1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5 Ulrich Weigand (uweigand@de.ibm.com).
6 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
27 /* Which processor to generate code or schedule for. The cpu attribute
28 defines a list that mirrors this list, so changes to s390.md must be
29 made at the same time. */
37 PROCESSOR_2094_Z9_109
,
42 /* Optional architectural facilities supported by the processor. */
48 PF_LONG_DISPLACEMENT
= 4,
54 extern enum processor_type s390_tune
;
55 extern int s390_tune_flags
;
57 /* This is necessary to avoid a warning about comparing different enum
59 #define s390_tune_attr ((enum attr_cpu)s390_tune)
61 extern enum processor_type s390_arch
;
62 extern int s390_arch_flags
;
64 /* These flags indicate that the generated code should run on a cpu
65 providing the respective hardware facility regardless of the
66 current cpu mode (ESA or z/Architecture). */
68 #define TARGET_CPU_IEEE_FLOAT \
69 (s390_arch_flags & PF_IEEE_FLOAT)
70 #define TARGET_CPU_ZARCH \
71 (s390_arch_flags & PF_ZARCH)
72 #define TARGET_CPU_LONG_DISPLACEMENT \
73 (s390_arch_flags & PF_LONG_DISPLACEMENT)
74 #define TARGET_CPU_EXTIMM \
75 (s390_arch_flags & PF_EXTIMM)
76 #define TARGET_CPU_DFP \
77 (s390_arch_flags & PF_DFP)
78 #define TARGET_CPU_Z10 \
79 (s390_arch_flags & PF_Z10)
81 /* These flags indicate that the generated code should run on a cpu
82 providing the respective hardware facility when run in
83 z/Architecture mode. */
85 #define TARGET_LONG_DISPLACEMENT \
86 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
87 #define TARGET_EXTIMM \
88 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
90 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
92 (TARGET_ZARCH && TARGET_CPU_Z10)
94 /* Run-time target specification. */
96 /* Defaults for option flags defined only on some subtargets. */
97 #ifndef TARGET_TPF_PROFILING
98 #define TARGET_TPF_PROFILING 0
101 /* This will be overridden by OS headers. */
104 /* Target CPU builtins. */
105 #define TARGET_CPU_CPP_BUILTINS() \
108 builtin_assert ("cpu=s390"); \
109 builtin_assert ("machine=s390"); \
110 builtin_define ("__s390__"); \
112 builtin_define ("__zarch__"); \
114 builtin_define ("__s390x__"); \
115 if (TARGET_LONG_DOUBLE_128) \
116 builtin_define ("__LONG_DOUBLE_128__"); \
120 #ifdef DEFAULT_TARGET_64BIT
121 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
123 #define TARGET_DEFAULT 0
126 /* Support for configure-time defaults. */
127 #define OPTION_DEFAULT_SPECS \
128 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
129 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
130 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
132 /* Defaulting rules. */
133 #ifdef DEFAULT_TARGET_64BIT
134 #define DRIVER_SELF_SPECS \
135 "%{!m31:%{!m64:-m64}}", \
136 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
137 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
139 #define DRIVER_SELF_SPECS \
140 "%{!m31:%{!m64:-m31}}", \
141 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
142 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
145 /* Target version string. Overridden by the OS header. */
146 #ifdef DEFAULT_TARGET_64BIT
147 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
149 #define TARGET_VERSION fprintf (stderr, " (S/390)");
152 /* Frame pointer is not used for debugging. */
153 #define CAN_DEBUG_WITHOUT_FP
155 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
156 #define S390_TDC_POSITIVE_ZERO (1 << 11)
157 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
158 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
159 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
160 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
161 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
162 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
163 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
164 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
165 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
166 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
167 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
169 /* The following values are different for DFP. */
170 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
171 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
172 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
173 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
175 /* For signbit, the BFP-DFP-difference makes no difference. */
176 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
177 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
178 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
179 | S390_TDC_NEGATIVE_INFINITY \
180 | S390_TDC_NEGATIVE_QUIET_NAN \
181 | S390_TDC_NEGATIVE_SIGNALING_NAN )
183 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
184 | S390_TDC_NEGATIVE_INFINITY )
186 /* Target machine storage layout. */
