Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / ada / inline.adb
blobe5371445ea3868bb835b01f3679c21bcf9791cbe
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Einfo; use Einfo;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Exp_Ch7; use Exp_Ch7;
31 with Exp_Tss; use Exp_Tss;
32 with Fname; use Fname;
33 with Fname.UF; use Fname.UF;
34 with Lib; use Lib;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Sem_Aux; use Sem_Aux;
38 with Sem_Ch8; use Sem_Ch8;
39 with Sem_Ch10; use Sem_Ch10;
40 with Sem_Ch12; use Sem_Ch12;
41 with Sem_Util; use Sem_Util;
42 with Sinfo; use Sinfo;
43 with Snames; use Snames;
44 with Stand; use Stand;
45 with Uname; use Uname;
47 package body Inline is
49 --------------------
50 -- Inlined Bodies --
51 --------------------
53 -- Inlined functions are actually placed in line by the backend if the
54 -- corresponding bodies are available (i.e. compiled). Whenever we find
55 -- a call to an inlined subprogram, we add the name of the enclosing
56 -- compilation unit to a worklist. After all compilation, and after
57 -- expansion of generic bodies, we traverse the list of pending bodies
58 -- and compile them as well.
60 package Inlined_Bodies is new Table.Table (
61 Table_Component_Type => Entity_Id,
62 Table_Index_Type => Int,
63 Table_Low_Bound => 0,
64 Table_Initial => Alloc.Inlined_Bodies_Initial,
65 Table_Increment => Alloc.Inlined_Bodies_Increment,
66 Table_Name => "Inlined_Bodies");
68 -----------------------
69 -- Inline Processing --
70 -----------------------
72 -- For each call to an inlined subprogram, we make entries in a table
73 -- that stores caller and callee, and indicates a prerequisite from
74 -- one to the other. We also record the compilation unit that contains
75 -- the callee. After analyzing the bodies of all such compilation units,
76 -- we produce a list of subprograms in topological order, for use by the
77 -- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
78 -- proper inlining the back-end must analyze the body of P2 before that of
79 -- P1. The code below guarantees that the transitive closure of inlined
80 -- subprograms called from the main compilation unit is made available to
81 -- the code generator.
83 Last_Inlined : Entity_Id := Empty;
85 -- For each entry in the table we keep a list of successors in topological
86 -- order, i.e. callers of the current subprogram.
88 type Subp_Index is new Nat;
89 No_Subp : constant Subp_Index := 0;
91 -- The subprogram entities are hashed into the Inlined table
93 Num_Hash_Headers : constant := 512;
95 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
96 of Subp_Index;
98 type Succ_Index is new Nat;
99 No_Succ : constant Succ_Index := 0;
101 type Succ_Info is record
102 Subp : Subp_Index;
103 Next : Succ_Index;
104 end record;
106 -- The following table stores list elements for the successor lists.
107 -- These lists cannot be chained directly through entries in the Inlined
108 -- table, because a given subprogram can appear in several such lists.
110 package Successors is new Table.Table (
111 Table_Component_Type => Succ_Info,
112 Table_Index_Type => Succ_Index,
113 Table_Low_Bound => 1,
114 Table_Initial => Alloc.Successors_Initial,
115 Table_Increment => Alloc.Successors_Increment,
116 Table_Name => "Successors");
118 type Subp_Info is record
119 Name : Entity_Id := Empty;
120 First_Succ : Succ_Index := No_Succ;
121 Count : Integer := 0;
122 Listed : Boolean := False;
123 Main_Call : Boolean := False;
124 Next : Subp_Index := No_Subp;
125 Next_Nopred : Subp_Index := No_Subp;
126 end record;
128 package Inlined is new Table.Table (
129 Table_Component_Type => Subp_Info,
130 Table_Index_Type => Subp_Index,
131 Table_Low_Bound => 1,
132 Table_Initial => Alloc.Inlined_Initial,
133 Table_Increment => Alloc.Inlined_Increment,
134 Table_Name => "Inlined");
136 -----------------------
137 -- Local Subprograms --
138 -----------------------
140 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
141 -- Return True if Scop is in the main unit or its spec
143 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
144 -- Make two entries in Inlined table, for an inlined subprogram being
145 -- called, and for the inlined subprogram that contains the call. If
146 -- the call is in the main compilation unit, Caller is Empty.
148 function Add_Subp (E : Entity_Id) return Subp_Index;
149 -- Make entry in Inlined table for subprogram E, or return table index
150 -- that already holds E.
152 function Has_Initialized_Type (E : Entity_Id) return Boolean;
153 -- If a candidate for inlining contains type declarations for types with
154 -- non-trivial initialization procedures, they are not worth inlining.
