1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- ADA.CONTAINERS.INDEFINITE_ORDERED_SETS --
9 -- Copyright (C) 2004-2009, Free Software Foundation, Inc. --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 private with Ada
.Containers
.Red_Black_Trees
;
35 private with Ada
.Finalization
;
36 private with Ada
.Streams
;
39 type Element_Type
(<>) is private;
41 with function "<" (Left
, Right
: Element_Type
) return Boolean is <>;
42 with function "=" (Left
, Right
: Element_Type
) return Boolean is <>;
44 package Ada
.Containers
.Indefinite_Ordered_Sets
is
48 function Equivalent_Elements
(Left
, Right
: Element_Type
) return Boolean;
50 type Set
is tagged private;
51 pragma Preelaborable_Initialization
(Set
);
53 type Cursor
is private;
54 pragma Preelaborable_Initialization
(Cursor
);
56 Empty_Set
: constant Set
;
58 No_Element
: constant Cursor
;
60 function "=" (Left
, Right
: Set
) return Boolean;
62 function Equivalent_Sets
(Left
, Right
: Set
) return Boolean;
64 function To_Set
(New_Item
: Element_Type
) return Set
;
66 function Length
(Container
: Set
) return Count_Type
;
68 function Is_Empty
(Container
: Set
) return Boolean;
70 procedure Clear
(Container
: in out Set
);
72 function Element
(Position
: Cursor
) return Element_Type
;
74 procedure Replace_Element
75 (Container
: in out Set
;
77 New_Item
: Element_Type
);
79 procedure Query_Element
81 Process
: not null access procedure (Element
: Element_Type
));
83 procedure Move
(Target
: in out Set
; Source
: in out Set
);
86 (Container
: in out Set
;
87 New_Item
: Element_Type
;
88 Position
: out Cursor
;
89 Inserted
: out Boolean);
92 (Container
: in out Set
;
93 New_Item
: Element_Type
);
96 (Container
: in out Set
;
97 New_Item
: Element_Type
);
100 (Container
: in out Set
;
101 New_Item
: Element_Type
);
104 (Container
: in out Set
;
105 Item
: Element_Type
);
108 (Container
: in out Set
;
109 Item
: Element_Type
);
112 (Container
: in out Set
;
113 Position
: in out Cursor
);
115 procedure Delete_First
(Container
: in out Set
);
117 procedure Delete_Last
(Container
: in out Set
);
119 procedure Union
(Target
: in out Set
; Source
: Set
);
121 function Union
(Left
, Right
: Set
) return Set
;
123 function "or" (Left
, Right
: Set
) return Set
renames Union
;
125 procedure Intersection
(Target
: in out Set
; Source
: Set
);
127 function Intersection
(Left
, Right
: Set
) return Set
;
129 function "and" (Left
, Right
: Set
) return Set
renames Intersection
;
131 procedure Difference
(Target
: in out Set
; Source
: Set
);
133 function Difference
(Left
, Right
: Set
) return Set
;
135 function "-" (Left
, Right
: Set
) return Set
renames Difference
;
137 procedure Symmetric_Difference
(Target
: in out Set
; Source
: Set
);
139 function Symmetric_Difference
(Left
, Right
: Set
) return Set
;
141 function "xor" (Left
, Right
: Set
) return Set
renames Symmetric_Difference
;
143 function Overlap
(Left
, Right
: Set
) return Boolean;
145 function Is_Subset
(Subset
: Set
; Of_Set
: Set
) return Boolean;
147 function First
(Container
: Set
) return Cursor
;
149 function First_Element
(Container
: Set
) return Element_Type
;
151 function Last
(Container
: Set
) return Cursor
;
153 function Last_Element
(Container
: Set
) return Element_Type
;
155 function Next
(Position
: Cursor
) return Cursor
;
157 procedure Next
(Position
: in out Cursor
);
159 function Previous
(Position
: Cursor
) return Cursor
;
161 procedure Previous
(Position
: in out Cursor
);
163 function Find
(Container
: Set
; Item
: Element_Type
) return Cursor
;
165 function Floor
(Container
: Set
; Item
: Element_Type
) return Cursor
;
167 function Ceiling
(Container
: Set
; Item
: Element_Type
) return Cursor
;
169 function Contains
(Container
: Set
; Item
: Element_Type
) return Boolean;
171 function Has_Element
(Position
: Cursor
) return Boolean;
173 function "<" (Left
, Right
: Cursor
) return Boolean;
175 function ">" (Left
, Right
: Cursor
) return Boolean;
177 function "<" (Left
: Cursor
; Right
: Element_Type
) return Boolean;
179 function ">" (Left
: Cursor
; Right
: Element_Type
) return Boolean;
181 function "<" (Left
: Element_Type
; Right
: Cursor
) return Boolean;
183 function ">" (Left
: Element_Type
; Right
: Cursor
) return Boolean;
187 Process
: not null access procedure (Position
: Cursor
));
189 procedure Reverse_Iterate
191 Process
: not null access procedure (Position
: Cursor
));
194 type Key_Type
(<>) is private;
196 with function Key
(Element
: Element_Type
) return Key_Type
;
198 with function "<" (Left
, Right
: Key_Type
) return Boolean is <>;
200 package Generic_Keys
is
202 function Equivalent_Keys
(Left
, Right
: Key_Type
) return Boolean;
204 function Key
(Position
: Cursor
) return Key_Type
;
206 function Element
(Container
: Set
; Key
: Key_Type
) return Element_Type
;
209 (Container
: in out Set
;
211 New_Item
: Element_Type
);
213 procedure Exclude
(Container
: in out Set
; Key
: Key_Type
);
215 procedure Delete
(Container
: in out Set
; Key
: Key_Type
);
219 Key
: Key_Type
) return Cursor
;
223 Key
: Key_Type
) return Cursor
;
227 Key
: Key_Type
) return Cursor
;
231 Key
: Key_Type
) return Boolean;
233 procedure Update_Element_Preserving_Key
234 (Container
: in out Set
;
236 Process
: not null access
237 procedure (Element
: in out Element_Type
));
243 pragma Inline
(Next
);
244 pragma Inline
(Previous
);
247 type Node_Access
is access Node_Type
;
249 type Element_Access
is access Element_Type
;
251 type Node_Type
is limited record
252 Parent
: Node_Access
;
255 Color
: Red_Black_Trees
.Color_Type
:= Red_Black_Trees
.Red
;
256 Element
: Element_Access
;
259 package Tree_Types
is new Red_Black_Trees
.Generic_Tree_Types
263 type Set
is new Ada
.Finalization
.Controlled
with record
264 Tree
: Tree_Types
.Tree_Type
;
268 procedure Adjust
(Container
: in out Set
);
271 procedure Finalize
(Container
: in out Set
) renames Clear
;
275 use Ada
.Finalization
;
278 type Set_Access
is access all Set
;
279 for Set_Access
'Storage_Size use 0;
281 type Cursor
is record
282 Container
: Set_Access
;
287 (Stream
: not null access Root_Stream_Type
'Class;
290 for Cursor
'Write use Write
;
293 (Stream
: not null access Root_Stream_Type
'Class;
296 for Cursor
'Read use Read
;
298 No_Element
: constant Cursor
:= Cursor
'(null, null);
301 (Stream : not null access Root_Stream_Type'Class;
304 for Set'Write use Write;
307 (Stream : not null access Root_Stream_Type'Class;
308 Container : out Set);
310 for Set'Read use Read;
312 Empty_Set : constant Set :=
313 (Controlled with Tree => (First => null,
320 end Ada.Containers.Indefinite_Ordered_Sets;