Merge from mainline (163495:164578).
[official-gcc/graphite-test-results.git] / gcc / reload.c
blob2df18a1dc59f6b605de5075ff24c9a692802951b
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "output.h"
110 #include "function.h"
111 #include "params.h"
112 #include "target.h"
113 #include "ira.h"
114 #include "toplev.h" /* exact_log2 may be used by targets */
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
125 static inline bool
126 small_register_class_p (reg_class_t rclass)
128 return (reg_class_size [(int) rclass] == 1
129 || (reg_class_size [(int) rclass] >= 1
130 && targetm.class_likely_spilled_p (rclass)));
134 /* All reloads of the current insn are recorded here. See reload.h for
135 comments. */
136 int n_reloads;
137 struct reload rld[MAX_RELOADS];
139 /* All the "earlyclobber" operands of the current insn
140 are recorded here. */
141 int n_earlyclobbers;
142 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
144 int reload_n_operands;
146 /* Replacing reloads.
148 If `replace_reloads' is nonzero, then as each reload is recorded
149 an entry is made for it in the table `replacements'.
150 Then later `subst_reloads' can look through that table and
151 perform all the replacements needed. */
153 /* Nonzero means record the places to replace. */
154 static int replace_reloads;
156 /* Each replacement is recorded with a structure like this. */
157 struct replacement
159 rtx *where; /* Location to store in */
160 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
161 a SUBREG; 0 otherwise. */
162 int what; /* which reload this is for */
163 enum machine_mode mode; /* mode it must have */
166 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
168 /* Number of replacements currently recorded. */
169 static int n_replacements;
171 /* Used to track what is modified by an operand. */
172 struct decomposition
174 int reg_flag; /* Nonzero if referencing a register. */
175 int safe; /* Nonzero if this can't conflict with anything. */
176 rtx base; /* Base address for MEM. */
177 HOST_WIDE_INT start; /* Starting offset or register number. */
178 HOST_WIDE_INT end; /* Ending offset or register number. */
181 #ifdef SECONDARY_MEMORY_NEEDED
183 /* Save MEMs needed to copy from one class of registers to another. One MEM
184 is used per mode, but normally only one or two modes are ever used.
186 We keep two versions, before and after register elimination. The one
187 after register elimination is record separately for each operand. This
188 is done in case the address is not valid to be sure that we separately
189 reload each. */
191 static rtx secondary_memlocs[NUM_MACHINE_MODES];
192 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
193 static int secondary_memlocs_elim_used = 0;
194 #endif
196 /* The instruction we are doing reloads for;
197 so we can test whether a register dies in it. */
198 static rtx this_insn;
200 /* Nonzero if this instruction is a user-specified asm with operands. */
201 static int this_insn_is_asm;
203 /* If hard_regs_live_known is nonzero,
204 we can tell which hard regs are currently live,
205 at least enough to succeed in choosing dummy reloads. */
206 static int hard_regs_live_known;
208 /* Indexed by hard reg number,
209 element is nonnegative if hard reg has been spilled.
210 This vector is passed to `find_reloads' as an argument
211 and is not changed here. */
212 static short *static_reload_reg_p;
214 /* Set to 1 in subst_reg_equivs if it changes anything. */
215 static int subst_reg_equivs_changed;
217 /* On return from push_reload, holds the reload-number for the OUT
218 operand, which can be different for that from the input operand. */
219 static int output_reloadnum;
221 /* Compare two RTX's. */
222 #define MATCHES(x, y) \
223 (x == y || (x != 0 && (REG_P (x) \
224 ? REG_P (y) && REGNO (x) == REGNO (y) \
225 : rtx_equal_p (x, y) && ! side_effects_p (x))))
227 /* Indicates if two reloads purposes are for similar enough things that we
228 can merge their reloads. */
229 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
230 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
231 || ((when1) == (when2) && (op1) == (op2)) \
232 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
233 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
235 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
236 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
238 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
239 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
240 ((when1) != (when2) \
241 || ! ((op1) == (op2) \
242 || (when1) == RELOAD_FOR_INPUT \
243 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
244 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
246 /* If we are going to reload an address, compute the reload type to
247 use. */
248 #define ADDR_TYPE(type) \
249 ((type) == RELOAD_FOR_INPUT_ADDRESS \
250 ? RELOAD_FOR_INPADDR_ADDRESS \
251 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
252 ? RELOAD_FOR_OUTADDR_ADDRESS \
253 : (type)))
255 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
256 enum machine_mode, enum reload_type,
257 enum insn_code *, secondary_reload_info *);
258 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
259 int, unsigned int);
260 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
261 static void push_replacement (rtx *, int, enum machine_mode);
262 static void dup_replacements (rtx *, rtx *);
263 static void combine_reloads (void);
264 static int find_reusable_reload (rtx *, rtx, enum reg_class,
265 enum reload_type, int, int);
266 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
267 enum machine_mode, enum reg_class, int, int);
268 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
269 static struct decomposition decompose (rtx);
270 static int immune_p (rtx, rtx, struct decomposition);
271 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
272 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
273 int *);
274 static rtx make_memloc (rtx, int);
275 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
276 addr_space_t, rtx *);
277 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
278 int, enum reload_type, int, rtx);
279 static rtx subst_reg_equivs (rtx, rtx);
280 static rtx subst_indexed_address (rtx);
281 static void update_auto_inc_notes (rtx, int, int);
282 static int find_reloads_address_1 (enum machine_mode, rtx, int,
283 enum rtx_code, enum rtx_code, rtx *,
284 int, enum reload_type,int, rtx);
285 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
286 enum machine_mode, int,
287 enum reload_type, int);
288 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
289 int, rtx);
290 static void copy_replacements_1 (rtx *, rtx *, int);
291 static int find_inc_amount (rtx, rtx);
292 static int refers_to_mem_for_reload_p (rtx);
293 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
294 rtx, rtx *);
296 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
297 list yet. */
299 static void
300 push_reg_equiv_alt_mem (int regno, rtx mem)
302 rtx it;
304 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
305 if (rtx_equal_p (XEXP (it, 0), mem))
306 return;
308 reg_equiv_alt_mem_list [regno]
309 = alloc_EXPR_LIST (REG_EQUIV, mem,
310 reg_equiv_alt_mem_list [regno]);
313 /* Determine if any secondary reloads are needed for loading (if IN_P is
314 nonzero) or storing (if IN_P is zero) X to or from a reload register of
315 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
316 are needed, push them.
318 Return the reload number of the secondary reload we made, or -1 if
319 we didn't need one. *PICODE is set to the insn_code to use if we do
320 need a secondary reload. */
322 static int
323 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
324 enum reg_class reload_class,
325 enum machine_mode reload_mode, enum reload_type type,
326 enum insn_code *picode, secondary_reload_info *prev_sri)
328 enum reg_class rclass = NO_REGS;
329 enum reg_class scratch_class;
330 enum machine_mode mode = reload_mode;
331 enum insn_code icode = CODE_FOR_nothing;
332 enum insn_code t_icode = CODE_FOR_nothing;
333 enum reload_type secondary_type;
334 int s_reload, t_reload = -1;
335 const char *scratch_constraint;
336 char letter;
337 secondary_reload_info sri;
339 if (type == RELOAD_FOR_INPUT_ADDRESS
340 || type == RELOAD_FOR_OUTPUT_ADDRESS
341 || type == RELOAD_FOR_INPADDR_ADDRESS
342 || type == RELOAD_FOR_OUTADDR_ADDRESS)
343 secondary_type = type;
344 else
345 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
347 *picode = CODE_FOR_nothing;
349 /* If X is a paradoxical SUBREG, use the inner value to determine both the
350 mode and object being reloaded. */
351 if (GET_CODE (x) == SUBREG
352 && (GET_MODE_SIZE (GET_MODE (x))
353 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
355 x = SUBREG_REG (x);
356 reload_mode = GET_MODE (x);
359 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
360 is still a pseudo-register by now, it *must* have an equivalent MEM
361 but we don't want to assume that), use that equivalent when seeing if
362 a secondary reload is needed since whether or not a reload is needed
363 might be sensitive to the form of the MEM. */
365 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
366 && reg_equiv_mem[REGNO (x)] != 0)
367 x = reg_equiv_mem[REGNO (x)];
369 sri.icode = CODE_FOR_nothing;
370 sri.prev_sri = prev_sri;
371 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
372 reload_mode, &sri);
373 icode = (enum insn_code) sri.icode;
375 /* If we don't need any secondary registers, done. */
376 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
377 return -1;
379 if (rclass != NO_REGS)
380 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
381 reload_mode, type, &t_icode, &sri);
383 /* If we will be using an insn, the secondary reload is for a
384 scratch register. */
386 if (icode != CODE_FOR_nothing)
388 /* If IN_P is nonzero, the reload register will be the output in
389 operand 0. If IN_P is zero, the reload register will be the input
390 in operand 1. Outputs should have an initial "=", which we must
391 skip. */
393 /* ??? It would be useful to be able to handle only two, or more than
394 three, operands, but for now we can only handle the case of having
395 exactly three: output, input and one temp/scratch. */
396 gcc_assert (insn_data[(int) icode].n_operands == 3);
398 /* ??? We currently have no way to represent a reload that needs
399 an icode to reload from an intermediate tertiary reload register.
400 We should probably have a new field in struct reload to tag a
401 chain of scratch operand reloads onto. */
402 gcc_assert (rclass == NO_REGS);
404 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
405 gcc_assert (*scratch_constraint == '=');
406 scratch_constraint++;
407 if (*scratch_constraint == '&')
408 scratch_constraint++;
409 letter = *scratch_constraint;
410 scratch_class = (letter == 'r' ? GENERAL_REGS
411 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
412 scratch_constraint));
414 rclass = scratch_class;
415 mode = insn_data[(int) icode].operand[2].mode;
418 /* This case isn't valid, so fail. Reload is allowed to use the same
419 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
420 in the case of a secondary register, we actually need two different
421 registers for correct code. We fail here to prevent the possibility of
422 silently generating incorrect code later.
424 The convention is that secondary input reloads are valid only if the
425 secondary_class is different from class. If you have such a case, you
426 can not use secondary reloads, you must work around the problem some
427 other way.
429 Allow this when a reload_in/out pattern is being used. I.e. assume
430 that the generated code handles this case. */
432 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
433 || t_icode != CODE_FOR_nothing);
435 /* See if we can reuse an existing secondary reload. */
436 for (s_reload = 0; s_reload < n_reloads; s_reload++)
437 if (rld[s_reload].secondary_p
438 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
439 || reg_class_subset_p (rld[s_reload].rclass, rclass))
440 && ((in_p && rld[s_reload].inmode == mode)
441 || (! in_p && rld[s_reload].outmode == mode))
442 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
443 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
444 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
445 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
446 && (small_register_class_p (rclass)
447 || targetm.small_register_classes_for_mode_p (VOIDmode))
448 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
449 opnum, rld[s_reload].opnum))
451 if (in_p)
452 rld[s_reload].inmode = mode;
453 if (! in_p)
454 rld[s_reload].outmode = mode;
456 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
457 rld[s_reload].rclass = rclass;
459 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
460 rld[s_reload].optional &= optional;
461 rld[s_reload].secondary_p = 1;
462 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
463 opnum, rld[s_reload].opnum))
464 rld[s_reload].when_needed = RELOAD_OTHER;
466 break;
469 if (s_reload == n_reloads)
471 #ifdef SECONDARY_MEMORY_NEEDED
472 /* If we need a memory location to copy between the two reload regs,
473 set it up now. Note that we do the input case before making
474 the reload and the output case after. This is due to the
475 way reloads are output. */
477 if (in_p && icode == CODE_FOR_nothing
478 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
480 get_secondary_mem (x, reload_mode, opnum, type);
482 /* We may have just added new reloads. Make sure we add
483 the new reload at the end. */
484 s_reload = n_reloads;
486 #endif
488 /* We need to make a new secondary reload for this register class. */
489 rld[s_reload].in = rld[s_reload].out = 0;
490 rld[s_reload].rclass = rclass;
492 rld[s_reload].inmode = in_p ? mode : VOIDmode;
493 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
494 rld[s_reload].reg_rtx = 0;
495 rld[s_reload].optional = optional;
496 rld[s_reload].inc = 0;
497 /* Maybe we could combine these, but it seems too tricky. */
498 rld[s_reload].nocombine = 1;
499 rld[s_reload].in_reg = 0;
500 rld[s_reload].out_reg = 0;
501 rld[s_reload].opnum = opnum;
502 rld[s_reload].when_needed = secondary_type;
503 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
504 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
505 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
506 rld[s_reload].secondary_out_icode
507 = ! in_p ? t_icode : CODE_FOR_nothing;
508 rld[s_reload].secondary_p = 1;
510 n_reloads++;
512 #ifdef SECONDARY_MEMORY_NEEDED
513 if (! in_p && icode == CODE_FOR_nothing
514 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
515 get_secondary_mem (x, mode, opnum, type);
516 #endif
519 *picode = icode;
520 return s_reload;
523 /* If a secondary reload is needed, return its class. If both an intermediate
524 register and a scratch register is needed, we return the class of the
525 intermediate register. */
526 reg_class_t
527 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
528 rtx x)
530 enum insn_code icode;
531 secondary_reload_info sri;
533 sri.icode = CODE_FOR_nothing;
534 sri.prev_sri = NULL;
535 rclass
536 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
537 icode = (enum insn_code) sri.icode;
539 /* If there are no secondary reloads at all, we return NO_REGS.
540 If an intermediate register is needed, we return its class. */
541 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
542 return rclass;
544 /* No intermediate register is needed, but we have a special reload
545 pattern, which we assume for now needs a scratch register. */
546 return scratch_reload_class (icode);
549 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
550 three operands, verify that operand 2 is an output operand, and return
551 its register class.
552 ??? We'd like to be able to handle any pattern with at least 2 operands,
553 for zero or more scratch registers, but that needs more infrastructure. */
554 enum reg_class
555 scratch_reload_class (enum insn_code icode)
557 const char *scratch_constraint;
558 char scratch_letter;
559 enum reg_class rclass;
561 gcc_assert (insn_data[(int) icode].n_operands == 3);
562 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
563 gcc_assert (*scratch_constraint == '=');
564 scratch_constraint++;
565 if (*scratch_constraint == '&')
566 scratch_constraint++;
567 scratch_letter = *scratch_constraint;
568 if (scratch_letter == 'r')
569 return GENERAL_REGS;
570 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
571 scratch_constraint);
572 gcc_assert (rclass != NO_REGS);
573 return rclass;
576 #ifdef SECONDARY_MEMORY_NEEDED
578 /* Return a memory location that will be used to copy X in mode MODE.
579 If we haven't already made a location for this mode in this insn,
580 call find_reloads_address on the location being returned. */
583 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
584 int opnum, enum reload_type type)
586 rtx loc;
587 int mem_valid;
589 /* By default, if MODE is narrower than a word, widen it to a word.
590 This is required because most machines that require these memory
591 locations do not support short load and stores from all registers
592 (e.g., FP registers). */
594 #ifdef SECONDARY_MEMORY_NEEDED_MODE
595 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
596 #else
597 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
598 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
599 #endif
601 /* If we already have made a MEM for this operand in MODE, return it. */
602 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
603 return secondary_memlocs_elim[(int) mode][opnum];
605 /* If this is the first time we've tried to get a MEM for this mode,
606 allocate a new one. `something_changed' in reload will get set
607 by noticing that the frame size has changed. */
609 if (secondary_memlocs[(int) mode] == 0)
611 #ifdef SECONDARY_MEMORY_NEEDED_RTX
612 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
613 #else
614 secondary_memlocs[(int) mode]
615 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
616 #endif
619 /* Get a version of the address doing any eliminations needed. If that
620 didn't give us a new MEM, make a new one if it isn't valid. */
622 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
623 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
624 MEM_ADDR_SPACE (loc));
626 if (! mem_valid && loc == secondary_memlocs[(int) mode])
627 loc = copy_rtx (loc);
629 /* The only time the call below will do anything is if the stack
630 offset is too large. In that case IND_LEVELS doesn't matter, so we
631 can just pass a zero. Adjust the type to be the address of the
632 corresponding object. If the address was valid, save the eliminated
633 address. If it wasn't valid, we need to make a reload each time, so
634 don't save it. */
636 if (! mem_valid)
638 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
639 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
640 : RELOAD_OTHER);
642 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
643 opnum, type, 0, 0);
646 secondary_memlocs_elim[(int) mode][opnum] = loc;
647 if (secondary_memlocs_elim_used <= (int)mode)
648 secondary_memlocs_elim_used = (int)mode + 1;
649 return loc;
652 /* Clear any secondary memory locations we've made. */
654 void
655 clear_secondary_mem (void)
657 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
659 #endif /* SECONDARY_MEMORY_NEEDED */
662 /* Find the largest class which has at least one register valid in
663 mode INNER, and which for every such register, that register number
664 plus N is also valid in OUTER (if in range) and is cheap to move
665 into REGNO. Such a class must exist. */
667 static enum reg_class
668 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
669 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
670 unsigned int dest_regno ATTRIBUTE_UNUSED)
672 int best_cost = -1;
673 int rclass;
674 int regno;
675 enum reg_class best_class = NO_REGS;
676 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
677 unsigned int best_size = 0;
678 int cost;
680 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
682 int bad = 0;
683 int good = 0;
684 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
685 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
687 if (HARD_REGNO_MODE_OK (regno, inner))
689 good = 1;
690 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
691 || ! HARD_REGNO_MODE_OK (regno + n, outer))
692 bad = 1;
696 if (bad || !good)
697 continue;
698 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
700 if ((reg_class_size[rclass] > best_size
701 && (best_cost < 0 || best_cost >= cost))
702 || best_cost > cost)
704 best_class = (enum reg_class) rclass;
705 best_size = reg_class_size[rclass];
706 best_cost = register_move_cost (outer, (enum reg_class) rclass,
707 dest_class);
711 gcc_assert (best_size != 0);
713 return best_class;
716 /* Return the number of a previously made reload that can be combined with
717 a new one, or n_reloads if none of the existing reloads can be used.
718 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
719 push_reload, they determine the kind of the new reload that we try to
720 combine. P_IN points to the corresponding value of IN, which can be
721 modified by this function.
722 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
724 static int
725 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
726 enum reload_type type, int opnum, int dont_share)
728 rtx in = *p_in;
729 int i;
730 /* We can't merge two reloads if the output of either one is
731 earlyclobbered. */
733 if (earlyclobber_operand_p (out))
734 return n_reloads;
736 /* We can use an existing reload if the class is right
737 and at least one of IN and OUT is a match
738 and the other is at worst neutral.
739 (A zero compared against anything is neutral.)
741 For targets with small register classes, don't use existing reloads
742 unless they are for the same thing since that can cause us to need
743 more reload registers than we otherwise would. */
745 for (i = 0; i < n_reloads; i++)
746 if ((reg_class_subset_p (rclass, rld[i].rclass)
747 || reg_class_subset_p (rld[i].rclass, rclass))
748 /* If the existing reload has a register, it must fit our class. */
749 && (rld[i].reg_rtx == 0
750 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
751 true_regnum (rld[i].reg_rtx)))
752 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
753 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
754 || (out != 0 && MATCHES (rld[i].out, out)
755 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
756 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
757 && (small_register_class_p (rclass)
758 || targetm.small_register_classes_for_mode_p (VOIDmode))
759 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
760 return i;
762 /* Reloading a plain reg for input can match a reload to postincrement
763 that reg, since the postincrement's value is the right value.
764 Likewise, it can match a preincrement reload, since we regard
765 the preincrementation as happening before any ref in this insn
766 to that register. */
767 for (i = 0; i < n_reloads; i++)
768 if ((reg_class_subset_p (rclass, rld[i].rclass)
769 || reg_class_subset_p (rld[i].rclass, rclass))
770 /* If the existing reload has a register, it must fit our
771 class. */
772 && (rld[i].reg_rtx == 0
773 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
774 true_regnum (rld[i].reg_rtx)))
775 && out == 0 && rld[i].out == 0 && rld[i].in != 0
776 && ((REG_P (in)
777 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
778 && MATCHES (XEXP (rld[i].in, 0), in))
779 || (REG_P (rld[i].in)
780 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
781 && MATCHES (XEXP (in, 0), rld[i].in)))
782 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
783 && (small_register_class_p (rclass)
784 || targetm.small_register_classes_for_mode_p (VOIDmode))
785 && MERGABLE_RELOADS (type, rld[i].when_needed,
786 opnum, rld[i].opnum))
788 /* Make sure reload_in ultimately has the increment,
789 not the plain register. */
790 if (REG_P (in))
791 *p_in = rld[i].in;
792 return i;
794 return n_reloads;
797 /* Return nonzero if X is a SUBREG which will require reloading of its
798 SUBREG_REG expression. */
800 static int
801 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
803 rtx inner;
805 /* Only SUBREGs are problematical. */
806 if (GET_CODE (x) != SUBREG)
807 return 0;
809 inner = SUBREG_REG (x);
811 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
812 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
813 return 1;
815 /* If INNER is not a hard register, then INNER will not need to
816 be reloaded. */
817 if (!REG_P (inner)
818 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
819 return 0;
821 /* If INNER is not ok for MODE, then INNER will need reloading. */
822 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
823 return 1;
825 /* If the outer part is a word or smaller, INNER larger than a
826 word and the number of regs for INNER is not the same as the
827 number of words in INNER, then INNER will need reloading. */
828 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
829 && output
830 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
831 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
832 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
835 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
836 requiring an extra reload register. The caller has already found that
837 IN contains some reference to REGNO, so check that we can produce the
838 new value in a single step. E.g. if we have
839 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
840 instruction that adds one to a register, this should succeed.
841 However, if we have something like
842 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
843 needs to be loaded into a register first, we need a separate reload
844 register.
845 Such PLUS reloads are generated by find_reload_address_part.
846 The out-of-range PLUS expressions are usually introduced in the instruction
847 patterns by register elimination and substituting pseudos without a home
848 by their function-invariant equivalences. */
849 static int
850 can_reload_into (rtx in, int regno, enum machine_mode mode)
852 rtx dst, test_insn;
853 int r = 0;
854 struct recog_data save_recog_data;
856 /* For matching constraints, we often get notional input reloads where
857 we want to use the original register as the reload register. I.e.
858 technically this is a non-optional input-output reload, but IN is
859 already a valid register, and has been chosen as the reload register.
860 Speed this up, since it trivially works. */
861 if (REG_P (in))
862 return 1;
864 /* To test MEMs properly, we'd have to take into account all the reloads
865 that are already scheduled, which can become quite complicated.
866 And since we've already handled address reloads for this MEM, it
867 should always succeed anyway. */
868 if (MEM_P (in))
869 return 1;
871 /* If we can make a simple SET insn that does the job, everything should
872 be fine. */
873 dst = gen_rtx_REG (mode, regno);
874 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
875 save_recog_data = recog_data;
876 if (recog_memoized (test_insn) >= 0)
878 extract_insn (test_insn);
879 r = constrain_operands (1);
881 recog_data = save_recog_data;
882 return r;
885 /* Record one reload that needs to be performed.
886 IN is an rtx saying where the data are to be found before this instruction.
887 OUT says where they must be stored after the instruction.
888 (IN is zero for data not read, and OUT is zero for data not written.)
889 INLOC and OUTLOC point to the places in the instructions where
890 IN and OUT were found.
891 If IN and OUT are both nonzero, it means the same register must be used
892 to reload both IN and OUT.
894 RCLASS is a register class required for the reloaded data.
895 INMODE is the machine mode that the instruction requires
896 for the reg that replaces IN and OUTMODE is likewise for OUT.
898 If IN is zero, then OUT's location and mode should be passed as
899 INLOC and INMODE.
901 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
903 OPTIONAL nonzero means this reload does not need to be performed:
904 it can be discarded if that is more convenient.
906 OPNUM and TYPE say what the purpose of this reload is.
908 The return value is the reload-number for this reload.
910 If both IN and OUT are nonzero, in some rare cases we might
911 want to make two separate reloads. (Actually we never do this now.)
912 Therefore, the reload-number for OUT is stored in
913 output_reloadnum when we return; the return value applies to IN.
914 Usually (presently always), when IN and OUT are nonzero,
915 the two reload-numbers are equal, but the caller should be careful to
916 distinguish them. */
919 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
920 enum reg_class rclass, enum machine_mode inmode,
921 enum machine_mode outmode, int strict_low, int optional,
922 int opnum, enum reload_type type)
924 int i;
925 int dont_share = 0;
926 int dont_remove_subreg = 0;
927 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
928 int secondary_in_reload = -1, secondary_out_reload = -1;
929 enum insn_code secondary_in_icode = CODE_FOR_nothing;
930 enum insn_code secondary_out_icode = CODE_FOR_nothing;
932 /* INMODE and/or OUTMODE could be VOIDmode if no mode
933 has been specified for the operand. In that case,
934 use the operand's mode as the mode to reload. */
935 if (inmode == VOIDmode && in != 0)
936 inmode = GET_MODE (in);
937 if (outmode == VOIDmode && out != 0)
938 outmode = GET_MODE (out);
940 /* If find_reloads and friends until now missed to replace a pseudo
941 with a constant of reg_equiv_constant something went wrong
942 beforehand.
943 Note that it can't simply be done here if we missed it earlier
944 since the constant might need to be pushed into the literal pool
945 and the resulting memref would probably need further
946 reloading. */
947 if (in != 0 && REG_P (in))
949 int regno = REGNO (in);
951 gcc_assert (regno < FIRST_PSEUDO_REGISTER
952 || reg_renumber[regno] >= 0
953 || reg_equiv_constant[regno] == NULL_RTX);
956 /* reg_equiv_constant only contains constants which are obviously
957 not appropriate as destination. So if we would need to replace
958 the destination pseudo with a constant we are in real
959 trouble. */
960 if (out != 0 && REG_P (out))
962 int regno = REGNO (out);
964 gcc_assert (regno < FIRST_PSEUDO_REGISTER
965 || reg_renumber[regno] >= 0
966 || reg_equiv_constant[regno] == NULL_RTX);
969 /* If we have a read-write operand with an address side-effect,
970 change either IN or OUT so the side-effect happens only once. */
971 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
972 switch (GET_CODE (XEXP (in, 0)))
974 case POST_INC: case POST_DEC: case POST_MODIFY:
975 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
976 break;
978 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
979 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
980 break;
982 default:
983 break;
986 /* If we are reloading a (SUBREG constant ...), really reload just the
987 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
988 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
989 a pseudo and hence will become a MEM) with M1 wider than M2 and the
990 register is a pseudo, also reload the inside expression.
991 For machines that extend byte loads, do this for any SUBREG of a pseudo
992 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
993 M2 is an integral mode that gets extended when loaded.
994 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
995 either M1 is not valid for R or M2 is wider than a word but we only
996 need one word to store an M2-sized quantity in R.
997 (However, if OUT is nonzero, we need to reload the reg *and*
998 the subreg, so do nothing here, and let following statement handle it.)
1000 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1001 we can't handle it here because CONST_INT does not indicate a mode.
1003 Similarly, we must reload the inside expression if we have a
1004 STRICT_LOW_PART (presumably, in == out in this case).
1006 Also reload the inner expression if it does not require a secondary
1007 reload but the SUBREG does.
