Merge from mainline (165734:167278).
[official-gcc/graphite-test-results.git] / gcc / config / mips / 10000.md
blobad21e9e936e52806f4b31930708e741748c87569
1 ;; DFA-based pipeline description for the VR1x000.
2 ;;   Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
3 ;;
4 ;; This file is part of GCC.
6 ;; GCC is free software; you can redistribute it and/or modify it
7 ;; under the terms of the GNU General Public License as published
8 ;; by the Free Software Foundation; either version 3, or (at your
9 ;; option) any later version.
11 ;; GCC is distributed in the hope that it will be useful, but WITHOUT
12 ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 ;; or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14 ;; License for more details.
16 ;; You should have received a copy of the GNU General Public License
17 ;; along with GCC; see the file COPYING3.  If not see
18 ;; <http://www.gnu.org/licenses/>.
21 ;; R12K/R14K/R16K are derivatives of R10K, thus copy its description
22 ;; until specific tuning for each is added.
24 ;; R10000 has an int queue, fp queue, address queue.
25 ;; The int queue feeds ALU1 and ALU2.
26 ;; The fp queue feeds the fp-adder and fp-multiplier.
27 ;; The addr queue feeds the Load/Store unit.
29 ;; However, we define the fp-adder and fp-multiplier as
30 ;; separate automatons, because the fp-multiplier is
31 ;; divided into fp-multiplier, fp-division, and
32 ;; fp-squareroot units, all of which share the same
33 ;; issue and completion logic, yet can operate in
34 ;; parallel.
36 ;; This is based on the model described in the R10K Manual
37 ;; and it helps to reduce the size of the automata.
38 (define_automaton "r10k_a_int, r10k_a_fpadder, r10k_a_addr,
39                    r10k_a_fpmpy, r10k_a_fpdiv, r10k_a_fpsqrt")
41 (define_cpu_unit "r10k_alu1" "r10k_a_int")
42 (define_cpu_unit "r10k_alu2" "r10k_a_int")
43 (define_cpu_unit "r10k_fpadd" "r10k_a_fpadder")
44 (define_cpu_unit "r10k_fpmpy" "r10k_a_fpmpy")
45 (define_cpu_unit "r10k_fpdiv" "r10k_a_fpdiv")
46 (define_cpu_unit "r10k_fpsqrt" "r10k_a_fpsqrt")
47 (define_cpu_unit "r10k_loadstore" "r10k_a_addr")
50 ;; R10k Loads and Stores.
51 (define_insn_reservation "r10k_load" 2
52   (and (eq_attr "cpu" "r10000")
53        (eq_attr "type" "load,prefetch,prefetchx"))
54   "r10k_loadstore")
56 (define_insn_reservation "r10k_store" 0
57   (and (eq_attr "cpu" "r10000")
58        (eq_attr "type" "store,fpstore,fpidxstore"))
59   "r10k_loadstore")
61 (define_insn_reservation "r10k_fpload" 3
62   (and (eq_attr "cpu" "r10000")
63        (eq_attr "type" "fpload,fpidxload"))
64   "r10k_loadstore")
67 ;; Integer add/sub + logic ops, and mt hi/lo can be done by alu1 or alu2.
68 ;; Miscellaneous arith goes here too (this is a guess).
69 (define_insn_reservation "r10k_arith" 1
70   (and (eq_attr "cpu" "r10000")
71        (eq_attr "type" "arith,mthilo,slt,clz,const,nop,trap,logical"))
72   "r10k_alu1 | r10k_alu2")
74 ;; We treat mfhilo differently, because we need to know when
75 ;; it's HI and when it's LO.
76 (define_insn_reservation "r10k_mfhi" 1
77   (and (eq_attr "cpu" "r10000")
78        (and (eq_attr "type" "mfhilo")
79             (not (match_operand 1 "lo_operand"))))
80   "r10k_alu1 | r10k_alu2")
82 (define_insn_reservation "r10k_mflo" 1
83   (and (eq_attr "cpu" "r10000")
84        (and (eq_attr "type" "mfhilo")
85             (match_operand 1 "lo_operand")))
86   "r10k_alu1 | r10k_alu2")
89 ;; ALU1 handles shifts, branch eval, and condmove.
91 ;; Brancher is separate, but part of ALU1, but can only
92 ;; do one branch per cycle (is this even implementable?).
94 ;; Unsure if the brancher handles jumps and calls as well, but since
95 ;; they're related, we'll add them here for now.
96 (define_insn_reservation "r10k_brancher" 1
97   (and (eq_attr "cpu" "r10000")
98        (eq_attr "type" "shift,branch,jump,call"))
99   "r10k_alu1")
101 (define_insn_reservation "r10k_int_cmove" 1
102   (and (eq_attr "cpu" "r10000")
103        (and (eq_attr "type" "condmove")
104             (eq_attr "mode" "SI,DI")))
105   "r10k_alu1")
108 ;; Coprocessor Moves.
109 ;; mtc1/dmtc1 are handled by ALU1.
110 ;; mfc1/dmfc1 are handled by the fp-multiplier.
111 (define_insn_reservation "r10k_mt_xfer" 3
112   (and (eq_attr "cpu" "r10000")
113        (eq_attr "type" "mtc"))
114   "r10k_alu1")
116 (define_insn_reservation "r10k_mf_xfer" 2
117   (and (eq_attr "cpu" "r10000")
118        (eq_attr "type" "mfc"))
119   "r10k_fpmpy")
122 ;; Only ALU2 does int multiplications and divisions.