188 /* Everything is big-endian. */
189 #define BITS_BIG_ENDIAN 1
190 #define BYTES_BIG_ENDIAN 1
191 #define WORDS_BIG_ENDIAN 1
193 #define STACK_SIZE_MODE (Pmode)
197 /* Width of a word, in units (bytes). */
198 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
200 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
201 ABI-relevant contexts. This always matches
202 GET_MODE_SIZE (Pmode). */
203 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
204 #define MIN_UNITS_PER_WORD 4
205 #define MAX_BITS_PER_WORD 64
208 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
209 the library should export TImode functions or not. Thus, we have
210 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
212 #define UNITS_PER_WORD 8
214 #define UNITS_PER_WORD 4
218 /* Width of a pointer, in bits. */
219 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
221 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
222 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
224 /* Boundary (in *bits*) on which stack pointer should be aligned. */
225 #define STACK_BOUNDARY 64
227 /* Allocation boundary (in *bits*) for the code of a function. */
228 #define FUNCTION_BOUNDARY 32
230 /* There is no point aligning anything to a rounder boundary than this. */
231 #define BIGGEST_ALIGNMENT 64
233 /* Alignment of field after `int : 0' in a structure. */
234 #define EMPTY_FIELD_BOUNDARY 32
236 /* Alignment on even addresses for LARL instruction. */
237 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
238 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
240 /* Alignment is not required by the hardware. */
241 #define STRICT_ALIGNMENT 0
243 /* Mode of stack savearea.
244 FUNCTION is VOIDmode because calling convention maintains SP.
245 BLOCK needs Pmode for SP.
246 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
247 #define STACK_SAVEAREA_MODE(LEVEL) \
248 (LEVEL == SAVE_FUNCTION ? VOIDmode \
249 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
254 /* Sizes in bits of the source language data types. */
255 #define SHORT_TYPE_SIZE 16
256 #define INT_TYPE_SIZE 32
257 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
258 #define LONG_LONG_TYPE_SIZE 64
259 #define FLOAT_TYPE_SIZE 32
260 #define DOUBLE_TYPE_SIZE 64
261 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
263 /* Define this to set long double type size to use in libgcc2.c, which can
264 not depend on target_flags. */
265 #ifdef __LONG_DOUBLE_128__
266 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
268 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
271 /* Work around target_flags dependency in ada/targtyps.c. */
272 #define WIDEST_HARDWARE_FP_SIZE 64
274 /* We use "unsigned char" as default. */
275 #define DEFAULT_SIGNED_CHAR 0
278 /* Register usage. */
280 /* We have 16 general purpose registers (registers 0-15),
281 and 16 floating point registers (registers 16-31).
282 (On non-IEEE machines, we have only 4 fp registers.)
284 Amongst the general purpose registers, some are used
285 for specific purposes:
286 GPR 11: Hard frame pointer (if needed)
287 GPR 12: Global offset table pointer (if needed)
288 GPR 13: Literal pool base register
289 GPR 14: Return address register
290 GPR 15: Stack pointer
292 Registers 32-35 are 'fake' hard registers that do not
293 correspond to actual hardware:
294 Reg 32: Argument pointer
295 Reg 33: Condition code
296 Reg 34: Frame pointer
297 Reg 35: Return address pointer
299 Registers 36 and 37 are mapped to access registers
300 0 and 1, used to implement thread-local storage. */
302 #define FIRST_PSEUDO_REGISTER 38
304 /* Standard register usage. */
305 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
306 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
307 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
308 #define CC_REGNO_P(N) ((N) == 33)
309 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
310 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
312 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
313 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
314 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
315 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
316 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
317 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
319 /* Set up fixed registers and calling convention:
321 GPRs 0-5 are always call-clobbered,
322 GPRs 6-15 are always call-saved.
323 GPR 12 is fixed if used as GOT pointer.
324 GPR 13 is always fixed (as literal pool pointer).
325 GPR 14 is always fixed on S/390 machines (as return address).
326 GPR 15 is always fixed (as stack pointer).
327 The 'fake' hard registers are call-clobbered and fixed.
328 The access registers are call-saved and fixed.
330 On 31-bit, FPRs 18-19 are call-clobbered;
331 on 64-bit, FPRs 24-31 are call-clobbered.