1009 Finally, reload the inner expression if it is a register that is in
1010 the class whose registers cannot be referenced in a different size
1011 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1012 cannot reload just the inside since we might end up with the wrong
1013 register class. But if it is inside a STRICT_LOW_PART, we have
1014 no choice, so we hope we do get the right register class there. */
1016 if (in != 0 && GET_CODE (in) == SUBREG
1017 && (subreg_lowpart_p (in) || strict_low)
1018 #ifdef CANNOT_CHANGE_MODE_CLASS
1019 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1020 #endif
1021 && (CONSTANT_P (SUBREG_REG (in))
1022 || GET_CODE (SUBREG_REG (in)) == PLUS
1023 || strict_low
1024 || (((REG_P (SUBREG_REG (in))
1025 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1026 || MEM_P (SUBREG_REG (in)))
1027 && ((GET_MODE_SIZE (inmode)
1028 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1029 #ifdef LOAD_EXTEND_OP
1030 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1031 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1032 <= UNITS_PER_WORD)
1033 && (GET_MODE_SIZE (inmode)
1034 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1035 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1036 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1037 #endif
1038 #ifdef WORD_REGISTER_OPERATIONS
1039 || ((GET_MODE_SIZE (inmode)
1040 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1041 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1042 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1043 / UNITS_PER_WORD)))
1044 #endif
1046 || (REG_P (SUBREG_REG (in))
1047 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1048 /* The case where out is nonzero
1049 is handled differently in the following statement. */
1050 && (out == 0 || subreg_lowpart_p (in))
1051 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1052 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1053 > UNITS_PER_WORD)
1054 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1055 / UNITS_PER_WORD)
1056 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1057 [GET_MODE (SUBREG_REG (in))]))
1058 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1059 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1060 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1061 SUBREG_REG (in))
1062 == NO_REGS))
1063 #ifdef CANNOT_CHANGE_MODE_CLASS
1064 || (REG_P (SUBREG_REG (in))
1065 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1066 && REG_CANNOT_CHANGE_MODE_P
1067 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1068 #endif
1071 in_subreg_loc = inloc;
1072 inloc = &SUBREG_REG (in);
1073 in = *inloc;
1074 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1075 if (MEM_P (in))
1076 /* This is supposed to happen only for paradoxical subregs made by
1077 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1078 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1079 #endif
1080 inmode = GET_MODE (in);
1083 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1084 either M1 is not valid for R or M2 is wider than a word but we only
1085 need one word to store an M2-sized quantity in R.
1087 However, we must reload the inner reg *as well as* the subreg in
1088 that case. */
1090 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1091 code above. This can happen if SUBREG_BYTE != 0. */
1093 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1095 enum reg_class in_class = rclass;
1097 if (REG_P (SUBREG_REG (in)))
1098 in_class
1099 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1100 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1101 GET_MODE (SUBREG_REG (in)),
1102 SUBREG_BYTE (in),
1103 GET_MODE (in)),
1104 REGNO (SUBREG_REG (in)));
1106 /* This relies on the fact that emit_reload_insns outputs the
1107 instructions for input reloads of type RELOAD_OTHER in the same
1108 order as the reloads. Thus if the outer reload is also of type
1109 RELOAD_OTHER, we are guaranteed that this inner reload will be
1110 output before the outer reload. */
1111 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1112 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1113 dont_remove_subreg = 1;
1116 /* Similarly for paradoxical and problematical SUBREGs on the output.
1117 Note that there is no reason we need worry about the previous value
1118 of SUBREG_REG (out); even if wider than out,
1119 storing in a subreg is entitled to clobber it all
1120 (except in the case of STRICT_LOW_PART,
1121 and in that case the constraint should label it input-output.) */
1122 if (out != 0 && GET_CODE (out) == SUBREG
1123 && (subreg_lowpart_p (out) || strict_low)
1124 #ifdef CANNOT_CHANGE_MODE_CLASS
1125 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1126 #endif
1127 && (CONSTANT_P (SUBREG_REG (out))
1128 || strict_low
1129 || (((REG_P (SUBREG_REG (out))
1130 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1131 || MEM_P (SUBREG_REG (out)))
1132 && ((GET_MODE_SIZE (outmode)
1133 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1134 #ifdef WORD_REGISTER_OPERATIONS
1135 || ((GET_MODE_SIZE (outmode)
1136 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1137 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1138 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1139 / UNITS_PER_WORD)))
1140 #endif
1142 || (REG_P (SUBREG_REG (out))
1143 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1144 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1145 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1146 > UNITS_PER_WORD)
1147 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1148 / UNITS_PER_WORD)
1149 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1150 [GET_MODE (SUBREG_REG (out))]))
1151 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1152 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1153 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1154 SUBREG_REG (out))
1155 == NO_REGS))
1156 #ifdef CANNOT_CHANGE_MODE_CLASS
1157 || (REG_P (SUBREG_REG (out))
1158 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1159 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1160 GET_MODE (SUBREG_REG (out)),
1161 outmode))
1162 #endif
1165 out_subreg_loc = outloc;
1166 outloc = &SUBREG_REG (out);
1167 out = *outloc;
1168 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1169 gcc_assert (!MEM_P (out)
1170 || GET_MODE_SIZE (GET_MODE (out))
1171 <= GET_MODE_SIZE (outmode));
1172 #endif
1173 outmode = GET_MODE (out);
1176 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1177 either M1 is not valid for R or M2 is wider than a word but we only
1178 need one word to store an M2-sized quantity in R.
1180 However, we must reload the inner reg *as well as* the subreg in
1181 that case. In this case, the inner reg is an in-out reload. */
1183 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1185 /* This relies on the fact that emit_reload_insns outputs the
1186 instructions for output reloads of type RELOAD_OTHER in reverse
1187 order of the reloads. Thus if the outer reload is also of type
1188 RELOAD_OTHER, we are guaranteed that this inner reload will be
1189 output after the outer reload. */
1190 dont_remove_subreg = 1;
1191 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1192 &SUBREG_REG (out),
1193 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1194 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1195 GET_MODE (SUBREG_REG (out)),
1196 SUBREG_BYTE (out),
1197 GET_MODE (out)),
1198 REGNO (SUBREG_REG (out))),
1199 VOIDmode, VOIDmode, 0, 0,
1200 opnum, RELOAD_OTHER);
1203 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1204 if (in != 0 && out != 0 && MEM_P (out)
1205 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1206 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1207 dont_share = 1;
1209 /* If IN is a SUBREG of a hard register, make a new REG. This
1210 simplifies some of the cases below. */
1212 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1213 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1214 && ! dont_remove_subreg)
1215 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1217 /* Similarly for OUT. */
1218 if (out != 0 && GET_CODE (out) == SUBREG
1219 && REG_P (SUBREG_REG (out))
1220 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1221 && ! dont_remove_subreg)
1222 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1224 /* Narrow down the class of register wanted if that is
1225 desirable on this machine for efficiency. */
1227 enum reg_class preferred_class = rclass;
1229 if (in != 0)
1230 preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1232 /* Output reloads may need analogous treatment, different in detail. */
1233 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1234 if (out != 0)
1235 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1236 #endif
1238 /* Discard what the target said if we cannot do it. */
1239 if (preferred_class != NO_REGS
1240 || (optional && type == RELOAD_FOR_OUTPUT))
1241 rclass = preferred_class;
1244 /* Make sure we use a class that can handle the actual pseudo
1245 inside any subreg. For example, on the 386, QImode regs
1246 can appear within SImode subregs. Although GENERAL_REGS
1247 can handle SImode, QImode needs a smaller class. */
1248 #ifdef LIMIT_RELOAD_CLASS
1249 if (in_subreg_loc)
1250 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1251 else if (in != 0 && GET_CODE (in) == SUBREG)
1252 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1254 if (out_subreg_loc)
1255 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1256 if (out != 0 && GET_CODE (out) == SUBREG)
1257 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1258 #endif
1260 /* Verify that this class is at least possible for the mode that
1261 is specified. */
1262 if (this_insn_is_asm)
1264 enum machine_mode mode;
1265 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1266 mode = inmode;
1267 else
1268 mode = outmode;
1269 if (mode == VOIDmode)
1271 error_for_asm (this_insn, "cannot reload integer constant "
1272 "operand in %<asm%>");
1273 mode = word_mode;
1274 if (in != 0)
1275 inmode = word_mode;
1276 if (out != 0)
1277 outmode = word_mode;
1279 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1280 if (HARD_REGNO_MODE_OK (i, mode)
1281 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1282 break;
1283 if (i == FIRST_PSEUDO_REGISTER)
1285 error_for_asm (this_insn, "impossible register constraint "
1286 "in %<asm%>");
1287 /* Avoid further trouble with this insn. */
1288 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1289 /* We used to continue here setting class to ALL_REGS, but it triggers
1290 sanity check on i386 for:
1291 void foo(long double d)
1293 asm("" :: "a" (d));
1295 Returning zero here ought to be safe as we take care in
1296 find_reloads to not process the reloads when instruction was
1297 replaced by USE. */
1299 return 0;
1303 /* Optional output reloads are always OK even if we have no register class,
1304 since the function of these reloads is only to have spill_reg_store etc.
1305 set, so that the storing insn can be deleted later. */
1306 gcc_assert (rclass != NO_REGS
1307 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1309 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1311 if (i == n_reloads)
1313 /* See if we need a secondary reload register to move between CLASS
1314 and IN or CLASS and OUT. Get the icode and push any required reloads
1315 needed for each of them if so. */
1317 if (in != 0)
1318 secondary_in_reload
1319 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1320 &secondary_in_icode, NULL);
1321 if (out != 0 && GET_CODE (out) != SCRATCH)
1322 secondary_out_reload
1323 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1324 type, &secondary_out_icode, NULL);
1326 /* We found no existing reload suitable for re-use.
1327 So add an additional reload. */
1329 #ifdef SECONDARY_MEMORY_NEEDED
1330 /* If a memory location is needed for the copy, make one. */
1331 if (in != 0
1332 && (REG_P (in)
1333 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1334 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1335 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1336 rclass, inmode))
1337 get_secondary_mem (in, inmode, opnum, type);
1338 #endif
1340 i = n_reloads;
1341 rld[i].in = in;
1342 rld[i].out = out;
1343 rld[i].rclass = rclass;
1344 rld[i].inmode = inmode;
1345 rld[i].outmode = outmode;
1346 rld[i].reg_rtx = 0;
1347 rld[i].optional = optional;
1348 rld[i].inc = 0;
1349 rld[i].nocombine = 0;
1350 rld[i].in_reg = inloc ? *inloc : 0;
1351 rld[i].out_reg = outloc ? *outloc : 0;
1352 rld[i].opnum = opnum;
1353 rld[i].when_needed = type;
1354 rld[i].secondary_in_reload = secondary_in_reload;
1355 rld[i].secondary_out_reload = secondary_out_reload;
1356 rld[i].secondary_in_icode = secondary_in_icode;
1357 rld[i].secondary_out_icode = secondary_out_icode;
1358 rld[i].secondary_p = 0;
1360 n_reloads++;
1362 #ifdef SECONDARY_MEMORY_NEEDED
1363 if (out != 0
1364 && (REG_P (out)
1365 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1366 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1367 && SECONDARY_MEMORY_NEEDED (rclass,
1368 REGNO_REG_CLASS (reg_or_subregno (out)),
1369 outmode))
1370 get_secondary_mem (out, outmode, opnum, type);
1371 #endif
1373 else
1375 /* We are reusing an existing reload,
1376 but we may have additional information for it.
1377 For example, we may now have both IN and OUT
1378 while the old one may have just one of them. */
1380 /* The modes can be different. If they are, we want to reload in
1381 the larger mode, so that the value is valid for both modes. */
1382 if (inmode != VOIDmode
1383 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1384 rld[i].inmode = inmode;
1385 if (outmode != VOIDmode
1386 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1387 rld[i].outmode = outmode;
1388 if (in != 0)
1390 rtx in_reg = inloc ? *inloc : 0;
1391 /* If we merge reloads for two distinct rtl expressions that
1392 are identical in content, there might be duplicate address
1393 reloads. Remove the extra set now, so that if we later find
1394 that we can inherit this reload, we can get rid of the
1395 address reloads altogether.
1397 Do not do this if both reloads are optional since the result
1398 would be an optional reload which could potentially leave
1399 unresolved address replacements.
1401 It is not sufficient to call transfer_replacements since
1402 choose_reload_regs will remove the replacements for address
1403 reloads of inherited reloads which results in the same
1404 problem. */
1405 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1406 && ! (rld[i].optional && optional))
1408 /* We must keep the address reload with the lower operand
1409 number alive. */
1410 if (opnum > rld[i].opnum)
1412 remove_address_replacements (in);
1413 in = rld[i].in;
1414 in_reg = rld[i].in_reg;
1416 else
1417 remove_address_replacements (rld[i].in);
1419 /* When emitting reloads we don't necessarily look at the in-
1420 and outmode, but also directly at the operands (in and out).
1421 So we can't simply overwrite them with whatever we have found
1422 for this (to-be-merged) reload, we have to "merge" that too.
1423 Reusing another reload already verified that we deal with the
1424 same operands, just possibly in different modes. So we
1425 overwrite the operands only when the new mode is larger.
1426 See also PR33613. */
1427 if (!rld[i].in
1428 || GET_MODE_SIZE (GET_MODE (in))
1429 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1430 rld[i].in = in;
1431 if (!rld[i].in_reg
1432 || (in_reg
1433 && GET_MODE_SIZE (GET_MODE (in_reg))
1434 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1435 rld[i].in_reg = in_reg;
1437 if (out != 0)
1439 if (!rld[i].out
1440 || (out
1441 && GET_MODE_SIZE (GET_MODE (out))
1442 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1443 rld[i].out = out;
1444 if (outloc
1445 && (!rld[i].out_reg
1446 || GET_MODE_SIZE (GET_MODE (*outloc))
1447 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1448 rld[i].out_reg = *outloc;
1450 if (reg_class_subset_p (rclass, rld[i].rclass))
1451 rld[i].rclass = rclass;
1452 rld[i].optional &= optional;
1453 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1454 opnum, rld[i].opnum))
1455 rld[i].when_needed = RELOAD_OTHER;
1456 rld[i].opnum = MIN (rld[i].opnum, opnum);
1459 /* If the ostensible rtx being reloaded differs from the rtx found
1460 in the location to substitute, this reload is not safe to combine
1461 because we cannot reliably tell whether it appears in the insn. */
1463 if (in != 0 && in != *inloc)
1464 rld[i].nocombine = 1;
1466 #if 0
1467 /* This was replaced by changes in find_reloads_address_1 and the new
1468 function inc_for_reload, which go with a new meaning of reload_inc. */
1470 /* If this is an IN/OUT reload in an insn that sets the CC,
1471 it must be for an autoincrement. It doesn't work to store
1472 the incremented value after the insn because that would clobber the CC.
1473 So we must do the increment of the value reloaded from,
1474 increment it, store it back, then decrement again. */
1475 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1477 out = 0;
1478 rld[i].out = 0;
1479 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1480 /* If we did not find a nonzero amount-to-increment-by,
1481 that contradicts the belief that IN is being incremented
1482 in an address in this insn. */
1483 gcc_assert (rld[i].inc != 0);
1485 #endif
1487 /* If we will replace IN and OUT with the reload-reg,
1488 record where they are located so that substitution need
1489 not do a tree walk. */
1491 if (replace_reloads)
1493 if (inloc != 0)
1495 struct replacement *r = &replacements[n_replacements++];
1496 r->what = i;
1497 r->subreg_loc = in_subreg_loc;
1498 r->where = inloc;
1499 r->mode = inmode;
1501 if (outloc != 0 && outloc != inloc)
1503 struct replacement *r = &replacements[n_replacements++];
1504 r->what = i;
1505 r->where = outloc;
1506 r->subreg_loc = out_subreg_loc;
1507 r->mode = outmode;
1511 /* If this reload is just being introduced and it has both
1512 an incoming quantity and an outgoing quantity that are
1513 supposed to be made to match, see if either one of the two
1514 can serve as the place to reload into.
1516 If one of them is acceptable, set rld[i].reg_rtx
1517 to that one. */
1519 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1521 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1522 inmode, outmode,
1523 rld[i].rclass, i,
1524 earlyclobber_operand_p (out));
1526 /* If the outgoing register already contains the same value
1527 as the incoming one, we can dispense with loading it.
1528 The easiest way to tell the caller that is to give a phony
1529 value for the incoming operand (same as outgoing one). */
1530 if (rld[i].reg_rtx == out
1531 && (REG_P (in) || CONSTANT_P (in))
1532 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1533 static_reload_reg_p, i, inmode))
1534 rld[i].in = out;
1537 /* If this is an input reload and the operand contains a register that
1538 dies in this insn and is used nowhere else, see if it is the right class
1539 to be used for this reload. Use it if so. (This occurs most commonly
1540 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1541 this if it is also an output reload that mentions the register unless
1542 the output is a SUBREG that clobbers an entire register.
1544 Note that the operand might be one of the spill regs, if it is a
1545 pseudo reg and we are in a block where spilling has not taken place.
1546 But if there is no spilling in this block, that is OK.
1547 An explicitly used hard reg cannot be a spill reg. */
1549 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1551 rtx note;
1552 int regno;
1553 enum machine_mode rel_mode = inmode;
1555 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1556 rel_mode = outmode;
1558 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1559 if (REG_NOTE_KIND (note) == REG_DEAD
1560 && REG_P (XEXP (note, 0))
1561 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1562 && reg_mentioned_p (XEXP (note, 0), in)
1563 /* Check that a former pseudo is valid; see find_dummy_reload. */
1564 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1565 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1566 ORIGINAL_REGNO (XEXP (note, 0)))
1567 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1568 && ! refers_to_regno_for_reload_p (regno,
1569 end_hard_regno (rel_mode,
1570 regno),
1571 PATTERN (this_insn), inloc)
1572 /* If this is also an output reload, IN cannot be used as
1573 the reload register if it is set in this insn unless IN
1574 is also OUT. */
1575 && (out == 0 || in == out
1576 || ! hard_reg_set_here_p (regno,
1577 end_hard_regno (rel_mode, regno),
1578 PATTERN (this_insn)))
1579 /* ??? Why is this code so different from the previous?
1580 Is there any simple coherent way to describe the two together?
1581 What's going on here. */
1582 && (in != out
1583 || (GET_CODE (in) == SUBREG
1584 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1585 / UNITS_PER_WORD)
1586 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1587 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1588 /* Make sure the operand fits in the reg that dies. */
1589 && (GET_MODE_SIZE (rel_mode)
1590 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1591 && HARD_REGNO_MODE_OK (regno, inmode)
1592 && HARD_REGNO_MODE_OK (regno, outmode))
1594 unsigned int offs;
1595 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1596 hard_regno_nregs[regno][outmode]);
1598 for (offs = 0; offs < nregs; offs++)
1599 if (fixed_regs[regno + offs]
1600 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1601 regno + offs))
1602 break;
1604 if (offs == nregs
1605 && (! (refers_to_regno_for_reload_p
1606 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1607 || can_reload_into (in, regno, inmode)))
1609 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1610 break;
1615 if (out)
1616 output_reloadnum = i;
1618 return i;
1621 /* Record an additional place we must replace a value
1622 for which we have already recorded a reload.
1623 RELOADNUM is the value returned by push_reload
1624 when the reload was recorded.
1625 This is used in insn patterns that use match_dup. */
1627 static void
1628 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1630 if (replace_reloads)
1632 struct replacement *r = &replacements[n_replacements++];
1633 r->what = reloadnum;
1634 r->where = loc;
1635 r->subreg_loc = 0;
1636 r->mode = mode;
1640 /* Duplicate any replacement we have recorded to apply at
1641 location ORIG_LOC to also be performed at DUP_LOC.
1642 This is used in insn patterns that use match_dup. */
1644 static void
1645 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1647 int i, n = n_replacements;
1649 for (i = 0; i < n; i++)
1651 struct replacement *r = &replacements[i];
1652 if (r->where == orig_loc)
1653 push_replacement (dup_loc, r->what, r->mode);
1657 /* Transfer all replacements that used to be in reload FROM to be in
1658 reload TO. */
1660 void
1661 transfer_replacements (int to, int from)
1663 int i;
1665 for (i = 0; i < n_replacements; i++)
1666 if (replacements[i].what == from)
1667 replacements[i].what = to;
1670 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1671 or a subpart of it. If we have any replacements registered for IN_RTX,
1672 cancel the reloads that were supposed to load them.
1673 Return nonzero if we canceled any reloads. */
1675 remove_address_replacements (rtx in_rtx)
1677 int i, j;
1678 char reload_flags[MAX_RELOADS];
1679 int something_changed = 0;
1681 memset (reload_flags, 0, sizeof reload_flags);
1682 for (i = 0, j = 0; i < n_replacements; i++)
1684 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1685 reload_flags[replacements[i].what] |= 1;
1686 else
1688 replacements[j++] = replacements[i];
1689 reload_flags[replacements[i].what] |= 2;
1692 /* Note that the following store must be done before the recursive calls. */
1693 n_replacements = j;
1695 for (i = n_reloads - 1; i >= 0; i--)
1697 if (reload_flags[i] == 1)
1699 deallocate_reload_reg (i);
1700 remove_address_replacements (rld[i].in);
1701 rld[i].in = 0;
1702 something_changed = 1;
1705 return something_changed;
1708 /* If there is only one output reload, and it is not for an earlyclobber
1709 operand, try to combine it with a (logically unrelated) input reload
1710 to reduce the number of reload registers needed.
1712 This is safe if the input reload does not appear in
1713 the value being output-reloaded, because this implies
1714 it is not needed any more once the original insn completes.
1716 If that doesn't work, see we can use any of the registers that
1717 die in this insn as a reload register. We can if it is of the right
1718 class and does not appear in the value being output-reloaded. */
1720 static void
1721 combine_reloads (void)
1723 int i, regno;
1724 int output_reload = -1;
1725 int secondary_out = -1;
1726 rtx note;
1728 /* Find the output reload; return unless there is exactly one
1729 and that one is mandatory. */
1731 for (i = 0; i < n_reloads; i++)
1732 if (rld[i].out != 0)
1734 if (output_reload >= 0)
1735 return;
1736 output_reload = i;
1739 if (output_reload < 0 || rld[output_reload].optional)
1740 return;
1742 /* An input-output reload isn't combinable. */
1744 if (rld[output_reload].in != 0)
1745 return;
1747 /* If this reload is for an earlyclobber operand, we can't do anything. */
1748 if (earlyclobber_operand_p (rld[output_reload].out))
1749 return;
1751 /* If there is a reload for part of the address of this operand, we would
1752 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1753 its life to the point where doing this combine would not lower the
1754 number of spill registers needed. */
1755 for (i = 0; i < n_reloads; i++)
1756 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1757 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1758 && rld[i].opnum == rld[output_reload].opnum)
1759 return;
1761 /* Check each input reload; can we combine it? */
1763 for (i = 0; i < n_reloads; i++)
1764 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1765 /* Life span of this reload must not extend past main insn. */
1766 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1767 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1768 && rld[i].when_needed != RELOAD_OTHER
1769 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1770 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1771 rld[output_reload].outmode))
1772 && rld[i].inc == 0
1773 && rld[i].reg_rtx == 0
1774 #ifdef SECONDARY_MEMORY_NEEDED
1775 /* Don't combine two reloads with different secondary
1776 memory locations. */
1777 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1778 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1779 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1780 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1781 #endif
1782 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1783 ? (rld[i].rclass == rld[output_reload].rclass)
1784 : (reg_class_subset_p (rld[i].rclass,
1785 rld[output_reload].rclass)
1786 || reg_class_subset_p (rld[output_reload].rclass,
1787 rld[i].rclass)))
1788 && (MATCHES (rld[i].in, rld[output_reload].out)
1789 /* Args reversed because the first arg seems to be
1790 the one that we imagine being modified
1791 while the second is the one that might be affected. */
1792 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1793 rld[i].in)
1794 /* However, if the input is a register that appears inside
1795 the output, then we also can't share.
1796 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1797 If the same reload reg is used for both reg 69 and the
1798 result to be stored in memory, then that result
1799 will clobber the address of the memory ref. */
1800 && ! (REG_P (rld[i].in)
1801 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1802 rld[output_reload].out))))
1803 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1804 rld[i].when_needed != RELOAD_FOR_INPUT)
1805 && (reg_class_size[(int) rld[i].rclass]
1806 || targetm.small_register_classes_for_mode_p (VOIDmode))
1807 /* We will allow making things slightly worse by combining an
1808 input and an output, but no worse than that. */
1809 && (rld[i].when_needed == RELOAD_FOR_INPUT
1810 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1812 int j;
1814 /* We have found a reload to combine with! */
1815 rld[i].out = rld[output_reload].out;
1816 rld[i].out_reg = rld[output_reload].out_reg;
1817 rld[i].outmode = rld[output_reload].outmode;
1818 /* Mark the old output reload as inoperative. */
1819 rld[output_reload].out = 0;
1820 /* The combined reload is needed for the entire insn. */
1821 rld[i].when_needed = RELOAD_OTHER;
1822 /* If the output reload had a secondary reload, copy it. */
1823 if (rld[output_reload].secondary_out_reload != -1)
1825 rld[i].secondary_out_reload
1826 = rld[output_reload].secondary_out_reload;
1827 rld[i].secondary_out_icode
1828 = rld[output_reload].secondary_out_icode;
1831 #ifdef SECONDARY_MEMORY_NEEDED
1832 /* Copy any secondary MEM. */
1833 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1834 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1835 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1836 #endif
1837 /* If required, minimize the register class. */
1838 if (reg_class_subset_p (rld[output_reload].rclass,
1839 rld[i].rclass))
1840 rld[i].rclass = rld[output_reload].rclass;
1842 /* Transfer all replacements from the old reload to the combined. */
1843 for (j = 0; j < n_replacements; j++)
1844 if (replacements[j].what == output_reload)
1845 replacements[j].what = i;
1847 return;
1850 /* If this insn has only one operand that is modified or written (assumed
1851 to be the first), it must be the one corresponding to this reload. It
1852 is safe to use anything that dies in this insn for that output provided
1853 that it does not occur in the output (we already know it isn't an
1854 earlyclobber. If this is an asm insn, give up. */
1856 if (INSN_CODE (this_insn) == -1)
1857 return;
1859 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1860 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1861 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1862 return;
1864 /* See if some hard register that dies in this insn and is not used in
1865 the output is the right class. Only works if the register we pick
1866 up can fully hold our output reload. */
1867 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1868 if (REG_NOTE_KIND (note) == REG_DEAD
1869 && REG_P (XEXP (note, 0))
1870 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1871 rld[output_reload].out)
1872 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1873 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1874 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1875 regno)
1876 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1877 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1878 /* Ensure that a secondary or tertiary reload for this output
1879 won't want this register. */
1880 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1881 || (!(TEST_HARD_REG_BIT
1882 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1883 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1884 || !(TEST_HARD_REG_BIT
1885 (reg_class_contents[(int) rld[secondary_out].rclass],
1886 regno)))))
1887 && !fixed_regs[regno]
1888 /* Check that a former pseudo is valid; see find_dummy_reload. */
1889 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1890 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1891 ORIGINAL_REGNO (XEXP (note, 0)))
1892 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1894 rld[output_reload].reg_rtx
1895 = gen_rtx_REG (rld[output_reload].outmode, regno);
1896 return;
1900 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1901 See if one of IN and OUT is a register that may be used;
1902 this is desirable since a spill-register won't be needed.
