Merge from mainline (163495:164578).
[official-gcc/graphite-test-results.git] / gcc / ada / sem_eval.adb
blob0b324b65a40ef4c5ccca4eb88fca88a7cb132790
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Namet; use Namet;
37 with Nmake; use Nmake;
38 with Nlists; use Nlists;
39 with Opt; use Opt;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Cat; use Sem_Cat;
43 with Sem_Ch6; use Sem_Ch6;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Res; use Sem_Res;
46 with Sem_Util; use Sem_Util;
47 with Sem_Type; use Sem_Type;
48 with Sem_Warn; use Sem_Warn;
49 with Sinfo; use Sinfo;
50 with Snames; use Snames;
51 with Stand; use Stand;
52 with Stringt; use Stringt;
53 with Tbuild; use Tbuild;
55 package body Sem_Eval is
57 -----------------------------------------
58 -- Handling of Compile Time Evaluation --
59 -----------------------------------------
61 -- The compile time evaluation of expressions is distributed over several
62 -- Eval_xxx procedures. These procedures are called immediately after
63 -- a subexpression is resolved and is therefore accomplished in a bottom
64 -- up fashion. The flags are synthesized using the following approach.
66 -- Is_Static_Expression is determined by following the detailed rules
67 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
68 -- flag of the operands in many cases.
70 -- Raises_Constraint_Error is set if any of the operands have the flag
71 -- set or if an attempt to compute the value of the current expression
72 -- results in detection of a runtime constraint error.
74 -- As described in the spec, the requirement is that Is_Static_Expression
75 -- be accurately set, and in addition for nodes for which this flag is set,
76 -- Raises_Constraint_Error must also be set. Furthermore a node which has
77 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
78 -- requirement is that the expression value must be precomputed, and the
79 -- node is either a literal, or the name of a constant entity whose value
80 -- is a static expression.
82 -- The general approach is as follows. First compute Is_Static_Expression.
83 -- If the node is not static, then the flag is left off in the node and
84 -- we are all done. Otherwise for a static node, we test if any of the
85 -- operands will raise constraint error, and if so, propagate the flag
86 -- Raises_Constraint_Error to the result node and we are done (since the
87 -- error was already posted at a lower level).
89 -- For the case of a static node whose operands do not raise constraint
90 -- error, we attempt to evaluate the node. If this evaluation succeeds,
91 -- then the node is replaced by the result of this computation. If the
92 -- evaluation raises constraint error, then we rewrite the node with
93 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
94 -- to post appropriate error messages.
96 ----------------
97 -- Local Data --
98 ----------------
100 type Bits is array (Nat range <>) of Boolean;
101 -- Used to convert unsigned (modular) values for folding logical ops
103 -- The following definitions are used to maintain a cache of nodes that
104 -- have compile time known values. The cache is maintained only for
105 -- discrete types (the most common case), and is populated by calls to
106 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
107 -- since it is possible for the status to change (in particular it is
108 -- possible for a node to get replaced by a constraint error node).
110 CV_Bits : constant := 5;
111 -- Number of low order bits of Node_Id value used to reference entries
112 -- in the cache table.
114 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
115 -- Size of cache for compile time values
117 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
119 type CV_Entry is record
120 N : Node_Id;
121 V : Uint;
122 end record;
124 type CV_Cache_Array is array (CV_Range) of CV_Entry;
126 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
127 -- This is the actual cache, with entries consisting of node/value pairs,
128 -- and the impossible value Node_High_Bound used for unset entries.
130 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
131 -- Range membership may either be statically known to be in range or out
132 -- of range, or not statically known. Used for Test_In_Range below.
134 -----------------------
135 -- Local Subprograms --
136 -----------------------
138 function From_Bits (B : Bits; T : Entity_Id) return Uint;
139 -- Converts a bit string of length B'Length to a Uint value to be used
140 -- for a target of type T, which is a modular type. This procedure
141 -- includes the necessary reduction by the modulus in the case of a
142 -- non-binary modulus (for a binary modulus, the bit string is the
143 -- right length any way so all is well).
145 function Get_String_Val (N : Node_Id) return Node_Id;
146 -- Given a tree node for a folded string or character value, returns
147 -- the corresponding string literal or character literal (one of the
148 -- two must be available, or the operand would not have been marked
149 -- as foldable in the earlier analysis of the operation).
151 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
152 -- Bits represents the number of bits in an integer value to be computed
153 -- (but the value has not been computed yet). If this value in Bits is
154 -- reasonable, a result of True is returned, with the implication that
155 -- the caller should go ahead and complete the calculation. If the value
156 -- in Bits is unreasonably large, then an error is posted on node N, and
157 -- False is returned (and the caller skips the proposed calculation).
159 procedure Out_Of_Range (N : Node_Id);
160 -- This procedure is called if it is determined that node N, which
161 -- appears in a non-static context, is a compile time known value
162 -- which is outside its range, i.e. the range of Etype. This is used
163 -- in contexts where this is an illegality if N is static, and should
164 -- generate a warning otherwise.
166 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
167 -- N and Exp are nodes representing an expression, Exp is known
168 -- to raise CE. N is rewritten in term of Exp in the optimal way.
170 function String_Type_Len (Stype : Entity_Id) return Uint;
171 -- Given a string type, determines the length of the index type, or,
172 -- if this index type is non-static, the length of the base type of
173 -- this index type. Note that if the string type is itself static,
174 -- then the index type is static, so the second case applies only
175 -- if the string type passed is non-static.
177 function Test (Cond : Boolean) return Uint;
178 pragma Inline (Test);
179 -- This function simply returns the appropriate Boolean'Pos value
180 -- corresponding to the value of Cond as a universal integer. It is
181 -- used for producing the result of the static evaluation of the
182 -- logical operators
184 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
185 -- Check whether an arithmetic operation with universal operands which
186 -- is a rewritten function call with an explicit scope indication is
187 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
188 -- visible numeric type declared in P and the context does not impose a
189 -- type on the result (e.g. in the expression of a type conversion).
190 -- If ambiguous, emit an error and return Empty, else return the result
191 -- type of the operator.
193 procedure Test_Expression_Is_Foldable
194 (N : Node_Id;
195 Op1 : Node_Id;
196 Stat : out Boolean;
197 Fold : out Boolean);
198 -- Tests to see if expression N whose single operand is Op1 is foldable,
199 -- i.e. the operand value is known at compile time. If the operation is
200 -- foldable, then Fold is True on return, and Stat indicates whether
201 -- the result is static (i.e. both operands were static). Note that it
202 -- is quite possible for Fold to be True, and Stat to be False, since
203 -- there are cases in which we know the value of an operand even though
204 -- it is not technically static (e.g. the static lower bound of a range
205 -- whose upper bound is non-static).
207 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
208 -- call to Check_Non_Static_Context on the operand. If Fold is False on
209 -- return, then all processing is complete, and the caller should
210 -- return, since there is nothing else to do.
212 -- If Stat is set True on return, then Is_Static_Expression is also set
213 -- true in node N. There are some cases where this is over-enthusiastic,
214 -- e.g. in the two operand case below, for string comaprison, the result
215 -- is not static even though the two operands are static. In such cases,
216 -- the caller must reset the Is_Static_Expression flag in N.
218 procedure Test_Expression_Is_Foldable
219 (N : Node_Id;
220 Op1 : Node_Id;
221 Op2 : Node_Id;
222 Stat : out Boolean;
223 Fold : out Boolean);
224 -- Same processing, except applies to an expression N with two operands
225 -- Op1 and Op2.
227 function Test_In_Range
228 (N : Node_Id;
229 Typ : Entity_Id;
230 Assume_Valid : Boolean;
231 Fixed_Int : Boolean;
232 Int_Real : Boolean) return Range_Membership;
233 -- Common processing for Is_In_Range and Is_Out_Of_Range:
234 -- Returns In_Range or Out_Of_Range if it can be guaranteed at compile time
235 -- that expression N is known to be in or out of range of the subtype Typ.
236 -- If not compile time known, Unknown is returned.
237 -- See documentation of Is_In_Range for complete description of parameters.
239 procedure To_Bits (U : Uint; B : out Bits);
240 -- Converts a Uint value to a bit string of length B'Length
242 ------------------------------
243 -- Check_Non_Static_Context --
244 ------------------------------
246 procedure Check_Non_Static_Context (N : Node_Id) is
247 T : constant Entity_Id := Etype (N);
248 Checks_On : constant Boolean :=
249 not Index_Checks_Suppressed (T)
250 and not Range_Checks_Suppressed (T);
252 begin
253 -- Ignore cases of non-scalar types or error types
255 if T = Any_Type or else not Is_Scalar_Type (T) then
256 return;
257 end if;
259 -- At this stage we have a scalar type. If we have an expression
260 -- that raises CE, then we already issued a warning or error msg
261 -- so there is nothing more to be done in this routine.
263 if Raises_Constraint_Error (N) then
264 return;
265 end if;
267 -- Now we have a scalar type which is not marked as raising a
268 -- constraint error exception. The main purpose of this routine
269 -- is to deal with static expressions appearing in a non-static
270 -- context. That means that if we do not have a static expression
271 -- then there is not much to do. The one case that we deal with
272 -- here is that if we have a floating-point value that is out of
273 -- range, then we post a warning that an infinity will result.
275 if not Is_Static_Expression (N) then
276 if Is_Floating_Point_Type (T)
277 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
278 then
279 Error_Msg_N
280 ("?float value out of range, infinity will be generated", N);
281 end if;
283 return;
284 end if;
286 -- Here we have the case of outer level static expression of
287 -- scalar type, where the processing of this procedure is needed.
289 -- For real types, this is where we convert the value to a machine
290 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
291 -- only need to do this if the parent is a constant declaration,
292 -- since in other cases, gigi should do the necessary conversion
293 -- correctly, but experimentation shows that this is not the case
294 -- on all machines, in particular if we do not convert all literals
295 -- to machine values in non-static contexts, then ACVC test C490001
296 -- fails on Sparc/Solaris and SGI/Irix.
298 if Nkind (N) = N_Real_Literal
299 and then not Is_Machine_Number (N)
300 and then not Is_Generic_Type (Etype (N))
301 and then Etype (N) /= Universal_Real
302 then
303 -- Check that value is in bounds before converting to machine
304 -- number, so as not to lose case where value overflows in the
305 -- least significant bit or less. See B490001.
307 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
308 Out_Of_Range (N);
309 return;
310 end if;
312 -- Note: we have to copy the node, to avoid problems with conformance
313 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
315 Rewrite (N, New_Copy (N));
317 if not Is_Floating_Point_Type (T) then
318 Set_Realval
319 (N, Corresponding_Integer_Value (N) * Small_Value (T));
321 elsif not UR_Is_Zero (Realval (N)) then
323 -- Note: even though RM 4.9(38) specifies biased rounding,
324 -- this has been modified by AI-100 in order to prevent
325 -- confusing differences in rounding between static and
326 -- non-static expressions. AI-100 specifies that the effect
327 -- of such rounding is implementation dependent, and in GNAT
328 -- we round to nearest even to match the run-time behavior.
330 Set_Realval
331 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
332 end if;
334 Set_Is_Machine_Number (N);
335 end if;
337 -- Check for out of range universal integer. This is a non-static
338 -- context, so the integer value must be in range of the runtime
339 -- representation of universal integers.
341 -- We do this only within an expression, because that is the only
342 -- case in which non-static universal integer values can occur, and
343 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
344 -- called in contexts like the expression of a number declaration where
345 -- we certainly want to allow out of range values.
347 if Etype (N) = Universal_Integer
348 and then Nkind (N) = N_Integer_Literal
349 and then Nkind (Parent (N)) in N_Subexpr
350 and then
351 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
352 or else
353 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
354 then
355 Apply_Compile_Time_Constraint_Error
356 (N, "non-static universal integer value out of range?",
357 CE_Range_Check_Failed);
359 -- Check out of range of base type
361 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
362 Out_Of_Range (N);
364 -- Give warning if outside subtype (where one or both of the bounds of
365 -- the subtype is static). This warning is omitted if the expression
366 -- appears in a range that could be null (warnings are handled elsewhere
367 -- for this case).
369 elsif T /= Base_Type (T)
370 and then Nkind (Parent (N)) /= N_Range
371 then
372 if Is_In_Range (N, T, Assume_Valid => True) then
373 null;
375 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
376 Apply_Compile_Time_Constraint_Error
377 (N, "value not in range of}?", CE_Range_Check_Failed);
379 elsif Checks_On then
380 Enable_Range_Check (N);
382 else
383 Set_Do_Range_Check (N, False);
384 end if;
385 end if;
386 end Check_Non_Static_Context;
388 ---------------------------------
389 -- Check_String_Literal_Length --
390 ---------------------------------
392 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
393 begin
394 if not Raises_Constraint_Error (N)
395 and then Is_Constrained (Ttype)
396 then
398 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
399 then
400 Apply_Compile_Time_Constraint_Error
401 (N, "string length wrong for}?",
402 CE_Length_Check_Failed,
403 Ent => Ttype,
404 Typ => Ttype);
405 end if;
406 end if;
407 end Check_String_Literal_Length;
409 --------------------------
410 -- Compile_Time_Compare --
411 --------------------------
413 function Compile_Time_Compare
414 (L, R : Node_Id;
415 Assume_Valid : Boolean) return Compare_Result
417 Discard : aliased Uint;
418 begin
419 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
420 end Compile_Time_Compare;
422 function Compile_Time_Compare
423 (L, R : Node_Id;
424 Diff : access Uint;
425 Assume_Valid : Boolean;
426 Rec : Boolean := False) return Compare_Result
428 Ltyp : Entity_Id := Underlying_Type (Etype (L));
429 Rtyp : Entity_Id := Underlying_Type (Etype (R));
430 -- These get reset to the base type for the case of entities where
431 -- Is_Known_Valid is not set. This takes care of handling possible
432 -- invalid representations using the value of the base type, in
433 -- accordance with RM 13.9.1(10).
435 Discard : aliased Uint;
437 procedure Compare_Decompose
438 (N : Node_Id;
439 R : out Node_Id;
440 V : out Uint);
441 -- This procedure decomposes the node N into an expression node and a
442 -- signed offset, so that the value of N is equal to the value of R plus
443 -- the value V (which may be negative). If no such decomposition is
444 -- possible, then on return R is a copy of N, and V is set to zero.
446 function Compare_Fixup (N : Node_Id) return Node_Id;
447 -- This function deals with replacing 'Last and 'First references with
448 -- their corresponding type bounds, which we then can compare. The
449 -- argument is the original node, the result is the identity, unless we
450 -- have a 'Last/'First reference in which case the value returned is the
451 -- appropriate type bound.
453 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
454 -- Even if the context does not assume that values are valid, some
455 -- simple cases can be recognized.
457 function Is_Same_Value (L, R : Node_Id) return Boolean;
458 -- Returns True iff L and R represent expressions that definitely
459 -- have identical (but not necessarily compile time known) values
460 -- Indeed the caller is expected to have already dealt with the
461 -- cases of compile time known values, so these are not tested here.
463 -----------------------
464 -- Compare_Decompose --
465 -----------------------
467 procedure Compare_Decompose
468 (N : Node_Id;
469 R : out Node_Id;
470 V : out Uint)
472 begin
473 if Nkind (N) = N_Op_Add
474 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
475 then
476 R := Left_Opnd (N);
477 V := Intval (Right_Opnd (N));
478 return;
480 elsif Nkind (N) = N_Op_Subtract
481 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
482 then
483 R := Left_Opnd (N);
484 V := UI_Negate (Intval (Right_Opnd (N)));
485 return;
487 elsif Nkind (N) = N_Attribute_Reference then
488 if Attribute_Name (N) = Name_Succ then
489 R := First (Expressions (N));
490 V := Uint_1;
491 return;
493 elsif Attribute_Name (N) = Name_Pred then
494 R := First (Expressions (N));
495 V := Uint_Minus_1;
496 return;
497 end if;
498 end if;
500 R := N;
501 V := Uint_0;
502 end Compare_Decompose;
504 -------------------
505 -- Compare_Fixup --
506 -------------------
508 function Compare_Fixup (N : Node_Id) return Node_Id is
509 Indx : Node_Id;
510 Xtyp : Entity_Id;
511 Subs : Nat;
513 begin
514 if Nkind (N) = N_Attribute_Reference
515 and then (Attribute_Name (N) = Name_First
516 or else
517 Attribute_Name (N) = Name_Last)
518 then
519 Xtyp := Etype (Prefix (N));
521 -- If we have no type, then just abandon the attempt to do
522 -- a fixup, this is probably the result of some other error.