124 ;; According to the Vr10000 series user manual,
125 ;; integer mult and div insns can be issued one
126 ;; cycle earlier if using register Lo.  We model
127 ;; this by using the Lo value by default, as it
128 ;; is the more common value, and use a bypass
129 ;; for the Hi value when needed.
131 ;; Also of note, There are different latencies
132 ;; for MULT/DMULT (Lo 5/Hi 6) and MULTU/DMULTU (Lo 6/Hi 7).
133 ;; However, gcc does not have separate types
134 ;; for these insns.  Thus to strike a balance,
135 ;; we use the Hi latency value for imul
136 ;; operations until the imul type can be split.
137 (define_insn_reservation "r10k_imul_single" 6
138   (and (eq_attr "cpu" "r10000")
139        (and (eq_attr "type" "imul,imul3")
140             (eq_attr "mode" "SI")))
141   "r10k_alu2 * 6")
143 (define_insn_reservation "r10k_imul_double" 10
144   (and (eq_attr "cpu" "r10000")
145        (and (eq_attr "type" "imul,imul3")
146             (eq_attr "mode" "DI")))
147   "r10k_alu2 * 10")
149 ;; Divides keep ALU2 busy.
150 (define_insn_reservation "r10k_idiv_single" 34
151   (and (eq_attr "cpu" "r10000")
152        (and (eq_attr "type" "idiv")
153             (eq_attr "mode" "SI")))
154   "r10k_alu2 * 35")
156 (define_insn_reservation "r10k_idiv_double" 66
157   (and (eq_attr "cpu" "r10000")
158        (and (eq_attr "type" "idiv")
159             (eq_attr "mode" "DI")))
160   "r10k_alu2 * 67")
162 (define_bypass 35 "r10k_idiv_single" "r10k_mfhi")
163 (define_bypass 67 "r10k_idiv_double" "r10k_mfhi")
166 ;; Floating point add/sub, mul, abs value, neg, comp, & moves.
167 (define_insn_reservation "r10k_fp_miscadd" 2
168   (and (eq_attr "cpu" "r10000")
169        (eq_attr "type" "fadd,fabs,fneg,fcmp"))
170   "r10k_fpadd")
172 (define_insn_reservation "r10k_fp_miscmul" 2
173   (and (eq_attr "cpu" "r10000")
174        (eq_attr "type" "fmul,fmove"))
175   "r10k_fpmpy")
177 (define_insn_reservation "r10k_fp_cmove" 2
178   (and (eq_attr "cpu" "r10000")
179        (and (eq_attr "type" "condmove")
180             (eq_attr "mode" "SF,DF")))
181   "r10k_fpmpy")
184 ;; The fcvt.s.[wl] insn has latency 4, repeat 2.
185 ;; All other fcvt insns have latency 2, repeat 1.
186 (define_insn_reservation "r10k_fcvt_single" 4
187   (and (eq_attr "cpu" "r10000")
188        (and (eq_attr "type" "fcvt")
189             (eq_attr "cnv_mode" "I2S")))
190   "r10k_fpadd * 2")
192 (define_insn_reservation "r10k_fcvt_other" 2
193   (and (eq_attr "cpu" "r10000")
194        (and (eq_attr "type" "fcvt")
195             (eq_attr "cnv_mode" "!I2S")))
196   "r10k_fpadd")
199 ;; Run the fmadd insn through fp-adder first, then fp-multiplier.
201 ;; The latency for fmadd is 2 cycles if the result is used
202 ;; by another fmadd instruction.
203 (define_insn_reservation "r10k_fmadd" 4
204   (and (eq_attr "cpu" "r10000")
205        (eq_attr "type" "fmadd"))
206   "r10k_fpadd, r10k_fpmpy")
208 (define_bypass 2 "r10k_fmadd" "r10k_fmadd")
211 ;; Floating point Divisions & square roots.
212 (define_insn_reservation "r10k_fdiv_single" 12
213   (and (eq_attr "cpu" "r10000")
214        (and (eq_attr "type" "fdiv,frdiv")
215             (eq_attr "mode" "SF")))
216   "r10k_fpdiv * 14")
218 (define_insn_reservation "r10k_fdiv_double" 19
219   (and (eq_attr "cpu" "r10000")
220        (and (eq_attr "type" "fdiv,frdiv")
221             (eq_attr "mode" "DF")))
222   "r10k_fpdiv * 21")
224 (define_insn_reservation "r10k_fsqrt_single" 18
225   (and (eq_attr "cpu" "r10000")
226        (and (eq_attr "type" "fsqrt")
227             (eq_attr "mode" "SF")))
228   "r10k_fpsqrt * 20")
230 (define_insn_reservation "r10k_fsqrt_double" 33
231   (and (eq_attr "cpu" "r10000")
232        (and (eq_attr "type" "fsqrt")
233             (eq_attr "mode" "DF")))
234   "r10k_fpsqrt * 35")
236 (define_insn_reservation "r10k_frsqrt_single" 30
237   (and (eq_attr "cpu" "r10000")
238        (and (eq_attr "type" "frsqrt")
239             (eq_attr "mode" "SF")))
240   "r10k_fpsqrt * 20")
242 (define_insn_reservation "r10k_frsqrt_double" 52
243   (and (eq_attr "cpu" "r10000")
244        (and (eq_attr "type" "frsqrt")
245             (eq_attr "mode" "DF")))
246   "r10k_fpsqrt * 35")
249 ;; Handle unknown/multi insns here (this is a guess).
250 (define_insn_reservation "r10k_unknown" 1
251   (and (eq_attr "cpu" "r10000")
252        (eq_attr "type" "unknown,multi"))
253   "r10k_alu1 + r10k_alu2")