1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Exp_Atag
; use Exp_Atag
;
32 with Exp_Ch2
; use Exp_Ch2
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Imgv
; use Exp_Imgv
;
38 with Exp_Pakd
; use Exp_Pakd
;
39 with Exp_Strm
; use Exp_Strm
;
40 with Exp_Tss
; use Exp_Tss
;
41 with Exp_Util
; use Exp_Util
;
42 with Exp_VFpt
; use Exp_VFpt
;
43 with Fname
; use Fname
;
44 with Freeze
; use Freeze
;
45 with Gnatvsn
; use Gnatvsn
;
46 with Itypes
; use Itypes
;
48 with Namet
; use Namet
;
49 with Nmake
; use Nmake
;
50 with Nlists
; use Nlists
;
52 with Restrict
; use Restrict
;
53 with Rident
; use Rident
;
54 with Rtsfind
; use Rtsfind
;
56 with Sem_Aux
; use Sem_Aux
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Eval
; use Sem_Eval
;
61 with Sem_Res
; use Sem_Res
;
62 with Sem_Util
; use Sem_Util
;
63 with Sinfo
; use Sinfo
;
64 with Snames
; use Snames
;
65 with Stand
; use Stand
;
66 with Stringt
; use Stringt
;
67 with Targparm
; use Targparm
;
68 with Tbuild
; use Tbuild
;
69 with Ttypes
; use Ttypes
;
70 with Uintp
; use Uintp
;
71 with Uname
; use Uname
;
72 with Validsw
; use Validsw
;
74 package body Exp_Attr
is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 procedure Compile_Stream_Body_In_Scope
85 -- The body for a stream subprogram may be generated outside of the scope
86 -- of the type. If the type is fully private, it may depend on the full
87 -- view of other types (e.g. indexes) that are currently private as well.
88 -- We install the declarations of the package in which the type is declared
89 -- before compiling the body in what is its proper environment. The Check
90 -- parameter indicates if checks are to be suppressed for the stream body.
91 -- We suppress checks for array/record reads, since the rule is that these
92 -- are like assignments, out of range values due to uninitialized storage,
93 -- or other invalid values do NOT cause a Constraint_Error to be raised.
95 procedure Expand_Access_To_Protected_Op
99 -- An attribute reference to a protected subprogram is transformed into
100 -- a pair of pointers: one to the object, and one to the operations.
101 -- This expansion is performed for 'Access and for 'Unrestricted_Access.
103 procedure Expand_Fpt_Attribute
108 -- This procedure expands a call to a floating-point attribute function.
109 -- N is the attribute reference node, and Args is a list of arguments to
110 -- be passed to the function call. Pkg identifies the package containing
111 -- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
112 -- have already been converted to the floating-point type for which Pkg was
113 -- instantiated. The Nam argument is the relevant attribute processing
114 -- routine to be called. This is the same as the attribute name, except in
115 -- the Unaligned_Valid case.
117 procedure Expand_Fpt_Attribute_R
(N
: Node_Id
);
118 -- This procedure expands a call to a floating-point attribute function
119 -- that takes a single floating-point argument. The function to be called
120 -- is always the same as the attribute name.
122 procedure Expand_Fpt_Attribute_RI
(N
: Node_Id
);
123 -- This procedure expands a call to a floating-point attribute function
124 -- that takes one floating-point argument and one integer argument. The
125 -- function to be called is always the same as the attribute name.
127 procedure Expand_Fpt_Attribute_RR
(N
: Node_Id
);
128 -- This procedure expands a call to a floating-point attribute function
129 -- that takes two floating-point arguments. The function to be called
130 -- is always the same as the attribute name.
132 procedure Expand_Pred_Succ
(N
: Node_Id
);
133 -- Handles expansion of Pred or Succ attributes for case of non-real
134 -- operand with overflow checking required.
136 function Get_Index_Subtype
(N
: Node_Id
) return Entity_Id
;
137 -- Used for Last, Last, and Length, when the prefix is an array type.
138 -- Obtains the corresponding index subtype.
140 procedure Find_Fat_Info
142 Fat_Type
: out Entity_Id
;
143 Fat_Pkg
: out RE_Id
);
144 -- Given a floating-point type T, identifies the package containing the
145 -- attributes for this type (returned in Fat_Pkg), and the corresponding
146 -- type for which this package was instantiated from Fat_Gen. Error if T
147 -- is not a floating-point type.
149 function Find_Stream_Subprogram
151 Nam
: TSS_Name_Type
) return Entity_Id
;
152 -- Returns the stream-oriented subprogram attribute for Typ. For tagged
153 -- types, the corresponding primitive operation is looked up, else the
154 -- appropriate TSS from the type itself, or from its closest ancestor
155 -- defining it, is returned. In both cases, inheritance of representation
156 -- aspects is thus taken into account.
158 function Full_Base
(T
: Entity_Id
) return Entity_Id
;
159 -- The stream functions need to examine the underlying representation of
160 -- composite types. In some cases T may be non-private but its base type
161 -- is, in which case the function returns the corresponding full view.
163 function Get_Stream_Convert_Pragma
(T
: Entity_Id
) return Node_Id
;
164 -- Given a type, find a corresponding stream convert pragma that applies to
165 -- the implementation base type of this type (Typ). If found, return the
166 -- pragma node, otherwise return Empty if no pragma is found.
168 function Is_Constrained_Packed_Array
(Typ
: Entity_Id
) return Boolean;
169 -- Utility for array attributes, returns true on packed constrained
170 -- arrays, and on access to same.
172 function Is_Inline_Floating_Point_Attribute
(N
: Node_Id
) return Boolean;
173 -- Returns true iff the given node refers to an attribute call that
174 -- can be expanded directly by the back end and does not need front end
175 -- expansion. Typically used for rounding and truncation attributes that
176 -- appear directly inside a conversion to integer.
178 ----------------------------------
179 -- Compile_Stream_Body_In_Scope --
180 ----------------------------------
182 procedure Compile_Stream_Body_In_Scope
188 Installed
: Boolean := False;
189 Scop
: constant Entity_Id
:= Scope
(Arr
);
190 Curr
: constant Entity_Id
:= Current_Scope
;
194 and then not In_Open_Scopes
(Scop
)
195 and then Ekind
(Scop
) = E_Package
198 Install_Visible_Declarations
(Scop
);
199 Install_Private_Declarations
(Scop
);
202 -- The entities in the package are now visible, but the generated
203 -- stream entity must appear in the current scope (usually an
204 -- enclosing stream function) so that itypes all have their proper
211 Insert_Action
(N
, Decl
);
213 Insert_Action
(N
, Decl
, Suppress
=> All_Checks
);
218 -- Remove extra copy of current scope, and package itself
221 End_Package_Scope
(Scop
);
223 end Compile_Stream_Body_In_Scope
;
225 -----------------------------------
226 -- Expand_Access_To_Protected_Op --
227 -----------------------------------
229 procedure Expand_Access_To_Protected_Op
234 -- The value of the attribute_reference is a record containing two
235 -- fields: an access to the protected object, and an access to the
236 -- subprogram itself. The prefix is a selected component.
238 Loc
: constant Source_Ptr
:= Sloc
(N
);
240 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
243 E_T
: constant Entity_Id
:= Equivalent_Type
(Btyp
);
244 Acc
: constant Entity_Id
:=
245 Etype
(Next_Component
(First_Component
(E_T
)));
249 function May_Be_External_Call
return Boolean;
250 -- If the 'Access is to a local operation, but appears in a context
251 -- where it may lead to a call from outside the object, we must treat
252 -- this as an external call. Clearly we cannot tell without full
253 -- flow analysis, and a subsequent call that uses this 'Access may
254 -- lead to a bounded error (trying to seize locks twice, e.g.). For
255 -- now we treat 'Access as a potential external call if it is an actual
256 -- in a call to an outside subprogram.
258 --------------------------
259 -- May_Be_External_Call --
260 --------------------------
262 function May_Be_External_Call
return Boolean is
264 Par
: Node_Id
:= Parent
(N
);
267 -- Account for the case where the Access attribute is part of a
268 -- named parameter association.
270 if Nkind
(Par
) = N_Parameter_Association
then
274 if Nkind_In
(Par
, N_Procedure_Call_Statement
, N_Function_Call
)
275 and then Is_Entity_Name
(Name
(Par
))
277 Subp
:= Entity
(Name
(Par
));
278 return not In_Open_Scopes
(Scope
(Subp
));
282 end May_Be_External_Call
;
284 -- Start of processing for Expand_Access_To_Protected_Op
287 -- Within the body of the protected type, the prefix designates a local
288 -- operation, and the object is the first parameter of the corresponding
289 -- protected body of the current enclosing operation.
291 if Is_Entity_Name
(Pref
) then
292 if May_Be_External_Call
then
294 New_Occurrence_Of
(External_Subprogram
(Entity
(Pref
)), Loc
);
298 (Protected_Body_Subprogram
(Entity
(Pref
)), Loc
);
301 -- Don't traverse the scopes when the attribute occurs within an init
302 -- proc, because we directly use the _init formal of the init proc in
305 Curr
:= Current_Scope
;
306 if not Is_Init_Proc
(Curr
) then
307 pragma Assert
(In_Open_Scopes
(Scope
(Entity
(Pref
))));
309 while Scope
(Curr
) /= Scope
(Entity
(Pref
)) loop
310 Curr
:= Scope
(Curr
);
314 -- In case of protected entries the first formal of its Protected_
315 -- Body_Subprogram is the address of the object.
317 if Ekind
(Curr
) = E_Entry
then
321 (Protected_Body_Subprogram
(Curr
)), Loc
);
323 -- If the current scope is an init proc, then use the address of the
324 -- _init formal as the object reference.
326 elsif Is_Init_Proc
(Curr
) then
328 Make_Attribute_Reference
(Loc
,
329 Prefix
=> New_Occurrence_Of
(First_Formal
(Curr
), Loc
),
330 Attribute_Name
=> Name_Address
);
332 -- In case of protected subprograms the first formal of its
333 -- Protected_Body_Subprogram is the object and we get its address.
337 Make_Attribute_Reference
(Loc
,
341 (Protected_Body_Subprogram
(Curr
)), Loc
),
342 Attribute_Name
=> Name_Address
);
345 -- Case where the prefix is not an entity name. Find the
346 -- version of the protected operation to be called from
347 -- outside the protected object.
353 (Entity
(Selector_Name
(Pref
))), Loc
);
356 Make_Attribute_Reference
(Loc
,
357 Prefix
=> Relocate_Node
(Prefix
(Pref
)),
358 Attribute_Name
=> Name_Address
);
362 Make_Attribute_Reference
(Loc
,
364 Attribute_Name
=> Name_Access
);
366 -- We set the type of the access reference to the already generated
367 -- access_to_subprogram type, and declare the reference analyzed, to
368 -- prevent further expansion when the enclosing aggregate is analyzed.
370 Set_Etype
(Sub_Ref
, Acc
);
371 Set_Analyzed
(Sub_Ref
);
375 Expressions
=> New_List
(Obj_Ref
, Sub_Ref
));
377 -- Sub_Ref has been marked as analyzed, but we still need to make sure
378 -- Sub is correctly frozen.
380 Freeze_Before
(N
, Entity
(Sub
));
383 Analyze_And_Resolve
(N
, E_T
);
385 -- For subsequent analysis, the node must retain its type. The backend
386 -- will replace it with the equivalent type where needed.
389 end Expand_Access_To_Protected_Op
;
391 --------------------------
392 -- Expand_Fpt_Attribute --
393 --------------------------
395 procedure Expand_Fpt_Attribute
401 Loc
: constant Source_Ptr
:= Sloc
(N
);
402 Typ
: constant Entity_Id
:= Etype
(N
);
406 -- The function name is the selected component Attr_xxx.yyy where
407 -- Attr_xxx is the package name, and yyy is the argument Nam.
409 -- Note: it would be more usual to have separate RE entries for each
410 -- of the entities in the Fat packages, but first they have identical
411 -- names (so we would have to have lots of renaming declarations to
412 -- meet the normal RE rule of separate names for all runtime entities),
413 -- and second there would be an awful lot of them!
416 Make_Selected_Component
(Loc
,
417 Prefix
=> New_Reference_To
(RTE
(Pkg
), Loc
),
418 Selector_Name
=> Make_Identifier
(Loc
, Nam
));
420 -- The generated call is given the provided set of parameters, and then
421 -- wrapped in a conversion which converts the result to the target type
422 -- We use the base type as the target because a range check may be
426 Unchecked_Convert_To
(Base_Type
(Etype
(N
)),
427 Make_Function_Call
(Loc
,
429 Parameter_Associations
=> Args
)));
431 Analyze_And_Resolve
(N
, Typ
);
432 end Expand_Fpt_Attribute
;
434 ----------------------------
435 -- Expand_Fpt_Attribute_R --
436 ----------------------------
438 -- The single argument is converted to its root type to call the
439 -- appropriate runtime function, with the actual call being built
440 -- by Expand_Fpt_Attribute
442 procedure Expand_Fpt_Attribute_R
(N
: Node_Id
) is
443 E1
: constant Node_Id
:= First
(Expressions
(N
));
447 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
449 (N
, Pkg
, Attribute_Name
(N
),
450 New_List
(Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
))));
451 end Expand_Fpt_Attribute_R
;
453 -----------------------------
454 -- Expand_Fpt_Attribute_RI --
455 -----------------------------
457 -- The first argument is converted to its root type and the second
458 -- argument is converted to standard long long integer to call the
459 -- appropriate runtime function, with the actual call being built
460 -- by Expand_Fpt_Attribute
462 procedure Expand_Fpt_Attribute_RI
(N
: Node_Id
) is
463 E1
: constant Node_Id
:= First
(Expressions
(N
));
466 E2
: constant Node_Id
:= Next
(E1
);
468 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
470 (N
, Pkg
, Attribute_Name
(N
),
472 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
)),
473 Unchecked_Convert_To
(Standard_Integer
, Relocate_Node
(E2
))));
474 end Expand_Fpt_Attribute_RI
;
476 -----------------------------
477 -- Expand_Fpt_Attribute_RR --
478 -----------------------------
480 -- The two arguments are converted to their root types to call the
481 -- appropriate runtime function, with the actual call being built
482 -- by Expand_Fpt_Attribute
484 procedure Expand_Fpt_Attribute_RR
(N
: Node_Id
) is
485 E1
: constant Node_Id
:= First
(Expressions
(N
));
488 E2
: constant Node_Id
:= Next
(E1
);
490 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
492 (N
, Pkg
, Attribute_Name
(N
),
494 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
)),
495 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E2
))));
496 end Expand_Fpt_Attribute_RR
;
498 ----------------------------------
499 -- Expand_N_Attribute_Reference --
500 ----------------------------------
502 procedure Expand_N_Attribute_Reference
(N
: Node_Id
) is
503 Loc
: constant Source_Ptr
:= Sloc
(N
);
504 Typ
: constant Entity_Id
:= Etype
(N
);
505 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
506 Pref
: constant Node_Id
:= Prefix
(N
);
507 Ptyp
: constant Entity_Id
:= Etype
(Pref
);
508 Exprs
: constant List_Id
:= Expressions
(N
);
509 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attribute_Name
(N
));
511 procedure Rewrite_Stream_Proc_Call
(Pname
: Entity_Id
);
512 -- Rewrites a stream attribute for Read, Write or Output with the
513 -- procedure call. Pname is the entity for the procedure to call.
515 ------------------------------
516 -- Rewrite_Stream_Proc_Call --
517 ------------------------------
519 procedure Rewrite_Stream_Proc_Call
(Pname
: Entity_Id
) is
520 Item
: constant Node_Id
:= Next
(First
(Exprs
));
521 Formal
: constant Entity_Id
:= Next_Formal
(First_Formal
(Pname
));
522 Formal_Typ
: constant Entity_Id
:= Etype
(Formal
);
523 Is_Written
: constant Boolean := (Ekind
(Formal
) /= E_In_Parameter
);
526 -- The expansion depends on Item, the second actual, which is
527 -- the object being streamed in or out.
529 -- If the item is a component of a packed array type, and
530 -- a conversion is needed on exit, we introduce a temporary to
531 -- hold the value, because otherwise the packed reference will
532 -- not be properly expanded.
534 if Nkind
(Item
) = N_Indexed_Component
535 and then Is_Packed
(Base_Type
(Etype
(Prefix
(Item
))))
536 and then Base_Type
(Etype
(Item
)) /= Base_Type
(Formal_Typ
)
540 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
546 Make_Object_Declaration
(Loc
,
547 Defining_Identifier
=> Temp
,
549 New_Occurrence_Of
(Formal_Typ
, Loc
));
550 Set_Etype
(Temp
, Formal_Typ
);
553 Make_Assignment_Statement
(Loc
,
554 Name
=> New_Copy_Tree
(Item
),
557 (Etype
(Item
), New_Occurrence_Of
(Temp
, Loc
)));
559 Rewrite
(Item
, New_Occurrence_Of
(Temp
, Loc
));
563 Make_Procedure_Call_Statement
(Loc
,
564 Name
=> New_Occurrence_Of
(Pname
, Loc
),
565 Parameter_Associations
=> Exprs
),
568 Rewrite
(N
, Make_Null_Statement
(Loc
));
573 -- For the class-wide dispatching cases, and for cases in which
574 -- the base type of the second argument matches the base type of
575 -- the corresponding formal parameter (that is to say the stream
576 -- operation is not inherited), we are all set, and can use the
577 -- argument unchanged.
579 -- For all other cases we do an unchecked conversion of the second
580 -- parameter to the type of the formal of the procedure we are
581 -- calling. This deals with the private type cases, and with going
582 -- to the root type as required in elementary type case.
584 if not Is_Class_Wide_Type
(Entity
(Pref
))
585 and then not Is_Class_Wide_Type
(Etype
(Item
))
586 and then Base_Type
(Etype
(Item
)) /= Base_Type
(Formal_Typ
)
589 Unchecked_Convert_To
(Formal_Typ
, Relocate_Node
(Item
)));
591 -- For untagged derived types set Assignment_OK, to prevent
592 -- copies from being created when the unchecked conversion
593 -- is expanded (which would happen in Remove_Side_Effects
594 -- if Expand_N_Unchecked_Conversion were allowed to call
595 -- Force_Evaluation). The copy could violate Ada semantics
596 -- in cases such as an actual that is an out parameter.
597 -- Note that this approach is also used in exp_ch7 for calls
598 -- to controlled type operations to prevent problems with
599 -- actuals wrapped in unchecked conversions.
601 if Is_Untagged_Derivation
(Etype
(Expression
(Item
))) then
602 Set_Assignment_OK
(Item
);
606 -- The stream operation to call maybe a renaming created by
607 -- an attribute definition clause, and may not be frozen yet.
608 -- Ensure that it has the necessary extra formals.
610 if not Is_Frozen
(Pname
) then
611 Create_Extra_Formals
(Pname
);
614 -- And now rewrite the call
617 Make_Procedure_Call_Statement
(Loc
,
618 Name
=> New_Occurrence_Of
(Pname
, Loc
),
619 Parameter_Associations
=> Exprs
));
622 end Rewrite_Stream_Proc_Call
;
624 -- Start of processing for Expand_N_Attribute_Reference
627 -- Do required validity checking, if enabled. Do not apply check to
628 -- output parameters of an Asm instruction, since the value of this
629 -- is not set till after the attribute has been elaborated, and do
630 -- not apply the check to the arguments of a 'Read or 'Input attribute
631 -- reference since the scalar argument is an OUT scalar.
633 if Validity_Checks_On
and then Validity_Check_Operands
634 and then Id
/= Attribute_Asm_Output
635 and then Id
/= Attribute_Read
636 and then Id
/= Attribute_Input
641 Expr
:= First
(Expressions
(N
));
642 while Present
(Expr
) loop
649 -- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
650 -- place function, then a temporary return object needs to be created
651 -- and access to it must be passed to the function. Currently we limit
652 -- such functions to those with inherently limited result subtypes, but
653 -- eventually we plan to expand the functions that are treated as
654 -- build-in-place to include other composite result types.
656 if Ada_Version
>= Ada_2005
657 and then Is_Build_In_Place_Function_Call
(Pref
)
659 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
662 -- If prefix is a protected type name, this is a reference to the
663 -- current instance of the type. For a component definition, nothing
664 -- to do (expansion will occur in the init proc). In other contexts,
665 -- rewrite into reference to current instance.
667 if Is_Protected_Self_Reference
(Pref
)
669 (Nkind_In
(Parent
(N
), N_Index_Or_Discriminant_Constraint
,
670 N_Discriminant_Association
)
671 and then Nkind
(Parent
(Parent
(Parent
(Parent
(N
))))) =
672 N_Component_Definition
)
674 Rewrite
(Pref
, Concurrent_Ref
(Pref
));
678 -- Remaining processing depends on specific attribute
686 when Attribute_Access |
687 Attribute_Unchecked_Access |
688 Attribute_Unrestricted_Access
=>
690 Access_Cases
: declare
691 Ref_Object
: constant Node_Id
:= Get_Referenced_Object
(Pref
);
692 Btyp_DDT
: Entity_Id
;
694 function Enclosing_Object
(N
: Node_Id
) return Node_Id
;
695 -- If N denotes a compound name (selected component, indexed
696 -- component, or slice), returns the name of the outermost such
697 -- enclosing object. Otherwise returns N. If the object is a
698 -- renaming, then the renamed object is returned.