524 if No (Xtyp) then
525 return N;
526 end if;
528 -- Dereference an access type
530 if Is_Access_Type (Xtyp) then
531 Xtyp := Designated_Type (Xtyp);
532 end if;
534 -- If we don't have an array type at this stage, something
535 -- is peculiar, e.g. another error, and we abandon the attempt
536 -- at a fixup.
538 if not Is_Array_Type (Xtyp) then
539 return N;
540 end if;
542 -- Ignore unconstrained array, since bounds are not meaningful
544 if not Is_Constrained (Xtyp) then
545 return N;
546 end if;
548 if Ekind (Xtyp) = E_String_Literal_Subtype then
549 if Attribute_Name (N) = Name_First then
550 return String_Literal_Low_Bound (Xtyp);
552 else -- Attribute_Name (N) = Name_Last
553 return Make_Integer_Literal (Sloc (N),
554 Intval => Intval (String_Literal_Low_Bound (Xtyp))
555 + String_Literal_Length (Xtyp));
556 end if;
557 end if;
559 -- Find correct index type
561 Indx := First_Index (Xtyp);
563 if Present (Expressions (N)) then
564 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
566 for J in 2 .. Subs loop
567 Indx := Next_Index (Indx);
568 end loop;
569 end if;
571 Xtyp := Etype (Indx);
573 if Attribute_Name (N) = Name_First then
574 return Type_Low_Bound (Xtyp);
576 else -- Attribute_Name (N) = Name_Last
577 return Type_High_Bound (Xtyp);
578 end if;
579 end if;
581 return N;
582 end Compare_Fixup;
584 ----------------------------
585 -- Is_Known_Valid_Operand --
586 ----------------------------
588 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
589 begin
590 return (Is_Entity_Name (Opnd)
591 and then
592 (Is_Known_Valid (Entity (Opnd))
593 or else Ekind (Entity (Opnd)) = E_In_Parameter
594 or else
595 (Ekind (Entity (Opnd)) in Object_Kind
596 and then Present (Current_Value (Entity (Opnd))))))
597 or else Is_OK_Static_Expression (Opnd);
598 end Is_Known_Valid_Operand;
600 -------------------
601 -- Is_Same_Value --
602 -------------------
604 function Is_Same_Value (L, R : Node_Id) return Boolean is
605 Lf : constant Node_Id := Compare_Fixup (L);
606 Rf : constant Node_Id := Compare_Fixup (R);
608 function Is_Same_Subscript (L, R : List_Id) return Boolean;
609 -- L, R are the Expressions values from two attribute nodes for First
610 -- or Last attributes. Either may be set to No_List if no expressions
611 -- are present (indicating subscript 1). The result is True if both
612 -- expressions represent the same subscript (note one case is where
613 -- one subscript is missing and the other is explicitly set to 1).
615 -----------------------
616 -- Is_Same_Subscript --
617 -----------------------
619 function Is_Same_Subscript (L, R : List_Id) return Boolean is
620 begin
621 if L = No_List then
622 if R = No_List then
623 return True;
624 else
625 return Expr_Value (First (R)) = Uint_1;
626 end if;
628 else
629 if R = No_List then
630 return Expr_Value (First (L)) = Uint_1;
631 else
632 return Expr_Value (First (L)) = Expr_Value (First (R));
633 end if;
634 end if;
635 end Is_Same_Subscript;
637 -- Start of processing for Is_Same_Value
639 begin
640 -- Values are the same if they refer to the same entity and the
641 -- entity is non-volatile. This does not however apply to Float
642 -- types, since we may have two NaN values and they should never
643 -- compare equal.
645 -- If the entity is a discriminant, the two expressions may be bounds
646 -- of components of objects of the same discriminated type. The
647 -- values of the discriminants are not static, and therefore the
648 -- result is unknown.
650 -- It would be better to comment individual branches of this test ???
652 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
653 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
654 and then Entity (Lf) = Entity (Rf)
655 and then Ekind (Entity (Lf)) /= E_Discriminant
656 and then Present (Entity (Lf))
657 and then not Is_Floating_Point_Type (Etype (L))
658 and then not Is_Volatile_Reference (L)
659 and then not Is_Volatile_Reference (R)
660 then
661 return True;
663 -- Or if they are compile time known and identical
665 elsif Compile_Time_Known_Value (Lf)
666 and then
667 Compile_Time_Known_Value (Rf)
668 and then Expr_Value (Lf) = Expr_Value (Rf)
669 then
670 return True;
672 -- False if Nkind of the two nodes is different for remaining cases
674 elsif Nkind (Lf) /= Nkind (Rf) then
675 return False;
677 -- True if both 'First or 'Last values applying to the same entity
678 -- (first and last don't change even if value does). Note that we
679 -- need this even with the calls to Compare_Fixup, to handle the
680 -- case of unconstrained array attributes where Compare_Fixup
681 -- cannot find useful bounds.
683 elsif Nkind (Lf) = N_Attribute_Reference
684 and then Attribute_Name (Lf) = Attribute_Name (Rf)
685 and then (Attribute_Name (Lf) = Name_First
686 or else
687 Attribute_Name (Lf) = Name_Last)
688 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
689 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
690 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
691 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
692 then
693 return True;
695 -- True if the same selected component from the same record
697 elsif Nkind (Lf) = N_Selected_Component
698 and then Selector_Name (Lf) = Selector_Name (Rf)
699 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
700 then
701 return True;
703 -- True if the same unary operator applied to the same operand
705 elsif Nkind (Lf) in N_Unary_Op
706 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
707 then
708 return True;
710 -- True if the same binary operator applied to the same operands
712 elsif Nkind (Lf) in N_Binary_Op
713 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
714 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
715 then
716 return True;
718 -- All other cases, we can't tell, so return False
720 else
721 return False;
722 end if;
723 end Is_Same_Value;
725 -- Start of processing for Compile_Time_Compare
727 begin
728 Diff.all := No_Uint;
730 -- If either operand could raise constraint error, then we cannot
731 -- know the result at compile time (since CE may be raised!)
733 if not (Cannot_Raise_Constraint_Error (L)
734 and then
735 Cannot_Raise_Constraint_Error (R))
736 then
737 return Unknown;
738 end if;
740 -- Identical operands are most certainly equal
742 if L = R then
743 return EQ;
745 -- If expressions have no types, then do not attempt to determine if
746 -- they are the same, since something funny is going on. One case in
747 -- which this happens is during generic template analysis, when bounds
748 -- are not fully analyzed.
750 elsif No (Ltyp) or else No (Rtyp) then
751 return Unknown;
753 -- We do not attempt comparisons for packed arrays arrays represented as
754 -- modular types, where the semantics of comparison is quite different.
756 elsif Is_Packed_Array_Type (Ltyp)
757 and then Is_Modular_Integer_Type (Ltyp)
758 then
759 return Unknown;
761 -- For access types, the only time we know the result at compile time
762 -- (apart from identical operands, which we handled already) is if we
763 -- know one operand is null and the other is not, or both operands are
764 -- known null.
766 elsif Is_Access_Type (Ltyp) then
767 if Known_Null (L) then
768 if Known_Null (R) then
769 return EQ;
770 elsif Known_Non_Null (R) then
771 return NE;
772 else
773 return Unknown;
774 end if;
776 elsif Known_Non_Null (L) and then Known_Null (R) then
777 return NE;
779 else
780 return Unknown;
781 end if;
783 -- Case where comparison involves two compile time known values
785 elsif Compile_Time_Known_Value (L)
786 and then Compile_Time_Known_Value (R)
787 then
788 -- For the floating-point case, we have to be a little careful, since
789 -- at compile time we are dealing with universal exact values, but at
790 -- runtime, these will be in non-exact target form. That's why the
791 -- returned results are LE and GE below instead of LT and GT.
793 if Is_Floating_Point_Type (Ltyp)
794 or else
795 Is_Floating_Point_Type (Rtyp)
796 then
797 declare
798 Lo : constant Ureal := Expr_Value_R (L);
799 Hi : constant Ureal := Expr_Value_R (R);
801 begin
802 if Lo < Hi then
803 return LE;
804 elsif Lo = Hi then
805 return EQ;
806 else
807 return GE;
808 end if;
809 end;
811 -- For string types, we have two string literals and we proceed to
812 -- compare them using the Ada style dictionary string comparison.
814 elsif not Is_Scalar_Type (Ltyp) then
815 declare
816 Lstring : constant String_Id := Strval (Expr_Value_S (L));
817 Rstring : constant String_Id := Strval (Expr_Value_S (R));
818 Llen : constant Nat := String_Length (Lstring);
819 Rlen : constant Nat := String_Length (Rstring);
821 begin
822 for J in 1 .. Nat'Min (Llen, Rlen) loop
823 declare
824 LC : constant Char_Code := Get_String_Char (Lstring, J);
825 RC : constant Char_Code := Get_String_Char (Rstring, J);
826 begin
827 if LC < RC then
828 return LT;
829 elsif LC > RC then
830 return GT;
831 end if;
832 end;
833 end loop;
835 if Llen < Rlen then
836 return LT;
837 elsif Llen > Rlen then
838 return GT;
839 else
840 return EQ;
841 end if;
842 end;
844 -- For remaining scalar cases we know exactly (note that this does
845 -- include the fixed-point case, where we know the run time integer
846 -- values now).
848 else
849 declare
850 Lo : constant Uint := Expr_Value (L);
851 Hi : constant Uint := Expr_Value (R);
853 begin
854 if Lo < Hi then
855 Diff.all := Hi - Lo;
856 return LT;
858 elsif Lo = Hi then
859 return EQ;
861 else
862 Diff.all := Lo - Hi;
863 return GT;
864 end if;
865 end;
866 end if;
868 -- Cases where at least one operand is not known at compile time
870 else
871 -- Remaining checks apply only for discrete types
873 if not Is_Discrete_Type (Ltyp)
874 or else not Is_Discrete_Type (Rtyp)
875 then
876 return Unknown;
877 end if;
879 -- Defend against generic types, or actually any expressions that
880 -- contain a reference to a generic type from within a generic
881 -- template. We don't want to do any range analysis of such
882 -- expressions for two reasons. First, the bounds of a generic type
883 -- itself are junk and cannot be used for any kind of analysis.
884 -- Second, we may have a case where the range at run time is indeed
885 -- known, but we don't want to do compile time analysis in the
886 -- template based on that range since in an instance the value may be
887 -- static, and able to be elaborated without reference to the bounds
888 -- of types involved. As an example, consider:
890 -- (F'Pos (F'Last) + 1) > Integer'Last
892 -- The expression on the left side of > is Universal_Integer and thus
893 -- acquires the type Integer for evaluation at run time, and at run
894 -- time it is true that this condition is always False, but within
895 -- an instance F may be a type with a static range greater than the
896 -- range of Integer, and the expression statically evaluates to True.
898 if References_Generic_Formal_Type (L)
899 or else
900 References_Generic_Formal_Type (R)
901 then
902 return Unknown;
903 end if;
905 -- Replace types by base types for the case of entities which are
906 -- not known to have valid representations. This takes care of
907 -- properly dealing with invalid representations.
909 if not Assume_Valid and then not Assume_No_Invalid_Values then
910 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
911 Ltyp := Underlying_Type (Base_Type (Ltyp));
912 end if;
914 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
915 Rtyp := Underlying_Type (Base_Type (Rtyp));
916 end if;
917 end if;
919 -- Try range analysis on variables and see if ranges are disjoint
921 declare
922 LOK, ROK : Boolean;
923 LLo, LHi : Uint;
924 RLo, RHi : Uint;
926 begin
927 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
928 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
930 if LOK and ROK then
931 if LHi < RLo then
932 return LT;
934 elsif RHi < LLo then
935 return GT;
937 elsif LLo = LHi
938 and then RLo = RHi
939 and then LLo = RLo
940 then
942 -- If the range includes a single literal and we can assume
943 -- validity then the result is known even if an operand is
944 -- not static.
946 if Assume_Valid then
947 return EQ;
948 else
949 return Unknown;
950 end if;
952 elsif LHi = RLo then
953 return LE;
955 elsif RHi = LLo then
956 return GE;
958 elsif not Is_Known_Valid_Operand (L)
959 and then not Assume_Valid
960 then
961 if Is_Same_Value (L, R) then
962 return EQ;
963 else
964 return Unknown;
965 end if;
966 end if;
967 end if;
968 end;
970 -- Here is where we check for comparisons against maximum bounds of
971 -- types, where we know that no value can be outside the bounds of
972 -- the subtype. Note that this routine is allowed to assume that all
973 -- expressions are within their subtype bounds. Callers wishing to
974 -- deal with possibly invalid values must in any case take special
975 -- steps (e.g. conversions to larger types) to avoid this kind of
976 -- optimization, which is always considered to be valid. We do not
977 -- attempt this optimization with generic types, since the type
978 -- bounds may not be meaningful in this case.
980 -- We are in danger of an infinite recursion here. It does not seem
981 -- useful to go more than one level deep, so the parameter Rec is
982 -- used to protect ourselves against this infinite recursion.
984 if not Rec then
986 -- See if we can get a decisive check against one operand and
987 -- a bound of the other operand (four possible tests here).
988 -- Note that we avoid testing junk bounds of a generic type.
990 if not Is_Generic_Type (Rtyp) then
991 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
992 Discard'Access,
993 Assume_Valid, Rec => True)
995 when LT => return LT;
996 when LE => return LE;
997 when EQ => return LE;
998 when others => null;
999 end case;
1001 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1002 Discard'Access,
1003 Assume_Valid, Rec => True)
1005 when GT => return GT;
1006 when GE => return GE;
1007 when EQ => return GE;
1008 when others => null;
1009 end case;
1010 end if;
1012 if not Is_Generic_Type (Ltyp) then
1013 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1014 Discard'Access,
1015 Assume_Valid, Rec => True)
1017 when GT => return GT;
1018 when GE => return GE;
1019 when EQ => return GE;
1020 when others => null;
1021 end case;
1023 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1024 Discard'Access,
1025 Assume_Valid, Rec => True)
1027 when LT => return LT;
1028 when LE => return LE;
1029 when EQ => return LE;
1030 when others => null;
1031 end case;
1032 end if;
1033 end if;
1035 -- Next attempt is to decompose the expressions to extract
1036 -- a constant offset resulting from the use of any of the forms:
1038 -- expr + literal
1039 -- expr - literal
1040 -- typ'Succ (expr)
1041 -- typ'Pred (expr)
1043 -- Then we see if the two expressions are the same value, and if so
1044 -- the result is obtained by comparing the offsets.
1046 declare
1047 Lnode : Node_Id;
1048 Loffs : Uint;
1049 Rnode : Node_Id;
1050 Roffs : Uint;
1052 begin
1053 Compare_Decompose (L, Lnode, Loffs);
1054 Compare_Decompose (R, Rnode, Roffs);
1056 if Is_Same_Value (Lnode, Rnode) then
1057 if Loffs = Roffs then
1058 return EQ;
1060 elsif Loffs < Roffs then
1061 Diff.all := Roffs - Loffs;
1062 return LT;
1064 else
1065 Diff.all := Loffs - Roffs;
1066 return GT;
1067 end if;
1068 end if;
1069 end;
1071 -- Next attempt is to see if we have an entity compared with a
1072 -- compile time known value, where there is a current value
1073 -- conditional for the entity which can tell us the result.