332 The remaining FPRs are call-saved. */
334 #define FIXED_REGISTERS \
346 #define CALL_USED_REGISTERS \
358 #define CALL_REALLY_USED_REGISTERS \
370 #define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
372 /* Preferred register allocation order. */
373 #define REG_ALLOC_ORDER \
374 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
375 16, 17, 18, 19, 20, 21, 22, 23, \
376 24, 25, 26, 27, 28, 29, 30, 31, \
377 15, 32, 33, 34, 35, 36, 37 }
380 /* Fitting values into registers. */
382 /* Integer modes <= word size fit into any GPR.
383 Integer modes > word size fit into successive GPRs, starting with
384 an even-numbered register.
385 SImode and DImode fit into FPRs as well.
387 Floating point modes <= word size fit into any FPR or GPR.
388 Floating point modes > word size (i.e. DFmode on 32-bit) fit
389 into any FPR, or an even-odd GPR pair.
390 TFmode fits only into an even-odd FPR pair.
392 Complex floating point modes fit either into two FPRs, or into
393 successive GPRs (again starting with an even number).
394 TCmode fits only into two successive even-odd FPR pairs.
396 Condition code modes fit only into the CC register. */
398 /* Because all registers in a class have the same size HARD_REGNO_NREGS
399 is equivalent to CLASS_MAX_NREGS. */
400 #define HARD_REGNO_NREGS(REGNO, MODE) \
401 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
403 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
404 s390_hard_regno_mode_ok ((REGNO), (MODE))
406 #define HARD_REGNO_RENAME_OK(FROM, TO) \
407 s390_hard_regno_rename_ok (FROM, TO)
409 #define MODES_TIEABLE_P(MODE1, MODE2) \
410 (((MODE1) == SFmode || (MODE1) == DFmode) \
411 == ((MODE2) == SFmode || (MODE2) == DFmode))
413 /* When generating code that runs in z/Architecture mode,
414 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
415 the ABI guarantees only that the lower 4 bytes are
416 saved across calls, however. */
417 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
418 (!TARGET_64BIT && TARGET_ZARCH \
419 && GET_MODE_SIZE (MODE) > 4 \
420 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
422 /* Maximum number of registers to represent a value of mode MODE
423 in a register of class CLASS. */
424 #define CLASS_MAX_NREGS(CLASS, MODE) \
425 s390_class_max_nregs ((CLASS), (MODE))
427 /* If a 4-byte value is loaded into a FPR, it is placed into the
428 *upper* half of the register, not the lower. Therefore, we
429 cannot use SUBREGs to switch between modes in FP registers.
430 Likewise for access registers, since they have only half the
431 word size on 64-bit. */
432 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
433 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
434 ? ((reg_classes_intersect_p (FP_REGS, CLASS) \
435 && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
436 || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
438 /* Register classes. */
440 /* We use the following register classes:
441 GENERAL_REGS All general purpose registers
442 ADDR_REGS All general purpose registers except %r0
443 (These registers can be used in address generation)
444 FP_REGS All floating point registers
445 CC_REGS The condition code register
446 ACCESS_REGS The access registers
448 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
449 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
450 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
451 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
454 ALL_REGS All registers
456 Note that the 'fake' frame pointer and argument pointer registers
457 are included amongst the address registers here. */
461 NO_REGS
, CC_REGS
, ADDR_REGS
, GENERAL_REGS
, ACCESS_REGS
,
462 ADDR_CC_REGS
, GENERAL_CC_REGS
,
463 FP_REGS
, ADDR_FP_REGS
, GENERAL_FP_REGS
,
464 ALL_REGS
, LIM_REG_CLASSES
466 #define N_REG_CLASSES (int) LIM_REG_CLASSES
468 #define REG_CLASS_NAMES \
469 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
470 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
471 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
473 /* Class -> register mapping. */
474 #define REG_CLASS_CONTENTS \
476 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
477 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
478 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
479 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
480 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
481 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
482 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
483 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
484 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
485 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
486 { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
489 /* The following macro defines cover classes for Integrated Register
490 Allocator. Cover classes is a set of non-intersected register
491 classes covering all hard registers used for register allocation
492 purpose. Any move between two registers of a cover class should be
493 cheaper than load or store of the registers. The macro value is
494 array of register classes with LIM_REG_CLASSES used as the end
497 #define IRA_COVER_CLASSES \
499 GENERAL_REGS, FP_REGS, CC_REGS, ACCESS_REGS, LIM_REG_CLASSES \
502 /* In some case register allocation order is not enough for IRA to
503 generate a good code. The following macro (if defined) increases
504 cost of REGNO for a pseudo approximately by pseudo usage frequency
505 multiplied by the macro value.