700 ----------------------
701 -- Enclosing_Object --
702 ----------------------
704 function Enclosing_Object
(N
: Node_Id
) return Node_Id
is
709 while Nkind_In
(Obj_Name
, N_Selected_Component
,
713 Obj_Name
:= Prefix
(Obj_Name
);
716 return Get_Referenced_Object
(Obj_Name
);
717 end Enclosing_Object
;
719 -- Local declarations
721 Enc_Object
: constant Node_Id
:= Enclosing_Object
(Ref_Object
);
723 -- Start of processing for Access_Cases
726 Btyp_DDT
:= Designated_Type
(Btyp
);
728 -- Handle designated types that come from the limited view
730 if Ekind
(Btyp_DDT
) = E_Incomplete_Type
731 and then From_With_Type
(Btyp_DDT
)
732 and then Present
(Non_Limited_View
(Btyp_DDT
))
734 Btyp_DDT
:= Non_Limited_View
(Btyp_DDT
);
736 elsif Is_Class_Wide_Type
(Btyp_DDT
)
737 and then Ekind
(Etype
(Btyp_DDT
)) = E_Incomplete_Type
738 and then From_With_Type
(Etype
(Btyp_DDT
))
739 and then Present
(Non_Limited_View
(Etype
(Btyp_DDT
)))
740 and then Present
(Class_Wide_Type
741 (Non_Limited_View
(Etype
(Btyp_DDT
))))
744 Class_Wide_Type
(Non_Limited_View
(Etype
(Btyp_DDT
)));
747 -- In order to improve the text of error messages, the designated
748 -- type of access-to-subprogram itypes is set by the semantics as
749 -- the associated subprogram entity (see sem_attr). Now we replace
750 -- such node with the proper E_Subprogram_Type itype.
752 if Id
= Attribute_Unrestricted_Access
753 and then Is_Subprogram
(Directly_Designated_Type
(Typ
))
755 -- The following conditions ensure that this special management
756 -- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
757 -- At this stage other cases in which the designated type is
758 -- still a subprogram (instead of an E_Subprogram_Type) are
759 -- wrong because the semantics must have overridden the type of
760 -- the node with the type imposed by the context.
762 if Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
763 and then Etype
(Parent
(N
)) = RTE
(RE_Prim_Ptr
)
765 Set_Etype
(N
, RTE
(RE_Prim_Ptr
));
769 Subp
: constant Entity_Id
:=
770 Directly_Designated_Type
(Typ
);
772 Extra
: Entity_Id
:= Empty
;
773 New_Formal
: Entity_Id
;
774 Old_Formal
: Entity_Id
:= First_Formal
(Subp
);
775 Subp_Typ
: Entity_Id
;
778 Subp_Typ
:= Create_Itype
(E_Subprogram_Type
, N
);
779 Set_Etype
(Subp_Typ
, Etype
(Subp
));
780 Set_Returns_By_Ref
(Subp_Typ
, Returns_By_Ref
(Subp
));
782 if Present
(Old_Formal
) then
783 New_Formal
:= New_Copy
(Old_Formal
);
784 Set_First_Entity
(Subp_Typ
, New_Formal
);
787 Set_Scope
(New_Formal
, Subp_Typ
);
788 Etyp
:= Etype
(New_Formal
);
790 -- Handle itypes. There is no need to duplicate
791 -- here the itypes associated with record types
792 -- (i.e the implicit full view of private types).
795 and then Ekind
(Base_Type
(Etyp
)) /= E_Record_Type
797 Extra
:= New_Copy
(Etyp
);
798 Set_Parent
(Extra
, New_Formal
);
799 Set_Etype
(New_Formal
, Extra
);
800 Set_Scope
(Extra
, Subp_Typ
);
804 Next_Formal
(Old_Formal
);
805 exit when No
(Old_Formal
);
807 Set_Next_Entity
(New_Formal
,
808 New_Copy
(Old_Formal
));
809 Next_Entity
(New_Formal
);
812 Set_Next_Entity
(New_Formal
, Empty
);
813 Set_Last_Entity
(Subp_Typ
, Extra
);
816 -- Now that the explicit formals have been duplicated,
817 -- any extra formals needed by the subprogram must be
820 if Present
(Extra
) then
821 Set_Extra_Formal
(Extra
, Empty
);
824 Create_Extra_Formals
(Subp_Typ
);
825 Set_Directly_Designated_Type
(Typ
, Subp_Typ
);
830 if Is_Access_Protected_Subprogram_Type
(Btyp
) then
831 Expand_Access_To_Protected_Op
(N
, Pref
, Typ
);
833 -- If prefix is a type name, this is a reference to the current
834 -- instance of the type, within its initialization procedure.
836 elsif Is_Entity_Name
(Pref
)
837 and then Is_Type
(Entity
(Pref
))
844 -- If the current instance name denotes a task type, then
845 -- the access attribute is rewritten to be the name of the
846 -- "_task" parameter associated with the task type's task
847 -- procedure. An unchecked conversion is applied to ensure
848 -- a type match in cases of expander-generated calls (e.g.
851 if Is_Task_Type
(Entity
(Pref
)) then
853 First_Entity
(Get_Task_Body_Procedure
(Entity
(Pref
)));
854 while Present
(Formal
) loop
855 exit when Chars
(Formal
) = Name_uTask
;
856 Next_Entity
(Formal
);
859 pragma Assert
(Present
(Formal
));
862 Unchecked_Convert_To
(Typ
,
863 New_Occurrence_Of
(Formal
, Loc
)));
866 -- The expression must appear in a default expression,
867 -- (which in the initialization procedure is the
868 -- right-hand side of an assignment), and not in a
869 -- discriminant constraint.
873 while Present
(Par
) loop
874 exit when Nkind
(Par
) = N_Assignment_Statement
;
876 if Nkind
(Par
) = N_Component_Declaration
then
883 if Present
(Par
) then
885 Make_Attribute_Reference
(Loc
,
886 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
887 Attribute_Name
=> Attribute_Name
(N
)));
889 Analyze_And_Resolve
(N
, Typ
);
894 -- If the prefix of an Access attribute is a dereference of an
895 -- access parameter (or a renaming of such a dereference, or a
896 -- subcomponent of such a dereference) and the context is a
897 -- general access type (including the type of an object or
898 -- component with an access_definition, but not the anonymous
899 -- type of an access parameter or access discriminant), then
900 -- apply an accessibility check to the access parameter. We used
901 -- to rewrite the access parameter as a type conversion, but that
902 -- could only be done if the immediate prefix of the Access
903 -- attribute was the dereference, and didn't handle cases where
904 -- the attribute is applied to a subcomponent of the dereference,
905 -- since there's generally no available, appropriate access type
906 -- to convert to in that case. The attribute is passed as the
907 -- point to insert the check, because the access parameter may
908 -- come from a renaming, possibly in a different scope, and the
909 -- check must be associated with the attribute itself.
911 elsif Id
= Attribute_Access
912 and then Nkind
(Enc_Object
) = N_Explicit_Dereference
913 and then Is_Entity_Name
(Prefix
(Enc_Object
))
914 and then (Ekind
(Btyp
) = E_General_Access_Type
915 or else Is_Local_Anonymous_Access
(Btyp
))
916 and then Ekind
(Entity
(Prefix
(Enc_Object
))) in Formal_Kind
917 and then Ekind
(Etype
(Entity
(Prefix
(Enc_Object
))))
918 = E_Anonymous_Access_Type
919 and then Present
(Extra_Accessibility
920 (Entity
(Prefix
(Enc_Object
))))
922 Apply_Accessibility_Check
(Prefix
(Enc_Object
), Typ
, N
);
924 -- Ada 2005 (AI-251): If the designated type is an interface we
925 -- add an implicit conversion to force the displacement of the
926 -- pointer to reference the secondary dispatch table.
928 elsif Is_Interface
(Btyp_DDT
)
929 and then (Comes_From_Source
(N
)
930 or else Comes_From_Source
(Ref_Object
)
931 or else (Nkind
(Ref_Object
) in N_Has_Chars
932 and then Chars
(Ref_Object
) = Name_uInit
))
934 if Nkind
(Ref_Object
) /= N_Explicit_Dereference
then
936 -- No implicit conversion required if types match, or if
937 -- the prefix is the class_wide_type of the interface. In
938 -- either case passing an object of the interface type has
939 -- already set the pointer correctly.
941 if Btyp_DDT
= Etype
(Ref_Object
)
942 or else (Is_Class_Wide_Type
(Etype
(Ref_Object
))
944 Class_Wide_Type
(Btyp_DDT
) = Etype
(Ref_Object
))
950 Convert_To
(Btyp_DDT
,
951 New_Copy_Tree
(Prefix
(N
))));
953 Analyze_And_Resolve
(Prefix
(N
), Btyp_DDT
);
956 -- When the object is an explicit dereference, convert the
957 -- dereference's prefix.
961 Obj_DDT
: constant Entity_Id
:=
963 (Directly_Designated_Type
964 (Etype
(Prefix
(Ref_Object
))));
966 -- No implicit conversion required if designated types
969 if Obj_DDT
/= Btyp_DDT
970 and then not (Is_Class_Wide_Type
(Obj_DDT
)
971 and then Etype
(Obj_DDT
) = Btyp_DDT
)
975 New_Copy_Tree
(Prefix
(Ref_Object
))));
976 Analyze_And_Resolve
(N
, Typ
);
987 -- Transforms 'Adjacent into a call to the floating-point attribute
988 -- function Adjacent in Fat_xxx (where xxx is the root type)
990 when Attribute_Adjacent
=>
991 Expand_Fpt_Attribute_RR
(N
);
997 when Attribute_Address
=> Address
: declare
998 Task_Proc
: Entity_Id
;
1001 -- If the prefix is a task or a task type, the useful address is that
1002 -- of the procedure for the task body, i.e. the actual program unit.
1003 -- We replace the original entity with that of the procedure.
1005 if Is_Entity_Name
(Pref
)
1006 and then Is_Task_Type
(Entity
(Pref
))
1008 Task_Proc
:= Next_Entity
(Root_Type
(Ptyp
));
1010 while Present
(Task_Proc
) loop
1011 exit when Ekind
(Task_Proc
) = E_Procedure
1012 and then Etype
(First_Formal
(Task_Proc
)) =
1013 Corresponding_Record_Type
(Ptyp
);
1014 Next_Entity
(Task_Proc
);
1017 if Present
(Task_Proc
) then
1018 Set_Entity
(Pref
, Task_Proc
);
1019 Set_Etype
(Pref
, Etype
(Task_Proc
));
1022 -- Similarly, the address of a protected operation is the address
1023 -- of the corresponding protected body, regardless of the protected
1024 -- object from which it is selected.
1026 elsif Nkind
(Pref
) = N_Selected_Component
1027 and then Is_Subprogram
(Entity
(Selector_Name
(Pref
)))
1028 and then Is_Protected_Type
(Scope
(Entity
(Selector_Name
(Pref
))))
1032 External_Subprogram
(Entity
(Selector_Name
(Pref
))), Loc
));
1034 elsif Nkind
(Pref
) = N_Explicit_Dereference
1035 and then Ekind
(Ptyp
) = E_Subprogram_Type
1036 and then Convention
(Ptyp
) = Convention_Protected
1038 -- The prefix is be a dereference of an access_to_protected_
1039 -- subprogram. The desired address is the second component of
1040 -- the record that represents the access.
1043 Addr
: constant Entity_Id
:= Etype
(N
);
1044 Ptr
: constant Node_Id
:= Prefix
(Pref
);
1045 T
: constant Entity_Id
:=
1046 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
1050 Unchecked_Convert_To
(Addr
,
1051 Make_Selected_Component
(Loc
,
1052 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
1053 Selector_Name
=> New_Occurrence_Of
(
1054 Next_Entity
(First_Entity
(T
)), Loc
))));
1056 Analyze_And_Resolve
(N
, Addr
);
1059 -- Ada 2005 (AI-251): Class-wide interface objects are always
1060 -- "displaced" to reference the tag associated with the interface
1061 -- type. In order to obtain the real address of such objects we
1062 -- generate a call to a run-time subprogram that returns the base
1063 -- address of the object.
1065 -- This processing is not needed in the VM case, where dispatching
1066 -- issues are taken care of by the virtual machine.
1068 elsif Is_Class_Wide_Type
(Ptyp
)
1069 and then Is_Interface
(Ptyp
)
1070 and then Tagged_Type_Expansion
1071 and then not (Nkind
(Pref
) in N_Has_Entity
1072 and then Is_Subprogram
(Entity
(Pref
)))
1075 Make_Function_Call
(Loc
,
1076 Name
=> New_Reference_To
(RTE
(RE_Base_Address
), Loc
),
1077 Parameter_Associations
=> New_List
(
1078 Relocate_Node
(N
))));
1083 -- Deal with packed array reference, other cases are handled by
1086 if Involves_Packed_Array_Reference
(Pref
) then
1087 Expand_Packed_Address_Reference
(N
);
1095 when Attribute_Alignment
=> Alignment
: declare
1099 -- For class-wide types, X'Class'Alignment is transformed into a
1100 -- direct reference to the Alignment of the class type, so that the
1101 -- back end does not have to deal with the X'Class'Alignment
1104 if Is_Entity_Name
(Pref
)
1105 and then Is_Class_Wide_Type
(Entity
(Pref
))
1107 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
1110 -- For x'Alignment applied to an object of a class wide type,
1111 -- transform X'Alignment into a call to the predefined primitive
1112 -- operation _Alignment applied to X.
1114 elsif Is_Class_Wide_Type
(Ptyp
) then
1116 -- No need to do anything else compiling under restriction
1117 -- No_Dispatching_Calls. During the semantic analysis we
1118 -- already notified such violation.
1120 if Restriction_Active
(No_Dispatching_Calls
) then
1125 Make_Function_Call
(Loc
,
1126 Name
=> New_Reference_To
1127 (Find_Prim_Op
(Ptyp
, Name_uAlignment
), Loc
),
1128 Parameter_Associations
=> New_List
(Pref
));
1130 if Typ
/= Standard_Integer
then
1132 -- The context is a specific integer type with which the
1133 -- original attribute was compatible. The function has a
1134 -- specific type as well, so to preserve the compatibility
1135 -- we must convert explicitly.
1137 New_Node
:= Convert_To
(Typ
, New_Node
);
1140 Rewrite
(N
, New_Node
);
1141 Analyze_And_Resolve
(N
, Typ
);
1144 -- For all other cases, we just have to deal with the case of
1145 -- the fact that the result can be universal.
1148 Apply_Universal_Integer_Attribute_Checks
(N
);
1156 when Attribute_AST_Entry
=> AST_Entry
: declare
1161 Entry_Ref
: Node_Id
;
1162 -- The reference to the entry or entry family
1165 -- The index expression for an entry family reference, or
1166 -- the Empty if Entry_Ref references a simple entry.
1169 if Nkind
(Pref
) = N_Indexed_Component
then
1170 Entry_Ref
:= Prefix
(Pref
);
1171 Index
:= First
(Expressions
(Pref
));
1177 -- Get expression for Task_Id and the entry entity
1179 if Nkind
(Entry_Ref
) = N_Selected_Component
then
1181 Make_Attribute_Reference
(Loc
,
1182 Attribute_Name
=> Name_Identity
,
1183 Prefix
=> Prefix
(Entry_Ref
));
1185 Ttyp
:= Etype
(Prefix
(Entry_Ref
));
1186 Eent
:= Entity
(Selector_Name
(Entry_Ref
));
1190 Make_Function_Call
(Loc
,
1191 Name
=> New_Occurrence_Of
(RTE
(RE_Current_Task
), Loc
));
1193 Eent
:= Entity
(Entry_Ref
);
1195 -- We have to find the enclosing task to get the task type
1196 -- There must be one, since we already validated this earlier
1198 Ttyp
:= Current_Scope
;
1199 while not Is_Task_Type
(Ttyp
) loop
1200 Ttyp
:= Scope
(Ttyp
);
1204 -- Now rewrite the attribute with a call to Create_AST_Handler
1207 Make_Function_Call
(Loc
,
1208 Name
=> New_Occurrence_Of
(RTE
(RE_Create_AST_Handler
), Loc
),
1209 Parameter_Associations
=> New_List
(
1211 Entry_Index_Expression
(Loc
, Eent
, Index
, Ttyp
))));
1213 Analyze_And_Resolve
(N
, RTE
(RE_AST_Handler
));
1220 -- We compute this if a packed array reference was present, otherwise we
1221 -- leave the computation up to the back end.
1223 when Attribute_Bit
=>
1224 if Involves_Packed_Array_Reference
(Pref
) then
1225 Expand_Packed_Bit_Reference
(N
);
1227 Apply_Universal_Integer_Attribute_Checks
(N
);
1234 -- We compute this if a component clause was present, otherwise we leave
1235 -- the computation up to the back end, since we don't know what layout
1238 -- Note that the attribute can apply to a naked record component
1239 -- in generated code (i.e. the prefix is an identifier that
1240 -- references the component or discriminant entity).
1242 when Attribute_Bit_Position
=> Bit_Position
: declare
1246 if Nkind
(Pref
) = N_Identifier
then
1247 CE
:= Entity
(Pref
);
1249 CE
:= Entity
(Selector_Name
(Pref
));
1252 if Known_Static_Component_Bit_Offset
(CE
) then
1254 Make_Integer_Literal
(Loc
,
1255 Intval
=> Component_Bit_Offset
(CE
)));
1256 Analyze_And_Resolve
(N
, Typ
);
1259 Apply_Universal_Integer_Attribute_Checks
(N
);
1267 -- A reference to P'Body_Version or P'Version is expanded to
1270 -- pragma Import (C, Vnn, "uuuuT");
1272 -- Get_Version_String (Vnn)
1274 -- where uuuu is the unit name (dots replaced by double underscore)
1275 -- and T is B for the cases of Body_Version, or Version applied to a
1276 -- subprogram acting as its own spec, and S for Version applied to a
1277 -- subprogram spec or package. This sequence of code references the
1278 -- the unsigned constant created in the main program by the binder.
1280 -- A special exception occurs for Standard, where the string returned
1281 -- is a copy of the library string in gnatvsn.ads.
1283 when Attribute_Body_Version | Attribute_Version
=> Version
: declare
1284 E
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
1289 -- If not library unit, get to containing library unit
1291 Pent
:= Entity
(Pref
);
1292 while Pent
/= Standard_Standard
1293 and then Scope
(Pent
) /= Standard_Standard
1294 and then not Is_Child_Unit
(Pent
)
1296 Pent
:= Scope
(Pent
);
1299 -- Special case Standard and Standard.ASCII
1301 if Pent
= Standard_Standard
or else Pent
= Standard_ASCII
then
1303 Make_String_Literal
(Loc
,
1304 Strval
=> Verbose_Library_Version
));
1309 -- Build required string constant
1311 Get_Name_String
(Get_Unit_Name
(Pent
));
1314 for J
in 1 .. Name_Len
- 2 loop
1315 if Name_Buffer
(J
) = '.' then
1316 Store_String_Chars
("__");
1318 Store_String_Char
(Get_Char_Code
(Name_Buffer
(J
)));
1322 -- Case of subprogram acting as its own spec, always use body
1324 if Nkind
(Declaration_Node
(Pent
)) in N_Subprogram_Specification
1325 and then Nkind
(Parent
(Declaration_Node
(Pent
))) =
1327 and then Acts_As_Spec
(Parent
(Declaration_Node
(Pent
)))
1329 Store_String_Chars
("B");
1331 -- Case of no body present, always use spec
1333 elsif not Unit_Requires_Body
(Pent
) then
1334 Store_String_Chars
("S");
1336 -- Otherwise use B for Body_Version, S for spec
1338 elsif Id
= Attribute_Body_Version
then
1339 Store_String_Chars
("B");
1341 Store_String_Chars
("S");
1345 Lib
.Version_Referenced
(S
);
1347 -- Insert the object declaration
1349 Insert_Actions
(N
, New_List
(
1350 Make_Object_Declaration
(Loc
,
1351 Defining_Identifier
=> E
,
1352 Object_Definition
=>
1353 New_Occurrence_Of
(RTE
(RE_Unsigned
), Loc
))));
1355 -- Set entity as imported with correct external name
1357 Set_Is_Imported
(E
);
1358 Set_Interface_Name
(E
, Make_String_Literal
(Loc
, S
));
1360 -- Set entity as internal to ensure proper Sprint output of its
1361 -- implicit importation.
1363 Set_Is_Internal
(E
);
1365 -- And now rewrite original reference
1368 Make_Function_Call
(Loc
,
1369 Name
=> New_Reference_To
(RTE
(RE_Get_Version_String
), Loc
),
1370 Parameter_Associations
=> New_List
(
1371 New_Occurrence_Of
(E
, Loc
))));
1374 Analyze_And_Resolve
(N
, RTE
(RE_Version_String
));
1381 -- Transforms 'Ceiling into a call to the floating-point attribute
1382 -- function Ceiling in Fat_xxx (where xxx is the root type)
1384 when Attribute_Ceiling
=>
1385 Expand_Fpt_Attribute_R
(N
);
1391 -- Transforms 'Callable attribute into a call to the Callable function
1393 when Attribute_Callable
=> Callable
:
1395 -- We have an object of a task interface class-wide type as a prefix
1396 -- to Callable. Generate:
1397 -- callable (Task_Id (Pref._disp_get_task_id));
1399 if Ada_Version
>= Ada_2005
1400 and then Ekind
(Ptyp
) = E_Class_Wide_Type
1401 and then Is_Interface
(Ptyp
)
1402 and then Is_Task_Interface
(Ptyp
)
1405 Make_Function_Call
(Loc
,
1407 New_Reference_To
(RTE
(RE_Callable
), Loc
),
1408 Parameter_Associations
=> New_List
(
1409 Make_Unchecked_Type_Conversion
(Loc
,
1411 New_Reference_To
(RTE
(RO_ST_Task_Id
), Loc
),
1413 Make_Selected_Component
(Loc
,
1415 New_Copy_Tree
(Pref
),
1417 Make_Identifier
(Loc
, Name_uDisp_Get_Task_Id
))))));
1421 Build_Call_With_Task
(Pref
, RTE
(RE_Callable
)));
1424 Analyze_And_Resolve
(N
, Standard_Boolean
);
1431 -- Transforms 'Caller attribute into a call to either the
1432 -- Task_Entry_Caller or the Protected_Entry_Caller function.