1075 declare
1076 Var : Node_Id;
1077 -- Entity variable (left operand)
1079 Val : Uint;
1080 -- Value (right operand)
1082 Inv : Boolean;
1083 -- If False, we have reversed the operands
1085 Op : Node_Kind;
1086 -- Comparison operator kind from Get_Current_Value_Condition call
1088 Opn : Node_Id;
1089 -- Value from Get_Current_Value_Condition call
1091 Opv : Uint;
1092 -- Value of Opn
1094 Result : Compare_Result;
1095 -- Known result before inversion
1097 begin
1098 if Is_Entity_Name (L)
1099 and then Compile_Time_Known_Value (R)
1100 then
1101 Var := L;
1102 Val := Expr_Value (R);
1103 Inv := False;
1105 elsif Is_Entity_Name (R)
1106 and then Compile_Time_Known_Value (L)
1107 then
1108 Var := R;
1109 Val := Expr_Value (L);
1110 Inv := True;
1112 -- That was the last chance at finding a compile time result
1114 else
1115 return Unknown;
1116 end if;
1118 Get_Current_Value_Condition (Var, Op, Opn);
1120 -- That was the last chance, so if we got nothing return
1122 if No (Opn) then
1123 return Unknown;
1124 end if;
1126 Opv := Expr_Value (Opn);
1128 -- We got a comparison, so we might have something interesting
1130 -- Convert LE to LT and GE to GT, just so we have fewer cases
1132 if Op = N_Op_Le then
1133 Op := N_Op_Lt;
1134 Opv := Opv + 1;
1136 elsif Op = N_Op_Ge then
1137 Op := N_Op_Gt;
1138 Opv := Opv - 1;
1139 end if;
1141 -- Deal with equality case
1143 if Op = N_Op_Eq then
1144 if Val = Opv then
1145 Result := EQ;
1146 elsif Opv < Val then
1147 Result := LT;
1148 else
1149 Result := GT;
1150 end if;
1152 -- Deal with inequality case
1154 elsif Op = N_Op_Ne then
1155 if Val = Opv then
1156 Result := NE;
1157 else
1158 return Unknown;
1159 end if;
1161 -- Deal with greater than case
1163 elsif Op = N_Op_Gt then
1164 if Opv >= Val then
1165 Result := GT;
1166 elsif Opv = Val - 1 then
1167 Result := GE;
1168 else
1169 return Unknown;
1170 end if;
1172 -- Deal with less than case
1174 else pragma Assert (Op = N_Op_Lt);
1175 if Opv <= Val then
1176 Result := LT;
1177 elsif Opv = Val + 1 then
1178 Result := LE;
1179 else
1180 return Unknown;
1181 end if;
1182 end if;
1184 -- Deal with inverting result
1186 if Inv then
1187 case Result is
1188 when GT => return LT;
1189 when GE => return LE;
1190 when LT => return GT;
1191 when LE => return GE;
1192 when others => return Result;
1193 end case;
1194 end if;
1196 return Result;
1197 end;
1198 end if;
1199 end Compile_Time_Compare;
1201 -------------------------------
1202 -- Compile_Time_Known_Bounds --
1203 -------------------------------
1205 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1206 Indx : Node_Id;
1207 Typ : Entity_Id;
1209 begin
1210 if not Is_Array_Type (T) then
1211 return False;
1212 end if;
1214 Indx := First_Index (T);
1215 while Present (Indx) loop
1216 Typ := Underlying_Type (Etype (Indx));
1218 -- Never look at junk bounds of a generic type
1220 if Is_Generic_Type (Typ) then
1221 return False;
1222 end if;
1224 -- Otherwise check bounds for compile time known
1226 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1227 return False;
1228 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1229 return False;
1230 else
1231 Next_Index (Indx);
1232 end if;
1233 end loop;
1235 return True;
1236 end Compile_Time_Known_Bounds;
1238 ------------------------------
1239 -- Compile_Time_Known_Value --
1240 ------------------------------
1242 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1243 K : constant Node_Kind := Nkind (Op);
1244 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1246 begin
1247 -- Never known at compile time if bad type or raises constraint error
1248 -- or empty (latter case occurs only as a result of a previous error)
1250 if No (Op)
1251 or else Op = Error
1252 or else Etype (Op) = Any_Type
1253 or else Raises_Constraint_Error (Op)
1254 then
1255 return False;
1256 end if;
1258 -- If this is not a static expression or a null literal, and we are in
1259 -- configurable run-time mode, then we consider it not known at compile
1260 -- time. This avoids anomalies where whether something is allowed with a
1261 -- given configurable run-time library depends on how good the compiler
1262 -- is at optimizing and knowing that things are constant when they are
1263 -- nonstatic.
1265 if Configurable_Run_Time_Mode
1266 and then K /= N_Null
1267 and then not Is_Static_Expression (Op)
1268 then
1269 return False;
1270 end if;
1272 -- If we have an entity name, then see if it is the name of a constant
1273 -- and if so, test the corresponding constant value, or the name of
1274 -- an enumeration literal, which is always a constant.
1276 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1277 declare
1278 E : constant Entity_Id := Entity (Op);
1279 V : Node_Id;
1281 begin
1282 -- Never known at compile time if it is a packed array value.
1283 -- We might want to try to evaluate these at compile time one
1284 -- day, but we do not make that attempt now.
1286 if Is_Packed_Array_Type (Etype (Op)) then
1287 return False;
1288 end if;
1290 if Ekind (E) = E_Enumeration_Literal then
1291 return True;
1293 elsif Ekind (E) = E_Constant then
1294 V := Constant_Value (E);
1295 return Present (V) and then Compile_Time_Known_Value (V);
1296 end if;
1297 end;
1299 -- We have a value, see if it is compile time known
1301 else
1302 -- Integer literals are worth storing in the cache
1304 if K = N_Integer_Literal then
1305 CV_Ent.N := Op;
1306 CV_Ent.V := Intval (Op);
1307 return True;
1309 -- Other literals and NULL are known at compile time
1311 elsif
1312 K = N_Character_Literal
1313 or else
1314 K = N_Real_Literal
1315 or else
1316 K = N_String_Literal
1317 or else
1318 K = N_Null
1319 then
1320 return True;
1322 -- Any reference to Null_Parameter is known at compile time. No
1323 -- other attribute references (that have not already been folded)
1324 -- are known at compile time.
1326 elsif K = N_Attribute_Reference then
1327 return Attribute_Name (Op) = Name_Null_Parameter;
1328 end if;
1329 end if;
1331 -- If we fall through, not known at compile time
1333 return False;
1335 -- If we get an exception while trying to do this test, then some error
1336 -- has occurred, and we simply say that the value is not known after all
1338 exception
1339 when others =>
1340 return False;
1341 end Compile_Time_Known_Value;
1343 --------------------------------------
1344 -- Compile_Time_Known_Value_Or_Aggr --
1345 --------------------------------------
1347 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1348 begin
1349 -- If we have an entity name, then see if it is the name of a constant
1350 -- and if so, test the corresponding constant value, or the name of
1351 -- an enumeration literal, which is always a constant.
1353 if Is_Entity_Name (Op) then
1354 declare
1355 E : constant Entity_Id := Entity (Op);
1356 V : Node_Id;
1358 begin
1359 if Ekind (E) = E_Enumeration_Literal then
1360 return True;
1362 elsif Ekind (E) /= E_Constant then
1363 return False;
1365 else
1366 V := Constant_Value (E);
1367 return Present (V)
1368 and then Compile_Time_Known_Value_Or_Aggr (V);
1369 end if;
1370 end;
1372 -- We have a value, see if it is compile time known
1374 else
1375 if Compile_Time_Known_Value (Op) then
1376 return True;
1378 elsif Nkind (Op) = N_Aggregate then
1380 if Present (Expressions (Op)) then
1381 declare
1382 Expr : Node_Id;
1384 begin
1385 Expr := First (Expressions (Op));
1386 while Present (Expr) loop
1387 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1388 return False;
1389 end if;
1391 Next (Expr);
1392 end loop;
1393 end;
1394 end if;
1396 if Present (Component_Associations (Op)) then
1397 declare
1398 Cass : Node_Id;
1400 begin
1401 Cass := First (Component_Associations (Op));
1402 while Present (Cass) loop
1403 if not
1404 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1405 then
1406 return False;
1407 end if;
1409 Next (Cass);
1410 end loop;
1411 end;
1412 end if;
1414 return True;
1416 -- All other types of values are not known at compile time
1418 else
1419 return False;
1420 end if;
1422 end if;
1423 end Compile_Time_Known_Value_Or_Aggr;
1425 -----------------
1426 -- Eval_Actual --
1427 -----------------
1429 -- This is only called for actuals of functions that are not predefined
1430 -- operators (which have already been rewritten as operators at this
1431 -- stage), so the call can never be folded, and all that needs doing for
1432 -- the actual is to do the check for a non-static context.
1434 procedure Eval_Actual (N : Node_Id) is
1435 begin
1436 Check_Non_Static_Context (N);
1437 end Eval_Actual;
1439 --------------------
1440 -- Eval_Allocator --
1441 --------------------
1443 -- Allocators are never static, so all we have to do is to do the
1444 -- check for a non-static context if an expression is present.
1446 procedure Eval_Allocator (N : Node_Id) is
1447 Expr : constant Node_Id := Expression (N);
1449 begin
1450 if Nkind (Expr) = N_Qualified_Expression then
1451 Check_Non_Static_Context (Expression (Expr));
1452 end if;
1453 end Eval_Allocator;
1455 ------------------------
1456 -- Eval_Arithmetic_Op --
1457 ------------------------
1459 -- Arithmetic operations are static functions, so the result is static
1460 -- if both operands are static (RM 4.9(7), 4.9(20)).
1462 procedure Eval_Arithmetic_Op (N : Node_Id) is
1463 Left : constant Node_Id := Left_Opnd (N);
1464 Right : constant Node_Id := Right_Opnd (N);
1465 Ltype : constant Entity_Id := Etype (Left);
1466 Rtype : constant Entity_Id := Etype (Right);
1467 Otype : Entity_Id := Empty;
1468 Stat : Boolean;
1469 Fold : Boolean;
1471 begin
1472 -- If not foldable we are done
1474 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1476 if not Fold then
1477 return;
1478 end if;
1480 if Is_Universal_Numeric_Type (Etype (Left))
1481 and then
1482 Is_Universal_Numeric_Type (Etype (Right))
1483 then
1484 Otype := Find_Universal_Operator_Type (N);
1485 end if;
1487 -- Fold for cases where both operands are of integer type
1489 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1490 declare
1491 Left_Int : constant Uint := Expr_Value (Left);
1492 Right_Int : constant Uint := Expr_Value (Right);
1493 Result : Uint;
1495 begin
1496 case Nkind (N) is
1498 when N_Op_Add =>
1499 Result := Left_Int + Right_Int;
1501 when N_Op_Subtract =>
1502 Result := Left_Int - Right_Int;
1504 when N_Op_Multiply =>
1505 if OK_Bits
1506 (N, UI_From_Int
1507 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1508 then
1509 Result := Left_Int * Right_Int;
1510 else
1511 Result := Left_Int;
1512 end if;
1514 when N_Op_Divide =>
1516 -- The exception Constraint_Error is raised by integer
1517 -- division, rem and mod if the right operand is zero.
1519 if Right_Int = 0 then
1520 Apply_Compile_Time_Constraint_Error
1521 (N, "division by zero",
1522 CE_Divide_By_Zero,
1523 Warn => not Stat);
1524 return;
1526 else
1527 Result := Left_Int / Right_Int;
1528 end if;
1530 when N_Op_Mod =>
1532 -- The exception Constraint_Error is raised by integer
1533 -- division, rem and mod if the right operand is zero.
1535 if Right_Int = 0 then
1536 Apply_Compile_Time_Constraint_Error
1537 (N, "mod with zero divisor",
1538 CE_Divide_By_Zero,
1539 Warn => not Stat);
1540 return;
1541 else
1542 Result := Left_Int mod Right_Int;
1543 end if;
1545 when N_Op_Rem =>
1547 -- The exception Constraint_Error is raised by integer
1548 -- division, rem and mod if the right operand is zero.
1550 if Right_Int = 0 then
1551 Apply_Compile_Time_Constraint_Error
1552 (N, "rem with zero divisor",
1553 CE_Divide_By_Zero,
1554 Warn => not Stat);
1555 return;
1557 else
1558 Result := Left_Int rem Right_Int;
1559 end if;
1561 when others =>
1562 raise Program_Error;
1563 end case;
1565 -- Adjust the result by the modulus if the type is a modular type
1567 if Is_Modular_Integer_Type (Ltype) then
1568 Result := Result mod Modulus (Ltype);
1570 -- For a signed integer type, check non-static overflow
1572 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1573 declare
1574 BT : constant Entity_Id := Base_Type (Ltype);
1575 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1576 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1577 begin
1578 if Result < Lo or else Result > Hi then
1579 Apply_Compile_Time_Constraint_Error
1580 (N, "value not in range of }?",
1581 CE_Overflow_Check_Failed,
1582 Ent => BT);
1583 return;
1584 end if;
1585 end;
1586 end if;
1588 -- If we get here we can fold the result
1590 Fold_Uint (N, Result, Stat);
1591 end;
1593 -- Cases where at least one operand is a real. We handle the cases of
1594 -- both reals, or mixed/real integer cases (the latter happen only for
1595 -- divide and multiply, and the result is always real).
1597 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1598 declare
1599 Left_Real : Ureal;
1600 Right_Real : Ureal;
1601 Result : Ureal;
1603 begin
1604 if Is_Real_Type (Ltype) then
1605 Left_Real := Expr_Value_R (Left);
1606 else
1607 Left_Real := UR_From_Uint (Expr_Value (Left));
1608 end if;
1610 if Is_Real_Type (Rtype) then
1611 Right_Real := Expr_Value_R (Right);
1612 else
1613 Right_Real := UR_From_Uint (Expr_Value (Right));
1614 end if;
1616 if Nkind (N) = N_Op_Add then
1617 Result := Left_Real + Right_Real;
1619 elsif Nkind (N) = N_Op_Subtract then
1620 Result := Left_Real - Right_Real;
1622 elsif Nkind (N) = N_Op_Multiply then
1623 Result := Left_Real * Right_Real;
1625 else pragma Assert (Nkind (N) = N_Op_Divide);
1626 if UR_Is_Zero (Right_Real) then
1627 Apply_Compile_Time_Constraint_Error
1628 (N, "division by zero", CE_Divide_By_Zero);
1629 return;
1630 end if;
1632 Result := Left_Real / Right_Real;
1633 end if;
1635 Fold_Ureal (N, Result, Stat);
1636 end;
1637 end if;
1639 -- If the operator was resolved to a specific type, make sure that type
1640 -- is frozen even if the expression is folded into a literal (which has
1641 -- a universal type).
1643 if Present (Otype) then
1644 Freeze_Before (N, Otype);
1645 end if;
1646 end Eval_Arithmetic_Op;
1648 ----------------------------
1649 -- Eval_Character_Literal --
1650 ----------------------------
1652 -- Nothing to be done!
1654 procedure Eval_Character_Literal (N : Node_Id) is
1655 pragma Warnings (Off, N);
1656 begin
1657 null;
1658 end Eval_Character_Literal;
1660 ---------------
1661 -- Eval_Call --
1662 ---------------
1664 -- Static function calls are either calls to predefined operators
1665 -- with static arguments, or calls to functions that rename a literal.
1666 -- Only the latter case is handled here, predefined operators are
1667 -- constant-folded elsewhere.
1669 -- If the function is itself inherited (see 7423-001) the literal of
1670 -- the parent type must be explicitly converted to the return type
1671 -- of the function.