507 We avoid usage of BASE_REGNUM by nonzero macro value because the
508 reload can decide not to use the hard register because some
509 constant was forced to be in memory. */
510 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
511 (regno == BASE_REGNUM ? 0.0 : 0.5)
513 /* Register -> class mapping. */
514 extern const enum reg_class regclass_map
[FIRST_PSEUDO_REGISTER
];
515 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
517 /* ADDR_REGS can be used as base or index register. */
518 #define INDEX_REG_CLASS ADDR_REGS
519 #define BASE_REG_CLASS ADDR_REGS
521 /* Check whether REGNO is a hard register of the suitable class
522 or a pseudo register currently allocated to one such. */
523 #define REGNO_OK_FOR_INDEX_P(REGNO) \
524 (((REGNO) < FIRST_PSEUDO_REGISTER \
525 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
526 || ADDR_REGNO_P (reg_renumber[REGNO]))
527 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
530 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
531 return the class of reg to actually use. */
532 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
533 s390_preferred_reload_class ((X), (CLASS))
535 /* We need secondary memory to move data between GPRs and FPRs. With
536 DFP the ldgr lgdr instructions are available. But these
537 instructions do not handle GPR pairs so it is not possible for 31
539 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
540 ((CLASS1) != (CLASS2) \
541 && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
542 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
544 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
545 because the movsi and movsf patterns don't handle r/f moves. */
546 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
547 (GET_MODE_BITSIZE (MODE) < 32 \
548 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
552 /* Stack layout and calling conventions. */
554 /* Our stack grows from higher to lower addresses. However, local variables
555 are accessed by positive offsets, and function arguments are stored at
556 increasing addresses. */
557 #define STACK_GROWS_DOWNWARD
558 #define FRAME_GROWS_DOWNWARD 1
559 /* #undef ARGS_GROW_DOWNWARD */
561 /* The basic stack layout looks like this: the stack pointer points
562 to the register save area for called functions. Above that area
563 is the location to place outgoing arguments. Above those follow
564 dynamic allocations (alloca), and finally the local variables. */
566 /* Offset from stack-pointer to first location of outgoing args. */
567 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
569 /* Offset within stack frame to start allocating local variables at. */
570 #define STARTING_FRAME_OFFSET 0
572 /* Offset from the stack pointer register to an item dynamically
573 allocated on the stack, e.g., by `alloca'. */
574 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
575 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
577 /* Offset of first parameter from the argument pointer register value.
578 We have a fake argument pointer register that points directly to
579 the argument area. */
580 #define FIRST_PARM_OFFSET(FNDECL) 0
582 /* Defining this macro makes __builtin_frame_address(0) and
583 __builtin_return_address(0) work with -fomit-frame-pointer. */
584 #define INITIAL_FRAME_ADDRESS_RTX \
585 (plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
587 /* The return address of the current frame is retrieved
588 from the initial value of register RETURN_REGNUM.
589 For frames farther back, we use the stack slot where
590 the corresponding RETURN_REGNUM register was saved. */
591 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
592 (TARGET_PACKED_STACK ? \
593 plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
595 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
596 builtin_frame_address. Otherwise arg pointer -
597 STACK_POINTER_OFFSET would be returned for
598 __builtin_frame_address(0) what might result in an address pointing
599 somewhere into the middle of the local variables since the packed
600 stack layout generally does not need all the bytes in the register
602 #define FRAME_ADDR_RTX(FRAME) \
603 DYNAMIC_CHAIN_ADDRESS ((FRAME))
605 #define RETURN_ADDR_RTX(COUNT, FRAME) \
606 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
608 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
609 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
612 /* Exception handling. */
614 /* Describe calling conventions for DWARF-2 exception handling. */
615 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
616 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
617 #define DWARF_FRAME_RETURN_COLUMN 14
619 /* Describe how we implement __builtin_eh_return. */
620 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
621 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
623 /* Select a format to encode pointers in exception handling data. */
624 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
626 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
629 /* Register save slot alignment. */
630 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
633 /* Frame registers. */
635 #define STACK_POINTER_REGNUM 15
636 #define FRAME_POINTER_REGNUM 34
637 #define HARD_FRAME_POINTER_REGNUM 11
638 #define ARG_POINTER_REGNUM 32
639 #define RETURN_ADDRESS_POINTER_REGNUM 35
641 /* The static chain must be call-clobbered, but not used for
642 function argument passing. As register 1 is clobbered by
643 the trampoline code, we only have one option. */
644 #define STATIC_CHAIN_REGNUM 0
646 /* Number of hardware registers that go into the DWARF-2 unwind info.