1434 when Attribute_Caller
=> Caller
: declare
1435 Id_Kind
: constant Entity_Id
:= RTE
(RO_AT_Task_Id
);
1436 Ent
: constant Entity_Id
:= Entity
(Pref
);
1437 Conctype
: constant Entity_Id
:= Scope
(Ent
);
1438 Nest_Depth
: Integer := 0;
1445 if Is_Protected_Type
(Conctype
) then
1446 case Corresponding_Runtime_Package
(Conctype
) is
1447 when System_Tasking_Protected_Objects_Entries
=>
1450 (RTE
(RE_Protected_Entry_Caller
), Loc
);
1452 when System_Tasking_Protected_Objects_Single_Entry
=>
1455 (RTE
(RE_Protected_Single_Entry_Caller
), Loc
);
1458 raise Program_Error
;
1462 Unchecked_Convert_To
(Id_Kind
,
1463 Make_Function_Call
(Loc
,
1465 Parameter_Associations
=> New_List
(
1467 (Find_Protection_Object
(Current_Scope
), Loc
)))));
1472 -- Determine the nesting depth of the E'Caller attribute, that
1473 -- is, how many accept statements are nested within the accept
1474 -- statement for E at the point of E'Caller. The runtime uses
1475 -- this depth to find the specified entry call.
1477 for J
in reverse 0 .. Scope_Stack
.Last
loop
1478 S
:= Scope_Stack
.Table
(J
).Entity
;
1480 -- We should not reach the scope of the entry, as it should
1481 -- already have been checked in Sem_Attr that this attribute
1482 -- reference is within a matching accept statement.
1484 pragma Assert
(S
/= Conctype
);
1489 elsif Is_Entry
(S
) then
1490 Nest_Depth
:= Nest_Depth
+ 1;
1495 Unchecked_Convert_To
(Id_Kind
,
1496 Make_Function_Call
(Loc
,
1498 New_Reference_To
(RTE
(RE_Task_Entry_Caller
), Loc
),
1499 Parameter_Associations
=> New_List
(
1500 Make_Integer_Literal
(Loc
,
1501 Intval
=> Int
(Nest_Depth
))))));
1504 Analyze_And_Resolve
(N
, Id_Kind
);
1511 -- Transforms 'Compose into a call to the floating-point attribute
1512 -- function Compose in Fat_xxx (where xxx is the root type)
1514 -- Note: we strictly should have special code here to deal with the
1515 -- case of absurdly negative arguments (less than Integer'First)
1516 -- which will return a (signed) zero value, but it hardly seems
1517 -- worth the effort. Absurdly large positive arguments will raise
1518 -- constraint error which is fine.
1520 when Attribute_Compose
=>
1521 Expand_Fpt_Attribute_RI
(N
);
1527 when Attribute_Constrained
=> Constrained
: declare
1528 Formal_Ent
: constant Entity_Id
:= Param_Entity
(Pref
);
1530 function Is_Constrained_Aliased_View
(Obj
: Node_Id
) return Boolean;
1531 -- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
1532 -- view of an aliased object whose subtype is constrained.
1534 ---------------------------------
1535 -- Is_Constrained_Aliased_View --
1536 ---------------------------------
1538 function Is_Constrained_Aliased_View
(Obj
: Node_Id
) return Boolean is
1542 if Is_Entity_Name
(Obj
) then
1545 if Present
(Renamed_Object
(E
)) then
1546 return Is_Constrained_Aliased_View
(Renamed_Object
(E
));
1548 return Is_Aliased
(E
) and then Is_Constrained
(Etype
(E
));
1552 return Is_Aliased_View
(Obj
)
1554 (Is_Constrained
(Etype
(Obj
))
1555 or else (Nkind
(Obj
) = N_Explicit_Dereference
1557 not Has_Constrained_Partial_View
1558 (Base_Type
(Etype
(Obj
)))));
1560 end Is_Constrained_Aliased_View
;
1562 -- Start of processing for Constrained
1565 -- Reference to a parameter where the value is passed as an extra
1566 -- actual, corresponding to the extra formal referenced by the
1567 -- Extra_Constrained field of the corresponding formal. If this
1568 -- is an entry in-parameter, it is replaced by a constant renaming
1569 -- for which Extra_Constrained is never created.
1571 if Present
(Formal_Ent
)
1572 and then Ekind
(Formal_Ent
) /= E_Constant
1573 and then Present
(Extra_Constrained
(Formal_Ent
))
1577 (Extra_Constrained
(Formal_Ent
), Sloc
(N
)));
1579 -- For variables with a Extra_Constrained field, we use the
1580 -- corresponding entity.
1582 elsif Nkind
(Pref
) = N_Identifier
1583 and then Ekind
(Entity
(Pref
)) = E_Variable
1584 and then Present
(Extra_Constrained
(Entity
(Pref
)))
1588 (Extra_Constrained
(Entity
(Pref
)), Sloc
(N
)));
1590 -- For all other entity names, we can tell at compile time
1592 elsif Is_Entity_Name
(Pref
) then
1594 Ent
: constant Entity_Id
:= Entity
(Pref
);
1598 -- (RM J.4) obsolescent cases
1600 if Is_Type
(Ent
) then
1604 if Is_Private_Type
(Ent
) then
1605 Res
:= not Has_Discriminants
(Ent
)
1606 or else Is_Constrained
(Ent
);
1608 -- It not a private type, must be a generic actual type
1609 -- that corresponded to a private type. We know that this
1610 -- correspondence holds, since otherwise the reference
1611 -- within the generic template would have been illegal.
1614 if Is_Composite_Type
(Underlying_Type
(Ent
)) then
1615 Res
:= Is_Constrained
(Ent
);
1621 -- If the prefix is not a variable or is aliased, then
1622 -- definitely true; if it's a formal parameter without an
1623 -- associated extra formal, then treat it as constrained.
1625 -- Ada 2005 (AI-363): An aliased prefix must be known to be
1626 -- constrained in order to set the attribute to True.
1628 elsif not Is_Variable
(Pref
)
1629 or else Present
(Formal_Ent
)
1630 or else (Ada_Version
< Ada_2005
1631 and then Is_Aliased_View
(Pref
))
1632 or else (Ada_Version
>= Ada_2005
1633 and then Is_Constrained_Aliased_View
(Pref
))
1637 -- Variable case, look at type to see if it is constrained.
1638 -- Note that the one case where this is not accurate (the
1639 -- procedure formal case), has been handled above.
1641 -- We use the Underlying_Type here (and below) in case the
1642 -- type is private without discriminants, but the full type
1643 -- has discriminants. This case is illegal, but we generate it
1644 -- internally for passing to the Extra_Constrained parameter.
1647 -- In Ada 2012, test for case of a limited tagged type, in
1648 -- which case the attribute is always required to return
1649 -- True. The underlying type is tested, to make sure we also
1650 -- return True for cases where there is an unconstrained
1651 -- object with an untagged limited partial view which has
1652 -- defaulted discriminants (such objects always produce a
1653 -- False in earlier versions of Ada). (Ada 2012: AI05-0214)
1655 Res
:= Is_Constrained
(Underlying_Type
(Etype
(Ent
)))
1657 (Ada_Version
>= Ada_2012
1658 and then Is_Tagged_Type
(Underlying_Type
(Ptyp
))
1659 and then Is_Limited_Type
(Ptyp
));
1662 Rewrite
(N
, New_Reference_To
(Boolean_Literals
(Res
), Loc
));
1665 -- Prefix is not an entity name. These are also cases where we can
1666 -- always tell at compile time by looking at the form and type of the
1667 -- prefix. If an explicit dereference of an object with constrained
1668 -- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
1669 -- underlying type is a limited tagged type, then Constrained is
1670 -- required to always return True (Ada 2012: AI05-0214).
1676 not Is_Variable
(Pref
)
1678 (Nkind
(Pref
) = N_Explicit_Dereference
1680 not Has_Constrained_Partial_View
(Base_Type
(Ptyp
)))
1681 or else Is_Constrained
(Underlying_Type
(Ptyp
))
1682 or else (Ada_Version
>= Ada_2012
1683 and then Is_Tagged_Type
(Underlying_Type
(Ptyp
))
1684 and then Is_Limited_Type
(Ptyp
))),
1688 Analyze_And_Resolve
(N
, Standard_Boolean
);
1695 -- Transforms 'Copy_Sign into a call to the floating-point attribute
1696 -- function Copy_Sign in Fat_xxx (where xxx is the root type)
1698 when Attribute_Copy_Sign
=>
1699 Expand_Fpt_Attribute_RR
(N
);
1705 -- Transforms 'Count attribute into a call to the Count function
1707 when Attribute_Count
=> Count
: declare
1709 Conctyp
: Entity_Id
;
1711 Entry_Id
: Entity_Id
;
1716 -- If the prefix is a member of an entry family, retrieve both
1717 -- entry name and index. For a simple entry there is no index.
1719 if Nkind
(Pref
) = N_Indexed_Component
then
1720 Entnam
:= Prefix
(Pref
);
1721 Index
:= First
(Expressions
(Pref
));
1727 Entry_Id
:= Entity
(Entnam
);
1729 -- Find the concurrent type in which this attribute is referenced
1730 -- (there had better be one).
1732 Conctyp
:= Current_Scope
;
1733 while not Is_Concurrent_Type
(Conctyp
) loop
1734 Conctyp
:= Scope
(Conctyp
);
1739 if Is_Protected_Type
(Conctyp
) then
1740 case Corresponding_Runtime_Package
(Conctyp
) is
1741 when System_Tasking_Protected_Objects_Entries
=>
1742 Name
:= New_Reference_To
(RTE
(RE_Protected_Count
), Loc
);
1745 Make_Function_Call
(Loc
,
1747 Parameter_Associations
=> New_List
(
1749 (Find_Protection_Object
(Current_Scope
), Loc
),
1750 Entry_Index_Expression
1751 (Loc
, Entry_Id
, Index
, Scope
(Entry_Id
))));
1753 when System_Tasking_Protected_Objects_Single_Entry
=>
1755 New_Reference_To
(RTE
(RE_Protected_Count_Entry
), Loc
);
1758 Make_Function_Call
(Loc
,
1760 Parameter_Associations
=> New_List
(
1762 (Find_Protection_Object
(Current_Scope
), Loc
)));
1765 raise Program_Error
;
1772 Make_Function_Call
(Loc
,
1773 Name
=> New_Reference_To
(RTE
(RE_Task_Count
), Loc
),
1774 Parameter_Associations
=> New_List
(
1775 Entry_Index_Expression
(Loc
,
1776 Entry_Id
, Index
, Scope
(Entry_Id
))));
1779 -- The call returns type Natural but the context is universal integer
1780 -- so any integer type is allowed. The attribute was already resolved
1781 -- so its Etype is the required result type. If the base type of the
1782 -- context type is other than Standard.Integer we put in a conversion
1783 -- to the required type. This can be a normal typed conversion since
1784 -- both input and output types of the conversion are integer types
1786 if Base_Type
(Typ
) /= Base_Type
(Standard_Integer
) then
1787 Rewrite
(N
, Convert_To
(Typ
, Call
));
1792 Analyze_And_Resolve
(N
, Typ
);
1799 -- This processing is shared by Elab_Spec
1801 -- What we do is to insert the following declarations
1804 -- pragma Import (C, enn, "name___elabb/s");
1806 -- and then the Elab_Body/Spec attribute is replaced by a reference
1807 -- to this defining identifier.
1809 when Attribute_Elab_Body |
1810 Attribute_Elab_Spec
=>
1813 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E');
1817 procedure Make_Elab_String
(Nod
: Node_Id
);
1818 -- Given Nod, an identifier, or a selected component, put the
1819 -- image into the current string literal, with double underline
1820 -- between components.
1822 ----------------------
1823 -- Make_Elab_String --
1824 ----------------------
1826 procedure Make_Elab_String
(Nod
: Node_Id
) is
1828 if Nkind
(Nod
) = N_Selected_Component
then
1829 Make_Elab_String
(Prefix
(Nod
));
1833 Store_String_Char
('$');
1835 Store_String_Char
('.');
1837 Store_String_Char
('_');
1838 Store_String_Char
('_');
1841 Get_Name_String
(Chars
(Selector_Name
(Nod
)));
1844 pragma Assert
(Nkind
(Nod
) = N_Identifier
);
1845 Get_Name_String
(Chars
(Nod
));
1848 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
1849 end Make_Elab_String
;
1851 -- Start of processing for Elab_Body/Elab_Spec
1854 -- First we need to prepare the string literal for the name of
1855 -- the elaboration routine to be referenced.
1858 Make_Elab_String
(Pref
);
1860 if VM_Target
= No_VM
then
1861 Store_String_Chars
("___elab");
1862 Lang
:= Make_Identifier
(Loc
, Name_C
);
1864 Store_String_Chars
("._elab");
1865 Lang
:= Make_Identifier
(Loc
, Name_Ada
);
1868 if Id
= Attribute_Elab_Body
then
1869 Store_String_Char
('b');
1871 Store_String_Char
('s');
1876 Insert_Actions
(N
, New_List
(
1877 Make_Subprogram_Declaration
(Loc
,
1879 Make_Procedure_Specification
(Loc
,
1880 Defining_Unit_Name
=> Ent
)),
1883 Chars
=> Name_Import
,
1884 Pragma_Argument_Associations
=> New_List
(
1885 Make_Pragma_Argument_Association
(Loc
, Expression
=> Lang
),
1887 Make_Pragma_Argument_Association
(Loc
,
1888 Expression
=> Make_Identifier
(Loc
, Chars
(Ent
))),
1890 Make_Pragma_Argument_Association
(Loc
,
1891 Expression
=> Make_String_Literal
(Loc
, Str
))))));
1893 Set_Entity
(N
, Ent
);
1894 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
1901 -- Elaborated is always True for preelaborated units, predefined units,
1902 -- pure units and units which have Elaborate_Body pragmas. These units
1903 -- have no elaboration entity.
1905 -- Note: The Elaborated attribute is never passed to the back end
1907 when Attribute_Elaborated
=> Elaborated
: declare
1908 Ent
: constant Entity_Id
:= Entity
(Pref
);
1911 if Present
(Elaboration_Entity
(Ent
)) then
1913 New_Occurrence_Of
(Elaboration_Entity
(Ent
), Loc
));
1915 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
1923 when Attribute_Enum_Rep
=> Enum_Rep
:
1925 -- X'Enum_Rep (Y) expands to
1929 -- This is simply a direct conversion from the enumeration type to
1930 -- the target integer type, which is treated by the back end as a
1931 -- normal integer conversion, treating the enumeration type as an
1932 -- integer, which is exactly what we want! We set Conversion_OK to
1933 -- make sure that the analyzer does not complain about what otherwise
1934 -- might be an illegal conversion.
1936 if Is_Non_Empty_List
(Exprs
) then
1938 OK_Convert_To
(Typ
, Relocate_Node
(First
(Exprs
))));
1940 -- X'Enum_Rep where X is an enumeration literal is replaced by
1941 -- the literal value.
1943 elsif Ekind
(Entity
(Pref
)) = E_Enumeration_Literal
then
1945 Make_Integer_Literal
(Loc
, Enumeration_Rep
(Entity
(Pref
))));
1947 -- If this is a renaming of a literal, recover the representation
1950 elsif Ekind
(Entity
(Pref
)) = E_Constant
1951 and then Present
(Renamed_Object
(Entity
(Pref
)))
1953 Ekind
(Entity
(Renamed_Object
(Entity
(Pref
))))
1954 = E_Enumeration_Literal
1957 Make_Integer_Literal
(Loc
,
1958 Enumeration_Rep
(Entity
(Renamed_Object
(Entity
(Pref
))))));
1960 -- X'Enum_Rep where X is an object does a direct unchecked conversion
1961 -- of the object value, as described for the type case above.
1965 OK_Convert_To
(Typ
, Relocate_Node
(Pref
)));
1969 Analyze_And_Resolve
(N
, Typ
);
1976 when Attribute_Enum_Val
=> Enum_Val
: declare
1978 Btyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
1981 -- X'Enum_Val (Y) expands to
1983 -- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
1986 Expr
:= Unchecked_Convert_To
(Ptyp
, First
(Exprs
));
1989 Make_Raise_Constraint_Error
(Loc
,
1993 Make_Function_Call
(Loc
,
1995 New_Reference_To
(TSS
(Btyp
, TSS_Rep_To_Pos
), Loc
),
1996 Parameter_Associations
=> New_List
(
1997 Relocate_Node
(Duplicate_Subexpr
(Expr
)),
1998 New_Occurrence_Of
(Standard_False
, Loc
))),
2000 Right_Opnd
=> Make_Integer_Literal
(Loc
, -1)),
2001 Reason
=> CE_Range_Check_Failed
));
2004 Analyze_And_Resolve
(N
, Ptyp
);
2011 -- Transforms 'Exponent into a call to the floating-point attribute
2012 -- function Exponent in Fat_xxx (where xxx is the root type)
2014 when Attribute_Exponent
=>
2015 Expand_Fpt_Attribute_R
(N
);
2021 -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
2023 when Attribute_External_Tag
=> External_Tag
:
2026 Make_Function_Call
(Loc
,
2027 Name
=> New_Reference_To
(RTE
(RE_External_Tag
), Loc
),
2028 Parameter_Associations
=> New_List
(
2029 Make_Attribute_Reference
(Loc
,
2030 Attribute_Name
=> Name_Tag
,
2031 Prefix
=> Prefix
(N
)))));
2033 Analyze_And_Resolve
(N
, Standard_String
);
2040 when Attribute_First
=>
2042 -- If the prefix type is a constrained packed array type which
2043 -- already has a Packed_Array_Type representation defined, then
2044 -- replace this attribute with a direct reference to 'First of the
2045 -- appropriate index subtype (since otherwise the back end will try
2046 -- to give us the value of 'First for this implementation type).
2048 if Is_Constrained_Packed_Array
(Ptyp
) then
2050 Make_Attribute_Reference
(Loc
,
2051 Attribute_Name
=> Name_First
,
2052 Prefix
=> New_Reference_To
(Get_Index_Subtype
(N
), Loc
)));
2053 Analyze_And_Resolve
(N
, Typ
);
2055 elsif Is_Access_Type
(Ptyp
) then
2056 Apply_Access_Check
(N
);
2063 -- Compute this if component clause was present, otherwise we leave the
2064 -- computation to be completed in the back-end, since we don't know what
2065 -- layout will be chosen.
2067 when Attribute_First_Bit
=> First_Bit
: declare
2068 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
2071 if Known_Static_Component_Bit_Offset
(CE
) then
2073 Make_Integer_Literal
(Loc
,
2074 Component_Bit_Offset
(CE
) mod System_Storage_Unit
));
2076 Analyze_And_Resolve
(N
, Typ
);
2079 Apply_Universal_Integer_Attribute_Checks
(N
);
2089 -- fixtype'Fixed_Value (integer-value)
2093 -- fixtype(integer-value)
2095 -- We do all the required analysis of the conversion here, because we do
2096 -- not want this to go through the fixed-point conversion circuits. Note
2097 -- that the back end always treats fixed-point as equivalent to the
2098 -- corresponding integer type anyway.
2100 when Attribute_Fixed_Value
=> Fixed_Value
:
2103 Make_Type_Conversion
(Loc
,
2104 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Pref
), Loc
),
2105 Expression
=> Relocate_Node
(First
(Exprs
))));
2106 Set_Etype
(N
, Entity
(Pref
));
2109 -- Note: it might appear that a properly analyzed unchecked conversion
2110 -- would be just fine here, but that's not the case, since the full
2111 -- range checks performed by the following call are critical!
2113 Apply_Type_Conversion_Checks
(N
);
2120 -- Transforms 'Floor into a call to the floating-point attribute
2121 -- function Floor in Fat_xxx (where xxx is the root type)
2123 when Attribute_Floor
=>
2124 Expand_Fpt_Attribute_R
(N
);
2130 -- For the fixed-point type Typ:
2136 -- Result_Type (System.Fore (Universal_Real (Type'First)),
2137 -- Universal_Real (Type'Last))
2139 -- Note that we know that the type is a non-static subtype, or Fore
2140 -- would have itself been computed dynamically in Eval_Attribute.
