argument are Key-Element pairs).
8276 package NCT_Assoc is new Simple_HTable (
8277 Header_Num => NCT_Header_Num,
8278 Element => Entity_Id,
8279 No_Element => Empty,
8280 Key => Entity_Id,
8281 Hash => New_Copy_Hash,
8282 Equal => Types."=");
8284 ---------------------
8285 -- NCT_Itype_Assoc --
8286 ---------------------
8288 -- The hash table NCT_Itype_Assoc contains entries only for those
8289 -- old nodes which have a non-empty Associated_Node_For_Itype set.
8290 -- The key is the associated node, and the element is the new node
8291 -- itself (NOT the associated node for the new node).
8293 package NCT_Itype_Assoc is new Simple_HTable (
8294 Header_Num => NCT_Header_Num,
8295 Element => Entity_Id,
8296 No_Element => Empty,
8297 Key => Entity_Id,
8298 Hash => New_Copy_Hash,
8299 Equal => Types."=");
8301 -- Start of processing for New_Copy_Tree function
8303 function New_Copy_Tree
8304 (Source : Node_Id;
8305 Map : Elist_Id := No_Elist;
8306 New_Sloc : Source_Ptr := No_Location;
8307 New_Scope : Entity_Id := Empty) return Node_Id
8309 Actual_Map : Elist_Id := Map;
8310 -- This is the actual map for the copy. It is initialized with the
8311 -- given elements, and then enlarged as required for Itypes that are
8312 -- copied during the first phase of the copy operation. The visit
8313 -- procedures add elements to this map as Itypes are encountered.
8314 -- The reason we cannot use Map directly, is that it may well be
8315 -- (and normally is) initialized to No_Elist, and if we have mapped
8316 -- entities, we have to reset it to point to a real Elist.
8318 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
8319 -- Called during second phase to map entities into their corresponding
8320 -- copies using Actual_Map. If the argument is not an entity, or is not
8321 -- in Actual_Map, then it is returned unchanged.
8323 procedure Build_NCT_Hash_Tables;
8324 -- Builds hash tables (number of elements >= threshold value)
8326 function Copy_Elist_With_Replacement
8327 (Old_Elist : Elist_Id) return Elist_Id;
8328 -- Called during second phase to copy element list doing replacements
8330 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
8331 -- Called during the second phase to process a copied Itype. The actual
8332 -- copy happened during the first phase (so that we could make the entry
8333 -- in the mapping), but we still have to deal with the descendents of
8334 -- the copied Itype and copy them where necessary.
8336 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
8337 -- Called during second phase to copy list doing replacements
8339 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
8340 -- Called during second phase to copy node doing replacements
8342 procedure Visit_Elist (E : Elist_Id);
8343 -- Called during first phase to visit all elements of an Elist
8345 procedure Visit_Field (F : Union_Id; N : Node_Id);
8346 -- Visit a single field, recursing to call Visit_Node or Visit_List
8347 -- if the field is a syntactic descendent of the current node (i.e.
8348 -- its parent is Node N).
8350 procedure Visit_Itype (Old_Itype : Entity_Id);
8351 -- Called during first phase to visit subsidiary fields of a defining
8352 -- Itype, and also create a copy and make an entry in the replacement
8353 -- map for the new copy.
8355 procedure Visit_List (L : List_Id);
8356 -- Called during first phase to visit all elements of a List
8358 procedure Visit_Node (N : Node_Or_Entity_Id);
8359 -- Called during first phase to visit a node and all its subtrees
8361 -----------
8362 -- Assoc --
8363 -----------
8365 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
8366 E : Elmt_Id;
8367 Ent : Entity_Id;
8369 begin
8370 if not Has_Extension (N) or else No (Actual_Map) then
8371 return N;
8373 elsif NCT_Hash_Tables_Used then
8374 Ent := NCT_Assoc.Get (Entity_Id (N));
8376 if Present (Ent) then
8377 return Ent;
8378 else
8379 return N;
8380 end if;
8382 -- No hash table used, do serial search
8384 else
8385 E := First_Elmt (Actual_Map);
8386 while Present (E) loop
8387 if Node (E) = N then
8388 return Node (Next_Elmt (E));
8389 else
8390 E := Next_Elmt (Next_Elmt (E));
8391 end if;
8392 end loop;
8393 end if;
8395 return N;
8396 end Assoc;
8398 ---------------------------
8399 -- Build_NCT_Hash_Tables --
8400 ---------------------------
8402 procedure Build_NCT_Hash_Tables is
8403 Elmt : Elmt_Id;
8404 Ent : Entity_Id;
8405 begin
8406 if NCT_Hash_Table_Setup then
8407 NCT_Assoc.Reset;
8408 NCT_Itype_Assoc.Reset;
8409 end if;
8411 Elmt := First_Elmt (Actual_Map);
8412 while Present (Elmt) loop
8413 Ent := Node (Elmt);
8415 -- Get new entity, and associate old and new
8417 Next_Elmt (Elmt);
8418 NCT_Assoc.Set (Ent, Node (Elmt));
8420 if Is_Type (Ent) then
8421 declare
8422 Anode : constant Entity_Id :=
8423 Associated_Node_For_Itype (Ent);
8425 begin
8426 if Present (Anode) then
8428 -- Enter a link between the associated node of the
8429 -- old Itype and the new Itype, for updating later
8430 -- when node is copied.
8432 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
8433 end if;
8434 end;
8435 end if;
8437 Next_Elmt (Elmt);
8438 end loop;
8440 NCT_Hash_Tables_Used := True;
8441 NCT_Hash_Table_Setup := True;
8442 end Build_NCT_Hash_Tables;
8444 ---------------------------------
8445 -- Copy_Elist_With_Replacement --
8446 ---------------------------------
8448 function Copy_Elist_With_Replacement
8449 (Old_Elist : Elist_Id) return Elist_Id
8451 M : Elmt_Id;
8452 New_Elist : Elist_Id;
8454 begin
8455 if No (Old_Elist) then
8456 return No_Elist;
8458 else
8459 New_Elist := New_Elmt_List;
8461 M := First_Elmt (Old_Elist);
8462 while Present (M) loop
8463 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
8464 Next_Elmt (M);
8465 end loop;
8466 end if;
8468 return New_Elist;
8469 end Copy_Elist_With_Replacement;
8471 ---------------------------------
8472 -- Copy_Itype_With_Replacement --
8473 ---------------------------------
8475 -- This routine exactly parallels its phase one analog Visit_Itype,
8477 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
8478 begin
8479 -- Translate Next_Entity, Scope and Etype fields, in case they
8480 -- reference entities that have been mapped into copies.
8482 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
8483 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
8485 if Present (New_Scope) then
8486 Set_Scope (New_Itype, New_Scope);
8487 else
8488 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
8489 end if;
8491 -- Copy referenced fields
8493 if Is_Discrete_Type (New_Itype) then
8494 Set_Scalar_Range (New_Itype,
8495 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
8497 elsif Has_Discriminants (Base_Type (New_Itype)) then
8498 Set_Discriminant_Constraint (New_Itype,
8499 Copy_Elist_With_Replacement
8500 (Discriminant_Constraint (New_Itype)));
8502 elsif Is_Array_Type (New_Itype) then
8503 if Present (First_Index (New_Itype)) then
8504 Set_First_Index (New_Itype,
8505 First (Copy_List_With_Replacement
8506 (List_Containing (First_Index (New_Itype)))));
8507 end if;
8509 if Is_Packed (New_Itype) then
8510 Set_Packed_Array_Type (New_Itype,
8511 Copy_Node_With_Replacement
8512 (Packed_Array_Type (New_Itype)));
8513 end if;
8514 end if;
8515 end Copy_Itype_With_Replacement;
8517 --------------------------------
8518 -- Copy_List_With_Replacement --
8519 --------------------------------
8521 function Copy_List_With_Replacement
8522 (Old_List : List_Id) return List_Id
8524 New_List : List_Id;
8525 E : Node_Id;
8527 begin
8528 if Old_List = No_List then
8529 return No_List;
8531 else
8532 New_List := Empty_List;
8534 E := First (Old_List);
8535 while Present (E) loop
8536 Append (Copy_Node_With_Replacement (E), New_List);
8537 Next (E);
8538 end loop;
8540 return New_List;
8541 end if;
8542 end Copy_List_With_Replacement;
8544 --------------------------------
8545 -- Copy_Node_With_Replacement --
8546 --------------------------------
8548 function Copy_Node_With_Replacement
8549 (Old_Node : Node_Id) return Node_Id
8551 New_Node : Node_Id;
8553 procedure Adjust_Named_Associations
8554 (Old_Node : Node_Id;
8555 New_Node : Node_Id);
8556 -- If a call node has named associations, these are chained through
8557 -- the First_Named_Actual, Next_Named_Actual links. These must be
8558 -- propagated separately to the new parameter list, because these
8559 -- are not syntactic fields.
8561 function Copy_Field_With_Replacement
8562 (Field : Union_Id) return Union_Id;
8563 -- Given Field, which is a field of Old_Node, return a copy of it
8564 -- if it is a syntactic field (i.e. its parent is Node), setting
8565 -- the parent of the copy to poit to New_Node. Otherwise returns
8566 -- the field (possibly mapped if it is an entity).
8568 -------------------------------
8569 -- Adjust_Named_Associations --
8570 -------------------------------
8572 procedure Adjust_Named_Associations
8573 (Old_Node : Node_Id;
8574 New_Node : Node_Id)
8576 Old_E : Node_Id;
8577 New_E : Node_Id;
8579 Old_Next : Node_Id;
8580 New_Next : Node_Id;
8582 begin
8583 Old_E := First (Parameter_Associations (Old_Node));
8584 New_E := First (Parameter_Associations (New_Node));
8585 while Present (Old_E) loop
8586 if Nkind (Old_E) = N_Parameter_Association
8587 and then Present (Next_Named_Actual (Old_E))
8588 then
8589 if First_Named_Actual (Old_Node)
8590 = Explicit_Actual_Parameter (Old_E)
8591 then
8592 Set_First_Named_Actual
8593 (New_Node, Explicit_Actual_Parameter (New_E));
8594 end if;
8596 -- Now scan parameter list from the beginning,to locate
8597 -- next named actual, which can be out of order.
8599 Old_Next := First (Parameter_Associations (Old_Node));
8600 New_Next := First (Parameter_Associations (New_Node));
8602 while Nkind (Old_Next) /= N_Parameter_Association
8603 or else Explicit_Actual_Parameter (Old_Next)
8604 /= Next_Named_Actual (Old_E)
8605 loop
8606 Next (Old_Next);
8607 Next (New_Next);
8608 end loop;
8610 Set_Next_Named_Actual
8611 (New_E, Explicit_Actual_Parameter (New_Next));
8612 end if;
8614 Next (Old_E);
8615 Next (New_E);
8616 end loop;
8617 end Adjust_Named_Associations;
8619 ---------------------------------
8620 -- Copy_Field_With_Replacement --
8621 ---------------------------------
8623 function Copy_Field_With_Replacement
8624 (Field : Union_Id) return Union_Id
8626 begin
8627 if Field = Union_Id (Empty) then
8628 return Field;
8630 elsif Field in Node_Range then
8631 declare
8632 Old_N : constant Node_Id := Node_Id (Field);
8633 New_N : Node_Id;
8635 begin
8636 -- If syntactic field, as indicated by the parent pointer
8637 -- being set, then copy the referenced node recursively.
8639 if Parent (Old_N) = Old_Node then
8640 New_N := Copy_Node_With_Replacement (Old_N);
8642 if New_N /= Old_N then
8643 Set_Parent (New_N, New_Node);
8644 end if;
8646 -- For semantic fields, update possible entity reference
8647 -- from the replacement map.
8649 else
8650 New_N := Assoc (Old_N);
8651 end if;
8653 return Union_Id (New_N);
8654 end;
8656 elsif Field in List_Range then
8657 declare
8658 Old_L : constant List_Id := List_Id (Field);
8659 New_L : List_Id;
8661 begin
8662 -- If syntactic field, as indicated by the parent pointer,
8663 -- then recursively copy the entire referenced list.
8665 if Parent (Old_L) = Old_Node then
8666 New_L := Copy_List_With_Replacement (Old_L);
8667 Set_Parent (New_L, New_Node);
8669 -- For semantic list, just returned unchanged
8671 else
8672 New_L := Old_L;
8673 end if;
8675 return Union_Id (New_L);
8676 end;
8678 -- Anything other than a list or a node is returned unchanged
8680 else
8681 return Field;
8682 end if;
8683 end Copy_Field_With_Replacement;
8685 -- Start of processing for Copy_Node_With_Replacement
8687 begin
8688 if Old_Node <= Empty_Or_Error then
8689 return Old_Node;
8691 elsif Has_Extension (Old_Node) then
8692 return Assoc (Old_Node);
8694 else
8695 New_Node := New_Copy (Old_Node);
8697 -- If the node we are copying is the associated node of a
8698 -- previously copied Itype, then adjust the associated node
8699 -- of the copy of that Itype accordingly.