1673 procedure Eval_Call (N : Node_Id) is
1674 Loc : constant Source_Ptr := Sloc (N);
1675 Typ : constant Entity_Id := Etype (N);
1676 Lit : Entity_Id;
1678 begin
1679 if Nkind (N) = N_Function_Call
1680 and then No (Parameter_Associations (N))
1681 and then Is_Entity_Name (Name (N))
1682 and then Present (Alias (Entity (Name (N))))
1683 and then Is_Enumeration_Type (Base_Type (Typ))
1684 then
1685 Lit := Ultimate_Alias (Entity (Name (N)));
1687 if Ekind (Lit) = E_Enumeration_Literal then
1688 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1689 Rewrite
1690 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1691 else
1692 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1693 end if;
1695 Resolve (N, Typ);
1696 end if;
1697 end if;
1698 end Eval_Call;
1700 --------------------------
1701 -- Eval_Case_Expression --
1702 --------------------------
1704 -- Right now we do not attempt folding of any case expressions, and the
1705 -- language does not require it, so the only required processing is to
1706 -- do the check for all expressions appearing in the case expression.
1708 procedure Eval_Case_Expression (N : Node_Id) is
1709 Alt : Node_Id;
1711 begin
1712 Check_Non_Static_Context (Expression (N));
1714 Alt := First (Alternatives (N));
1715 while Present (Alt) loop
1716 Check_Non_Static_Context (Expression (Alt));
1717 Next (Alt);
1718 end loop;
1719 end Eval_Case_Expression;
1721 ------------------------
1722 -- Eval_Concatenation --
1723 ------------------------
1725 -- Concatenation is a static function, so the result is static if both
1726 -- operands are static (RM 4.9(7), 4.9(21)).
1728 procedure Eval_Concatenation (N : Node_Id) is
1729 Left : constant Node_Id := Left_Opnd (N);
1730 Right : constant Node_Id := Right_Opnd (N);
1731 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1732 Stat : Boolean;
1733 Fold : Boolean;
1735 begin
1736 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1737 -- non-static context.
1739 if Ada_Version = Ada_83
1740 and then Comes_From_Source (N)
1741 then
1742 Check_Non_Static_Context (Left);
1743 Check_Non_Static_Context (Right);
1744 return;
1745 end if;
1747 -- If not foldable we are done. In principle concatenation that yields
1748 -- any string type is static (i.e. an array type of character types).
1749 -- However, character types can include enumeration literals, and
1750 -- concatenation in that case cannot be described by a literal, so we
1751 -- only consider the operation static if the result is an array of
1752 -- (a descendant of) a predefined character type.
1754 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1756 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
1757 Set_Is_Static_Expression (N, False);
1758 return;
1759 end if;
1761 -- Compile time string concatenation
1763 -- ??? Note that operands that are aggregates can be marked as static,
1764 -- so we should attempt at a later stage to fold concatenations with
1765 -- such aggregates.
1767 declare
1768 Left_Str : constant Node_Id := Get_String_Val (Left);
1769 Left_Len : Nat;
1770 Right_Str : constant Node_Id := Get_String_Val (Right);
1771 Folded_Val : String_Id;
1773 begin
1774 -- Establish new string literal, and store left operand. We make
1775 -- sure to use the special Start_String that takes an operand if
1776 -- the left operand is a string literal. Since this is optimized
1777 -- in the case where that is the most recently created string
1778 -- literal, we ensure efficient time/space behavior for the
1779 -- case of a concatenation of a series of string literals.
1781 if Nkind (Left_Str) = N_String_Literal then
1782 Left_Len := String_Length (Strval (Left_Str));
1784 -- If the left operand is the empty string, and the right operand
1785 -- is a string literal (the case of "" & "..."), the result is the
1786 -- value of the right operand. This optimization is important when
1787 -- Is_Folded_In_Parser, to avoid copying an enormous right
1788 -- operand.
1790 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1791 Folded_Val := Strval (Right_Str);
1792 else
1793 Start_String (Strval (Left_Str));
1794 end if;
1796 else
1797 Start_String;
1798 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
1799 Left_Len := 1;
1800 end if;
1802 -- Now append the characters of the right operand, unless we
1803 -- optimized the "" & "..." case above.
1805 if Nkind (Right_Str) = N_String_Literal then
1806 if Left_Len /= 0 then
1807 Store_String_Chars (Strval (Right_Str));
1808 Folded_Val := End_String;
1809 end if;
1810 else
1811 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
1812 Folded_Val := End_String;
1813 end if;
1815 Set_Is_Static_Expression (N, Stat);
1817 if Stat then
1819 -- If left operand is the empty string, the result is the
1820 -- right operand, including its bounds if anomalous.
1822 if Left_Len = 0
1823 and then Is_Array_Type (Etype (Right))
1824 and then Etype (Right) /= Any_String
1825 then
1826 Set_Etype (N, Etype (Right));
1827 end if;
1829 Fold_Str (N, Folded_Val, Static => True);
1830 end if;
1831 end;
1832 end Eval_Concatenation;
1834 ---------------------------------
1835 -- Eval_Conditional_Expression --
1836 ---------------------------------
1838 -- We can fold to a static expression if the condition and both constituent
1839 -- expressions are static. Otherwise, the only required processing is to do
1840 -- the check for non-static context for the then and else expressions.
1842 procedure Eval_Conditional_Expression (N : Node_Id) is
1843 Condition : constant Node_Id := First (Expressions (N));
1844 Then_Expr : constant Node_Id := Next (Condition);
1845 Else_Expr : constant Node_Id := Next (Then_Expr);
1846 Result : Node_Id;
1847 Non_Result : Node_Id;
1849 Rstat : constant Boolean :=
1850 Is_Static_Expression (Condition)
1851 and then
1852 Is_Static_Expression (Then_Expr)
1853 and then
1854 Is_Static_Expression (Else_Expr);
1856 begin
1857 -- If any operand is Any_Type, just propagate to result and do not try
1858 -- to fold, this prevents cascaded errors.
1860 if Etype (Condition) = Any_Type or else
1861 Etype (Then_Expr) = Any_Type or else
1862 Etype (Else_Expr) = Any_Type
1863 then
1864 Set_Etype (N, Any_Type);
1865 Set_Is_Static_Expression (N, False);
1866 return;
1868 -- Static case where we can fold. Note that we don't try to fold cases
1869 -- where the condition is known at compile time, but the result is
1870 -- non-static. This avoids possible cases of infinite recursion where
1871 -- the expander puts in a redundant test and we remove it. Instead we
1872 -- deal with these cases in the expander.
1874 elsif Rstat then
1876 -- Select result operand
1878 if Is_True (Expr_Value (Condition)) then
1879 Result := Then_Expr;
1880 Non_Result := Else_Expr;
1881 else
1882 Result := Else_Expr;
1883 Non_Result := Then_Expr;
1884 end if;
1886 -- Note that it does not matter if the non-result operand raises a
1887 -- Constraint_Error, but if the result raises constraint error then
1888 -- we replace the node with a raise constraint error. This will
1889 -- properly propagate Raises_Constraint_Error since this flag is
1890 -- set in Result.
1892 if Raises_Constraint_Error (Result) then
1893 Rewrite_In_Raise_CE (N, Result);
1894 Check_Non_Static_Context (Non_Result);
1896 -- Otherwise the result operand replaces the original node
1898 else
1899 Rewrite (N, Relocate_Node (Result));
1900 end if;
1902 -- Case of condition not known at compile time
1904 else
1905 Check_Non_Static_Context (Condition);
1906 Check_Non_Static_Context (Then_Expr);
1907 Check_Non_Static_Context (Else_Expr);
1908 end if;
1910 Set_Is_Static_Expression (N, Rstat);
1911 end Eval_Conditional_Expression;
1913 ----------------------
1914 -- Eval_Entity_Name --
1915 ----------------------
1917 -- This procedure is used for identifiers and expanded names other than
1918 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1919 -- static if they denote a static constant (RM 4.9(6)) or if the name
1920 -- denotes an enumeration literal (RM 4.9(22)).
1922 procedure Eval_Entity_Name (N : Node_Id) is
1923 Def_Id : constant Entity_Id := Entity (N);
1924 Val : Node_Id;
1926 begin
1927 -- Enumeration literals are always considered to be constants
1928 -- and cannot raise constraint error (RM 4.9(22)).
1930 if Ekind (Def_Id) = E_Enumeration_Literal then
1931 Set_Is_Static_Expression (N);
1932 return;
1934 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1935 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1936 -- it does not violate 10.2.1(8) here, since this is not a variable.
1938 elsif Ekind (Def_Id) = E_Constant then
1940 -- Deferred constants must always be treated as nonstatic
1941 -- outside the scope of their full view.
1943 if Present (Full_View (Def_Id))
1944 and then not In_Open_Scopes (Scope (Def_Id))
1945 then
1946 Val := Empty;
1947 else
1948 Val := Constant_Value (Def_Id);
1949 end if;
1951 if Present (Val) then
1952 Set_Is_Static_Expression
1953 (N, Is_Static_Expression (Val)
1954 and then Is_Static_Subtype (Etype (Def_Id)));
1955 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1957 if not Is_Static_Expression (N)
1958 and then not Is_Generic_Type (Etype (N))
1959 then
1960 Validate_Static_Object_Name (N);
1961 end if;
1963 return;
1964 end if;
1965 end if;
1967 -- Fall through if the name is not static
1969 Validate_Static_Object_Name (N);
1970 end Eval_Entity_Name;
1972 ----------------------------
1973 -- Eval_Indexed_Component --
1974 ----------------------------
1976 -- Indexed components are never static, so we need to perform the check
1977 -- for non-static context on the index values. Then, we check if the
1978 -- value can be obtained at compile time, even though it is non-static.
1980 procedure Eval_Indexed_Component (N : Node_Id) is
1981 Expr : Node_Id;
1983 begin
1984 -- Check for non-static context on index values
1986 Expr := First (Expressions (N));
1987 while Present (Expr) loop
1988 Check_Non_Static_Context (Expr);
1989 Next (Expr);
1990 end loop;
1992 -- If the indexed component appears in an object renaming declaration
1993 -- then we do not want to try to evaluate it, since in this case we
1994 -- need the identity of the array element.
1996 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1997 return;
1999 -- Similarly if the indexed component appears as the prefix of an
2000 -- attribute we don't want to evaluate it, because at least for
2001 -- some cases of attributes we need the identify (e.g. Access, Size)
2003 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2004 return;
2005 end if;
2007 -- Note: there are other cases, such as the left side of an assignment,
2008 -- or an OUT parameter for a call, where the replacement results in the
2009 -- illegal use of a constant, But these cases are illegal in the first
2010 -- place, so the replacement, though silly, is harmless.
2012 -- Now see if this is a constant array reference
2014 if List_Length (Expressions (N)) = 1
2015 and then Is_Entity_Name (Prefix (N))
2016 and then Ekind (Entity (Prefix (N))) = E_Constant
2017 and then Present (Constant_Value (Entity (Prefix (N))))
2018 then
2019 declare
2020 Loc : constant Source_Ptr := Sloc (N);
2021 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2022 Sub : constant Node_Id := First (Expressions (N));
2024 Atyp : Entity_Id;
2025 -- Type of array
2027 Lin : Nat;
2028 -- Linear one's origin subscript value for array reference
2030 Lbd : Node_Id;
2031 -- Lower bound of the first array index
2033 Elm : Node_Id;
2034 -- Value from constant array
2036 begin
2037 Atyp := Etype (Arr);
2039 if Is_Access_Type (Atyp) then
2040 Atyp := Designated_Type (Atyp);
2041 end if;
2043 -- If we have an array type (we should have but perhaps there are
2044 -- error cases where this is not the case), then see if we can do
2045 -- a constant evaluation of the array reference.
2047 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2048 if Ekind (Atyp) = E_String_Literal_Subtype then
2049 Lbd := String_Literal_Low_Bound (Atyp);
2050 else
2051 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2052 end if;
2054 if Compile_Time_Known_Value (Sub)
2055 and then Nkind (Arr) = N_Aggregate
2056 and then Compile_Time_Known_Value (Lbd)
2057 and then Is_Discrete_Type (Component_Type (Atyp))
2058 then
2059 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2061 if List_Length (Expressions (Arr)) >= Lin then
2062 Elm := Pick (Expressions (Arr), Lin);
2064 -- If the resulting expression is compile time known,
2065 -- then we can rewrite the indexed component with this
2066 -- value, being sure to mark the result as non-static.
2067 -- We also reset the Sloc, in case this generates an
2068 -- error later on (e.g. 136'Access).
2070 if Compile_Time_Known_Value (Elm) then
2071 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2072 Set_Is_Static_Expression (N, False);
2073 Set_Sloc (N, Loc);
2074 end if;
2075 end if;
2077 -- We can also constant-fold if the prefix is a string literal.
2078 -- This will be useful in an instantiation or an inlining.
2080 elsif Compile_Time_Known_Value (Sub)
2081 and then Nkind (Arr) = N_String_Literal
2082 and then Compile_Time_Known_Value (Lbd)
2083 and then Expr_Value (Lbd) = 1
2084 and then Expr_Value (Sub) <=
2085 String_Literal_Length (Etype (Arr))
2086 then
2087 declare
2088 C : constant Char_Code :=
2089 Get_String_Char (Strval (Arr),
2090 UI_To_Int (Expr_Value (Sub)));
2091 begin
2092 Set_Character_Literal_Name (C);
2094 Elm :=
2095 Make_Character_Literal (Loc,
2096 Chars => Name_Find,
2097 Char_Literal_Value => UI_From_CC (C));
2098 Set_Etype (Elm, Component_Type (Atyp));
2099 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2100 Set_Is_Static_Expression (N, False);
2101 end;
2102 end if;
2103 end if;
2104 end;
2105 end if;
2106 end Eval_Indexed_Component;
2108 --------------------------
2109 -- Eval_Integer_Literal --
2110 --------------------------
2112 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2113 -- as static by the analyzer. The reason we did it that early is to allow
2114 -- the possibility of turning off the Is_Static_Expression flag after
2115 -- analysis, but before resolution, when integer literals are generated in
2116 -- the expander that do not correspond to static expressions.
2118 procedure Eval_Integer_Literal (N : Node_Id) is
2119 T : constant Entity_Id := Etype (N);
2121 function In_Any_Integer_Context return Boolean;
2122 -- If the literal is resolved with a specific type in a context where
2123 -- the expected type is Any_Integer, there are no range checks on the
2124 -- literal. By the time the literal is evaluated, it carries the type
2125 -- imposed by the enclosing expression, and we must recover the context
2126 -- to determine that Any_Integer is meant.
2128 ----------------------------
2129 -- In_Any_Integer_Context --
2130 ----------------------------
2132 function In_Any_Integer_Context return Boolean is
2133 Par : constant Node_Id := Parent (N);
2134 K : constant Node_Kind := Nkind (Par);
2136 begin
2137 -- Any_Integer also appears in digits specifications for real types,
2138 -- but those have bounds smaller that those of any integer base type,
2139 -- so we can safely ignore these cases.
2141 return K = N_Number_Declaration
2142 or else K = N_Attribute_Reference
2143 or else K = N_Attribute_Definition_Clause
2144 or else K = N_Modular_Type_Definition
2145 or else K = N_Signed_Integer_Type_Definition;
2146 end In_Any_Integer_Context;
2148 -- Start of processing for Eval_Integer_Literal
2150 begin
2152 -- If the literal appears in a non-expression context, then it is
2153 -- certainly appearing in a non-static context, so check it. This is
2154 -- actually a redundant check, since Check_Non_Static_Context would
2155 -- check it, but it seems worth while avoiding the call.