2142 when Attribute_Fore
=> Fore
: begin
2145 Make_Function_Call
(Loc
,
2146 Name
=> New_Reference_To
(RTE
(RE_Fore
), Loc
),
2148 Parameter_Associations
=> New_List
(
2149 Convert_To
(Universal_Real
,
2150 Make_Attribute_Reference
(Loc
,
2151 Prefix
=> New_Reference_To
(Ptyp
, Loc
),
2152 Attribute_Name
=> Name_First
)),
2154 Convert_To
(Universal_Real
,
2155 Make_Attribute_Reference
(Loc
,
2156 Prefix
=> New_Reference_To
(Ptyp
, Loc
),
2157 Attribute_Name
=> Name_Last
))))));
2159 Analyze_And_Resolve
(N
, Typ
);
2166 -- Transforms 'Fraction into a call to the floating-point attribute
2167 -- function Fraction in Fat_xxx (where xxx is the root type)
2169 when Attribute_Fraction
=>
2170 Expand_Fpt_Attribute_R
(N
);
2176 when Attribute_From_Any
=> From_Any
: declare
2177 P_Type
: constant Entity_Id
:= Etype
(Pref
);
2178 Decls
: constant List_Id
:= New_List
;
2181 Build_From_Any_Call
(P_Type
,
2182 Relocate_Node
(First
(Exprs
)),
2184 Insert_Actions
(N
, Decls
);
2185 Analyze_And_Resolve
(N
, P_Type
);
2192 -- For an exception returns a reference to the exception data:
2193 -- Exception_Id!(Prefix'Reference)
2195 -- For a task it returns a reference to the _task_id component of
2196 -- corresponding record:
2198 -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
2200 -- in Ada.Task_Identification
2202 when Attribute_Identity
=> Identity
: declare
2203 Id_Kind
: Entity_Id
;
2206 if Ptyp
= Standard_Exception_Type
then
2207 Id_Kind
:= RTE
(RE_Exception_Id
);
2209 if Present
(Renamed_Object
(Entity
(Pref
))) then
2210 Set_Entity
(Pref
, Renamed_Object
(Entity
(Pref
)));
2214 Unchecked_Convert_To
(Id_Kind
, Make_Reference
(Loc
, Pref
)));
2216 Id_Kind
:= RTE
(RO_AT_Task_Id
);
2218 -- If the prefix is a task interface, the Task_Id is obtained
2219 -- dynamically through a dispatching call, as for other task
2220 -- attributes applied to interfaces.
2222 if Ada_Version
>= Ada_2005
2223 and then Ekind
(Ptyp
) = E_Class_Wide_Type
2224 and then Is_Interface
(Ptyp
)
2225 and then Is_Task_Interface
(Ptyp
)
2228 Unchecked_Convert_To
(Id_Kind
,
2229 Make_Selected_Component
(Loc
,
2231 New_Copy_Tree
(Pref
),
2233 Make_Identifier
(Loc
, Name_uDisp_Get_Task_Id
))));
2237 Unchecked_Convert_To
(Id_Kind
, Concurrent_Ref
(Pref
)));
2241 Analyze_And_Resolve
(N
, Id_Kind
);
2248 -- Image attribute is handled in separate unit Exp_Imgv
2250 when Attribute_Image
=>
2251 Exp_Imgv
.Expand_Image_Attribute
(N
);
2257 -- X'Img is expanded to typ'Image (X), where typ is the type of X
2259 when Attribute_Img
=> Img
:
2262 Make_Attribute_Reference
(Loc
,
2263 Prefix
=> New_Reference_To
(Ptyp
, Loc
),
2264 Attribute_Name
=> Name_Image
,
2265 Expressions
=> New_List
(Relocate_Node
(Pref
))));
2267 Analyze_And_Resolve
(N
, Standard_String
);
2274 when Attribute_Input
=> Input
: declare
2275 P_Type
: constant Entity_Id
:= Entity
(Pref
);
2276 B_Type
: constant Entity_Id
:= Base_Type
(P_Type
);
2277 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
2278 Strm
: constant Node_Id
:= First
(Exprs
);
2286 Cntrl
: Node_Id
:= Empty
;
2287 -- Value for controlling argument in call. Always Empty except in
2288 -- the dispatching (class-wide type) case, where it is a reference
2289 -- to the dummy object initialized to the right internal tag.
2291 procedure Freeze_Stream_Subprogram
(F
: Entity_Id
);
2292 -- The expansion of the attribute reference may generate a call to
2293 -- a user-defined stream subprogram that is frozen by the call. This
2294 -- can lead to access-before-elaboration problem if the reference
2295 -- appears in an object declaration and the subprogram body has not
2296 -- been seen. The freezing of the subprogram requires special code
2297 -- because it appears in an expanded context where expressions do
2298 -- not freeze their constituents.
2300 ------------------------------
2301 -- Freeze_Stream_Subprogram --
2302 ------------------------------
2304 procedure Freeze_Stream_Subprogram
(F
: Entity_Id
) is
2305 Decl
: constant Node_Id
:= Unit_Declaration_Node
(F
);
2309 -- If this is user-defined subprogram, the corresponding
2310 -- stream function appears as a renaming-as-body, and the
2311 -- user subprogram must be retrieved by tree traversal.
2314 and then Nkind
(Decl
) = N_Subprogram_Declaration
2315 and then Present
(Corresponding_Body
(Decl
))
2317 Bod
:= Corresponding_Body
(Decl
);
2319 if Nkind
(Unit_Declaration_Node
(Bod
)) =
2320 N_Subprogram_Renaming_Declaration
2322 Set_Is_Frozen
(Entity
(Name
(Unit_Declaration_Node
(Bod
))));
2325 end Freeze_Stream_Subprogram
;
2327 -- Start of processing for Input
2330 -- If no underlying type, we have an error that will be diagnosed
2331 -- elsewhere, so here we just completely ignore the expansion.
2337 -- If there is a TSS for Input, just call it
2339 Fname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Input
);
2341 if Present
(Fname
) then
2345 -- If there is a Stream_Convert pragma, use it, we rewrite
2347 -- sourcetyp'Input (stream)
2351 -- sourcetyp (streamread (strmtyp'Input (stream)));
2353 -- where streamread is the given Read function that converts an
2354 -- argument of type strmtyp to type sourcetyp or a type from which
2355 -- it is derived (extra conversion required for the derived case).
2357 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
2359 if Present
(Prag
) then
2360 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
2361 Rfunc
:= Entity
(Expression
(Arg2
));
2365 Make_Function_Call
(Loc
,
2366 Name
=> New_Occurrence_Of
(Rfunc
, Loc
),
2367 Parameter_Associations
=> New_List
(
2368 Make_Attribute_Reference
(Loc
,
2371 (Etype
(First_Formal
(Rfunc
)), Loc
),
2372 Attribute_Name
=> Name_Input
,
2373 Expressions
=> Exprs
)))));
2375 Analyze_And_Resolve
(N
, B_Type
);
2380 elsif Is_Elementary_Type
(U_Type
) then
2382 -- A special case arises if we have a defined _Read routine,
2383 -- since in this case we are required to call this routine.
2385 if Present
(TSS
(Base_Type
(U_Type
), TSS_Stream_Read
)) then
2386 Build_Record_Or_Elementary_Input_Function
2387 (Loc
, U_Type
, Decl
, Fname
);
2388 Insert_Action
(N
, Decl
);
2390 -- For normal cases, we call the I_xxx routine directly
2393 Rewrite
(N
, Build_Elementary_Input_Call
(N
));
2394 Analyze_And_Resolve
(N
, P_Type
);
2400 elsif Is_Array_Type
(U_Type
) then
2401 Build_Array_Input_Function
(Loc
, U_Type
, Decl
, Fname
);
2402 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
2404 -- Dispatching case with class-wide type
2406 elsif Is_Class_Wide_Type
(P_Type
) then
2408 -- No need to do anything else compiling under restriction
2409 -- No_Dispatching_Calls. During the semantic analysis we
2410 -- already notified such violation.
2412 if Restriction_Active
(No_Dispatching_Calls
) then
2417 Rtyp
: constant Entity_Id
:= Root_Type
(P_Type
);
2423 -- Read the internal tag (RM 13.13.2(34)) and use it to
2424 -- initialize a dummy tag object:
2426 -- Dnn : Ada.Tags.Tag :=
2427 -- Descendant_Tag (String'Input (Strm), P_Type);
2429 -- This dummy object is used only to provide a controlling
2430 -- argument for the eventual _Input call. Descendant_Tag is
2431 -- called rather than Internal_Tag to ensure that we have a
2432 -- tag for a type that is descended from the prefix type and
2433 -- declared at the same accessibility level (the exception
2434 -- Tag_Error will be raised otherwise). The level check is
2435 -- required for Ada 2005 because tagged types can be
2436 -- extended in nested scopes (AI-344).
2439 Make_Function_Call
(Loc
,
2441 New_Occurrence_Of
(RTE
(RE_Descendant_Tag
), Loc
),
2442 Parameter_Associations
=> New_List
(
2443 Make_Attribute_Reference
(Loc
,
2444 Prefix
=> New_Occurrence_Of
(Standard_String
, Loc
),
2445 Attribute_Name
=> Name_Input
,
2446 Expressions
=> New_List
(
2447 Relocate_Node
(Duplicate_Subexpr
(Strm
)))),
2448 Make_Attribute_Reference
(Loc
,
2449 Prefix
=> New_Reference_To
(P_Type
, Loc
),
2450 Attribute_Name
=> Name_Tag
)));
2452 Dnn
:= Make_Temporary
(Loc
, 'D', Expr
);
2455 Make_Object_Declaration
(Loc
,
2456 Defining_Identifier
=> Dnn
,
2457 Object_Definition
=>
2458 New_Occurrence_Of
(RTE
(RE_Tag
), Loc
),
2459 Expression
=> Expr
);
2461 Insert_Action
(N
, Decl
);
2463 -- Now we need to get the entity for the call, and construct
2464 -- a function call node, where we preset a reference to Dnn
2465 -- as the controlling argument (doing an unchecked convert
2466 -- to the class-wide tagged type to make it look like a real
2469 Fname
:= Find_Prim_Op
(Rtyp
, TSS_Stream_Input
);
2471 Unchecked_Convert_To
(P_Type
,
2472 New_Occurrence_Of
(Dnn
, Loc
));
2473 Set_Etype
(Cntrl
, P_Type
);
2474 Set_Parent
(Cntrl
, N
);
2477 -- For tagged types, use the primitive Input function
2479 elsif Is_Tagged_Type
(U_Type
) then
2480 Fname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Input
);
2482 -- All other record type cases, including protected records. The
2483 -- latter only arise for expander generated code for handling
2484 -- shared passive partition access.
2488 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
2490 -- Ada 2005 (AI-216): Program_Error is raised executing default
2491 -- implementation of the Input attribute of an unchecked union
2492 -- type if the type lacks default discriminant values.
2494 if Is_Unchecked_Union
(Base_Type
(U_Type
))
2495 and then No
(Discriminant_Constraint
(U_Type
))
2498 Make_Raise_Program_Error
(Loc
,
2499 Reason
=> PE_Unchecked_Union_Restriction
));
2504 Build_Record_Or_Elementary_Input_Function
2505 (Loc
, Base_Type
(U_Type
), Decl
, Fname
);
2506 Insert_Action
(N
, Decl
);
2508 if Nkind
(Parent
(N
)) = N_Object_Declaration
2509 and then Is_Record_Type
(U_Type
)
2511 -- The stream function may contain calls to user-defined
2512 -- Read procedures for individual components.
2519 Comp
:= First_Component
(U_Type
);
2520 while Present
(Comp
) loop
2522 Find_Stream_Subprogram
2523 (Etype
(Comp
), TSS_Stream_Read
);
2525 if Present
(Func
) then
2526 Freeze_Stream_Subprogram
(Func
);
2529 Next_Component
(Comp
);
2536 -- If we fall through, Fname is the function to be called. The result
2537 -- is obtained by calling the appropriate function, then converting
2538 -- the result. The conversion does a subtype check.
2541 Make_Function_Call
(Loc
,
2542 Name
=> New_Occurrence_Of
(Fname
, Loc
),
2543 Parameter_Associations
=> New_List
(
2544 Relocate_Node
(Strm
)));
2546 Set_Controlling_Argument
(Call
, Cntrl
);
2547 Rewrite
(N
, Unchecked_Convert_To
(P_Type
, Call
));
2548 Analyze_And_Resolve
(N
, P_Type
);
2550 if Nkind
(Parent
(N
)) = N_Object_Declaration
then
2551 Freeze_Stream_Subprogram
(Fname
);
2561 -- inttype'Fixed_Value (fixed-value)
2565 -- inttype(integer-value))
2567 -- we do all the required analysis of the conversion here, because we do
2568 -- not want this to go through the fixed-point conversion circuits. Note
2569 -- that the back end always treats fixed-point as equivalent to the
2570 -- corresponding integer type anyway.
2572 when Attribute_Integer_Value
=> Integer_Value
:
2575 Make_Type_Conversion
(Loc
,
2576 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Pref
), Loc
),
2577 Expression
=> Relocate_Node
(First
(Exprs
))));
2578 Set_Etype
(N
, Entity
(Pref
));
2581 -- Note: it might appear that a properly analyzed unchecked conversion
2582 -- would be just fine here, but that's not the case, since the full
2583 -- range checks performed by the following call are critical!
2585 Apply_Type_Conversion_Checks
(N
);
2592 when Attribute_Invalid_Value
=>
2593 Rewrite
(N
, Get_Simple_Init_Val
(Ptyp
, N
));
2599 when Attribute_Last
=>
2601 -- If the prefix type is a constrained packed array type which
2602 -- already has a Packed_Array_Type representation defined, then
2603 -- replace this attribute with a direct reference to 'Last of the
2604 -- appropriate index subtype (since otherwise the back end will try
2605 -- to give us the value of 'Last for this implementation type).
2607 if Is_Constrained_Packed_Array
(Ptyp
) then
2609 Make_Attribute_Reference
(Loc
,
2610 Attribute_Name
=> Name_Last
,
2611 Prefix
=> New_Reference_To
(Get_Index_Subtype
(N
), Loc
)));
2612 Analyze_And_Resolve
(N
, Typ
);
2614 elsif Is_Access_Type
(Ptyp
) then
2615 Apply_Access_Check
(N
);
2622 -- We compute this if a component clause was present, otherwise we leave
2623 -- the computation up to the back end, since we don't know what layout
2626 when Attribute_Last_Bit
=> Last_Bit
: declare
2627 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
2630 if Known_Static_Component_Bit_Offset
(CE
)
2631 and then Known_Static_Esize
(CE
)
2634 Make_Integer_Literal
(Loc
,
2635 Intval
=> (Component_Bit_Offset
(CE
) mod System_Storage_Unit
)
2638 Analyze_And_Resolve
(N
, Typ
);
2641 Apply_Universal_Integer_Attribute_Checks
(N
);
2649 -- Transforms 'Leading_Part into a call to the floating-point attribute
2650 -- function Leading_Part in Fat_xxx (where xxx is the root type)
2652 -- Note: strictly, we should generate special case code to deal with
2653 -- absurdly large positive arguments (greater than Integer'Last), which
2654 -- result in returning the first argument unchanged, but it hardly seems
2655 -- worth the effort. We raise constraint error for absurdly negative
2656 -- arguments which is fine.
2658 when Attribute_Leading_Part
=>
2659 Expand_Fpt_Attribute_RI
(N
);
2665 when Attribute_Length
=> declare
2670 -- Processing for packed array types
2672 if Is_Array_Type
(Ptyp
) and then Is_Packed
(Ptyp
) then
2673 Ityp
:= Get_Index_Subtype
(N
);
2675 -- If the index type, Ityp, is an enumeration type with holes,
2676 -- then we calculate X'Length explicitly using
2679 -- (0, Ityp'Pos (X'Last (N)) -
2680 -- Ityp'Pos (X'First (N)) + 1);
2682 -- Since the bounds in the template are the representation values
2683 -- and the back end would get the wrong value.
2685 if Is_Enumeration_Type
(Ityp
)
2686 and then Present
(Enum_Pos_To_Rep
(Base_Type
(Ityp
)))
2691 Xnum
:= Expr_Value
(First
(Expressions
(N
)));
2695 Make_Attribute_Reference
(Loc
,
2696 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
2697 Attribute_Name
=> Name_Max
,
2698 Expressions
=> New_List
2699 (Make_Integer_Literal
(Loc
, 0),
2703 Make_Op_Subtract
(Loc
,
2705 Make_Attribute_Reference
(Loc
,
2706 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2707 Attribute_Name
=> Name_Pos
,
2709 Expressions
=> New_List
(
2710 Make_Attribute_Reference
(Loc
,
2711 Prefix
=> Duplicate_Subexpr
(Pref
),
2712 Attribute_Name
=> Name_Last
,
2713 Expressions
=> New_List
(
2714 Make_Integer_Literal
(Loc
, Xnum
))))),
2717 Make_Attribute_Reference
(Loc
,
2718 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2719 Attribute_Name
=> Name_Pos
,
2721 Expressions
=> New_List
(
2722 Make_Attribute_Reference
(Loc
,
2724 Duplicate_Subexpr_No_Checks
(Pref
),
2725 Attribute_Name
=> Name_First
,
2726 Expressions
=> New_List
(
2727 Make_Integer_Literal
(Loc
, Xnum
)))))),
2729 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
2731 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2734 -- If the prefix type is a constrained packed array type which
2735 -- already has a Packed_Array_Type representation defined, then
2736 -- replace this attribute with a direct reference to 'Range_Length
2737 -- of the appropriate index subtype (since otherwise the back end
2738 -- will try to give us the value of 'Length for this
2739 -- implementation type).
2741 elsif Is_Constrained
(Ptyp
) then
2743 Make_Attribute_Reference
(Loc
,
2744 Attribute_Name
=> Name_Range_Length
,
2745 Prefix
=> New_Reference_To
(Ityp
, Loc
)));
2746 Analyze_And_Resolve
(N
, Typ
);
2751 elsif Is_Access_Type
(Ptyp
) then
2752 Apply_Access_Check
(N
);
2754 -- If the designated type is a packed array type, then we convert
2755 -- the reference to:
2758 -- xtyp'Pos (Pref'Last (Expr)) -
2759 -- xtyp'Pos (Pref'First (Expr)));
2761 -- This is a bit complex, but it is the easiest thing to do that
2762 -- works in all cases including enum types with holes xtyp here
2763 -- is the appropriate index type.
2766 Dtyp
: constant Entity_Id
:= Designated_Type
(Ptyp
);
2770 if Is_Array_Type
(Dtyp
) and then Is_Packed
(Dtyp
) then
2771 Xtyp
:= Get_Index_Subtype
(N
);
2774 Make_Attribute_Reference
(Loc
,
2775 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
2776 Attribute_Name
=> Name_Max
,
2777 Expressions
=> New_List
(
2778 Make_Integer_Literal
(Loc
, 0),
2781 Make_Integer_Literal
(Loc
, 1),
2782 Make_Op_Subtract
(Loc
,
2784 Make_Attribute_Reference
(Loc
,
2785 Prefix
=> New_Occurrence_Of
(Xtyp
, Loc
),
2786 Attribute_Name
=> Name_Pos
,
2787 Expressions
=> New_List
(
2788 Make_Attribute_Reference
(Loc
,
2789 Prefix
=> Duplicate_Subexpr
(Pref
),
2790 Attribute_Name
=> Name_Last
,
2792 New_Copy_List
(Exprs
)))),
2795 Make_Attribute_Reference
(Loc
,
2796 Prefix
=> New_Occurrence_Of
(Xtyp
, Loc
),
2797 Attribute_Name
=> Name_Pos
,
2798 Expressions
=> New_List
(
2799 Make_Attribute_Reference
(Loc
,
2801 Duplicate_Subexpr_No_Checks
(Pref
),
2802 Attribute_Name
=> Name_First
,
2804 New_Copy_List
(Exprs
)))))))));
2806 Analyze_And_Resolve
(N
, Typ
);
2810 -- Otherwise leave it to the back end
2813 Apply_Universal_Integer_Attribute_Checks
(N
);
2821 -- Transforms 'Machine into a call to the floating-point attribute
2822 -- function Machine in Fat_xxx (where xxx is the root type)
2824 when Attribute_Machine
=>
2825 Expand_Fpt_Attribute_R
(N
);
2827 ----------------------
2828 -- Machine_Rounding --
2829 ----------------------
2831 -- Transforms 'Machine_Rounding into a call to the floating-point
2832 -- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
2833 -- type). Expansion is avoided for cases the back end can handle
2836 when Attribute_Machine_Rounding
=>
2837 if not Is_Inline_Floating_Point_Attribute
(N
) then
2838 Expand_Fpt_Attribute_R
(N
);
2845 -- Machine_Size is equivalent to Object_Size, so transform it into
2846 -- Object_Size and that way the back end never sees Machine_Size.
