Merge from mainline (165734:167278).
[official-gcc/graphite-test-results.git] / libgfortran / io / write.c
blob987c3cd88a6ecc820c1973d43ecb4ddc1e229cea
1 /* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4 Namelist output contributed by Paul Thomas
5 F2003 I/O support contributed by Jerry DeLisle
7 This file is part of the GNU Fortran runtime library (libgfortran).
9 Libgfortran is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 Libgfortran is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
28 #include "io.h"
29 #include "format.h"
30 #include "unix.h"
31 #include <assert.h>
32 #include <string.h>
33 #include <ctype.h>
34 #include <stdlib.h>
35 #include <stdbool.h>
36 #include <errno.h>
37 #define star_fill(p, n) memset(p, '*', n)
39 typedef unsigned char uchar;
41 /* Helper functions for character(kind=4) internal units. These are needed
42 by write_float.def. */
44 static inline void
45 memset4 (gfc_char4_t *p, gfc_char4_t c, int k)
47 int j;
48 for (j = 0; j < k; j++)
49 *p++ = c;
52 static inline void
53 memcpy4 (gfc_char4_t *dest, const char *source, int k)
55 int j;
57 const char *p = source;
58 for (j = 0; j < k; j++)
59 *dest++ = (gfc_char4_t) *p++;
62 /* This include contains the heart and soul of formatted floating point. */
63 #include "write_float.def"
65 /* Write out default char4. */
67 static void
68 write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source,
69 int src_len, int w_len)
71 char *p;
72 int j, k = 0;
73 gfc_char4_t c;
74 uchar d;
76 /* Take care of preceding blanks. */
77 if (w_len > src_len)
79 k = w_len - src_len;
80 p = write_block (dtp, k);
81 if (p == NULL)
82 return;
83 if (is_char4_unit (dtp))
85 gfc_char4_t *p4 = (gfc_char4_t *) p;
86 memset4 (p4, ' ', k);
88 else
89 memset (p, ' ', k);
92 /* Get ready to handle delimiters if needed. */
93 switch (dtp->u.p.current_unit->delim_status)
95 case DELIM_APOSTROPHE:
96 d = '\'';
97 break;
98 case DELIM_QUOTE:
99 d = '"';
100 break;
101 default:
102 d = ' ';
103 break;
106 /* Now process the remaining characters, one at a time. */
107 for (j = 0; j < src_len; j++)
109 c = source[j];
110 if (is_char4_unit (dtp))
112 gfc_char4_t *q;
113 /* Handle delimiters if any. */
114 if (c == d && d != ' ')
116 p = write_block (dtp, 2);
117 if (p == NULL)
118 return;
119 q = (gfc_char4_t *) p;
120 *q++ = c;
122 else
124 p = write_block (dtp, 1);
125 if (p == NULL)
126 return;
127 q = (gfc_char4_t *) p;
129 *q = c;
131 else
133 /* Handle delimiters if any. */
134 if (c == d && d != ' ')
136 p = write_block (dtp, 2);
137 if (p == NULL)
138 return;
139 *p++ = (uchar) c;
141 else
143 p = write_block (dtp, 1);
144 if (p == NULL)
145 return;
147 *p = c > 255 ? '?' : (uchar) c;
153 /* Write out UTF-8 converted from char4. */
155 static void
156 write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
157 int src_len, int w_len)
159 char *p;
160 int j, k = 0;
161 gfc_char4_t c;
162 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
163 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
164 int nbytes;
165 uchar buf[6], d, *q;
167 /* Take care of preceding blanks. */
168 if (w_len > src_len)
170 k = w_len - src_len;
171 p = write_block (dtp, k);
172 if (p == NULL)
173 return;
174 memset (p, ' ', k);
177 /* Get ready to handle delimiters if needed. */
178 switch (dtp->u.p.current_unit->delim_status)
180 case DELIM_APOSTROPHE:
181 d = '\'';
182 break;
183 case DELIM_QUOTE:
184 d = '"';
185 break;
186 default:
187 d = ' ';
188 break;
191 /* Now process the remaining characters, one at a time. */
192 for (j = k; j < src_len; j++)
194 c = source[j];
195 if (c < 0x80)
197 /* Handle the delimiters if any. */
198 if (c == d && d != ' ')
200 p = write_block (dtp, 2);
201 if (p == NULL)
202 return;
203 *p++ = (uchar) c;
205 else
207 p = write_block (dtp, 1);
208 if (p == NULL)
209 return;
211 *p = (uchar) c;
213 else
215 /* Convert to UTF-8 sequence. */
216 nbytes = 1;
217 q = &buf[6];
221 *--q = ((c & 0x3F) | 0x80);
222 c >>= 6;
223 nbytes++;
225 while (c >= 0x3F || (c & limits[nbytes-1]));
227 *--q = (c | masks[nbytes-1]);
229 p = write_block (dtp, nbytes);
230 if (p == NULL)
231 return;
233 while (q < &buf[6])
234 *p++ = *q++;
240 void
241 write_a (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
243 int wlen;
244 char *p;
246 wlen = f->u.string.length < 0
247 || (f->format == FMT_G && f->u.string.length == 0)