156 function Is_Nested (E : Entity_Id) return Boolean;
157 -- If the function is nested inside some other function, it will
158 -- always be compiled if that function is, so don't add it to the
159 -- inline list. We cannot compile a nested function outside the
160 -- scope of the containing function anyway. This is also the case if
161 -- the function is defined in a task body or within an entry (for
162 -- example, an initialization procedure).
164 procedure Add_Inlined_Subprogram (Index : Subp_Index);
165 -- Add subprogram to Inlined List once all of its predecessors have been
166 -- placed on the list. Decrement the count of all its successors, and
167 -- add them to list (recursively) if count drops to zero.
169 ------------------------------
170 -- Deferred Cleanup Actions --
171 ------------------------------
173 -- The cleanup actions for scopes that contain instantiations is delayed
174 -- until after expansion of those instantiations, because they may
175 -- contain finalizable objects or tasks that affect the cleanup code.
176 -- A scope that contains instantiations only needs to be finalized once,
177 -- even if it contains more than one instance. We keep a list of scopes
178 -- that must still be finalized, and call cleanup_actions after all the
179 -- instantiations have been completed.
181 To_Clean : Elist_Id;
183 procedure Add_Scope_To_Clean (Inst : Entity_Id);
184 -- Build set of scopes on which cleanup actions must be performed
186 procedure Cleanup_Scopes;
187 -- Complete cleanup actions on scopes that need it
189 --------------
190 -- Add_Call --
191 --------------
193 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
194 P1 : constant Subp_Index := Add_Subp (Called);
195 P2 : Subp_Index;
196 J : Succ_Index;
198 begin
199 if Present (Caller) then
200 P2 := Add_Subp (Caller);
202 -- Add P2 to the list of successors of P1, if not already there.
203 -- Note that P2 may contain more than one call to P1, and only
204 -- one needs to be recorded.
206 J := Inlined.Table (P1).First_Succ;
207 while J /= No_Succ loop
208 if Successors.Table (J).Subp = P2 then
209 return;
210 end if;
212 J := Successors.Table (J).Next;
213 end loop;
215 -- On exit, make a successor entry for P2
217 Successors.Increment_Last;
218 Successors.Table (Successors.Last).Subp := P2;
219 Successors.Table (Successors.Last).Next :=
220 Inlined.Table (P1).First_Succ;
221 Inlined.Table (P1).First_Succ := Successors.Last;
223 Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
225 else
226 Inlined.Table (P1).Main_Call := True;
227 end if;
228 end Add_Call;
230 ----------------------
231 -- Add_Inlined_Body --
232 ----------------------
234 procedure Add_Inlined_Body (E : Entity_Id) is
235 Pack : Entity_Id;
237 function Must_Inline return Boolean;
238 -- Inlining is only done if the call statement N is in the main unit,
239 -- or within the body of another inlined subprogram.
241 -----------------
242 -- Must_Inline --
243 -----------------
245 function Must_Inline return Boolean is
246 Scop : Entity_Id;
247 Comp : Node_Id;
249 begin
250 -- Check if call is in main unit
252 Scop := Current_Scope;
254 -- Do not try to inline if scope is standard. This could happen, for
255 -- example, for a call to Add_Global_Declaration, and it causes
256 -- trouble to try to inline at this level.
258 if Scop = Standard_Standard then
259 return False;
260 end if;
262 -- Otherwise lookup scope stack to outer scope
264 while Scope (Scop) /= Standard_Standard
265 and then not Is_Child_Unit (Scop)
266 loop
267 Scop := Scope (Scop);
268 end loop;
270 Comp := Parent (Scop);
271 while Nkind (Comp) /= N_Compilation_Unit loop
272 Comp := Parent (Comp);
273 end loop;
275 if Comp = Cunit (Main_Unit)
276 or else Comp = Library_Unit (Cunit (Main_Unit))
277 then
278 Add_Call (E);
279 return True;
280 end if;
282 -- Call is not in main unit. See if it's in some inlined subprogram
284 Scop := Current_Scope;
285 while Scope (Scop) /= Standard_Standard
286 and then not Is_Child_Unit (Scop)
287 loop
288 if Is_Overloadable (Scop)
289 and then Is_Inlined (Scop)
290 then
291 Add_Call (E, Scop);
292 return True;
293 end if;
295 Scop := Scope (Scop);
296 end loop;
298 return False;
299 end Must_Inline;
301 -- Start of processing for Add_Inlined_Body
303 begin
304 -- Find unit containing E, and add to list of inlined bodies if needed.