2848 when Attribute_Machine_Size
=>
2850 Make_Attribute_Reference
(Loc
,
2851 Prefix
=> Prefix
(N
),
2852 Attribute_Name
=> Name_Object_Size
));
2854 Analyze_And_Resolve
(N
, Typ
);
2860 -- The only case that can get this far is the dynamic case of the old
2861 -- Ada 83 Mantissa attribute for the fixed-point case. For this case,
2868 -- ityp (System.Mantissa.Mantissa_Value
2869 -- (Integer'Integer_Value (typ'First),
2870 -- Integer'Integer_Value (typ'Last)));
2872 when Attribute_Mantissa
=> Mantissa
: begin
2875 Make_Function_Call
(Loc
,
2876 Name
=> New_Occurrence_Of
(RTE
(RE_Mantissa_Value
), Loc
),
2878 Parameter_Associations
=> New_List
(
2880 Make_Attribute_Reference
(Loc
,
2881 Prefix
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
2882 Attribute_Name
=> Name_Integer_Value
,
2883 Expressions
=> New_List
(
2885 Make_Attribute_Reference
(Loc
,
2886 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
2887 Attribute_Name
=> Name_First
))),
2889 Make_Attribute_Reference
(Loc
,
2890 Prefix
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
2891 Attribute_Name
=> Name_Integer_Value
,
2892 Expressions
=> New_List
(
2894 Make_Attribute_Reference
(Loc
,
2895 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
2896 Attribute_Name
=> Name_Last
)))))));
2898 Analyze_And_Resolve
(N
, Typ
);
2901 --------------------
2902 -- Mechanism_Code --
2903 --------------------
2905 when Attribute_Mechanism_Code
=>
2907 -- We must replace the prefix in the renamed case
2909 if Is_Entity_Name
(Pref
)
2910 and then Present
(Alias
(Entity
(Pref
)))
2912 Set_Renamed_Subprogram
(Pref
, Alias
(Entity
(Pref
)));
2919 when Attribute_Mod
=> Mod_Case
: declare
2920 Arg
: constant Node_Id
:= Relocate_Node
(First
(Exprs
));
2921 Hi
: constant Node_Id
:= Type_High_Bound
(Etype
(Arg
));
2922 Modv
: constant Uint
:= Modulus
(Btyp
);
2926 -- This is not so simple. The issue is what type to use for the
2927 -- computation of the modular value.
2929 -- The easy case is when the modulus value is within the bounds
2930 -- of the signed integer type of the argument. In this case we can
2931 -- just do the computation in that signed integer type, and then
2932 -- do an ordinary conversion to the target type.
2934 if Modv
<= Expr_Value
(Hi
) then
2939 Right_Opnd
=> Make_Integer_Literal
(Loc
, Modv
))));
2941 -- Here we know that the modulus is larger than type'Last of the
2942 -- integer type. There are two cases to consider:
2944 -- a) The integer value is non-negative. In this case, it is
2945 -- returned as the result (since it is less than the modulus).
2947 -- b) The integer value is negative. In this case, we know that the
2948 -- result is modulus + value, where the value might be as small as
2949 -- -modulus. The trouble is what type do we use to do the subtract.
2950 -- No type will do, since modulus can be as big as 2**64, and no
2951 -- integer type accommodates this value. Let's do bit of algebra
2954 -- = modulus - (-value)
2955 -- = (modulus - 1) - (-value - 1)
2957 -- Now modulus - 1 is certainly in range of the modular type.
2958 -- -value is in the range 1 .. modulus, so -value -1 is in the
2959 -- range 0 .. modulus-1 which is in range of the modular type.
2960 -- Furthermore, (-value - 1) can be expressed as -(value + 1)
2961 -- which we can compute using the integer base type.
2963 -- Once this is done we analyze the conditional expression without
2964 -- range checks, because we know everything is in range, and we
2965 -- want to prevent spurious warnings on either branch.
2969 Make_Conditional_Expression
(Loc
,
2970 Expressions
=> New_List
(
2972 Left_Opnd
=> Duplicate_Subexpr
(Arg
),
2973 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
2976 Duplicate_Subexpr_No_Checks
(Arg
)),
2978 Make_Op_Subtract
(Loc
,
2980 Make_Integer_Literal
(Loc
,
2981 Intval
=> Modv
- 1),
2987 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Arg
),
2989 Make_Integer_Literal
(Loc
,
2990 Intval
=> 1))))))));
2994 Analyze_And_Resolve
(N
, Btyp
, Suppress
=> All_Checks
);
3001 -- Transforms 'Model into a call to the floating-point attribute
3002 -- function Model in Fat_xxx (where xxx is the root type)
3004 when Attribute_Model
=>
3005 Expand_Fpt_Attribute_R
(N
);
3011 -- The processing for Object_Size shares the processing for Size
3017 when Attribute_Old
=> Old
: declare
3018 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Pref
);
3023 -- Find the nearest subprogram body, ignoring _Preconditions
3027 Subp
:= Parent
(Subp
);
3028 exit when Nkind
(Subp
) = N_Subprogram_Body
3029 and then Chars
(Defining_Entity
(Subp
)) /= Name_uPostconditions
;
3032 -- Insert the initialized object declaration at the start of the
3033 -- subprogram's declarations.
3036 Make_Object_Declaration
(Loc
,
3037 Defining_Identifier
=> Tnn
,
3038 Constant_Present
=> True,
3039 Object_Definition
=> New_Occurrence_Of
(Etype
(N
), Loc
),
3040 Expression
=> Pref
);
3042 -- Push the subprogram's scope, so that the object will be analyzed
3043 -- in that context (rather than the context of the Precondition
3044 -- subprogram) and will have its Scope set properly.
3046 if Present
(Corresponding_Spec
(Subp
)) then
3047 Push_Scope
(Corresponding_Spec
(Subp
));
3049 Push_Scope
(Defining_Entity
(Subp
));
3052 if Is_Empty_List
(Declarations
(Subp
)) then
3053 Set_Declarations
(Subp
, New_List
(Asn_Stm
));
3056 Insert_Action
(First
(Declarations
(Subp
)), Asn_Stm
);
3061 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
3068 when Attribute_Output
=> Output
: declare
3069 P_Type
: constant Entity_Id
:= Entity
(Pref
);
3070 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
3078 -- If no underlying type, we have an error that will be diagnosed
3079 -- elsewhere, so here we just completely ignore the expansion.
3085 -- If TSS for Output is present, just call it
3087 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Output
);
3089 if Present
(Pname
) then
3093 -- If there is a Stream_Convert pragma, use it, we rewrite
3095 -- sourcetyp'Output (stream, Item)
3099 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
3101 -- where strmwrite is the given Write function that converts an
3102 -- argument of type sourcetyp or a type acctyp, from which it is
3103 -- derived to type strmtyp. The conversion to acttyp is required
3104 -- for the derived case.
3106 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
3108 if Present
(Prag
) then
3110 Next
(Next
(First
(Pragma_Argument_Associations
(Prag
))));
3111 Wfunc
:= Entity
(Expression
(Arg3
));
3114 Make_Attribute_Reference
(Loc
,
3115 Prefix
=> New_Occurrence_Of
(Etype
(Wfunc
), Loc
),
3116 Attribute_Name
=> Name_Output
,
3117 Expressions
=> New_List
(
3118 Relocate_Node
(First
(Exprs
)),
3119 Make_Function_Call
(Loc
,
3120 Name
=> New_Occurrence_Of
(Wfunc
, Loc
),
3121 Parameter_Associations
=> New_List
(
3122 OK_Convert_To
(Etype
(First_Formal
(Wfunc
)),
3123 Relocate_Node
(Next
(First
(Exprs
)))))))));
3128 -- For elementary types, we call the W_xxx routine directly.
3129 -- Note that the effect of Write and Output is identical for
3130 -- the case of an elementary type, since there are no
3131 -- discriminants or bounds.
3133 elsif Is_Elementary_Type
(U_Type
) then
3135 -- A special case arises if we have a defined _Write routine,
3136 -- since in this case we are required to call this routine.
3138 if Present
(TSS
(Base_Type
(U_Type
), TSS_Stream_Write
)) then
3139 Build_Record_Or_Elementary_Output_Procedure
3140 (Loc
, U_Type
, Decl
, Pname
);
3141 Insert_Action
(N
, Decl
);
3143 -- For normal cases, we call the W_xxx routine directly
3146 Rewrite
(N
, Build_Elementary_Write_Call
(N
));
3153 elsif Is_Array_Type
(U_Type
) then
3154 Build_Array_Output_Procedure
(Loc
, U_Type
, Decl
, Pname
);
3155 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
3157 -- Class-wide case, first output external tag, then dispatch
3158 -- to the appropriate primitive Output function (RM 13.13.2(31)).
3160 elsif Is_Class_Wide_Type
(P_Type
) then
3162 -- No need to do anything else compiling under restriction
3163 -- No_Dispatching_Calls. During the semantic analysis we
3164 -- already notified such violation.
3166 if Restriction_Active
(No_Dispatching_Calls
) then
3171 Strm
: constant Node_Id
:= First
(Exprs
);
3172 Item
: constant Node_Id
:= Next
(Strm
);
3175 -- Ada 2005 (AI-344): Check that the accessibility level
3176 -- of the type of the output object is not deeper than
3177 -- that of the attribute's prefix type.
3179 -- if Get_Access_Level (Item'Tag)
3180 -- /= Get_Access_Level (P_Type'Tag)
3185 -- String'Output (Strm, External_Tag (Item'Tag));
3187 -- We cannot figure out a practical way to implement this
3188 -- accessibility check on virtual machines, so we omit it.
3190 if Ada_Version
>= Ada_2005
3191 and then Tagged_Type_Expansion
3194 Make_Implicit_If_Statement
(N
,
3198 Build_Get_Access_Level
(Loc
,
3199 Make_Attribute_Reference
(Loc
,
3202 Duplicate_Subexpr
(Item
,
3204 Attribute_Name
=> Name_Tag
)),
3207 Make_Integer_Literal
(Loc
,
3208 Type_Access_Level
(P_Type
))),
3211 New_List
(Make_Raise_Statement
(Loc
,
3213 RTE
(RE_Tag_Error
), Loc
)))));
3217 Make_Attribute_Reference
(Loc
,
3218 Prefix
=> New_Occurrence_Of
(Standard_String
, Loc
),
3219 Attribute_Name
=> Name_Output
,
3220 Expressions
=> New_List
(
3221 Relocate_Node
(Duplicate_Subexpr
(Strm
)),
3222 Make_Function_Call
(Loc
,
3224 New_Occurrence_Of
(RTE
(RE_External_Tag
), Loc
),
3225 Parameter_Associations
=> New_List
(
3226 Make_Attribute_Reference
(Loc
,
3229 (Duplicate_Subexpr
(Item
, Name_Req
=> True)),
3230 Attribute_Name
=> Name_Tag
))))));
3233 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Output
);
3235 -- Tagged type case, use the primitive Output function
3237 elsif Is_Tagged_Type
(U_Type
) then
3238 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Output
);
3240 -- All other record type cases, including protected records.
3241 -- The latter only arise for expander generated code for
3242 -- handling shared passive partition access.
3246 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
3248 -- Ada 2005 (AI-216): Program_Error is raised when executing
3249 -- the default implementation of the Output attribute of an
3250 -- unchecked union type if the type lacks default discriminant
3253 if Is_Unchecked_Union
(Base_Type
(U_Type
))
3254 and then No
(Discriminant_Constraint
(U_Type
))
3257 Make_Raise_Program_Error
(Loc
,
3258 Reason
=> PE_Unchecked_Union_Restriction
));
3263 Build_Record_Or_Elementary_Output_Procedure
3264 (Loc
, Base_Type
(U_Type
), Decl
, Pname
);
3265 Insert_Action
(N
, Decl
);
3269 -- If we fall through, Pname is the name of the procedure to call
3271 Rewrite_Stream_Proc_Call
(Pname
);
3278 -- For enumeration types with a standard representation, Pos is
3279 -- handled by the back end.
3281 -- For enumeration types, with a non-standard representation we generate
3282 -- a call to the _Rep_To_Pos function created when the type was frozen.
3283 -- The call has the form
3285 -- _rep_to_pos (expr, flag)
3287 -- The parameter flag is True if range checks are enabled, causing
3288 -- Program_Error to be raised if the expression has an invalid
3289 -- representation, and False if range checks are suppressed.
3291 -- For integer types, Pos is equivalent to a simple integer
3292 -- conversion and we rewrite it as such
3294 when Attribute_Pos
=> Pos
:
3296 Etyp
: Entity_Id
:= Base_Type
(Entity
(Pref
));
3299 -- Deal with zero/non-zero boolean values
3301 if Is_Boolean_Type
(Etyp
) then
3302 Adjust_Condition
(First
(Exprs
));
3303 Etyp
:= Standard_Boolean
;
3304 Set_Prefix
(N
, New_Occurrence_Of
(Standard_Boolean
, Loc
));
3307 -- Case of enumeration type
3309 if Is_Enumeration_Type
(Etyp
) then
3311 -- Non-standard enumeration type (generate call)
3313 if Present
(Enum_Pos_To_Rep
(Etyp
)) then
3314 Append_To
(Exprs
, Rep_To_Pos_Flag
(Etyp
, Loc
));
3317 Make_Function_Call
(Loc
,
3319 New_Reference_To
(TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
3320 Parameter_Associations
=> Exprs
)));
3322 Analyze_And_Resolve
(N
, Typ
);
3324 -- Standard enumeration type (do universal integer check)
3327 Apply_Universal_Integer_Attribute_Checks
(N
);
3330 -- Deal with integer types (replace by conversion)
3332 elsif Is_Integer_Type
(Etyp
) then
3333 Rewrite
(N
, Convert_To
(Typ
, First
(Exprs
)));
3334 Analyze_And_Resolve
(N
, Typ
);
3343 -- We compute this if a component clause was present, otherwise we leave
3344 -- the computation up to the back end, since we don't know what layout
3347 when Attribute_Position
=> Position
:
3349 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
3352 if Present
(Component_Clause
(CE
)) then
3354 Make_Integer_Literal
(Loc
,
3355 Intval
=> Component_Bit_Offset
(CE
) / System_Storage_Unit
));
3356 Analyze_And_Resolve
(N
, Typ
);
3359 Apply_Universal_Integer_Attribute_Checks
(N
);
3367 -- 1. Deal with enumeration types with holes
3368 -- 2. For floating-point, generate call to attribute function
3369 -- 3. For other cases, deal with constraint checking
3371 when Attribute_Pred
=> Pred
:
3373 Etyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
3377 -- For enumeration types with non-standard representations, we
3378 -- expand typ'Pred (x) into
3380 -- Pos_To_Rep (Rep_To_Pos (x) - 1)
3382 -- If the representation is contiguous, we compute instead
3383 -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
3384 -- The conversion function Enum_Pos_To_Rep is defined on the
3385 -- base type, not the subtype, so we have to use the base type
3386 -- explicitly for this and other enumeration attributes.
3388 if Is_Enumeration_Type
(Ptyp
)
3389 and then Present
(Enum_Pos_To_Rep
(Etyp
))
3391 if Has_Contiguous_Rep
(Etyp
) then
3393 Unchecked_Convert_To
(Ptyp
,
3396 Make_Integer_Literal
(Loc
,
3397 Enumeration_Rep
(First_Literal
(Ptyp
))),
3399 Make_Function_Call
(Loc
,
3402 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
3404 Parameter_Associations
=>
3406 Unchecked_Convert_To
(Ptyp
,
3407 Make_Op_Subtract
(Loc
,
3409 Unchecked_Convert_To
(Standard_Integer
,
3410 Relocate_Node
(First
(Exprs
))),
3412 Make_Integer_Literal
(Loc
, 1))),
3413 Rep_To_Pos_Flag
(Ptyp
, Loc
))))));
3416 -- Add Boolean parameter True, to request program errror if
3417 -- we have a bad representation on our hands. If checks are
3418 -- suppressed, then add False instead
3420 Append_To
(Exprs
, Rep_To_Pos_Flag
(Ptyp
, Loc
));
3422 Make_Indexed_Component
(Loc
,
3425 (Enum_Pos_To_Rep
(Etyp
), Loc
),
3426 Expressions
=> New_List
(
3427 Make_Op_Subtract
(Loc
,
3429 Make_Function_Call
(Loc
,
3432 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
3433 Parameter_Associations
=> Exprs
),
3434 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
3437 Analyze_And_Resolve
(N
, Typ
);
3439 -- For floating-point, we transform 'Pred into a call to the Pred
3440 -- floating-point attribute function in Fat_xxx (xxx is root type)
3442 elsif Is_Floating_Point_Type
(Ptyp
) then
3443 Expand_Fpt_Attribute_R
(N
);
3444 Analyze_And_Resolve
(N
, Typ
);
3446 -- For modular types, nothing to do (no overflow, since wraps)
3448 elsif Is_Modular_Integer_Type
(Ptyp
) then
3451 -- For other types, if argument is marked as needing a range check or
3452 -- overflow checking is enabled, we must generate a check.
3454 elsif not Overflow_Checks_Suppressed
(Ptyp
)
3455 or else Do_Range_Check
(First
(Exprs
))
3457 Set_Do_Range_Check
(First
(Exprs
), False);
3458 Expand_Pred_Succ
(N
);
3466 -- Ada 2005 (AI-327): Dynamic ceiling priorities
3468 -- We rewrite X'Priority as the following run-time call:
3470 -- Get_Ceiling (X._Object)
3472 -- Note that although X'Priority is notionally an object, it is quite
3473 -- deliberately not defined as an aliased object in the RM. This means
3474 -- that it works fine to rewrite it as a call, without having to worry
3475 -- about complications that would other arise from X'Priority'Access,
3476 -- which is illegal, because of the lack of aliasing.
3478 when Attribute_Priority
=>
3481 Conctyp
: Entity_Id
;
3482 Object_Parm
: Node_Id
;
3484 RT_Subprg_Name
: Node_Id
;
3487 -- Look for the enclosing concurrent type
3489 Conctyp
:= Current_Scope
;
3490 while not Is_Concurrent_Type
(Conctyp
) loop
3491 Conctyp
:= Scope
(Conctyp
);
3494 pragma Assert
(Is_Protected_Type
(Conctyp
));
3496 -- Generate the actual of the call
3498 Subprg
:= Current_Scope
;
3499 while not Present
(Protected_Body_Subprogram
(Subprg
)) loop
3500 Subprg
:= Scope
(Subprg
);
3503 -- Use of 'Priority inside protected entries and barriers (in
3504 -- both cases the type of the first formal of their expanded
3505 -- subprogram is Address)
3507 if Etype
(First_Entity
(Protected_Body_Subprogram
(Subprg
)))
3511 New_Itype
: Entity_Id
;
3514 -- In the expansion of protected entries the type of the
3515 -- first formal of the Protected_Body_Subprogram is an
3516 -- Address. In order to reference the _object component
3519 -- type T is access p__ptTV;
3522 New_Itype
:= Create_Itype
(E_Access_Type
, N
);
3523 Set_Etype
(New_Itype
, New_Itype
);
3524 Set_Directly_Designated_Type
(New_Itype
,
3525 Corresponding_Record_Type
(Conctyp
));
3526 Freeze_Itype
(New_Itype
, N
);
3529 -- T!(O)._object'unchecked_access
3532 Make_Attribute_Reference
(Loc
,
3534 Make_Selected_Component
(Loc
,
3536 Unchecked_Convert_To
(New_Itype
,
3539 (Protected_Body_Subprogram
(Subprg
)),
3542 Make_Identifier
(Loc
, Name_uObject
)),
3543 Attribute_Name
=> Name_Unchecked_Access
);
3546 -- Use of 'Priority inside a protected subprogram
3550 Make_Attribute_Reference
(Loc
,
3552 Make_Selected_Component
(Loc
,
3553 Prefix
=> New_Reference_To
3555 (Protected_Body_Subprogram
(Subprg
)),
3557 Selector_Name
=> Make_Identifier
(Loc
, Name_uObject
)),
3558 Attribute_Name
=> Name_Unchecked_Access
);
3561 -- Select the appropriate run-time subprogram
3563 if Number_Entries
(Conctyp
) = 0 then
3565 New_Reference_To
(RTE
(RE_Get_Ceiling
), Loc
);
3568 New_Reference_To
(RTE
(RO_PE_Get_Ceiling
), Loc
);
3572 Make_Function_Call
(Loc
,
3573 Name
=> RT_Subprg_Name
,
3574 Parameter_Associations
=> New_List
(Object_Parm
));
3578 -- Avoid the generation of extra checks on the pointer to the
3579 -- protected object.
3581 Analyze_And_Resolve
(N
, Typ
, Suppress
=> Access_Check
);
3588 when Attribute_Range_Length
=> Range_Length
: begin
3590 -- The only special processing required is for the case where
3591 -- Range_Length is applied to an enumeration type with holes.
3592 -- In this case we transform
3598 -- X'Pos (X'Last) - X'Pos (X'First) + 1
3600 -- So that the result reflects the proper Pos values instead
3601 -- of the underlying representations.
3603 if Is_Enumeration_Type
(Ptyp
)
3604 and then Has_Non_Standard_Rep
(Ptyp
)
3609 Make_Op_Subtract
(Loc
,
3611 Make_Attribute_Reference
(Loc
,
3612 Attribute_Name
=> Name_Pos
,
3613 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3614 Expressions
=> New_List
(
3615 Make_Attribute_Reference
(Loc
,
3616 Attribute_Name
=> Name_Last
,
3617 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
)))),
3620 Make_Attribute_Reference
(Loc
,
3621 Attribute_Name
=> Name_Pos
,
3622 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3623 Expressions
=> New_List
(
3624 Make_Attribute_Reference
(Loc
,
3625 Attribute_Name
=> Name_First
,
3626 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
))))),
3628 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
3630 Analyze_And_Resolve
(N
, Typ
);
3632 -- For all other cases, the attribute is handled by the back end, but
3633 -- we need to deal with the case of the range check on a universal
3637 Apply_Universal_Integer_Attribute_Checks
(N
);
3645 when Attribute_Read
=> Read
: declare
3646 P_Type
: constant Entity_Id
:= Entity
(Pref
);
3647 B_Type
: constant Entity_Id
:= Base_Type
(P_Type
);
3648 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
3658 -- If no underlying type, we have an error that will be diagnosed
3659 -- elsewhere, so here we just completely ignore the expansion.