248 ? len : f->u.string.length;
250 #ifdef HAVE_CRLF
251 /* If this is formatted STREAM IO convert any embedded line feed characters
252 to CR_LF on systems that use that sequence for newlines. See F2003
253 Standard sections 10.6.3 and 9.9 for further information. */
254 if (is_stream_io (dtp))
256 const char crlf[] = "\r\n";
257 int i, q, bytes;
258 q = bytes = 0;
260 /* Write out any padding if needed. */
261 if (len < wlen)
263 p = write_block (dtp, wlen - len);
264 if (p == NULL)
265 return;
266 memset (p, ' ', wlen - len);
269 /* Scan the source string looking for '\n' and convert it if found. */
270 for (i = 0; i < wlen; i++)
272 if (source[i] == '\n')
274 /* Write out the previously scanned characters in the string. */
275 if (bytes > 0)
277 p = write_block (dtp, bytes);
278 if (p == NULL)
279 return;
280 memcpy (p, &source[q], bytes);
281 q += bytes;
282 bytes = 0;
285 /* Write out the CR_LF sequence. */
286 q++;
287 p = write_block (dtp, 2);
288 if (p == NULL)
289 return;
290 memcpy (p, crlf, 2);
292 else
293 bytes++;
296 /* Write out any remaining bytes if no LF was found. */
297 if (bytes > 0)
299 p = write_block (dtp, bytes);
300 if (p == NULL)
301 return;
302 memcpy (p, &source[q], bytes);
305 else
307 #endif
308 p = write_block (dtp, wlen);
309 if (p == NULL)
310 return;
312 if (unlikely (is_char4_unit (dtp)))
314 gfc_char4_t *p4 = (gfc_char4_t *) p;
315 if (wlen < len)
316 memcpy4 (p4, source, wlen);
317 else
319 memset4 (p4, ' ', wlen - len);
320 memcpy4 (p4 + wlen - len, source, len);
322 return;
325 if (wlen < len)
326 memcpy (p, source, wlen);
327 else
329 memset (p, ' ', wlen - len);
330 memcpy (p + wlen - len, source, len);
332 #ifdef HAVE_CRLF
334 #endif
338 /* The primary difference between write_a_char4 and write_a is that we have to
339 deal with writing from the first byte of the 4-byte character and pay
340 attention to the most significant bytes. For ENCODING="default" write the
341 lowest significant byte. If the 3 most significant bytes contain
342 non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value
343 to the UTF-8 encoded string before writing out. */
345 void
346 write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
348 int wlen;
349 gfc_char4_t *q;
351 wlen = f->u.string.length < 0
352 || (f->format == FMT_G && f->u.string.length == 0)
353 ? len : f->u.string.length;
355 q = (gfc_char4_t *) source;
356 #ifdef HAVE_CRLF
357 /* If this is formatted STREAM IO convert any embedded line feed characters
358 to CR_LF on systems that use that sequence for newlines. See F2003
359 Standard sections 10.6.3 and 9.9 for further information. */
360 if (is_stream_io (dtp))
362 const gfc_char4_t crlf[] = {0x000d,0x000a};
363 int i, bytes;
364 gfc_char4_t *qq;
365 bytes = 0;
367 /* Write out any padding if needed. */
368 if (len < wlen)
370 char *p;
371 p = write_block (dtp, wlen - len);
372 if (p == NULL)
373 return;
374 memset (p, ' ', wlen - len);
377 /* Scan the source string looking for '\n' and convert it if found. */
378 qq = (gfc_char4_t *) source;
379 for (i = 0; i < wlen; i++)
381 if (qq[i] == '\n')
383 /* Write out the previously scanned characters in the string. */
384 if (bytes > 0)
386 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
387 write_utf8_char4 (dtp, q, bytes, 0);
388 else
389 write_default_char4 (dtp, q, bytes, 0);
390 bytes = 0;
393 /* Write out the CR_LF sequence. */
394 write_default_char4 (dtp, crlf, 2, 0);
396 else
397 bytes++;
400 /* Write out any remaining bytes if no LF was found. */
401 if (bytes > 0)
403 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
404 write_utf8_char4 (dtp, q, bytes, 0);
405 else
406 write_default_char4 (dtp, q, bytes, 0);
409 else
411 #endif
412 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
413 write_utf8_char4 (dtp, q, len, wlen);
414 else
415 write_default_char4 (dtp, q, len, wlen);
416 #ifdef HAVE_CRLF
418 #endif
422 static GFC_INTEGER_LARGEST
423 extract_int (const void *p, int len)
425 GFC_INTEGER_LARGEST i = 0;
427 if (p == NULL)
428 return i;
430 switch (len)
432 case 1:
434 GFC_INTEGER_1 tmp;
435 memcpy ((void *) &tmp, p, len);
436 i = tmp;
438 break;
439 case 2:
441 GFC_INTEGER_2 tmp;
442 memcpy ((void *) &tmp, p, len);
443 i = tmp;
445 break;
446 case 4:
448 GFC_INTEGER_4 tmp;
449 memcpy ((void *) &tmp, p, len);
450 i = tmp;
452 break;
453 case 8:
455 GFC_INTEGER_8 tmp;
456 memcpy ((void *) &tmp, p, len);