2157 if Nkind (Parent (N)) not in N_Subexpr
2158 and then not In_Any_Integer_Context
2159 then
2160 Check_Non_Static_Context (N);
2161 end if;
2163 -- Modular integer literals must be in their base range
2165 if Is_Modular_Integer_Type (T)
2166 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2167 then
2168 Out_Of_Range (N);
2169 end if;
2170 end Eval_Integer_Literal;
2172 ---------------------
2173 -- Eval_Logical_Op --
2174 ---------------------
2176 -- Logical operations are static functions, so the result is potentially
2177 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2179 procedure Eval_Logical_Op (N : Node_Id) is
2180 Left : constant Node_Id := Left_Opnd (N);
2181 Right : constant Node_Id := Right_Opnd (N);
2182 Stat : Boolean;
2183 Fold : Boolean;
2185 begin
2186 -- If not foldable we are done
2188 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2190 if not Fold then
2191 return;
2192 end if;
2194 -- Compile time evaluation of logical operation
2196 declare
2197 Left_Int : constant Uint := Expr_Value (Left);
2198 Right_Int : constant Uint := Expr_Value (Right);
2200 begin
2201 -- VMS includes bitwise operations on signed types
2203 if Is_Modular_Integer_Type (Etype (N))
2204 or else Is_VMS_Operator (Entity (N))
2205 then
2206 declare
2207 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2208 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2210 begin
2211 To_Bits (Left_Int, Left_Bits);
2212 To_Bits (Right_Int, Right_Bits);
2214 -- Note: should really be able to use array ops instead of
2215 -- these loops, but they weren't working at the time ???
2217 if Nkind (N) = N_Op_And then
2218 for J in Left_Bits'Range loop
2219 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2220 end loop;
2222 elsif Nkind (N) = N_Op_Or then
2223 for J in Left_Bits'Range loop
2224 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2225 end loop;
2227 else
2228 pragma Assert (Nkind (N) = N_Op_Xor);
2230 for J in Left_Bits'Range loop
2231 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2232 end loop;
2233 end if;
2235 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2236 end;
2238 else
2239 pragma Assert (Is_Boolean_Type (Etype (N)));
2241 if Nkind (N) = N_Op_And then
2242 Fold_Uint (N,
2243 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2245 elsif Nkind (N) = N_Op_Or then
2246 Fold_Uint (N,
2247 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2249 else
2250 pragma Assert (Nkind (N) = N_Op_Xor);
2251 Fold_Uint (N,
2252 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2253 end if;
2254 end if;
2255 end;
2256 end Eval_Logical_Op;
2258 ------------------------
2259 -- Eval_Membership_Op --
2260 ------------------------
2262 -- A membership test is potentially static if the expression is static, and
2263 -- the range is a potentially static range, or is a subtype mark denoting a
2264 -- static subtype (RM 4.9(12)).
2266 procedure Eval_Membership_Op (N : Node_Id) is
2267 Left : constant Node_Id := Left_Opnd (N);
2268 Right : constant Node_Id := Right_Opnd (N);
2269 Def_Id : Entity_Id;
2270 Lo : Node_Id;
2271 Hi : Node_Id;
2272 Result : Boolean;
2273 Stat : Boolean;
2274 Fold : Boolean;
2276 begin
2277 -- Ignore if error in either operand, except to make sure that Any_Type
2278 -- is properly propagated to avoid junk cascaded errors.
2280 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2281 Set_Etype (N, Any_Type);
2282 return;
2283 end if;
2285 -- Case of right operand is a subtype name
2287 if Is_Entity_Name (Right) then
2288 Def_Id := Entity (Right);
2290 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2291 and then Is_OK_Static_Subtype (Def_Id)
2292 then
2293 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2295 if not Fold or else not Stat then
2296 return;
2297 end if;
2298 else
2299 Check_Non_Static_Context (Left);
2300 return;
2301 end if;
2303 -- For string membership tests we will check the length further on
2305 if not Is_String_Type (Def_Id) then
2306 Lo := Type_Low_Bound (Def_Id);
2307 Hi := Type_High_Bound (Def_Id);
2309 else
2310 Lo := Empty;
2311 Hi := Empty;
2312 end if;
2314 -- Case of right operand is a range
2316 else
2317 if Is_Static_Range (Right) then
2318 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2320 if not Fold or else not Stat then
2321 return;
2323 -- If one bound of range raises CE, then don't try to fold
2325 elsif not Is_OK_Static_Range (Right) then
2326 Check_Non_Static_Context (Left);
2327 return;
2328 end if;
2330 else
2331 Check_Non_Static_Context (Left);
2332 return;
2333 end if;
2335 -- Here we know range is an OK static range
2337 Lo := Low_Bound (Right);
2338 Hi := High_Bound (Right);
2339 end if;
2341 -- For strings we check that the length of the string expression is
2342 -- compatible with the string subtype if the subtype is constrained,
2343 -- or if unconstrained then the test is always true.
2345 if Is_String_Type (Etype (Right)) then
2346 if not Is_Constrained (Etype (Right)) then
2347 Result := True;
2349 else
2350 declare
2351 Typlen : constant Uint := String_Type_Len (Etype (Right));
2352 Strlen : constant Uint :=
2353 UI_From_Int
2354 (String_Length (Strval (Get_String_Val (Left))));
2355 begin
2356 Result := (Typlen = Strlen);
2357 end;
2358 end if;
2360 -- Fold the membership test. We know we have a static range and Lo and
2361 -- Hi are set to the expressions for the end points of this range.
2363 elsif Is_Real_Type (Etype (Right)) then
2364 declare
2365 Leftval : constant Ureal := Expr_Value_R (Left);
2367 begin
2368 Result := Expr_Value_R (Lo) <= Leftval
2369 and then Leftval <= Expr_Value_R (Hi);
2370 end;
2372 else
2373 declare
2374 Leftval : constant Uint := Expr_Value (Left);
2376 begin
2377 Result := Expr_Value (Lo) <= Leftval
2378 and then Leftval <= Expr_Value (Hi);
2379 end;
2380 end if;
2382 if Nkind (N) = N_Not_In then
2383 Result := not Result;
2384 end if;
2386 Fold_Uint (N, Test (Result), True);
2388 Warn_On_Known_Condition (N);
2389 end Eval_Membership_Op;
2391 ------------------------
2392 -- Eval_Named_Integer --
2393 ------------------------
2395 procedure Eval_Named_Integer (N : Node_Id) is
2396 begin
2397 Fold_Uint (N,
2398 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2399 end Eval_Named_Integer;
2401 ---------------------
2402 -- Eval_Named_Real --
2403 ---------------------
2405 procedure Eval_Named_Real (N : Node_Id) is
2406 begin
2407 Fold_Ureal (N,
2408 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2409 end Eval_Named_Real;
2411 -------------------
2412 -- Eval_Op_Expon --
2413 -------------------
2415 -- Exponentiation is a static functions, so the result is potentially
2416 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2418 procedure Eval_Op_Expon (N : Node_Id) is
2419 Left : constant Node_Id := Left_Opnd (N);
2420 Right : constant Node_Id := Right_Opnd (N);
2421 Stat : Boolean;
2422 Fold : Boolean;
2424 begin
2425 -- If not foldable we are done
2427 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2429 if not Fold then
2430 return;
2431 end if;
2433 -- Fold exponentiation operation
2435 declare
2436 Right_Int : constant Uint := Expr_Value (Right);
2438 begin
2439 -- Integer case
2441 if Is_Integer_Type (Etype (Left)) then
2442 declare
2443 Left_Int : constant Uint := Expr_Value (Left);
2444 Result : Uint;
2446 begin
2447 -- Exponentiation of an integer raises Constraint_Error for a
2448 -- negative exponent (RM 4.5.6).
2450 if Right_Int < 0 then
2451 Apply_Compile_Time_Constraint_Error
2452 (N, "integer exponent negative",
2453 CE_Range_Check_Failed,
2454 Warn => not Stat);
2455 return;
2457 else
2458 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2459 Result := Left_Int ** Right_Int;
2460 else
2461 Result := Left_Int;
2462 end if;
2464 if Is_Modular_Integer_Type (Etype (N)) then
2465 Result := Result mod Modulus (Etype (N));
2466 end if;
2468 Fold_Uint (N, Result, Stat);
2469 end if;
2470 end;
2472 -- Real case
2474 else
2475 declare
2476 Left_Real : constant Ureal := Expr_Value_R (Left);
2478 begin
2479 -- Cannot have a zero base with a negative exponent
2481 if UR_Is_Zero (Left_Real) then
2483 if Right_Int < 0 then
2484 Apply_Compile_Time_Constraint_Error
2485 (N, "zero ** negative integer",
2486 CE_Range_Check_Failed,
2487 Warn => not Stat);
2488 return;
2489 else
2490 Fold_Ureal (N, Ureal_0, Stat);
2491 end if;
2493 else
2494 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2495 end if;
2496 end;
2497 end if;
2498 end;
2499 end Eval_Op_Expon;
2501 -----------------
2502 -- Eval_Op_Not --
2503 -----------------
2505 -- The not operation is a static functions, so the result is potentially
2506 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2508 procedure Eval_Op_Not (N : Node_Id) is
2509 Right : constant Node_Id := Right_Opnd (N);
2510 Stat : Boolean;
2511 Fold : Boolean;
2513 begin
2514 -- If not foldable we are done
2516 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2518 if not Fold then
2519 return;
2520 end if;
2522 -- Fold not operation
2524 declare
2525 Rint : constant Uint := Expr_Value (Right);
2526 Typ : constant Entity_Id := Etype (N);
2528 begin
2529 -- Negation is equivalent to subtracting from the modulus minus one.
2530 -- For a binary modulus this is equivalent to the ones-complement of
2531 -- the original value. For non-binary modulus this is an arbitrary
2532 -- but consistent definition.
2534 if Is_Modular_Integer_Type (Typ) then
2535 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
2537 else
2538 pragma Assert (Is_Boolean_Type (Typ));
2539 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
2540 end if;
2542 Set_Is_Static_Expression (N, Stat);
2543 end;
2544 end Eval_Op_Not;
2546 -------------------------------
2547 -- Eval_Qualified_Expression --
2548 -------------------------------
2550 -- A qualified expression is potentially static if its subtype mark denotes
2551 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2553 procedure Eval_Qualified_Expression (N : Node_Id) is
2554 Operand : constant Node_Id := Expression (N);
2555 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2557 Stat : Boolean;
2558 Fold : Boolean;
2559 Hex : Boolean;
2561 begin
2562 -- Can only fold if target is string or scalar and subtype is static.
2563 -- Also, do not fold if our parent is an allocator (this is because the
2564 -- qualified expression is really part of the syntactic structure of an
2565 -- allocator, and we do not want to end up with something that
2566 -- corresponds to "new 1" where the 1 is the result of folding a
2567 -- qualified expression).
2569 if not Is_Static_Subtype (Target_Type)
2570 or else Nkind (Parent (N)) = N_Allocator
2571 then
2572 Check_Non_Static_Context (Operand);
2574 -- If operand is known to raise constraint_error, set the flag on the
2575 -- expression so it does not get optimized away.
2577 if Nkind (Operand) = N_Raise_Constraint_Error then
2578 Set_Raises_Constraint_Error (N);
2579 end if;
2581 return;
2582 end if;
2584 -- If not foldable we are done
2586 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2588 if not Fold then
2589 return;
2591 -- Don't try fold if target type has constraint error bounds
2593 elsif not Is_OK_Static_Subtype (Target_Type) then
2594 Set_Raises_Constraint_Error (N);
2595 return;
2596 end if;
2598 -- Here we will fold, save Print_In_Hex indication
2600 Hex := Nkind (Operand) = N_Integer_Literal
2601 and then Print_In_Hex (Operand);
2603 -- Fold the result of qualification
2605 if Is_Discrete_Type (Target_Type) then
2606 Fold_Uint (N, Expr_Value (Operand), Stat);
2608 -- Preserve Print_In_Hex indication
2610 if Hex and then Nkind (N) = N_Integer_Literal then
2611 Set_Print_In_Hex (N);
2612 end if;
2614 elsif Is_Real_Type (Target_Type) then
2615 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
2617 else
2618 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
2620 if not Stat then
2621 Set_Is_Static_Expression (N, False);
2622 else
2623 Check_String_Literal_Length (N, Target_Type);
2624 end if;
2626 return;
2627 end if;
2629 -- The expression may be foldable but not static
2631 Set_Is_Static_Expression (N, Stat);
2633 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
2634 Out_Of_Range (N);
2635 end if;
2636 end Eval_Qualified_Expression;
2638 -----------------------
2639 -- Eval_Real_Literal --
2640 -----------------------
2642 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2643 -- as static by the analyzer. The reason we did it that early is to allow
2644 -- the possibility of turning off the Is_Static_Expression flag after
2645 -- analysis, but before resolution, when integer literals are generated
2646 -- in the expander that do not correspond to static expressions.
2648 procedure Eval_Real_Literal (N : Node_Id) is
2649 PK : constant Node_Kind := Nkind (Parent (N));
2651 begin
2652 -- If the literal appears in a non-expression context and not as part of
2653 -- a number declaration, then it is appearing in a non-static context,
2654 -- so check it.
2656 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
2657 Check_Non_Static_Context (N);
2658 end if;
2659 end Eval_Real_Literal;
2661 ------------------------
2662 -- Eval_Relational_Op --
2663 ------------------------
2665 -- Relational operations are static functions, so the result is static if
2666 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2667 -- the result is never static, even if the operands are.
2669 procedure Eval_Relational_Op (N : Node_Id) is
2670 Left : constant Node_Id := Left_Opnd (N);
2671 Right : constant Node_Id := Right_Opnd (N);
2672 Typ : constant Entity_Id := Etype (Left);
2673 Otype : Entity_Id := Empty;
2674 Result : Boolean;
2675 Stat : Boolean;
2676 Fold : Boolean;
2678 begin
2679 -- One special case to deal with first. If we can tell that the result
2680 -- will be false because the lengths of one or more index subtypes are
2681 -- compile time known and different, then we can replace the entire
2682 -- result by False. We only do this for one dimensional arrays, because
2683 -- the case of multi-dimensional arrays is rare and too much trouble! If
2684 -- one of the operands is an illegal aggregate, its type might still be
2685 -- an arbitrary composite type, so nothing to do.
2687 if Is_Array_Type (Typ)
2688 and then Typ /= Any_Composite
2689 and then Number_Dimensions (Typ) = 1
2690 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
2691 then
2692 if Raises_Constraint_Error (Left)
2693 or else Raises_Constraint_Error (Right)
2694 then
2695 return;
2696 end if;
2698 -- OK, we have the case where we may be able to do this fold
2700 Length_Mismatch : declare
2701 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2702 -- If Op is an expression for a constrained array with a known at
2703 -- compile time length, then Len is set to this (non-negative
2704 -- length). Otherwise Len is set to minus 1.
2706 -----------------------
2707 -- Get_Static_Length --
2708 -----------------------
2710 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2711 T : Entity_Id;
2713 begin
2714 -- First easy case string literal
2716 if Nkind (Op) = N_String_Literal then
2717 Len := UI_From_Int (String_Length (Strval (Op)));
2718 return;
2719 end if;
2721 -- Second easy case, not constrained subtype, so no length
2723 if not Is_Constrained (Etype (Op)) then
2724 Len := Uint_Minus_1;
2725 return;
2726 end if;
2728 -- General case
2730 T := Etype (First_Index (Etype (Op)));
2732 -- The simple case, both bounds are known at compile time
2734 if Is_Discrete_Type (T)
2735 and then
2736 Compile_Time_Known_Value (Type_Low_Bound (T))
2737 and then
2738 Compile_Time_Known_Value (Type_High_Bound (T))
2739 then
2740 Len := UI_Max (Uint_0,
2741 Expr_Value (Type_High_Bound (T)) -
2742 Expr_Value (Type_Low_Bound (T)) + 1);
2743 return;
2744 end if;
2746 -- A more complex case, where the bounds are of the form
2747 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2748 -- either A'First or A'Last (with A an entity name), or X is an
2749 -- entity name, and the two X's are the same and K1 and K2 are
2750 -- known at compile time, in this case, the length can also be
2751 -- computed at compile time, even though the bounds are not
2752 -- known. A common case of this is e.g. (X'First .. X'First+5).