647 To avoid ABI incompatibility, this number must not change even as
648 'fake' hard registers are added or removed. */
649 #define DWARF_FRAME_REGISTERS 34
652 /* Frame pointer and argument pointer elimination. */
654 #define ELIMINABLE_REGS \
655 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
656 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
657 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
658 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
659 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
660 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
661 { BASE_REGNUM, BASE_REGNUM }}
663 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
664 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
667 /* Stack arguments. */
669 /* We need current_function_outgoing_args to be valid. */
670 #define ACCUMULATE_OUTGOING_ARGS 1
673 /* Register arguments. */
675 typedef struct s390_arg_structure
677 int gprs
; /* gpr so far */
678 int fprs
; /* fpr so far */
682 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
683 ((CUM).gprs=0, (CUM).fprs=0)
685 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
686 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
688 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
689 s390_function_arg (&CUM, MODE, TYPE, NAMED)
691 /* Arguments can be placed in general registers 2 to 6, or in floating
692 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
694 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
695 (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
698 /* Scalar return values. */
700 #define FUNCTION_VALUE(VALTYPE, FUNC) \
701 s390_function_value ((VALTYPE), (FUNC), VOIDmode)
703 #define LIBCALL_VALUE(MODE) \
704 s390_function_value (NULL, NULL, (MODE))
706 /* Only gpr 2 and fpr 0 are ever used as return registers. */
707 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
710 /* Function entry and exit. */
712 /* When returning from a function, the stack pointer does not matter. */
713 #define EXIT_IGNORE_STACK 1
718 #define FUNCTION_PROFILER(FILE, LABELNO) \
719 s390_function_profiler ((FILE), ((LABELNO)))
721 #define PROFILE_BEFORE_PROLOGUE 1
724 /* Trampolines for nested functions. */
726 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
727 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
729 /* Addressing modes, and classification of registers for them. */
731 /* Recognize any constant value that is a valid address. */
732 #define CONSTANT_ADDRESS_P(X) 0
734 /* Maximum number of registers that can appear in a valid memory address. */
735 #define MAX_REGS_PER_ADDRESS 2
737 /* This definition replaces the formerly used 'm' constraint with a
738 different constraint letter in order to avoid changing semantics of
739 the 'm' constraint when accepting new address formats in
740 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
741 must not be used in insn definitions or inline assemblies. */
742 #define TARGET_MEM_CONSTRAINT 'e'
744 /* Try a machine-dependent way of reloading an illegitimate address
745 operand. If we find one, push the reload and jump to WIN. This
746 macro is used in only one place: `find_reloads_address' in reload.c. */
747 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
749 rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
757 /* Nonzero if the constant value X is a legitimate general operand.