305 -- If the body is already present, no need to load any other unit. This
306 -- is the case for an initialization procedure, which appears in the
307 -- package declaration that contains the type. It is also the case if
308 -- the body has already been analyzed. Finally, if the unit enclosing
309 -- E is an instance, the instance body will be analyzed in any case,
310 -- and there is no need to add the enclosing unit (whose body might not
311 -- be available).
313 -- Library-level functions must be handled specially, because there is
314 -- no enclosing package to retrieve. In this case, it is the body of
315 -- the function that will have to be loaded.
317 if not Is_Abstract_Subprogram (E) and then not Is_Nested (E)
318 and then Convention (E) /= Convention_Protected
319 then
320 Pack := Scope (E);
322 if Must_Inline
323 and then Ekind (Pack) = E_Package
324 then
325 Set_Is_Called (E);
327 if Pack = Standard_Standard then
329 -- Library-level inlined function. Add function itself to
330 -- list of needed units.
332 Inlined_Bodies.Increment_Last;
333 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
335 elsif Is_Generic_Instance (Pack) then
336 null;
338 elsif not Is_Inlined (Pack)
339 and then not Has_Completion (E)
340 then
341 Set_Is_Inlined (Pack);
342 Inlined_Bodies.Increment_Last;
343 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
344 end if;
345 end if;
346 end if;
347 end Add_Inlined_Body;
349 ----------------------------
350 -- Add_Inlined_Subprogram --
351 ----------------------------
353 procedure Add_Inlined_Subprogram (Index : Subp_Index) is
354 E : constant Entity_Id := Inlined.Table (Index).Name;
355 Pack : constant Entity_Id := Cunit_Entity (Get_Code_Unit (E));
356 Succ : Succ_Index;
357 Subp : Subp_Index;
359 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
360 -- There are various conditions under which back-end inlining cannot
361 -- be done reliably:
363 -- a) If a body has handlers, it must not be inlined, because this
364 -- may violate program semantics, and because in zero-cost exception
365 -- mode it will lead to undefined symbols at link time.
367 -- b) If a body contains inlined function instances, it cannot be
368 -- inlined under ZCX because the numeric suffix generated by gigi
369 -- will be different in the body and the place of the inlined call.
371 -- If the body to be inlined contains calls to subprograms declared
372 -- in the same body that have no previous spec, the back-end cannot
373 -- inline either because the bodies to be inlined are processed before
374 -- the rest of the enclosing package body, and gigi will then find
375 -- references to entities that have not been elaborated yet.
377 -- This procedure must be carefully coordinated with the back end.
379 ----------------------------
380 -- Back_End_Cannot_Inline --
381 ----------------------------
383 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
384 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
385 Body_Ent : Entity_Id;
386 Ent : Entity_Id;
387 Bad_Call : Node_Id;
389 function Process (N : Node_Id) return Traverse_Result;
390 -- Look for calls to subprograms with no previous spec, declared
391 -- in the same enclosiong package body.
393 -------------
394 -- Process --
395 -------------
397 function Process (N : Node_Id) return Traverse_Result is
398 begin
399 if Nkind (N) = N_Procedure_Call_Statement
400 or else Nkind (N) = N_Function_Call
401 then
402 if Is_Entity_Name (Name (N))
403 and then Comes_From_Source (Entity (Name (N)))
404 and then
405 Nkind (Unit_Declaration_Node (Entity (Name (N))))
406 = N_Subprogram_Body
407 and then In_Same_Extended_Unit (Subp, Entity (Name (N)))
408 then
409 Bad_Call := N;
410 return Abandon;
411 else
412 return OK;
413 end if;
414 else
415 return OK;
416 end if;
417 end Process;
419 function Has_Exposed_Call is new Traverse_Func (Process);
421 -- Start of processing for Back_End_Cannot_Inline
423 begin
424 if Nkind (Decl) = N_Subprogram_Declaration
425 and then Present (Corresponding_Body (Decl))
426 then
427 Body_Ent := Corresponding_Body (Decl);
428 else
429 return False;
430 end if;
432 -- If subprogram is marked Inline_Always, inlining is mandatory
434 if Has_Pragma_Inline_Always (Subp) then
435 return False;
436 end if;
438 if Present
439 (Exception_Handlers
440 (Handled_Statement_Sequence
441 (Unit_Declaration_Node (Corresponding_Body (Decl)))))
442 then
443 return True;
444 end if;
446 Ent := First_Entity (Body_Ent);
447 while Present (Ent) loop
448 if Is_Subprogram (Ent)
449 and then Is_Generic_Instance (Ent)
450 then
451 return True;
452 end if;
454 Next_Entity (Ent);
455 end loop;
457 if Has_Exposed_Call
458 (Unit_Declaration_Node (Corresponding_Body (Decl))) = Abandon
459 then
460 if Ineffective_Inline_Warnings then
461 Error_Msg_N
462 ("?call to subprogram with no separate spec"
463 & " prevents inlining!!", Bad_Call);
464 end if;
466 return True;
467 else
468 return False;
469 end if;
470 end Back_End_Cannot_Inline;
472 -- Start of processing for Add_Inlined_Subprogram
474 begin
475 -- Insert the current subprogram in the list of inlined subprograms, if
476 -- it can actually be inlined by the back-end, and if its unit is known
477 -- to be inlined, or is an instance whose body will be analyzed anyway.