3665 -- The simple case, if there is a TSS for Read, just call it
3667 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Read
);
3669 if Present
(Pname
) then
3673 -- If there is a Stream_Convert pragma, use it, we rewrite
3675 -- sourcetyp'Read (stream, Item)
3679 -- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
3681 -- where strmread is the given Read function that converts an
3682 -- argument of type strmtyp to type sourcetyp or a type from which
3683 -- it is derived. The conversion to sourcetyp is required in the
3686 -- A special case arises if Item is a type conversion in which
3687 -- case, we have to expand to:
3689 -- Itemx := typex (strmread (strmtyp'Input (Stream)));
3691 -- where Itemx is the expression of the type conversion (i.e.
3692 -- the actual object), and typex is the type of Itemx.
3694 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
3696 if Present
(Prag
) then
3697 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
3698 Rfunc
:= Entity
(Expression
(Arg2
));
3699 Lhs
:= Relocate_Node
(Next
(First
(Exprs
)));
3701 OK_Convert_To
(B_Type
,
3702 Make_Function_Call
(Loc
,
3703 Name
=> New_Occurrence_Of
(Rfunc
, Loc
),
3704 Parameter_Associations
=> New_List
(
3705 Make_Attribute_Reference
(Loc
,
3708 (Etype
(First_Formal
(Rfunc
)), Loc
),
3709 Attribute_Name
=> Name_Input
,
3710 Expressions
=> New_List
(
3711 Relocate_Node
(First
(Exprs
)))))));
3713 if Nkind
(Lhs
) = N_Type_Conversion
then
3714 Lhs
:= Expression
(Lhs
);
3715 Rhs
:= Convert_To
(Etype
(Lhs
), Rhs
);
3719 Make_Assignment_Statement
(Loc
,
3721 Expression
=> Rhs
));
3722 Set_Assignment_OK
(Lhs
);
3726 -- For elementary types, we call the I_xxx routine using the first
3727 -- parameter and then assign the result into the second parameter.
3728 -- We set Assignment_OK to deal with the conversion case.
3730 elsif Is_Elementary_Type
(U_Type
) then
3736 Lhs
:= Relocate_Node
(Next
(First
(Exprs
)));
3737 Rhs
:= Build_Elementary_Input_Call
(N
);
3739 if Nkind
(Lhs
) = N_Type_Conversion
then
3740 Lhs
:= Expression
(Lhs
);
3741 Rhs
:= Convert_To
(Etype
(Lhs
), Rhs
);
3744 Set_Assignment_OK
(Lhs
);
3747 Make_Assignment_Statement
(Loc
,
3749 Expression
=> Rhs
));
3757 elsif Is_Array_Type
(U_Type
) then
3758 Build_Array_Read_Procedure
(N
, U_Type
, Decl
, Pname
);
3759 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
3761 -- Tagged type case, use the primitive Read function. Note that
3762 -- this will dispatch in the class-wide case which is what we want
3764 elsif Is_Tagged_Type
(U_Type
) then
3765 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Read
);
3767 -- All other record type cases, including protected records. The
3768 -- latter only arise for expander generated code for handling
3769 -- shared passive partition access.
3773 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
3775 -- Ada 2005 (AI-216): Program_Error is raised when executing
3776 -- the default implementation of the Read attribute of an
3777 -- Unchecked_Union type.
3779 if Is_Unchecked_Union
(Base_Type
(U_Type
)) then
3781 Make_Raise_Program_Error
(Loc
,
3782 Reason
=> PE_Unchecked_Union_Restriction
));
3785 if Has_Discriminants
(U_Type
)
3787 (Discriminant_Default_Value
(First_Discriminant
(U_Type
)))
3789 Build_Mutable_Record_Read_Procedure
3790 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
3792 Build_Record_Read_Procedure
3793 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
3796 -- Suppress checks, uninitialized or otherwise invalid
3797 -- data does not cause constraint errors to be raised for
3798 -- a complete record read.
3800 Insert_Action
(N
, Decl
, All_Checks
);
3804 Rewrite_Stream_Proc_Call
(Pname
);
3811 -- Ref is identical to To_Address, see To_Address for processing
3817 -- Transforms 'Remainder into a call to the floating-point attribute
3818 -- function Remainder in Fat_xxx (where xxx is the root type)
3820 when Attribute_Remainder
=>
3821 Expand_Fpt_Attribute_RR
(N
);
3827 -- Transform 'Result into reference to _Result formal. At the point
3828 -- where a legal 'Result attribute is expanded, we know that we are in
3829 -- the context of a _Postcondition function with a _Result parameter.
3831 when Attribute_Result
=>
3832 Rewrite
(N
, Make_Identifier
(Loc
, Chars
=> Name_uResult
));
3833 Analyze_And_Resolve
(N
, Typ
);
3839 -- The handling of the Round attribute is quite delicate. The processing
3840 -- in Sem_Attr introduced a conversion to universal real, reflecting the
3841 -- semantics of Round, but we do not want anything to do with universal
3842 -- real at runtime, since this corresponds to using floating-point
3845 -- What we have now is that the Etype of the Round attribute correctly
3846 -- indicates the final result type. The operand of the Round is the
3847 -- conversion to universal real, described above, and the operand of
3848 -- this conversion is the actual operand of Round, which may be the
3849 -- special case of a fixed point multiplication or division (Etype =
3852 -- The exapander will expand first the operand of the conversion, then
3853 -- the conversion, and finally the round attribute itself, since we
3854 -- always work inside out. But we cannot simply process naively in this
3855 -- order. In the semantic world where universal fixed and real really
3856 -- exist and have infinite precision, there is no problem, but in the
3857 -- implementation world, where universal real is a floating-point type,
3858 -- we would get the wrong result.
3860 -- So the approach is as follows. First, when expanding a multiply or
3861 -- divide whose type is universal fixed, we do nothing at all, instead
3862 -- deferring the operation till later.
3864 -- The actual processing is done in Expand_N_Type_Conversion which
3865 -- handles the special case of Round by looking at its parent to see if
3866 -- it is a Round attribute, and if it is, handling the conversion (or
3867 -- its fixed multiply/divide child) in an appropriate manner.
3869 -- This means that by the time we get to expanding the Round attribute
3870 -- itself, the Round is nothing more than a type conversion (and will
3871 -- often be a null type conversion), so we just replace it with the
3872 -- appropriate conversion operation.
3874 when Attribute_Round
=>
3876 Convert_To
(Etype
(N
), Relocate_Node
(First
(Exprs
))));
3877 Analyze_And_Resolve
(N
);
3883 -- Transforms 'Rounding into a call to the floating-point attribute
3884 -- function Rounding in Fat_xxx (where xxx is the root type)
3886 when Attribute_Rounding
=>
3887 Expand_Fpt_Attribute_R
(N
);
3893 -- Transforms 'Scaling into a call to the floating-point attribute
3894 -- function Scaling in Fat_xxx (where xxx is the root type)
3896 when Attribute_Scaling
=>
3897 Expand_Fpt_Attribute_RI
(N
);
3903 when Attribute_Size |
3904 Attribute_Object_Size |
3905 Attribute_Value_Size |
3906 Attribute_VADS_Size
=> Size
:
3913 -- Processing for VADS_Size case. Note that this processing removes
3914 -- all traces of VADS_Size from the tree, and completes all required
3915 -- processing for VADS_Size by translating the attribute reference
3916 -- to an appropriate Size or Object_Size reference.
3918 if Id
= Attribute_VADS_Size
3919 or else (Use_VADS_Size
and then Id
= Attribute_Size
)
3921 -- If the size is specified, then we simply use the specified
3922 -- size. This applies to both types and objects. The size of an
3923 -- object can be specified in the following ways:
3925 -- An explicit size object is given for an object
3926 -- A component size is specified for an indexed component
3927 -- A component clause is specified for a selected component
3928 -- The object is a component of a packed composite object
3930 -- If the size is specified, then VADS_Size of an object
3932 if (Is_Entity_Name
(Pref
)
3933 and then Present
(Size_Clause
(Entity
(Pref
))))
3935 (Nkind
(Pref
) = N_Component_Clause
3936 and then (Present
(Component_Clause
3937 (Entity
(Selector_Name
(Pref
))))
3938 or else Is_Packed
(Etype
(Prefix
(Pref
)))))
3940 (Nkind
(Pref
) = N_Indexed_Component
3941 and then (Component_Size
(Etype
(Prefix
(Pref
))) /= 0
3942 or else Is_Packed
(Etype
(Prefix
(Pref
)))))
3944 Set_Attribute_Name
(N
, Name_Size
);
3946 -- Otherwise if we have an object rather than a type, then the
3947 -- VADS_Size attribute applies to the type of the object, rather
3948 -- than the object itself. This is one of the respects in which
3949 -- VADS_Size differs from Size.
3952 if (not Is_Entity_Name
(Pref
)
3953 or else not Is_Type
(Entity
(Pref
)))
3954 and then (Is_Scalar_Type
(Ptyp
) or else Is_Constrained
(Ptyp
))
3956 Rewrite
(Pref
, New_Occurrence_Of
(Ptyp
, Loc
));
3959 -- For a scalar type for which no size was explicitly given,
3960 -- VADS_Size means Object_Size. This is the other respect in
3961 -- which VADS_Size differs from Size.
3963 if Is_Scalar_Type
(Ptyp
) and then No
(Size_Clause
(Ptyp
)) then
3964 Set_Attribute_Name
(N
, Name_Object_Size
);
3966 -- In all other cases, Size and VADS_Size are the sane
3969 Set_Attribute_Name
(N
, Name_Size
);
3974 -- For class-wide types, X'Class'Size is transformed into a direct
3975 -- reference to the Size of the class type, so that the back end does
3976 -- not have to deal with the X'Class'Size reference.
3978 if Is_Entity_Name
(Pref
)
3979 and then Is_Class_Wide_Type
(Entity
(Pref
))
3981 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
3984 -- For X'Size applied to an object of a class-wide type, transform
3985 -- X'Size into a call to the primitive operation _Size applied to X.
3987 elsif Is_Class_Wide_Type
(Ptyp
)
3988 or else (Id
= Attribute_Size
3989 and then Is_Tagged_Type
(Ptyp
)
3990 and then Has_Unknown_Discriminants
(Ptyp
))
3992 -- No need to do anything else compiling under restriction
3993 -- No_Dispatching_Calls. During the semantic analysis we
3994 -- already notified such violation.
3996 if Restriction_Active
(No_Dispatching_Calls
) then
4001 Make_Function_Call
(Loc
,
4002 Name
=> New_Reference_To
4003 (Find_Prim_Op
(Ptyp
, Name_uSize
), Loc
),
4004 Parameter_Associations
=> New_List
(Pref
));
4006 if Typ
/= Standard_Long_Long_Integer
then
4008 -- The context is a specific integer type with which the
4009 -- original attribute was compatible. The function has a
4010 -- specific type as well, so to preserve the compatibility
4011 -- we must convert explicitly.
4013 New_Node
:= Convert_To
(Typ
, New_Node
);
4016 Rewrite
(N
, New_Node
);
4017 Analyze_And_Resolve
(N
, Typ
);
4020 -- Case of known RM_Size of a type
4022 elsif (Id
= Attribute_Size
or else Id
= Attribute_Value_Size
)
4023 and then Is_Entity_Name
(Pref
)
4024 and then Is_Type
(Entity
(Pref
))
4025 and then Known_Static_RM_Size
(Entity
(Pref
))
4027 Siz
:= RM_Size
(Entity
(Pref
));
4029 -- Case of known Esize of a type
4031 elsif Id
= Attribute_Object_Size
4032 and then Is_Entity_Name
(Pref
)
4033 and then Is_Type
(Entity
(Pref
))
4034 and then Known_Static_Esize
(Entity
(Pref
))
4036 Siz
:= Esize
(Entity
(Pref
));
4038 -- Case of known size of object
4040 elsif Id
= Attribute_Size
4041 and then Is_Entity_Name
(Pref
)
4042 and then Is_Object
(Entity
(Pref
))
4043 and then Known_Esize
(Entity
(Pref
))
4044 and then Known_Static_Esize
(Entity
(Pref
))
4046 Siz
:= Esize
(Entity
(Pref
));
4048 -- For an array component, we can do Size in the front end
4049 -- if the component_size of the array is set.
4051 elsif Nkind
(Pref
) = N_Indexed_Component
then
4052 Siz
:= Component_Size
(Etype
(Prefix
(Pref
)));
4054 -- For a record component, we can do Size in the front end if there
4055 -- is a component clause, or if the record is packed and the
4056 -- component's size is known at compile time.
4058 elsif Nkind
(Pref
) = N_Selected_Component
then
4060 Rec
: constant Entity_Id
:= Etype
(Prefix
(Pref
));
4061 Comp
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
4064 if Present
(Component_Clause
(Comp
)) then
4065 Siz
:= Esize
(Comp
);
4067 elsif Is_Packed
(Rec
) then
4068 Siz
:= RM_Size
(Ptyp
);
4071 Apply_Universal_Integer_Attribute_Checks
(N
);
4076 -- All other cases are handled by the back end
4079 Apply_Universal_Integer_Attribute_Checks
(N
);
4081 -- If Size is applied to a formal parameter that is of a packed
4082 -- array subtype, then apply Size to the actual subtype.
4084 if Is_Entity_Name
(Pref
)
4085 and then Is_Formal
(Entity
(Pref
))
4086 and then Is_Array_Type
(Ptyp
)
4087 and then Is_Packed
(Ptyp
)
4090 Make_Attribute_Reference
(Loc
,
4092 New_Occurrence_Of
(Get_Actual_Subtype
(Pref
), Loc
),
4093 Attribute_Name
=> Name_Size
));
4094 Analyze_And_Resolve
(N
, Typ
);
4097 -- If Size applies to a dereference of an access to unconstrained
4098 -- packed array, the back end needs to see its unconstrained
4099 -- nominal type, but also a hint to the actual constrained type.
4101 if Nkind
(Pref
) = N_Explicit_Dereference
4102 and then Is_Array_Type
(Ptyp
)
4103 and then not Is_Constrained
(Ptyp
)
4104 and then Is_Packed
(Ptyp
)
4106 Set_Actual_Designated_Subtype
(Pref
,
4107 Get_Actual_Subtype
(Pref
));
4113 -- Common processing for record and array component case
4115 if Siz
/= No_Uint
and then Siz
/= 0 then
4117 CS
: constant Boolean := Comes_From_Source
(N
);
4120 Rewrite
(N
, Make_Integer_Literal
(Loc
, Siz
));
4122 -- This integer literal is not a static expression. We do not
4123 -- call Analyze_And_Resolve here, because this would activate
4124 -- the circuit for deciding that a static value was out of
4125 -- range, and we don't want that.
4127 -- So just manually set the type, mark the expression as non-
4128 -- static, and then ensure that the result is checked properly
4129 -- if the attribute comes from source (if it was internally
4130 -- generated, we never need a constraint check).
4133 Set_Is_Static_Expression
(N
, False);
4136 Apply_Constraint_Check
(N
, Typ
);
4146 when Attribute_Storage_Pool
=>
4148 Make_Type_Conversion
(Loc
,
4149 Subtype_Mark
=> New_Reference_To
(Etype
(N
), Loc
),
4150 Expression
=> New_Reference_To
(Entity
(N
), Loc
)));
4151 Analyze_And_Resolve
(N
, Typ
);
4157 when Attribute_Storage_Size
=> Storage_Size
: begin
4159 -- Access type case, always go to the root type
4161 -- The case of access types results in a value of zero for the case
4162 -- where no storage size attribute clause has been given. If a
4163 -- storage size has been given, then the attribute is converted
4164 -- to a reference to the variable used to hold this value.
4166 if Is_Access_Type
(Ptyp
) then
4167 if Present
(Storage_Size_Variable
(Root_Type
(Ptyp
))) then
4169 Make_Attribute_Reference
(Loc
,
4170 Prefix
=> New_Reference_To
(Typ
, Loc
),
4171 Attribute_Name
=> Name_Max
,
4172 Expressions
=> New_List
(
4173 Make_Integer_Literal
(Loc
, 0),
4176 (Storage_Size_Variable
(Root_Type
(Ptyp
)), Loc
)))));
4178 elsif Present
(Associated_Storage_Pool
(Root_Type
(Ptyp
))) then
4181 Make_Function_Call
(Loc
,
4185 (Etype
(Associated_Storage_Pool
(Root_Type
(Ptyp
))),
4186 Attribute_Name
(N
)),
4189 Parameter_Associations
=> New_List
(
4191 (Associated_Storage_Pool
(Root_Type
(Ptyp
)), Loc
)))));
4194 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
4197 Analyze_And_Resolve
(N
, Typ
);
4199 -- For tasks, we retrieve the size directly from the TCB. The
4200 -- size may depend on a discriminant of the type, and therefore
4201 -- can be a per-object expression, so type-level information is
4202 -- not sufficient in general. There are four cases to consider:
4204 -- a) If the attribute appears within a task body, the designated
4205 -- TCB is obtained by a call to Self.
4207 -- b) If the prefix of the attribute is the name of a task object,
4208 -- the designated TCB is the one stored in the corresponding record.
4210 -- c) If the prefix is a task type, the size is obtained from the
4211 -- size variable created for each task type
4213 -- d) If no storage_size was specified for the type , there is no
4214 -- size variable, and the value is a system-specific default.
4217 if In_Open_Scopes
(Ptyp
) then
4219 -- Storage_Size (Self)
4223 Make_Function_Call
(Loc
,
4225 New_Occurrence_Of
(RTE
(RE_Storage_Size
), Loc
),
4226 Parameter_Associations
=>
4228 Make_Function_Call
(Loc
,
4230 New_Reference_To
(RTE
(RE_Self
), Loc
))))));
4232 elsif not Is_Entity_Name
(Pref
)
4233 or else not Is_Type
(Entity
(Pref
))
4235 -- Storage_Size (Rec (Obj).Size)
4239 Make_Function_Call
(Loc
,
4241 New_Occurrence_Of
(RTE
(RE_Storage_Size
), Loc
),
4242 Parameter_Associations
=>
4244 Make_Selected_Component
(Loc
,
4246 Unchecked_Convert_To
(
4247 Corresponding_Record_Type
(Ptyp
),
4248 New_Copy_Tree
(Pref
)),
4250 Make_Identifier
(Loc
, Name_uTask_Id
))))));
4252 elsif Present
(Storage_Size_Variable
(Ptyp
)) then
4254 -- Static storage size pragma given for type: retrieve value
4255 -- from its allocated storage variable.
4259 Make_Function_Call
(Loc
,
4260 Name
=> New_Occurrence_Of
(
4261 RTE
(RE_Adjust_Storage_Size
), Loc
),
4262 Parameter_Associations
=>
4265 Storage_Size_Variable
(Ptyp
), Loc
)))));
4267 -- Get system default
4271 Make_Function_Call
(Loc
,
4274 RTE
(RE_Default_Stack_Size
), Loc
))));
4277 Analyze_And_Resolve
(N
, Typ
);
4285 when Attribute_Stream_Size
=> Stream_Size
: declare
4289 -- If we have a Stream_Size clause for this type use it, otherwise
4290 -- the Stream_Size if the size of the type.
4292 if Has_Stream_Size_Clause
(Ptyp
) then
4295 (Static_Integer
(Expression
(Stream_Size_Clause
(Ptyp
))));
4297 Size
:= UI_To_Int
(Esize
(Ptyp
));
4300 Rewrite
(N
, Make_Integer_Literal
(Loc
, Intval
=> Size
));
4301 Analyze_And_Resolve
(N
, Typ
);
4308 -- 1. Deal with enumeration types with holes
4309 -- 2. For floating-point, generate call to attribute function
4310 -- 3. For other cases, deal with constraint checking
4312 when Attribute_Succ
=> Succ
: declare
4313 Etyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
4317 -- For enumeration types with non-standard representations, we
4318 -- expand typ'Succ (x) into
4320 -- Pos_To_Rep (Rep_To_Pos (x) + 1)
4322 -- If the representation is contiguous, we compute instead
4323 -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
4325 if Is_Enumeration_Type
(Ptyp
)
4326 and then Present
(Enum_Pos_To_Rep
(Etyp
))
4328 if Has_Contiguous_Rep
(Etyp
) then
4330 Unchecked_Convert_To
(Ptyp
,
4333 Make_Integer_Literal
(Loc
,
4334 Enumeration_Rep
(First_Literal
(Ptyp
))),
4336 Make_Function_Call
(Loc
,
4339 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
4341 Parameter_Associations
=>
4343 Unchecked_Convert_To
(Ptyp
,
4346 Unchecked_Convert_To
(Standard_Integer
,
4347 Relocate_Node
(First
(Exprs
))),
4349 Make_Integer_Literal
(Loc
, 1))),
4350 Rep_To_Pos_Flag
(Ptyp
, Loc
))))));
4352 -- Add Boolean parameter True, to request program errror if
4353 -- we have a bad representation on our hands. Add False if
4354 -- checks are suppressed.