457 i = tmp;
459 break;
460 #ifdef HAVE_GFC_INTEGER_16
461 case 16:
463 GFC_INTEGER_16 tmp;
464 memcpy ((void *) &tmp, p, len);
465 i = tmp;
467 break;
468 #endif
469 default:
470 internal_error (NULL, "bad integer kind");
473 return i;
476 static GFC_UINTEGER_LARGEST
477 extract_uint (const void *p, int len)
479 GFC_UINTEGER_LARGEST i = 0;
481 if (p == NULL)
482 return i;
484 switch (len)
486 case 1:
488 GFC_INTEGER_1 tmp;
489 memcpy ((void *) &tmp, p, len);
490 i = (GFC_UINTEGER_1) tmp;
492 break;
493 case 2:
495 GFC_INTEGER_2 tmp;
496 memcpy ((void *) &tmp, p, len);
497 i = (GFC_UINTEGER_2) tmp;
499 break;
500 case 4:
502 GFC_INTEGER_4 tmp;
503 memcpy ((void *) &tmp, p, len);
504 i = (GFC_UINTEGER_4) tmp;
506 break;
507 case 8:
509 GFC_INTEGER_8 tmp;
510 memcpy ((void *) &tmp, p, len);
511 i = (GFC_UINTEGER_8) tmp;
513 break;
514 #ifdef HAVE_GFC_INTEGER_16
515 case 10:
516 case 16:
518 GFC_INTEGER_16 tmp = 0;
519 memcpy ((void *) &tmp, p, len);
520 i = (GFC_UINTEGER_16) tmp;
522 break;
523 #endif
524 default:
525 internal_error (NULL, "bad integer kind");
528 return i;
532 void
533 write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
535 char *p;
536 int wlen;
537 GFC_INTEGER_LARGEST n;
539 wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
541 p = write_block (dtp, wlen);
542 if (p == NULL)
543 return;
545 n = extract_int (source, len);
547 if (unlikely (is_char4_unit (dtp)))
549 gfc_char4_t *p4 = (gfc_char4_t *) p;
550 memset4 (p4, ' ', wlen -1);
551 p4[wlen - 1] = (n) ? 'T' : 'F';
552 return;
555 memset (p, ' ', wlen -1);
556 p[wlen - 1] = (n) ? 'T' : 'F';
560 static void
561 write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n)
563 int w, m, digits, nzero, nblank;
564 char *p;
566 w = f->u.integer.w;
567 m = f->u.integer.m;
569 /* Special case: */
571 if (m == 0 && n == 0)
573 if (w == 0)
574 w = 1;
576 p = write_block (dtp, w);
577 if (p == NULL)
578 return;
579 if (unlikely (is_char4_unit (dtp)))
581 gfc_char4_t *p4 = (gfc_char4_t *) p;
582 memset4 (p4, ' ', w);
584 else
585 memset (p, ' ', w);
586 goto done;
589 digits = strlen (q);
591 /* Select a width if none was specified. The idea here is to always
592 print something. */
594 if (w == 0)
595 w = ((digits < m) ? m : digits);
597 p = write_block (dtp, w);
598 if (p == NULL)
599 return;
601 nzero = 0;
602 if (digits < m)
603 nzero = m - digits;
605 /* See if things will work. */
607 nblank = w - (nzero + digits);
609 if (unlikely (is_char4_unit (dtp)))
611 gfc_char4_t *p4 = (gfc_char4_t *) p;
612 if (nblank < 0)
614 memset4 (p4, '*', w);
615 return;
618 if (!dtp->u.p.no_leading_blank)
620 memset4 (p4, ' ', nblank);
621 q += nblank;
622 memset4 (p4, '0', nzero);
623 q += nzero;
624 memcpy4 (p4, q, digits);
626 else
628 memset4 (p4, '0', nzero);
629 q += nzero;
630 memcpy4 (p4, q, digits);
631 q += digits;
632 memset4 (p4, ' ', nblank);
633 dtp->u.p.no_leading_blank = 0;
635 return;
638 if (nblank < 0)
640 star_fill (p, w);
641 goto done;
644 if (!dtp->u.p.no_leading_blank)
646 memset (p, ' ', nblank);
647 p += nblank;
648 memset (p, '0', nzero);
649 p += nzero;
650 memcpy (p, q, digits);
652 else
654 memset (p, '0', nzero);
655 p += nzero;
656 memcpy (p, q, digits);
657 p += digits;
658 memset (p, ' ', nblank);
659 dtp->u.p.no_leading_blank = 0;
662 done:
663 return;
666 static void
667 write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
668 int len,
669 const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
671 GFC_INTEGER_LARGEST n = 0;
672 int w, m, digits, nsign, nzero, nblank;
673 char *p;
674 const char *q;
675 sign_t sign;
676 char itoa_buf[GFC_BTOA_BUF_SIZE];
678 w = f->u.integer.w;
679 m = f->format == FMT_G ? -1 : f->u.integer.m;
681 n = extract_int (source, len);
683 /* Special case: */
684 if (m == 0 && n == 0)
686 if (w == 0)
687 w = 1;
689 p = write_block (dtp, w);
690 if (p == NULL)
691 return;
692 if (unlikely (is_char4_unit (dtp)))
694 gfc_char4_t *p4 = (gfc_char4_t *) p;
695 memset4 (p4, ' ', w);
697 else
698 memset (p, ' ', w);
699 goto done;
702 sign = calculate_sign (dtp, n < 0);
703 if (n < 0)
704 n = -n;
705 nsign = sign == S_NONE ? 0 : 1;
707 /* conv calls itoa which sets the negative sign needed
708 by write_integer. The sign '+' or '-' is set below based on sign
709 calculated above, so we just point past the sign in the string
710 before proceeding to avoid double signs in corner cases.