2754 Extract_Length : declare
2755 procedure Decompose_Expr
2756 (Expr : Node_Id;
2757 Ent : out Entity_Id;
2758 Kind : out Character;
2759 Cons : out Uint);
2760 -- Given an expression, see if is of the form above,
2761 -- X [+/- K]. If so Ent is set to the entity in X,
2762 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2763 -- and Cons is the value of K. If the expression is
2764 -- not of the required form, Ent is set to Empty.
2766 --------------------
2767 -- Decompose_Expr --
2768 --------------------
2770 procedure Decompose_Expr
2771 (Expr : Node_Id;
2772 Ent : out Entity_Id;
2773 Kind : out Character;
2774 Cons : out Uint)
2776 Exp : Node_Id;
2778 begin
2779 if Nkind (Expr) = N_Op_Add
2780 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2781 then
2782 Exp := Left_Opnd (Expr);
2783 Cons := Expr_Value (Right_Opnd (Expr));
2785 elsif Nkind (Expr) = N_Op_Subtract
2786 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2787 then
2788 Exp := Left_Opnd (Expr);
2789 Cons := -Expr_Value (Right_Opnd (Expr));
2791 -- If the bound is a constant created to remove side
2792 -- effects, recover original expression to see if it has
2793 -- one of the recognizable forms.
2795 elsif Nkind (Expr) = N_Identifier
2796 and then not Comes_From_Source (Entity (Expr))
2797 and then Ekind (Entity (Expr)) = E_Constant
2798 and then
2799 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2800 then
2801 Exp := Expression (Parent (Entity (Expr)));
2802 Decompose_Expr (Exp, Ent, Kind, Cons);
2804 -- If original expression includes an entity, create a
2805 -- reference to it for use below.
2807 if Present (Ent) then
2808 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2809 end if;
2811 else
2812 Exp := Expr;
2813 Cons := Uint_0;
2814 end if;
2816 -- At this stage Exp is set to the potential X
2818 if Nkind (Exp) = N_Attribute_Reference then
2819 if Attribute_Name (Exp) = Name_First then
2820 Kind := 'F';
2822 elsif Attribute_Name (Exp) = Name_Last then
2823 Kind := 'L';
2825 else
2826 Ent := Empty;
2827 return;
2828 end if;
2830 Exp := Prefix (Exp);
2832 else
2833 Kind := 'E';
2834 end if;
2836 if Is_Entity_Name (Exp)
2837 and then Present (Entity (Exp))
2838 then
2839 Ent := Entity (Exp);
2840 else
2841 Ent := Empty;
2842 end if;
2843 end Decompose_Expr;
2845 -- Local Variables
2847 Ent1, Ent2 : Entity_Id;
2848 Kind1, Kind2 : Character;
2849 Cons1, Cons2 : Uint;
2851 -- Start of processing for Extract_Length
2853 begin
2854 Decompose_Expr
2855 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2856 Decompose_Expr
2857 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
2859 if Present (Ent1)
2860 and then Kind1 = Kind2
2861 and then Ent1 = Ent2
2862 then
2863 Len := Cons2 - Cons1 + 1;
2864 else
2865 Len := Uint_Minus_1;
2866 end if;
2867 end Extract_Length;
2868 end Get_Static_Length;
2870 -- Local Variables
2872 Len_L : Uint;
2873 Len_R : Uint;
2875 -- Start of processing for Length_Mismatch
2877 begin
2878 Get_Static_Length (Left, Len_L);
2879 Get_Static_Length (Right, Len_R);
2881 if Len_L /= Uint_Minus_1
2882 and then Len_R /= Uint_Minus_1
2883 and then Len_L /= Len_R
2884 then
2885 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2886 Warn_On_Known_Condition (N);
2887 return;
2888 end if;
2889 end Length_Mismatch;
2890 end if;
2892 -- Test for expression being foldable
2894 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2896 -- Only comparisons of scalars can give static results. In particular,
2897 -- comparisons of strings never yield a static result, even if both
2898 -- operands are static strings.
2900 if not Is_Scalar_Type (Typ) then
2901 Stat := False;
2902 Set_Is_Static_Expression (N, False);
2903 end if;
2905 -- For operators on universal numeric types called as functions with
2906 -- an explicit scope, determine appropriate specific numeric type, and
2907 -- diagnose possible ambiguity.
2909 if Is_Universal_Numeric_Type (Etype (Left))
2910 and then
2911 Is_Universal_Numeric_Type (Etype (Right))
2912 then
2913 Otype := Find_Universal_Operator_Type (N);
2914 end if;
2916 -- For static real type expressions, we cannot use Compile_Time_Compare
2917 -- since it worries about run-time results which are not exact.
2919 if Stat and then Is_Real_Type (Typ) then
2920 declare
2921 Left_Real : constant Ureal := Expr_Value_R (Left);
2922 Right_Real : constant Ureal := Expr_Value_R (Right);
2924 begin
2925 case Nkind (N) is
2926 when N_Op_Eq => Result := (Left_Real = Right_Real);
2927 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2928 when N_Op_Lt => Result := (Left_Real < Right_Real);
2929 when N_Op_Le => Result := (Left_Real <= Right_Real);
2930 when N_Op_Gt => Result := (Left_Real > Right_Real);
2931 when N_Op_Ge => Result := (Left_Real >= Right_Real);
2933 when others =>
2934 raise Program_Error;
2935 end case;
2937 Fold_Uint (N, Test (Result), True);
2938 end;
2940 -- For all other cases, we use Compile_Time_Compare to do the compare
2942 else
2943 declare
2944 CR : constant Compare_Result :=
2945 Compile_Time_Compare (Left, Right, Assume_Valid => False);
2947 begin
2948 if CR = Unknown then
2949 return;
2950 end if;
2952 case Nkind (N) is
2953 when N_Op_Eq =>
2954 if CR = EQ then
2955 Result := True;
2956 elsif CR = NE or else CR = GT or else CR = LT then
2957 Result := False;
2958 else
2959 return;
2960 end if;
2962 when N_Op_Ne =>
2963 if CR = NE or else CR = GT or else CR = LT then
2964 Result := True;
2965 elsif CR = EQ then
2966 Result := False;
2967 else
2968 return;
2969 end if;
2971 when N_Op_Lt =>
2972 if CR = LT then
2973 Result := True;
2974 elsif CR = EQ or else CR = GT or else CR = GE then
2975 Result := False;
2976 else
2977 return;
2978 end if;
2980 when N_Op_Le =>
2981 if CR = LT or else CR = EQ or else CR = LE then
2982 Result := True;
2983 elsif CR = GT then
2984 Result := False;
2985 else
2986 return;
2987 end if;
2989 when N_Op_Gt =>
2990 if CR = GT then
2991 Result := True;
2992 elsif CR = EQ or else CR = LT or else CR = LE then
2993 Result := False;
2994 else
2995 return;
2996 end if;
2998 when N_Op_Ge =>
2999 if CR = GT or else CR = EQ or else CR = GE then
3000 Result := True;
3001 elsif CR = LT then
3002 Result := False;
3003 else
3004 return;
3005 end if;
3007 when others =>
3008 raise Program_Error;
3009 end case;
3010 end;
3012 Fold_Uint (N, Test (Result), Stat);
3013 end if;
3015 -- For the case of a folded relational operator on a specific numeric
3016 -- type, freeze operand type now.
3018 if Present (Otype) then
3019 Freeze_Before (N, Otype);
3020 end if;
3022 Warn_On_Known_Condition (N);
3023 end Eval_Relational_Op;
3025 ----------------
3026 -- Eval_Shift --
3027 ----------------
3029 -- Shift operations are intrinsic operations that can never be static, so
3030 -- the only processing required is to perform the required check for a non
3031 -- static context for the two operands.
3033 -- Actually we could do some compile time evaluation here some time ???
3035 procedure Eval_Shift (N : Node_Id) is
3036 begin
3037 Check_Non_Static_Context (Left_Opnd (N));
3038 Check_Non_Static_Context (Right_Opnd (N));
3039 end Eval_Shift;
3041 ------------------------
3042 -- Eval_Short_Circuit --
3043 ------------------------
3045 -- A short circuit operation is potentially static if both operands are
3046 -- potentially static (RM 4.9 (13)).
3048 procedure Eval_Short_Circuit (N : Node_Id) is
3049 Kind : constant Node_Kind := Nkind (N);
3050 Left : constant Node_Id := Left_Opnd (N);
3051 Right : constant Node_Id := Right_Opnd (N);
3052 Left_Int : Uint;
3054 Rstat : constant Boolean :=
3055 Is_Static_Expression (Left)
3056 and then
3057 Is_Static_Expression (Right);
3059 begin
3060 -- Short circuit operations are never static in Ada 83
3062 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3063 Check_Non_Static_Context (Left);
3064 Check_Non_Static_Context (Right);
3065 return;
3066 end if;
3068 -- Now look at the operands, we can't quite use the normal call to
3069 -- Test_Expression_Is_Foldable here because short circuit operations
3070 -- are a special case, they can still be foldable, even if the right
3071 -- operand raises constraint error.
3073 -- If either operand is Any_Type, just propagate to result and do not
3074 -- try to fold, this prevents cascaded errors.
3076 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3077 Set_Etype (N, Any_Type);
3078 return;
3080 -- If left operand raises constraint error, then replace node N with
3081 -- the raise constraint error node, and we are obviously not foldable.
3082 -- Is_Static_Expression is set from the two operands in the normal way,
3083 -- and we check the right operand if it is in a non-static context.
3085 elsif Raises_Constraint_Error (Left) then
3086 if not Rstat then
3087 Check_Non_Static_Context (Right);
3088 end if;
3090 Rewrite_In_Raise_CE (N, Left);
3091 Set_Is_Static_Expression (N, Rstat);
3092 return;
3094 -- If the result is not static, then we won't in any case fold
3096 elsif not Rstat then
3097 Check_Non_Static_Context (Left);
3098 Check_Non_Static_Context (Right);
3099 return;
3100 end if;
3102 -- Here the result is static, note that, unlike the normal processing
3103 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3104 -- the right operand raises constraint error, that's because it is not
3105 -- significant if the left operand is decisive.
3107 Set_Is_Static_Expression (N);
3109 -- It does not matter if the right operand raises constraint error if
3110 -- it will not be evaluated. So deal specially with the cases where
3111 -- the right operand is not evaluated. Note that we will fold these
3112 -- cases even if the right operand is non-static, which is fine, but
3113 -- of course in these cases the result is not potentially static.
3115 Left_Int := Expr_Value (Left);
3117 if (Kind = N_And_Then and then Is_False (Left_Int))
3118 or else
3119 (Kind = N_Or_Else and then Is_True (Left_Int))
3120 then
3121 Fold_Uint (N, Left_Int, Rstat);
3122 return;
3123 end if;
3125 -- If first operand not decisive, then it does matter if the right
3126 -- operand raises constraint error, since it will be evaluated, so
3127 -- we simply replace the node with the right operand. Note that this
3128 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3129 -- (both are set to True in Right).
3131 if Raises_Constraint_Error (Right) then
3132 Rewrite_In_Raise_CE (N, Right);
3133 Check_Non_Static_Context (Left);
3134 return;
3135 end if;
3137 -- Otherwise the result depends on the right operand
3139 Fold_Uint (N, Expr_Value (Right), Rstat);
3140 return;
3141 end Eval_Short_Circuit;
3143 ----------------
3144 -- Eval_Slice --
3145 ----------------
3147 -- Slices can never be static, so the only processing required is to check
3148 -- for non-static context if an explicit range is given.
3150 procedure Eval_Slice (N : Node_Id) is
3151 Drange : constant Node_Id := Discrete_Range (N);
3152 begin
3153 if Nkind (Drange) = N_Range then
3154 Check_Non_Static_Context (Low_Bound (Drange));
3155 Check_Non_Static_Context (High_Bound (Drange));
3156 end if;
3158 -- A slice of the form A (subtype), when the subtype is the index of
3159 -- the type of A, is redundant, the slice can be replaced with A, and
3160 -- this is worth a warning.
3162 if Is_Entity_Name (Prefix (N)) then
3163 declare
3164 E : constant Entity_Id := Entity (Prefix (N));
3165 T : constant Entity_Id := Etype (E);
3166 begin
3167 if Ekind (E) = E_Constant
3168 and then Is_Array_Type (T)
3169 and then Is_Entity_Name (Drange)
3170 then
3171 if Is_Entity_Name (Original_Node (First_Index (T)))
3172 and then Entity (Original_Node (First_Index (T)))
3173 = Entity (Drange)
3174 then
3175 if Warn_On_Redundant_Constructs then
3176 Error_Msg_N ("redundant slice denotes whole array?", N);
3177 end if;
3179 -- The following might be a useful optimization????
3181 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3182 end if;
3183 end if;
3184 end;
3185 end if;
3186 end Eval_Slice;
3188 -------------------------
3189 -- Eval_String_Literal --
3190 -------------------------
3192 procedure Eval_String_Literal (N : Node_Id) is
3193 Typ : constant Entity_Id := Etype (N);
3194 Bas : constant Entity_Id := Base_Type (Typ);
3195 Xtp : Entity_Id;
3196 Len : Nat;
3197 Lo : Node_Id;
3199 begin
3200 -- Nothing to do if error type (handles cases like default expressions
3201 -- or generics where we have not yet fully resolved the type).
3203 if Bas = Any_Type or else Bas = Any_String then
3204 return;
3205 end if;
3207 -- String literals are static if the subtype is static (RM 4.9(2)), so
3208 -- reset the static expression flag (it was set unconditionally in
3209 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3210 -- the subtype is static by looking at the lower bound.
3212 if Ekind (Typ) = E_String_Literal_Subtype then
3213 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3214 Set_Is_Static_Expression (N, False);
3215 return;
3216 end if;
3218 -- Here if Etype of string literal is normal Etype (not yet possible,
3219 -- but may be possible in future).
3221 elsif not Is_OK_Static_Expression
3222 (Type_Low_Bound (Etype (First_Index (Typ))))
3223 then
3224 Set_Is_Static_Expression (N, False);
3225 return;
3226 end if;
3228 -- If original node was a type conversion, then result if non-static
3230 if Nkind (Original_Node (N)) = N_Type_Conversion then
3231 Set_Is_Static_Expression (N, False);
3232 return;
3233 end if;
3235 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3236 -- if its bounds are outside the index base type and this index type is
3237 -- static. This can happen in only two ways. Either the string literal
3238 -- is too long, or it is null, and the lower bound is type'First. In
3239 -- either case it is the upper bound that is out of range of the index
3240 -- type.
3242 if Ada_Version >= Ada_95 then
3243 if Root_Type (Bas) = Standard_String
3244 or else
3245 Root_Type (Bas) = Standard_Wide_String
3246 then
3247 Xtp := Standard_Positive;
3248 else
3249 Xtp := Etype (First_Index (Bas));
3250 end if;
3252 if Ekind (Typ) = E_String_Literal_Subtype then
3253 Lo := String_Literal_Low_Bound (Typ);
3254 else
3255 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3256 end if;
3258 Len := String_Length (Strval (N));
3260 if UI_From_Int (Len) > String_Type_Len (Bas) then
3261 Apply_Compile_Time_Constraint_Error
3262 (N, "string literal too long for}", CE_Length_Check_Failed,
3263 Ent => Bas,
3264 Typ => First_Subtype (Bas));
3266 elsif Len = 0
3267 and then not Is_Generic_Type (Xtp)
3268 and then
3269 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3270 then
3271 Apply_Compile_Time_Constraint_Error
3272 (N, "null string literal not allowed for}",
3273 CE_Length_Check_Failed,
3274 Ent => Bas,
3275 Typ => First_Subtype (Bas));
3276 end if;
3277 end if;
3278 end Eval_String_Literal;
3280 --------------------------
3281 -- Eval_Type_Conversion --
3282 --------------------------
3284 -- A type conversion is potentially static if its subtype mark is for a
3285 -- static scalar subtype, and its operand expression is potentially static
3286 -- (RM 4.9(10)).