8701 if Present (Actual_Map) then
8702 declare
8703 E : Elmt_Id;
8704 Ent : Entity_Id;
8706 begin
8707 -- Case of hash table used
8709 if NCT_Hash_Tables_Used then
8710 Ent := NCT_Itype_Assoc.Get (Old_Node);
8712 if Present (Ent) then
8713 Set_Associated_Node_For_Itype (Ent, New_Node);
8714 end if;
8716 -- Case of no hash table used
8718 else
8719 E := First_Elmt (Actual_Map);
8720 while Present (E) loop
8721 if Is_Itype (Node (E))
8722 and then
8723 Old_Node = Associated_Node_For_Itype (Node (E))
8724 then
8725 Set_Associated_Node_For_Itype
8726 (Node (Next_Elmt (E)), New_Node);
8727 end if;
8729 E := Next_Elmt (Next_Elmt (E));
8730 end loop;
8731 end if;
8732 end;
8733 end if;
8735 -- Recursively copy descendents
8737 Set_Field1
8738 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
8739 Set_Field2
8740 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
8741 Set_Field3
8742 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
8743 Set_Field4
8744 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
8745 Set_Field5
8746 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
8748 -- Adjust Sloc of new node if necessary
8750 if New_Sloc /= No_Location then
8751 Set_Sloc (New_Node, New_Sloc);
8753 -- If we adjust the Sloc, then we are essentially making
8754 -- a completely new node, so the Comes_From_Source flag
8755 -- should be reset to the proper default value.
8757 Nodes.Table (New_Node).Comes_From_Source :=
8758 Default_Node.Comes_From_Source;
8759 end if;
8761 -- If the node is call and has named associations,
8762 -- set the corresponding links in the copy.
8764 if (Nkind (Old_Node) = N_Function_Call
8765 or else Nkind (Old_Node) = N_Entry_Call_Statement
8766 or else
8767 Nkind (Old_Node) = N_Procedure_Call_Statement)
8768 and then Present (First_Named_Actual (Old_Node))
8769 then
8770 Adjust_Named_Associations (Old_Node, New_Node);
8771 end if;
8773 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
8774 -- The replacement mechanism applies to entities, and is not used
8775 -- here. Eventually we may need a more general graph-copying
8776 -- routine. For now, do a sequential search to find desired node.
8778 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
8779 and then Present (First_Real_Statement (Old_Node))
8780 then
8781 declare
8782 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
8783 N1, N2 : Node_Id;
8785 begin
8786 N1 := First (Statements (Old_Node));
8787 N2 := First (Statements (New_Node));
8789 while N1 /= Old_F loop
8790 Next (N1);
8791 Next (N2);
8792 end loop;
8794 Set_First_Real_Statement (New_Node, N2);
8795 end;
8796 end if;
8797 end if;
8799 -- All done, return copied node
8801 return New_Node;
8802 end Copy_Node_With_Replacement;
8804 -----------------
8805 -- Visit_Elist --
8806 -----------------
8808 procedure Visit_Elist (E : Elist_Id) is
8809 Elmt : Elmt_Id;
8810 begin
8811 if Present (E) then
8812 Elmt := First_Elmt (E);
8814 while Elmt /= No_Elmt loop
8815 Visit_Node (Node (Elmt));
8816 Next_Elmt (Elmt);
8817 end loop;
8818 end if;
8819 end Visit_Elist;
8821 -----------------
8822 -- Visit_Field --
8823 -----------------
8825 procedure Visit_Field (F : Union_Id; N : Node_Id) is
8826 begin
8827 if F = Union_Id (Empty) then
8828 return;
8830 elsif F in Node_Range then
8832 -- Copy node if it is syntactic, i.e. its parent pointer is
8833 -- set to point to the field that referenced it (certain
8834 -- Itypes will also meet this criterion, which is fine, since
8835 -- these are clearly Itypes that do need to be copied, since
8836 -- we are copying their parent.)
8838 if Parent (Node_Id (F)) = N then
8839 Visit_Node (Node_Id (F));
8840 return;
8842 -- Another case, if we are pointing to an Itype, then we want
8843 -- to copy it if its associated node is somewhere in the tree
8844 -- being copied.
8846 -- Note: the exclusion of self-referential copies is just an
8847 -- optimization, since the search of the already copied list
8848 -- would catch it, but it is a common case (Etype pointing
8849 -- to itself for an Itype that is a base type).
8851 elsif Has_Extension (Node_Id (F))
8852 and then Is_Itype (Entity_Id (F))
8853 and then Node_Id (F) /= N
8854 then
8855 declare
8856 P : Node_Id;
8858 begin
8859 P := Associated_Node_For_Itype (Node_Id (F));
8860 while Present (P) loop
8861 if P = Source then
8862 Visit_Node (Node_Id (F));
8863 return;
8864 else
8865 P := Parent (P);
8866 end if;
8867 end loop;
8869 -- An Itype whose parent is not being copied definitely
8870 -- should NOT be copied, since it does not belong in any
8871 -- sense to the copied subtree.
8873 return;
8874 end;
8875 end if;
8877 elsif F in List_Range
8878 and then Parent (List_Id (F)) = N
8879 then
8880 Visit_List (List_Id (F));
8881 return;
8882 end if;
8883 end Visit_Field;
8885 -----------------
8886 -- Visit_Itype --
8887 -----------------
8889 procedure Visit_Itype (Old_Itype : Entity_Id) is
8890 New_Itype : Entity_Id;
8891 E : Elmt_Id;
8892 Ent : Entity_Id;
8894 begin
8895 -- Itypes that describe the designated type of access to subprograms
8896 -- have the structure of subprogram declarations, with signatures,
8897 -- etc. Either we duplicate the signatures completely, or choose to
8898 -- share such itypes, which is fine because their elaboration will
8899 -- have no side effects.
8901 if Ekind (Old_Itype) = E_Subprogram_Type then
8902 return;
8903 end if;
8905 New_Itype := New_Copy (Old_Itype);
8907 -- The new Itype has all the attributes of the old one, and
8908 -- we just copy the contents of the entity. However, the back-end
8909 -- needs different names for debugging purposes, so we create a
8910 -- new internal name for it in all cases.
8912 Set_Chars (New_Itype, New_Internal_Name ('T'));
8914 -- If our associated node is an entity that has already been copied,
8915 -- then set the associated node of the copy to point to the right
8916 -- copy. If we have copied an Itype that is itself the associated
8917 -- node of some previously copied Itype, then we set the right
8918 -- pointer in the other direction.
8920 if Present (Actual_Map) then
8922 -- Case of hash tables used
8924 if NCT_Hash_Tables_Used then
8926 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
8928 if Present (Ent) then
8929 Set_Associated_Node_For_Itype (New_Itype, Ent);
8930 end if;
8932 Ent := NCT_Itype_Assoc.Get (Old_Itype);
8933 if Present (Ent) then
8934 Set_Associated_Node_For_Itype (Ent, New_Itype);
8936 -- If the hash table has no association for this Itype and
8937 -- its associated node, enter one now.
8939 else
8940 NCT_Itype_Assoc.Set
8941 (Associated_Node_For_Itype (Old_Itype), New_Itype);
8942 end if;
8944 -- Case of hash tables not used
8946 else
8947 E := First_Elmt (Actual_Map);
8948 while Present (E) loop
8949 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
8950 Set_Associated_Node_For_Itype
8951 (New_Itype, Node (Next_Elmt (E)));
8952 end if;
8954 if Is_Type (Node (E))
8955 and then
8956 Old_Itype = Associated_Node_For_Itype (Node (E))
8957 then
8958 Set_Associated_Node_For_Itype
8959 (Node (Next_Elmt (E)), New_Itype);
8960 end if;
8962 E := Next_Elmt (Next_Elmt (E));
8963 end loop;
8964 end if;
8965 end if;
8967 if Present (Freeze_Node (New_Itype)) then
8968 Set_Is_Frozen (New_Itype, False);
8969 Set_Freeze_Node (New_Itype, Empty);
8970 end if;
8972 -- Add new association to map
8974 if No (Actual_Map) then
8975 Actual_Map := New_Elmt_List;
8976 end if;
8978 Append_Elmt (Old_Itype, Actual_Map);
8979 Append_Elmt (New_Itype, Actual_Map);
8981 if NCT_Hash_Tables_Used then
8982 NCT_Assoc.Set (Old_Itype, New_Itype);
8984 else
8985 NCT_Table_Entries := NCT_Table_Entries + 1;
8987 if NCT_Table_Entries > NCT_Hash_Threshhold then
8988 Build_NCT_Hash_Tables;
8989 end if;
8990 end if;
8992 -- If a record subtype is simply copied, the entity list will be
8993 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
8995 if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
8996 Set_Cloned_Subtype (New_Itype, Old_Itype);
8997 end if;
8999 -- Visit descendents that eventually get copied
9001 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
9003 if Is_Discrete_Type (Old_Itype) then
9004 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
9006 elsif Has_Discriminants (Base_Type (Old_Itype)) then
9007 -- ??? This should involve call to Visit_Field
9008 Visit_Elist (Discriminant_Constraint (Old_Itype));
9010 elsif Is_Array_Type (Old_Itype) then
9011 if Present (First_Index (Old_Itype)) then
9012 Visit_Field (Union_Id (List_Containing
9013 (First_Index (Old_Itype))),
9014 Old_Itype);
9015 end if;
9017 if Is_Packed (Old_Itype) then
9018 Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)),
9019 Old_Itype);
9020 end if;
9021 end if;
9022 end Visit_Itype;
9024 ----------------
9025 -- Visit_List --
9026 ----------------
9028 procedure Visit_List (L : List_Id) is
9029 N : Node_Id;
9030 begin
9031 if L /= No_List then
9032 N := First (L);
9034 while Present (N) loop
9035 Visit_Node (N);
9036 Next (N);
9037 end loop;
9038 end if;
9039 end Visit_List;
9041 ----------------
9042 -- Visit_Node --
9043 ----------------
9045 procedure Visit_Node (N : Node_Or_Entity_Id) is
9047 -- Start of processing for Visit_Node
9049 begin
9050 -- Handle case of an Itype, which must be copied
9052 if Has_Extension (N)
9053 and then Is_Itype (N)
9054 then
9055 -- Nothing to do if already in the list. This can happen with an
9056 -- Itype entity that appears more than once in the tree.
9057 -- Note that we do not want to visit descendents in this case.
9059 -- Test for already in list when hash table is used
9061 if NCT_Hash_Tables_Used then
9062 if Present (NCT_Assoc.Get (Entity_Id (N))) then
9063 return;
9064 end if;
9066 -- Test for already in list when hash table not used
9068 else
9069 declare
9070 E : Elmt_Id;
9071 begin
9072 if Present (Actual_Map) then
9073 E := First_Elmt (Actual_Map);
9074 while Present (E) loop
9075 if Node (E) = N then
9076 return;
9077 else
9078 E := Next_Elmt (Next_Elmt (E));
9079 end if;
9080 end loop;
9081 end if;
9082 end;
9083 end if;
9085 Visit_Itype (N);
9086 end if;
9088 -- Visit descendents
9090 Visit_Field (Field1 (N), N);
9091 Visit_Field (Field2 (N), N);
9092 Visit_Field (Field3 (N), N);
9093 Visit_Field (Field4 (N), N);
9094 Visit_Field (Field5 (N), N);
9095 end Visit_Node;
9097 -- Start of processing for New_Copy_Tree
9099 begin
9100 Actual_Map := Map;
9102 -- See if we should use hash table
9104 if No (Actual_Map) then
9105 NCT_Hash_Tables_Used := False;
9107 else
9108 declare
9109 Elmt : Elmt_Id;
9111 begin
9112 NCT_Table_Entries := 0;
9114 Elmt := First_Elmt (Actual_Map);
9115 while Present (Elmt) loop
9116 NCT_Table_Entries := NCT_Table_Entries + 1;
9117 Next_Elmt (Elmt);
9118 Next_Elmt (Elmt);
9119 end loop;
9121 if NCT_Table_Entries > NCT_Hash_Threshhold then
9122 Build_NCT_Hash_Tables;
9123 else
9124 NCT_Hash_Tables_Used := False;
9125 end if;
9126 end;
9127 end if;
9129 -- Hash table set up if required, now start phase one by visiting
9130 -- top node (we will recursively visit the descendents).
9132 Visit_Node (Source);
9134 -- Now the second phase of the copy can start. First we process
9135 -- all the mapped entities, copying their descendents.
9137 if Present (Actual_Map) then
9138 declare
9139 Elmt : Elmt_Id;
9140 New_Itype : Entity_Id;
9141 begin
9142 Elmt := First_Elmt (Actual_Map);
9143 while Present (Elmt) loop
9144 Next_Elmt (Elmt);
9145 New_Itype := Node (Elmt);
9146 Copy_Itype_With_Replacement (New_Itype);
9147 Next_Elmt (Elmt);
9148 end loop;
9149 end;
9150 end if;
9152 -- Now we can copy the actual tree
9154 return Copy_Node_With_Replacement (Source);
9155 end New_Copy_Tree;
9157 -------------------------
9158 -- New_External_Entity --
9159 -------------------------
9161 function New_External_Entity
9162 (Kind : Entity_Kind;
9163 Scope_Id : Entity_Id;
9164 Sloc_Value : Source_Ptr;
9165 Related_Id : Entity_Id;
9166 Suffix : Character;
9167 Suffix_Index : Nat := 0;
9168 Prefix : Character := ' ') return Entity_Id
9170 N : constant Entity_Id :=
9171 Make_Defining_Identifier (Sloc_Value,
9172 New_External_Name
9173 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
9175 begin
9176 Set_Ekind (N, Kind);
9177 Set_Is_Internal (N, True);
9178 Append_Entity (N, Scope_Id);
9179 Set_Public_Status (N);
9181 if Kind in Type_Kind then
9182 Init_Size_Align (N);
9183 end if;
9185 return N;
9186 end New_External_Entity;
9188 -------------------------
9189 -- New_Internal_Entity --
9190 -------------------------
9192 function New_Internal_Entity
9193 (Kind : Entity_Kind;
9194 Scope_Id : Entity_Id;
9195 Sloc_Value : Source_Ptr;
9196 Id_Char : Character) return Entity_Id
9198 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
9200 begin
9201 Set_Ekind (N, Kind);
9202 Set_Is_Internal (N, True);
9203 Append_Entity (N, Scope_Id);
9205 if Kind in Type_Kind then
9206 Init_Size_Align (N);
9207 end if;
9209 return N;
9210 end New_Internal_Entity;
9212 -----------------
9213 -- Next_Actual --
9214 -----------------
9216 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
9217 N : Node_Id;
9219 begin
9220 -- If we are pointing at a positional parameter, it is a member of a
9221 -- node list (the list of parameters), and the next parameter is the
9222 -- next node on the list, unless we hit a parameter association, then
9223 -- we shift to using the chain whose head is the First_Named_Actual in
9224 -- the parent, and then is threaded using the Next_Named_Actual of the
9225 -- Parameter_Association. All this fiddling is because the original node
9226 -- list is in the textual call order, and what we need is the
9227 -- declaration order.