711 (see PR38504) */
712 q = conv (n, itoa_buf, sizeof (itoa_buf));
713 if (*q == '-')
714 q++;
716 digits = strlen (q);
718 /* Select a width if none was specified. The idea here is to always
719 print something. */
721 if (w == 0)
722 w = ((digits < m) ? m : digits) + nsign;
724 p = write_block (dtp, w);
725 if (p == NULL)
726 return;
728 nzero = 0;
729 if (digits < m)
730 nzero = m - digits;
732 /* See if things will work. */
734 nblank = w - (nsign + nzero + digits);
736 if (unlikely (is_char4_unit (dtp)))
738 gfc_char4_t * p4 = (gfc_char4_t *) p;
739 if (nblank < 0)
741 memset4 (p4, '*', w);
742 goto done;
745 memset4 (p4, ' ', nblank);
746 p4 += nblank;
748 switch (sign)
750 case S_PLUS:
751 *p4++ = '+';
752 break;
753 case S_MINUS:
754 *p4++ = '-';
755 break;
756 case S_NONE:
757 break;
760 memset4 (p4, '0', nzero);
761 p4 += nzero;
763 memcpy4 (p4, q, digits);
764 return;
767 if (nblank < 0)
769 star_fill (p, w);
770 goto done;
773 memset (p, ' ', nblank);
774 p += nblank;
776 switch (sign)
778 case S_PLUS:
779 *p++ = '+';
780 break;
781 case S_MINUS:
782 *p++ = '-';
783 break;
784 case S_NONE:
785 break;
788 memset (p, '0', nzero);
789 p += nzero;
791 memcpy (p, q, digits);
793 done:
794 return;
798 /* Convert unsigned octal to ascii. */
800 static const char *
801 otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
803 char *p;
805 assert (len >= GFC_OTOA_BUF_SIZE);
807 if (n == 0)
808 return "0";
810 p = buffer + GFC_OTOA_BUF_SIZE - 1;
811 *p = '\0';
813 while (n != 0)
815 *--p = '0' + (n & 7);
816 n >>= 3;
819 return p;
823 /* Convert unsigned binary to ascii. */
825 static const char *
826 btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
828 char *p;
830 assert (len >= GFC_BTOA_BUF_SIZE);
832 if (n == 0)
833 return "0";
835 p = buffer + GFC_BTOA_BUF_SIZE - 1;
836 *p = '\0';
838 while (n != 0)
840 *--p = '0' + (n & 1);
841 n >>= 1;
844 return p;
847 /* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed
848 to convert large reals with kind sizes that exceed the largest integer type
849 available on certain platforms. In these cases, byte by byte conversion is
850 performed. Endianess is taken into account. */
852 /* Conversion to binary. */
854 static const char *
855 btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
857 char *q;
858 int i, j;
860 q = buffer;
861 if (big_endian)
863 const char *p = s;
864 for (i = 0; i < len; i++)
866 char c = *p;
868 /* Test for zero. Needed by write_boz later. */
869 if (*p != 0)
870 *n = 1;
872 for (j = 0; j < 8; j++)
874 *q++ = (c & 128) ? '1' : '0';
875 c <<= 1;
877 p++;
880 else
882 const char *p = s + len - 1;
883 for (i = 0; i < len; i++)
885 char c = *p;
887 /* Test for zero. Needed by write_boz later. */
888 if (*p != 0)
889 *n = 1;
891 for (j = 0; j < 8; j++)
893 *q++ = (c & 128) ? '1' : '0';
894 c <<= 1;
896 p--;
900 *q = '\0';
902 if (*n == 0)
903 return "0";
905 /* Move past any leading zeros. */
906 while (*buffer == '0')
907 buffer++;
909 return buffer;
913 /* Conversion to octal. */
915 static const char *
916 otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
918 char *q;
919 int i, j, k;
920 uint8_t octet;
922 q = buffer + GFC_OTOA_BUF_SIZE - 1;
923 *q = '\0';
924 i = k = octet = 0;
926 if (big_endian)
928 const char *p = s + len - 1;
929 char c = *p;
930 while (i < len)
932 /* Test for zero. Needed by write_boz later. */
933 if (*p != 0)
934 *n = 1;
936 for (j = 0; j < 3 && i < len; j++)
938 octet |= (c & 1) << j;
939 c >>= 1;
940 if (++k > 7)
942 i++;
943 k = 0;
944 c = *--p;
947 *--q = '0' + octet;
948 octet = 0;
951 else
953 const char *p = s;
954 char c = *p;
955 while (i < len)
957 /* Test for zero. Needed by write_boz later. */
958 if (*p != 0)
959 *n = 1;
961 for (j = 0; j < 3 && i < len; j++)
963 octet |= (c & 1) << j;
964 c >>= 1;
965 if (++k > 7)
967 i++;
968 k = 0;
969 c = *++p;
972 *--q = '0' + octet;
973 octet = 0;
977 if (*n == 0)
978 return "0";
980 /* Move past any leading zeros. */
981 while (*q == '0')
982 q++;
984 return q;
987 /* Conversion to hexidecimal. */
989 static const char *
990 ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
992 static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
993 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
995 char *q;
996 uint8_t h, l;
997 int i;
999 q = buffer;
1001 if (big_endian)
1003 const char *p = s;
1004 for (i = 0; i < len; i++)
1006 /* Test for zero. Needed by write_boz later. */
1007 if (*p != 0)
1008 *n = 1;
1010 h = (*p >> 4) & 0x0F;
1011 l = *p++ & 0x0F;
1012 *q++ = a[h];
1013 *q++ = a[l];
1016 else
1018 const char *p = s + len - 1;
1019 for (i = 0; i < len; i++)
1021 /* Test for zero. Needed by write_boz later. */
1022 if (*p != 0)
1023 *n = 1;
1025 h = (*p >> 4) & 0x0F;
1026 l = *p-- & 0x0F;
1027 *q++ = a[h];
1028 *q++ = a[l];
1032 *q = '\0';
1034 if (*n == 0)
1035 return "0";
1037 /* Move past any leading zeros. */
1038 while (*buffer == '0')
1039 buffer++;
1041 return buffer;
1044 /* gfc_itoa()-- Integer to decimal conversion.