1903 If so, return the register rtx that proves acceptable.
1905 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1906 RCLASS is the register class required for the reload.
1908 If FOR_REAL is >= 0, it is the number of the reload,
1909 and in some cases when it can be discovered that OUT doesn't need
1910 to be computed, clear out rld[FOR_REAL].out.
1912 If FOR_REAL is -1, this should not be done, because this call
1913 is just to see if a register can be found, not to find and install it.
1915 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1916 puts an additional constraint on being able to use IN for OUT since
1917 IN must not appear elsewhere in the insn (it is assumed that IN itself
1918 is safe from the earlyclobber). */
1920 static rtx
1921 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1922 enum machine_mode inmode, enum machine_mode outmode,
1923 enum reg_class rclass, int for_real, int earlyclobber)
1925 rtx in = real_in;
1926 rtx out = real_out;
1927 int in_offset = 0;
1928 int out_offset = 0;
1929 rtx value = 0;
1931 /* If operands exceed a word, we can't use either of them
1932 unless they have the same size. */
1933 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1934 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1935 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1936 return 0;
1938 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1939 respectively refers to a hard register. */
1941 /* Find the inside of any subregs. */
1942 while (GET_CODE (out) == SUBREG)
1944 if (REG_P (SUBREG_REG (out))
1945 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1946 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1947 GET_MODE (SUBREG_REG (out)),
1948 SUBREG_BYTE (out),
1949 GET_MODE (out));
1950 out = SUBREG_REG (out);
1952 while (GET_CODE (in) == SUBREG)
1954 if (REG_P (SUBREG_REG (in))
1955 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1956 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1957 GET_MODE (SUBREG_REG (in)),
1958 SUBREG_BYTE (in),
1959 GET_MODE (in));
1960 in = SUBREG_REG (in);
1963 /* Narrow down the reg class, the same way push_reload will;
1964 otherwise we might find a dummy now, but push_reload won't. */
1966 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1967 if (preferred_class != NO_REGS)
1968 rclass = preferred_class;
1971 /* See if OUT will do. */
1972 if (REG_P (out)
1973 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1975 unsigned int regno = REGNO (out) + out_offset;
1976 unsigned int nwords = hard_regno_nregs[regno][outmode];
1977 rtx saved_rtx;
1979 /* When we consider whether the insn uses OUT,
1980 ignore references within IN. They don't prevent us
1981 from copying IN into OUT, because those refs would
1982 move into the insn that reloads IN.
1984 However, we only ignore IN in its role as this reload.
1985 If the insn uses IN elsewhere and it contains OUT,
1986 that counts. We can't be sure it's the "same" operand
1987 so it might not go through this reload. */
1988 saved_rtx = *inloc;
1989 *inloc = const0_rtx;
1991 if (regno < FIRST_PSEUDO_REGISTER
1992 && HARD_REGNO_MODE_OK (regno, outmode)
1993 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1994 PATTERN (this_insn), outloc))
1996 unsigned int i;
1998 for (i = 0; i < nwords; i++)
1999 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2000 regno + i))
2001 break;
2003 if (i == nwords)
2005 if (REG_P (real_out))
2006 value = real_out;
2007 else
2008 value = gen_rtx_REG (outmode, regno);
2012 *inloc = saved_rtx;
2015 /* Consider using IN if OUT was not acceptable
2016 or if OUT dies in this insn (like the quotient in a divmod insn).
2017 We can't use IN unless it is dies in this insn,
2018 which means we must know accurately which hard regs are live.
2019 Also, the result can't go in IN if IN is used within OUT,
2020 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2021 if (hard_regs_live_known
2022 && REG_P (in)
2023 && REGNO (in) < FIRST_PSEUDO_REGISTER
2024 && (value == 0
2025 || find_reg_note (this_insn, REG_UNUSED, real_out))
2026 && find_reg_note (this_insn, REG_DEAD, real_in)
2027 && !fixed_regs[REGNO (in)]
2028 && HARD_REGNO_MODE_OK (REGNO (in),
2029 /* The only case where out and real_out might
2030 have different modes is where real_out
2031 is a subreg, and in that case, out
2032 has a real mode. */
2033 (GET_MODE (out) != VOIDmode
2034 ? GET_MODE (out) : outmode))
2035 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2036 /* However only do this if we can be sure that this input
2037 operand doesn't correspond with an uninitialized pseudo.
2038 global can assign some hardreg to it that is the same as
2039 the one assigned to a different, also live pseudo (as it
2040 can ignore the conflict). We must never introduce writes
2041 to such hardregs, as they would clobber the other live
2042 pseudo. See PR 20973. */
2043 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2044 ORIGINAL_REGNO (in))
2045 /* Similarly, only do this if we can be sure that the death
2046 note is still valid. global can assign some hardreg to
2047 the pseudo referenced in the note and simultaneously a
2048 subword of this hardreg to a different, also live pseudo,
2049 because only another subword of the hardreg is actually
2050 used in the insn. This cannot happen if the pseudo has
2051 been assigned exactly one hardreg. See PR 33732. */
2052 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2054 unsigned int regno = REGNO (in) + in_offset;
2055 unsigned int nwords = hard_regno_nregs[regno][inmode];
2057 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2058 && ! hard_reg_set_here_p (regno, regno + nwords,
2059 PATTERN (this_insn))
2060 && (! earlyclobber
2061 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2062 PATTERN (this_insn), inloc)))
2064 unsigned int i;
2066 for (i = 0; i < nwords; i++)
2067 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2068 regno + i))
2069 break;
2071 if (i == nwords)
2073 /* If we were going to use OUT as the reload reg
2074 and changed our mind, it means OUT is a dummy that
2075 dies here. So don't bother copying value to it. */
2076 if (for_real >= 0 && value == real_out)
2077 rld[for_real].out = 0;
2078 if (REG_P (real_in))
2079 value = real_in;
2080 else
2081 value = gen_rtx_REG (inmode, regno);
2086 return value;
2089 /* This page contains subroutines used mainly for determining
2090 whether the IN or an OUT of a reload can serve as the
2091 reload register. */
2093 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2096 earlyclobber_operand_p (rtx x)
2098 int i;
2100 for (i = 0; i < n_earlyclobbers; i++)
2101 if (reload_earlyclobbers[i] == x)
2102 return 1;
2104 return 0;
2107 /* Return 1 if expression X alters a hard reg in the range
2108 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2109 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2110 X should be the body of an instruction. */
2112 static int
2113 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2115 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2117 rtx op0 = SET_DEST (x);
2119 while (GET_CODE (op0) == SUBREG)
2120 op0 = SUBREG_REG (op0);
2121 if (REG_P (op0))
2123 unsigned int r = REGNO (op0);
2125 /* See if this reg overlaps range under consideration. */
2126 if (r < end_regno
2127 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2128 return 1;
2131 else if (GET_CODE (x) == PARALLEL)
2133 int i = XVECLEN (x, 0) - 1;
2135 for (; i >= 0; i--)
2136 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2137 return 1;
2140 return 0;
2143 /* Return 1 if ADDR is a valid memory address for mode MODE
2144 in address space AS, and check that each pseudo reg has the
2145 proper kind of hard reg. */
2148 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2149 rtx addr, addr_space_t as)
2151 #ifdef GO_IF_LEGITIMATE_ADDRESS
2152 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2153 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2154 return 0;
2156 win:
2157 return 1;
2158 #else
2159 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2160 #endif
2163 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2164 if they are the same hard reg, and has special hacks for
2165 autoincrement and autodecrement.
2166 This is specifically intended for find_reloads to use
2167 in determining whether two operands match.
2168 X is the operand whose number is the lower of the two.
2170 The value is 2 if Y contains a pre-increment that matches
2171 a non-incrementing address in X. */
2173 /* ??? To be completely correct, we should arrange to pass
2174 for X the output operand and for Y the input operand.
2175 For now, we assume that the output operand has the lower number
2176 because that is natural in (SET output (... input ...)). */
2179 operands_match_p (rtx x, rtx y)
2181 int i;
2182 RTX_CODE code = GET_CODE (x);
2183 const char *fmt;
2184 int success_2;
2186 if (x == y)
2187 return 1;
2188 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2189 && (REG_P (y) || (GET_CODE (y) == SUBREG
2190 && REG_P (SUBREG_REG (y)))))
2192 int j;
2194 if (code == SUBREG)
2196 i = REGNO (SUBREG_REG (x));
2197 if (i >= FIRST_PSEUDO_REGISTER)
2198 goto slow;
2199 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2200 GET_MODE (SUBREG_REG (x)),
2201 SUBREG_BYTE (x),
2202 GET_MODE (x));
2204 else
2205 i = REGNO (x);
2207 if (GET_CODE (y) == SUBREG)
2209 j = REGNO (SUBREG_REG (y));
2210 if (j >= FIRST_PSEUDO_REGISTER)
2211 goto slow;
2212 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2213 GET_MODE (SUBREG_REG (y)),
2214 SUBREG_BYTE (y),
2215 GET_MODE (y));
2217 else
2218 j = REGNO (y);
2220 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2221 multiple hard register group of scalar integer registers, so that
2222 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2223 register. */
2224 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2225 && SCALAR_INT_MODE_P (GET_MODE (x))
2226 && i < FIRST_PSEUDO_REGISTER)
2227 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2228 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2229 && SCALAR_INT_MODE_P (GET_MODE (y))
2230 && j < FIRST_PSEUDO_REGISTER)
2231 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2233 return i == j;
2235 /* If two operands must match, because they are really a single
2236 operand of an assembler insn, then two postincrements are invalid
2237 because the assembler insn would increment only once.
2238 On the other hand, a postincrement matches ordinary indexing
2239 if the postincrement is the output operand. */
2240 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2241 return operands_match_p (XEXP (x, 0), y);
2242 /* Two preincrements are invalid
2243 because the assembler insn would increment only once.
2244 On the other hand, a preincrement matches ordinary indexing
2245 if the preincrement is the input operand.
2246 In this case, return 2, since some callers need to do special
2247 things when this happens. */
2248 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2249 || GET_CODE (y) == PRE_MODIFY)
2250 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2252 slow:
2254 /* Now we have disposed of all the cases in which different rtx codes
2255 can match. */
2256 if (code != GET_CODE (y))
2257 return 0;
2259 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2260 if (GET_MODE (x) != GET_MODE (y))
2261 return 0;
2263 /* MEMs refering to different address space are not equivalent. */
2264 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2265 return 0;
2267 switch (code)
2269 case CONST_INT:
2270 case CONST_DOUBLE:
2271 case CONST_FIXED:
2272 return 0;
2274 case LABEL_REF:
2275 return XEXP (x, 0) == XEXP (y, 0);
2276 case SYMBOL_REF:
2277 return XSTR (x, 0) == XSTR (y, 0);
2279 default:
2280 break;
2283 /* Compare the elements. If any pair of corresponding elements
2284 fail to match, return 0 for the whole things. */
2286 success_2 = 0;
2287 fmt = GET_RTX_FORMAT (code);
2288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2290 int val, j;
2291 switch (fmt[i])
2293 case 'w':
2294 if (XWINT (x, i) != XWINT (y, i))
2295 return 0;
2296 break;
2298 case 'i':
2299 if (XINT (x, i) != XINT (y, i))
2300 return 0;
2301 break;
2303 case 'e':
2304 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2305 if (val == 0)
2306 return 0;
2307 /* If any subexpression returns 2,
2308 we should return 2 if we are successful. */
2309 if (val == 2)
2310 success_2 = 1;
2311 break;
2313 case '0':
2314 break;
2316 case 'E':
2317 if (XVECLEN (x, i) != XVECLEN (y, i))
2318 return 0;
2319 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2321 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2322 if (val == 0)
2323 return 0;
2324 if (val == 2)
2325 success_2 = 1;
2327 break;
2329 /* It is believed that rtx's at this level will never
2330 contain anything but integers and other rtx's,
2331 except for within LABEL_REFs and SYMBOL_REFs. */
2332 default:
2333 gcc_unreachable ();
2336 return 1 + success_2;
2339 /* Describe the range of registers or memory referenced by X.
2340 If X is a register, set REG_FLAG and put the first register
2341 number into START and the last plus one into END.
2342 If X is a memory reference, put a base address into BASE
2343 and a range of integer offsets into START and END.
2344 If X is pushing on the stack, we can assume it causes no trouble,
2345 so we set the SAFE field. */
2347 static struct decomposition
2348 decompose (rtx x)
2350 struct decomposition val;
2351 int all_const = 0;
2353 memset (&val, 0, sizeof (val));
2355 switch (GET_CODE (x))
2357 case MEM:
2359 rtx base = NULL_RTX, offset = 0;
2360 rtx addr = XEXP (x, 0);
2362 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2363 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2365 val.base = XEXP (addr, 0);
2366 val.start = -GET_MODE_SIZE (GET_MODE (x));
2367 val.end = GET_MODE_SIZE (GET_MODE (x));
2368 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2369 return val;
2372 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2374 if (GET_CODE (XEXP (addr, 1)) == PLUS
2375 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2376 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2378 val.base = XEXP (addr, 0);
2379 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2380 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2381 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2382 return val;
2386 if (GET_CODE (addr) == CONST)
2388 addr = XEXP (addr, 0);
2389 all_const = 1;
2391 if (GET_CODE (addr) == PLUS)
2393 if (CONSTANT_P (XEXP (addr, 0)))
2395 base = XEXP (addr, 1);
2396 offset = XEXP (addr, 0);
2398 else if (CONSTANT_P (XEXP (addr, 1)))
2400 base = XEXP (addr, 0);
2401 offset = XEXP (addr, 1);
2405 if (offset == 0)
2407 base = addr;
2408 offset = const0_rtx;
2410 if (GET_CODE (offset) == CONST)
2411 offset = XEXP (offset, 0);
2412 if (GET_CODE (offset) == PLUS)
2414 if (CONST_INT_P (XEXP (offset, 0)))
2416 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2417 offset = XEXP (offset, 0);
2419 else if (CONST_INT_P (XEXP (offset, 1)))
2421 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2422 offset = XEXP (offset, 1);
2424 else
2426 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2427 offset = const0_rtx;
2430 else if (!CONST_INT_P (offset))
2432 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2433 offset = const0_rtx;
2436 if (all_const && GET_CODE (base) == PLUS)
2437 base = gen_rtx_CONST (GET_MODE (base), base);
2439 gcc_assert (CONST_INT_P (offset));
2441 val.start = INTVAL (offset);
2442 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2443 val.base = base;
2445 break;
2447 case REG:
2448 val.reg_flag = 1;
2449 val.start = true_regnum (x);
2450 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2452 /* A pseudo with no hard reg. */
2453 val.start = REGNO (x);
2454 val.end = val.start + 1;
2456 else
2457 /* A hard reg. */
2458 val.end = end_hard_regno (GET_MODE (x), val.start);
2459 break;
2461 case SUBREG:
2462 if (!REG_P (SUBREG_REG (x)))
2463 /* This could be more precise, but it's good enough. */
2464 return decompose (SUBREG_REG (x));
2465 val.reg_flag = 1;
2466 val.start = true_regnum (x);
2467 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2468 return decompose (SUBREG_REG (x));
2469 else
2470 /* A hard reg. */
2471 val.end = val.start + subreg_nregs (x);
2472 break;
2474 case SCRATCH:
2475 /* This hasn't been assigned yet, so it can't conflict yet. */
2476 val.safe = 1;
2477 break;
2479 default:
2480 gcc_assert (CONSTANT_P (x));
2481 val.safe = 1;
2482 break;
2484 return val;
2487 /* Return 1 if altering Y will not modify the value of X.
2488 Y is also described by YDATA, which should be decompose (Y). */
2490 static int
2491 immune_p (rtx x, rtx y, struct decomposition ydata)
2493 struct decomposition xdata;
2495 if (ydata.reg_flag)
2496 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2497 if (ydata.safe)
2498 return 1;
2500 gcc_assert (MEM_P (y));
2501 /* If Y is memory and X is not, Y can't affect X. */
2502 if (!MEM_P (x))
2503 return 1;
2505 xdata = decompose (x);
2507 if (! rtx_equal_p (xdata.base, ydata.base))
2509 /* If bases are distinct symbolic constants, there is no overlap. */
2510 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2511 return 1;
2512 /* Constants and stack slots never overlap. */
2513 if (CONSTANT_P (xdata.base)
2514 && (ydata.base == frame_pointer_rtx
2515 || ydata.base == hard_frame_pointer_rtx
2516 || ydata.base == stack_pointer_rtx))
2517 return 1;
2518 if (CONSTANT_P (ydata.base)
2519 && (xdata.base == frame_pointer_rtx
2520 || xdata.base == hard_frame_pointer_rtx
2521 || xdata.base == stack_pointer_rtx))
2522 return 1;
2523 /* If either base is variable, we don't know anything. */
2524 return 0;
2527 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2530 /* Similar, but calls decompose. */
2533 safe_from_earlyclobber (rtx op, rtx clobber)
2535 struct decomposition early_data;
2537 early_data = decompose (clobber);
2538 return immune_p (op, clobber, early_data);
2541 /* Main entry point of this file: search the body of INSN
2542 for values that need reloading and record them with push_reload.
2543 REPLACE nonzero means record also where the values occur
2544 so that subst_reloads can be used.
2546 IND_LEVELS says how many levels of indirection are supported by this
2547 machine; a value of zero means that a memory reference is not a valid
2548 memory address.
2550 LIVE_KNOWN says we have valid information about which hard
2551 regs are live at each point in the program; this is true when
2552 we are called from global_alloc but false when stupid register
2553 allocation has been done.
2555 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2556 which is nonnegative if the reg has been commandeered for reloading into.
2557 It is copied into STATIC_RELOAD_REG_P and referenced from there
2558 by various subroutines.
2560 Return TRUE if some operands need to be changed, because of swapping
2561 commutative operands, reg_equiv_address substitution, or whatever. */
2564 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2565 short *reload_reg_p)
2567 int insn_code_number;
2568 int i, j;
2569 int noperands;
2570 /* These start out as the constraints for the insn
2571 and they are chewed up as we consider alternatives. */
2572 const char *constraints[MAX_RECOG_OPERANDS];
2573 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2574 a register. */
2575 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2576 char pref_or_nothing[MAX_RECOG_OPERANDS];
2577 /* Nonzero for a MEM operand whose entire address needs a reload.
2578 May be -1 to indicate the entire address may or may not need a reload. */
2579 int address_reloaded[MAX_RECOG_OPERANDS];
2580 /* Nonzero for an address operand that needs to be completely reloaded.
2581 May be -1 to indicate the entire operand may or may not need a reload. */
2582 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2583 /* Value of enum reload_type to use for operand. */
2584 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2585 /* Value of enum reload_type to use within address of operand. */
2586 enum reload_type address_type[MAX_RECOG_OPERANDS];
2587 /* Save the usage of each operand. */
2588 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2589 int no_input_reloads = 0, no_output_reloads = 0;
2590 int n_alternatives;
2591 enum reg_class this_alternative[MAX_RECOG_OPERANDS];
2592 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2593 char this_alternative_win[MAX_RECOG_OPERANDS];
2594 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2595 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2596 int this_alternative_matches[MAX_RECOG_OPERANDS];
2597 int swapped;
2598 int goal_alternative[MAX_RECOG_OPERANDS];
2599 int this_alternative_number;
2600 int goal_alternative_number = 0;
2601 int operand_reloadnum[MAX_RECOG_OPERANDS];
2602 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2603 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2604 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2605 char goal_alternative_win[MAX_RECOG_OPERANDS];
2606 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2607 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2608 int goal_alternative_swapped;
2609 int best;
2610 int commutative;
2611 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2612 rtx substed_operand[MAX_RECOG_OPERANDS];
2613 rtx body = PATTERN (insn);
2614 rtx set = single_set (insn);
2615 int goal_earlyclobber = 0, this_earlyclobber;
2616 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2617 int retval = 0;
2619 this_insn = insn;
2620 n_reloads = 0;
2621 n_replacements = 0;
2622 n_earlyclobbers = 0;
2623 replace_reloads = replace;
2624 hard_regs_live_known = live_known;
2625 static_reload_reg_p = reload_reg_p;
2627 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2628 neither are insns that SET cc0. Insns that use CC0 are not allowed
2629 to have any input reloads. */
2630 if (JUMP_P (insn) || CALL_P (insn))
2631 no_output_reloads = 1;
2633 #ifdef HAVE_cc0
2634 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2635 no_input_reloads = 1;
2636 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2637 no_output_reloads = 1;
2638 #endif
2640 #ifdef SECONDARY_MEMORY_NEEDED
2641 /* The eliminated forms of any secondary memory locations are per-insn, so
2642 clear them out here. */
2644 if (secondary_memlocs_elim_used)
2646 memset (secondary_memlocs_elim, 0,
2647 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2648 secondary_memlocs_elim_used = 0;
2650 #endif
2652 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2653 is cheap to move between them. If it is not, there may not be an insn
2654 to do the copy, so we may need a reload. */
2655 if (GET_CODE (body) == SET
2656 && REG_P (SET_DEST (body))
2657 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2658 && REG_P (SET_SRC (body))
2659 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2660 && register_move_cost (GET_MODE (SET_SRC (body)),
2661 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2662 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2663 return 0;
2665 extract_insn (insn);
2667 noperands = reload_n_operands = recog_data.n_operands;
2668 n_alternatives = recog_data.n_alternatives;
2670 /* Just return "no reloads" if insn has no operands with constraints. */
2671 if (noperands == 0 || n_alternatives == 0)
2672 return 0;
2674 insn_code_number = INSN_CODE (insn);
2675 this_insn_is_asm = insn_code_number < 0;
2677 memcpy (operand_mode, recog_data.operand_mode,
2678 noperands * sizeof (enum machine_mode));
2679 memcpy (constraints, recog_data.constraints,
2680 noperands * sizeof (const char *));
2682 commutative = -1;
2684 /* If we will need to know, later, whether some pair of operands
2685 are the same, we must compare them now and save the result.
2686 Reloading the base and index registers will clobber them
2687 and afterward they will fail to match. */
2689 for (i = 0; i < noperands; i++)
2691 const char *p;
2692 int c;
2693 char *end;
2695 substed_operand[i] = recog_data.operand[i];
2696 p = constraints[i];
2698 modified[i] = RELOAD_READ;
2700 /* Scan this operand's constraint to see if it is an output operand,
2701 an in-out operand, is commutative, or should match another. */
2703 while ((c = *p))
2705 p += CONSTRAINT_LEN (c, p);
2706 switch (c)
2708 case '=':
2709 modified[i] = RELOAD_WRITE;
2710 break;
2711 case '+':
2712 modified[i] = RELOAD_READ_WRITE;
2713 break;
2714 case '%':
2716 /* The last operand should not be marked commutative. */
2717 gcc_assert (i != noperands - 1);
2719 /* We currently only support one commutative pair of
2720 operands. Some existing asm code currently uses more
2721 than one pair. Previously, that would usually work,
2722 but sometimes it would crash the compiler. We
2723 continue supporting that case as well as we can by
2724 silently ignoring all but the first pair. In the
2725 future we may handle it correctly. */
2726 if (commutative < 0)
2727 commutative = i;
2728 else
2729 gcc_assert (this_insn_is_asm);
2731 break;
2732 /* Use of ISDIGIT is tempting here, but it may get expensive because
2733 of locale support we don't want. */
2734 case '0': case '1': case '2': case '3': case '4':
2735 case '5': case '6': case '7': case '8': case '9':
2737 c = strtoul (p - 1, &end, 10);
2738 p = end;
2740 operands_match[c][i]
2741 = operands_match_p (recog_data.operand[c],
2742 recog_data.operand[i]);
2744 /* An operand may not match itself. */
2745 gcc_assert (c != i);
2747 /* If C can be commuted with C+1, and C might need to match I,
2748 then C+1 might also need to match I. */
2749 if (commutative >= 0)
2751 if (c == commutative || c == commutative + 1)
2753 int other = c + (c == commutative ? 1 : -1);
2754 operands_match[other][i]
2755 = operands_match_p (recog_data.operand[other],
2756 recog_data.operand[i]);
2758 if (i == commutative || i == commutative + 1)
2760 int other = i + (i == commutative ? 1 : -1);
2761 operands_match[c][other]
2762 = operands_match_p (recog_data.operand[c],
2763 recog_data.operand[other]);
2765 /* Note that C is supposed to be less than I.
2766 No need to consider altering both C and I because in
2767 that case we would alter one into the other. */
2774 /* Examine each operand that is a memory reference or memory address
2775 and reload parts of the addresses into index registers.
2776 Also here any references to pseudo regs that didn't get hard regs
2777 but are equivalent to constants get replaced in the insn itself
2778 with those constants. Nobody will ever see them again.
2780 Finally, set up the preferred classes of each operand. */
2782 for (i = 0; i < noperands; i++)
2784 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2786 address_reloaded[i] = 0;
2787 address_operand_reloaded[i] = 0;
2788 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2789 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2790 : RELOAD_OTHER);
2791 address_type[i]
2792 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2793 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2794 : RELOAD_OTHER);
2796 if (*constraints[i] == 0)
2797 /* Ignore things like match_operator operands. */
2799 else if (constraints[i][0] == 'p'
2800 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2802 address_operand_reloaded[i]
2803 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2804 recog_data.operand[i],
2805 recog_data.operand_loc[i],
2806 i, operand_type[i], ind_levels, insn);
2808 /* If we now have a simple operand where we used to have a
2809 PLUS or MULT, re-recognize and try again. */
2810 if ((OBJECT_P (*recog_data.operand_loc[i])
2811 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2812 && (GET_CODE (recog_data.operand[i]) == MULT
2813 || GET_CODE (recog_data.operand[i]) == PLUS))
2815 INSN_CODE (insn) = -1;
2816 retval = find_reloads (insn, replace, ind_levels, live_known,
2817 reload_reg_p);
2818 return retval;
2821 recog_data.operand[i] = *recog_data.operand_loc[i];
2822 substed_operand[i] = recog_data.operand[i];
2824 /* Address operands are reloaded in their existing mode,
2825 no matter what is specified in the machine description. */
2826 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2828 else if (code == MEM)
2830 address_reloaded[i]
2831 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2832 recog_data.operand_loc[i],
2833 XEXP (recog_data.operand[i], 0),
2834 &XEXP (recog_data.operand[i], 0),
2835 i, address_type[i], ind_levels, insn);
2836 recog_data.operand[i] = *recog_data.operand_loc[i];
2837 substed_operand[i] = recog_data.operand[i];
2839 else if (code == SUBREG)
2841 rtx reg = SUBREG_REG (recog_data.operand[i]);
2842 rtx op
2843 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2844 ind_levels,
2845 set != 0
2846 && &SET_DEST (set) == recog_data.operand_loc[i],
2847 insn,
2848 &address_reloaded[i]);
2850 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2851 that didn't get a hard register, emit a USE with a REG_EQUAL
2852 note in front so that we might inherit a previous, possibly
2853 wider reload. */
2855 if (replace
2856 && MEM_P (op)
2857 && REG_P (reg)
2858 && (GET_MODE_SIZE (GET_MODE (reg))
2859 >= GET_MODE_SIZE (GET_MODE (op)))
2860 && reg_equiv_constant[REGNO (reg)] == 0)
2861 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2862 insn),
2863 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2865 substed_operand[i] = recog_data.operand[i] = op;
2867 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2868 /* We can get a PLUS as an "operand" as a result of register
2869 elimination. See eliminate_regs and gen_reload. We handle
2870 a unary operator by reloading the operand. */
2871 substed_operand[i] = recog_data.operand[i]
2872 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2873 ind_levels, 0, insn,
2874 &address_reloaded[i]);
2875 else if (code == REG)
2877 /* This is equivalent to calling find_reloads_toplev.