479 if (Is_Inlined (Pack) or else Is_Generic_Instance (Pack))
480 and then not Scope_In_Main_Unit (E)
481 and then Is_Inlined (E)
482 and then not Is_Nested (E)
483 and then not Has_Initialized_Type (E)
484 then
485 if Back_End_Cannot_Inline (E) then
486 Set_Is_Inlined (E, False);
488 else
489 if No (Last_Inlined) then
490 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
491 else
492 Set_Next_Inlined_Subprogram (Last_Inlined, E);
493 end if;
495 Last_Inlined := E;
496 end if;
497 end if;
499 Inlined.Table (Index).Listed := True;
501 -- Now add to the list those callers of the current subprogram that
502 -- are themselves called. They may appear on the graph as callers
503 -- of the current one, even if they are themselves not called, and
504 -- there is no point in including them in the list for the backend.
505 -- Furthermore, they might not even be public, in which case the
506 -- back-end cannot handle them at all.
508 Succ := Inlined.Table (Index).First_Succ;
509 while Succ /= No_Succ loop
510 Subp := Successors.Table (Succ).Subp;
511 Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
513 if Inlined.Table (Subp).Count = 0
514 and then Is_Called (Inlined.Table (Subp).Name)
515 then
516 Add_Inlined_Subprogram (Subp);
517 end if;
519 Succ := Successors.Table (Succ).Next;
520 end loop;
521 end Add_Inlined_Subprogram;
523 ------------------------
524 -- Add_Scope_To_Clean --
525 ------------------------
527 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
528 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
529 Elmt : Elmt_Id;
531 begin
532 -- If the instance appears in a library-level package declaration,
533 -- all finalization is global, and nothing needs doing here.
535 if Scop = Standard_Standard then
536 return;
537 end if;
539 -- If the instance appears within a generic subprogram there is nothing
540 -- to finalize either.
542 declare
543 S : Entity_Id;
545 begin
546 S := Scope (Inst);
547 while Present (S) and then S /= Standard_Standard loop
548 if Is_Generic_Subprogram (S) then
549 return;
550 end if;
552 S := Scope (S);
553 end loop;
554 end;
556 Elmt := First_Elmt (To_Clean);
557 while Present (Elmt) loop
558 if Node (Elmt) = Scop then
559 return;
560 end if;
562 Elmt := Next_Elmt (Elmt);
563 end loop;
565 Append_Elmt (Scop, To_Clean);
566 end Add_Scope_To_Clean;
568 --------------
569 -- Add_Subp --
570 --------------
572 function Add_Subp (E : Entity_Id) return Subp_Index is
573 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
574 J : Subp_Index;
576 procedure New_Entry;
577 -- Initialize entry in Inlined table
579 procedure New_Entry is
580 begin
581 Inlined.Increment_Last;
582 Inlined.Table (Inlined.Last).Name := E;
583 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
584 Inlined.Table (Inlined.Last).Count := 0;
585 Inlined.Table (Inlined.Last).Listed := False;
586 Inlined.Table (Inlined.Last).Main_Call := False;
587 Inlined.Table (Inlined.Last).Next := No_Subp;
588 Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
589 end New_Entry;
591 -- Start of processing for Add_Subp
593 begin
594 if Hash_Headers (Index) = No_Subp then
595 New_Entry;
596 Hash_Headers (Index) := Inlined.Last;
597 return Inlined.Last;
599 else
600 J := Hash_Headers (Index);
601 while J /= No_Subp loop
602 if Inlined.Table (J).Name = E then
603 return J;
604 else
605 Index := J;
606 J := Inlined.Table (J).Next;
607 end if;
608 end loop;
610 -- On exit, subprogram was not found. Enter in table. Index is
611 -- the current last entry on the hash chain.