1045 The itoa function is a widespread non-standard extension to standard
1046 C, often declared in <stdlib.h>. Even though the itoa defined here
1047 is a static function we take care not to conflict with any prior
1048 non-static declaration. Hence the 'gfc_' prefix, which is normally
1049 reserved for functions with external linkage. */
1051 static const char *
1052 gfc_itoa (GFC_INTEGER_LARGEST n, char *buffer, size_t len)
1054 int negative;
1055 char *p;
1056 GFC_UINTEGER_LARGEST t;
1058 assert (len >= GFC_ITOA_BUF_SIZE);
1060 if (n == 0)
1061 return "0";
1063 negative = 0;
1064 t = n;
1065 if (n < 0)
1067 negative = 1;
1068 t = -n; /*must use unsigned to protect from overflow*/
1071 p = buffer + GFC_ITOA_BUF_SIZE - 1;
1072 *p = '\0';
1074 while (t != 0)
1076 *--p = '0' + (t % 10);
1077 t /= 10;
1080 if (negative)
1081 *--p = '-';
1082 return p;
1086 void
1087 write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1089 write_decimal (dtp, f, p, len, (void *) gfc_itoa);
1093 void
1094 write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1096 const char *p;
1097 char itoa_buf[GFC_BTOA_BUF_SIZE];
1098 GFC_UINTEGER_LARGEST n = 0;
1100 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1102 p = btoa_big (source, itoa_buf, len, &n);
1103 write_boz (dtp, f, p, n);
1105 else
1107 n = extract_uint (source, len);
1108 p = btoa (n, itoa_buf, sizeof (itoa_buf));
1109 write_boz (dtp, f, p, n);
1114 void
1115 write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1117 const char *p;
1118 char itoa_buf[GFC_OTOA_BUF_SIZE];
1119 GFC_UINTEGER_LARGEST n = 0;
1121 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1123 p = otoa_big (source, itoa_buf, len, &n);
1124 write_boz (dtp, f, p, n);
1126 else
1128 n = extract_uint (source, len);
1129 p = otoa (n, itoa_buf, sizeof (itoa_buf));
1130 write_boz (dtp, f, p, n);
1134 void
1135 write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1137 const char *p;
1138 char itoa_buf[GFC_XTOA_BUF_SIZE];
1139 GFC_UINTEGER_LARGEST n = 0;
1141 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1143 p = ztoa_big (source, itoa_buf, len, &n);
1144 write_boz (dtp, f, p, n);
1146 else
1148 n = extract_uint (source, len);
1149 p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf));
1150 write_boz (dtp, f, p, n);
1155 void
1156 write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1158 write_float (dtp, f, p, len);
1162 void
1163 write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1165 write_float (dtp, f, p, len);
1169 void
1170 write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1172 write_float (dtp, f, p, len);
1176 void
1177 write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1179 write_float (dtp, f, p, len);
1183 void
1184 write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1186 write_float (dtp, f, p, len);
1190 /* Take care of the X/TR descriptor. */
1192 void
1193 write_x (st_parameter_dt *dtp, int len, int nspaces)
1195 char *p;
1197 p = write_block (dtp, len);
1198 if (p == NULL)
1199 return;
1200 if (nspaces > 0 && len - nspaces >= 0)
1202 if (unlikely (is_char4_unit (dtp)))
1204 gfc_char4_t *p4 = (gfc_char4_t *) p;
1205 memset4 (&p4[len - nspaces], ' ', nspaces);
1207 else
1208 memset (&p[len - nspaces], ' ', nspaces);
1213 /* List-directed writing. */
1216 /* Write a single character to the output. Returns nonzero if
1217 something goes wrong. */
1219 static int
1220 write_char (st_parameter_dt *dtp, int c)
1222 char *p;
1224 p = write_block (dtp, 1);
1225 if (p == NULL)
1226 return 1;
1227 if (unlikely (is_char4_unit (dtp)))
1229 gfc_char4_t *p4 = (gfc_char4_t *) p;
1230 *p4 = c;
1231 return 0;
1234 *p = (uchar) c;
1236 return 0;
1240 /* Write a list-directed logical value. */
1242 static void
1243 write_logical (st_parameter_dt *dtp, const char *source, int length)
1245 write_char (dtp, extract_int (source, length) ? 'T' : 'F');
1249 /* Write a list-directed integer value. */
1251 static void
1252 write_integer (st_parameter_dt *dtp, const char *source, int length)
1254 char *p;
1255 const char *q;
1256 int digits;
1257 int width;
1258 char itoa_buf[GFC_ITOA_BUF_SIZE];
1260 q = gfc_itoa (extract_int (source, length), itoa_buf, sizeof (itoa_buf));
1262 switch (length)
1264 case 1:
1265 width = 4;
1266 break;
1268 case 2:
1269 width = 6;
1270 break;
1272 case 4:
1273 width = 11;
1274 break;
1276 case 8:
1277 width = 20;
1278 break;
1280 default:
1281 width = 0;
1282 break;
1285 digits = strlen (q);
1287 if (width < digits)
1288 width = digits;
1289 p = write_block (dtp, width);
1290 if (p == NULL)
1291 return;
1293 if (unlikely (is_char4_unit (dtp)))
1295 gfc_char4_t *p4 = (gfc_char4_t *) p;
1296 if (dtp->u.p.no_leading_blank)
1298 memcpy4 (p4, q, digits);
1299 memset4 (p4 + digits, ' ', width - digits);
1301 else
1303 memset4 (p4, ' ', width - digits);
1304 memcpy4 (p4 + width - digits, q, digits);
1306 return;
1309 if (dtp->u.p.no_leading_blank)
1311 memcpy (p, q, digits);
1312 memset (p + digits, ' ', width - digits);
1314 else
1316 memset (p, ' ', width - digits);
1317 memcpy (p + width - digits, q, digits);
1322 /* Write a list-directed string. We have to worry about delimiting
1323 the strings if the file has been opened in that mode. */
1325 static void
1326 write_character (st_parameter_dt *dtp, const char *source, int kind, int length)
1328 int i, extra;
1329 char *p, d;