3288 procedure Eval_Type_Conversion (N : Node_Id) is
3289 Operand : constant Node_Id := Expression (N);
3290 Source_Type : constant Entity_Id := Etype (Operand);
3291 Target_Type : constant Entity_Id := Etype (N);
3293 Stat : Boolean;
3294 Fold : Boolean;
3296 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3297 -- Returns true if type T is an integer type, or if it is a fixed-point
3298 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3299 -- on the conversion node).
3301 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3302 -- Returns true if type T is a floating-point type, or if it is a
3303 -- fixed-point type that is not to be treated as an integer (i.e. the
3304 -- flag Conversion_OK is not set on the conversion node).
3306 ------------------------------
3307 -- To_Be_Treated_As_Integer --
3308 ------------------------------
3310 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3311 begin
3312 return
3313 Is_Integer_Type (T)
3314 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3315 end To_Be_Treated_As_Integer;
3317 ---------------------------
3318 -- To_Be_Treated_As_Real --
3319 ---------------------------
3321 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3322 begin
3323 return
3324 Is_Floating_Point_Type (T)
3325 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3326 end To_Be_Treated_As_Real;
3328 -- Start of processing for Eval_Type_Conversion
3330 begin
3331 -- Cannot fold if target type is non-static or if semantic error
3333 if not Is_Static_Subtype (Target_Type) then
3334 Check_Non_Static_Context (Operand);
3335 return;
3337 elsif Error_Posted (N) then
3338 return;
3339 end if;
3341 -- If not foldable we are done
3343 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3345 if not Fold then
3346 return;
3348 -- Don't try fold if target type has constraint error bounds
3350 elsif not Is_OK_Static_Subtype (Target_Type) then
3351 Set_Raises_Constraint_Error (N);
3352 return;
3353 end if;
3355 -- Remaining processing depends on operand types. Note that in the
3356 -- following type test, fixed-point counts as real unless the flag
3357 -- Conversion_OK is set, in which case it counts as integer.
3359 -- Fold conversion, case of string type. The result is not static
3361 if Is_String_Type (Target_Type) then
3362 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3364 return;
3366 -- Fold conversion, case of integer target type
3368 elsif To_Be_Treated_As_Integer (Target_Type) then
3369 declare
3370 Result : Uint;
3372 begin
3373 -- Integer to integer conversion
3375 if To_Be_Treated_As_Integer (Source_Type) then
3376 Result := Expr_Value (Operand);
3378 -- Real to integer conversion
3380 else
3381 Result := UR_To_Uint (Expr_Value_R (Operand));
3382 end if;
3384 -- If fixed-point type (Conversion_OK must be set), then the
3385 -- result is logically an integer, but we must replace the
3386 -- conversion with the corresponding real literal, since the
3387 -- type from a semantic point of view is still fixed-point.
3389 if Is_Fixed_Point_Type (Target_Type) then
3390 Fold_Ureal
3391 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3393 -- Otherwise result is integer literal
3395 else
3396 Fold_Uint (N, Result, Stat);
3397 end if;
3398 end;
3400 -- Fold conversion, case of real target type
3402 elsif To_Be_Treated_As_Real (Target_Type) then
3403 declare
3404 Result : Ureal;
3406 begin
3407 if To_Be_Treated_As_Real (Source_Type) then
3408 Result := Expr_Value_R (Operand);
3409 else
3410 Result := UR_From_Uint (Expr_Value (Operand));
3411 end if;
3413 Fold_Ureal (N, Result, Stat);
3414 end;
3416 -- Enumeration types
3418 else
3419 Fold_Uint (N, Expr_Value (Operand), Stat);
3420 end if;
3422 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3423 Out_Of_Range (N);
3424 end if;
3426 end Eval_Type_Conversion;
3428 -------------------
3429 -- Eval_Unary_Op --
3430 -------------------
3432 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3433 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3435 procedure Eval_Unary_Op (N : Node_Id) is
3436 Right : constant Node_Id := Right_Opnd (N);
3437 Otype : Entity_Id := Empty;
3438 Stat : Boolean;
3439 Fold : Boolean;
3441 begin
3442 -- If not foldable we are done
3444 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3446 if not Fold then
3447 return;
3448 end if;
3450 if Etype (Right) = Universal_Integer
3451 or else
3452 Etype (Right) = Universal_Real
3453 then
3454 Otype := Find_Universal_Operator_Type (N);
3455 end if;
3457 -- Fold for integer case
3459 if Is_Integer_Type (Etype (N)) then
3460 declare
3461 Rint : constant Uint := Expr_Value (Right);
3462 Result : Uint;
3464 begin
3465 -- In the case of modular unary plus and abs there is no need
3466 -- to adjust the result of the operation since if the original
3467 -- operand was in bounds the result will be in the bounds of the
3468 -- modular type. However, in the case of modular unary minus the
3469 -- result may go out of the bounds of the modular type and needs
3470 -- adjustment.
3472 if Nkind (N) = N_Op_Plus then
3473 Result := Rint;
3475 elsif Nkind (N) = N_Op_Minus then
3476 if Is_Modular_Integer_Type (Etype (N)) then
3477 Result := (-Rint) mod Modulus (Etype (N));
3478 else
3479 Result := (-Rint);
3480 end if;
3482 else
3483 pragma Assert (Nkind (N) = N_Op_Abs);
3484 Result := abs Rint;
3485 end if;
3487 Fold_Uint (N, Result, Stat);
3488 end;
3490 -- Fold for real case
3492 elsif Is_Real_Type (Etype (N)) then
3493 declare
3494 Rreal : constant Ureal := Expr_Value_R (Right);
3495 Result : Ureal;
3497 begin
3498 if Nkind (N) = N_Op_Plus then
3499 Result := Rreal;
3501 elsif Nkind (N) = N_Op_Minus then
3502 Result := UR_Negate (Rreal);
3504 else
3505 pragma Assert (Nkind (N) = N_Op_Abs);
3506 Result := abs Rreal;
3507 end if;
3509 Fold_Ureal (N, Result, Stat);
3510 end;
3511 end if;
3513 -- If the operator was resolved to a specific type, make sure that type
3514 -- is frozen even if the expression is folded into a literal (which has
3515 -- a universal type).
3517 if Present (Otype) then
3518 Freeze_Before (N, Otype);
3519 end if;
3520 end Eval_Unary_Op;
3522 -------------------------------
3523 -- Eval_Unchecked_Conversion --
3524 -------------------------------
3526 -- Unchecked conversions can never be static, so the only required
3527 -- processing is to check for a non-static context for the operand.
3529 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3530 begin
3531 Check_Non_Static_Context (Expression (N));
3532 end Eval_Unchecked_Conversion;
3534 --------------------
3535 -- Expr_Rep_Value --
3536 --------------------
3538 function Expr_Rep_Value (N : Node_Id) return Uint is
3539 Kind : constant Node_Kind := Nkind (N);
3540 Ent : Entity_Id;
3542 begin
3543 if Is_Entity_Name (N) then
3544 Ent := Entity (N);
3546 -- An enumeration literal that was either in the source or created
3547 -- as a result of static evaluation.
3549 if Ekind (Ent) = E_Enumeration_Literal then
3550 return Enumeration_Rep (Ent);
3552 -- A user defined static constant
3554 else
3555 pragma Assert (Ekind (Ent) = E_Constant);
3556 return Expr_Rep_Value (Constant_Value (Ent));
3557 end if;
3559 -- An integer literal that was either in the source or created as a
3560 -- result of static evaluation.
3562 elsif Kind = N_Integer_Literal then
3563 return Intval (N);
3565 -- A real literal for a fixed-point type. This must be the fixed-point
3566 -- case, either the literal is of a fixed-point type, or it is a bound
3567 -- of a fixed-point type, with type universal real. In either case we
3568 -- obtain the desired value from Corresponding_Integer_Value.
3570 elsif Kind = N_Real_Literal then
3571 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3572 return Corresponding_Integer_Value (N);
3574 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3576 elsif Kind = N_Attribute_Reference
3577 and then Attribute_Name (N) = Name_Null_Parameter
3578 then
3579 return Uint_0;
3581 -- Otherwise must be character literal
3583 else
3584 pragma Assert (Kind = N_Character_Literal);
3585 Ent := Entity (N);
3587 -- Since Character literals of type Standard.Character don't have any
3588 -- defining character literals built for them, they do not have their
3589 -- Entity set, so just use their Char code. Otherwise for user-
3590 -- defined character literals use their Pos value as usual which is
3591 -- the same as the Rep value.
3593 if No (Ent) then
3594 return Char_Literal_Value (N);
3595 else
3596 return Enumeration_Rep (Ent);
3597 end if;
3598 end if;
3599 end Expr_Rep_Value;
3601 ----------------
3602 -- Expr_Value --
3603 ----------------
3605 function Expr_Value (N : Node_Id) return Uint is
3606 Kind : constant Node_Kind := Nkind (N);
3607 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3608 Ent : Entity_Id;
3609 Val : Uint;
3611 begin
3612 -- If already in cache, then we know it's compile time known and we can
3613 -- return the value that was previously stored in the cache since
3614 -- compile time known values cannot change.
3616 if CV_Ent.N = N then
3617 return CV_Ent.V;
3618 end if;
3620 -- Otherwise proceed to test value
3622 if Is_Entity_Name (N) then
3623 Ent := Entity (N);
3625 -- An enumeration literal that was either in the source or created as
3626 -- a result of static evaluation.
3628 if Ekind (Ent) = E_Enumeration_Literal then
3629 Val := Enumeration_Pos (Ent);
3631 -- A user defined static constant
3633 else
3634 pragma Assert (Ekind (Ent) = E_Constant);
3635 Val := Expr_Value (Constant_Value (Ent));
3636 end if;
3638 -- An integer literal that was either in the source or created as a
3639 -- result of static evaluation.
3641 elsif Kind = N_Integer_Literal then
3642 Val := Intval (N);
3644 -- A real literal for a fixed-point type. This must be the fixed-point
3645 -- case, either the literal is of a fixed-point type, or it is a bound
3646 -- of a fixed-point type, with type universal real. In either case we
3647 -- obtain the desired value from Corresponding_Integer_Value.
3649 elsif Kind = N_Real_Literal then
3651 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3652 Val := Corresponding_Integer_Value (N);
3654 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3656 elsif Kind = N_Attribute_Reference
3657 and then Attribute_Name (N) = Name_Null_Parameter
3658 then
3659 Val := Uint_0;
3661 -- Otherwise must be character literal
3663 else
3664 pragma Assert (Kind = N_Character_Literal);
3665 Ent := Entity (N);
3667 -- Since Character literals of type Standard.Character don't
3668 -- have any defining character literals built for them, they
3669 -- do not have their Entity set, so just use their Char
3670 -- code. Otherwise for user-defined character literals use
3671 -- their Pos value as usual.
3673 if No (Ent) then
3674 Val := Char_Literal_Value (N);
3675 else
3676 Val := Enumeration_Pos (Ent);
3677 end if;
3678 end if;
3680 -- Come here with Val set to value to be returned, set cache
3682 CV_Ent.N := N;
3683 CV_Ent.V := Val;
3684 return Val;
3685 end Expr_Value;
3687 ------------------
3688 -- Expr_Value_E --
3689 ------------------
3691 function Expr_Value_E (N : Node_Id) return Entity_Id is
3692 Ent : constant Entity_Id := Entity (N);
3694 begin
3695 if Ekind (Ent) = E_Enumeration_Literal then
3696 return Ent;
3697 else
3698 pragma Assert (Ekind (Ent) = E_Constant);
3699 return Expr_Value_E (Constant_Value (Ent));
3700 end if;
3701 end Expr_Value_E;
3703 ------------------
3704 -- Expr_Value_R --
3705 ------------------
3707 function Expr_Value_R (N : Node_Id) return Ureal is
3708 Kind : constant Node_Kind := Nkind (N);
3709 Ent : Entity_Id;
3710 Expr : Node_Id;
3712 begin
3713 if Kind = N_Real_Literal then
3714 return Realval (N);
3716 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3717 Ent := Entity (N);
3718 pragma Assert (Ekind (Ent) = E_Constant);
3719 return Expr_Value_R (Constant_Value (Ent));
3721 elsif Kind = N_Integer_Literal then
3722 return UR_From_Uint (Expr_Value (N));
3724 -- Strange case of VAX literals, which are at this stage transformed
3725 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3726 -- Exp_Vfpt for further details.
3728 elsif Vax_Float (Etype (N))
3729 and then Nkind (N) = N_Unchecked_Type_Conversion
3730 then
3731 Expr := Expression (N);
3733 if Nkind (Expr) = N_Function_Call
3734 and then Present (Parameter_Associations (Expr))
3735 then
3736 Expr := First (Parameter_Associations (Expr));
3738 if Nkind (Expr) = N_Real_Literal then
3739 return Realval (Expr);
3740 end if;
3741 end if;
3743 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3745 elsif Kind = N_Attribute_Reference
3746 and then Attribute_Name (N) = Name_Null_Parameter
3747 then
3748 return Ureal_0;
3749 end if;
3751 -- If we fall through, we have a node that cannot be interpreted as a
3752 -- compile time constant. That is definitely an error.
3754 raise Program_Error;
3755 end Expr_Value_R;
3757 ------------------
3758 -- Expr_Value_S --
3759 ------------------
3761 function Expr_Value_S (N : Node_Id) return Node_Id is
3762 begin
3763 if Nkind (N) = N_String_Literal then
3764 return N;
3765 else
3766 pragma Assert (Ekind (Entity (N)) = E_Constant);
3767 return Expr_Value_S (Constant_Value (Entity (N)));
3768 end if;
3769 end Expr_Value_S;
3771 ----------------------------------
3772 -- Find_Universal_Operator_Type --
3773 ----------------------------------
3775 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3776 PN : constant Node_Id := Parent (N);
3777 Call : constant Node_Id := Original_Node (N);
3778 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3780 Is_Fix : constant Boolean :=
3781 Nkind (N) in N_Binary_Op
3782 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3783 -- A mixed-mode operation in this context indicates the presence of
3784 -- fixed-point type in the designated package.
3786 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3787 -- Case where N is a relational (or membership) operator (else it is an
3788 -- arithmetic one).
3790 In_Membership : constant Boolean :=
3791 Nkind (PN) in N_Membership_Test
3792 and then
3793 Nkind (Right_Opnd (PN)) = N_Range
3794 and then
3795 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3796 and then
3797 Is_Universal_Numeric_Type
3798 (Etype (Low_Bound (Right_Opnd (PN))))
3799 and then
3800 Is_Universal_Numeric_Type
3801 (Etype (High_Bound (Right_Opnd (PN))));
3802 -- Case where N is part of a membership test with a universal range
3804 E : Entity_Id;
3805 Pack : Entity_Id;
3806 Typ1 : Entity_Id := Empty;
3807 Priv_E : Entity_Id;
3809 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
3810 -- Check whether one operand is a mixed-mode operation that requires the
3811 -- presence of a fixed-point type. Given that all operands are universal
3812 -- and have been constant-folded, retrieve the original function call.
3814 ---------------------------
3815 -- Is_Mixed_Mode_Operand --
3816 ---------------------------
3818 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
3819 Onod : constant Node_Id := Original_Node (Op);
3820 begin
3821 return Nkind (Onod) = N_Function_Call
3822 and then Present (Next_Actual (First_Actual (Onod)))
3823 and then Etype (First_Actual (Onod)) /=
3824 Etype (Next_Actual (First_Actual (Onod)));
3825 end Is_Mixed_Mode_Operand;
3827 -- Start of processing for Find_Universal_Operator_Type
3829 begin
3830 if Nkind (Call) /= N_Function_Call
3831 or else Nkind (Name (Call)) /= N_Expanded_Name
3832 then
3833 return Empty;
3835 -- There are several cases where the context does not imply the type of
3836 -- the operands:
3837 -- - the universal expression appears in a type conversion;
3838 -- - the expression is a relational operator applied to universal
3839 -- operands;
3840 -- - the expression is a membership test with a universal operand
3841 -- and a range with universal bounds.