613 New_Entry;
614 Inlined.Table (Index).Next := Inlined.Last;
615 return Inlined.Last;
616 end if;
617 end Add_Subp;
619 ----------------------------
620 -- Analyze_Inlined_Bodies --
621 ----------------------------
623 procedure Analyze_Inlined_Bodies is
624 Comp_Unit : Node_Id;
625 J : Int;
626 Pack : Entity_Id;
627 S : Succ_Index;
629 function Is_Ancestor_Of_Main
630 (U_Name : Entity_Id;
631 Nam : Node_Id) return Boolean;
632 -- Determine whether the unit whose body is loaded is an ancestor of
633 -- the main unit, and has a with_clause on it. The body is not
634 -- analyzed yet, so the check is purely lexical: the name of the with
635 -- clause is a selected component, and names of ancestors must match.
637 -------------------------
638 -- Is_Ancestor_Of_Main --
639 -------------------------
641 function Is_Ancestor_Of_Main
642 (U_Name : Entity_Id;
643 Nam : Node_Id) return Boolean
645 Pref : Node_Id;
647 begin
648 if Nkind (Nam) /= N_Selected_Component then
649 return False;
651 else
652 if Chars (Selector_Name (Nam)) /=
653 Chars (Cunit_Entity (Main_Unit))
654 then
655 return False;
656 end if;
658 Pref := Prefix (Nam);
659 if Nkind (Pref) = N_Identifier then
661 -- Par is an ancestor of Par.Child.
663 return Chars (Pref) = Chars (U_Name);
665 elsif Nkind (Pref) = N_Selected_Component
666 and then Chars (Selector_Name (Pref)) = Chars (U_Name)
667 then
668 -- Par.Child is an ancestor of Par.Child.Grand.
670 return True; -- should check that ancestor match
672 else
673 -- A is an ancestor of A.B.C if it is an ancestor of A.B
675 return Is_Ancestor_Of_Main (U_Name, Pref);
676 end if;
677 end if;
678 end Is_Ancestor_Of_Main;
680 -- Start of processing for Analyze_Inlined_Bodies
682 begin
683 Analyzing_Inlined_Bodies := False;
685 if Serious_Errors_Detected = 0 then
686 Push_Scope (Standard_Standard);
688 J := 0;
689 while J <= Inlined_Bodies.Last
690 and then Serious_Errors_Detected = 0
691 loop
692 Pack := Inlined_Bodies.Table (J);
693 while Present (Pack)
694 and then Scope (Pack) /= Standard_Standard
695 and then not Is_Child_Unit (Pack)
696 loop
697 Pack := Scope (Pack);
698 end loop;
700 Comp_Unit := Parent (Pack);
701 while Present (Comp_Unit)
702 and then Nkind (Comp_Unit) /= N_Compilation_Unit
703 loop
704 Comp_Unit := Parent (Comp_Unit);
705 end loop;
707 -- Load the body, unless it the main unit, or is an instance whose
708 -- body has already been analyzed.
710 if Present (Comp_Unit)
711 and then Comp_Unit /= Cunit (Main_Unit)
712 and then Body_Required (Comp_Unit)
713 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
714 or else No (Corresponding_Body (Unit (Comp_Unit))))
715 then
716 declare
717 Bname : constant Unit_Name_Type :=
718 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
720 OK : Boolean;
722 begin
723 if not Is_Loaded (Bname) then
724 Style_Check := False;
725 Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
727 if not OK then
729 -- Warn that a body was not available for inlining
730 -- by the back-end.
732 Error_Msg_Unit_1 := Bname;
733 Error_Msg_N
734 ("one or more inlined subprograms accessed in $!?",
735 Comp_Unit);
736 Error_Msg_File_1 :=
737 Get_File_Name (Bname, Subunit => False);
738 Error_Msg_N ("\but file{ was not found!?", Comp_Unit);
740 else
741 -- If the package to be inlined is an ancestor unit of
742 -- the main unit, and it has a semantic dependence on
743 -- it, the inlining cannot take place to prevent an
744 -- elaboration circularity. The desired body is not
745 -- analyzed yet, to prevent the completion of Taft
746 -- amendment types that would lead to elaboration
747 -- circularities in gigi.
749 declare
750 U_Id : constant Entity_Id :=
751 Defining_Entity (Unit (Comp_Unit));
752 Body_Unit : constant Node_Id :=
753 Library_Unit (Comp_Unit);
754 Item : Node_Id;
756 begin
757 Item := First (Context_Items (Body_Unit));
758 while Present (Item) loop
759 if Nkind (Item) = N_With_Clause
760 and then
761 Is_Ancestor_Of_Main (U_Id, Name (Item))
762 then
763 Set_Is_Inlined (U_Id, False);
764 exit;
765 end if;
767 Next (Item);
768 end loop;
770 -- If no suspicious with_clauses, analyze the body.