2878 The code is duplicated for speed.
2879 When we find a pseudo always equivalent to a constant,
2880 we replace it by the constant. We must be sure, however,
2881 that we don't try to replace it in the insn in which it
2882 is being set. */
2883 int regno = REGNO (recog_data.operand[i]);
2884 if (reg_equiv_constant[regno] != 0
2885 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2887 /* Record the existing mode so that the check if constants are
2888 allowed will work when operand_mode isn't specified. */
2890 if (operand_mode[i] == VOIDmode)
2891 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2893 substed_operand[i] = recog_data.operand[i]
2894 = reg_equiv_constant[regno];
2896 if (reg_equiv_memory_loc[regno] != 0
2897 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2898 /* We need not give a valid is_set_dest argument since the case
2899 of a constant equivalence was checked above. */
2900 substed_operand[i] = recog_data.operand[i]
2901 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2902 ind_levels, 0, insn,
2903 &address_reloaded[i]);
2905 /* If the operand is still a register (we didn't replace it with an
2906 equivalent), get the preferred class to reload it into. */
2907 code = GET_CODE (recog_data.operand[i]);
2908 preferred_class[i]
2909 = ((code == REG && REGNO (recog_data.operand[i])
2910 >= FIRST_PSEUDO_REGISTER)
2911 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2912 : NO_REGS);
2913 pref_or_nothing[i]
2914 = (code == REG
2915 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2916 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2919 /* If this is simply a copy from operand 1 to operand 0, merge the
2920 preferred classes for the operands. */
2921 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2922 && recog_data.operand[1] == SET_SRC (set))
2924 preferred_class[0] = preferred_class[1]
2925 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2926 pref_or_nothing[0] |= pref_or_nothing[1];
2927 pref_or_nothing[1] |= pref_or_nothing[0];
2930 /* Now see what we need for pseudo-regs that didn't get hard regs
2931 or got the wrong kind of hard reg. For this, we must consider
2932 all the operands together against the register constraints. */
2934 best = MAX_RECOG_OPERANDS * 2 + 600;
2936 swapped = 0;
2937 goal_alternative_swapped = 0;
2938 try_swapped:
2940 /* The constraints are made of several alternatives.
2941 Each operand's constraint looks like foo,bar,... with commas
2942 separating the alternatives. The first alternatives for all
2943 operands go together, the second alternatives go together, etc.
2945 First loop over alternatives. */
2947 for (this_alternative_number = 0;
2948 this_alternative_number < n_alternatives;
2949 this_alternative_number++)
2951 /* Loop over operands for one constraint alternative. */
2952 /* LOSERS counts those that don't fit this alternative
2953 and would require loading. */
2954 int losers = 0;
2955 /* BAD is set to 1 if it some operand can't fit this alternative
2956 even after reloading. */
2957 int bad = 0;
2958 /* REJECT is a count of how undesirable this alternative says it is
2959 if any reloading is required. If the alternative matches exactly
2960 then REJECT is ignored, but otherwise it gets this much
2961 counted against it in addition to the reloading needed. Each
2962 ? counts three times here since we want the disparaging caused by
2963 a bad register class to only count 1/3 as much. */
2964 int reject = 0;
2966 if (!recog_data.alternative_enabled_p[this_alternative_number])
2968 int i;
2970 for (i = 0; i < recog_data.n_operands; i++)
2971 constraints[i] = skip_alternative (constraints[i]);
2973 continue;
2976 this_earlyclobber = 0;
2978 for (i = 0; i < noperands; i++)
2980 const char *p = constraints[i];
2981 char *end;
2982 int len;
2983 int win = 0;
2984 int did_match = 0;
2985 /* 0 => this operand can be reloaded somehow for this alternative. */
2986 int badop = 1;
2987 /* 0 => this operand can be reloaded if the alternative allows regs. */
2988 int winreg = 0;
2989 int c;
2990 int m;
2991 rtx operand = recog_data.operand[i];
2992 int offset = 0;
2993 /* Nonzero means this is a MEM that must be reloaded into a reg
2994 regardless of what the constraint says. */
2995 int force_reload = 0;
2996 int offmemok = 0;
2997 /* Nonzero if a constant forced into memory would be OK for this
2998 operand. */
2999 int constmemok = 0;
3000 int earlyclobber = 0;
3002 /* If the predicate accepts a unary operator, it means that
3003 we need to reload the operand, but do not do this for
3004 match_operator and friends. */
3005 if (UNARY_P (operand) && *p != 0)
3006 operand = XEXP (operand, 0);
3008 /* If the operand is a SUBREG, extract
3009 the REG or MEM (or maybe even a constant) within.
3010 (Constants can occur as a result of reg_equiv_constant.) */
3012 while (GET_CODE (operand) == SUBREG)
3014 /* Offset only matters when operand is a REG and
3015 it is a hard reg. This is because it is passed
3016 to reg_fits_class_p if it is a REG and all pseudos
3017 return 0 from that function. */
3018 if (REG_P (SUBREG_REG (operand))
3019 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3021 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3022 GET_MODE (SUBREG_REG (operand)),
3023 SUBREG_BYTE (operand),
3024 GET_MODE (operand)) < 0)
3025 force_reload = 1;
3026 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3027 GET_MODE (SUBREG_REG (operand)),
3028 SUBREG_BYTE (operand),
3029 GET_MODE (operand));
3031 operand = SUBREG_REG (operand);
3032 /* Force reload if this is a constant or PLUS or if there may
3033 be a problem accessing OPERAND in the outer mode. */
3034 if (CONSTANT_P (operand)
3035 || GET_CODE (operand) == PLUS
3036 /* We must force a reload of paradoxical SUBREGs
3037 of a MEM because the alignment of the inner value
3038 may not be enough to do the outer reference. On
3039 big-endian machines, it may also reference outside
3040 the object.
3042 On machines that extend byte operations and we have a
3043 SUBREG where both the inner and outer modes are no wider
3044 than a word and the inner mode is narrower, is integral,
3045 and gets extended when loaded from memory, combine.c has
3046 made assumptions about the behavior of the machine in such
3047 register access. If the data is, in fact, in memory we
3048 must always load using the size assumed to be in the
3049 register and let the insn do the different-sized
3050 accesses.
3052 This is doubly true if WORD_REGISTER_OPERATIONS. In
3053 this case eliminate_regs has left non-paradoxical
3054 subregs for push_reload to see. Make sure it does
3055 by forcing the reload.
3057 ??? When is it right at this stage to have a subreg
3058 of a mem that is _not_ to be handled specially? IMO
3059 those should have been reduced to just a mem. */
3060 || ((MEM_P (operand)
3061 || (REG_P (operand)
3062 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3063 #ifndef WORD_REGISTER_OPERATIONS
3064 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3065 < BIGGEST_ALIGNMENT)
3066 && (GET_MODE_SIZE (operand_mode[i])
3067 > GET_MODE_SIZE (GET_MODE (operand))))
3068 || BYTES_BIG_ENDIAN
3069 #ifdef LOAD_EXTEND_OP
3070 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3071 && (GET_MODE_SIZE (GET_MODE (operand))
3072 <= UNITS_PER_WORD)
3073 && (GET_MODE_SIZE (operand_mode[i])
3074 > GET_MODE_SIZE (GET_MODE (operand)))
3075 && INTEGRAL_MODE_P (GET_MODE (operand))
3076 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3077 #endif
3079 #endif
3082 force_reload = 1;
3085 this_alternative[i] = NO_REGS;
3086 this_alternative_win[i] = 0;
3087 this_alternative_match_win[i] = 0;
3088 this_alternative_offmemok[i] = 0;
3089 this_alternative_earlyclobber[i] = 0;
3090 this_alternative_matches[i] = -1;
3092 /* An empty constraint or empty alternative
3093 allows anything which matched the pattern. */
3094 if (*p == 0 || *p == ',')
3095 win = 1, badop = 0;
3097 /* Scan this alternative's specs for this operand;
3098 set WIN if the operand fits any letter in this alternative.
3099 Otherwise, clear BADOP if this operand could
3100 fit some letter after reloads,
3101 or set WINREG if this operand could fit after reloads
3102 provided the constraint allows some registers. */
3105 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3107 case '\0':
3108 len = 0;
3109 break;
3110 case ',':
3111 c = '\0';
3112 break;
3114 case '=': case '+': case '*':
3115 break;
3117 case '%':
3118 /* We only support one commutative marker, the first
3119 one. We already set commutative above. */
3120 break;
3122 case '?':
3123 reject += 6;
3124 break;
3126 case '!':
3127 reject = 600;
3128 break;
3130 case '#':
3131 /* Ignore rest of this alternative as far as
3132 reloading is concerned. */
3134 p++;
3135 while (*p && *p != ',');
3136 len = 0;
3137 break;
3139 case '0': case '1': case '2': case '3': case '4':
3140 case '5': case '6': case '7': case '8': case '9':
3141 m = strtoul (p, &end, 10);
3142 p = end;
3143 len = 0;
3145 this_alternative_matches[i] = m;
3146 /* We are supposed to match a previous operand.
3147 If we do, we win if that one did.
3148 If we do not, count both of the operands as losers.
3149 (This is too conservative, since most of the time
3150 only a single reload insn will be needed to make
3151 the two operands win. As a result, this alternative
3152 may be rejected when it is actually desirable.) */
3153 if ((swapped && (m != commutative || i != commutative + 1))
3154 /* If we are matching as if two operands were swapped,
3155 also pretend that operands_match had been computed
3156 with swapped.
3157 But if I is the second of those and C is the first,
3158 don't exchange them, because operands_match is valid
3159 only on one side of its diagonal. */
3160 ? (operands_match
3161 [(m == commutative || m == commutative + 1)
3162 ? 2 * commutative + 1 - m : m]
3163 [(i == commutative || i == commutative + 1)
3164 ? 2 * commutative + 1 - i : i])
3165 : operands_match[m][i])
3167 /* If we are matching a non-offsettable address where an
3168 offsettable address was expected, then we must reject
3169 this combination, because we can't reload it. */
3170 if (this_alternative_offmemok[m]
3171 && MEM_P (recog_data.operand[m])
3172 && this_alternative[m] == NO_REGS
3173 && ! this_alternative_win[m])
3174 bad = 1;
3176 did_match = this_alternative_win[m];
3178 else
3180 /* Operands don't match. */
3181 rtx value;
3182 int loc1, loc2;
3183 /* Retroactively mark the operand we had to match
3184 as a loser, if it wasn't already. */
3185 if (this_alternative_win[m])
3186 losers++;
3187 this_alternative_win[m] = 0;
3188 if (this_alternative[m] == NO_REGS)
3189 bad = 1;
3190 /* But count the pair only once in the total badness of
3191 this alternative, if the pair can be a dummy reload.
3192 The pointers in operand_loc are not swapped; swap
3193 them by hand if necessary. */
3194 if (swapped && i == commutative)
3195 loc1 = commutative + 1;
3196 else if (swapped && i == commutative + 1)
3197 loc1 = commutative;
3198 else
3199 loc1 = i;
3200 if (swapped && m == commutative)
3201 loc2 = commutative + 1;
3202 else if (swapped && m == commutative + 1)
3203 loc2 = commutative;
3204 else
3205 loc2 = m;
3206 value
3207 = find_dummy_reload (recog_data.operand[i],
3208 recog_data.operand[m],
3209 recog_data.operand_loc[loc1],
3210 recog_data.operand_loc[loc2],
3211 operand_mode[i], operand_mode[m],
3212 this_alternative[m], -1,
3213 this_alternative_earlyclobber[m]);
3215 if (value != 0)
3216 losers--;
3218 /* This can be fixed with reloads if the operand
3219 we are supposed to match can be fixed with reloads. */
3220 badop = 0;
3221 this_alternative[i] = this_alternative[m];
3223 /* If we have to reload this operand and some previous
3224 operand also had to match the same thing as this
3225 operand, we don't know how to do that. So reject this
3226 alternative. */
3227 if (! did_match || force_reload)
3228 for (j = 0; j < i; j++)
3229 if (this_alternative_matches[j]
3230 == this_alternative_matches[i])
3231 badop = 1;
3232 break;
3234 case 'p':
3235 /* All necessary reloads for an address_operand
3236 were handled in find_reloads_address. */
3237 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3238 SCRATCH);
3239 win = 1;
3240 badop = 0;
3241 break;
3243 case TARGET_MEM_CONSTRAINT:
3244 if (force_reload)
3245 break;
3246 if (MEM_P (operand)
3247 || (REG_P (operand)
3248 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3249 && reg_renumber[REGNO (operand)] < 0))
3250 win = 1;
3251 if (CONST_POOL_OK_P (operand))
3252 badop = 0;
3253 constmemok = 1;
3254 break;
3256 case '<':
3257 if (MEM_P (operand)
3258 && ! address_reloaded[i]
3259 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3260 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3261 win = 1;
3262 break;
3264 case '>':
3265 if (MEM_P (operand)
3266 && ! address_reloaded[i]
3267 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3268 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3269 win = 1;
3270 break;
3272 /* Memory operand whose address is not offsettable. */
3273 case 'V':
3274 if (force_reload)
3275 break;
3276 if (MEM_P (operand)
3277 && ! (ind_levels ? offsettable_memref_p (operand)
3278 : offsettable_nonstrict_memref_p (operand))
3279 /* Certain mem addresses will become offsettable
3280 after they themselves are reloaded. This is important;
3281 we don't want our own handling of unoffsettables
3282 to override the handling of reg_equiv_address. */
3283 && !(REG_P (XEXP (operand, 0))
3284 && (ind_levels == 0
3285 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3286 win = 1;
3287 break;
3289 /* Memory operand whose address is offsettable. */
3290 case 'o':
3291 if (force_reload)
3292 break;
3293 if ((MEM_P (operand)
3294 /* If IND_LEVELS, find_reloads_address won't reload a
3295 pseudo that didn't get a hard reg, so we have to
3296 reject that case. */
3297 && ((ind_levels ? offsettable_memref_p (operand)
3298 : offsettable_nonstrict_memref_p (operand))
3299 /* A reloaded address is offsettable because it is now
3300 just a simple register indirect. */
3301 || address_reloaded[i] == 1))
3302 || (REG_P (operand)
3303 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3304 && reg_renumber[REGNO (operand)] < 0
3305 /* If reg_equiv_address is nonzero, we will be
3306 loading it into a register; hence it will be
3307 offsettable, but we cannot say that reg_equiv_mem
3308 is offsettable without checking. */
3309 && ((reg_equiv_mem[REGNO (operand)] != 0
3310 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3311 || (reg_equiv_address[REGNO (operand)] != 0))))
3312 win = 1;
3313 if (CONST_POOL_OK_P (operand)
3314 || MEM_P (operand))
3315 badop = 0;
3316 constmemok = 1;
3317 offmemok = 1;
3318 break;
3320 case '&':
3321 /* Output operand that is stored before the need for the
3322 input operands (and their index registers) is over. */
3323 earlyclobber = 1, this_earlyclobber = 1;
3324 break;
3326 case 'E':
3327 case 'F':
3328 if (GET_CODE (operand) == CONST_DOUBLE
3329 || (GET_CODE (operand) == CONST_VECTOR
3330 && (GET_MODE_CLASS (GET_MODE (operand))
3331 == MODE_VECTOR_FLOAT)))
3332 win = 1;
3333 break;
3335 case 'G':
3336 case 'H':
3337 if (GET_CODE (operand) == CONST_DOUBLE
3338 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3339 win = 1;
3340 break;
3342 case 's':
3343 if (CONST_INT_P (operand)
3344 || (GET_CODE (operand) == CONST_DOUBLE
3345 && GET_MODE (operand) == VOIDmode))
3346 break;
3347 case 'i':
3348 if (CONSTANT_P (operand)
3349 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3350 win = 1;
3351 break;
3353 case 'n':
3354 if (CONST_INT_P (operand)
3355 || (GET_CODE (operand) == CONST_DOUBLE
3356 && GET_MODE (operand) == VOIDmode))
3357 win = 1;
3358 break;
3360 case 'I':
3361 case 'J':
3362 case 'K':
3363 case 'L':
3364 case 'M':
3365 case 'N':
3366 case 'O':
3367 case 'P':
3368 if (CONST_INT_P (operand)
3369 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3370 win = 1;
3371 break;
3373 case 'X':
3374 force_reload = 0;
3375 win = 1;
3376 break;
3378 case 'g':
3379 if (! force_reload
3380 /* A PLUS is never a valid operand, but reload can make
3381 it from a register when eliminating registers. */
3382 && GET_CODE (operand) != PLUS
3383 /* A SCRATCH is not a valid operand. */
3384 && GET_CODE (operand) != SCRATCH
3385 && (! CONSTANT_P (operand)
3386 || ! flag_pic
3387 || LEGITIMATE_PIC_OPERAND_P (operand))
3388 && (GENERAL_REGS == ALL_REGS
3389 || !REG_P (operand)
3390 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3391 && reg_renumber[REGNO (operand)] < 0)))
3392 win = 1;
3393 /* Drop through into 'r' case. */
3395 case 'r':
3396 this_alternative[i]
3397 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3398 goto reg;
3400 default:
3401 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3403 #ifdef EXTRA_CONSTRAINT_STR
3404 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3406 if (force_reload)
3407 break;
3408 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3409 win = 1;
3410 /* If the address was already reloaded,
3411 we win as well. */
3412 else if (MEM_P (operand)
3413 && address_reloaded[i] == 1)
3414 win = 1;
3415 /* Likewise if the address will be reloaded because
3416 reg_equiv_address is nonzero. For reg_equiv_mem
3417 we have to check. */
3418 else if (REG_P (operand)
3419 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3420 && reg_renumber[REGNO (operand)] < 0
3421 && ((reg_equiv_mem[REGNO (operand)] != 0
3422 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3423 || (reg_equiv_address[REGNO (operand)] != 0)))
3424 win = 1;
3426 /* If we didn't already win, we can reload
3427 constants via force_const_mem, and other
3428 MEMs by reloading the address like for 'o'. */
3429 if (CONST_POOL_OK_P (operand)
3430 || MEM_P (operand))
3431 badop = 0;
3432 constmemok = 1;
3433 offmemok = 1;
3434 break;
3436 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3438 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3439 win = 1;
3441 /* If we didn't already win, we can reload
3442 the address into a base register. */
3443 this_alternative[i] = base_reg_class (VOIDmode,
3444 ADDRESS,
3445 SCRATCH);
3446 badop = 0;
3447 break;
3450 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3451 win = 1;
3452 #endif
3453 break;
3456 this_alternative[i]
3457 = (reg_class_subunion
3458 [this_alternative[i]]
3459 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3460 reg:
3461 if (GET_MODE (operand) == BLKmode)
3462 break;
3463 winreg = 1;
3464 if (REG_P (operand)
3465 && reg_fits_class_p (operand, this_alternative[i],
3466 offset, GET_MODE (recog_data.operand[i])))
3467 win = 1;
3468 break;
3470 while ((p += len), c);
3472 constraints[i] = p;
3474 /* If this operand could be handled with a reg,
3475 and some reg is allowed, then this operand can be handled. */
3476 if (winreg && this_alternative[i] != NO_REGS
3477 && (win || !class_only_fixed_regs[this_alternative[i]]))
3478 badop = 0;
3480 /* Record which operands fit this alternative. */
3481 this_alternative_earlyclobber[i] = earlyclobber;
3482 if (win && ! force_reload)
3483 this_alternative_win[i] = 1;
3484 else if (did_match && ! force_reload)
3485 this_alternative_match_win[i] = 1;
3486 else
3488 int const_to_mem = 0;
3490 this_alternative_offmemok[i] = offmemok;
3491 losers++;
3492 if (badop)
3493 bad = 1;
3494 /* Alternative loses if it has no regs for a reg operand. */
3495 if (REG_P (operand)
3496 && this_alternative[i] == NO_REGS
3497 && this_alternative_matches[i] < 0)
3498 bad = 1;
3500 /* If this is a constant that is reloaded into the desired
3501 class by copying it to memory first, count that as another
3502 reload. This is consistent with other code and is
3503 required to avoid choosing another alternative when
3504 the constant is moved into memory by this function on
3505 an early reload pass. Note that the test here is
3506 precisely the same as in the code below that calls
3507 force_const_mem. */
3508 if (CONST_POOL_OK_P (operand)
3509 && ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3510 == NO_REGS)
3511 || no_input_reloads)
3512 && operand_mode[i] != VOIDmode)
3514 const_to_mem = 1;
3515 if (this_alternative[i] != NO_REGS)
3516 losers++;
3519 /* Alternative loses if it requires a type of reload not
3520 permitted for this insn. We can always reload SCRATCH
3521 and objects with a REG_UNUSED note. */
3522 if (GET_CODE (operand) != SCRATCH
3523 && modified[i] != RELOAD_READ && no_output_reloads
3524 && ! find_reg_note (insn, REG_UNUSED, operand))
3525 bad = 1;
3526 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3527 && ! const_to_mem)
3528 bad = 1;
3530 /* If we can't reload this value at all, reject this
3531 alternative. Note that we could also lose due to
3532 LIMIT_RELOAD_CLASS, but we don't check that
3533 here. */
3535 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3537 if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3538 == NO_REGS)
3539 reject = 600;
3541 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3542 if (operand_type[i] == RELOAD_FOR_OUTPUT
3543 && (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
3544 this_alternative[i])
3545 == NO_REGS))
3546 reject = 600;
3547 #endif
3550 /* We prefer to reload pseudos over reloading other things,
3551 since such reloads may be able to be eliminated later.
3552 If we are reloading a SCRATCH, we won't be generating any
3553 insns, just using a register, so it is also preferred.
3554 So bump REJECT in other cases. Don't do this in the
3555 case where we are forcing a constant into memory and
3556 it will then win since we don't want to have a different
3557 alternative match then. */
3558 if (! (REG_P (operand)
3559 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3560 && GET_CODE (operand) != SCRATCH
3561 && ! (const_to_mem && constmemok))
3562 reject += 2;
3564 /* Input reloads can be inherited more often than output
3565 reloads can be removed, so penalize output reloads. */
3566 if (operand_type[i] != RELOAD_FOR_INPUT
3567 && GET_CODE (operand) != SCRATCH)
3568 reject++;
3571 /* If this operand is a pseudo register that didn't get a hard
3572 reg and this alternative accepts some register, see if the
3573 class that we want is a subset of the preferred class for this
3574 register. If not, but it intersects that class, use the
3575 preferred class instead. If it does not intersect the preferred
3576 class, show that usage of this alternative should be discouraged;
3577 it will be discouraged more still if the register is `preferred
3578 or nothing'. We do this because it increases the chance of
3579 reusing our spill register in a later insn and avoiding a pair
3580 of memory stores and loads.
3582 Don't bother with this if this alternative will accept this
3583 operand.
3585 Don't do this for a multiword operand, since it is only a
3586 small win and has the risk of requiring more spill registers,
3587 which could cause a large loss.
3589 Don't do this if the preferred class has only one register
3590 because we might otherwise exhaust the class. */
3592 if (! win && ! did_match
3593 && this_alternative[i] != NO_REGS
3594 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3595 && reg_class_size [(int) preferred_class[i]] > 0
3596 && ! small_register_class_p (preferred_class[i]))
3598 if (! reg_class_subset_p (this_alternative[i],
3599 preferred_class[i]))
3601 /* Since we don't have a way of forming the intersection,
3602 we just do something special if the preferred class
3603 is a subset of the class we have; that's the most
3604 common case anyway. */
3605 if (reg_class_subset_p (preferred_class[i],
3606 this_alternative[i]))
3607 this_alternative[i] = preferred_class[i];
3608 else
3609 reject += (2 + 2 * pref_or_nothing[i]);
3614 /* Now see if any output operands that are marked "earlyclobber"
3615 in this alternative conflict with any input operands
3616 or any memory addresses. */
3618 for (i = 0; i < noperands; i++)
3619 if (this_alternative_earlyclobber[i]
3620 && (this_alternative_win[i] || this_alternative_match_win[i]))
3622 struct decomposition early_data;
3624 early_data = decompose (recog_data.operand[i]);
3626 gcc_assert (modified[i] != RELOAD_READ);
3628 if (this_alternative[i] == NO_REGS)
3630 this_alternative_earlyclobber[i] = 0;
3631 gcc_assert (this_insn_is_asm);
3632 error_for_asm (this_insn,
3633 "%<&%> constraint used with no register class");
3636 for (j = 0; j < noperands; j++)
3637 /* Is this an input operand or a memory ref? */
3638 if ((MEM_P (recog_data.operand[j])
3639 || modified[j] != RELOAD_WRITE)
3640 && j != i
3641 /* Ignore things like match_operator operands. */
3642 && !recog_data.is_operator[j]
3643 /* Don't count an input operand that is constrained to match
3644 the early clobber operand. */
3645 && ! (this_alternative_matches[j] == i
3646 && rtx_equal_p (recog_data.operand[i],
3647 recog_data.operand[j]))
3648 /* Is it altered by storing the earlyclobber operand? */
3649 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3650 early_data))
3652 /* If the output is in a non-empty few-regs class,
3653 it's costly to reload it, so reload the input instead. */
3654 if (small_register_class_p (this_alternative[i])
3655 && (REG_P (recog_data.operand[j])
3656 || GET_CODE (recog_data.operand[j]) == SUBREG))
3658 losers++;
3659 this_alternative_win[j] = 0;
3660 this_alternative_match_win[j] = 0;
3662 else
3663 break;
3665 /* If an earlyclobber operand conflicts with something,
3666 it must be reloaded, so request this and count the cost. */
3667 if (j != noperands)
3669 losers++;
3670 this_alternative_win[i] = 0;
3671 this_alternative_match_win[j] = 0;
3672 for (j = 0; j < noperands; j++)
3673 if (this_alternative_matches[j] == i
3674 && this_alternative_match_win[j])
3676 this_alternative_win[j] = 0;
3677 this_alternative_match_win[j] = 0;
3678 losers++;
3683 /* If one alternative accepts all the operands, no reload required,
3684 choose that alternative; don't consider the remaining ones. */
3685 if (losers == 0)
3687 /* Unswap these so that they are never swapped at `finish'. */
3688 if (commutative >= 0)
3690 recog_data.operand[commutative] = substed_operand[commutative];
3691 recog_data.operand[commutative + 1]
3692 = substed_operand[commutative + 1];
3694 for (i = 0; i < noperands; i++)
3696 goal_alternative_win[i] = this_alternative_win[i];
3697 goal_alternative_match_win[i] = this_alternative_match_win[i];
3698 goal_alternative[i] = this_alternative[i];
3699 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3700 goal_alternative_matches[i] = this_alternative_matches[i];
3701 goal_alternative_earlyclobber[i]
3702 = this_alternative_earlyclobber[i];
3704 goal_alternative_number = this_alternative_number;
3705 goal_alternative_swapped = swapped;
3706 goal_earlyclobber = this_earlyclobber;
3707 goto finish;
3710 /* REJECT, set by the ! and ? constraint characters and when a register
3711 would be reloaded into a non-preferred class, discourages the use of
3712 this alternative for a reload goal. REJECT is incremented by six
3713 for each ? and two for each non-preferred class. */
3714 losers = losers * 6 + reject;
3716 /* If this alternative can be made to work by reloading,
3717 and it needs less reloading than the others checked so far,
3718 record it as the chosen goal for reloading. */
3719 if (! bad)
3721 if (best > losers)
3723 for (i = 0; i < noperands; i++)
3725 goal_alternative[i] = this_alternative[i];
3726 goal_alternative_win[i] = this_alternative_win[i];
3727 goal_alternative_match_win[i]
3728 = this_alternative_match_win[i];
3729 goal_alternative_offmemok[i]
3730 = this_alternative_offmemok[i];
3731 goal_alternative_matches[i] = this_alternative_matches[i];
3732 goal_alternative_earlyclobber[i]
3733 = this_alternative_earlyclobber[i];
3735 goal_alternative_swapped = swapped;
3736 best = losers;
3737 goal_alternative_number = this_alternative_number;
3738 goal_earlyclobber = this_earlyclobber;
3743 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3744 then we need to try each alternative twice,
3745 the second time matching those two operands
3746 as if we had exchanged them.