9229 if Is_List_Member (Actual_Id) then
9230 N := Next (Actual_Id);
9232 if Nkind (N) = N_Parameter_Association then
9233 return First_Named_Actual (Parent (Actual_Id));
9234 else
9235 return N;
9236 end if;
9238 else
9239 return Next_Named_Actual (Parent (Actual_Id));
9240 end if;
9241 end Next_Actual;
9243 procedure Next_Actual (Actual_Id : in out Node_Id) is
9244 begin
9245 Actual_Id := Next_Actual (Actual_Id);
9246 end Next_Actual;
9248 -----------------------
9249 -- Normalize_Actuals --
9250 -----------------------
9252 -- Chain actuals according to formals of subprogram. If there are no named
9253 -- associations, the chain is simply the list of Parameter Associations,
9254 -- since the order is the same as the declaration order. If there are named
9255 -- associations, then the First_Named_Actual field in the N_Function_Call
9256 -- or N_Procedure_Call_Statement node points to the Parameter_Association
9257 -- node for the parameter that comes first in declaration order. The
9258 -- remaining named parameters are then chained in declaration order using
9259 -- Next_Named_Actual.
9261 -- This routine also verifies that the number of actuals is compatible with
9262 -- the number and default values of formals, but performs no type checking
9263 -- (type checking is done by the caller).
9265 -- If the matching succeeds, Success is set to True and the caller proceeds
9266 -- with type-checking. If the match is unsuccessful, then Success is set to
9267 -- False, and the caller attempts a different interpretation, if there is
9268 -- one.
9270 -- If the flag Report is on, the call is not overloaded, and a failure to
9271 -- match can be reported here, rather than in the caller.
9273 procedure Normalize_Actuals
9274 (N : Node_Id;
9275 S : Entity_Id;
9276 Report : Boolean;
9277 Success : out Boolean)
9279 Actuals : constant List_Id := Parameter_Associations (N);
9280 Actual : Node_Id := Empty;
9281 Formal : Entity_Id;
9282 Last : Node_Id := Empty;
9283 First_Named : Node_Id := Empty;
9284 Found : Boolean;
9286 Formals_To_Match : Integer := 0;
9287 Actuals_To_Match : Integer := 0;
9289 procedure Chain (A : Node_Id);
9290 -- Add named actual at the proper place in the list, using the
9291 -- Next_Named_Actual link.
9293 function Reporting return Boolean;
9294 -- Determines if an error is to be reported. To report an error, we
9295 -- need Report to be True, and also we do not report errors caused
9296 -- by calls to init procs that occur within other init procs. Such
9297 -- errors must always be cascaded errors, since if all the types are
9298 -- declared correctly, the compiler will certainly build decent calls!
9300 -----------
9301 -- Chain --
9302 -----------
9304 procedure Chain (A : Node_Id) is
9305 begin
9306 if No (Last) then
9308 -- Call node points to first actual in list
9310 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
9312 else
9313 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
9314 end if;
9316 Last := A;
9317 Set_Next_Named_Actual (Last, Empty);
9318 end Chain;
9320 ---------------
9321 -- Reporting --
9322 ---------------
9324 function Reporting return Boolean is
9325 begin
9326 if not Report then
9327 return False;
9329 elsif not Within_Init_Proc then
9330 return True;
9332 elsif Is_Init_Proc (Entity (Name (N))) then
9333 return False;
9335 else
9336 return True;
9337 end if;
9338 end Reporting;
9340 -- Start of processing for Normalize_Actuals
9342 begin
9343 if Is_Access_Type (S) then
9345 -- The name in the call is a function call that returns an access
9346 -- to subprogram. The designated type has the list of formals.
9348 Formal := First_Formal (Designated_Type (S));
9349 else
9350 Formal := First_Formal (S);
9351 end if;
9353 while Present (Formal) loop
9354 Formals_To_Match := Formals_To_Match + 1;
9355 Next_Formal (Formal);
9356 end loop;
9358 -- Find if there is a named association, and verify that no positional
9359 -- associations appear after named ones.
9361 if Present (Actuals) then
9362 Actual := First (Actuals);
9363 end if;
9365 while Present (Actual)
9366 and then Nkind (Actual) /= N_Parameter_Association
9367 loop
9368 Actuals_To_Match := Actuals_To_Match + 1;
9369 Next (Actual);
9370 end loop;
9372 if No (Actual) and Actuals_To_Match = Formals_To_Match then
9374 -- Most common case: positional notation, no defaults
9376 Success := True;
9377 return;
9379 elsif Actuals_To_Match > Formals_To_Match then
9381 -- Too many actuals: will not work
9383 if Reporting then
9384 if Is_Entity_Name (Name (N)) then
9385 Error_Msg_N ("too many arguments in call to&", Name (N));
9386 else
9387 Error_Msg_N ("too many arguments in call", N);
9388 end if;
9389 end if;
9391 Success := False;
9392 return;
9393 end if;
9395 First_Named := Actual;
9397 while Present (Actual) loop
9398 if Nkind (Actual) /= N_Parameter_Association then
9399 Error_Msg_N
9400 ("positional parameters not allowed after named ones", Actual);
9401 Success := False;
9402 return;
9404 else
9405 Actuals_To_Match := Actuals_To_Match + 1;
9406 end if;
9408 Next (Actual);
9409 end loop;
9411 if Present (Actuals) then
9412 Actual := First (Actuals);
9413 end if;
9415 Formal := First_Formal (S);
9416 while Present (Formal) loop
9418 -- Match the formals in order. If the corresponding actual is
9419 -- positional, nothing to do. Else scan the list of named actuals
9420 -- to find the one with the right name.
9422 if Present (Actual)
9423 and then Nkind (Actual) /= N_Parameter_Association
9424 then
9425 Next (Actual);
9426 Actuals_To_Match := Actuals_To_Match - 1;
9427 Formals_To_Match := Formals_To_Match - 1;
9429 else
9430 -- For named parameters, search the list of actuals to find
9431 -- one that matches the next formal name.
9433 Actual := First_Named;
9434 Found := False;
9435 while Present (Actual) loop
9436 if Chars (Selector_Name (Actual)) = Chars (Formal) then
9437 Found := True;
9438 Chain (Actual);
9439 Actuals_To_Match := Actuals_To_Match - 1;
9440 Formals_To_Match := Formals_To_Match - 1;
9441 exit;
9442 end if;
9444 Next (Actual);
9445 end loop;
9447 if not Found then
9448 if Ekind (Formal) /= E_In_Parameter
9449 or else No (Default_Value (Formal))
9450 then
9451 if Reporting then
9452 if (Comes_From_Source (S)
9453 or else Sloc (S) = Standard_Location)
9454 and then Is_Overloadable (S)
9455 then
9456 if No (Actuals)
9457 and then
9458 (Nkind (Parent (N)) = N_Procedure_Call_Statement
9459 or else
9460 (Nkind (Parent (N)) = N_Function_Call
9461 or else
9462 Nkind (Parent (N)) = N_Parameter_Association))
9463 and then Ekind (S) /= E_Function
9464 then
9465 Set_Etype (N, Etype (S));
9466 else
9467 Error_Msg_Name_1 := Chars (S);
9468 Error_Msg_Sloc := Sloc (S);
9469 Error_Msg_NE
9470 ("missing argument for parameter & " &
9471 "in call to % declared #", N, Formal);
9472 end if;
9474 elsif Is_Overloadable (S) then
9475 Error_Msg_Name_1 := Chars (S);
9477 -- Point to type derivation that generated the
9478 -- operation.
9480 Error_Msg_Sloc := Sloc (Parent (S));
9482 Error_Msg_NE
9483 ("missing argument for parameter & " &
9484 "in call to % (inherited) #", N, Formal);
9486 else
9487 Error_Msg_NE
9488 ("missing argument for parameter &", N, Formal);
9489 end if;
9490 end if;
9492 Success := False;
9493 return;
9495 else
9496 Formals_To_Match := Formals_To_Match - 1;
9497 end if;
9498 end if;
9499 end if;
9501 Next_Formal (Formal);
9502 end loop;
9504 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
9505 Success := True;
9506 return;
9508 else
9509 if Reporting then
9511 -- Find some superfluous named actual that did not get
9512 -- attached to the list of associations.
9514 Actual := First (Actuals);
9515 while Present (Actual) loop
9516 if Nkind (Actual) = N_Parameter_Association
9517 and then Actual /= Last
9518 and then No (Next_Named_Actual (Actual))
9519 then
9520 Error_Msg_N ("unmatched actual & in call",
9521 Selector_Name (Actual));
9522 exit;
9523 end if;
9525 Next (Actual);
9526 end loop;
9527 end if;
9529 Success := False;
9530 return;
9531 end if;
9532 end Normalize_Actuals;
9534 --------------------------------
9535 -- Note_Possible_Modification --
9536 --------------------------------
9538 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
9539 Modification_Comes_From_Source : constant Boolean :=
9540 Comes_From_Source (Parent (N));
9542 Ent : Entity_Id;
9543 Exp : Node_Id;
9545 begin
9546 -- Loop to find referenced entity, if there is one
9548 Exp := N;
9549 loop
9550 <<Continue>>
9551 Ent := Empty;
9553 if Is_Entity_Name (Exp) then
9554 Ent := Entity (Exp);
9556 -- If the entity is missing, it is an undeclared identifier,
9557 -- and there is nothing to annotate.
9559 if No (Ent) then
9560 return;
9561 end if;
9563 elsif Nkind (Exp) = N_Explicit_Dereference then
9564 declare
9565 P : constant Node_Id := Prefix (Exp);
9567 begin
9568 if Nkind (P) = N_Selected_Component
9569 and then Present (
9570 Entry_Formal (Entity (Selector_Name (P))))
9571 then
9572 -- Case of a reference to an entry formal
9574 Ent := Entry_Formal (Entity (Selector_Name (P)));
9576 elsif Nkind (P) = N_Identifier
9577 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
9578 and then Present (Expression (Parent (Entity (P))))
9579 and then Nkind (Expression (Parent (Entity (P))))
9580 = N_Reference
9581 then
9582 -- Case of a reference to a value on which side effects have
9583 -- been removed.
9585 Exp := Prefix (Expression (Parent (Entity (P))));
9586 goto Continue;
9588 else
9589 return;
9591 end if;
9592 end;
9594 elsif Nkind (Exp) = N_Type_Conversion
9595 or else Nkind (Exp) = N_Unchecked_Type_Conversion
9596 then
9597 Exp := Expression (Exp);
9598 goto Continue;
9600 elsif Nkind (Exp) = N_Slice
9601 or else Nkind (Exp) = N_Indexed_Component
9602 or else Nkind (Exp) = N_Selected_Component
9603 then
9604 Exp := Prefix (Exp);
9605 goto Continue;
9607 else
9608 return;
9609 end if;
9611 -- Now look for entity being referenced
9613 if Present (Ent) then
9614 if Is_Object (Ent) then
9615 if Comes_From_Source (Exp)
9616 or else Modification_Comes_From_Source
9617 then
9618 -- Give warning if pragma unmodified given and we are
9619 -- sure this is a modification.
9621 if Has_Pragma_Unmodified (Ent) and then Sure then
9622 Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent);
9623 end if;
9625 Set_Never_Set_In_Source (Ent, False);
9626 end if;
9628 Set_Is_True_Constant (Ent, False);
9629 Set_Current_Value (Ent, Empty);
9630 Set_Is_Known_Null (Ent, False);
9632 if not Can_Never_Be_Null (Ent) then
9633 Set_Is_Known_Non_Null (Ent, False);
9634 end if;
9636 -- Follow renaming chain
9638 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
9639 and then Present (Renamed_Object (Ent))
9640 then
9641 Exp := Renamed_Object (Ent);
9642 goto Continue;
9643 end if;
9645 -- Generate a reference only if the assignment comes from
9646 -- source. This excludes, for example, calls to a dispatching
9647 -- assignment operation when the left-hand side is tagged.
9649 if Modification_Comes_From_Source then
9650 Generate_Reference (Ent, Exp, 'm');
9652 -- If the target of the assignment is the bound variable
9653 -- in an iterator, indicate that the corresponding array
9654 -- or container is also modified.
9656 if Ada_Version >= Ada_2012
9657 and then
9658 Nkind (Parent (Ent)) = N_Iterator_Specification
9659 then
9660 declare
9661 Domain : constant Node_Id := Name (Parent (Ent));
9663 begin
9664 -- TBD : in the full version of the construct, the
9665 -- domain of iteration can be given by an expression.