772 if Is_Inlined (U_Id) then
773 Semantics (Body_Unit);
774 end if;
775 end;
776 end if;
777 end if;
778 end;
779 end if;
781 J := J + 1;
782 end loop;
784 -- The analysis of required bodies may have produced additional
785 -- generic instantiations. To obtain further inlining, we perform
786 -- another round of generic body instantiations. Establishing a
787 -- fully recursive loop between inlining and generic instantiations
788 -- is unlikely to yield more than this one additional pass.
790 Instantiate_Bodies;
792 -- The list of inlined subprograms is an overestimate, because it
793 -- includes inlined functions called from functions that are compiled
794 -- as part of an inlined package, but are not themselves called. An
795 -- accurate computation of just those subprograms that are needed
796 -- requires that we perform a transitive closure over the call graph,
797 -- starting from calls in the main program. Here we do one step of
798 -- the inverse transitive closure, and reset the Is_Called flag on
799 -- subprograms all of whose callers are not.
801 for Index in Inlined.First .. Inlined.Last loop
802 S := Inlined.Table (Index).First_Succ;
804 if S /= No_Succ
805 and then not Inlined.Table (Index).Main_Call
806 then
807 Set_Is_Called (Inlined.Table (Index).Name, False);
809 while S /= No_Succ loop
810 if Is_Called
811 (Inlined.Table (Successors.Table (S).Subp).Name)
812 or else Inlined.Table (Successors.Table (S).Subp).Main_Call
813 then
814 Set_Is_Called (Inlined.Table (Index).Name);
815 exit;
816 end if;
818 S := Successors.Table (S).Next;
819 end loop;
820 end if;
821 end loop;
823 -- Now that the units are compiled, chain the subprograms within
824 -- that are called and inlined. Produce list of inlined subprograms
825 -- sorted in topological order. Start with all subprograms that
826 -- have no prerequisites, i.e. inlined subprograms that do not call
827 -- other inlined subprograms.
829 for Index in Inlined.First .. Inlined.Last loop
831 if Is_Called (Inlined.Table (Index).Name)
832 and then Inlined.Table (Index).Count = 0
833 and then not Inlined.Table (Index).Listed
834 then
835 Add_Inlined_Subprogram (Index);
836 end if;
837 end loop;
839 -- Because Add_Inlined_Subprogram treats recursively nodes that have
840 -- no prerequisites left, at the end of the loop all subprograms
841 -- must have been listed. If there are any unlisted subprograms
842 -- left, there must be some recursive chains that cannot be inlined.
844 for Index in Inlined.First .. Inlined.Last loop
845 if Is_Called (Inlined.Table (Index).Name)
846 and then Inlined.Table (Index).Count /= 0
847 and then not Is_Predefined_File_Name
848 (Unit_File_Name
849 (Get_Source_Unit (Inlined.Table (Index).Name)))
850 then
851 Error_Msg_N
852 ("& cannot be inlined?", Inlined.Table (Index).Name);
854 -- A warning on the first one might be sufficient ???
855 end if;
856 end loop;
858 Pop_Scope;
859 end if;
860 end Analyze_Inlined_Bodies;
862 -----------------------------
863 -- Check_Body_For_Inlining --
864 -----------------------------
866 procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
867 Bname : Unit_Name_Type;
868 E : Entity_Id;
869 OK : Boolean;
871 begin
872 if Is_Compilation_Unit (P)
873 and then not Is_Generic_Instance (P)
874 then
875 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
877 E := First_Entity (P);
878 while Present (E) loop
879 if Has_Pragma_Inline_Always (E)
880 or else (Front_End_Inlining and then Has_Pragma_Inline (E))
881 then
882 if not Is_Loaded (Bname) then
883 Load_Needed_Body (N, OK);
885 if OK then
887 -- Check we are not trying to inline a parent whose body
888 -- depends on a child, when we are compiling the body of
889 -- the child. Otherwise we have a potential elaboration
890 -- circularity with inlined subprograms and with
891 -- Taft-Amendment types.
893 declare
894 Comp : Node_Id; -- Body just compiled
895 Child_Spec : Entity_Id; -- Spec of main unit
896 Ent : Entity_Id; -- For iteration
897 With_Clause : Node_Id; -- Context of body.
899 begin
900 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
901 and then Present (Body_Entity (P))
902 then
903 Child_Spec :=
904 Defining_Entity
905 ((Unit (Library_Unit (Cunit (Main_Unit)))));
907 Comp :=
908 Parent (Unit_Declaration_Node (Body_Entity (P)));
910 -- Check whether the context of the body just
911 -- compiled includes a child of itself, and that
912 -- child is the spec of the main compilation.