3747 To do this, really exchange them in operands.
3749 If we have just tried the alternatives the second time,
3750 return operands to normal and drop through. */
3752 if (commutative >= 0)
3754 swapped = !swapped;
3755 if (swapped)
3757 enum reg_class tclass;
3758 int t;
3760 recog_data.operand[commutative] = substed_operand[commutative + 1];
3761 recog_data.operand[commutative + 1] = substed_operand[commutative];
3762 /* Swap the duplicates too. */
3763 for (i = 0; i < recog_data.n_dups; i++)
3764 if (recog_data.dup_num[i] == commutative
3765 || recog_data.dup_num[i] == commutative + 1)
3766 *recog_data.dup_loc[i]
3767 = recog_data.operand[(int) recog_data.dup_num[i]];
3769 tclass = preferred_class[commutative];
3770 preferred_class[commutative] = preferred_class[commutative + 1];
3771 preferred_class[commutative + 1] = tclass;
3773 t = pref_or_nothing[commutative];
3774 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3775 pref_or_nothing[commutative + 1] = t;
3777 t = address_reloaded[commutative];
3778 address_reloaded[commutative] = address_reloaded[commutative + 1];
3779 address_reloaded[commutative + 1] = t;
3781 memcpy (constraints, recog_data.constraints,
3782 noperands * sizeof (const char *));
3783 goto try_swapped;
3785 else
3787 recog_data.operand[commutative] = substed_operand[commutative];
3788 recog_data.operand[commutative + 1]
3789 = substed_operand[commutative + 1];
3790 /* Unswap the duplicates too. */
3791 for (i = 0; i < recog_data.n_dups; i++)
3792 if (recog_data.dup_num[i] == commutative
3793 || recog_data.dup_num[i] == commutative + 1)
3794 *recog_data.dup_loc[i]
3795 = recog_data.operand[(int) recog_data.dup_num[i]];
3799 /* The operands don't meet the constraints.
3800 goal_alternative describes the alternative
3801 that we could reach by reloading the fewest operands.
3802 Reload so as to fit it. */
3804 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3806 /* No alternative works with reloads?? */
3807 if (insn_code_number >= 0)
3808 fatal_insn ("unable to generate reloads for:", insn);
3809 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3810 /* Avoid further trouble with this insn. */
3811 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3812 n_reloads = 0;
3813 return 0;
3816 /* Jump to `finish' from above if all operands are valid already.
3817 In that case, goal_alternative_win is all 1. */
3818 finish:
3820 /* Right now, for any pair of operands I and J that are required to match,
3821 with I < J,
3822 goal_alternative_matches[J] is I.
3823 Set up goal_alternative_matched as the inverse function:
3824 goal_alternative_matched[I] = J. */
3826 for (i = 0; i < noperands; i++)
3827 goal_alternative_matched[i] = -1;
3829 for (i = 0; i < noperands; i++)
3830 if (! goal_alternative_win[i]
3831 && goal_alternative_matches[i] >= 0)
3832 goal_alternative_matched[goal_alternative_matches[i]] = i;
3834 for (i = 0; i < noperands; i++)
3835 goal_alternative_win[i] |= goal_alternative_match_win[i];
3837 /* If the best alternative is with operands 1 and 2 swapped,
3838 consider them swapped before reporting the reloads. Update the
3839 operand numbers of any reloads already pushed. */
3841 if (goal_alternative_swapped)
3843 rtx tem;
3845 tem = substed_operand[commutative];
3846 substed_operand[commutative] = substed_operand[commutative + 1];
3847 substed_operand[commutative + 1] = tem;
3848 tem = recog_data.operand[commutative];
3849 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3850 recog_data.operand[commutative + 1] = tem;
3851 tem = *recog_data.operand_loc[commutative];
3852 *recog_data.operand_loc[commutative]
3853 = *recog_data.operand_loc[commutative + 1];
3854 *recog_data.operand_loc[commutative + 1] = tem;
3856 for (i = 0; i < n_reloads; i++)
3858 if (rld[i].opnum == commutative)
3859 rld[i].opnum = commutative + 1;
3860 else if (rld[i].opnum == commutative + 1)
3861 rld[i].opnum = commutative;
3865 for (i = 0; i < noperands; i++)
3867 operand_reloadnum[i] = -1;
3869 /* If this is an earlyclobber operand, we need to widen the scope.
3870 The reload must remain valid from the start of the insn being
3871 reloaded until after the operand is stored into its destination.
3872 We approximate this with RELOAD_OTHER even though we know that we
3873 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3875 One special case that is worth checking is when we have an
3876 output that is earlyclobber but isn't used past the insn (typically
3877 a SCRATCH). In this case, we only need have the reload live
3878 through the insn itself, but not for any of our input or output
3879 reloads.
3880 But we must not accidentally narrow the scope of an existing
3881 RELOAD_OTHER reload - leave these alone.
3883 In any case, anything needed to address this operand can remain
3884 however they were previously categorized. */
3886 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3887 operand_type[i]
3888 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3889 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3892 /* Any constants that aren't allowed and can't be reloaded
3893 into registers are here changed into memory references. */
3894 for (i = 0; i < noperands; i++)
3895 if (! goal_alternative_win[i])
3897 rtx op = recog_data.operand[i];
3898 rtx subreg = NULL_RTX;
3899 rtx plus = NULL_RTX;
3900 enum machine_mode mode = operand_mode[i];
3902 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3903 push_reload so we have to let them pass here. */
3904 if (GET_CODE (op) == SUBREG)
3906 subreg = op;
3907 op = SUBREG_REG (op);
3908 mode = GET_MODE (op);
3911 if (GET_CODE (op) == PLUS)
3913 plus = op;
3914 op = XEXP (op, 1);
3917 if (CONST_POOL_OK_P (op)
3918 && ((PREFERRED_RELOAD_CLASS (op,
3919 (enum reg_class) goal_alternative[i])
3920 == NO_REGS)
3921 || no_input_reloads)
3922 && mode != VOIDmode)
3924 int this_address_reloaded;
3925 rtx tem = force_const_mem (mode, op);
3927 /* If we stripped a SUBREG or a PLUS above add it back. */
3928 if (plus != NULL_RTX)
3929 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3931 if (subreg != NULL_RTX)
3932 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3934 this_address_reloaded = 0;
3935 substed_operand[i] = recog_data.operand[i]
3936 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3937 0, insn, &this_address_reloaded);
3939 /* If the alternative accepts constant pool refs directly
3940 there will be no reload needed at all. */
3941 if (plus == NULL_RTX
3942 && subreg == NULL_RTX
3943 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3944 ? substed_operand[i]
3945 : NULL,
3946 recog_data.constraints[i],
3947 goal_alternative_number))
3948 goal_alternative_win[i] = 1;
3952 /* Record the values of the earlyclobber operands for the caller. */
3953 if (goal_earlyclobber)
3954 for (i = 0; i < noperands; i++)
3955 if (goal_alternative_earlyclobber[i])
3956 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3958 /* Now record reloads for all the operands that need them. */
3959 for (i = 0; i < noperands; i++)
3960 if (! goal_alternative_win[i])
3962 /* Operands that match previous ones have already been handled. */
3963 if (goal_alternative_matches[i] >= 0)
3965 /* Handle an operand with a nonoffsettable address
3966 appearing where an offsettable address will do
3967 by reloading the address into a base register.
3969 ??? We can also do this when the operand is a register and
3970 reg_equiv_mem is not offsettable, but this is a bit tricky,
3971 so we don't bother with it. It may not be worth doing. */
3972 else if (goal_alternative_matched[i] == -1
3973 && goal_alternative_offmemok[i]
3974 && MEM_P (recog_data.operand[i]))
3976 /* If the address to be reloaded is a VOIDmode constant,
3977 use the default address mode as mode of the reload register,
3978 as would have been done by find_reloads_address. */
3979 enum machine_mode address_mode;
3980 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3981 if (address_mode == VOIDmode)
3983 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3984 address_mode = targetm.addr_space.address_mode (as);
3987 operand_reloadnum[i]
3988 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3989 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3990 base_reg_class (VOIDmode, MEM, SCRATCH),
3991 address_mode,
3992 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3993 rld[operand_reloadnum[i]].inc
3994 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3996 /* If this operand is an output, we will have made any
3997 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3998 now we are treating part of the operand as an input, so
3999 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4001 if (modified[i] == RELOAD_WRITE)
4003 for (j = 0; j < n_reloads; j++)
4005 if (rld[j].opnum == i)
4007 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4008 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4009 else if (rld[j].when_needed
4010 == RELOAD_FOR_OUTADDR_ADDRESS)
4011 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4016 else if (goal_alternative_matched[i] == -1)
4018 operand_reloadnum[i]
4019 = push_reload ((modified[i] != RELOAD_WRITE
4020 ? recog_data.operand[i] : 0),
4021 (modified[i] != RELOAD_READ
4022 ? recog_data.operand[i] : 0),
4023 (modified[i] != RELOAD_WRITE
4024 ? recog_data.operand_loc[i] : 0),
4025 (modified[i] != RELOAD_READ
4026 ? recog_data.operand_loc[i] : 0),
4027 (enum reg_class) goal_alternative[i],
4028 (modified[i] == RELOAD_WRITE
4029 ? VOIDmode : operand_mode[i]),
4030 (modified[i] == RELOAD_READ
4031 ? VOIDmode : operand_mode[i]),
4032 (insn_code_number < 0 ? 0
4033 : insn_data[insn_code_number].operand[i].strict_low),
4034 0, i, operand_type[i]);
4036 /* In a matching pair of operands, one must be input only
4037 and the other must be output only.
4038 Pass the input operand as IN and the other as OUT. */
4039 else if (modified[i] == RELOAD_READ
4040 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4042 operand_reloadnum[i]
4043 = push_reload (recog_data.operand[i],
4044 recog_data.operand[goal_alternative_matched[i]],
4045 recog_data.operand_loc[i],
4046 recog_data.operand_loc[goal_alternative_matched[i]],
4047 (enum reg_class) goal_alternative[i],
4048 operand_mode[i],
4049 operand_mode[goal_alternative_matched[i]],
4050 0, 0, i, RELOAD_OTHER);
4051 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4053 else if (modified[i] == RELOAD_WRITE
4054 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4056 operand_reloadnum[goal_alternative_matched[i]]
4057 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4058 recog_data.operand[i],
4059 recog_data.operand_loc[goal_alternative_matched[i]],
4060 recog_data.operand_loc[i],
4061 (enum reg_class) goal_alternative[i],
4062 operand_mode[goal_alternative_matched[i]],
4063 operand_mode[i],
4064 0, 0, i, RELOAD_OTHER);
4065 operand_reloadnum[i] = output_reloadnum;
4067 else
4069 gcc_assert (insn_code_number < 0);
4070 error_for_asm (insn, "inconsistent operand constraints "
4071 "in an %<asm%>");
4072 /* Avoid further trouble with this insn. */
4073 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4074 n_reloads = 0;
4075 return 0;
4078 else if (goal_alternative_matched[i] < 0
4079 && goal_alternative_matches[i] < 0
4080 && address_operand_reloaded[i] != 1
4081 && optimize)
4083 /* For each non-matching operand that's a MEM or a pseudo-register
4084 that didn't get a hard register, make an optional reload.
4085 This may get done even if the insn needs no reloads otherwise. */
4087 rtx operand = recog_data.operand[i];
4089 while (GET_CODE (operand) == SUBREG)
4090 operand = SUBREG_REG (operand);
4091 if ((MEM_P (operand)
4092 || (REG_P (operand)
4093 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4094 /* If this is only for an output, the optional reload would not
4095 actually cause us to use a register now, just note that
4096 something is stored here. */
4097 && ((enum reg_class) goal_alternative[i] != NO_REGS
4098 || modified[i] == RELOAD_WRITE)
4099 && ! no_input_reloads
4100 /* An optional output reload might allow to delete INSN later.
4101 We mustn't make in-out reloads on insns that are not permitted
4102 output reloads.
4103 If this is an asm, we can't delete it; we must not even call
4104 push_reload for an optional output reload in this case,
4105 because we can't be sure that the constraint allows a register,
4106 and push_reload verifies the constraints for asms. */
4107 && (modified[i] == RELOAD_READ
4108 || (! no_output_reloads && ! this_insn_is_asm)))
4109 operand_reloadnum[i]
4110 = push_reload ((modified[i] != RELOAD_WRITE
4111 ? recog_data.operand[i] : 0),
4112 (modified[i] != RELOAD_READ
4113 ? recog_data.operand[i] : 0),
4114 (modified[i] != RELOAD_WRITE
4115 ? recog_data.operand_loc[i] : 0),
4116 (modified[i] != RELOAD_READ
4117 ? recog_data.operand_loc[i] : 0),
4118 (enum reg_class) goal_alternative[i],
4119 (modified[i] == RELOAD_WRITE
4120 ? VOIDmode : operand_mode[i]),
4121 (modified[i] == RELOAD_READ
4122 ? VOIDmode : operand_mode[i]),
4123 (insn_code_number < 0 ? 0
4124 : insn_data[insn_code_number].operand[i].strict_low),
4125 1, i, operand_type[i]);
4126 /* If a memory reference remains (either as a MEM or a pseudo that
4127 did not get a hard register), yet we can't make an optional
4128 reload, check if this is actually a pseudo register reference;
4129 we then need to emit a USE and/or a CLOBBER so that reload
4130 inheritance will do the right thing. */
4131 else if (replace
4132 && (MEM_P (operand)
4133 || (REG_P (operand)
4134 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4135 && reg_renumber [REGNO (operand)] < 0)))
4137 operand = *recog_data.operand_loc[i];
4139 while (GET_CODE (operand) == SUBREG)
4140 operand = SUBREG_REG (operand);
4141 if (REG_P (operand))
4143 if (modified[i] != RELOAD_WRITE)
4144 /* We mark the USE with QImode so that we recognize
4145 it as one that can be safely deleted at the end
4146 of reload. */
4147 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4148 insn), QImode);
4149 if (modified[i] != RELOAD_READ)
4150 emit_insn_after (gen_clobber (operand), insn);
4154 else if (goal_alternative_matches[i] >= 0
4155 && goal_alternative_win[goal_alternative_matches[i]]
4156 && modified[i] == RELOAD_READ
4157 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4158 && ! no_input_reloads && ! no_output_reloads
4159 && optimize)
4161 /* Similarly, make an optional reload for a pair of matching
4162 objects that are in MEM or a pseudo that didn't get a hard reg. */
4164 rtx operand = recog_data.operand[i];
4166 while (GET_CODE (operand) == SUBREG)
4167 operand = SUBREG_REG (operand);
4168 if ((MEM_P (operand)
4169 || (REG_P (operand)
4170 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4171 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4172 != NO_REGS))
4173 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4174 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4175 recog_data.operand[i],
4176 recog_data.operand_loc[goal_alternative_matches[i]],
4177 recog_data.operand_loc[i],
4178 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4179 operand_mode[goal_alternative_matches[i]],
4180 operand_mode[i],
4181 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4184 /* Perform whatever substitutions on the operands we are supposed
4185 to make due to commutativity or replacement of registers
4186 with equivalent constants or memory slots. */
4188 for (i = 0; i < noperands; i++)
4190 /* We only do this on the last pass through reload, because it is
4191 possible for some data (like reg_equiv_address) to be changed during
4192 later passes. Moreover, we lose the opportunity to get a useful
4193 reload_{in,out}_reg when we do these replacements. */
4195 if (replace)
4197 rtx substitution = substed_operand[i];
4199 *recog_data.operand_loc[i] = substitution;
4201 /* If we're replacing an operand with a LABEL_REF, we need to
4202 make sure that there's a REG_LABEL_OPERAND note attached to
4203 this instruction. */
4204 if (GET_CODE (substitution) == LABEL_REF
4205 && !find_reg_note (insn, REG_LABEL_OPERAND,
4206 XEXP (substitution, 0))
4207 /* For a JUMP_P, if it was a branch target it must have
4208 already been recorded as such. */
4209 && (!JUMP_P (insn)
4210 || !label_is_jump_target_p (XEXP (substitution, 0),
4211 insn)))
4212 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4214 else
4215 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4218 /* If this insn pattern contains any MATCH_DUP's, make sure that
4219 they will be substituted if the operands they match are substituted.
4220 Also do now any substitutions we already did on the operands.
4222 Don't do this if we aren't making replacements because we might be
4223 propagating things allocated by frame pointer elimination into places
4224 it doesn't expect. */
4226 if (insn_code_number >= 0 && replace)
4227 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4229 int opno = recog_data.dup_num[i];
4230 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4231 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4234 #if 0
4235 /* This loses because reloading of prior insns can invalidate the equivalence
4236 (or at least find_equiv_reg isn't smart enough to find it any more),
4237 causing this insn to need more reload regs than it needed before.
4238 It may be too late to make the reload regs available.
4239 Now this optimization is done safely in choose_reload_regs. */
4241 /* For each reload of a reg into some other class of reg,
4242 search for an existing equivalent reg (same value now) in the right class.
4243 We can use it as long as we don't need to change its contents. */
4244 for (i = 0; i < n_reloads; i++)
4245 if (rld[i].reg_rtx == 0
4246 && rld[i].in != 0
4247 && REG_P (rld[i].in)
4248 && rld[i].out == 0)
4250 rld[i].reg_rtx
4251 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4252 static_reload_reg_p, 0, rld[i].inmode);
4253 /* Prevent generation of insn to load the value
4254 because the one we found already has the value. */
4255 if (rld[i].reg_rtx)
4256 rld[i].in = rld[i].reg_rtx;
4258 #endif
4260 /* If we detected error and replaced asm instruction by USE, forget about the
4261 reloads. */
4262 if (GET_CODE (PATTERN (insn)) == USE
4263 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4264 n_reloads = 0;
4266 /* Perhaps an output reload can be combined with another
4267 to reduce needs by one. */
4268 if (!goal_earlyclobber)
4269 combine_reloads ();
4271 /* If we have a pair of reloads for parts of an address, they are reloading
4272 the same object, the operands themselves were not reloaded, and they
4273 are for two operands that are supposed to match, merge the reloads and
4274 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4276 for (i = 0; i < n_reloads; i++)
4278 int k;
4280 for (j = i + 1; j < n_reloads; j++)
4281 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4282 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4283 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4284 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4285 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4286 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4287 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4288 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4289 && rtx_equal_p (rld[i].in, rld[j].in)
4290 && (operand_reloadnum[rld[i].opnum] < 0
4291 || rld[operand_reloadnum[rld[i].opnum]].optional)
4292 && (operand_reloadnum[rld[j].opnum] < 0
4293 || rld[operand_reloadnum[rld[j].opnum]].optional)
4294 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4295 || (goal_alternative_matches[rld[j].opnum]
4296 == rld[i].opnum)))
4298 for (k = 0; k < n_replacements; k++)
4299 if (replacements[k].what == j)
4300 replacements[k].what = i;
4302 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4303 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4304 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4305 else
4306 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4307 rld[j].in = 0;
4311 /* Scan all the reloads and update their type.
4312 If a reload is for the address of an operand and we didn't reload
4313 that operand, change the type. Similarly, change the operand number
4314 of a reload when two operands match. If a reload is optional, treat it
4315 as though the operand isn't reloaded.
4317 ??? This latter case is somewhat odd because if we do the optional
4318 reload, it means the object is hanging around. Thus we need only
4319 do the address reload if the optional reload was NOT done.
4321 Change secondary reloads to be the address type of their operand, not
4322 the normal type.
4324 If an operand's reload is now RELOAD_OTHER, change any
4325 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4326 RELOAD_FOR_OTHER_ADDRESS. */
4328 for (i = 0; i < n_reloads; i++)
4330 if (rld[i].secondary_p
4331 && rld[i].when_needed == operand_type[rld[i].opnum])
4332 rld[i].when_needed = address_type[rld[i].opnum];
4334 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4335 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4336 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4337 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4338 && (operand_reloadnum[rld[i].opnum] < 0
4339 || rld[operand_reloadnum[rld[i].opnum]].optional))
4341 /* If we have a secondary reload to go along with this reload,
4342 change its type to RELOAD_FOR_OPADDR_ADDR. */
4344 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4345 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4346 && rld[i].secondary_in_reload != -1)
4348 int secondary_in_reload = rld[i].secondary_in_reload;
4350 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4352 /* If there's a tertiary reload we have to change it also. */
4353 if (secondary_in_reload > 0
4354 && rld[secondary_in_reload].secondary_in_reload != -1)
4355 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4356 = RELOAD_FOR_OPADDR_ADDR;
4359 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4360 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4361 && rld[i].secondary_out_reload != -1)
4363 int secondary_out_reload = rld[i].secondary_out_reload;
4365 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4367 /* If there's a tertiary reload we have to change it also. */
4368 if (secondary_out_reload
4369 && rld[secondary_out_reload].secondary_out_reload != -1)
4370 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4371 = RELOAD_FOR_OPADDR_ADDR;
4374 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4375 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4376 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4377 else
4378 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4381 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4382 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4383 && operand_reloadnum[rld[i].opnum] >= 0
4384 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4385 == RELOAD_OTHER))
4386 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4388 if (goal_alternative_matches[rld[i].opnum] >= 0)
4389 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4392 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4393 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4394 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4396 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4397 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4398 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4399 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4400 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4401 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4402 This is complicated by the fact that a single operand can have more
4403 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4404 choose_reload_regs without affecting code quality, and cases that
4405 actually fail are extremely rare, so it turns out to be better to fix
4406 the problem here by not generating cases that choose_reload_regs will
4407 fail for. */
4408 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4409 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4410 a single operand.
4411 We can reduce the register pressure by exploiting that a
4412 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4413 does not conflict with any of them, if it is only used for the first of
4414 the RELOAD_FOR_X_ADDRESS reloads. */
4416 int first_op_addr_num = -2;
4417 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4418 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4419 int need_change = 0;
4420 /* We use last_op_addr_reload and the contents of the above arrays
4421 first as flags - -2 means no instance encountered, -1 means exactly
4422 one instance encountered.
4423 If more than one instance has been encountered, we store the reload
4424 number of the first reload of the kind in question; reload numbers
4425 are known to be non-negative. */
4426 for (i = 0; i < noperands; i++)
4427 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4428 for (i = n_reloads - 1; i >= 0; i--)
4430 switch (rld[i].when_needed)
4432 case RELOAD_FOR_OPERAND_ADDRESS:
4433 if (++first_op_addr_num >= 0)
4435 first_op_addr_num = i;
4436 need_change = 1;
4438 break;
4439 case RELOAD_FOR_INPUT_ADDRESS:
4440 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4442 first_inpaddr_num[rld[i].opnum] = i;
4443 need_change = 1;
4445 break;
4446 case RELOAD_FOR_OUTPUT_ADDRESS:
4447 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4449 first_outpaddr_num[rld[i].opnum] = i;
4450 need_change = 1;
4452 break;
4453 default:
4454 break;
4458 if (need_change)
4460 for (i = 0; i < n_reloads; i++)
4462 int first_num;
4463 enum reload_type type;
4465 switch (rld[i].when_needed)
4467 case RELOAD_FOR_OPADDR_ADDR:
4468 first_num = first_op_addr_num;
4469 type = RELOAD_FOR_OPERAND_ADDRESS;
4470 break;
4471 case RELOAD_FOR_INPADDR_ADDRESS:
4472 first_num = first_inpaddr_num[rld[i].opnum];
4473 type = RELOAD_FOR_INPUT_ADDRESS;
4474 break;
4475 case RELOAD_FOR_OUTADDR_ADDRESS:
4476 first_num = first_outpaddr_num[rld[i].opnum];
4477 type = RELOAD_FOR_OUTPUT_ADDRESS;
4478 break;
4479 default:
4480 continue;
4482 if (first_num < 0)
4483 continue;
4484 else if (i > first_num)
4485 rld[i].when_needed = type;
4486 else
4488 /* Check if the only TYPE reload that uses reload I is
4489 reload FIRST_NUM. */
4490 for (j = n_reloads - 1; j > first_num; j--)
4492 if (rld[j].when_needed == type
4493 && (rld[i].secondary_p
4494 ? rld[j].secondary_in_reload == i
4495 : reg_mentioned_p (rld[i].in, rld[j].in)))
4497 rld[i].when_needed = type;
4498 break;
4506 /* See if we have any reloads that are now allowed to be merged
4507 because we've changed when the reload is needed to
4508 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4509 check for the most common cases. */
4511 for (i = 0; i < n_reloads; i++)
4512 if (rld[i].in != 0 && rld[i].out == 0
4513 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4514 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4515 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4516 for (j = 0; j < n_reloads; j++)
4517 if (i != j && rld[j].in != 0 && rld[j].out == 0
4518 && rld[j].when_needed == rld[i].when_needed
4519 && MATCHES (rld[i].in, rld[j].in)
4520 && rld[i].rclass == rld[j].rclass
4521 && !rld[i].nocombine && !rld[j].nocombine
4522 && rld[i].reg_rtx == rld[j].reg_rtx)
4524 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4525 transfer_replacements (i, j);
4526 rld[j].in = 0;
4529 #ifdef HAVE_cc0
4530 /* If we made any reloads for addresses, see if they violate a
4531 "no input reloads" requirement for this insn. But loads that we
4532 do after the insn (such as for output addresses) are fine. */
4533 if (no_input_reloads)
4534 for (i = 0; i < n_reloads; i++)
4535 gcc_assert (rld[i].in == 0
4536 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4537 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4538 #endif
4540 /* Compute reload_mode and reload_nregs. */
4541 for (i = 0; i < n_reloads; i++)
4543 rld[i].mode
4544 = (rld[i].inmode == VOIDmode
4545 || (GET_MODE_SIZE (rld[i].outmode)
4546 > GET_MODE_SIZE (rld[i].inmode)))
4547 ? rld[i].outmode : rld[i].inmode;
4549 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4552 /* Special case a simple move with an input reload and a
4553 destination of a hard reg, if the hard reg is ok, use it. */
4554 for (i = 0; i < n_reloads; i++)
4555 if (rld[i].when_needed == RELOAD_FOR_INPUT
4556 && GET_CODE (PATTERN (insn)) == SET
4557 && REG_P (SET_DEST (PATTERN (insn)))
4558 && (SET_SRC (PATTERN (insn)) == rld[i].in
4559 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4560 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4562 rtx dest = SET_DEST (PATTERN (insn));
4563 unsigned int regno = REGNO (dest);
4565 if (regno < FIRST_PSEUDO_REGISTER
4566 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4567 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4569 int nr = hard_regno_nregs[regno][rld[i].mode];
4570 int ok = 1, nri;
4572 for (nri = 1; nri < nr; nri ++)
4573 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4574 ok = 0;
4576 if (ok)
4577 rld[i].reg_rtx = dest;
4581 return retval;
4584 /* Return true if alternative number ALTNUM in constraint-string
4585 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4586 MEM gives the reference if it didn't need any reloads, otherwise it
4587 is null. */
4589 static bool
4590 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4591 const char *constraint, int altnum)
4593 int c;
4595 /* Skip alternatives before the one requested. */
4596 while (altnum > 0)
4598 while (*constraint++ != ',');
4599 altnum--;
4601 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4602 If one of them is present, this alternative accepts the result of
4603 passing a constant-pool reference through find_reloads_toplev.