9667 if Is_Entity_Name (Domain) then
9668 Generate_Reference (Entity (Domain), Exp, 'm');
9669 Set_Is_True_Constant (Entity (Domain), False);
9670 Set_Never_Set_In_Source (Entity (Domain), False);
9671 end if;
9672 end;
9673 end if;
9674 end if;
9676 Check_Nested_Access (Ent);
9677 end if;
9679 Kill_Checks (Ent);
9681 -- If we are sure this is a modification from source, and we know
9682 -- this modifies a constant, then give an appropriate warning.
9684 if Overlays_Constant (Ent)
9685 and then Modification_Comes_From_Source
9686 and then Sure
9687 then
9688 declare
9689 A : constant Node_Id := Address_Clause (Ent);
9690 begin
9691 if Present (A) then
9692 declare
9693 Exp : constant Node_Id := Expression (A);
9694 begin
9695 if Nkind (Exp) = N_Attribute_Reference
9696 and then Attribute_Name (Exp) = Name_Address
9697 and then Is_Entity_Name (Prefix (Exp))
9698 then
9699 Error_Msg_Sloc := Sloc (A);
9700 Error_Msg_NE
9701 ("constant& may be modified via address clause#?",
9702 N, Entity (Prefix (Exp)));
9703 end if;
9704 end;
9705 end if;
9706 end;
9707 end if;
9709 return;
9710 end if;
9711 end loop;
9712 end Note_Possible_Modification;
9714 -------------------------
9715 -- Object_Access_Level --
9716 -------------------------
9718 function Object_Access_Level (Obj : Node_Id) return Uint is
9719 E : Entity_Id;
9721 -- Returns the static accessibility level of the view denoted by Obj. Note
9722 -- that the value returned is the result of a call to Scope_Depth. Only
9723 -- scope depths associated with dynamic scopes can actually be returned.
9724 -- Since only relative levels matter for accessibility checking, the fact
9725 -- that the distance between successive levels of accessibility is not
9726 -- always one is immaterial (invariant: if level(E2) is deeper than
9727 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
9729 function Reference_To (Obj : Node_Id) return Node_Id;
9730 -- An explicit dereference is created when removing side-effects from
9731 -- expressions for constraint checking purposes. In this case a local
9732 -- access type is created for it. The correct access level is that of
9733 -- the original source node. We detect this case by noting that the
9734 -- prefix of the dereference is created by an object declaration whose
9735 -- initial expression is a reference.
9737 ------------------
9738 -- Reference_To --
9739 ------------------
9741 function Reference_To (Obj : Node_Id) return Node_Id is
9742 Pref : constant Node_Id := Prefix (Obj);
9743 begin
9744 if Is_Entity_Name (Pref)
9745 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
9746 and then Present (Expression (Parent (Entity (Pref))))
9747 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
9748 then
9749 return (Prefix (Expression (Parent (Entity (Pref)))));
9750 else
9751 return Empty;
9752 end if;
9753 end Reference_To;
9755 -- Start of processing for Object_Access_Level
9757 begin
9758 if Is_Entity_Name (Obj) then
9759 E := Entity (Obj);
9761 if Is_Prival (E) then
9762 E := Prival_Link (E);
9763 end if;
9765 -- If E is a type then it denotes a current instance. For this case
9766 -- we add one to the normal accessibility level of the type to ensure
9767 -- that current instances are treated as always being deeper than
9768 -- than the level of any visible named access type (see 3.10.2(21)).
9770 if Is_Type (E) then
9771 return Type_Access_Level (E) + 1;
9773 elsif Present (Renamed_Object (E)) then
9774 return Object_Access_Level (Renamed_Object (E));
9776 -- Similarly, if E is a component of the current instance of a
9777 -- protected type, any instance of it is assumed to be at a deeper
9778 -- level than the type. For a protected object (whose type is an
9779 -- anonymous protected type) its components are at the same level
9780 -- as the type itself.
9782 elsif not Is_Overloadable (E)
9783 and then Ekind (Scope (E)) = E_Protected_Type
9784 and then Comes_From_Source (Scope (E))
9785 then
9786 return Type_Access_Level (Scope (E)) + 1;
9788 else
9789 return Scope_Depth (Enclosing_Dynamic_Scope (E));
9790 end if;
9792 elsif Nkind (Obj) = N_Selected_Component then
9793 if Is_Access_Type (Etype (Prefix (Obj))) then
9794 return Type_Access_Level (Etype (Prefix (Obj)));
9795 else
9796 return Object_Access_Level (Prefix (Obj));
9797 end if;
9799 elsif Nkind (Obj) = N_Indexed_Component then
9800 if Is_Access_Type (Etype (Prefix (Obj))) then
9801 return Type_Access_Level (Etype (Prefix (Obj)));
9802 else
9803 return Object_Access_Level (Prefix (Obj));
9804 end if;
9806 elsif Nkind (Obj) = N_Explicit_Dereference then
9808 -- If the prefix is a selected access discriminant then we make a
9809 -- recursive call on the prefix, which will in turn check the level
9810 -- of the prefix object of the selected discriminant.
9812 if Nkind (Prefix (Obj)) = N_Selected_Component
9813 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
9814 and then
9815 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
9816 then
9817 return Object_Access_Level (Prefix (Obj));
9819 elsif not (Comes_From_Source (Obj)) then
9820 declare
9821 Ref : constant Node_Id := Reference_To (Obj);
9822 begin
9823 if Present (Ref) then
9824 return Object_Access_Level (Ref);
9825 else
9826 return Type_Access_Level (Etype (Prefix (Obj)));
9827 end if;
9828 end;
9830 else
9831 return Type_Access_Level (Etype (Prefix (Obj)));
9832 end if;
9834 elsif Nkind (Obj) = N_Type_Conversion
9835 or else Nkind (Obj) = N_Unchecked_Type_Conversion
9836 then
9837 return Object_Access_Level (Expression (Obj));
9839 elsif Nkind (Obj) = N_Function_Call then
9841 -- Function results are objects, so we get either the access level of
9842 -- the function or, in the case of an indirect call, the level of the
9843 -- access-to-subprogram type. (This code is used for Ada 95, but it
9844 -- looks wrong, because it seems that we should be checking the level
9845 -- of the call itself, even for Ada 95. However, using the Ada 2005
9846 -- version of the code causes regressions in several tests that are
9847 -- compiled with -gnat95. ???)
9849 if Ada_Version < Ada_2005 then
9850 if Is_Entity_Name (Name (Obj)) then
9851 return Subprogram_Access_Level (Entity (Name (Obj)));
9852 else
9853 return Type_Access_Level (Etype (Prefix (Name (Obj))));
9854 end if;
9856 -- For Ada 2005, the level of the result object of a function call is
9857 -- defined to be the level of the call's innermost enclosing master.
9858 -- We determine that by querying the depth of the innermost enclosing
9859 -- dynamic scope.
9861 else
9862 Return_Master_Scope_Depth_Of_Call : declare
9864 function Innermost_Master_Scope_Depth
9865 (N : Node_Id) return Uint;
9866 -- Returns the scope depth of the given node's innermost
9867 -- enclosing dynamic scope (effectively the accessibility
9868 -- level of the innermost enclosing master).
9870 ----------------------------------
9871 -- Innermost_Master_Scope_Depth --
9872 ----------------------------------
9874 function Innermost_Master_Scope_Depth
9875 (N : Node_Id) return Uint
9877 Node_Par : Node_Id := Parent (N);
9879 begin
9880 -- Locate the nearest enclosing node (by traversing Parents)
9881 -- that Defining_Entity can be applied to, and return the
9882 -- depth of that entity's nearest enclosing dynamic scope.
9884 while Present (Node_Par) loop
9885 case Nkind (Node_Par) is
9886 when N_Component_Declaration |
9887 N_Entry_Declaration |
9888 N_Formal_Object_Declaration |
9889 N_Formal_Type_Declaration |
9890 N_Full_Type_Declaration |
9891 N_Incomplete_Type_Declaration |
9892 N_Loop_Parameter_Specification |
9893 N_Object_Declaration |
9894 N_Protected_Type_Declaration |
9895 N_Private_Extension_Declaration |
9896 N_Private_Type_Declaration |
9897 N_Subtype_Declaration |
9898 N_Function_Specification |
9899 N_Procedure_Specification |
9900 N_Task_Type_Declaration |
9901 N_Body_Stub |
9902 N_Generic_Instantiation |
9903 N_Proper_Body |
9904 N_Implicit_Label_Declaration |
9905 N_Package_Declaration |
9906 N_Single_Task_Declaration |
9907 N_Subprogram_Declaration |
9908 N_Generic_Declaration |
9909 N_Renaming_Declaration |
9910 N_Block_Statement |
9911 N_Formal_Subprogram_Declaration |
9912 N_Abstract_Subprogram_Declaration |
9913 N_Entry_Body |
9914 N_Exception_Declaration |
9915 N_Formal_Package_Declaration |
9916 N_Number_Declaration |
9917 N_Package_Specification |
9918 N_Parameter_Specification |
9919 N_Single_Protected_Declaration |
9920 N_Subunit =>
9922 return Scope_Depth
9923 (Nearest_Dynamic_Scope
9924 (Defining_Entity (Node_Par)));
9926 when others =>
9927 null;
9928 end case;
9930 Node_Par := Parent (Node_Par);
9931 end loop;
9933 pragma Assert (False);
9935 -- Should never reach the following return
9937 return Scope_Depth (Current_Scope) + 1;
9938 end Innermost_Master_Scope_Depth;
9940 -- Start of processing for Return_Master_Scope_Depth_Of_Call
9942 begin
9943 return Innermost_Master_Scope_Depth (Obj);
9944 end Return_Master_Scope_Depth_Of_Call;
9945 end if;
9947 -- For convenience we handle qualified expressions, even though
9948 -- they aren't technically object names.
9950 elsif Nkind (Obj) = N_Qualified_Expression then
9951 return Object_Access_Level (Expression (Obj));
9953 -- Otherwise return the scope level of Standard.
9954 -- (If there are cases that fall through
9955 -- to this point they will be treated as
9956 -- having global accessibility for now. ???)
9958 else
9959 return Scope_Depth (Standard_Standard);
9960 end if;
9961 end Object_Access_Level;
9963 --------------------------------------
9964 -- Original_Corresponding_Operation --
9965 --------------------------------------
9967 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
9969 Typ : constant Entity_Id := Find_Dispatching_Type (S);
9971 begin
9972 -- If S is an inherited primitive S2 the original corresponding
9973 -- operation of S is the original corresponding operation of S2
9975 if Present (Alias (S))
9976 and then Find_Dispatching_Type (Alias (S)) /= Typ
9977 then
9978 return Original_Corresponding_Operation (Alias (S));
9980 -- If S overrides an inherted subprogram S2 the original corresponding
9981 -- operation of S is the original corresponding operation of S2
9983 elsif Present (Overridden_Operation (S)) then
9984 return Original_Corresponding_Operation (Overridden_Operation (S));
9986 -- otherwise it is S itself
9988 else
9989 return S;
9990 end if;
9991 end Original_Corresponding_Operation;
9993 -----------------------
9994 -- Private_Component --
9995 -----------------------
9997 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
9998 Ancestor : constant Entity_Id := Base_Type (Type_Id);
10000 function Trace_Components
10001 (T : Entity_Id;
10002 Check : Boolean) return Entity_Id;
10003 -- Recursive function that does the work, and checks against circular
10004 -- definition for each subcomponent type.
10006 ----------------------
10007 -- Trace_Components --
10008 ----------------------
10010 function Trace_Components
10011 (T : Entity_Id;
10012 Check : Boolean) return Entity_Id
10014 Btype : constant Entity_Id := Base_Type (T);
10015 Component : Entity_Id;
10016 P : Entity_Id;
10017 Candidate : Entity_Id := Empty;
10019 begin
10020 if Check and then Btype = Ancestor then
10021 Error_Msg_N ("circular type definition", Type_Id);
10022 return Any_Type;
10023 end if;
10025 if Is_Private_Type (Btype)
10026 and then not Is_Generic_Type (Btype)
10027 then
10028 if Present (Full_View (Btype))
10029 and then Is_Record_Type (Full_View (Btype))
10030 and then not Is_Frozen (Btype)
10031 then
10032 -- To indicate that the ancestor depends on a private type, the
10033 -- current Btype is sufficient. However, to check for circular
10034 -- definition we must recurse on the full view.