4356 Append_To
(Exprs
, Rep_To_Pos_Flag
(Ptyp
, Loc
));
4358 Make_Indexed_Component
(Loc
,
4361 (Enum_Pos_To_Rep
(Etyp
), Loc
),
4362 Expressions
=> New_List
(
4365 Make_Function_Call
(Loc
,
4368 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
4369 Parameter_Associations
=> Exprs
),
4370 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
4373 Analyze_And_Resolve
(N
, Typ
);
4375 -- For floating-point, we transform 'Succ into a call to the Succ
4376 -- floating-point attribute function in Fat_xxx (xxx is root type)
4378 elsif Is_Floating_Point_Type
(Ptyp
) then
4379 Expand_Fpt_Attribute_R
(N
);
4380 Analyze_And_Resolve
(N
, Typ
);
4382 -- For modular types, nothing to do (no overflow, since wraps)
4384 elsif Is_Modular_Integer_Type
(Ptyp
) then
4387 -- For other types, if argument is marked as needing a range check or
4388 -- overflow checking is enabled, we must generate a check.
4390 elsif not Overflow_Checks_Suppressed
(Ptyp
)
4391 or else Do_Range_Check
(First
(Exprs
))
4393 Set_Do_Range_Check
(First
(Exprs
), False);
4394 Expand_Pred_Succ
(N
);
4402 -- Transforms X'Tag into a direct reference to the tag of X
4404 when Attribute_Tag
=> Tag
: declare
4406 Prefix_Is_Type
: Boolean;
4409 if Is_Entity_Name
(Pref
) and then Is_Type
(Entity
(Pref
)) then
4410 Ttyp
:= Entity
(Pref
);
4411 Prefix_Is_Type
:= True;
4414 Prefix_Is_Type
:= False;
4417 if Is_Class_Wide_Type
(Ttyp
) then
4418 Ttyp
:= Root_Type
(Ttyp
);
4421 Ttyp
:= Underlying_Type
(Ttyp
);
4423 -- Ada 2005: The type may be a synchronized tagged type, in which
4424 -- case the tag information is stored in the corresponding record.
4426 if Is_Concurrent_Type
(Ttyp
) then
4427 Ttyp
:= Corresponding_Record_Type
(Ttyp
);
4430 if Prefix_Is_Type
then
4432 -- For VMs we leave the type attribute unexpanded because
4433 -- there's not a dispatching table to reference.
4435 if Tagged_Type_Expansion
then
4437 Unchecked_Convert_To
(RTE
(RE_Tag
),
4439 (Node
(First_Elmt
(Access_Disp_Table
(Ttyp
))), Loc
)));
4440 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
4443 -- Ada 2005 (AI-251): The use of 'Tag in the sources always
4444 -- references the primary tag of the actual object. If 'Tag is
4445 -- applied to class-wide interface objects we generate code that
4446 -- displaces "this" to reference the base of the object.
4448 elsif Comes_From_Source
(N
)
4449 and then Is_Class_Wide_Type
(Etype
(Prefix
(N
)))
4450 and then Is_Interface
(Etype
(Prefix
(N
)))
4453 -- (To_Tag_Ptr (Prefix'Address)).all
4455 -- Note that Prefix'Address is recursively expanded into a call
4456 -- to Base_Address (Obj.Tag)
4458 -- Not needed for VM targets, since all handled by the VM
4460 if Tagged_Type_Expansion
then
4462 Make_Explicit_Dereference
(Loc
,
4463 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
4464 Make_Attribute_Reference
(Loc
,
4465 Prefix
=> Relocate_Node
(Pref
),
4466 Attribute_Name
=> Name_Address
))));
4467 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
4472 Make_Selected_Component
(Loc
,
4473 Prefix
=> Relocate_Node
(Pref
),
4475 New_Reference_To
(First_Tag_Component
(Ttyp
), Loc
)));
4476 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
4484 -- Transforms 'Terminated attribute into a call to Terminated function
4486 when Attribute_Terminated
=> Terminated
:
4488 -- The prefix of Terminated is of a task interface class-wide type.
4490 -- terminated (Task_Id (Pref._disp_get_task_id));
4492 if Ada_Version
>= Ada_2005
4493 and then Ekind
(Ptyp
) = E_Class_Wide_Type
4494 and then Is_Interface
(Ptyp
)
4495 and then Is_Task_Interface
(Ptyp
)
4498 Make_Function_Call
(Loc
,
4500 New_Reference_To
(RTE
(RE_Terminated
), Loc
),
4501 Parameter_Associations
=> New_List
(
4502 Make_Unchecked_Type_Conversion
(Loc
,
4504 New_Reference_To
(RTE
(RO_ST_Task_Id
), Loc
),
4506 Make_Selected_Component
(Loc
,
4508 New_Copy_Tree
(Pref
),
4510 Make_Identifier
(Loc
, Name_uDisp_Get_Task_Id
))))));
4512 elsif Restricted_Profile
then
4514 Build_Call_With_Task
(Pref
, RTE
(RE_Restricted_Terminated
)));
4518 Build_Call_With_Task
(Pref
, RTE
(RE_Terminated
)));
4521 Analyze_And_Resolve
(N
, Standard_Boolean
);
4528 -- Transforms System'To_Address (X) and System.Address'Ref (X) into
4529 -- unchecked conversion from (integral) type of X to type address.
4531 when Attribute_To_Address | Attribute_Ref
=>
4533 Unchecked_Convert_To
(RTE
(RE_Address
),
4534 Relocate_Node
(First
(Exprs
))));
4535 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
4541 when Attribute_To_Any
=> To_Any
: declare
4542 P_Type
: constant Entity_Id
:= Etype
(Pref
);
4543 Decls
: constant List_Id
:= New_List
;
4547 (Convert_To
(P_Type
,
4548 Relocate_Node
(First
(Exprs
))), Decls
));
4549 Insert_Actions
(N
, Decls
);
4550 Analyze_And_Resolve
(N
, RTE
(RE_Any
));
4557 -- Transforms 'Truncation into a call to the floating-point attribute
4558 -- function Truncation in Fat_xxx (where xxx is the root type).
4559 -- Expansion is avoided for cases the back end can handle directly.
4561 when Attribute_Truncation
=>
4562 if not Is_Inline_Floating_Point_Attribute
(N
) then
4563 Expand_Fpt_Attribute_R
(N
);
4570 when Attribute_TypeCode
=> TypeCode
: declare
4571 P_Type
: constant Entity_Id
:= Etype
(Pref
);
4572 Decls
: constant List_Id
:= New_List
;
4574 Rewrite
(N
, Build_TypeCode_Call
(Loc
, P_Type
, Decls
));
4575 Insert_Actions
(N
, Decls
);
4576 Analyze_And_Resolve
(N
, RTE
(RE_TypeCode
));
4579 -----------------------
4580 -- Unbiased_Rounding --
4581 -----------------------
4583 -- Transforms 'Unbiased_Rounding into a call to the floating-point
4584 -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
4585 -- root type). Expansion is avoided for cases the back end can handle
4588 when Attribute_Unbiased_Rounding
=>
4589 if not Is_Inline_Floating_Point_Attribute
(N
) then
4590 Expand_Fpt_Attribute_R
(N
);
4597 when Attribute_UET_Address
=> UET_Address
: declare
4598 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
4602 Make_Object_Declaration
(Loc
,
4603 Defining_Identifier
=> Ent
,
4604 Aliased_Present
=> True,
4605 Object_Definition
=>
4606 New_Occurrence_Of
(RTE
(RE_Address
), Loc
)));
4608 -- Construct name __gnat_xxx__SDP, where xxx is the unit name
4609 -- in normal external form.
4611 Get_External_Unit_Name_String
(Get_Unit_Name
(Pref
));
4612 Name_Buffer
(1 + 7 .. Name_Len
+ 7) := Name_Buffer
(1 .. Name_Len
);
4613 Name_Len
:= Name_Len
+ 7;
4614 Name_Buffer
(1 .. 7) := "__gnat_";
4615 Name_Buffer
(Name_Len
+ 1 .. Name_Len
+ 5) := "__SDP";
4616 Name_Len
:= Name_Len
+ 5;
4618 Set_Is_Imported
(Ent
);
4619 Set_Interface_Name
(Ent
,
4620 Make_String_Literal
(Loc
,
4621 Strval
=> String_From_Name_Buffer
));
4623 -- Set entity as internal to ensure proper Sprint output of its
4624 -- implicit importation.
4626 Set_Is_Internal
(Ent
);
4629 Make_Attribute_Reference
(Loc
,
4630 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
4631 Attribute_Name
=> Name_Address
));
4633 Analyze_And_Resolve
(N
, Typ
);
4640 -- The processing for VADS_Size is shared with Size
4646 -- For enumeration types with a standard representation, and for all
4647 -- other types, Val is handled by the back end. For enumeration types
4648 -- with a non-standard representation we use the _Pos_To_Rep array that
4649 -- was created when the type was frozen.
4651 when Attribute_Val
=> Val
: declare
4652 Etyp
: constant Entity_Id
:= Base_Type
(Entity
(Pref
));
4655 if Is_Enumeration_Type
(Etyp
)
4656 and then Present
(Enum_Pos_To_Rep
(Etyp
))
4658 if Has_Contiguous_Rep
(Etyp
) then
4660 Rep_Node
: constant Node_Id
:=
4661 Unchecked_Convert_To
(Etyp
,
4664 Make_Integer_Literal
(Loc
,
4665 Enumeration_Rep
(First_Literal
(Etyp
))),
4667 (Convert_To
(Standard_Integer
,
4668 Relocate_Node
(First
(Exprs
))))));
4672 Unchecked_Convert_To
(Etyp
,
4675 Make_Integer_Literal
(Loc
,
4676 Enumeration_Rep
(First_Literal
(Etyp
))),
4678 Make_Function_Call
(Loc
,
4681 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
4682 Parameter_Associations
=> New_List
(
4684 Rep_To_Pos_Flag
(Etyp
, Loc
))))));
4689 Make_Indexed_Component
(Loc
,
4690 Prefix
=> New_Reference_To
(Enum_Pos_To_Rep
(Etyp
), Loc
),
4691 Expressions
=> New_List
(
4692 Convert_To
(Standard_Integer
,
4693 Relocate_Node
(First
(Exprs
))))));
4696 Analyze_And_Resolve
(N
, Typ
);
4698 -- If the argument is marked as requiring a range check then generate
4701 elsif Do_Range_Check
(First
(Exprs
)) then
4702 Set_Do_Range_Check
(First
(Exprs
), False);
4703 Generate_Range_Check
(First
(Exprs
), Etyp
, CE_Range_Check_Failed
);
4711 -- The code for valid is dependent on the particular types involved.
4712 -- See separate sections below for the generated code in each case.
4714 when Attribute_Valid
=> Valid
: declare
4715 Btyp
: Entity_Id
:= Base_Type
(Ptyp
);
4718 Save_Validity_Checks_On
: constant Boolean := Validity_Checks_On
;
4719 -- Save the validity checking mode. We always turn off validity
4720 -- checking during process of 'Valid since this is one place
4721 -- where we do not want the implicit validity checks to intefere
4722 -- with the explicit validity check that the programmer is doing.
4724 function Make_Range_Test
return Node_Id
;
4725 -- Build the code for a range test of the form
4726 -- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
4728 ---------------------
4729 -- Make_Range_Test --
4730 ---------------------
4732 function Make_Range_Test
return Node_Id
is
4733 Temp
: constant Node_Id
:= Duplicate_Subexpr
(Pref
);
4736 -- The value whose validity is being checked has been captured in
4737 -- an object declaration. We certainly don't want this object to
4738 -- appear valid because the declaration initializes it!
4740 if Is_Entity_Name
(Temp
) then
4741 Set_Is_Known_Valid
(Entity
(Temp
), False);
4747 Unchecked_Convert_To
(Btyp
, Temp
),
4751 Unchecked_Convert_To
(Btyp
,
4752 Make_Attribute_Reference
(Loc
,
4753 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4754 Attribute_Name
=> Name_First
)),
4756 Unchecked_Convert_To
(Btyp
,
4757 Make_Attribute_Reference
(Loc
,
4758 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4759 Attribute_Name
=> Name_Last
))));
4760 end Make_Range_Test
;
4762 -- Start of processing for Attribute_Valid
4765 -- Do not expand sourced code 'Valid reference in CodePeer mode,
4766 -- will be handled by the back-end directly.
4768 if CodePeer_Mode
and then Comes_From_Source
(N
) then
4772 -- Turn off validity checks. We do not want any implicit validity
4773 -- checks to intefere with the explicit check from the attribute
4775 Validity_Checks_On
:= False;
4777 -- Floating-point case. This case is handled by the Valid attribute
4778 -- code in the floating-point attribute run-time library.
4780 if Is_Floating_Point_Type
(Ptyp
) then
4787 case Float_Rep
(Btyp
) is
4789 -- For vax fpt types, call appropriate routine in special
4790 -- vax floating point unit. No need to worry about loads in
4791 -- this case, since these types have no signalling NaN's.
4793 when VAX_Native
=> Expand_Vax_Valid
(N
);
4795 -- The AAMP back end handles Valid for floating-point types
4798 Analyze_And_Resolve
(Pref
, Ptyp
);
4799 Set_Etype
(N
, Standard_Boolean
);
4803 Find_Fat_Info
(Ptyp
, Ftp
, Pkg
);
4805 -- If the floating-point object might be unaligned, we
4806 -- need to call the special routine Unaligned_Valid,
4807 -- which makes the needed copy, being careful not to
4808 -- load the value into any floating-point register.
4809 -- The argument in this case is obj'Address (see
4810 -- Unaligned_Valid routine in Fat_Gen).
4812 if Is_Possibly_Unaligned_Object
(Pref
) then
4813 Expand_Fpt_Attribute
4814 (N
, Pkg
, Name_Unaligned_Valid
,
4816 Make_Attribute_Reference
(Loc
,
4817 Prefix
=> Relocate_Node
(Pref
),
4818 Attribute_Name
=> Name_Address
)));
4820 -- In the normal case where we are sure the object is
4821 -- aligned, we generate a call to Valid, and the argument
4822 -- in this case is obj'Unrestricted_Access (after
4823 -- converting obj to the right floating-point type).
4826 Expand_Fpt_Attribute
4827 (N
, Pkg
, Name_Valid
,
4829 Make_Attribute_Reference
(Loc
,
4830 Prefix
=> Unchecked_Convert_To
(Ftp
, Pref
),
4831 Attribute_Name
=> Name_Unrestricted_Access
)));
4835 -- One more task, we still need a range check. Required
4836 -- only if we have a constraint, since the Valid routine
4837 -- catches infinities properly (infinities are never valid).
4839 -- The way we do the range check is simply to create the
4840 -- expression: Valid (N) and then Base_Type(Pref) in Typ.
4842 if not Subtypes_Statically_Match
(Ptyp
, Btyp
) then
4845 Left_Opnd
=> Relocate_Node
(N
),
4848 Left_Opnd
=> Convert_To
(Btyp
, Pref
),
4849 Right_Opnd
=> New_Occurrence_Of
(Ptyp
, Loc
))));
4853 -- Enumeration type with holes
4855 -- For enumeration types with holes, the Pos value constructed by
4856 -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
4857 -- second argument of False returns minus one for an invalid value,
4858 -- and the non-negative pos value for a valid value, so the
4859 -- expansion of X'Valid is simply:
4861 -- type(X)'Pos (X) >= 0
4863 -- We can't quite generate it that way because of the requirement
4864 -- for the non-standard second argument of False in the resulting
4865 -- rep_to_pos call, so we have to explicitly create:
4867 -- _rep_to_pos (X, False) >= 0
4869 -- If we have an enumeration subtype, we also check that the
4870 -- value is in range:
4872 -- _rep_to_pos (X, False) >= 0
4874 -- (X >= type(X)'First and then type(X)'Last <= X)
4876 elsif Is_Enumeration_Type
(Ptyp
)
4877 and then Present
(Enum_Pos_To_Rep
(Base_Type
(Ptyp
)))
4882 Make_Function_Call
(Loc
,
4885 (TSS
(Base_Type
(Ptyp
), TSS_Rep_To_Pos
), Loc
),
4886 Parameter_Associations
=> New_List
(
4888 New_Occurrence_Of
(Standard_False
, Loc
))),
4889 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
4893 (Type_Low_Bound
(Ptyp
) /= Type_Low_Bound
(Btyp
)
4895 Type_High_Bound
(Ptyp
) /= Type_High_Bound
(Btyp
))
4897 -- The call to Make_Range_Test will create declarations
4898 -- that need a proper insertion point, but Pref is now
4899 -- attached to a node with no ancestor. Attach to tree
4900 -- even if it is to be rewritten below.
4902 Set_Parent
(Tst
, Parent
(N
));
4906 Left_Opnd
=> Make_Range_Test
,
4912 -- Fortran convention booleans
4914 -- For the very special case of Fortran convention booleans, the
4915 -- value is always valid, since it is an integer with the semantics
4916 -- that non-zero is true, and any value is permissible.
4918 elsif Is_Boolean_Type
(Ptyp
)
4919 and then Convention
(Ptyp
) = Convention_Fortran
4921 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
4923 -- For biased representations, we will be doing an unchecked
4924 -- conversion without unbiasing the result. That means that the range
4925 -- test has to take this into account, and the proper form of the
4928 -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
4930 elsif Has_Biased_Representation
(Ptyp
) then
4931 Btyp
:= RTE
(RE_Unsigned_32
);
4935 Unchecked_Convert_To
(Btyp
, Duplicate_Subexpr
(Pref
)),
4937 Unchecked_Convert_To
(Btyp
,
4938 Make_Attribute_Reference
(Loc
,
4939 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4940 Attribute_Name
=> Name_Range_Length
))));
4942 -- For all other scalar types, what we want logically is a
4945 -- X in type(X)'First .. type(X)'Last
4947 -- But that's precisely what won't work because of possible
4948 -- unwanted optimization (and indeed the basic motivation for
4949 -- the Valid attribute is exactly that this test does not work!)
4950 -- What will work is:
4952 -- Btyp!(X) >= Btyp!(type(X)'First)
4954 -- Btyp!(X) <= Btyp!(type(X)'Last)
4956 -- where Btyp is an integer type large enough to cover the full
4957 -- range of possible stored values (i.e. it is chosen on the basis
4958 -- of the size of the type, not the range of the values). We write
4959 -- this as two tests, rather than a range check, so that static
4960 -- evaluation will easily remove either or both of the checks if
4961 -- they can be -statically determined to be true (this happens
4962 -- when the type of X is static and the range extends to the full
4963 -- range of stored values).
4965 -- Unsigned types. Note: it is safe to consider only whether the
4966 -- subtype is unsigned, since we will in that case be doing all
4967 -- unsigned comparisons based on the subtype range. Since we use the
4968 -- actual subtype object size, this is appropriate.
4970 -- For example, if we have
4972 -- subtype x is integer range 1 .. 200;
4973 -- for x'Object_Size use 8;
4975 -- Now the base type is signed, but objects of this type are bits
4976 -- unsigned, and doing an unsigned test of the range 1 to 200 is
4977 -- correct, even though a value greater than 127 looks signed to a
4978 -- signed comparison.
4980 elsif Is_Unsigned_Type
(Ptyp
) then
4981 if Esize
(Ptyp
) <= 32 then
4982 Btyp
:= RTE
(RE_Unsigned_32
);
4984 Btyp
:= RTE
(RE_Unsigned_64
);
4987 Rewrite
(N
, Make_Range_Test
);
4992 if Esize
(Ptyp
) <= Esize
(Standard_Integer
) then
4993 Btyp
:= Standard_Integer
;
4995 Btyp
:= Universal_Integer
;
4998 Rewrite
(N
, Make_Range_Test
);
5001 Analyze_And_Resolve
(N
, Standard_Boolean
);
5002 Validity_Checks_On
:= Save_Validity_Checks_On
;
5009 -- Value attribute is handled in separate unti Exp_Imgv
5011 when Attribute_Value
=>
5012 Exp_Imgv
.Expand_Value_Attribute
(N
);
5018 -- The processing for Value_Size shares the processing for Size
5024 -- The processing for Version shares the processing for Body_Version
5030 -- Wide_Image attribute is handled in separate unit Exp_Imgv
5032 when Attribute_Wide_Image
=>
5033 Exp_Imgv
.Expand_Wide_Image_Attribute
(N
);
5035 ---------------------
5036 -- Wide_Wide_Image --
5037 ---------------------
5039 -- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
5041 when Attribute_Wide_Wide_Image
=>
5042 Exp_Imgv
.Expand_Wide_Wide_Image_Attribute
(N
);
5048 -- We expand typ'Wide_Value (X) into
5051 -- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
5053 -- Wide_String_To_String is a runtime function that converts its wide
5054 -- string argument to String, converting any non-translatable characters
5055 -- into appropriate escape sequences. This preserves the required
5056 -- semantics of Wide_Value in all cases, and results in a very simple
5057 -- implementation approach.
5059 -- Note: for this approach to be fully standard compliant for the cases
5060 -- where typ is Wide_Character and Wide_Wide_Character, the encoding
5061 -- method must cover the entire character range (e.g. UTF-8). But that
5062 -- is a reasonable requirement when dealing with encoded character
5063 -- sequences. Presumably if one of the restrictive encoding mechanisms
5064 -- is in use such as Shift-JIS, then characters that cannot be
5065 -- represented using this encoding will not appear in any case.