4605 The same is true of extra memory constraints if the address
4606 was reloaded into a register. However, the target may elect
4607 to disallow the original constant address, forcing it to be
4608 reloaded into a register instead. */
4609 for (; (c = *constraint) && c != ',' && c != '#';
4610 constraint += CONSTRAINT_LEN (c, constraint))
4612 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4613 return true;
4614 #ifdef EXTRA_CONSTRAINT_STR
4615 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4616 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4617 return true;
4618 #endif
4620 return false;
4623 /* Scan X for memory references and scan the addresses for reloading.
4624 Also checks for references to "constant" regs that we want to eliminate
4625 and replaces them with the values they stand for.
4626 We may alter X destructively if it contains a reference to such.
4627 If X is just a constant reg, we return the equivalent value
4628 instead of X.
4630 IND_LEVELS says how many levels of indirect addressing this machine
4631 supports.
4633 OPNUM and TYPE identify the purpose of the reload.
4635 IS_SET_DEST is true if X is the destination of a SET, which is not
4636 appropriate to be replaced by a constant.
4638 INSN, if nonzero, is the insn in which we do the reload. It is used
4639 to determine if we may generate output reloads, and where to put USEs
4640 for pseudos that we have to replace with stack slots.
4642 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4643 result of find_reloads_address. */
4645 static rtx
4646 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4647 int ind_levels, int is_set_dest, rtx insn,
4648 int *address_reloaded)
4650 RTX_CODE code = GET_CODE (x);
4652 const char *fmt = GET_RTX_FORMAT (code);
4653 int i;
4654 int copied;
4656 if (code == REG)
4658 /* This code is duplicated for speed in find_reloads. */
4659 int regno = REGNO (x);
4660 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4661 x = reg_equiv_constant[regno];
4662 #if 0
4663 /* This creates (subreg (mem...)) which would cause an unnecessary
4664 reload of the mem. */
4665 else if (reg_equiv_mem[regno] != 0)
4666 x = reg_equiv_mem[regno];
4667 #endif
4668 else if (reg_equiv_memory_loc[regno]
4669 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4671 rtx mem = make_memloc (x, regno);
4672 if (reg_equiv_address[regno]
4673 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4675 /* If this is not a toplevel operand, find_reloads doesn't see
4676 this substitution. We have to emit a USE of the pseudo so
4677 that delete_output_reload can see it. */
4678 if (replace_reloads && recog_data.operand[opnum] != x)
4679 /* We mark the USE with QImode so that we recognize it
4680 as one that can be safely deleted at the end of
4681 reload. */
4682 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4683 QImode);
4684 x = mem;
4685 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4686 opnum, type, ind_levels, insn);
4687 if (!rtx_equal_p (x, mem))
4688 push_reg_equiv_alt_mem (regno, x);
4689 if (address_reloaded)
4690 *address_reloaded = i;
4693 return x;
4695 if (code == MEM)
4697 rtx tem = x;
4699 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4700 opnum, type, ind_levels, insn);
4701 if (address_reloaded)
4702 *address_reloaded = i;
4704 return tem;
4707 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4709 /* Check for SUBREG containing a REG that's equivalent to a
4710 constant. If the constant has a known value, truncate it
4711 right now. Similarly if we are extracting a single-word of a
4712 multi-word constant. If the constant is symbolic, allow it
4713 to be substituted normally. push_reload will strip the
4714 subreg later. The constant must not be VOIDmode, because we
4715 will lose the mode of the register (this should never happen
4716 because one of the cases above should handle it). */
4718 int regno = REGNO (SUBREG_REG (x));
4719 rtx tem;
4721 if (regno >= FIRST_PSEUDO_REGISTER
4722 && reg_renumber[regno] < 0
4723 && reg_equiv_constant[regno] != 0)
4725 tem =
4726 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4727 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4728 gcc_assert (tem);
4729 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4731 tem = force_const_mem (GET_MODE (x), tem);
4732 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4733 &XEXP (tem, 0), opnum, type,
4734 ind_levels, insn);
4735 if (address_reloaded)
4736 *address_reloaded = i;
4738 return tem;
4741 /* If the subreg contains a reg that will be converted to a mem,
4742 convert the subreg to a narrower memref now.
4743 Otherwise, we would get (subreg (mem ...) ...),
4744 which would force reload of the mem.
4746 We also need to do this if there is an equivalent MEM that is
4747 not offsettable. In that case, alter_subreg would produce an
4748 invalid address on big-endian machines.
4750 For machines that extend byte loads, we must not reload using
4751 a wider mode if we have a paradoxical SUBREG. find_reloads will
4752 force a reload in that case. So we should not do anything here. */
4754 if (regno >= FIRST_PSEUDO_REGISTER
4755 #ifdef LOAD_EXTEND_OP
4756 && (GET_MODE_SIZE (GET_MODE (x))
4757 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4758 #endif
4759 && (reg_equiv_address[regno] != 0
4760 || (reg_equiv_mem[regno] != 0
4761 && (! strict_memory_address_addr_space_p
4762 (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
4763 MEM_ADDR_SPACE (reg_equiv_mem[regno]))
4764 || ! offsettable_memref_p (reg_equiv_mem[regno])
4765 || num_not_at_initial_offset))))
4766 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4767 insn);
4770 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4772 if (fmt[i] == 'e')
4774 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4775 ind_levels, is_set_dest, insn,
4776 address_reloaded);
4777 /* If we have replaced a reg with it's equivalent memory loc -
4778 that can still be handled here e.g. if it's in a paradoxical
4779 subreg - we must make the change in a copy, rather than using
4780 a destructive change. This way, find_reloads can still elect
4781 not to do the change. */
4782 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4784 x = shallow_copy_rtx (x);
4785 copied = 1;
4787 XEXP (x, i) = new_part;
4790 return x;
4793 /* Return a mem ref for the memory equivalent of reg REGNO.
4794 This mem ref is not shared with anything. */
4796 static rtx
4797 make_memloc (rtx ad, int regno)
4799 /* We must rerun eliminate_regs, in case the elimination
4800 offsets have changed. */
4801 rtx tem
4802 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4805 /* If TEM might contain a pseudo, we must copy it to avoid
4806 modifying it when we do the substitution for the reload. */
4807 if (rtx_varies_p (tem, 0))
4808 tem = copy_rtx (tem);
4810 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4811 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4813 /* Copy the result if it's still the same as the equivalence, to avoid
4814 modifying it when we do the substitution for the reload. */
4815 if (tem == reg_equiv_memory_loc[regno])
4816 tem = copy_rtx (tem);
4817 return tem;
4820 /* Returns true if AD could be turned into a valid memory reference
4821 to mode MODE in address space AS by reloading the part pointed to
4822 by PART into a register. */
4824 static int
4825 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4826 addr_space_t as, rtx *part)
4828 int retv;
4829 rtx tem = *part;
4830 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4832 *part = reg;
4833 retv = memory_address_addr_space_p (mode, ad, as);
4834 *part = tem;
4836 return retv;
4839 /* Record all reloads needed for handling memory address AD
4840 which appears in *LOC in a memory reference to mode MODE
4841 which itself is found in location *MEMREFLOC.
4842 Note that we take shortcuts assuming that no multi-reg machine mode
4843 occurs as part of an address.
4845 OPNUM and TYPE specify the purpose of this reload.
4847 IND_LEVELS says how many levels of indirect addressing this machine
4848 supports.
4850 INSN, if nonzero, is the insn in which we do the reload. It is used
4851 to determine if we may generate output reloads, and where to put USEs
4852 for pseudos that we have to replace with stack slots.
4854 Value is one if this address is reloaded or replaced as a whole; it is
4855 zero if the top level of this address was not reloaded or replaced, and
4856 it is -1 if it may or may not have been reloaded or replaced.
4858 Note that there is no verification that the address will be valid after
4859 this routine does its work. Instead, we rely on the fact that the address
4860 was valid when reload started. So we need only undo things that reload
4861 could have broken. These are wrong register types, pseudos not allocated
4862 to a hard register, and frame pointer elimination. */
4864 static int
4865 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4866 rtx *loc, int opnum, enum reload_type type,
4867 int ind_levels, rtx insn)
4869 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4870 : ADDR_SPACE_GENERIC;
4871 int regno;
4872 int removed_and = 0;
4873 int op_index;
4874 rtx tem;
4876 /* If the address is a register, see if it is a legitimate address and
4877 reload if not. We first handle the cases where we need not reload
4878 or where we must reload in a non-standard way. */
4880 if (REG_P (ad))
4882 regno = REGNO (ad);
4884 if (reg_equiv_constant[regno] != 0)
4886 find_reloads_address_part (reg_equiv_constant[regno], loc,
4887 base_reg_class (mode, MEM, SCRATCH),
4888 GET_MODE (ad), opnum, type, ind_levels);
4889 return 1;
4892 tem = reg_equiv_memory_loc[regno];
4893 if (tem != 0)
4895 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4897 tem = make_memloc (ad, regno);
4898 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4899 XEXP (tem, 0),
4900 MEM_ADDR_SPACE (tem)))
4902 rtx orig = tem;
4904 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4905 &XEXP (tem, 0), opnum,
4906 ADDR_TYPE (type), ind_levels, insn);
4907 if (!rtx_equal_p (tem, orig))
4908 push_reg_equiv_alt_mem (regno, tem);
4910 /* We can avoid a reload if the register's equivalent memory
4911 expression is valid as an indirect memory address.
4912 But not all addresses are valid in a mem used as an indirect
4913 address: only reg or reg+constant. */
4915 if (ind_levels > 0
4916 && strict_memory_address_addr_space_p (mode, tem, as)
4917 && (REG_P (XEXP (tem, 0))
4918 || (GET_CODE (XEXP (tem, 0)) == PLUS
4919 && REG_P (XEXP (XEXP (tem, 0), 0))
4920 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4922 /* TEM is not the same as what we'll be replacing the
4923 pseudo with after reload, put a USE in front of INSN
4924 in the final reload pass. */
4925 if (replace_reloads
4926 && num_not_at_initial_offset
4927 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4929 *loc = tem;
4930 /* We mark the USE with QImode so that we
4931 recognize it as one that can be safely
4932 deleted at the end of reload. */
4933 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4934 insn), QImode);
4936 /* This doesn't really count as replacing the address
4937 as a whole, since it is still a memory access. */
4939 return 0;
4941 ad = tem;
4945 /* The only remaining case where we can avoid a reload is if this is a
4946 hard register that is valid as a base register and which is not the
4947 subject of a CLOBBER in this insn. */
4949 else if (regno < FIRST_PSEUDO_REGISTER
4950 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4951 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4952 return 0;
4954 /* If we do not have one of the cases above, we must do the reload. */
4955 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4956 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4957 return 1;
4960 if (strict_memory_address_addr_space_p (mode, ad, as))
4962 /* The address appears valid, so reloads are not needed.
4963 But the address may contain an eliminable register.
4964 This can happen because a machine with indirect addressing
4965 may consider a pseudo register by itself a valid address even when
4966 it has failed to get a hard reg.
4967 So do a tree-walk to find and eliminate all such regs. */
4969 /* But first quickly dispose of a common case. */
4970 if (GET_CODE (ad) == PLUS
4971 && CONST_INT_P (XEXP (ad, 1))
4972 && REG_P (XEXP (ad, 0))
4973 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4974 return 0;
4976 subst_reg_equivs_changed = 0;
4977 *loc = subst_reg_equivs (ad, insn);
4979 if (! subst_reg_equivs_changed)
4980 return 0;
4982 /* Check result for validity after substitution. */
4983 if (strict_memory_address_addr_space_p (mode, ad, as))
4984 return 0;
4987 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4990 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4992 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4993 ind_levels, win);
4995 break;
4996 win:
4997 *memrefloc = copy_rtx (*memrefloc);
4998 XEXP (*memrefloc, 0) = ad;
4999 move_replacements (&ad, &XEXP (*memrefloc, 0));
5000 return -1;
5002 while (0);
5003 #endif
5005 /* The address is not valid. We have to figure out why. First see if
5006 we have an outer AND and remove it if so. Then analyze what's inside. */
5008 if (GET_CODE (ad) == AND)
5010 removed_and = 1;
5011 loc = &XEXP (ad, 0);
5012 ad = *loc;
5015 /* One possibility for why the address is invalid is that it is itself
5016 a MEM. This can happen when the frame pointer is being eliminated, a
5017 pseudo is not allocated to a hard register, and the offset between the
5018 frame and stack pointers is not its initial value. In that case the
5019 pseudo will have been replaced by a MEM referring to the
5020 stack pointer. */
5021 if (MEM_P (ad))
5023 /* First ensure that the address in this MEM is valid. Then, unless
5024 indirect addresses are valid, reload the MEM into a register. */
5025 tem = ad;
5026 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5027 opnum, ADDR_TYPE (type),
5028 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5030 /* If tem was changed, then we must create a new memory reference to
5031 hold it and store it back into memrefloc. */
5032 if (tem != ad && memrefloc)
5034 *memrefloc = copy_rtx (*memrefloc);
5035 copy_replacements (tem, XEXP (*memrefloc, 0));
5036 loc = &XEXP (*memrefloc, 0);
5037 if (removed_and)
5038 loc = &XEXP (*loc, 0);
5041 /* Check similar cases as for indirect addresses as above except
5042 that we can allow pseudos and a MEM since they should have been
5043 taken care of above. */
5045 if (ind_levels == 0
5046 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5047 || MEM_P (XEXP (tem, 0))
5048 || ! (REG_P (XEXP (tem, 0))
5049 || (GET_CODE (XEXP (tem, 0)) == PLUS
5050 && REG_P (XEXP (XEXP (tem, 0), 0))
5051 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5053 /* Must use TEM here, not AD, since it is the one that will
5054 have any subexpressions reloaded, if needed. */
5055 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5056 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5057 VOIDmode, 0,
5058 0, opnum, type);
5059 return ! removed_and;
5061 else
5062 return 0;
5065 /* If we have address of a stack slot but it's not valid because the
5066 displacement is too large, compute the sum in a register.
5067 Handle all base registers here, not just fp/ap/sp, because on some
5068 targets (namely SH) we can also get too large displacements from
5069 big-endian corrections. */
5070 else if (GET_CODE (ad) == PLUS
5071 && REG_P (XEXP (ad, 0))
5072 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5073 && CONST_INT_P (XEXP (ad, 1))
5074 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5075 CONST_INT))
5078 /* Unshare the MEM rtx so we can safely alter it. */
5079 if (memrefloc)
5081 *memrefloc = copy_rtx (*memrefloc);
5082 loc = &XEXP (*memrefloc, 0);
5083 if (removed_and)
5084 loc = &XEXP (*loc, 0);
5087 if (double_reg_address_ok)
5089 /* Unshare the sum as well. */
5090 *loc = ad = copy_rtx (ad);
5092 /* Reload the displacement into an index reg.
5093 We assume the frame pointer or arg pointer is a base reg. */
5094 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5095 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5096 type, ind_levels);
5097 return 0;
5099 else
5101 /* If the sum of two regs is not necessarily valid,
5102 reload the sum into a base reg.
5103 That will at least work. */
5104 find_reloads_address_part (ad, loc,
5105 base_reg_class (mode, MEM, SCRATCH),
5106 GET_MODE (ad), opnum, type, ind_levels);
5108 return ! removed_and;
5111 /* If we have an indexed stack slot, there are three possible reasons why
5112 it might be invalid: The index might need to be reloaded, the address
5113 might have been made by frame pointer elimination and hence have a
5114 constant out of range, or both reasons might apply.
5116 We can easily check for an index needing reload, but even if that is the
5117 case, we might also have an invalid constant. To avoid making the
5118 conservative assumption and requiring two reloads, we see if this address
5119 is valid when not interpreted strictly. If it is, the only problem is
5120 that the index needs a reload and find_reloads_address_1 will take care
5121 of it.
5123 Handle all base registers here, not just fp/ap/sp, because on some
5124 targets (namely SPARC) we can also get invalid addresses from preventive
5125 subreg big-endian corrections made by find_reloads_toplev. We
5126 can also get expressions involving LO_SUM (rather than PLUS) from
5127 find_reloads_subreg_address.
5129 If we decide to do something, it must be that `double_reg_address_ok'
5130 is true. We generate a reload of the base register + constant and
5131 rework the sum so that the reload register will be added to the index.
5132 This is safe because we know the address isn't shared.
5134 We check for the base register as both the first and second operand of
5135 the innermost PLUS and/or LO_SUM. */
5137 for (op_index = 0; op_index < 2; ++op_index)
5139 rtx operand, addend;
5140 enum rtx_code inner_code;
5142 if (GET_CODE (ad) != PLUS)
5143 continue;
5145 inner_code = GET_CODE (XEXP (ad, 0));
5146 if (!(GET_CODE (ad) == PLUS
5147 && CONST_INT_P (XEXP (ad, 1))
5148 && (inner_code == PLUS || inner_code == LO_SUM)))
5149 continue;
5151 operand = XEXP (XEXP (ad, 0), op_index);
5152 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5153 continue;
5155 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5157 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5158 GET_CODE (addend))
5159 || operand == frame_pointer_rtx
5160 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5161 || operand == hard_frame_pointer_rtx
5162 #endif
5163 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5164 || operand == arg_pointer_rtx
5165 #endif
5166 || operand == stack_pointer_rtx)
5167 && ! maybe_memory_address_addr_space_p
5168 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5170 rtx offset_reg;
5171 enum reg_class cls;
5173 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5175 /* Form the adjusted address. */
5176 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5177 ad = gen_rtx_PLUS (GET_MODE (ad),
5178 op_index == 0 ? offset_reg : addend,
5179 op_index == 0 ? addend : offset_reg);
5180 else
5181 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5182 op_index == 0 ? offset_reg : addend,
5183 op_index == 0 ? addend : offset_reg);
5184 *loc = ad;
5186 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5187 find_reloads_address_part (XEXP (ad, op_index),
5188 &XEXP (ad, op_index), cls,
5189 GET_MODE (ad), opnum, type, ind_levels);
5190 find_reloads_address_1 (mode,
5191 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5192 GET_CODE (XEXP (ad, op_index)),
5193 &XEXP (ad, 1 - op_index), opnum,
5194 type, 0, insn);
5196 return 0;
5200 /* See if address becomes valid when an eliminable register
5201 in a sum is replaced. */
5203 tem = ad;
5204 if (GET_CODE (ad) == PLUS)
5205 tem = subst_indexed_address (ad);
5206 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5208 /* Ok, we win that way. Replace any additional eliminable
5209 registers. */
5211 subst_reg_equivs_changed = 0;
5212 tem = subst_reg_equivs (tem, insn);
5214 /* Make sure that didn't make the address invalid again. */
5216 if (! subst_reg_equivs_changed
5217 || strict_memory_address_addr_space_p (mode, tem, as))
5219 *loc = tem;
5220 return 0;
5224 /* If constants aren't valid addresses, reload the constant address
5225 into a register. */
5226 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5228 enum machine_mode address_mode = GET_MODE (ad);
5229 if (address_mode == VOIDmode)
5230 address_mode = targetm.addr_space.address_mode (as);
5232 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5233 Unshare it so we can safely alter it. */
5234 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5235 && CONSTANT_POOL_ADDRESS_P (ad))
5237 *memrefloc = copy_rtx (*memrefloc);
5238 loc = &XEXP (*memrefloc, 0);
5239 if (removed_and)
5240 loc = &XEXP (*loc, 0);
5243 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5244 address_mode, opnum, type, ind_levels);
5245 return ! removed_and;
5248 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5249 ind_levels, insn);
5252 /* Find all pseudo regs appearing in AD
5253 that are eliminable in favor of equivalent values
5254 and do not have hard regs; replace them by their equivalents.
5255 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5256 front of it for pseudos that we have to replace with stack slots. */
5258 static rtx
5259 subst_reg_equivs (rtx ad, rtx insn)
5261 RTX_CODE code = GET_CODE (ad);
5262 int i;
5263 const char *fmt;
5265 switch (code)
5267 case HIGH:
5268 case CONST_INT:
5269 case CONST:
5270 case CONST_DOUBLE:
5271 case CONST_FIXED:
5272 case CONST_VECTOR:
5273 case SYMBOL_REF:
5274 case LABEL_REF:
5275 case PC:
5276 case CC0:
5277 return ad;
5279 case REG:
5281 int regno = REGNO (ad);
5283 if (reg_equiv_constant[regno] != 0)
5285 subst_reg_equivs_changed = 1;
5286 return reg_equiv_constant[regno];
5288 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5290 rtx mem = make_memloc (ad, regno);
5291 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5293 subst_reg_equivs_changed = 1;
5294 /* We mark the USE with QImode so that we recognize it
5295 as one that can be safely deleted at the end of
5296 reload. */
5297 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5298 QImode);
5299 return mem;
5303 return ad;
5305 case PLUS:
5306 /* Quickly dispose of a common case. */
5307 if (XEXP (ad, 0) == frame_pointer_rtx
5308 && CONST_INT_P (XEXP (ad, 1)))
5309 return ad;
5310 break;
5312 default:
5313 break;
5316 fmt = GET_RTX_FORMAT (code);
5317 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5318 if (fmt[i] == 'e')
5319 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5320 return ad;
5323 /* Compute the sum of X and Y, making canonicalizations assumed in an
5324 address, namely: sum constant integers, surround the sum of two
5325 constants with a CONST, put the constant as the second operand, and
5326 group the constant on the outermost sum.
5328 This routine assumes both inputs are already in canonical form. */
5331 form_sum (enum machine_mode mode, rtx x, rtx y)
5333 rtx tem;
5335 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5336 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5338 if (CONST_INT_P (x))
5339 return plus_constant (y, INTVAL (x));
5340 else if (CONST_INT_P (y))
5341 return plus_constant (x, INTVAL (y));
5342 else if (CONSTANT_P (x))
5343 tem = x, x = y, y = tem;
5345 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5346 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5348 /* Note that if the operands of Y are specified in the opposite
5349 order in the recursive calls below, infinite recursion will occur. */
5350 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5351 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5353 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5354 constant will have been placed second. */
5355 if (CONSTANT_P (x) && CONSTANT_P (y))
5357 if (GET_CODE (x) == CONST)
5358 x = XEXP (x, 0);
5359 if (GET_CODE (y) == CONST)
5360 y = XEXP (y, 0);
5362 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5365 return gen_rtx_PLUS (mode, x, y);
5368 /* If ADDR is a sum containing a pseudo register that should be
5369 replaced with a constant (from reg_equiv_constant),
5370 return the result of doing so, and also apply the associative
5371 law so that the result is more likely to be a valid address.
5372 (But it is not guaranteed to be one.)
5374 Note that at most one register is replaced, even if more are
5375 replaceable. Also, we try to put the result into a canonical form
5376 so it is more likely to be a valid address.
5378 In all other cases, return ADDR. */
5380 static rtx
5381 subst_indexed_address (rtx addr)
5383 rtx op0 = 0, op1 = 0, op2 = 0;
5384 rtx tem;
5385 int regno;
5387 if (GET_CODE (addr) == PLUS)
5389 /* Try to find a register to replace. */
5390 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5391 if (REG_P (op0)
5392 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5393 && reg_renumber[regno] < 0
5394 && reg_equiv_constant[regno] != 0)
5395 op0 = reg_equiv_constant[regno];
5396 else if (REG_P (op1)
5397 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5398 && reg_renumber[regno] < 0
5399 && reg_equiv_constant[regno] != 0)
5400 op1 = reg_equiv_constant[regno];
5401 else if (GET_CODE (op0) == PLUS
5402 && (tem = subst_indexed_address (op0)) != op0)
5403 op0 = tem;
5404 else if (GET_CODE (op1) == PLUS
5405 && (tem = subst_indexed_address (op1)) != op1)
5406 op1 = tem;
5407 else
5408 return addr;
5410 /* Pick out up to three things to add. */
5411 if (GET_CODE (op1) == PLUS)
5412 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5413 else if (GET_CODE (op0) == PLUS)
5414 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5416 /* Compute the sum. */
5417 if (op2 != 0)
5418 op1 = form_sum (GET_MODE (addr), op1, op2);
5419 if (op1 != 0)
5420 op0 = form_sum (GET_MODE (addr), op0, op1);
5422 return op0;
5424 return addr;
5427 /* Update the REG_INC notes for an insn. It updates all REG_INC
5428 notes for the instruction which refer to REGNO the to refer
5429 to the reload number.
5431 INSN is the insn for which any REG_INC notes need updating.
5433 REGNO is the register number which has been reloaded.
5435 RELOADNUM is the reload number. */
5437 static void
5438 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5439 int reloadnum ATTRIBUTE_UNUSED)
5441 #ifdef AUTO_INC_DEC
5442 rtx link;
5444 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5445 if (REG_NOTE_KIND (link) == REG_INC
5446 && (int) REGNO (XEXP (link, 0)) == regno)
5447 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5448 #endif
5451 /* Record the pseudo registers we must reload into hard registers in a
5452 subexpression of a would-be memory address, X referring to a value
5453 in mode MODE. (This function is not called if the address we find
5454 is strictly valid.)
5456 CONTEXT = 1 means we are considering regs as index regs,
5457 = 0 means we are considering them as base regs.
5458 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5459 or an autoinc code.
5460 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5461 is the code of the index part of the address. Otherwise, pass SCRATCH
5462 for this argument.
5463 OPNUM and TYPE specify the purpose of any reloads made.
5465 IND_LEVELS says how many levels of indirect addressing are
5466 supported at this point in the address.