10036 Candidate := Trace_Components (Full_View (Btype), True);
10038 if Candidate = Any_Type then
10039 return Any_Type;
10040 else
10041 return Btype;
10042 end if;
10044 else
10045 return Btype;
10046 end if;
10048 elsif Is_Array_Type (Btype) then
10049 return Trace_Components (Component_Type (Btype), True);
10051 elsif Is_Record_Type (Btype) then
10052 Component := First_Entity (Btype);
10053 while Present (Component) loop
10055 -- Skip anonymous types generated by constrained components
10057 if not Is_Type (Component) then
10058 P := Trace_Components (Etype (Component), True);
10060 if Present (P) then
10061 if P = Any_Type then
10062 return P;
10063 else
10064 Candidate := P;
10065 end if;
10066 end if;
10067 end if;
10069 Next_Entity (Component);
10070 end loop;
10072 return Candidate;
10074 else
10075 return Empty;
10076 end if;
10077 end Trace_Components;
10079 -- Start of processing for Private_Component
10081 begin
10082 return Trace_Components (Type_Id, False);
10083 end Private_Component;
10085 ---------------------------
10086 -- Primitive_Names_Match --
10087 ---------------------------
10089 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
10091 function Non_Internal_Name (E : Entity_Id) return Name_Id;
10092 -- Given an internal name, returns the corresponding non-internal name
10094 ------------------------
10095 -- Non_Internal_Name --
10096 ------------------------
10098 function Non_Internal_Name (E : Entity_Id) return Name_Id is
10099 begin
10100 Get_Name_String (Chars (E));
10101 Name_Len := Name_Len - 1;
10102 return Name_Find;
10103 end Non_Internal_Name;
10105 -- Start of processing for Primitive_Names_Match
10107 begin
10108 pragma Assert (Present (E1) and then Present (E2));
10110 return Chars (E1) = Chars (E2)
10111 or else
10112 (not Is_Internal_Name (Chars (E1))
10113 and then Is_Internal_Name (Chars (E2))
10114 and then Non_Internal_Name (E2) = Chars (E1))
10115 or else
10116 (not Is_Internal_Name (Chars (E2))
10117 and then Is_Internal_Name (Chars (E1))
10118 and then Non_Internal_Name (E1) = Chars (E2))
10119 or else
10120 (Is_Predefined_Dispatching_Operation (E1)
10121 and then Is_Predefined_Dispatching_Operation (E2)
10122 and then Same_TSS (E1, E2))
10123 or else
10124 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
10125 end Primitive_Names_Match;
10127 -----------------------
10128 -- Process_End_Label --
10129 -----------------------
10131 procedure Process_End_Label
10132 (N : Node_Id;
10133 Typ : Character;
10134 Ent : Entity_Id)
10136 Loc : Source_Ptr;
10137 Nam : Node_Id;
10138 Scop : Entity_Id;
10140 Label_Ref : Boolean;
10141 -- Set True if reference to end label itself is required
10143 Endl : Node_Id;
10144 -- Gets set to the operator symbol or identifier that references the
10145 -- entity Ent. For the child unit case, this is the identifier from the
10146 -- designator. For other cases, this is simply Endl.
10148 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
10149 -- N is an identifier node that appears as a parent unit reference in
10150 -- the case where Ent is a child unit. This procedure generates an
10151 -- appropriate cross-reference entry. E is the corresponding entity.
10153 -------------------------
10154 -- Generate_Parent_Ref --
10155 -------------------------
10157 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
10158 begin
10159 -- If names do not match, something weird, skip reference
10161 if Chars (E) = Chars (N) then
10163 -- Generate the reference. We do NOT consider this as a reference
10164 -- for unreferenced symbol purposes.
10166 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
10168 if Style_Check then
10169 Style.Check_Identifier (N, E);
10170 end if;
10171 end if;
10172 end Generate_Parent_Ref;
10174 -- Start of processing for Process_End_Label
10176 begin
10177 -- If no node, ignore. This happens in some error situations, and
10178 -- also for some internally generated structures where no end label
10179 -- references are required in any case.
10181 if No (N) then
10182 return;
10183 end if;
10185 -- Nothing to do if no End_Label, happens for internally generated
10186 -- constructs where we don't want an end label reference anyway. Also
10187 -- nothing to do if Endl is a string literal, which means there was
10188 -- some prior error (bad operator symbol)
10190 Endl := End_Label (N);
10192 if No (Endl) or else Nkind (Endl) = N_String_Literal then
10193 return;
10194 end if;
10196 -- Reference node is not in extended main source unit
10198 if not In_Extended_Main_Source_Unit (N) then
10200 -- Generally we do not collect references except for the extended
10201 -- main source unit. The one exception is the 'e' entry for a
10202 -- package spec, where it is useful for a client to have the
10203 -- ending information to define scopes.
10205 if Typ /= 'e' then
10206 return;
10208 else
10209 Label_Ref := False;
10211 -- For this case, we can ignore any parent references, but we
10212 -- need the package name itself for the 'e' entry.
10214 if Nkind (Endl) = N_Designator then
10215 Endl := Identifier (Endl);
10216 end if;
10217 end if;
10219 -- Reference is in extended main source unit
10221 else
10222 Label_Ref := True;
10224 -- For designator, generate references for the parent entries
10226 if Nkind (Endl) = N_Designator then
10228 -- Generate references for the prefix if the END line comes from
10229 -- source (otherwise we do not need these references) We climb the
10230 -- scope stack to find the expected entities.
10232 if Comes_From_Source (Endl) then
10233 Nam := Name (Endl);
10234 Scop := Current_Scope;
10235 while Nkind (Nam) = N_Selected_Component loop
10236 Scop := Scope (Scop);
10237 exit when No (Scop);
10238 Generate_Parent_Ref (Selector_Name (Nam), Scop);
10239 Nam := Prefix (Nam);
10240 end loop;
10242 if Present (Scop) then
10243 Generate_Parent_Ref (Nam, Scope (Scop));
10244 end if;
10245 end if;
10247 Endl := Identifier (Endl);
10248 end if;
10249 end if;
10251 -- If the end label is not for the given entity, then either we have
10252 -- some previous error, or this is a generic instantiation for which
10253 -- we do not need to make a cross-reference in this case anyway. In
10254 -- either case we simply ignore the call.
10256 if Chars (Ent) /= Chars (Endl) then
10257 return;
10258 end if;
10260 -- If label was really there, then generate a normal reference and then
10261 -- adjust the location in the end label to point past the name (which
10262 -- should almost always be the semicolon).
10264 Loc := Sloc (Endl);
10266 if Comes_From_Source (Endl) then
10268 -- If a label reference is required, then do the style check and
10269 -- generate an l-type cross-reference entry for the label
10271 if Label_Ref then
10272 if Style_Check then
10273 Style.Check_Identifier (Endl, Ent);
10274 end if;
10276 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
10277 end if;
10279 -- Set the location to point past the label (normally this will
10280 -- mean the semicolon immediately following the label). This is
10281 -- done for the sake of the 'e' or 't' entry generated below.
10283 Get_Decoded_Name_String (Chars (Endl));
10284 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
10285 end if;
10287 -- Now generate the e/t reference
10289 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
10291 -- Restore Sloc, in case modified above, since we have an identifier
10292 -- and the normal Sloc should be left set in the tree.
10294 Set_Sloc (Endl, Loc);
10295 end Process_End_Label;
10297 ------------------------------------
10298 -- References_Generic_Formal_Type --
10299 ------------------------------------
10301 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
10303 function Process (N : Node_Id) return Traverse_Result;
10304 -- Process one node in search for generic formal type
10306 -------------
10307 -- Process --
10308 -------------
10310 function Process (N : Node_Id) return Traverse_Result is
10311 begin
10312 if Nkind (N) in N_Has_Entity then
10313 declare
10314 E : constant Entity_Id := Entity (N);
10315 begin
10316 if Present (E) then
10317 if Is_Generic_Type (E) then
10318 return Abandon;
10319 elsif Present (Etype (E))
10320 and then Is_Generic_Type (Etype (E))
10321 then
10322 return Abandon;
10323 end if;
10324 end if;
10325 end;
10326 end if;
10328 return Atree.OK;
10329 end Process;
10331 function Traverse is new Traverse_Func (Process);
10332 -- Traverse tree to look for generic type
10334 begin
10335 if Inside_A_Generic then
10336 return Traverse (N) = Abandon;
10337 else
10338 return False;
10339 end if;
10340 end References_Generic_Formal_Type;
10342 --------------------
10343 -- Remove_Homonym --
10344 --------------------
10346 procedure Remove_Homonym (E : Entity_Id) is
10347 Prev : Entity_Id := Empty;
10348 H : Entity_Id;
10350 begin
10351 if E = Current_Entity (E) then
10352 if Present (Homonym (E)) then
10353 Set_Current_Entity (Homonym (E));
10354 else
10355 Set_Name_Entity_Id (Chars (E), Empty);
10356 end if;
10357 else
10358 H := Current_Entity (E);
10359 while Present (H) and then H /= E loop
10360 Prev := H;
10361 H := Homonym (H);
10362 end loop;
10364 Set_Homonym (Prev, Homonym (E));
10365 end if;
10366 end Remove_Homonym;
10368 ---------------------
10369 -- Rep_To_Pos_Flag --
10370 ---------------------
10372 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
10373 begin
10374 return New_Occurrence_Of
10375 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
10376 end Rep_To_Pos_Flag;
10378 --------------------
10379 -- Require_Entity --
10380 --------------------
10382 procedure Require_Entity (N : Node_Id) is
10383 begin
10384 if Is_Entity_Name (N) and then No (Entity (N)) then
10385 if Total_Errors_Detected /= 0 then
10386 Set_Entity (N, Any_Id);
10387 else
10388 raise Program_Error;
10389 end if;
10390 end if;
10391 end Require_Entity;
10393 ------------------------------
10394 -- Requires_Transient_Scope --
10395 ------------------------------
10397 -- A transient scope is required when variable-sized temporaries are
10398 -- allocated in the primary or secondary stack, or when finalization
10399 -- actions must be generated before the next instruction.
10401 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
10402 Typ : constant Entity_Id := Underlying_Type (Id);
10404 -- Start of processing for Requires_Transient_Scope
10406 begin
10407 -- This is a private type which is not completed yet. This can only
10408 -- happen in a default expression (of a formal parameter or of a
10409 -- record component). Do not expand transient scope in this case
10411 if No (Typ) then
10412 return False;
10414 -- Do not expand transient scope for non-existent procedure return
10416 elsif Typ = Standard_Void_Type then
10417 return False;
10419 -- Elementary types do not require a transient scope
10421 elsif Is_Elementary_Type (Typ) then
10422 return False;
10424 -- Generally, indefinite subtypes require a transient scope, since the
10425 -- back end cannot generate temporaries, since this is not a valid type
10426 -- for declaring an object. It might be possible to relax this in the
10427 -- future, e.g. by declaring the maximum possible space for the type.
10429 elsif Is_Indefinite_Subtype (Typ) then
10430 return True;
10432 -- Functions returning tagged types may dispatch on result so their
10433 -- returned value is allocated on the secondary stack. Controlled
10434 -- type temporaries need finalization.
10436 elsif Is_Tagged_Type (Typ)
10437 or else Has_Controlled_Component (Typ)
10438 then
10439 return not Is_Value_Type (Typ);
10441 -- Record type
10443 elsif Is_Record_Type (Typ) then
10444 declare
10445 Comp : Entity_Id;
10446 begin
10447 Comp := First_Entity (Typ);
10448 while Present (Comp) loop
10449 if Ekind (Comp) = E_Component
10450 and then Requires_Transient_Scope (Etype (Comp))
10451 then
10452 return True;
10453 else
10454 Next_Entity (Comp);
10455 end if;
10456 end loop;
10457 end;
10459 return False;
10461 -- String literal types never require transient scope
10463 elsif Ekind (Typ) = E_String_Literal_Subtype then
10464 return False;
10466 -- Array type. Note that we already know that this is a constrained
10467 -- array, since unconstrained arrays will fail the indefinite test.
10469 elsif Is_Array_Type (Typ) then
10471 -- If component type requires a transient scope, the array does too
10473 if Requires_Transient_Scope (Component_Type (Typ)) then
10474 return True;
10476 -- Otherwise, we only need a transient scope if the size is not
10477 -- known at compile time.
10479 else
10480 return not Size_Known_At_Compile_Time (Typ);
10481 end if;
10483 -- All other cases do not require a transient scope
10485 else
10486 return False;
10487 end if;
10488 end Requires_Transient_Scope;
10490 --------------------------
10491 -- Reset_Analyzed_Flags --
10492 --------------------------
10494 procedure Reset_Analyzed_Flags (N : Node_Id) is
10496 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
10497 -- Function used to reset Analyzed flags in tree. Note that we do
10498 -- not reset Analyzed flags in entities, since there is no need to
10499 -- reanalyze entities, and indeed, it is wrong to do so, since it
10500 -- can result in generating auxiliary stuff more than once.
10502 --------------------
10503 -- Clear_Analyzed --
10504 --------------------
10506 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
10507 begin
10508 if not Has_Extension (N) then
10509 Set_Analyzed (N, False);
10510 end if;
10512 return OK;
10513 end Clear_Analyzed;
10515 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
10517 -- Start of processing for Reset_Analyzed_Flags
10519 begin
10520 Reset_Analyzed (N);
10521 end Reset_Analyzed_Flags;
10523 ---------------------------
10524 -- Safe_To_Capture_Value --
10525 ---------------------------
10527 function Safe_To_Capture_Value
10528 (N : Node_Id;
10529 Ent : Entity_Id;
10530 Cond : Boolean := False) return Boolean
10532 begin
10533 -- The only entities for which we track constant values are variables
10534 -- which are not renamings, constants, out parameters, and in out
10535 -- parameters, so check if we have this case.
10537 -- Note: it may seem odd to track constant values for constants, but in
10538 -- fact this routine is used for other purposes than simply capturing
10539 -- the value. In particular, the setting of Known[_Non]_Null.
10541 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
10542 or else
10543 Ekind (Ent) = E_Constant
10544 or else
10545 Ekind (Ent) = E_Out_Parameter
10546 or else
10547 Ekind (Ent) = E_In_Out_Parameter
10548 then
10549 null;
10551 -- For conditionals, we also allow loop parameters and all formals,
10552 -- including in parameters.