758 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
759 #define LEGITIMATE_CONSTANT_P(X) \
760 legitimate_constant_p (X)
762 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
763 #define SYMBOLIC_CONST(X) \
764 (GET_CODE (X) == SYMBOL_REF \
765 || GET_CODE (X) == LABEL_REF \
766 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
768 #define TLS_SYMBOLIC_CONST(X) \
769 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
770 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
773 /* Condition codes. */
775 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
776 return the mode to be used for the comparison. */
777 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
779 /* Canonicalize a comparison from one we don't have to one we do have. */
780 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
781 s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
783 /* Relative costs of operations. */
785 /* On s390, copy between fprs and gprs is expensive. */
786 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
787 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
788 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
789 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
790 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
792 /* A C expression for the cost of moving data of mode M between a
793 register and memory. A value of 2 is the default; this cost is
794 relative to those in `REGISTER_MOVE_COST'. */
795 #define MEMORY_MOVE_COST(M, C, I) 1
797 /* A C expression for the cost of a branch instruction. A value of 1
798 is the default; other values are interpreted relative to that. */
799 #define BRANCH_COST(speed_p, predictable_p) 1
801 /* Nonzero if access to memory by bytes is slow and undesirable. */
802 #define SLOW_BYTE_ACCESS 1
804 /* An integer expression for the size in bits of the largest integer machine
805 mode that should actually be used. We allow pairs of registers. */
806 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
808 /* The maximum number of bytes that a single instruction can move quickly
809 between memory and registers or between two memory locations. */
810 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
811 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
812 #define MAX_MOVE_MAX 16
814 /* Determine whether to use move_by_pieces or block move insn. */
815 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
816 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
817 || (TARGET_ZARCH && (SIZE) == 8) )
819 /* Determine whether to use clear_by_pieces or block clear insn. */
820 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
821 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
822 || (TARGET_ZARCH && (SIZE) == 8) )
824 /* This macro is used to determine whether store_by_pieces should be
825 called to "memcpy" storage when the source is a constant string. */
826 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
828 /* Likewise to decide whether to "memset" storage with byte values
830 #define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
832 /* Don't perform CSE on function addresses. */
833 #define NO_FUNCTION_CSE
835 /* This value is used in tree-sra to decide whether it might benefical
836 to split a struct move into several word-size moves. For S/390
837 only small values make sense here since struct moves are relatively
838 cheap thanks to mvc so the small default value choosen for archs
839 with memmove patterns should be ok. But this value is multiplied
840 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
841 here to compensate for that factor since mvc costs exactly the same
843 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
848 /* Output before read-only data. */
849 #define TEXT_SECTION_ASM_OP ".text"
851 /* Output before writable (initialized) data. */
852 #define DATA_SECTION_ASM_OP ".data"
854 /* Output before writable (uninitialized) data. */
855 #define BSS_SECTION_ASM_OP ".bss"
857 /* S/390 constant pool breaks the devices in crtstuff.c to control section
858 in where code resides. We have to write it as asm code. */
860 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
863 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
865 bas\t%r14,0(%r3,%r2)\n\
870 /* Position independent code. */
874 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
876 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
879 /* Assembler file format. */
881 /* Character to start a comment. */
882 #define ASM_COMMENT_START "#"
884 /* Declare an uninitialized external linkage data object. */
885 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
886 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
888 /* Globalizing directive for a label. */
889 #define GLOBAL_ASM_OP ".globl "
891 /* Advance the location counter to a multiple of 2**LOG bytes. */
892 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
893 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
895 /* Advance the location counter by SIZE bytes. */
896 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
897 fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
899 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
900 #define LOCAL_LABEL_PREFIX "."
902 /* How to refer to registers in assembler output. This sequence is
903 indexed by compiler's hard-register-number (see above). */
904 #define REGISTER_NAMES \
905 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
906 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
907 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
908 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
909 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
912 /* Print operand X (an rtx) in assembler syntax to file FILE. */
913 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
914 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
916 /* Output machine-dependent UNSPECs in address constants. */
917 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
919 if (!s390_output_addr_const_extra (FILE, (X))) \
923 /* Output an element of a case-vector that is absolute. */
924 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
927 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
928 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
929 assemble_name ((FILE), buf); \
930 fputc ('\n', (FILE)); \
933 /* Output an element of a case-vector that is relative. */
934 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
937 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
938 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
939 assemble_name ((FILE), buf); \
940 fputc ('-', (FILE)); \
941 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
942 assemble_name ((FILE), buf); \
943 fputc ('\n', (FILE)); \
947 /* Miscellaneous parameters. */
949 /* Specify the machine mode that this machine uses for the index in the
950 tablejump instruction. */
951 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
953 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
954 is done just by pretending it is already truncated. */
955 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
957 /* Specify the machine mode that pointers have.
958 After generation of rtl, the compiler makes no further distinction
959 between pointers and any other objects of this machine mode. */
960 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
962 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
963 #define POINTERS_EXTEND_UNSIGNED -1
965 /* A function address in a call instruction is a byte address (for
966 indexing purposes) so give the MEM rtx a byte's mode. */
967 #define FUNCTION_MODE QImode
969 /* Specify the value which is used when clz operand is zero. */
970 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
972 /* Machine-specific symbol_ref flags. */
973 #define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
974 #define SYMBOL_REF_ALIGN1_P(X) \
975 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
976 #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
977 #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
978 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
980 /* Check whether integer displacement is in range. */
981 #define DISP_IN_RANGE(d) \
982 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
983 : ((d) >= 0 && (d) <= 4095))
985 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
986 #define READ_CAN_USE_WRITE_PREFETCH 1