5468 INSN, if nonzero, is the insn in which we do the reload. It is used
5469 to determine if we may generate output reloads.
5471 We return nonzero if X, as a whole, is reloaded or replaced. */
5473 /* Note that we take shortcuts assuming that no multi-reg machine mode
5474 occurs as part of an address.
5475 Also, this is not fully machine-customizable; it works for machines
5476 such as VAXen and 68000's and 32000's, but other possible machines
5477 could have addressing modes that this does not handle right.
5478 If you add push_reload calls here, you need to make sure gen_reload
5479 handles those cases gracefully. */
5481 static int
5482 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5483 enum rtx_code outer_code, enum rtx_code index_code,
5484 rtx *loc, int opnum, enum reload_type type,
5485 int ind_levels, rtx insn)
5487 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5488 ((CONTEXT) == 0 \
5489 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5490 : REGNO_OK_FOR_INDEX_P (REGNO))
5492 enum reg_class context_reg_class;
5493 RTX_CODE code = GET_CODE (x);
5495 if (context == 1)
5496 context_reg_class = INDEX_REG_CLASS;
5497 else
5498 context_reg_class = base_reg_class (mode, outer_code, index_code);
5500 switch (code)
5502 case PLUS:
5504 rtx orig_op0 = XEXP (x, 0);
5505 rtx orig_op1 = XEXP (x, 1);
5506 RTX_CODE code0 = GET_CODE (orig_op0);
5507 RTX_CODE code1 = GET_CODE (orig_op1);
5508 rtx op0 = orig_op0;
5509 rtx op1 = orig_op1;
5511 if (GET_CODE (op0) == SUBREG)
5513 op0 = SUBREG_REG (op0);
5514 code0 = GET_CODE (op0);
5515 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5516 op0 = gen_rtx_REG (word_mode,
5517 (REGNO (op0) +
5518 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5519 GET_MODE (SUBREG_REG (orig_op0)),
5520 SUBREG_BYTE (orig_op0),
5521 GET_MODE (orig_op0))));
5524 if (GET_CODE (op1) == SUBREG)
5526 op1 = SUBREG_REG (op1);
5527 code1 = GET_CODE (op1);
5528 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5529 /* ??? Why is this given op1's mode and above for
5530 ??? op0 SUBREGs we use word_mode? */
5531 op1 = gen_rtx_REG (GET_MODE (op1),
5532 (REGNO (op1) +
5533 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5534 GET_MODE (SUBREG_REG (orig_op1)),
5535 SUBREG_BYTE (orig_op1),
5536 GET_MODE (orig_op1))));
5538 /* Plus in the index register may be created only as a result of
5539 register rematerialization for expression like &localvar*4. Reload it.
5540 It may be possible to combine the displacement on the outer level,
5541 but it is probably not worthwhile to do so. */
5542 if (context == 1)
5544 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5545 opnum, ADDR_TYPE (type), ind_levels, insn);
5546 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5547 context_reg_class,
5548 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5549 return 1;
5552 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5553 || code0 == ZERO_EXTEND || code1 == MEM)
5555 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5556 &XEXP (x, 0), opnum, type, ind_levels,
5557 insn);
5558 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5559 &XEXP (x, 1), opnum, type, ind_levels,
5560 insn);
5563 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5564 || code1 == ZERO_EXTEND || code0 == MEM)
5566 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5567 &XEXP (x, 0), opnum, type, ind_levels,
5568 insn);
5569 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5570 &XEXP (x, 1), opnum, type, ind_levels,
5571 insn);
5574 else if (code0 == CONST_INT || code0 == CONST
5575 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5576 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5577 &XEXP (x, 1), opnum, type, ind_levels,
5578 insn);
5580 else if (code1 == CONST_INT || code1 == CONST
5581 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5582 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5583 &XEXP (x, 0), opnum, type, ind_levels,
5584 insn);
5586 else if (code0 == REG && code1 == REG)
5588 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5589 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5590 return 0;
5591 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5592 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5593 return 0;
5594 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5595 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5596 &XEXP (x, 1), opnum, type, ind_levels,
5597 insn);
5598 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5599 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5600 &XEXP (x, 0), opnum, type, ind_levels,
5601 insn);
5602 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5603 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5604 &XEXP (x, 0), opnum, type, ind_levels,
5605 insn);
5606 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5607 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5608 &XEXP (x, 1), opnum, type, ind_levels,
5609 insn);
5610 else
5612 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5613 &XEXP (x, 0), opnum, type, ind_levels,
5614 insn);
5615 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5616 &XEXP (x, 1), opnum, type, ind_levels,
5617 insn);
5621 else if (code0 == REG)
5623 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5624 &XEXP (x, 0), opnum, type, ind_levels,
5625 insn);
5626 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5627 &XEXP (x, 1), opnum, type, ind_levels,
5628 insn);
5631 else if (code1 == REG)
5633 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5634 &XEXP (x, 1), opnum, type, ind_levels,
5635 insn);
5636 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5637 &XEXP (x, 0), opnum, type, ind_levels,
5638 insn);
5642 return 0;
5644 case POST_MODIFY:
5645 case PRE_MODIFY:
5647 rtx op0 = XEXP (x, 0);
5648 rtx op1 = XEXP (x, 1);
5649 enum rtx_code index_code;
5650 int regno;
5651 int reloadnum;
5653 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5654 return 0;
5656 /* Currently, we only support {PRE,POST}_MODIFY constructs
5657 where a base register is {inc,dec}remented by the contents
5658 of another register or by a constant value. Thus, these
5659 operands must match. */
5660 gcc_assert (op0 == XEXP (op1, 0));
5662 /* Require index register (or constant). Let's just handle the
5663 register case in the meantime... If the target allows
5664 auto-modify by a constant then we could try replacing a pseudo
5665 register with its equivalent constant where applicable.
5667 We also handle the case where the register was eliminated
5668 resulting in a PLUS subexpression.
5670 If we later decide to reload the whole PRE_MODIFY or
5671 POST_MODIFY, inc_for_reload might clobber the reload register
5672 before reading the index. The index register might therefore
5673 need to live longer than a TYPE reload normally would, so be
5674 conservative and class it as RELOAD_OTHER. */
5675 if ((REG_P (XEXP (op1, 1))
5676 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5677 || GET_CODE (XEXP (op1, 1)) == PLUS)
5678 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5679 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5680 ind_levels, insn);
5682 gcc_assert (REG_P (XEXP (op1, 0)));
5684 regno = REGNO (XEXP (op1, 0));
5685 index_code = GET_CODE (XEXP (op1, 1));
5687 /* A register that is incremented cannot be constant! */
5688 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5689 || reg_equiv_constant[regno] == 0);
5691 /* Handle a register that is equivalent to a memory location
5692 which cannot be addressed directly. */
5693 if (reg_equiv_memory_loc[regno] != 0
5694 && (reg_equiv_address[regno] != 0
5695 || num_not_at_initial_offset))
5697 rtx tem = make_memloc (XEXP (x, 0), regno);
5699 if (reg_equiv_address[regno]
5700 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5702 rtx orig = tem;
5704 /* First reload the memory location's address.
5705 We can't use ADDR_TYPE (type) here, because we need to
5706 write back the value after reading it, hence we actually
5707 need two registers. */
5708 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5709 &XEXP (tem, 0), opnum,
5710 RELOAD_OTHER,
5711 ind_levels, insn);
5713 if (!rtx_equal_p (tem, orig))
5714 push_reg_equiv_alt_mem (regno, tem);
5716 /* Then reload the memory location into a base
5717 register. */
5718 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5719 &XEXP (op1, 0),
5720 base_reg_class (mode, code,
5721 index_code),
5722 GET_MODE (x), GET_MODE (x), 0,
5723 0, opnum, RELOAD_OTHER);
5725 update_auto_inc_notes (this_insn, regno, reloadnum);
5726 return 0;
5730 if (reg_renumber[regno] >= 0)
5731 regno = reg_renumber[regno];
5733 /* We require a base register here... */
5734 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5736 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5737 &XEXP (op1, 0), &XEXP (x, 0),
5738 base_reg_class (mode, code, index_code),
5739 GET_MODE (x), GET_MODE (x), 0, 0,
5740 opnum, RELOAD_OTHER);
5742 update_auto_inc_notes (this_insn, regno, reloadnum);
5743 return 0;
5746 return 0;
5748 case POST_INC:
5749 case POST_DEC:
5750 case PRE_INC:
5751 case PRE_DEC:
5752 if (REG_P (XEXP (x, 0)))
5754 int regno = REGNO (XEXP (x, 0));
5755 int value = 0;
5756 rtx x_orig = x;
5758 /* A register that is incremented cannot be constant! */
5759 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5760 || reg_equiv_constant[regno] == 0);
5762 /* Handle a register that is equivalent to a memory location
5763 which cannot be addressed directly. */
5764 if (reg_equiv_memory_loc[regno] != 0
5765 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5767 rtx tem = make_memloc (XEXP (x, 0), regno);
5768 if (reg_equiv_address[regno]
5769 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5771 rtx orig = tem;
5773 /* First reload the memory location's address.
5774 We can't use ADDR_TYPE (type) here, because we need to
5775 write back the value after reading it, hence we actually
5776 need two registers. */
5777 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5778 &XEXP (tem, 0), opnum, type,
5779 ind_levels, insn);
5780 if (!rtx_equal_p (tem, orig))
5781 push_reg_equiv_alt_mem (regno, tem);
5782 /* Put this inside a new increment-expression. */
5783 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5784 /* Proceed to reload that, as if it contained a register. */
5788 /* If we have a hard register that is ok in this incdec context,
5789 don't make a reload. If the register isn't nice enough for
5790 autoincdec, we can reload it. But, if an autoincrement of a
5791 register that we here verified as playing nice, still outside
5792 isn't "valid", it must be that no autoincrement is "valid".
5793 If that is true and something made an autoincrement anyway,
5794 this must be a special context where one is allowed.
5795 (For example, a "push" instruction.)
5796 We can't improve this address, so leave it alone. */
5798 /* Otherwise, reload the autoincrement into a suitable hard reg
5799 and record how much to increment by. */
5801 if (reg_renumber[regno] >= 0)
5802 regno = reg_renumber[regno];
5803 if (regno >= FIRST_PSEUDO_REGISTER
5804 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5805 index_code))
5807 int reloadnum;
5809 /* If we can output the register afterwards, do so, this
5810 saves the extra update.
5811 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5812 CALL_INSN - and it does not set CC0.
5813 But don't do this if we cannot directly address the
5814 memory location, since this will make it harder to
5815 reuse address reloads, and increases register pressure.
5816 Also don't do this if we can probably update x directly. */
5817 rtx equiv = (MEM_P (XEXP (x, 0))
5818 ? XEXP (x, 0)
5819 : reg_equiv_mem[regno]);
5820 int icode = (int) optab_handler (add_optab, GET_MODE (x));
5821 if (insn && NONJUMP_INSN_P (insn) && equiv
5822 && memory_operand (equiv, GET_MODE (equiv))
5823 #ifdef HAVE_cc0
5824 && ! sets_cc0_p (PATTERN (insn))
5825 #endif
5826 && ! (icode != CODE_FOR_nothing
5827 && ((*insn_data[icode].operand[0].predicate)
5828 (equiv, GET_MODE (x)))
5829 && ((*insn_data[icode].operand[1].predicate)
5830 (equiv, GET_MODE (x)))))
5832 /* We use the original pseudo for loc, so that
5833 emit_reload_insns() knows which pseudo this
5834 reload refers to and updates the pseudo rtx, not
5835 its equivalent memory location, as well as the
5836 corresponding entry in reg_last_reload_reg. */
5837 loc = &XEXP (x_orig, 0);
5838 x = XEXP (x, 0);
5839 reloadnum
5840 = push_reload (x, x, loc, loc,
5841 context_reg_class,
5842 GET_MODE (x), GET_MODE (x), 0, 0,
5843 opnum, RELOAD_OTHER);
5845 else
5847 reloadnum
5848 = push_reload (x, x, loc, (rtx*) 0,
5849 context_reg_class,
5850 GET_MODE (x), GET_MODE (x), 0, 0,
5851 opnum, type);
5852 rld[reloadnum].inc
5853 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5855 value = 1;
5858 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5859 reloadnum);
5861 return value;
5863 return 0;
5865 case TRUNCATE:
5866 case SIGN_EXTEND:
5867 case ZERO_EXTEND:
5868 /* Look for parts to reload in the inner expression and reload them
5869 too, in addition to this operation. Reloading all inner parts in
5870 addition to this one shouldn't be necessary, but at this point,
5871 we don't know if we can possibly omit any part that *can* be
5872 reloaded. Targets that are better off reloading just either part
5873 (or perhaps even a different part of an outer expression), should
5874 define LEGITIMIZE_RELOAD_ADDRESS. */
5875 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5876 context, code, SCRATCH, &XEXP (x, 0), opnum,
5877 type, ind_levels, insn);
5878 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5879 context_reg_class,
5880 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5881 return 1;
5883 case MEM:
5884 /* This is probably the result of a substitution, by eliminate_regs, of
5885 an equivalent address for a pseudo that was not allocated to a hard
5886 register. Verify that the specified address is valid and reload it
5887 into a register.
5889 Since we know we are going to reload this item, don't decrement for
5890 the indirection level.
5892 Note that this is actually conservative: it would be slightly more
5893 efficient to use the value of SPILL_INDIRECT_LEVELS from
5894 reload1.c here. */
5896 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5897 opnum, ADDR_TYPE (type), ind_levels, insn);
5898 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5899 context_reg_class,
5900 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5901 return 1;
5903 case REG:
5905 int regno = REGNO (x);
5907 if (reg_equiv_constant[regno] != 0)
5909 find_reloads_address_part (reg_equiv_constant[regno], loc,
5910 context_reg_class,
5911 GET_MODE (x), opnum, type, ind_levels);
5912 return 1;
5915 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5916 that feeds this insn. */
5917 if (reg_equiv_mem[regno] != 0)
5919 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5920 context_reg_class,
5921 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5922 return 1;
5924 #endif
5926 if (reg_equiv_memory_loc[regno]
5927 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5929 rtx tem = make_memloc (x, regno);
5930 if (reg_equiv_address[regno] != 0
5931 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5933 x = tem;
5934 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5935 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5936 ind_levels, insn);
5937 if (!rtx_equal_p (x, tem))
5938 push_reg_equiv_alt_mem (regno, x);
5942 if (reg_renumber[regno] >= 0)
5943 regno = reg_renumber[regno];
5945 if (regno >= FIRST_PSEUDO_REGISTER
5946 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5947 index_code))
5949 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5950 context_reg_class,
5951 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5952 return 1;
5955 /* If a register appearing in an address is the subject of a CLOBBER
5956 in this insn, reload it into some other register to be safe.
5957 The CLOBBER is supposed to make the register unavailable
5958 from before this insn to after it. */
5959 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5961 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5962 context_reg_class,
5963 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5964 return 1;
5967 return 0;
5969 case SUBREG:
5970 if (REG_P (SUBREG_REG (x)))
5972 /* If this is a SUBREG of a hard register and the resulting register
5973 is of the wrong class, reload the whole SUBREG. This avoids
5974 needless copies if SUBREG_REG is multi-word. */
5975 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5977 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5979 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5980 index_code))
5982 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5983 context_reg_class,
5984 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5985 return 1;
5988 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5989 is larger than the class size, then reload the whole SUBREG. */
5990 else
5992 enum reg_class rclass = context_reg_class;
5993 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5994 > reg_class_size[rclass])
5996 x = find_reloads_subreg_address (x, 0, opnum,
5997 ADDR_TYPE (type),
5998 ind_levels, insn);
5999 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6000 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6001 return 1;
6005 break;
6007 default:
6008 break;
6012 const char *fmt = GET_RTX_FORMAT (code);
6013 int i;
6015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6017 if (fmt[i] == 'e')
6018 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6019 we get here. */
6020 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
6021 &XEXP (x, i), opnum, type, ind_levels, insn);
6025 #undef REG_OK_FOR_CONTEXT
6026 return 0;
6029 /* X, which is found at *LOC, is a part of an address that needs to be
6030 reloaded into a register of class RCLASS. If X is a constant, or if
6031 X is a PLUS that contains a constant, check that the constant is a
6032 legitimate operand and that we are supposed to be able to load
6033 it into the register.
6035 If not, force the constant into memory and reload the MEM instead.
6037 MODE is the mode to use, in case X is an integer constant.
6039 OPNUM and TYPE describe the purpose of any reloads made.
6041 IND_LEVELS says how many levels of indirect addressing this machine
6042 supports. */
6044 static void
6045 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6046 enum machine_mode mode, int opnum,
6047 enum reload_type type, int ind_levels)
6049 if (CONSTANT_P (x)
6050 && (! LEGITIMATE_CONSTANT_P (x)
6051 || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
6053 x = force_const_mem (mode, x);
6054 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6055 opnum, type, ind_levels, 0);
6058 else if (GET_CODE (x) == PLUS
6059 && CONSTANT_P (XEXP (x, 1))
6060 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
6061 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
6063 rtx tem;
6065 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6066 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6067 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6068 opnum, type, ind_levels, 0);
6071 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6072 mode, VOIDmode, 0, 0, opnum, type);
6075 /* X, a subreg of a pseudo, is a part of an address that needs to be
6076 reloaded.
6078 If the pseudo is equivalent to a memory location that cannot be directly
6079 addressed, make the necessary address reloads.
6081 If address reloads have been necessary, or if the address is changed
6082 by register elimination, return the rtx of the memory location;
6083 otherwise, return X.
6085 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6086 memory location.
6088 OPNUM and TYPE identify the purpose of the reload.
6090 IND_LEVELS says how many levels of indirect addressing are
6091 supported at this point in the address.
6093 INSN, if nonzero, is the insn in which we do the reload. It is used
6094 to determine where to put USEs for pseudos that we have to replace with
6095 stack slots. */
6097 static rtx
6098 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6099 enum reload_type type, int ind_levels, rtx insn)
6101 int regno = REGNO (SUBREG_REG (x));
6103 if (reg_equiv_memory_loc[regno])
6105 /* If the address is not directly addressable, or if the address is not
6106 offsettable, then it must be replaced. */
6107 if (! force_replace
6108 && (reg_equiv_address[regno]
6109 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6110 force_replace = 1;
6112 if (force_replace || num_not_at_initial_offset)
6114 rtx tem = make_memloc (SUBREG_REG (x), regno);
6116 /* If the address changes because of register elimination, then
6117 it must be replaced. */
6118 if (force_replace
6119 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6121 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6122 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6123 int offset;
6124 rtx orig = tem;
6125 int reloaded;
6127 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6128 hold the correct (negative) byte offset. */
6129 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6130 offset = inner_size - outer_size;
6131 else
6132 offset = SUBREG_BYTE (x);
6134 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6135 PUT_MODE (tem, GET_MODE (x));
6136 if (MEM_OFFSET (tem))
6137 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6138 if (MEM_SIZE (tem)
6139 && INTVAL (MEM_SIZE (tem)) != (HOST_WIDE_INT) outer_size)
6140 set_mem_size (tem, GEN_INT (outer_size));
6142 /* If this was a paradoxical subreg that we replaced, the
6143 resulting memory must be sufficiently aligned to allow
6144 us to widen the mode of the memory. */
6145 if (outer_size > inner_size)
6147 rtx base;
6149 base = XEXP (tem, 0);
6150 if (GET_CODE (base) == PLUS)
6152 if (CONST_INT_P (XEXP (base, 1))
6153 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6154 return x;
6155 base = XEXP (base, 0);
6157 if (!REG_P (base)
6158 || (REGNO_POINTER_ALIGN (REGNO (base))
6159 < outer_size * BITS_PER_UNIT))
6160 return x;
6163 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6164 XEXP (tem, 0), &XEXP (tem, 0),
6165 opnum, type, ind_levels, insn);
6166 /* ??? Do we need to handle nonzero offsets somehow? */
6167 if (!offset && !rtx_equal_p (tem, orig))
6168 push_reg_equiv_alt_mem (regno, tem);
6170 /* For some processors an address may be valid in the
6171 original mode but not in a smaller mode. For
6172 example, ARM accepts a scaled index register in
6173 SImode but not in HImode. Note that this is only
6174 a problem if the address in reg_equiv_mem is already
6175 invalid in the new mode; other cases would be fixed
6176 by find_reloads_address as usual.
6178 ??? We attempt to handle such cases here by doing an
6179 additional reload of the full address after the
6180 usual processing by find_reloads_address. Note that
6181 this may not work in the general case, but it seems
6182 to cover the cases where this situation currently
6183 occurs. A more general fix might be to reload the
6184 *value* instead of the address, but this would not
6185 be expected by the callers of this routine as-is.
6187 If find_reloads_address already completed replaced
6188 the address, there is nothing further to do. */
6189 if (reloaded == 0
6190 && reg_equiv_mem[regno] != 0
6191 && !strict_memory_address_addr_space_p
6192 (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
6193 MEM_ADDR_SPACE (reg_equiv_mem[regno])))
6194 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6195 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6196 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6197 opnum, type);
6199 /* If this is not a toplevel operand, find_reloads doesn't see
6200 this substitution. We have to emit a USE of the pseudo so
6201 that delete_output_reload can see it. */
6202 if (replace_reloads && recog_data.operand[opnum] != x)
6203 /* We mark the USE with QImode so that we recognize it
6204 as one that can be safely deleted at the end of
6205 reload. */
6206 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6207 SUBREG_REG (x)),
6208 insn), QImode);
6209 x = tem;
6213 return x;
6216 /* Substitute into the current INSN the registers into which we have reloaded
6217 the things that need reloading. The array `replacements'
6218 contains the locations of all pointers that must be changed
6219 and says what to replace them with.
6221 Return the rtx that X translates into; usually X, but modified. */
6223 void
6224 subst_reloads (rtx insn)
6226 int i;
6228 for (i = 0; i < n_replacements; i++)
6230 struct replacement *r = &replacements[i];
6231 rtx reloadreg = rld[r->what].reg_rtx;
6232 if (reloadreg)
6234 #ifdef DEBUG_RELOAD
6235 /* This checking takes a very long time on some platforms
6236 causing the gcc.c-torture/compile/limits-fnargs.c test
6237 to time out during testing. See PR 31850.
6239 Internal consistency test. Check that we don't modify
6240 anything in the equivalence arrays. Whenever something from
6241 those arrays needs to be reloaded, it must be unshared before
6242 being substituted into; the equivalence must not be modified.
6243 Otherwise, if the equivalence is used after that, it will
6244 have been modified, and the thing substituted (probably a
6245 register) is likely overwritten and not a usable equivalence. */
6246 int check_regno;
6248 for (check_regno = 0; check_regno < max_regno; check_regno++)
6250 #define CHECK_MODF(ARRAY) \
6251 gcc_assert (!ARRAY[check_regno] \
6252 || !loc_mentioned_in_p (r->where, \
6253 ARRAY[check_regno]))
6255 CHECK_MODF (reg_equiv_constant);
6256 CHECK_MODF (reg_equiv_memory_loc);
6257 CHECK_MODF (reg_equiv_address);
6258 CHECK_MODF (reg_equiv_mem);
6259 #undef CHECK_MODF
6261 #endif /* DEBUG_RELOAD */
6263 /* If we're replacing a LABEL_REF with a register, there must
6264 already be an indication (to e.g. flow) which label this
6265 register refers to. */
6266 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6267 || !JUMP_P (insn)
6268 || find_reg_note (insn,
6269 REG_LABEL_OPERAND,
6270 XEXP (*r->where, 0))
6271 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6273 /* Encapsulate RELOADREG so its machine mode matches what
6274 used to be there. Note that gen_lowpart_common will
6275 do the wrong thing if RELOADREG is multi-word. RELOADREG
6276 will always be a REG here. */
6277 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6278 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6280 /* If we are putting this into a SUBREG and RELOADREG is a
6281 SUBREG, we would be making nested SUBREGs, so we have to fix
6282 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6284 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6286 if (GET_MODE (*r->subreg_loc)
6287 == GET_MODE (SUBREG_REG (reloadreg)))
6288 *r->subreg_loc = SUBREG_REG (reloadreg);
6289 else
6291 int final_offset =
6292 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6294 /* When working with SUBREGs the rule is that the byte
6295 offset must be a multiple of the SUBREG's mode. */
6296 final_offset = (final_offset /
6297 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6298 final_offset = (final_offset *
6299 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6301 *r->where = SUBREG_REG (reloadreg);
6302 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6305 else
6306 *r->where = reloadreg;
6308 /* If reload got no reg and isn't optional, something's wrong. */
6309 else
6310 gcc_assert (rld[r->what].optional);
6314 /* Make a copy of any replacements being done into X and move those
6315 copies to locations in Y, a copy of X. */
6317 void
6318 copy_replacements (rtx x, rtx y)
6320 /* We can't support X being a SUBREG because we might then need to know its
6321 location if something inside it was replaced. */
6322 gcc_assert (GET_CODE (x) != SUBREG);
6324 copy_replacements_1 (&x, &y, n_replacements);
6327 static void
6328 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6330 int i, j;
6331 rtx x, y;
6332 struct replacement *r;
6333 enum rtx_code code;
6334 const char *fmt;
6336 for (j = 0; j < orig_replacements; j++)
6338 if (replacements[j].subreg_loc == px)
6340 r = &replacements[n_replacements++];
6341 r->where = replacements[j].where;
6342 r->subreg_loc = py;
6343 r->what = replacements[j].what;
6344 r->mode = replacements[j].mode;
6346 else if (replacements[j].where == px)
6348 r = &replacements[n_replacements++];
6349 r->where = py;
6350 r->subreg_loc = 0;
6351 r->what = replacements[j].what;
6352 r->mode = replacements[j].mode;
6356 x = *px;
6357 y = *py;
6358 code = GET_CODE (x);
6359 fmt = GET_RTX_FORMAT (code);
6361 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6363 if (fmt[i] == 'e')
6364 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6365 else if (fmt[i] == 'E')
6366 for (j = XVECLEN (x, i); --j >= 0; )
6367 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6368 orig_replacements);
6372 /* Change any replacements being done to *X to be done to *Y. */
6374 void
6375 move_replacements (rtx *x, rtx *y)
6377 int i;
6379 for (i = 0; i < n_replacements; i++)
6380 if (replacements[i].subreg_loc == x)
6381 replacements[i].subreg_loc = y;
6382 else if (replacements[i].where == x)
6384 replacements[i].where = y;
6385 replacements[i].subreg_loc = 0;
6389 /* If LOC was scheduled to be replaced by something, return the replacement.
6390 Otherwise, return *LOC. */
6393 find_replacement (rtx *loc)
6395 struct replacement *r;
6397 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6399 rtx reloadreg = rld[r->what].reg_rtx;
6401 if (reloadreg && r->where == loc)
6403 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6404 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6406 return reloadreg;
6408 else if (reloadreg && r->subreg_loc == loc)
6410 /* RELOADREG must be either a REG or a SUBREG.