10554 elsif Cond
10555 and then
10556 (Ekind (Ent) = E_Loop_Parameter
10557 or else
10558 Ekind (Ent) = E_In_Parameter)
10559 then
10560 null;
10562 -- For all other cases, not just unsafe, but impossible to capture
10563 -- Current_Value, since the above are the only entities which have
10564 -- Current_Value fields.
10566 else
10567 return False;
10568 end if;
10570 -- Skip if volatile or aliased, since funny things might be going on in
10571 -- these cases which we cannot necessarily track. Also skip any variable
10572 -- for which an address clause is given, or whose address is taken. Also
10573 -- never capture value of library level variables (an attempt to do so
10574 -- can occur in the case of package elaboration code).
10576 if Treat_As_Volatile (Ent)
10577 or else Is_Aliased (Ent)
10578 or else Present (Address_Clause (Ent))
10579 or else Address_Taken (Ent)
10580 or else (Is_Library_Level_Entity (Ent)
10581 and then Ekind (Ent) = E_Variable)
10582 then
10583 return False;
10584 end if;
10586 -- OK, all above conditions are met. We also require that the scope of
10587 -- the reference be the same as the scope of the entity, not counting
10588 -- packages and blocks and loops.
10590 declare
10591 E_Scope : constant Entity_Id := Scope (Ent);
10592 R_Scope : Entity_Id;
10594 begin
10595 R_Scope := Current_Scope;
10596 while R_Scope /= Standard_Standard loop
10597 exit when R_Scope = E_Scope;
10599 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
10600 return False;
10601 else
10602 R_Scope := Scope (R_Scope);
10603 end if;
10604 end loop;
10605 end;
10607 -- We also require that the reference does not appear in a context
10608 -- where it is not sure to be executed (i.e. a conditional context
10609 -- or an exception handler). We skip this if Cond is True, since the
10610 -- capturing of values from conditional tests handles this ok.
10612 if Cond then
10613 return True;
10614 end if;
10616 declare
10617 Desc : Node_Id;
10618 P : Node_Id;
10620 begin
10621 Desc := N;
10623 P := Parent (N);
10624 while Present (P) loop
10625 if Nkind (P) = N_If_Statement
10626 or else Nkind (P) = N_Case_Statement
10627 or else (Nkind (P) in N_Short_Circuit
10628 and then Desc = Right_Opnd (P))
10629 or else (Nkind (P) = N_Conditional_Expression
10630 and then Desc /= First (Expressions (P)))
10631 or else Nkind (P) = N_Exception_Handler
10632 or else Nkind (P) = N_Selective_Accept
10633 or else Nkind (P) = N_Conditional_Entry_Call
10634 or else Nkind (P) = N_Timed_Entry_Call
10635 or else Nkind (P) = N_Asynchronous_Select
10636 then
10637 return False;
10638 else
10639 Desc := P;
10640 P := Parent (P);
10641 end if;
10642 end loop;
10643 end;
10645 -- OK, looks safe to set value
10647 return True;
10648 end Safe_To_Capture_Value;
10650 ---------------
10651 -- Same_Name --
10652 ---------------
10654 function Same_Name (N1, N2 : Node_Id) return Boolean is
10655 K1 : constant Node_Kind := Nkind (N1);
10656 K2 : constant Node_Kind := Nkind (N2);
10658 begin
10659 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
10660 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
10661 then
10662 return Chars (N1) = Chars (N2);
10664 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
10665 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
10666 then
10667 return Same_Name (Selector_Name (N1), Selector_Name (N2))
10668 and then Same_Name (Prefix (N1), Prefix (N2));
10670 else
10671 return False;
10672 end if;
10673 end Same_Name;
10675 -----------------
10676 -- Same_Object --
10677 -----------------
10679 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
10680 N1 : constant Node_Id := Original_Node (Node1);
10681 N2 : constant Node_Id := Original_Node (Node2);
10682 -- We do the tests on original nodes, since we are most interested
10683 -- in the original source, not any expansion that got in the way.
10685 K1 : constant Node_Kind := Nkind (N1);
10686 K2 : constant Node_Kind := Nkind (N2);
10688 begin
10689 -- First case, both are entities with same entity
10691 if K1 in N_Has_Entity and then K2 in N_Has_Entity then
10692 declare
10693 EN1 : constant Entity_Id := Entity (N1);
10694 EN2 : constant Entity_Id := Entity (N2);
10695 begin
10696 if Present (EN1) and then Present (EN2)
10697 and then (Ekind_In (EN1, E_Variable, E_Constant)
10698 or else Is_Formal (EN1))
10699 and then EN1 = EN2
10700 then
10701 return True;
10702 end if;
10703 end;
10704 end if;
10706 -- Second case, selected component with same selector, same record
10708 if K1 = N_Selected_Component
10709 and then K2 = N_Selected_Component
10710 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
10711 then
10712 return Same_Object (Prefix (N1), Prefix (N2));
10714 -- Third case, indexed component with same subscripts, same array
10716 elsif K1 = N_Indexed_Component
10717 and then K2 = N_Indexed_Component
10718 and then Same_Object (Prefix (N1), Prefix (N2))
10719 then
10720 declare
10721 E1, E2 : Node_Id;
10722 begin
10723 E1 := First (Expressions (N1));
10724 E2 := First (Expressions (N2));
10725 while Present (E1) loop
10726 if not Same_Value (E1, E2) then
10727 return False;
10728 else
10729 Next (E1);
10730 Next (E2);
10731 end if;
10732 end loop;
10734 return True;
10735 end;
10737 -- Fourth case, slice of same array with same bounds
10739 elsif K1 = N_Slice
10740 and then K2 = N_Slice
10741 and then Nkind (Discrete_Range (N1)) = N_Range
10742 and then Nkind (Discrete_Range (N2)) = N_Range
10743 and then Same_Value (Low_Bound (Discrete_Range (N1)),
10744 Low_Bound (Discrete_Range (N2)))
10745 and then Same_Value (High_Bound (Discrete_Range (N1)),
10746 High_Bound (Discrete_Range (N2)))
10747 then
10748 return Same_Name (Prefix (N1), Prefix (N2));
10750 -- All other cases, not clearly the same object
10752 else
10753 return False;
10754 end if;
10755 end Same_Object;
10757 ---------------
10758 -- Same_Type --
10759 ---------------
10761 function Same_Type (T1, T2 : Entity_Id) return Boolean is
10762 begin
10763 if T1 = T2 then
10764 return True;
10766 elsif not Is_Constrained (T1)
10767 and then not Is_Constrained (T2)
10768 and then Base_Type (T1) = Base_Type (T2)
10769 then
10770 return True;
10772 -- For now don't bother with case of identical constraints, to be
10773 -- fiddled with later on perhaps (this is only used for optimization
10774 -- purposes, so it is not critical to do a best possible job)
10776 else
10777 return False;
10778 end if;
10779 end Same_Type;
10781 ----------------
10782 -- Same_Value --
10783 ----------------
10785 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
10786 begin
10787 if Compile_Time_Known_Value (Node1)
10788 and then Compile_Time_Known_Value (Node2)
10789 and then Expr_Value (Node1) = Expr_Value (Node2)
10790 then
10791 return True;
10792 elsif Same_Object (Node1, Node2) then
10793 return True;
10794 else
10795 return False;
10796 end if;
10797 end Same_Value;
10799 -----------------
10800 -- Save_Actual --
10801 -----------------
10803 procedure Save_Actual (N : Node_Id; Writable : Boolean := False) is
10804 begin
10805 if Ada_Version < Ada_2012 then
10806 return;
10808 elsif Is_Entity_Name (N)
10809 or else
10810 Nkind_In (N, N_Indexed_Component, N_Selected_Component, N_Slice)
10811 or else
10812 (Nkind (N) = N_Attribute_Reference
10813 and then Attribute_Name (N) = Name_Access)
10815 then
10816 -- We are only interested in IN OUT parameters of inner calls
10818 if not Writable
10819 or else Nkind (Parent (N)) = N_Function_Call
10820 or else Nkind (Parent (N)) in N_Op
10821 then
10822 Actuals_In_Call.Increment_Last;
10823 Actuals_In_Call.Table (Actuals_In_Call.Last) := (N, Writable);
10824 end if;
10825 end if;
10826 end Save_Actual;
10828 ------------------------
10829 -- Scope_Is_Transient --
10830 ------------------------
10832 function Scope_Is_Transient return Boolean is
10833 begin
10834 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
10835 end Scope_Is_Transient;
10837 ------------------
10838 -- Scope_Within --
10839 ------------------
10841 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
10842 Scop : Entity_Id;
10844 begin
10845 Scop := Scope1;
10846 while Scop /= Standard_Standard loop
10847 Scop := Scope (Scop);
10849 if Scop = Scope2 then
10850 return True;
10851 end if;
10852 end loop;
10854 return False;
10855 end Scope_Within;
10857 --------------------------
10858 -- Scope_Within_Or_Same --
10859 --------------------------
10861 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
10862 Scop : Entity_Id;
10864 begin
10865 Scop := Scope1;
10866 while Scop /= Standard_Standard loop
10867 if Scop = Scope2 then
10868 return True;
10869 else
10870 Scop := Scope (Scop);
10871 end if;
10872 end loop;
10874 return False;
10875 end Scope_Within_Or_Same;
10877 --------------------
10878 -- Set_Convention --
10879 --------------------
10881 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
10882 begin
10883 Basic_Set_Convention (E, Val);
10885 if Is_Type (E)
10886 and then Is_Access_Subprogram_Type (Base_Type (E))
10887 and then Has_Foreign_Convention (E)
10888 then
10889 Set_Can_Use_Internal_Rep (E, False);
10890 end if;
10891 end Set_Convention;
10893 ------------------------
10894 -- Set_Current_Entity --
10895 ------------------------
10897 -- The given entity is to be set as the currently visible definition
10898 -- of its associated name (i.e. the Node_Id associated with its name).
10899 -- All we have to do is to get the name from the identifier, and
10900 -- then set the associated Node_Id to point to the given entity.
10902 procedure Set_Current_Entity (E : Entity_Id) is
10903 begin
10904 Set_Name_Entity_Id (Chars (E), E);
10905 end Set_Current_Entity;
10907 ---------------------------
10908 -- Set_Debug_Info_Needed --
10909 ---------------------------
10911 procedure Set_Debug_Info_Needed (T : Entity_Id) is
10913 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
10914 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
10915 -- Used to set debug info in a related node if not set already
10917 --------------------------------------
10918 -- Set_Debug_Info_Needed_If_Not_Set --
10919 --------------------------------------
10921 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
10922 begin
10923 if Present (E)
10924 and then not Needs_Debug_Info (E)
10925 then
10926 Set_Debug_Info_Needed (E);
10928 -- For a private type, indicate that the full view also needs
10929 -- debug information.
10931 if Is_Type (E)
10932 and then Is_Private_Type (E)
10933 and then Present (Full_View (E))
10934 then
10935 Set_Debug_Info_Needed (Full_View (E));
10936 end if;
10937 end if;
10938 end Set_Debug_Info_Needed_If_Not_Set;
10940 -- Start of processing for Set_Debug_Info_Needed
10942 begin
10943 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
10944 -- indicates that Debug_Info_Needed is never required for the entity.
10946 if No (T)
10947 or else Debug_Info_Off (T)
10948 then
10949 return;
10950 end if;
10952 -- Set flag in entity itself. Note that we will go through the following
10953 -- circuitry even if the flag is already set on T. That's intentional,
10954 -- it makes sure that the flag will be set in subsidiary entities.
10956 Set_Needs_Debug_Info (T);
10958 -- Set flag on subsidiary entities if not set already
10960 if Is_Object (T) then
10961 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10963 elsif Is_Type (T) then
10964 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10966 if Is_Record_Type (T) then
10967 declare
10968 Ent : Entity_Id := First_Entity (T);
10969 begin
10970 while Present (Ent) loop
10971 Set_Debug_Info_Needed_If_Not_Set (Ent);
10972 Next_Entity (Ent);
10973 end loop;
10974 end;
10976 -- For a class wide subtype, we also need debug information
10977 -- for the equivalent type.
10979 if Ekind (T) = E_Class_Wide_Subtype then
10980 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
10981 end if;
10983 elsif Is_Array_Type (T) then
10984 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
10986 declare
10987 Indx : Node_Id := First_Index (T);
10988 begin
10989 while Present (Indx) loop
10990 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
10991 Indx := Next_Index (Indx);
10992 end loop;
10993 end;
10995 if Is_Packed (T) then
10996 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
10997 end if;
10999 elsif Is_Access_Type (T) then
11000 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
11002 elsif Is_Private_Type (T) then
11003 Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
11005 elsif Is_Protected_Type (T) then
11006 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
11007 end if;
11008 end if;
11009 end Set_Debug_Info_Needed;
11011 ---------------------------------
11012 -- Set_Entity_With_Style_Check --
11013 ---------------------------------
11015 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
11016 Val_Actual : Entity_Id;
11017 Nod : Node_Id;
11019 begin
11020 Set_Entity (N, Val);
11022 if Style_Check
11023 and then not Suppress_Style_Checks (Val)
11024 and then not In_Instance
11025 then
11026 if Nkind (N) = N_Identifier then
11027 Nod := N;
11028 elsif Nkind (N) = N_Expanded_Name then
11029 Nod := Selector_Name (N);
11030 else
11031 return;
11032 end if;
11034 -- A special situation arises for derived operations, where we want
11035 -- to do the check against the parent (since the Sloc of the derived
11036 -- operation points to the derived type declaration itself).