1331 switch (dtp->u.p.current_unit->delim_status)
1333 case DELIM_APOSTROPHE:
1334 d = '\'';
1335 break;
1336 case DELIM_QUOTE:
1337 d = '"';
1338 break;
1339 default:
1340 d = ' ';
1341 break;
1344 if (kind == 1)
1346 if (d == ' ')
1347 extra = 0;
1348 else
1350 extra = 2;
1352 for (i = 0; i < length; i++)
1353 if (source[i] == d)
1354 extra++;
1357 p = write_block (dtp, length + extra);
1358 if (p == NULL)
1359 return;
1361 if (unlikely (is_char4_unit (dtp)))
1363 gfc_char4_t d4 = (gfc_char4_t) d;
1364 gfc_char4_t *p4 = (gfc_char4_t *) p;
1366 if (d4 == ' ')
1367 memcpy4 (p4, source, length);
1368 else
1370 *p4++ = d4;
1372 for (i = 0; i < length; i++)
1374 *p4++ = (gfc_char4_t) source[i];
1375 if (source[i] == d)
1376 *p4++ = d4;
1379 *p4 = d4;
1381 return;
1384 if (d == ' ')
1385 memcpy (p, source, length);
1386 else
1388 *p++ = d;
1390 for (i = 0; i < length; i++)
1392 *p++ = source[i];
1393 if (source[i] == d)
1394 *p++ = d;
1397 *p = d;
1400 else
1402 if (d == ' ')
1404 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1405 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1406 else
1407 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1409 else
1411 p = write_block (dtp, 1);
1412 *p = d;
1414 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1415 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1416 else
1417 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1419 p = write_block (dtp, 1);
1420 *p = d;
1426 /* Set an fnode to default format. */
1428 static void
1429 set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
1431 f->format = FMT_G;
1432 switch (length)
1434 case 4:
1435 f->u.real.w = 15;
1436 f->u.real.d = 8;
1437 f->u.real.e = 2;
1438 break;
1439 case 8:
1440 f->u.real.w = 25;
1441 f->u.real.d = 17;
1442 f->u.real.e = 3;
1443 break;
1444 case 10:
1445 f->u.real.w = 29;
1446 f->u.real.d = 20;
1447 f->u.real.e = 4;
1448 break;
1449 case 16:
1450 f->u.real.w = 44;
1451 f->u.real.d = 35;
1452 f->u.real.e = 4;
1453 break;
1454 default:
1455 internal_error (&dtp->common, "bad real kind");
1456 break;
1459 /* Output a real number with default format.
1460 This is 1PG14.7E2 for REAL(4), 1PG23.15E3 for REAL(8),
1461 1PG28.19E4 for REAL(10) and 1PG43.34E4 for REAL(16). */
1462 // FX -- FIXME: should we change the default format for __float128-real(16)?
1464 void
1465 write_real (st_parameter_dt *dtp, const char *source, int length)
1467 fnode f ;
1468 int org_scale = dtp->u.p.scale_factor;
1469 dtp->u.p.scale_factor = 1;
1470 set_fnode_default (dtp, &f, length);
1471 write_float (dtp, &f, source , length);
1472 dtp->u.p.scale_factor = org_scale;
1476 void
1477 write_real_g0 (st_parameter_dt *dtp, const char *source, int length, int d)
1479 fnode f ;
1480 set_fnode_default (dtp, &f, length);
1481 if (d > 0)
1482 f.u.real.d = d;
1483 dtp->u.p.g0_no_blanks = 1;
1484 write_float (dtp, &f, source , length);
1485 dtp->u.p.g0_no_blanks = 0;
1489 static void
1490 write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
1492 char semi_comma =
1493 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1495 if (write_char (dtp, '('))
1496 return;
1497 write_real (dtp, source, kind);
1499 if (write_char (dtp, semi_comma))
1500 return;
1501 write_real (dtp, source + size / 2, kind);
1503 write_char (dtp, ')');
1507 /* Write the separator between items. */
1509 static void
1510 write_separator (st_parameter_dt *dtp)
1512 char *p;
1514 p = write_block (dtp, options.separator_len);
1515 if (p == NULL)
1516 return;
1517 if (unlikely (is_char4_unit (dtp)))
1519 gfc_char4_t *p4 = (gfc_char4_t *) p;
1520 memcpy4 (p4, options.separator, options.separator_len);
1522 else
1523 memcpy (p, options.separator, options.separator_len);
1527 /* Write an item with list formatting.
1528 TODO: handle skipping to the next record correctly, particularly
1529 with strings. */
1531 static void
1532 list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
1533 size_t size)
1535 if (dtp->u.p.current_unit == NULL)
1536 return;
1538 if (dtp->u.p.first_item)
1540 dtp->u.p.first_item = 0;
1541 write_char (dtp, ' ');
1543 else
1545 if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
1546 dtp->u.p.current_unit->delim_status != DELIM_NONE)
1547 write_separator (dtp);
1550 switch (type)
1552 case BT_INTEGER:
1553 write_integer (dtp, p, kind);
1554 break;
1555 case BT_LOGICAL:
1556 write_logical (dtp, p, kind);
1557 break;
1558 case BT_CHARACTER:
1559 write_character (dtp, p, kind, size);
1560 break;
1561 case BT_REAL:
1562 write_real (dtp, p, kind);
1563 break;
1564 case BT_COMPLEX:
1565 write_complex (dtp, p, kind, size);
1566 break;
1567 default:
1568 internal_error (&dtp->common, "list_formatted_write(): Bad type");
1571 dtp->u.p.char_flag = (type == BT_CHARACTER);
1575 void
1576 list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1577 size_t size, size_t nelems)
1579 size_t elem;
1580 char *tmp;
1581 size_t stride = type == BT_CHARACTER ?
1582 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1584 tmp = (char *) p;
1586 /* Big loop over all the elements. */
1587 for (elem = 0; elem < nelems; elem++)
1589 dtp->u.p.item_count++;
1590 list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
1594 /* NAMELIST OUTPUT
1596 nml_write_obj writes a namelist object to the output stream. It is called
1597 recursively for derived type components:
1598 obj = is the namelist_info for the current object.