6412 ??? Is it actually still ever a SUBREG? If so, why? */
6414 if (REG_P (reloadreg))
6415 return gen_rtx_REG (GET_MODE (*loc),
6416 (REGNO (reloadreg) +
6417 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6418 GET_MODE (SUBREG_REG (*loc)),
6419 SUBREG_BYTE (*loc),
6420 GET_MODE (*loc))));
6421 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6422 return reloadreg;
6423 else
6425 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6427 /* When working with SUBREGs the rule is that the byte
6428 offset must be a multiple of the SUBREG's mode. */
6429 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6430 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6431 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6432 final_offset);
6437 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6438 what's inside and make a new rtl if so. */
6439 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6440 || GET_CODE (*loc) == MULT)
6442 rtx x = find_replacement (&XEXP (*loc, 0));
6443 rtx y = find_replacement (&XEXP (*loc, 1));
6445 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6446 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6449 return *loc;
6452 /* Return nonzero if register in range [REGNO, ENDREGNO)
6453 appears either explicitly or implicitly in X
6454 other than being stored into (except for earlyclobber operands).
6456 References contained within the substructure at LOC do not count.
6457 LOC may be zero, meaning don't ignore anything.
6459 This is similar to refers_to_regno_p in rtlanal.c except that we
6460 look at equivalences for pseudos that didn't get hard registers. */
6462 static int
6463 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6464 rtx x, rtx *loc)
6466 int i;
6467 unsigned int r;
6468 RTX_CODE code;
6469 const char *fmt;
6471 if (x == 0)
6472 return 0;
6474 repeat:
6475 code = GET_CODE (x);
6477 switch (code)
6479 case REG:
6480 r = REGNO (x);
6482 /* If this is a pseudo, a hard register must not have been allocated.
6483 X must therefore either be a constant or be in memory. */
6484 if (r >= FIRST_PSEUDO_REGISTER)
6486 if (reg_equiv_memory_loc[r])
6487 return refers_to_regno_for_reload_p (regno, endregno,
6488 reg_equiv_memory_loc[r],
6489 (rtx*) 0);
6491 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6492 return 0;
6495 return (endregno > r
6496 && regno < r + (r < FIRST_PSEUDO_REGISTER
6497 ? hard_regno_nregs[r][GET_MODE (x)]
6498 : 1));
6500 case SUBREG:
6501 /* If this is a SUBREG of a hard reg, we can see exactly which
6502 registers are being modified. Otherwise, handle normally. */
6503 if (REG_P (SUBREG_REG (x))
6504 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6506 unsigned int inner_regno = subreg_regno (x);
6507 unsigned int inner_endregno
6508 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6509 ? subreg_nregs (x) : 1);
6511 return endregno > inner_regno && regno < inner_endregno;
6513 break;
6515 case CLOBBER:
6516 case SET:
6517 if (&SET_DEST (x) != loc
6518 /* Note setting a SUBREG counts as referring to the REG it is in for
6519 a pseudo but not for hard registers since we can
6520 treat each word individually. */
6521 && ((GET_CODE (SET_DEST (x)) == SUBREG
6522 && loc != &SUBREG_REG (SET_DEST (x))
6523 && REG_P (SUBREG_REG (SET_DEST (x)))
6524 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6525 && refers_to_regno_for_reload_p (regno, endregno,
6526 SUBREG_REG (SET_DEST (x)),
6527 loc))
6528 /* If the output is an earlyclobber operand, this is
6529 a conflict. */
6530 || ((!REG_P (SET_DEST (x))
6531 || earlyclobber_operand_p (SET_DEST (x)))
6532 && refers_to_regno_for_reload_p (regno, endregno,
6533 SET_DEST (x), loc))))
6534 return 1;
6536 if (code == CLOBBER || loc == &SET_SRC (x))
6537 return 0;
6538 x = SET_SRC (x);
6539 goto repeat;
6541 default:
6542 break;
6545 /* X does not match, so try its subexpressions. */
6547 fmt = GET_RTX_FORMAT (code);
6548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6550 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6552 if (i == 0)
6554 x = XEXP (x, 0);
6555 goto repeat;
6557 else
6558 if (refers_to_regno_for_reload_p (regno, endregno,
6559 XEXP (x, i), loc))
6560 return 1;
6562 else if (fmt[i] == 'E')
6564 int j;
6565 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6566 if (loc != &XVECEXP (x, i, j)
6567 && refers_to_regno_for_reload_p (regno, endregno,
6568 XVECEXP (x, i, j), loc))
6569 return 1;
6572 return 0;
6575 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6576 we check if any register number in X conflicts with the relevant register
6577 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6578 contains a MEM (we don't bother checking for memory addresses that can't
6579 conflict because we expect this to be a rare case.
6581 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6582 that we look at equivalences for pseudos that didn't get hard registers. */
6585 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6587 int regno, endregno;
6589 /* Overly conservative. */
6590 if (GET_CODE (x) == STRICT_LOW_PART
6591 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6592 x = XEXP (x, 0);
6594 /* If either argument is a constant, then modifying X can not affect IN. */
6595 if (CONSTANT_P (x) || CONSTANT_P (in))
6596 return 0;
6597 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6598 return refers_to_mem_for_reload_p (in);
6599 else if (GET_CODE (x) == SUBREG)
6601 regno = REGNO (SUBREG_REG (x));
6602 if (regno < FIRST_PSEUDO_REGISTER)
6603 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6604 GET_MODE (SUBREG_REG (x)),
6605 SUBREG_BYTE (x),
6606 GET_MODE (x));
6607 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6608 ? subreg_nregs (x) : 1);
6610 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6612 else if (REG_P (x))
6614 regno = REGNO (x);
6616 /* If this is a pseudo, it must not have been assigned a hard register.
6617 Therefore, it must either be in memory or be a constant. */
6619 if (regno >= FIRST_PSEUDO_REGISTER)
6621 if (reg_equiv_memory_loc[regno])
6622 return refers_to_mem_for_reload_p (in);
6623 gcc_assert (reg_equiv_constant[regno]);
6624 return 0;
6627 endregno = END_HARD_REGNO (x);
6629 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6631 else if (MEM_P (x))
6632 return refers_to_mem_for_reload_p (in);
6633 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6634 || GET_CODE (x) == CC0)
6635 return reg_mentioned_p (x, in);
6636 else
6638 gcc_assert (GET_CODE (x) == PLUS);
6640 /* We actually want to know if X is mentioned somewhere inside IN.
6641 We must not say that (plus (sp) (const_int 124)) is in
6642 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6643 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6644 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6645 while (MEM_P (in))
6646 in = XEXP (in, 0);
6647 if (REG_P (in))
6648 return 0;
6649 else if (GET_CODE (in) == PLUS)
6650 return (rtx_equal_p (x, in)
6651 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6652 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6653 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6654 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6657 gcc_unreachable ();
6660 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6661 registers. */
6663 static int
6664 refers_to_mem_for_reload_p (rtx x)
6666 const char *fmt;
6667 int i;
6669 if (MEM_P (x))
6670 return 1;
6672 if (REG_P (x))
6673 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6674 && reg_equiv_memory_loc[REGNO (x)]);
6676 fmt = GET_RTX_FORMAT (GET_CODE (x));
6677 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6678 if (fmt[i] == 'e'
6679 && (MEM_P (XEXP (x, i))
6680 || refers_to_mem_for_reload_p (XEXP (x, i))))
6681 return 1;
6683 return 0;
6686 /* Check the insns before INSN to see if there is a suitable register
6687 containing the same value as GOAL.
6688 If OTHER is -1, look for a register in class RCLASS.
6689 Otherwise, just see if register number OTHER shares GOAL's value.
6691 Return an rtx for the register found, or zero if none is found.
6693 If RELOAD_REG_P is (short *)1,
6694 we reject any hard reg that appears in reload_reg_rtx
6695 because such a hard reg is also needed coming into this insn.
6697 If RELOAD_REG_P is any other nonzero value,
6698 it is a vector indexed by hard reg number
6699 and we reject any hard reg whose element in the vector is nonnegative
6700 as well as any that appears in reload_reg_rtx.
6702 If GOAL is zero, then GOALREG is a register number; we look
6703 for an equivalent for that register.
6705 MODE is the machine mode of the value we want an equivalence for.
6706 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6708 This function is used by jump.c as well as in the reload pass.
6710 If GOAL is the sum of the stack pointer and a constant, we treat it
6711 as if it were a constant except that sp is required to be unchanging. */
6714 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6715 short *reload_reg_p, int goalreg, enum machine_mode mode)
6717 rtx p = insn;
6718 rtx goaltry, valtry, value, where;
6719 rtx pat;
6720 int regno = -1;
6721 int valueno;
6722 int goal_mem = 0;
6723 int goal_const = 0;
6724 int goal_mem_addr_varies = 0;
6725 int need_stable_sp = 0;
6726 int nregs;
6727 int valuenregs;
6728 int num = 0;
6730 if (goal == 0)
6731 regno = goalreg;
6732 else if (REG_P (goal))
6733 regno = REGNO (goal);
6734 else if (MEM_P (goal))
6736 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6737 if (MEM_VOLATILE_P (goal))
6738 return 0;
6739 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6740 return 0;
6741 /* An address with side effects must be reexecuted. */
6742 switch (code)
6744 case POST_INC:
6745 case PRE_INC:
6746 case POST_DEC:
6747 case PRE_DEC:
6748 case POST_MODIFY:
6749 case PRE_MODIFY:
6750 return 0;
6751 default:
6752 break;
6754 goal_mem = 1;
6756 else if (CONSTANT_P (goal))
6757 goal_const = 1;
6758 else if (GET_CODE (goal) == PLUS
6759 && XEXP (goal, 0) == stack_pointer_rtx
6760 && CONSTANT_P (XEXP (goal, 1)))
6761 goal_const = need_stable_sp = 1;
6762 else if (GET_CODE (goal) == PLUS
6763 && XEXP (goal, 0) == frame_pointer_rtx
6764 && CONSTANT_P (XEXP (goal, 1)))
6765 goal_const = 1;
6766 else
6767 return 0;
6769 num = 0;
6770 /* Scan insns back from INSN, looking for one that copies
6771 a value into or out of GOAL.
6772 Stop and give up if we reach a label. */
6774 while (1)
6776 p = PREV_INSN (p);
6777 if (p && DEBUG_INSN_P (p))
6778 continue;
6779 num++;
6780 if (p == 0 || LABEL_P (p)
6781 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6782 return 0;
6784 if (NONJUMP_INSN_P (p)
6785 /* If we don't want spill regs ... */
6786 && (! (reload_reg_p != 0
6787 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6788 /* ... then ignore insns introduced by reload; they aren't
6789 useful and can cause results in reload_as_needed to be
6790 different from what they were when calculating the need for
6791 spills. If we notice an input-reload insn here, we will
6792 reject it below, but it might hide a usable equivalent.
6793 That makes bad code. It may even fail: perhaps no reg was
6794 spilled for this insn because it was assumed we would find
6795 that equivalent. */
6796 || INSN_UID (p) < reload_first_uid))
6798 rtx tem;
6799 pat = single_set (p);
6801 /* First check for something that sets some reg equal to GOAL. */
6802 if (pat != 0
6803 && ((regno >= 0
6804 && true_regnum (SET_SRC (pat)) == regno
6805 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6807 (regno >= 0
6808 && true_regnum (SET_DEST (pat)) == regno
6809 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6811 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6812 /* When looking for stack pointer + const,
6813 make sure we don't use a stack adjust. */
6814 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6815 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6816 || (goal_mem
6817 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6818 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6819 || (goal_mem
6820 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6821 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6822 /* If we are looking for a constant,
6823 and something equivalent to that constant was copied
6824 into a reg, we can use that reg. */
6825 || (goal_const && REG_NOTES (p) != 0
6826 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6827 && ((rtx_equal_p (XEXP (tem, 0), goal)
6828 && (valueno
6829 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6830 || (REG_P (SET_DEST (pat))
6831 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6832 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6833 && CONST_INT_P (goal)
6834 && 0 != (goaltry
6835 = operand_subword (XEXP (tem, 0), 0, 0,
6836 VOIDmode))
6837 && rtx_equal_p (goal, goaltry)
6838 && (valtry
6839 = operand_subword (SET_DEST (pat), 0, 0,
6840 VOIDmode))
6841 && (valueno = true_regnum (valtry)) >= 0)))
6842 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6843 NULL_RTX))
6844 && REG_P (SET_DEST (pat))
6845 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6846 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6847 && CONST_INT_P (goal)
6848 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6849 VOIDmode))
6850 && rtx_equal_p (goal, goaltry)
6851 && (valtry
6852 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6853 && (valueno = true_regnum (valtry)) >= 0)))
6855 if (other >= 0)
6857 if (valueno != other)
6858 continue;
6860 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6861 continue;
6862 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6863 mode, valueno))
6864 continue;
6865 value = valtry;
6866 where = p;
6867 break;
6872 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6873 (or copying VALUE into GOAL, if GOAL is also a register).
6874 Now verify that VALUE is really valid. */
6876 /* VALUENO is the register number of VALUE; a hard register. */
6878 /* Don't try to re-use something that is killed in this insn. We want
6879 to be able to trust REG_UNUSED notes. */
6880 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6881 return 0;
6883 /* If we propose to get the value from the stack pointer or if GOAL is
6884 a MEM based on the stack pointer, we need a stable SP. */
6885 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6886 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6887 goal)))
6888 need_stable_sp = 1;
6890 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6891 if (GET_MODE (value) != mode)
6892 return 0;
6894 /* Reject VALUE if it was loaded from GOAL
6895 and is also a register that appears in the address of GOAL. */
6897 if (goal_mem && value == SET_DEST (single_set (where))
6898 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6899 goal, (rtx*) 0))
6900 return 0;
6902 /* Reject registers that overlap GOAL. */
6904 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6905 nregs = hard_regno_nregs[regno][mode];
6906 else
6907 nregs = 1;
6908 valuenregs = hard_regno_nregs[valueno][mode];
6910 if (!goal_mem && !goal_const
6911 && regno + nregs > valueno && regno < valueno + valuenregs)
6912 return 0;
6914 /* Reject VALUE if it is one of the regs reserved for reloads.
6915 Reload1 knows how to reuse them anyway, and it would get
6916 confused if we allocated one without its knowledge.
6917 (Now that insns introduced by reload are ignored above,
6918 this case shouldn't happen, but I'm not positive.) */
6920 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6922 int i;
6923 for (i = 0; i < valuenregs; ++i)
6924 if (reload_reg_p[valueno + i] >= 0)
6925 return 0;
6928 /* Reject VALUE if it is a register being used for an input reload
6929 even if it is not one of those reserved. */
6931 if (reload_reg_p != 0)
6933 int i;
6934 for (i = 0; i < n_reloads; i++)
6935 if (rld[i].reg_rtx != 0 && rld[i].in)
6937 int regno1 = REGNO (rld[i].reg_rtx);
6938 int nregs1 = hard_regno_nregs[regno1]
6939 [GET_MODE (rld[i].reg_rtx)];
6940 if (regno1 < valueno + valuenregs
6941 && regno1 + nregs1 > valueno)
6942 return 0;
6946 if (goal_mem)
6947 /* We must treat frame pointer as varying here,
6948 since it can vary--in a nonlocal goto as generated by expand_goto. */
6949 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6951 /* Now verify that the values of GOAL and VALUE remain unaltered
6952 until INSN is reached. */
6954 p = insn;
6955 while (1)
6957 p = PREV_INSN (p);
6958 if (p == where)
6959 return value;
6961 /* Don't trust the conversion past a function call
6962 if either of the two is in a call-clobbered register, or memory. */
6963 if (CALL_P (p))
6965 int i;
6967 if (goal_mem || need_stable_sp)
6968 return 0;
6970 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6971 for (i = 0; i < nregs; ++i)
6972 if (call_used_regs[regno + i]
6973 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6974 return 0;
6976 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6977 for (i = 0; i < valuenregs; ++i)
6978 if (call_used_regs[valueno + i]
6979 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6980 return 0;
6983 if (INSN_P (p))
6985 pat = PATTERN (p);
6987 /* Watch out for unspec_volatile, and volatile asms. */
6988 if (volatile_insn_p (pat))
6989 return 0;
6991 /* If this insn P stores in either GOAL or VALUE, return 0.
6992 If GOAL is a memory ref and this insn writes memory, return 0.
6993 If GOAL is a memory ref and its address is not constant,
6994 and this insn P changes a register used in GOAL, return 0. */
6996 if (GET_CODE (pat) == COND_EXEC)
6997 pat = COND_EXEC_CODE (pat);
6998 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7000 rtx dest = SET_DEST (pat);
7001 while (GET_CODE (dest) == SUBREG
7002 || GET_CODE (dest) == ZERO_EXTRACT
7003 || GET_CODE (dest) == STRICT_LOW_PART)
7004 dest = XEXP (dest, 0);
7005 if (REG_P (dest))
7007 int xregno = REGNO (dest);
7008 int xnregs;
7009 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7010 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7011 else
7012 xnregs = 1;
7013 if (xregno < regno + nregs && xregno + xnregs > regno)
7014 return 0;
7015 if (xregno < valueno + valuenregs
7016 && xregno + xnregs > valueno)
7017 return 0;
7018 if (goal_mem_addr_varies
7019 && reg_overlap_mentioned_for_reload_p (dest, goal))
7020 return 0;
7021 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7022 return 0;
7024 else if (goal_mem && MEM_P (dest)
7025 && ! push_operand (dest, GET_MODE (dest)))
7026 return 0;
7027 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7028 && reg_equiv_memory_loc[regno] != 0)
7029 return 0;
7030 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7031 return 0;
7033 else if (GET_CODE (pat) == PARALLEL)
7035 int i;
7036 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7038 rtx v1 = XVECEXP (pat, 0, i);
7039 if (GET_CODE (v1) == COND_EXEC)
7040 v1 = COND_EXEC_CODE (v1);
7041 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7043 rtx dest = SET_DEST (v1);
7044 while (GET_CODE (dest) == SUBREG
7045 || GET_CODE (dest) == ZERO_EXTRACT
7046 || GET_CODE (dest) == STRICT_LOW_PART)
7047 dest = XEXP (dest, 0);
7048 if (REG_P (dest))
7050 int xregno = REGNO (dest);
7051 int xnregs;
7052 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7053 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7054 else
7055 xnregs = 1;
7056 if (xregno < regno + nregs
7057 && xregno + xnregs > regno)
7058 return 0;
7059 if (xregno < valueno + valuenregs
7060 && xregno + xnregs > valueno)
7061 return 0;
7062 if (goal_mem_addr_varies
7063 && reg_overlap_mentioned_for_reload_p (dest,
7064 goal))
7065 return 0;
7066 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7067 return 0;
7069 else if (goal_mem && MEM_P (dest)
7070 && ! push_operand (dest, GET_MODE (dest)))
7071 return 0;
7072 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7073 && reg_equiv_memory_loc[regno] != 0)
7074 return 0;
7075 else if (need_stable_sp
7076 && push_operand (dest, GET_MODE (dest)))
7077 return 0;
7082 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7084 rtx link;
7086 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7087 link = XEXP (link, 1))
7089 pat = XEXP (link, 0);
7090 if (GET_CODE (pat) == CLOBBER)
7092 rtx dest = SET_DEST (pat);
7094 if (REG_P (dest))
7096 int xregno = REGNO (dest);
7097 int xnregs
7098 = hard_regno_nregs[xregno][GET_MODE (dest)];
7100 if (xregno < regno + nregs
7101 && xregno + xnregs > regno)
7102 return 0;
7103 else if (xregno < valueno + valuenregs
7104 && xregno + xnregs > valueno)
7105 return 0;
7106 else if (goal_mem_addr_varies
7107 && reg_overlap_mentioned_for_reload_p (dest,
7108 goal))
7109 return 0;
7112 else if (goal_mem && MEM_P (dest)
7113 && ! push_operand (dest, GET_MODE (dest)))
7114 return 0;
7115 else if (need_stable_sp
7116 && push_operand (dest, GET_MODE (dest)))
7117 return 0;
7122 #ifdef AUTO_INC_DEC
7123 /* If this insn auto-increments or auto-decrements
7124 either regno or valueno, return 0 now.
7125 If GOAL is a memory ref and its address is not constant,
7126 and this insn P increments a register used in GOAL, return 0. */
7128 rtx link;
7130 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7131 if (REG_NOTE_KIND (link) == REG_INC
7132 && REG_P (XEXP (link, 0)))
7134 int incno = REGNO (XEXP (link, 0));
7135 if (incno < regno + nregs && incno >= regno)
7136 return 0;
7137 if (incno < valueno + valuenregs && incno >= valueno)
7138 return 0;
7139 if (goal_mem_addr_varies
7140 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7141 goal))
7142 return 0;
7145 #endif
7150 /* Find a place where INCED appears in an increment or decrement operator
7151 within X, and return the amount INCED is incremented or decremented by.
7152 The value is always positive. */
7154 static int
7155 find_inc_amount (rtx x, rtx inced)
7157 enum rtx_code code = GET_CODE (x);
7158 const char *fmt;
7159 int i;
7161 if (code == MEM)
7163 rtx addr = XEXP (x, 0);
7164 if ((GET_CODE (addr) == PRE_DEC
7165 || GET_CODE (addr) == POST_DEC
7166 || GET_CODE (addr) == PRE_INC
7167 || GET_CODE (addr) == POST_INC)
7168 && XEXP (addr, 0) == inced)
7169 return GET_MODE_SIZE (GET_MODE (x));
7170 else if ((GET_CODE (addr) == PRE_MODIFY
7171 || GET_CODE (addr) == POST_MODIFY)
7172 && GET_CODE (XEXP (addr, 1)) == PLUS
7173 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7174 && XEXP (addr, 0) == inced
7175 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7177 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7178 return i < 0 ? -i : i;
7182 fmt = GET_RTX_FORMAT (code);
7183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7185 if (fmt[i] == 'e')
7187 int tem = find_inc_amount (XEXP (x, i), inced);
7188 if (tem != 0)
7189 return tem;
7191 if (fmt[i] == 'E')
7193 int j;
7194 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7196 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7197 if (tem != 0)
7198 return tem;
7203 return 0;
7206 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7207 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7209 #ifdef AUTO_INC_DEC
7210 static int
7211 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7212 rtx insn)
7214 rtx link;
7216 gcc_assert (insn);
7218 if (! INSN_P (insn))
7219 return 0;
7221 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7222 if (REG_NOTE_KIND (link) == REG_INC)
7224 unsigned int test = (int) REGNO (XEXP (link, 0));
7225 if (test >= regno && test < endregno)
7226 return 1;
7228 return 0;
7230 #else
7232 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7234 #endif
7236 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7237 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7238 REG_INC. REGNO must refer to a hard register. */
7241 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7242 int sets)
7244 unsigned int nregs, endregno;
7246 /* regno must be a hard register. */
7247 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7249 nregs = hard_regno_nregs[regno][mode];
7250 endregno = regno + nregs;
7252 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7253 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7254 && REG_P (XEXP (PATTERN (insn), 0)))
7256 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7258 return test >= regno && test < endregno;
7261 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7262 return 1;
7264 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7266 int i = XVECLEN (PATTERN (insn), 0) - 1;
7268 for (; i >= 0; i--)
7270 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7271 if ((GET_CODE (elt) == CLOBBER
7272 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7273 && REG_P (XEXP (elt, 0)))
7275 unsigned int test = REGNO (XEXP (elt, 0));
7277 if (test >= regno && test < endregno)
7278 return 1;
7280 if (sets == 2
7281 && reg_inc_found_and_valid_p (regno, endregno, elt))
7282 return 1;
7286 return 0;
7289 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7291 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7293 int regno;
7295 if (GET_MODE (reloadreg) == mode)
7296 return reloadreg;
7298 regno = REGNO (reloadreg);
7300 if (WORDS_BIG_ENDIAN)
7301 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7302 - (int) hard_regno_nregs[regno][mode];
7304 return gen_rtx_REG (mode, regno);
7307 static const char *const reload_when_needed_name[] =
7309 "RELOAD_FOR_INPUT",
7310 "RELOAD_FOR_OUTPUT",
7311 "RELOAD_FOR_INSN",
7312 "RELOAD_FOR_INPUT_ADDRESS",
7313 "RELOAD_FOR_INPADDR_ADDRESS",
7314 "RELOAD_FOR_OUTPUT_ADDRESS",
7315 "RELOAD_FOR_OUTADDR_ADDRESS",
7316 "RELOAD_FOR_OPERAND_ADDRESS",
7317 "RELOAD_FOR_OPADDR_ADDR",
7318 "RELOAD_OTHER",
7319 "RELOAD_FOR_OTHER_ADDRESS"
7322 /* These functions are used to print the variables set by 'find_reloads' */
7324 DEBUG_FUNCTION void
7325 debug_reload_to_stream (FILE *f)
7327 int r;
7328 const char *prefix;
7330 if (! f)
7331 f = stderr;
7332 for (r = 0; r < n_reloads; r++)
7334 fprintf (f, "Reload %d: ", r);
7336 if (rld[r].in != 0)
7338 fprintf (f, "reload_in (%s) = ",
7339 GET_MODE_NAME (rld[r].inmode));
7340 print_inline_rtx (f, rld[r].in, 24);
7341 fprintf (f, "\n\t");
7344 if (rld[r].out != 0)
7346 fprintf (f, "reload_out (%s) = ",
7347 GET_MODE_NAME (rld[r].outmode));
7348 print_inline_rtx (f, rld[r].out, 24);
7349 fprintf (f, "\n\t");
7352 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7354 fprintf (f, "%s (opnum = %d)",
7355 reload_when_needed_name[(int) rld[r].when_needed],
7356 rld[r].opnum);
7358 if (rld[r].optional)
7359 fprintf (f, ", optional");
7361 if (rld[r].nongroup)
7362 fprintf (f, ", nongroup");
7364 if (rld[r].inc != 0)
7365 fprintf (f, ", inc by %d", rld[r].inc);
7367 if (rld[r].nocombine)
7368 fprintf (f, ", can't combine");
7370 if (rld[r].secondary_p)
7371 fprintf (f, ", secondary_reload_p");
7373 if (rld[r].in_reg != 0)
7375 fprintf (f, "\n\treload_in_reg: ");
7376 print_inline_rtx (f, rld[r].in_reg, 24);
7379 if (rld[r].out_reg != 0)
7381 fprintf (f, "\n\treload_out_reg: ");
7382 print_inline_rtx (f, rld[r].out_reg, 24);
7385 if (rld[r].reg_rtx != 0)
7387 fprintf (f, "\n\treload_reg_rtx: ");
7388 print_inline_rtx (f, rld[r].reg_rtx, 24);
7391 prefix = "\n\t";
7392 if (rld[r].secondary_in_reload != -1)
7394 fprintf (f, "%ssecondary_in_reload = %d",
7395 prefix, rld[r].secondary_in_reload);
7396 prefix = ", ";
7399 if (rld[r].secondary_out_reload != -1)
7400 fprintf (f, "%ssecondary_out_reload = %d\n",
7401 prefix, rld[r].secondary_out_reload);
7403 prefix = "\n\t";
7404 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7406 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7407 insn_data[rld[r].secondary_in_icode].name);
7408 prefix = ", ";
7411 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7412 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7413 insn_data[rld[r].secondary_out_icode].name);
7415 fprintf (f, "\n");
7419 DEBUG_FUNCTION void
7420 debug_reload (void)
7422 debug_reload_to_stream (stderr);