11038 Val_Actual := Val;
11039 while not Comes_From_Source (Val_Actual)
11040 and then Nkind (Val_Actual) in N_Entity
11041 and then (Ekind (Val_Actual) = E_Enumeration_Literal
11042 or else Is_Subprogram (Val_Actual)
11043 or else Is_Generic_Subprogram (Val_Actual))
11044 and then Present (Alias (Val_Actual))
11045 loop
11046 Val_Actual := Alias (Val_Actual);
11047 end loop;
11049 -- Renaming declarations for generic actuals do not come from source,
11050 -- and have a different name from that of the entity they rename, so
11051 -- there is no style check to perform here.
11053 if Chars (Nod) = Chars (Val_Actual) then
11054 Style.Check_Identifier (Nod, Val_Actual);
11055 end if;
11056 end if;
11058 Set_Entity (N, Val);
11059 end Set_Entity_With_Style_Check;
11061 ------------------------
11062 -- Set_Name_Entity_Id --
11063 ------------------------
11065 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
11066 begin
11067 Set_Name_Table_Info (Id, Int (Val));
11068 end Set_Name_Entity_Id;
11070 ---------------------
11071 -- Set_Next_Actual --
11072 ---------------------
11074 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
11075 begin
11076 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
11077 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
11078 end if;
11079 end Set_Next_Actual;
11081 ----------------------------------
11082 -- Set_Optimize_Alignment_Flags --
11083 ----------------------------------
11085 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
11086 begin
11087 if Optimize_Alignment = 'S' then
11088 Set_Optimize_Alignment_Space (E);
11089 elsif Optimize_Alignment = 'T' then
11090 Set_Optimize_Alignment_Time (E);
11091 end if;
11092 end Set_Optimize_Alignment_Flags;
11094 -----------------------
11095 -- Set_Public_Status --
11096 -----------------------
11098 procedure Set_Public_Status (Id : Entity_Id) is
11099 S : constant Entity_Id := Current_Scope;
11101 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
11102 -- Determines if E is defined within handled statement sequence or
11103 -- an if statement, returns True if so, False otherwise.
11105 ----------------------
11106 -- Within_HSS_Or_If --
11107 ----------------------
11109 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
11110 N : Node_Id;
11111 begin
11112 N := Declaration_Node (E);
11113 loop
11114 N := Parent (N);
11116 if No (N) then
11117 return False;
11119 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
11120 N_If_Statement)
11121 then
11122 return True;
11123 end if;
11124 end loop;
11125 end Within_HSS_Or_If;
11127 -- Start of processing for Set_Public_Status
11129 begin
11130 -- Everything in the scope of Standard is public
11132 if S = Standard_Standard then
11133 Set_Is_Public (Id);
11135 -- Entity is definitely not public if enclosing scope is not public
11137 elsif not Is_Public (S) then
11138 return;
11140 -- An object or function declaration that occurs in a handled sequence
11141 -- of statements or within an if statement is the declaration for a
11142 -- temporary object or local subprogram generated by the expander. It
11143 -- never needs to be made public and furthermore, making it public can
11144 -- cause back end problems.
11146 elsif Nkind_In (Parent (Id), N_Object_Declaration,
11147 N_Function_Specification)
11148 and then Within_HSS_Or_If (Id)
11149 then
11150 return;
11152 -- Entities in public packages or records are public
11154 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
11155 Set_Is_Public (Id);
11157 -- The bounds of an entry family declaration can generate object
11158 -- declarations that are visible to the back-end, e.g. in the
11159 -- the declaration of a composite type that contains tasks.
11161 elsif Is_Concurrent_Type (S)
11162 and then not Has_Completion (S)
11163 and then Nkind (Parent (Id)) = N_Object_Declaration
11164 then
11165 Set_Is_Public (Id);
11166 end if;
11167 end Set_Public_Status;
11169 -----------------------------
11170 -- Set_Referenced_Modified --
11171 -----------------------------
11173 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
11174 Pref : Node_Id;
11176 begin
11177 -- Deal with indexed or selected component where prefix is modified
11179 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
11180 Pref := Prefix (N);
11182 -- If prefix is access type, then it is the designated object that is
11183 -- being modified, which means we have no entity to set the flag on.
11185 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
11186 return;
11188 -- Otherwise chase the prefix
11190 else
11191 Set_Referenced_Modified (Pref, Out_Param);
11192 end if;
11194 -- Otherwise see if we have an entity name (only other case to process)
11196 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
11197 Set_Referenced_As_LHS (Entity (N), not Out_Param);
11198 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
11199 end if;
11200 end Set_Referenced_Modified;
11202 ----------------------------
11203 -- Set_Scope_Is_Transient --
11204 ----------------------------
11206 procedure Set_Scope_Is_Transient (V : Boolean := True) is
11207 begin
11208 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
11209 end Set_Scope_Is_Transient;
11211 -------------------
11212 -- Set_Size_Info --
11213 -------------------
11215 procedure Set_Size_Info (T1, T2 : Entity_Id) is
11216 begin
11217 -- We copy Esize, but not RM_Size, since in general RM_Size is
11218 -- subtype specific and does not get inherited by all subtypes.
11220 Set_Esize (T1, Esize (T2));
11221 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
11223 if Is_Discrete_Or_Fixed_Point_Type (T1)
11224 and then
11225 Is_Discrete_Or_Fixed_Point_Type (T2)
11226 then
11227 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
11228 end if;
11230 Set_Alignment (T1, Alignment (T2));
11231 end Set_Size_Info;
11233 --------------------
11234 -- Static_Integer --
11235 --------------------
11237 function Static_Integer (N : Node_Id) return Uint is
11238 begin
11239 Analyze_And_Resolve (N, Any_Integer);
11241 if N = Error
11242 or else Error_Posted (N)
11243 or else Etype (N) = Any_Type
11244 then
11245 return No_Uint;
11246 end if;
11248 if Is_Static_Expression (N) then
11249 if not Raises_Constraint_Error (N) then
11250 return Expr_Value (N);
11251 else
11252 return No_Uint;
11253 end if;
11255 elsif Etype (N) = Any_Type then
11256 return No_Uint;
11258 else
11259 Flag_Non_Static_Expr
11260 ("static integer expression required here", N);
11261 return No_Uint;
11262 end if;
11263 end Static_Integer;
11265 --------------------------
11266 -- Statically_Different --
11267 --------------------------
11269 function Statically_Different (E1, E2 : Node_Id) return Boolean is
11270 R1 : constant Node_Id := Get_Referenced_Object (E1);
11271 R2 : constant Node_Id := Get_Referenced_Object (E2);
11272 begin
11273 return Is_Entity_Name (R1)
11274 and then Is_Entity_Name (R2)
11275 and then Entity (R1) /= Entity (R2)
11276 and then not Is_Formal (Entity (R1))
11277 and then not Is_Formal (Entity (R2));
11278 end Statically_Different;
11280 -----------------------------
11281 -- Subprogram_Access_Level --
11282 -----------------------------
11284 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
11285 begin
11286 if Present (Alias (Subp)) then
11287 return Subprogram_Access_Level (Alias (Subp));
11288 else
11289 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
11290 end if;
11291 end Subprogram_Access_Level;
11293 -----------------
11294 -- Trace_Scope --
11295 -----------------
11297 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
11298 begin
11299 if Debug_Flag_W then
11300 for J in 0 .. Scope_Stack.Last loop
11301 Write_Str (" ");
11302 end loop;
11304 Write_Str (Msg);
11305 Write_Name (Chars (E));
11306 Write_Str (" from ");
11307 Write_Location (Sloc (N));
11308 Write_Eol;
11309 end if;
11310 end Trace_Scope;
11312 -----------------------
11313 -- Transfer_Entities --
11314 -----------------------
11316 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
11317 Ent : Entity_Id := First_Entity (From);
11319 begin
11320 if No (Ent) then
11321 return;
11322 end if;
11324 if (Last_Entity (To)) = Empty then
11325 Set_First_Entity (To, Ent);
11326 else
11327 Set_Next_Entity (Last_Entity (To), Ent);
11328 end if;
11330 Set_Last_Entity (To, Last_Entity (From));
11332 while Present (Ent) loop
11333 Set_Scope (Ent, To);
11335 if not Is_Public (Ent) then
11336 Set_Public_Status (Ent);
11338 if Is_Public (Ent)
11339 and then Ekind (Ent) = E_Record_Subtype
11341 then
11342 -- The components of the propagated Itype must be public
11343 -- as well.
11345 declare
11346 Comp : Entity_Id;
11347 begin
11348 Comp := First_Entity (Ent);
11349 while Present (Comp) loop
11350 Set_Is_Public (Comp);
11351 Next_Entity (Comp);
11352 end loop;
11353 end;
11354 end if;
11355 end if;
11357 Next_Entity (Ent);
11358 end loop;
11360 Set_First_Entity (From, Empty);
11361 Set_Last_Entity (From, Empty);
11362 end Transfer_Entities;
11364 -----------------------
11365 -- Type_Access_Level --
11366 -----------------------
11368 function Type_Access_Level (Typ : Entity_Id) return Uint is
11369 Btyp : Entity_Id;
11371 begin
11372 Btyp := Base_Type (Typ);
11374 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
11375 -- simply use the level where the type is declared. This is true for
11376 -- stand-alone object declarations, and for anonymous access types
11377 -- associated with components the level is the same as that of the
11378 -- enclosing composite type. However, special treatment is needed for
11379 -- the cases of access parameters, return objects of an anonymous access
11380 -- type, and, in Ada 95, access discriminants of limited types.
11382 if Ekind (Btyp) in Access_Kind then
11383 if Ekind (Btyp) = E_Anonymous_Access_Type then
11385 -- If the type is a nonlocal anonymous access type (such as for
11386 -- an access parameter) we treat it as being declared at the
11387 -- library level to ensure that names such as X.all'access don't
11388 -- fail static accessibility checks.
11390 if not Is_Local_Anonymous_Access (Typ) then
11391 return Scope_Depth (Standard_Standard);
11393 -- If this is a return object, the accessibility level is that of
11394 -- the result subtype of the enclosing function. The test here is
11395 -- little complicated, because we have to account for extended
11396 -- return statements that have been rewritten as blocks, in which
11397 -- case we have to find and the Is_Return_Object attribute of the
11398 -- itype's associated object. It would be nice to find a way to
11399 -- simplify this test, but it doesn't seem worthwhile to add a new
11400 -- flag just for purposes of this test. ???
11402 elsif Ekind (Scope (Btyp)) = E_Return_Statement
11403 or else
11404 (Is_Itype (Btyp)
11405 and then Nkind (Associated_Node_For_Itype (Btyp)) =
11406 N_Object_Declaration
11407 and then Is_Return_Object
11408 (Defining_Identifier
11409 (Associated_Node_For_Itype (Btyp))))
11410 then
11411 declare
11412 Scop : Entity_Id;
11414 begin
11415 Scop := Scope (Scope (Btyp));
11416 while Present (Scop) loop
11417 exit when Ekind (Scop) = E_Function;
11418 Scop := Scope (Scop);
11419 end loop;
11421 -- Treat the return object's type as having the level of the
11422 -- function's result subtype (as per RM05-6.5(5.3/2)).
11424 return Type_Access_Level (Etype (Scop));
11425 end;
11426 end if;
11427 end if;
11429 Btyp := Root_Type (Btyp);
11431 -- The accessibility level of anonymous access types associated with
11432 -- discriminants is that of the current instance of the type, and
11433 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
11435 -- AI-402: access discriminants have accessibility based on the
11436 -- object rather than the type in Ada 2005, so the above paragraph
11437 -- doesn't apply.
11439 -- ??? Needs completion with rules from AI-416
11441 if Ada_Version <= Ada_95
11442 and then Ekind (Typ) = E_Anonymous_Access_Type
11443 and then Present (Associated_Node_For_Itype (Typ))
11444 and then Nkind (Associated_Node_For_Itype (Typ)) =
11445 N_Discriminant_Specification
11446 then
11447 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
11448 end if;
11449 end if;
11451 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
11452 end Type_Access_Level;
11454 --------------------------
11455 -- Unit_Declaration_Node --
11456 --------------------------
11458 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
11459 N : Node_Id := Parent (Unit_Id);
11461 begin
11462 -- Predefined operators do not have a full function declaration
11464 if Ekind (Unit_Id) = E_Operator then
11465 return N;
11466 end if;
11468 -- Isn't there some better way to express the following ???
11470 while Nkind (N) /= N_Abstract_Subprogram_Declaration
11471 and then Nkind (N) /= N_Formal_Package_Declaration
11472 and then Nkind (N) /= N_Function_Instantiation
11473 and then Nkind (N) /= N_Generic_Package_Declaration
11474 and then Nkind (N) /= N_Generic_Subprogram_Declaration
11475 and then Nkind (N) /= N_Package_Declaration
11476 and then Nkind (N) /= N_Package_Body
11477 and then Nkind (N) /= N_Package_Instantiation
11478 and then Nkind (N) /= N_Package_Renaming_Declaration
11479 and then Nkind (N) /= N_Procedure_Instantiation
11480 and then Nkind (N) /= N_Protected_Body
11481 and then Nkind (N) /= N_Subprogram_Declaration
11482 and then Nkind (N) /= N_Subprogram_Body
11483 and then Nkind (N) /= N_Subprogram_Body_Stub
11484 and then Nkind (N) /= N_Subprogram_Renaming_Declaration
11485 and then Nkind (N) /= N_Task_Body
11486 and then Nkind (N) /= N_Task_Type_Declaration
11487 and then Nkind (N) not in N_Formal_Subprogram_Declaration
11488 and then Nkind (N) not in N_Generic_Renaming_Declaration
11489 loop
11490 N := Parent (N);
11491 pragma Assert (Present (N));
11492 end loop;
11494 return N;
11495 end Unit_Declaration_Node;
11497 ------------------------------
11498 -- Universal_Interpretation --
11499 ------------------------------
11501 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
11502 Index : Interp_Index;
11503 It : Interp;
11505 begin
11506 -- The argument may be a formal parameter of an operator or subprogram
11507 -- with multiple interpretations, or else an expression for an actual.