914 With_Clause := First (Context_Items (Comp));
915 while Present (With_Clause) loop
916 if Nkind (With_Clause) = N_With_Clause
917 and then
918 Scope (Entity (Name (With_Clause))) = P
919 and then
920 Entity (Name (With_Clause)) = Child_Spec
921 then
922 Error_Msg_Node_2 := Child_Spec;
923 Error_Msg_NE
924 ("body of & depends on child unit&?",
925 With_Clause, P);
926 Error_Msg_N
927 ("\subprograms in body cannot be inlined?",
928 With_Clause);
930 -- Disable further inlining from this unit,
931 -- and keep Taft-amendment types incomplete.
933 Ent := First_Entity (P);
934 while Present (Ent) loop
935 if Is_Type (Ent)
936 and then Has_Completion_In_Body (Ent)
937 then
938 Set_Full_View (Ent, Empty);
940 elsif Is_Subprogram (Ent) then
941 Set_Is_Inlined (Ent, False);
942 end if;
944 Next_Entity (Ent);
945 end loop;
947 return;
948 end if;
950 Next (With_Clause);
951 end loop;
952 end if;
953 end;
955 elsif Ineffective_Inline_Warnings then
956 Error_Msg_Unit_1 := Bname;
957 Error_Msg_N
958 ("unable to inline subprograms defined in $?", P);
959 Error_Msg_N ("\body not found?", P);
960 return;
961 end if;
962 end if;
964 return;
965 end if;
967 Next_Entity (E);
968 end loop;
969 end if;
970 end Check_Body_For_Inlining;
972 --------------------
973 -- Cleanup_Scopes --
974 --------------------
976 procedure Cleanup_Scopes is
977 Elmt : Elmt_Id;
978 Decl : Node_Id;
979 Scop : Entity_Id;
981 begin
982 Elmt := First_Elmt (To_Clean);
983 while Present (Elmt) loop
984 Scop := Node (Elmt);
986 if Ekind (Scop) = E_Entry then
987 Scop := Protected_Body_Subprogram (Scop);
989 elsif Is_Subprogram (Scop)
990 and then Is_Protected_Type (Scope (Scop))
991 and then Present (Protected_Body_Subprogram (Scop))
992 then
993 -- If a protected operation contains an instance, its
994 -- cleanup operations have been delayed, and the subprogram
995 -- has been rewritten in the expansion of the enclosing
996 -- protected body. It is the corresponding subprogram that
997 -- may require the cleanup operations, so propagate the
998 -- information that triggers cleanup activity.
1000 Set_Uses_Sec_Stack
1001 (Protected_Body_Subprogram (Scop),
1002 Uses_Sec_Stack (Scop));
1003 Set_Finalization_Chain_Entity
1004 (Protected_Body_Subprogram (Scop),
1005 Finalization_Chain_Entity (Scop));
1006 Scop := Protected_Body_Subprogram (Scop);
1007 end if;
1009 if Ekind (Scop) = E_Block then
1010 Decl := Parent (Block_Node (Scop));
1012 else
1013 Decl := Unit_Declaration_Node (Scop);
1015 if Nkind (Decl) = N_Subprogram_Declaration
1016 or else Nkind (Decl) = N_Task_Type_Declaration
1017 or else Nkind (Decl) = N_Subprogram_Body_Stub
1018 then
1019 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
1020 end if;
1021 end if;
1023 Push_Scope (Scop);
1024 Expand_Cleanup_Actions (Decl);
1025 End_Scope;
1027 Elmt := Next_Elmt (Elmt);
1028 end loop;
1029 end Cleanup_Scopes;
1031 --------------------------
1032 -- Has_Initialized_Type --
1033 --------------------------
1035 function Has_Initialized_Type (E : Entity_Id) return Boolean is
1036 E_Body : constant Node_Id := Get_Subprogram_Body (E);
1037 Decl : Node_Id;
1039 begin
1040 if No (E_Body) then -- imported subprogram
1041 return False;
1043 else
1044 Decl := First (Declarations (E_Body));
1045 while Present (Decl) loop
1047 if Nkind (Decl) = N_Full_Type_Declaration
1048 and then Present (Init_Proc (Defining_Identifier (Decl)))
1049 then
1050 return True;
1051 end if;
1053 Next (Decl);
1054 end loop;
1055 end if;
1057 return False;
1058 end Has_Initialized_Type;
1060 ----------------
1061 -- Initialize --
1062 ----------------
1064 procedure Initialize is
1065 begin
1066 Analyzing_Inlined_Bodies := False;
1067 Pending_Descriptor.Init;
1068 Pending_Instantiations.Init;
1069 Inlined_Bodies.Init;
1070 Successors.Init;
1071 Inlined.Init;
1073 for J in Hash_Headers'Range loop
1074 Hash_Headers (J) := No_Subp;
1075 end loop;
1076 end Initialize;
1078 ------------------------
1079 -- Instantiate_Bodies --
1080 ------------------------
1082 -- Generic bodies contain all the non-local references, so an
1083 -- instantiation does not need any more context than Standard
1084 -- itself, even if the instantiation appears in an inner scope.