1599 offset = the offset relative to the address held by the object for
1600 derived type arrays.
1601 base = is the namelist_info of the derived type, when obj is a
1602 component.
1603 base_name = the full name for a derived type, including qualifiers
1604 if any.
1605 The returned value is a pointer to the object beyond the last one
1606 accessed, including nested derived types. Notice that the namelist is
1607 a linear linked list of objects, including derived types and their
1608 components. A tree, of sorts, is implied by the compound names of
1609 the derived type components and this is how this function recurses through
1610 the list. */
1612 /* A generous estimate of the number of characters needed to print
1613 repeat counts and indices, including commas, asterices and brackets. */
1615 #define NML_DIGITS 20
1617 static void
1618 namelist_write_newline (st_parameter_dt *dtp)
1620 if (!is_internal_unit (dtp))
1622 #ifdef HAVE_CRLF
1623 write_character (dtp, "\r\n", 1, 2);
1624 #else
1625 write_character (dtp, "\n", 1, 1);
1626 #endif
1627 return;
1630 if (is_array_io (dtp))
1632 gfc_offset record;
1633 int finished;
1634 char *p;
1635 int length = dtp->u.p.current_unit->bytes_left;
1637 p = write_block (dtp, length);
1638 if (p == NULL)
1639 return;
1641 if (unlikely (is_char4_unit (dtp)))
1643 gfc_char4_t *p4 = (gfc_char4_t *) p;
1644 memset4 (p4, ' ', length);
1646 else
1647 memset (p, ' ', length);
1649 /* Now that the current record has been padded out,
1650 determine where the next record in the array is. */
1651 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
1652 &finished);
1653 if (finished)
1654 dtp->u.p.current_unit->endfile = AT_ENDFILE;
1655 else
1657 /* Now seek to this record */
1658 record = record * dtp->u.p.current_unit->recl;
1660 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
1662 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
1663 return;
1666 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
1669 else
1670 write_character (dtp, " ", 1, 1);
1674 static namelist_info *
1675 nml_write_obj (st_parameter_dt *dtp, namelist_info * obj, index_type offset,
1676 namelist_info * base, char * base_name)
1678 int rep_ctr;
1679 int num;
1680 int nml_carry;
1681 int len;
1682 index_type obj_size;
1683 index_type nelem;
1684 size_t dim_i;
1685 size_t clen;
1686 index_type elem_ctr;
1687 size_t obj_name_len;
1688 void * p ;
1689 char cup;
1690 char * obj_name;
1691 char * ext_name;
1692 char rep_buff[NML_DIGITS];
1693 namelist_info * cmp;
1694 namelist_info * retval = obj->next;
1695 size_t base_name_len;
1696 size_t base_var_name_len;
1697 size_t tot_len;
1698 unit_delim tmp_delim;
1700 /* Set the character to be used to separate values
1701 to a comma or semi-colon. */
1703 char semi_comma =
1704 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1706 /* Write namelist variable names in upper case. If a derived type,
1707 nothing is output. If a component, base and base_name are set. */
1709 if (obj->type != BT_DERIVED)
1711 namelist_write_newline (dtp);
1712 write_character (dtp, " ", 1, 1);
1714 len = 0;
1715 if (base)
1717 len = strlen (base->var_name);
1718 base_name_len = strlen (base_name);
1719 for (dim_i = 0; dim_i < base_name_len; dim_i++)
1721 cup = toupper ((int) base_name[dim_i]);
1722 write_character (dtp, &cup, 1, 1);
1725 clen = strlen (obj->var_name);
1726 for (dim_i = len; dim_i < clen; dim_i++)
1728 cup = toupper ((int) obj->var_name[dim_i]);
1729 write_character (dtp, &cup, 1, 1);
1731 write_character (dtp, "=", 1, 1);
1734 /* Counts the number of data output on a line, including names. */
1736 num = 1;
1738 len = obj->len;
1740 switch (obj->type)
1743 case BT_REAL:
1744 obj_size = size_from_real_kind (len);
1745 break;
1747 case BT_COMPLEX:
1748 obj_size = size_from_complex_kind (len);
1749 break;
1751 case BT_CHARACTER:
1752 obj_size = obj->string_length;
1753 break;
1755 default:
1756 obj_size = len;
1759 if (obj->var_rank)
1760 obj_size = obj->size;
1762 /* Set the index vector and count the number of elements. */
1764 nelem = 1;
1765 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
1767 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i);
1768 nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i);
1771 /* Main loop to output the data held in the object. */
1773 rep_ctr = 1;
1774 for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
1777 /* Build the pointer to the data value. The offset is passed by
1778 recursive calls to this function for arrays of derived types.