11509 if Nkind (Opnd) = N_Defining_Identifier
11510 or else not Is_Overloaded (Opnd)
11511 then
11512 if Etype (Opnd) = Universal_Integer
11513 or else Etype (Opnd) = Universal_Real
11514 then
11515 return Etype (Opnd);
11516 else
11517 return Empty;
11518 end if;
11520 else
11521 Get_First_Interp (Opnd, Index, It);
11522 while Present (It.Typ) loop
11523 if It.Typ = Universal_Integer
11524 or else It.Typ = Universal_Real
11525 then
11526 return It.Typ;
11527 end if;
11529 Get_Next_Interp (Index, It);
11530 end loop;
11532 return Empty;
11533 end if;
11534 end Universal_Interpretation;
11536 ---------------
11537 -- Unqualify --
11538 ---------------
11540 function Unqualify (Expr : Node_Id) return Node_Id is
11541 begin
11542 -- Recurse to handle unlikely case of multiple levels of qualification
11544 if Nkind (Expr) = N_Qualified_Expression then
11545 return Unqualify (Expression (Expr));
11547 -- Normal case, not a qualified expression
11549 else
11550 return Expr;
11551 end if;
11552 end Unqualify;
11554 -----------------------
11555 -- Visible_Ancestors --
11556 -----------------------
11558 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
11559 List_1 : Elist_Id;
11560 List_2 : Elist_Id;
11561 Elmt : Elmt_Id;
11563 begin
11564 pragma Assert (Is_Record_Type (Typ)
11565 and then Is_Tagged_Type (Typ));
11567 -- Collect all the parents and progenitors of Typ. If the full-view of
11568 -- private parents and progenitors is available then it is used to
11569 -- generate the list of visible ancestors; otherwise their partial
11570 -- view is added to the resulting list.
11572 Collect_Parents
11573 (T => Typ,
11574 List => List_1,
11575 Use_Full_View => True);
11577 Collect_Interfaces
11578 (T => Typ,
11579 Ifaces_List => List_2,
11580 Exclude_Parents => True,
11581 Use_Full_View => True);
11583 -- Join the two lists. Avoid duplications because an interface may
11584 -- simultaneously be parent and progenitor of a type.
11586 Elmt := First_Elmt (List_2);
11587 while Present (Elmt) loop
11588 Append_Unique_Elmt (Node (Elmt), List_1);
11589 Next_Elmt (Elmt);
11590 end loop;
11592 return List_1;
11593 end Visible_Ancestors;
11595 ----------------------
11596 -- Within_Init_Proc --
11597 ----------------------
11599 function Within_Init_Proc return Boolean is
11600 S : Entity_Id;
11602 begin
11603 S := Current_Scope;
11604 while not Is_Overloadable (S) loop
11605 if S = Standard_Standard then
11606 return False;
11607 else
11608 S := Scope (S);
11609 end if;
11610 end loop;
11612 return Is_Init_Proc (S);
11613 end Within_Init_Proc;
11615 ----------------
11616 -- Wrong_Type --
11617 ----------------
11619 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
11620 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
11621 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
11623 function Has_One_Matching_Field return Boolean;
11624 -- Determines if Expec_Type is a record type with a single component or
11625 -- discriminant whose type matches the found type or is one dimensional
11626 -- array whose component type matches the found type.
11628 ----------------------------
11629 -- Has_One_Matching_Field --
11630 ----------------------------
11632 function Has_One_Matching_Field return Boolean is
11633 E : Entity_Id;
11635 begin
11636 if Is_Array_Type (Expec_Type)
11637 and then Number_Dimensions (Expec_Type) = 1
11638 and then
11639 Covers (Etype (Component_Type (Expec_Type)), Found_Type)
11640 then
11641 return True;
11643 elsif not Is_Record_Type (Expec_Type) then
11644 return False;
11646 else
11647 E := First_Entity (Expec_Type);
11648 loop
11649 if No (E) then
11650 return False;
11652 elsif (Ekind (E) /= E_Discriminant
11653 and then Ekind (E) /= E_Component)
11654 or else (Chars (E) = Name_uTag
11655 or else Chars (E) = Name_uParent)
11656 then
11657 Next_Entity (E);
11659 else
11660 exit;
11661 end if;
11662 end loop;
11664 if not Covers (Etype (E), Found_Type) then
11665 return False;
11667 elsif Present (Next_Entity (E)) then
11668 return False;
11670 else
11671 return True;
11672 end if;
11673 end if;
11674 end Has_One_Matching_Field;
11676 -- Start of processing for Wrong_Type
11678 begin
11679 -- Don't output message if either type is Any_Type, or if a message
11680 -- has already been posted for this node. We need to do the latter
11681 -- check explicitly (it is ordinarily done in Errout), because we
11682 -- are using ! to force the output of the error messages.
11684 if Expec_Type = Any_Type
11685 or else Found_Type = Any_Type
11686 or else Error_Posted (Expr)
11687 then
11688 return;
11690 -- In an instance, there is an ongoing problem with completion of
11691 -- type derived from private types. Their structure is what Gigi
11692 -- expects, but the Etype is the parent type rather than the
11693 -- derived private type itself. Do not flag error in this case. The
11694 -- private completion is an entity without a parent, like an Itype.
11695 -- Similarly, full and partial views may be incorrect in the instance.
11696 -- There is no simple way to insure that it is consistent ???
11698 elsif In_Instance then
11699 if Etype (Etype (Expr)) = Etype (Expected_Type)
11700 and then
11701 (Has_Private_Declaration (Expected_Type)
11702 or else Has_Private_Declaration (Etype (Expr)))
11703 and then No (Parent (Expected_Type))
11704 then
11705 return;
11706 end if;
11707 end if;
11709 -- An interesting special check. If the expression is parenthesized
11710 -- and its type corresponds to the type of the sole component of the
11711 -- expected record type, or to the component type of the expected one
11712 -- dimensional array type, then assume we have a bad aggregate attempt.
11714 if Nkind (Expr) in N_Subexpr
11715 and then Paren_Count (Expr) /= 0
11716 and then Has_One_Matching_Field
11717 then
11718 Error_Msg_N ("positional aggregate cannot have one component", Expr);
11720 -- Another special check, if we are looking for a pool-specific access
11721 -- type and we found an E_Access_Attribute_Type, then we have the case
11722 -- of an Access attribute being used in a context which needs a pool-
11723 -- specific type, which is never allowed. The one extra check we make
11724 -- is that the expected designated type covers the Found_Type.
11726 elsif Is_Access_Type (Expec_Type)
11727 and then Ekind (Found_Type) = E_Access_Attribute_Type
11728 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
11729 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
11730 and then Covers
11731 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
11732 then
11733 Error_Msg_N -- CODEFIX
11734 ("result must be general access type!", Expr);
11735 Error_Msg_NE -- CODEFIX
11736 ("add ALL to }!", Expr, Expec_Type);
11738 -- Another special check, if the expected type is an integer type,
11739 -- but the expression is of type System.Address, and the parent is
11740 -- an addition or subtraction operation whose left operand is the
11741 -- expression in question and whose right operand is of an integral
11742 -- type, then this is an attempt at address arithmetic, so give
11743 -- appropriate message.
11745 elsif Is_Integer_Type (Expec_Type)
11746 and then Is_RTE (Found_Type, RE_Address)
11747 and then (Nkind (Parent (Expr)) = N_Op_Add
11748 or else
11749 Nkind (Parent (Expr)) = N_Op_Subtract)
11750 and then Expr = Left_Opnd (Parent (Expr))
11751 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
11752 then
11753 Error_Msg_N
11754 ("address arithmetic not predefined in package System",
11755 Parent (Expr));
11756 Error_Msg_N
11757 ("\possible missing with/use of System.Storage_Elements",
11758 Parent (Expr));
11759 return;
11761 -- If the expected type is an anonymous access type, as for access
11762 -- parameters and discriminants, the error is on the designated types.
11764 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
11765 if Comes_From_Source (Expec_Type) then
11766 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11767 else
11768 Error_Msg_NE
11769 ("expected an access type with designated}",
11770 Expr, Designated_Type (Expec_Type));
11771 end if;
11773 if Is_Access_Type (Found_Type)
11774 and then not Comes_From_Source (Found_Type)
11775 then
11776 Error_Msg_NE
11777 ("\\found an access type with designated}!",
11778 Expr, Designated_Type (Found_Type));
11779 else
11780 if From_With_Type (Found_Type) then
11781 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
11782 Error_Msg_Qual_Level := 99;
11783 Error_Msg_NE -- CODEFIX
11784 ("\\missing `WITH &;", Expr, Scope (Found_Type));
11785 Error_Msg_Qual_Level := 0;
11786 else
11787 Error_Msg_NE ("found}!", Expr, Found_Type);
11788 end if;
11789 end if;
11791 -- Normal case of one type found, some other type expected
11793 else
11794 -- If the names of the two types are the same, see if some number
11795 -- of levels of qualification will help. Don't try more than three
11796 -- levels, and if we get to standard, it's no use (and probably
11797 -- represents an error in the compiler) Also do not bother with
11798 -- internal scope names.
11800 declare
11801 Expec_Scope : Entity_Id;
11802 Found_Scope : Entity_Id;
11804 begin
11805 Expec_Scope := Expec_Type;
11806 Found_Scope := Found_Type;
11808 for Levels in Int range 0 .. 3 loop
11809 if Chars (Expec_Scope) /= Chars (Found_Scope) then
11810 Error_Msg_Qual_Level := Levels;
11811 exit;
11812 end if;
11814 Expec_Scope := Scope (Expec_Scope);
11815 Found_Scope := Scope (Found_Scope);
11817 exit when Expec_Scope = Standard_Standard
11818 or else Found_Scope = Standard_Standard
11819 or else not Comes_From_Source (Expec_Scope)
11820 or else not Comes_From_Source (Found_Scope);
11821 end loop;
11822 end;
11824 if Is_Record_Type (Expec_Type)
11825 and then Present (Corresponding_Remote_Type (Expec_Type))
11826 then
11827 Error_Msg_NE ("expected}!", Expr,
11828 Corresponding_Remote_Type (Expec_Type));
11829 else
11830 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11831 end if;
11833 if Is_Entity_Name (Expr)
11834 and then Is_Package_Or_Generic_Package (Entity (Expr))
11835 then
11836 Error_Msg_N ("\\found package name!", Expr);
11838 elsif Is_Entity_Name (Expr)
11839 and then
11840 (Ekind (Entity (Expr)) = E_Procedure
11841 or else
11842 Ekind (Entity (Expr)) = E_Generic_Procedure)
11843 then
11844 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
11845 Error_Msg_N
11846 ("found procedure name, possibly missing Access attribute!",
11847 Expr);
11848 else
11849 Error_Msg_N
11850 ("\\found procedure name instead of function!", Expr);
11851 end if;
11853 elsif Nkind (Expr) = N_Function_Call
11854 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
11855 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
11856 and then No (Parameter_Associations (Expr))
11857 then
11858 Error_Msg_N
11859 ("found function name, possibly missing Access attribute!",
11860 Expr);
11862 -- Catch common error: a prefix or infix operator which is not
11863 -- directly visible because the type isn't.
11865 elsif Nkind (Expr) in N_Op
11866 and then Is_Overloaded (Expr)
11867 and then not Is_Immediately_Visible (Expec_Type)
11868 and then not Is_Potentially_Use_Visible (Expec_Type)
11869 and then not In_Use (Expec_Type)
11870 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
11871 then
11872 Error_Msg_N
11873 ("operator of the type is not directly visible!", Expr);
11875 elsif Ekind (Found_Type) = E_Void
11876 and then Present (Parent (Found_Type))
11877 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
11878 then
11879 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
11881 else
11882 Error_Msg_NE ("\\found}!", Expr, Found_Type);
11883 end if;
11885 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
11886 -- of the same modular type, and (M1 and M2) = 0 was intended.
11888 if Expec_Type = Standard_Boolean
11889 and then Is_Modular_Integer_Type (Found_Type)
11890 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
11891 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
11892 then
11893 declare
11894 Op : constant Node_Id := Right_Opnd (Parent (Expr));
11895 L : constant Node_Id := Left_Opnd (Op);
11896 R : constant Node_Id := Right_Opnd (Op);
11897 begin
11898 -- The case for the message is when the left operand of the
11899 -- comparison is the same modular type, or when it is an
11900 -- integer literal (or other universal integer expression),
11901 -- which would have been typed as the modular type if the
11902 -- parens had been there.
11904 if (Etype (L) = Found_Type
11905 or else
11906 Etype (L) = Universal_Integer)
11907 and then Is_Integer_Type (Etype (R))
11908 then
11909 Error_Msg_N
11910 ("\\possible missing parens for modular operation", Expr);
11911 end if;
11912 end;
11913 end if;
11915 -- Reset error message qualification indication
11917 Error_Msg_Qual_Level := 0;
11918 end if;
11919 end Wrong_Type;
11921 end Sem_Util;