1085 -- Generic associations have verified that the contract model is
1086 -- satisfied, so that any error that may occur in the analysis of
1087 -- the body is an internal error.
1089 procedure Instantiate_Bodies is
1090 J : Int;
1091 Info : Pending_Body_Info;
1093 begin
1094 if Serious_Errors_Detected = 0 then
1096 Expander_Active := (Operating_Mode = Opt.Generate_Code);
1097 Push_Scope (Standard_Standard);
1098 To_Clean := New_Elmt_List;
1100 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
1101 Start_Generic;
1102 end if;
1104 -- A body instantiation may generate additional instantiations, so
1105 -- the following loop must scan to the end of a possibly expanding
1106 -- set (that's why we can't simply use a FOR loop here).
1108 J := 0;
1109 while J <= Pending_Instantiations.Last
1110 and then Serious_Errors_Detected = 0
1111 loop
1112 Info := Pending_Instantiations.Table (J);
1114 -- If the instantiation node is absent, it has been removed
1115 -- as part of unreachable code.
1117 if No (Info.Inst_Node) then
1118 null;
1120 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
1121 Instantiate_Package_Body (Info);
1122 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
1124 else
1125 Instantiate_Subprogram_Body (Info);
1126 end if;
1128 J := J + 1;
1129 end loop;
1131 -- Reset the table of instantiations. Additional instantiations
1132 -- may be added through inlining, when additional bodies are
1133 -- analyzed.
1135 Pending_Instantiations.Init;
1137 -- We can now complete the cleanup actions of scopes that contain
1138 -- pending instantiations (skipped for generic units, since we
1139 -- never need any cleanups in generic units).
1140 -- pending instantiations.
1142 if Expander_Active
1143 and then not Is_Generic_Unit (Main_Unit_Entity)
1144 then
1145 Cleanup_Scopes;
1146 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
1147 End_Generic;
1148 end if;
1150 Pop_Scope;
1151 end if;
1152 end Instantiate_Bodies;
1154 ---------------
1155 -- Is_Nested --
1156 ---------------
1158 function Is_Nested (E : Entity_Id) return Boolean is
1159 Scop : Entity_Id;
1161 begin
1162 Scop := Scope (E);
1163 while Scop /= Standard_Standard loop
1164 if Ekind (Scop) in Subprogram_Kind then
1165 return True;
1167 elsif Ekind (Scop) = E_Task_Type
1168 or else Ekind (Scop) = E_Entry
1169 or else Ekind (Scop) = E_Entry_Family then
1170 return True;
1171 end if;
1173 Scop := Scope (Scop);
1174 end loop;
1176 return False;
1177 end Is_Nested;
1179 ----------
1180 -- Lock --
1181 ----------
1183 procedure Lock is
1184 begin
1185 Pending_Instantiations.Locked := True;
1186 Inlined_Bodies.Locked := True;
1187 Successors.Locked := True;
1188 Inlined.Locked := True;
1189 Pending_Instantiations.Release;
1190 Inlined_Bodies.Release;
1191 Successors.Release;
1192 Inlined.Release;
1193 end Lock;
1195 --------------------------
1196 -- Remove_Dead_Instance --
1197 --------------------------
1199 procedure Remove_Dead_Instance (N : Node_Id) is
1200 J : Int;
1202 begin
1203 J := 0;
1204 while J <= Pending_Instantiations.Last loop
1205 if Pending_Instantiations.Table (J).Inst_Node = N then
1206 Pending_Instantiations.Table (J).Inst_Node := Empty;
1207 return;
1208 end if;
1210 J := J + 1;
1211 end loop;
1212 end Remove_Dead_Instance;
1214 ------------------------
1215 -- Scope_In_Main_Unit --
1216 ------------------------
1218 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
1219 Comp : constant Node_Id := Cunit (Get_Code_Unit (Scop));
1221 begin
1222 -- Check whether the scope of the subprogram to inline is within the
1223 -- main unit or within its spec. In either case there are no additional
1224 -- bodies to process. If the subprogram appears in a parent of the
1225 -- current unit, the check on whether inlining is possible is done in
1226 -- Analyze_Inlined_Bodies.
1228 return
1229 Comp = Cunit (Main_Unit)
1230 or else Comp = Library_Unit (Cunit (Main_Unit));
1231 end Scope_In_Main_Unit;
1233 end Inline;