1779 Is NULL otherwise. */
1781 p = (void *)(obj->mem_pos + elem_ctr * obj_size);
1782 p += offset;
1784 /* Check for repeat counts of intrinsic types. */
1786 if ((elem_ctr < (nelem - 1)) &&
1787 (obj->type != BT_DERIVED) &&
1788 !memcmp (p, (void*)(p + obj_size ), obj_size ))
1790 rep_ctr++;
1793 /* Execute a repeated output. Note the flag no_leading_blank that
1794 is used in the functions used to output the intrinsic types. */
1796 else
1798 if (rep_ctr > 1)
1800 sprintf(rep_buff, " %d*", rep_ctr);
1801 write_character (dtp, rep_buff, 1, strlen (rep_buff));
1802 dtp->u.p.no_leading_blank = 1;
1804 num++;
1806 /* Output the data, if an intrinsic type, or recurse into this
1807 routine to treat derived types. */
1809 switch (obj->type)
1812 case BT_INTEGER:
1813 write_integer (dtp, p, len);
1814 break;
1816 case BT_LOGICAL:
1817 write_logical (dtp, p, len);
1818 break;
1820 case BT_CHARACTER:
1821 tmp_delim = dtp->u.p.current_unit->delim_status;
1822 if (dtp->u.p.nml_delim == '"')
1823 dtp->u.p.current_unit->delim_status = DELIM_QUOTE;
1824 if (dtp->u.p.nml_delim == '\'')
1825 dtp->u.p.current_unit->delim_status = DELIM_APOSTROPHE;
1826 write_character (dtp, p, 1, obj->string_length);
1827 dtp->u.p.current_unit->delim_status = tmp_delim;
1828 break;
1830 case BT_REAL:
1831 write_real (dtp, p, len);
1832 break;
1834 case BT_COMPLEX:
1835 dtp->u.p.no_leading_blank = 0;
1836 num++;
1837 write_complex (dtp, p, len, obj_size);
1838 break;
1840 case BT_DERIVED:
1842 /* To treat a derived type, we need to build two strings:
1843 ext_name = the name, including qualifiers that prepends
1844 component names in the output - passed to
1845 nml_write_obj.
1846 obj_name = the derived type name with no qualifiers but %
1847 appended. This is used to identify the
1848 components. */
1850 /* First ext_name => get length of all possible components */
1852 base_name_len = base_name ? strlen (base_name) : 0;
1853 base_var_name_len = base ? strlen (base->var_name) : 0;
1854 ext_name = (char*)get_mem ( base_name_len
1855 + base_var_name_len
1856 + strlen (obj->var_name)
1857 + obj->var_rank * NML_DIGITS
1858 + 1);
1860 memcpy (ext_name, base_name, base_name_len);
1861 clen = strlen (obj->var_name + base_var_name_len);
1862 memcpy (ext_name + base_name_len,
1863 obj->var_name + base_var_name_len, clen);
1865 /* Append the qualifier. */
1867 tot_len = base_name_len + clen;
1868 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
1870 if (!dim_i)
1872 ext_name[tot_len] = '(';
1873 tot_len++;
1875 sprintf (ext_name + tot_len, "%d", (int) obj->ls[dim_i].idx);
1876 tot_len += strlen (ext_name + tot_len);
1877 ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ',';
1878 tot_len++;
1881 ext_name[tot_len] = '\0';
1883 /* Now obj_name. */
1885 obj_name_len = strlen (obj->var_name) + 1;
1886 obj_name = get_mem (obj_name_len+1);
1887 memcpy (obj_name, obj->var_name, obj_name_len-1);
1888 memcpy (obj_name + obj_name_len-1, "%", 2);
1890 /* Now loop over the components. Update the component pointer
1891 with the return value from nml_write_obj => this loop jumps
1892 past nested derived types. */
1894 for (cmp = obj->next;
1895 cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
1896 cmp = retval)
1898 retval = nml_write_obj (dtp, cmp,
1899 (index_type)(p - obj->mem_pos),
1900 obj, ext_name);
1903 free (obj_name);
1904 free (ext_name);
1905 goto obj_loop;
1907 default:
1908 internal_error (&dtp->common, "Bad type for namelist write");
1911 /* Reset the leading blank suppression, write a comma (or semi-colon)
1912 and, if 5 values have been output, write a newline and advance
1913 to column 2. Reset the repeat counter. */
1915 dtp->u.p.no_leading_blank = 0;
1916 write_character (dtp, &semi_comma, 1, 1);
1917 if (num > 5)
1919 num = 0;
1920 namelist_write_newline (dtp);
1921 write_character (dtp, " ", 1, 1);
1923 rep_ctr = 1;
1926 /* Cycle through and increment the index vector. */
1928 obj_loop:
1930 nml_carry = 1;
1931 for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++)
1933 obj->ls[dim_i].idx += nml_carry ;
1934 nml_carry = 0;
1935 if (obj->ls[dim_i].idx > (ssize_t) GFC_DESCRIPTOR_UBOUND(obj,dim_i))
1937 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i);
1938 nml_carry = 1;
1943 /* Return a pointer beyond the furthest object accessed. */
1945 return retval;
1949 /* This is the entry function for namelist writes. It outputs the name
1950 of the namelist and iterates through the namelist by calls to
1951 nml_write_obj. The call below has dummys in the arguments used in
1952 the treatment of derived types. */
1954 void
1955 namelist_write (st_parameter_dt *dtp)
1957 namelist_info * t1, *t2, *dummy = NULL;
1958 index_type i;
1959 index_type dummy_offset = 0;
1960 char c;
1961 char * dummy_name = NULL;
1962 unit_delim tmp_delim = DELIM_UNSPECIFIED;
1964 /* Set the delimiter for namelist output. */
1965 tmp_delim = dtp->u.p.current_unit->delim_status;
1967 dtp->u.p.nml_delim = tmp_delim == DELIM_APOSTROPHE ? '\'' : '"';
1969 /* Temporarily disable namelist delimters. */
1970 dtp->u.p.current_unit->delim_status = DELIM_NONE;
1972 write_character (dtp, "&", 1, 1);
1974 /* Write namelist name in upper case - f95 std. */
1975 for (i = 0 ;i < dtp->namelist_name_len ;i++ )
1977 c = toupper ((int) dtp->namelist_name[i]);
1978 write_character (dtp, &c, 1 ,1);
1981 if (dtp->u.p.ionml != NULL)
1983 t1 = dtp->u.p.ionml;
1984 while (t1 != NULL)
1986 t2 = t1;
1987 t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
1991 namelist_write_newline (dtp);
1992 write_character (dtp, " /", 1, 2);
1993 /* Restore the original delimiter. */
1994 dtp->u.p.current_unit->delim_status = tmp_delim;
1997 #undef NML_DIGITS