5067 when Attribute_Wide_Value
=> Wide_Value
:
5070 Make_Attribute_Reference
(Loc
,
5072 Attribute_Name
=> Name_Value
,
5074 Expressions
=> New_List
(
5075 Make_Function_Call
(Loc
,
5077 New_Reference_To
(RTE
(RE_Wide_String_To_String
), Loc
),
5079 Parameter_Associations
=> New_List
(
5080 Relocate_Node
(First
(Exprs
)),
5081 Make_Integer_Literal
(Loc
,
5082 Intval
=> Int
(Wide_Character_Encoding_Method
)))))));
5084 Analyze_And_Resolve
(N
, Typ
);
5087 ---------------------
5088 -- Wide_Wide_Value --
5089 ---------------------
5091 -- We expand typ'Wide_Value_Value (X) into
5094 -- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
5096 -- Wide_Wide_String_To_String is a runtime function that converts its
5097 -- wide string argument to String, converting any non-translatable
5098 -- characters into appropriate escape sequences. This preserves the
5099 -- required semantics of Wide_Wide_Value in all cases, and results in a
5100 -- very simple implementation approach.
5102 -- It's not quite right where typ = Wide_Wide_Character, because the
5103 -- encoding method may not cover the whole character type ???
5105 when Attribute_Wide_Wide_Value
=> Wide_Wide_Value
:
5108 Make_Attribute_Reference
(Loc
,
5110 Attribute_Name
=> Name_Value
,
5112 Expressions
=> New_List
(
5113 Make_Function_Call
(Loc
,
5115 New_Reference_To
(RTE
(RE_Wide_Wide_String_To_String
), Loc
),
5117 Parameter_Associations
=> New_List
(
5118 Relocate_Node
(First
(Exprs
)),
5119 Make_Integer_Literal
(Loc
,
5120 Intval
=> Int
(Wide_Character_Encoding_Method
)))))));
5122 Analyze_And_Resolve
(N
, Typ
);
5123 end Wide_Wide_Value
;
5125 ---------------------
5126 -- Wide_Wide_Width --
5127 ---------------------
5129 -- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
5131 when Attribute_Wide_Wide_Width
=>
5132 Exp_Imgv
.Expand_Width_Attribute
(N
, Wide_Wide
);
5138 -- Wide_Width attribute is handled in separate unit Exp_Imgv
5140 when Attribute_Wide_Width
=>
5141 Exp_Imgv
.Expand_Width_Attribute
(N
, Wide
);
5147 -- Width attribute is handled in separate unit Exp_Imgv
5149 when Attribute_Width
=>
5150 Exp_Imgv
.Expand_Width_Attribute
(N
, Normal
);
5156 when Attribute_Write
=> Write
: declare
5157 P_Type
: constant Entity_Id
:= Entity
(Pref
);
5158 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
5166 -- If no underlying type, we have an error that will be diagnosed
5167 -- elsewhere, so here we just completely ignore the expansion.
5173 -- The simple case, if there is a TSS for Write, just call it
5175 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Write
);
5177 if Present
(Pname
) then
5181 -- If there is a Stream_Convert pragma, use it, we rewrite
5183 -- sourcetyp'Output (stream, Item)
5187 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
5189 -- where strmwrite is the given Write function that converts an
5190 -- argument of type sourcetyp or a type acctyp, from which it is
5191 -- derived to type strmtyp. The conversion to acttyp is required
5192 -- for the derived case.
5194 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
5196 if Present
(Prag
) then
5198 Next
(Next
(First
(Pragma_Argument_Associations
(Prag
))));
5199 Wfunc
:= Entity
(Expression
(Arg3
));
5202 Make_Attribute_Reference
(Loc
,
5203 Prefix
=> New_Occurrence_Of
(Etype
(Wfunc
), Loc
),
5204 Attribute_Name
=> Name_Output
,
5205 Expressions
=> New_List
(
5206 Relocate_Node
(First
(Exprs
)),
5207 Make_Function_Call
(Loc
,
5208 Name
=> New_Occurrence_Of
(Wfunc
, Loc
),
5209 Parameter_Associations
=> New_List
(
5210 OK_Convert_To
(Etype
(First_Formal
(Wfunc
)),
5211 Relocate_Node
(Next
(First
(Exprs
)))))))));
5216 -- For elementary types, we call the W_xxx routine directly
5218 elsif Is_Elementary_Type
(U_Type
) then
5219 Rewrite
(N
, Build_Elementary_Write_Call
(N
));
5225 elsif Is_Array_Type
(U_Type
) then
5226 Build_Array_Write_Procedure
(N
, U_Type
, Decl
, Pname
);
5227 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
5229 -- Tagged type case, use the primitive Write function. Note that
5230 -- this will dispatch in the class-wide case which is what we want
5232 elsif Is_Tagged_Type
(U_Type
) then
5233 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Write
);
5235 -- All other record type cases, including protected records.
5236 -- The latter only arise for expander generated code for
5237 -- handling shared passive partition access.
5241 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
5243 -- Ada 2005 (AI-216): Program_Error is raised when executing
5244 -- the default implementation of the Write attribute of an
5245 -- Unchecked_Union type. However, if the 'Write reference is
5246 -- within the generated Output stream procedure, Write outputs
5247 -- the components, and the default values of the discriminant
5248 -- are streamed by the Output procedure itself.
5250 if Is_Unchecked_Union
(Base_Type
(U_Type
))
5251 and not Is_TSS
(Current_Scope
, TSS_Stream_Output
)
5254 Make_Raise_Program_Error
(Loc
,
5255 Reason
=> PE_Unchecked_Union_Restriction
));
5258 if Has_Discriminants
(U_Type
)
5260 (Discriminant_Default_Value
(First_Discriminant
(U_Type
)))
5262 Build_Mutable_Record_Write_Procedure
5263 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
5265 Build_Record_Write_Procedure
5266 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
5269 Insert_Action
(N
, Decl
);
5273 -- If we fall through, Pname is the procedure to be called
5275 Rewrite_Stream_Proc_Call
(Pname
);
5278 -- Component_Size is handled by the back end, unless the component size
5279 -- is known at compile time, which is always true in the packed array
5280 -- case. It is important that the packed array case is handled in the
5281 -- front end (see Eval_Attribute) since the back end would otherwise get
5282 -- confused by the equivalent packed array type.
5284 when Attribute_Component_Size
=>
5287 -- The following attributes are handled by the back end (except that
5288 -- static cases have already been evaluated during semantic processing,
5289 -- but in any case the back end should not count on this). The one bit
5290 -- of special processing required is that these attributes typically
5291 -- generate conditionals in the code, so we need to check the relevant
5294 when Attribute_Max |
5296 Check_Restriction
(No_Implicit_Conditionals
, N
);
5298 -- The following attributes are handled by the back end (except that
5299 -- static cases have already been evaluated during semantic processing,
5300 -- but in any case the back end should not count on this).
5302 -- The back end also handles the non-class-wide cases of Size
5304 when Attribute_Bit_Order |
5305 Attribute_Code_Address |
5306 Attribute_Definite |
5307 Attribute_Null_Parameter |
5308 Attribute_Passed_By_Reference |
5309 Attribute_Pool_Address
=>
5312 -- The following attributes are also handled by the back end, but return
5313 -- a universal integer result, so may need a conversion for checking
5314 -- that the result is in range.
5316 when Attribute_Aft |
5317 Attribute_Max_Alignment_For_Allocation |
5318 Attribute_Max_Size_In_Storage_Elements
=>
5319 Apply_Universal_Integer_Attribute_Checks
(N
);
5321 -- The following attributes should not appear at this stage, since they
5322 -- have already been handled by the analyzer (and properly rewritten
5323 -- with corresponding values or entities to represent the right values)
5325 when Attribute_Abort_Signal |
5326 Attribute_Address_Size |
5329 Attribute_Compiler_Version |
5330 Attribute_Default_Bit_Order |
5337 Attribute_Fast_Math |
5338 Attribute_Has_Access_Values |
5339 Attribute_Has_Discriminants |
5340 Attribute_Has_Tagged_Values |
5342 Attribute_Machine_Emax |
5343 Attribute_Machine_Emin |
5344 Attribute_Machine_Mantissa |
5345 Attribute_Machine_Overflows |
5346 Attribute_Machine_Radix |
5347 Attribute_Machine_Rounds |
5348 Attribute_Maximum_Alignment |
5349 Attribute_Model_Emin |
5350 Attribute_Model_Epsilon |
5351 Attribute_Model_Mantissa |
5352 Attribute_Model_Small |
5354 Attribute_Partition_ID |
5356 Attribute_Safe_Emax |
5357 Attribute_Safe_First |
5358 Attribute_Safe_Large |
5359 Attribute_Safe_Last |
5360 Attribute_Safe_Small |
5362 Attribute_Signed_Zeros |
5364 Attribute_Storage_Unit |
5365 Attribute_Stub_Type |
5366 Attribute_Target_Name |
5367 Attribute_Type_Class |
5368 Attribute_Type_Key |
5369 Attribute_Unconstrained_Array |
5370 Attribute_Universal_Literal_String |
5371 Attribute_Wchar_T_Size |
5372 Attribute_Word_Size
=>
5374 raise Program_Error
;
5376 -- The Asm_Input and Asm_Output attributes are not expanded at this
5377 -- stage, but will be eliminated in the expansion of the Asm call, see
5378 -- Exp_Intr for details. So the back end will never see these either.
5380 when Attribute_Asm_Input |
5381 Attribute_Asm_Output
=>
5388 when RE_Not_Available
=>
5390 end Expand_N_Attribute_Reference
;
5392 ----------------------
5393 -- Expand_Pred_Succ --
5394 ----------------------
5396 -- For typ'Pred (exp), we generate the check
5398 -- [constraint_error when exp = typ'Base'First]
5400 -- Similarly, for typ'Succ (exp), we generate the check
5402 -- [constraint_error when exp = typ'Base'Last]
5404 -- These checks are not generated for modular types, since the proper
5405 -- semantics for Succ and Pred on modular types is to wrap, not raise CE.
5406 -- We also suppress these checks if we are the right side of an assignment
5407 -- statement or the expression of an object declaration, where the flag
5408 -- Suppress_Assignment_Checks is set for the assignment/declaration.
5410 procedure Expand_Pred_Succ
(N
: Node_Id
) is
5411 Loc
: constant Source_Ptr
:= Sloc
(N
);
5412 P
: constant Node_Id
:= Parent
(N
);
5416 if Attribute_Name
(N
) = Name_Pred
then
5422 if not Nkind_In
(P
, N_Assignment_Statement
, N_Object_Declaration
)
5423 or else not Suppress_Assignment_Checks
(P
)
5426 Make_Raise_Constraint_Error
(Loc
,
5430 Duplicate_Subexpr_Move_Checks
(First
(Expressions
(N
))),
5432 Make_Attribute_Reference
(Loc
,
5434 New_Reference_To
(Base_Type
(Etype
(Prefix
(N
))), Loc
),
5435 Attribute_Name
=> Cnam
)),
5436 Reason
=> CE_Overflow_Check_Failed
));
5438 end Expand_Pred_Succ
;
5444 procedure Find_Fat_Info
5446 Fat_Type
: out Entity_Id
;
5447 Fat_Pkg
: out RE_Id
)
5449 Btyp
: constant Entity_Id
:= Base_Type
(T
);
5450 Rtyp
: constant Entity_Id
:= Root_Type
(T
);
5451 Digs
: constant Nat
:= UI_To_Int
(Digits_Value
(Btyp
));
5454 -- If the base type is VAX float, then get appropriate VAX float type
5456 if Vax_Float
(Btyp
) then
5459 Fat_Type
:= RTE
(RE_Fat_VAX_F
);
5460 Fat_Pkg
:= RE_Attr_VAX_F_Float
;
5463 Fat_Type
:= RTE
(RE_Fat_VAX_D
);
5464 Fat_Pkg
:= RE_Attr_VAX_D_Float
;
5467 Fat_Type
:= RTE
(RE_Fat_VAX_G
);
5468 Fat_Pkg
:= RE_Attr_VAX_G_Float
;
5471 raise Program_Error
;
5474 -- If root type is VAX float, this is the case where the library has
5475 -- been recompiled in VAX float mode, and we have an IEEE float type.
5476 -- This is when we use the special IEEE Fat packages.
5478 elsif Vax_Float
(Rtyp
) then
5481 Fat_Type
:= RTE
(RE_Fat_IEEE_Short
);
5482 Fat_Pkg
:= RE_Attr_IEEE_Short
;
5485 Fat_Type
:= RTE
(RE_Fat_IEEE_Long
);
5486 Fat_Pkg
:= RE_Attr_IEEE_Long
;
5489 raise Program_Error
;
5492 -- If neither the base type nor the root type is VAX_Native then VAX
5493 -- float is out of the picture, and we can just use the root type.
5498 if Fat_Type
= Standard_Short_Float
then
5499 Fat_Pkg
:= RE_Attr_Short_Float
;
5501 elsif Fat_Type
= Standard_Float
then
5502 Fat_Pkg
:= RE_Attr_Float
;
5504 elsif Fat_Type
= Standard_Long_Float
then
5505 Fat_Pkg
:= RE_Attr_Long_Float
;
5507 elsif Fat_Type
= Standard_Long_Long_Float
then
5508 Fat_Pkg
:= RE_Attr_Long_Long_Float
;
5510 -- Universal real (which is its own root type) is treated as being
5511 -- equivalent to Standard.Long_Long_Float, since it is defined to
5512 -- have the same precision as the longest Float type.
5514 elsif Fat_Type
= Universal_Real
then
5515 Fat_Type
:= Standard_Long_Long_Float
;
5516 Fat_Pkg
:= RE_Attr_Long_Long_Float
;
5519 raise Program_Error
;
5524 ----------------------------
5525 -- Find_Stream_Subprogram --
5526 ----------------------------
5528 function Find_Stream_Subprogram
5530 Nam
: TSS_Name_Type
) return Entity_Id
5532 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5533 Ent
: constant Entity_Id
:= TSS
(Typ
, Nam
);
5536 if Present
(Ent
) then
5540 -- Stream attributes for strings are expanded into library calls. The
5541 -- following checks are disabled when the run-time is not available or
5542 -- when compiling predefined types due to bootstrap issues. As a result,
5543 -- the compiler will generate in-place stream routines for string types
5544 -- that appear in GNAT's library, but will generate calls via rtsfind
5545 -- to library routines for user code.
5547 -- ??? For now, disable this code for JVM, since this generates a
5548 -- VerifyError exception at run time on e.g. c330001.
5550 -- This is disabled for AAMP, to avoid creating dependences on files not
5551 -- supported in the AAMP library (such as s-fileio.adb).
5553 if VM_Target
/= JVM_Target
5554 and then not AAMP_On_Target
5556 not Is_Predefined_File_Name
(Unit_File_Name
(Current_Sem_Unit
))
5558 -- String as defined in package Ada
5560 if Base_Typ
= Standard_String
then
5561 if Restriction_Active
(No_Stream_Optimizations
) then
5562 if Nam
= TSS_Stream_Input
then
5563 return RTE
(RE_String_Input
);
5565 elsif Nam
= TSS_Stream_Output
then
5566 return RTE
(RE_String_Output
);
5568 elsif Nam
= TSS_Stream_Read
then
5569 return RTE
(RE_String_Read
);
5571 else pragma Assert
(Nam
= TSS_Stream_Write
);
5572 return RTE
(RE_String_Write
);
5576 if Nam
= TSS_Stream_Input
then
5577 return RTE
(RE_String_Input_Blk_IO
);
5579 elsif Nam
= TSS_Stream_Output
then
5580 return RTE
(RE_String_Output_Blk_IO
);
5582 elsif Nam
= TSS_Stream_Read
then
5583 return RTE
(RE_String_Read_Blk_IO
);
5585 else pragma Assert
(Nam
= TSS_Stream_Write
);
5586 return RTE
(RE_String_Write_Blk_IO
);
5590 -- Wide_String as defined in package Ada
5592 elsif Base_Typ
= Standard_Wide_String
then
5593 if Restriction_Active
(No_Stream_Optimizations
) then
5594 if Nam
= TSS_Stream_Input
then
5595 return RTE
(RE_Wide_String_Input
);
5597 elsif Nam
= TSS_Stream_Output
then
5598 return RTE
(RE_Wide_String_Output
);
5600 elsif Nam
= TSS_Stream_Read
then
5601 return RTE
(RE_Wide_String_Read
);
5603 else pragma Assert
(Nam
= TSS_Stream_Write
);
5604 return RTE
(RE_Wide_String_Write
);
5608 if Nam
= TSS_Stream_Input
then
5609 return RTE
(RE_Wide_String_Input_Blk_IO
);
5611 elsif Nam
= TSS_Stream_Output
then
5612 return RTE
(RE_Wide_String_Output_Blk_IO
);
5614 elsif Nam
= TSS_Stream_Read
then
5615 return RTE
(RE_Wide_String_Read_Blk_IO
);
5617 else pragma Assert
(Nam
= TSS_Stream_Write
);
5618 return RTE
(RE_Wide_String_Write_Blk_IO
);
5622 -- Wide_Wide_String as defined in package Ada
5624 elsif Base_Typ
= Standard_Wide_Wide_String
then
5625 if Restriction_Active
(No_Stream_Optimizations
) then
5626 if Nam
= TSS_Stream_Input
then
5627 return RTE
(RE_Wide_Wide_String_Input
);
5629 elsif Nam
= TSS_Stream_Output
then
5630 return RTE
(RE_Wide_Wide_String_Output
);
5632 elsif Nam
= TSS_Stream_Read
then
5633 return RTE
(RE_Wide_Wide_String_Read
);
5635 else pragma Assert
(Nam
= TSS_Stream_Write
);
5636 return RTE
(RE_Wide_Wide_String_Write
);
5640 if Nam
= TSS_Stream_Input
then
5641 return RTE
(RE_Wide_Wide_String_Input_Blk_IO
);
5643 elsif Nam
= TSS_Stream_Output
then
5644 return RTE
(RE_Wide_Wide_String_Output_Blk_IO
);
5646 elsif Nam
= TSS_Stream_Read
then
5647 return RTE
(RE_Wide_Wide_String_Read_Blk_IO
);
5649 else pragma Assert
(Nam
= TSS_Stream_Write
);
5650 return RTE
(RE_Wide_Wide_String_Write_Blk_IO
);
5656 if Is_Tagged_Type
(Typ
)
5657 and then Is_Derived_Type
(Typ
)
5659 return Find_Prim_Op
(Typ
, Nam
);
5661 return Find_Inherited_TSS
(Typ
, Nam
);
5663 end Find_Stream_Subprogram
;
5669 function Full_Base
(T
: Entity_Id
) return Entity_Id
is
5673 BT
:= Base_Type
(T
);
5675 if Is_Private_Type
(BT
)
5676 and then Present
(Full_View
(BT
))
5678 BT
:= Full_View
(BT
);
5684 -----------------------
5685 -- Get_Index_Subtype --
5686 -----------------------
5688 function Get_Index_Subtype
(N
: Node_Id
) return Node_Id
is
5689 P_Type
: Entity_Id
:= Etype
(Prefix
(N
));
5694 if Is_Access_Type
(P_Type
) then
5695 P_Type
:= Designated_Type
(P_Type
);
5698 if No
(Expressions
(N
)) then
5701 J
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
5704 Indx
:= First_Index
(P_Type
);
5710 return Etype
(Indx
);
5711 end Get_Index_Subtype
;
5713 -------------------------------
5714 -- Get_Stream_Convert_Pragma --
5715 -------------------------------
5717 function Get_Stream_Convert_Pragma
(T
: Entity_Id
) return Node_Id
is
5722 -- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
5723 -- that a stream convert pragma for a tagged type is not inherited from
5724 -- its parent. Probably what is wrong here is that it is basically
5725 -- incorrect to consider a stream convert pragma to be a representation
5726 -- pragma at all ???
5728 N
:= First_Rep_Item
(Implementation_Base_Type
(T
));
5729 while Present
(N
) loop
5730 if Nkind
(N
) = N_Pragma
5731 and then Pragma_Name
(N
) = Name_Stream_Convert
5733 -- For tagged types this pragma is not inherited, so we
5734 -- must verify that it is defined for the given type and
5738 Entity
(Expression
(First
(Pragma_Argument_Associations
(N
))));
5740 if not Is_Tagged_Type
(T
)
5742 or else (Is_Private_Type
(Typ
) and then T
= Full_View
(Typ
))
5752 end Get_Stream_Convert_Pragma
;
5754 ---------------------------------
5755 -- Is_Constrained_Packed_Array --
5756 ---------------------------------
5758 function Is_Constrained_Packed_Array
(Typ
: Entity_Id
) return Boolean is
5759 Arr
: Entity_Id
:= Typ
;
5762 if Is_Access_Type
(Arr
) then
5763 Arr
:= Designated_Type
(Arr
);
5766 return Is_Array_Type
(Arr
)
5767 and then Is_Constrained
(Arr
)
5768 and then Present
(Packed_Array_Type
(Arr
));
5769 end Is_Constrained_Packed_Array
;
5771 ----------------------------------------
5772 -- Is_Inline_Floating_Point_Attribute --
5773 ----------------------------------------
5775 function Is_Inline_Floating_Point_Attribute
(N
: Node_Id
) return Boolean is
5776 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attribute_Name
(N
));
5779 if Nkind
(Parent
(N
)) /= N_Type_Conversion
5780 or else not Is_Integer_Type
(Etype
(Parent
(N
)))
5785 -- Should also support 'Machine_Rounding and 'Unbiased_Rounding, but
5786 -- required back end support has not been implemented yet ???
5788 return Id
= Attribute_Truncation
;
5789 end Is_Inline_Floating_Point_Attribute
;