3843 elsif Nkind (Parent (N)) = N_Type_Conversion
3844 or else Is_Relational
3845 or else In_Membership
3846 then
3847 Pack := Entity (Prefix (Name (Call)));
3849 -- If the prefix is a package declared elsewhere, iterate over its
3850 -- visible entities, otherwise iterate over all declarations in the
3851 -- designated scope.
3853 if Ekind (Pack) = E_Package
3854 and then not In_Open_Scopes (Pack)
3855 then
3856 Priv_E := First_Private_Entity (Pack);
3857 else
3858 Priv_E := Empty;
3859 end if;
3861 Typ1 := Empty;
3862 E := First_Entity (Pack);
3863 while Present (E) and then E /= Priv_E loop
3864 if Is_Numeric_Type (E)
3865 and then Nkind (Parent (E)) /= N_Subtype_Declaration
3866 and then Comes_From_Source (E)
3867 and then Is_Integer_Type (E) = Is_Int
3868 and then
3869 (Nkind (N) in N_Unary_Op
3870 or else Is_Relational
3871 or else Is_Fixed_Point_Type (E) = Is_Fix)
3872 then
3873 if No (Typ1) then
3874 Typ1 := E;
3876 -- Before emitting an error, check for the presence of a
3877 -- mixed-mode operation that specifies a fixed point type.
3879 elsif Is_Relational
3880 and then
3881 (Is_Mixed_Mode_Operand (Left_Opnd (N))
3882 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
3883 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
3885 then
3886 if Is_Fixed_Point_Type (E) then
3887 Typ1 := E;
3888 end if;
3890 else
3891 -- More than one type of the proper class declared in P
3893 Error_Msg_N ("ambiguous operation", N);
3894 Error_Msg_Sloc := Sloc (Typ1);
3895 Error_Msg_N ("\possible interpretation (inherited)#", N);
3896 Error_Msg_Sloc := Sloc (E);
3897 Error_Msg_N ("\possible interpretation (inherited)#", N);
3898 return Empty;
3899 end if;
3900 end if;
3902 Next_Entity (E);
3903 end loop;
3904 end if;
3906 return Typ1;
3907 end Find_Universal_Operator_Type;
3909 --------------------------
3910 -- Flag_Non_Static_Expr --
3911 --------------------------
3913 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3914 begin
3915 if Error_Posted (Expr) and then not All_Errors_Mode then
3916 return;
3917 else
3918 Error_Msg_F (Msg, Expr);
3919 Why_Not_Static (Expr);
3920 end if;
3921 end Flag_Non_Static_Expr;
3923 --------------
3924 -- Fold_Str --
3925 --------------
3927 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
3928 Loc : constant Source_Ptr := Sloc (N);
3929 Typ : constant Entity_Id := Etype (N);
3931 begin
3932 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
3934 -- We now have the literal with the right value, both the actual type
3935 -- and the expected type of this literal are taken from the expression
3936 -- that was evaluated.
3938 Analyze (N);
3939 Set_Is_Static_Expression (N, Static);
3940 Set_Etype (N, Typ);
3941 Resolve (N);
3942 end Fold_Str;
3944 ---------------
3945 -- Fold_Uint --
3946 ---------------
3948 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
3949 Loc : constant Source_Ptr := Sloc (N);
3950 Typ : Entity_Id := Etype (N);
3951 Ent : Entity_Id;
3953 begin
3954 -- If we are folding a named number, retain the entity in the literal,
3955 -- for ASIS use.
3957 if Is_Entity_Name (N)
3958 and then Ekind (Entity (N)) = E_Named_Integer
3959 then
3960 Ent := Entity (N);
3961 else
3962 Ent := Empty;
3963 end if;
3965 if Is_Private_Type (Typ) then
3966 Typ := Full_View (Typ);
3967 end if;
3969 -- For a result of type integer, substitute an N_Integer_Literal node
3970 -- for the result of the compile time evaluation of the expression.
3971 -- For ASIS use, set a link to the original named number when not in
3972 -- a generic context.
3974 if Is_Integer_Type (Typ) then
3975 Rewrite (N, Make_Integer_Literal (Loc, Val));
3977 Set_Original_Entity (N, Ent);
3979 -- Otherwise we have an enumeration type, and we substitute either
3980 -- an N_Identifier or N_Character_Literal to represent the enumeration
3981 -- literal corresponding to the given value, which must always be in
3982 -- range, because appropriate tests have already been made for this.
3984 else pragma Assert (Is_Enumeration_Type (Typ));
3985 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
3986 end if;
3988 -- We now have the literal with the right value, both the actual type
3989 -- and the expected type of this literal are taken from the expression
3990 -- that was evaluated.
3992 Analyze (N);
3993 Set_Is_Static_Expression (N, Static);
3994 Set_Etype (N, Typ);
3995 Resolve (N);
3996 end Fold_Uint;
3998 ----------------
3999 -- Fold_Ureal --
4000 ----------------
4002 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4003 Loc : constant Source_Ptr := Sloc (N);
4004 Typ : constant Entity_Id := Etype (N);
4005 Ent : Entity_Id;
4007 begin
4008 -- If we are folding a named number, retain the entity in the literal,
4009 -- for ASIS use.
4011 if Is_Entity_Name (N)
4012 and then Ekind (Entity (N)) = E_Named_Real
4013 then
4014 Ent := Entity (N);
4015 else
4016 Ent := Empty;
4017 end if;
4019 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4021 -- Set link to original named number, for ASIS use
4023 Set_Original_Entity (N, Ent);
4025 -- Both the actual and expected type comes from the original expression
4027 Analyze (N);
4028 Set_Is_Static_Expression (N, Static);
4029 Set_Etype (N, Typ);
4030 Resolve (N);
4031 end Fold_Ureal;
4033 ---------------
4034 -- From_Bits --
4035 ---------------
4037 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4038 V : Uint := Uint_0;
4040 begin
4041 for J in 0 .. B'Last loop
4042 if B (J) then
4043 V := V + 2 ** J;
4044 end if;
4045 end loop;
4047 if Non_Binary_Modulus (T) then
4048 V := V mod Modulus (T);
4049 end if;
4051 return V;
4052 end From_Bits;
4054 --------------------
4055 -- Get_String_Val --
4056 --------------------
4058 function Get_String_Val (N : Node_Id) return Node_Id is
4059 begin
4060 if Nkind (N) = N_String_Literal then
4061 return N;
4063 elsif Nkind (N) = N_Character_Literal then
4064 return N;
4066 else
4067 pragma Assert (Is_Entity_Name (N));
4068 return Get_String_Val (Constant_Value (Entity (N)));
4069 end if;
4070 end Get_String_Val;
4072 ----------------
4073 -- Initialize --
4074 ----------------
4076 procedure Initialize is
4077 begin
4078 CV_Cache := (others => (Node_High_Bound, Uint_0));
4079 end Initialize;
4081 --------------------
4082 -- In_Subrange_Of --
4083 --------------------
4085 function In_Subrange_Of
4086 (T1 : Entity_Id;
4087 T2 : Entity_Id;
4088 Fixed_Int : Boolean := False) return Boolean
4090 L1 : Node_Id;
4091 H1 : Node_Id;
4093 L2 : Node_Id;
4094 H2 : Node_Id;
4096 begin
4097 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4098 return True;
4100 -- Never in range if both types are not scalar. Don't know if this can
4101 -- actually happen, but just in case.
4103 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
4104 return False;
4106 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4107 -- definitely not compatible with T2.
4109 elsif Is_Floating_Point_Type (T1)
4110 and then Has_Infinities (T1)
4111 and then Is_Floating_Point_Type (T2)
4112 and then not Has_Infinities (T2)
4113 then
4114 return False;
4116 else
4117 L1 := Type_Low_Bound (T1);
4118 H1 := Type_High_Bound (T1);
4120 L2 := Type_Low_Bound (T2);
4121 H2 := Type_High_Bound (T2);
4123 -- Check bounds to see if comparison possible at compile time
4125 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4126 and then
4127 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4128 then
4129 return True;
4130 end if;
4132 -- If bounds not comparable at compile time, then the bounds of T2
4133 -- must be compile time known or we cannot answer the query.
4135 if not Compile_Time_Known_Value (L2)
4136 or else not Compile_Time_Known_Value (H2)
4137 then
4138 return False;
4139 end if;
4141 -- If the bounds of T1 are know at compile time then use these
4142 -- ones, otherwise use the bounds of the base type (which are of
4143 -- course always static).
4145 if not Compile_Time_Known_Value (L1) then
4146 L1 := Type_Low_Bound (Base_Type (T1));
4147 end if;
4149 if not Compile_Time_Known_Value (H1) then
4150 H1 := Type_High_Bound (Base_Type (T1));
4151 end if;
4153 -- Fixed point types should be considered as such only if
4154 -- flag Fixed_Int is set to False.
4156 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4157 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4158 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4159 then
4160 return
4161 Expr_Value_R (L2) <= Expr_Value_R (L1)
4162 and then
4163 Expr_Value_R (H2) >= Expr_Value_R (H1);
4165 else
4166 return
4167 Expr_Value (L2) <= Expr_Value (L1)
4168 and then
4169 Expr_Value (H2) >= Expr_Value (H1);
4171 end if;
4172 end if;
4174 -- If any exception occurs, it means that we have some bug in the compiler
4175 -- possibly triggered by a previous error, or by some unforeseen peculiar
4176 -- occurrence. However, this is only an optimization attempt, so there is
4177 -- really no point in crashing the compiler. Instead we just decide, too
4178 -- bad, we can't figure out the answer in this case after all.
4180 exception
4181 when others =>
4183 -- Debug flag K disables this behavior (useful for debugging)
4185 if Debug_Flag_K then
4186 raise;
4187 else
4188 return False;
4189 end if;
4190 end In_Subrange_Of;
4192 -----------------
4193 -- Is_In_Range --
4194 -----------------
4196 function Is_In_Range
4197 (N : Node_Id;
4198 Typ : Entity_Id;
4199 Assume_Valid : Boolean := False;
4200 Fixed_Int : Boolean := False;
4201 Int_Real : Boolean := False) return Boolean
4203 begin
4204 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4205 = In_Range;
4206 end Is_In_Range;
4208 -------------------
4209 -- Is_Null_Range --
4210 -------------------
4212 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4213 Typ : constant Entity_Id := Etype (Lo);
4215 begin
4216 if not Compile_Time_Known_Value (Lo)
4217 or else not Compile_Time_Known_Value (Hi)
4218 then
4219 return False;
4220 end if;
4222 if Is_Discrete_Type (Typ) then
4223 return Expr_Value (Lo) > Expr_Value (Hi);
4225 else
4226 pragma Assert (Is_Real_Type (Typ));
4227 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4228 end if;
4229 end Is_Null_Range;
4231 -----------------------------
4232 -- Is_OK_Static_Expression --
4233 -----------------------------
4235 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4236 begin
4237 return Is_Static_Expression (N)
4238 and then not Raises_Constraint_Error (N);
4239 end Is_OK_Static_Expression;
4241 ------------------------
4242 -- Is_OK_Static_Range --
4243 ------------------------
4245 -- A static range is a range whose bounds are static expressions, or a
4246 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4247 -- We have already converted range attribute references, so we get the
4248 -- "or" part of this rule without needing a special test.
4250 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4251 begin
4252 return Is_OK_Static_Expression (Low_Bound (N))
4253 and then Is_OK_Static_Expression (High_Bound (N));
4254 end Is_OK_Static_Range;
4256 --------------------------
4257 -- Is_OK_Static_Subtype --
4258 --------------------------
4260 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4261 -- neither bound raises constraint error when evaluated.
4263 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4264 Base_T : constant Entity_Id := Base_Type (Typ);
4265 Anc_Subt : Entity_Id;
4267 begin
4268 -- First a quick check on the non static subtype flag. As described
4269 -- in further detail in Einfo, this flag is not decisive in all cases,
4270 -- but if it is set, then the subtype is definitely non-static.
4272 if Is_Non_Static_Subtype (Typ) then
4273 return False;
4274 end if;
4276 Anc_Subt := Ancestor_Subtype (Typ);
4278 if Anc_Subt = Empty then
4279 Anc_Subt := Base_T;
4280 end if;
4282 if Is_Generic_Type (Root_Type (Base_T))
4283 or else Is_Generic_Actual_Type (Base_T)
4284 then
4285 return False;
4287 -- String types
4289 elsif Is_String_Type (Typ) then
4290 return
4291 Ekind (Typ) = E_String_Literal_Subtype
4292 or else
4293 (Is_OK_Static_Subtype (Component_Type (Typ))
4294 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4296 -- Scalar types
4298 elsif Is_Scalar_Type (Typ) then
4299 if Base_T = Typ then
4300 return True;
4302 else
4303 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4304 -- Get_Type_{Low,High}_Bound.
4306 return Is_OK_Static_Subtype (Anc_Subt)
4307 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4308 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4309 end if;
4311 -- Types other than string and scalar types are never static
4313 else
4314 return False;
4315 end if;
4316 end Is_OK_Static_Subtype;
4318 ---------------------
4319 -- Is_Out_Of_Range --
4320 ---------------------
4322 function Is_Out_Of_Range
4323 (N : Node_Id;
4324 Typ : Entity_Id;
4325 Assume_Valid : Boolean := False;
4326 Fixed_Int : Boolean := False;
4327 Int_Real : Boolean := False) return Boolean
4329 begin
4330 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4331 = Out_Of_Range;
4332 end Is_Out_Of_Range;
4334 ---------------------
4335 -- Is_Static_Range --
4336 ---------------------
4338 -- A static range is a range whose bounds are static expressions, or a
4339 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4340 -- We have already converted range attribute references, so we get the
4341 -- "or" part of this rule without needing a special test.
4343 function Is_Static_Range (N : Node_Id) return Boolean is
4344 begin
4345 return Is_Static_Expression (Low_Bound (N))
4346 and then Is_Static_Expression (High_Bound (N));
4347 end Is_Static_Range;
4349 -----------------------
4350 -- Is_Static_Subtype --
4351 -----------------------
4353 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4355 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4356 Base_T : constant Entity_Id := Base_Type (Typ);
4357 Anc_Subt : Entity_Id;
4359 begin
4360 -- First a quick check on the non static subtype flag. As described
4361 -- in further detail in Einfo, this flag is not decisive in all cases,
4362 -- but if it is set, then the subtype is definitely non-static.
4364 if Is_Non_Static_Subtype (Typ) then
4365 return False;
4366 end if;
4368 Anc_Subt := Ancestor_Subtype (Typ);
4370 if Anc_Subt = Empty then
4371 Anc_Subt := Base_T;
4372 end if;
4374 if Is_Generic_Type (Root_Type (Base_T))
4375 or else Is_Generic_Actual_Type (Base_T)
4376 then
4377 return False;
4379 -- String types
4381 elsif Is_String_Type (Typ) then
4382 return
4383 Ekind (Typ) = E_String_Literal_Subtype
4384 or else
4385 (Is_Static_Subtype (Component_Type (Typ))
4386 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4388 -- Scalar types
4390 elsif Is_Scalar_Type (Typ) then
4391 if Base_T = Typ then
4392 return True;
4394 else
4395 return Is_Static_Subtype (Anc_Subt)
4396 and then Is_Static_Expression (Type_Low_Bound (Typ))
4397 and then Is_Static_Expression (Type_High_Bound (Typ));
4398 end if;
4400 -- Types other than string and scalar types are never static
4402 else
4403 return False;
4404 end if;
4405 end Is_Static_Subtype;
4407 --------------------
4408 -- Not_Null_Range --
4409 --------------------
4411 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4412 Typ : constant Entity_Id := Etype (Lo);
4414 begin
4415 if not Compile_Time_Known_Value (Lo)
4416 or else not Compile_Time_Known_Value (Hi)
4417 then
4418 return False;
4419 end if;
4421 if Is_Discrete_Type (Typ) then
4422 return Expr_Value (Lo) <= Expr_Value (Hi);
4424 else
4425 pragma Assert (Is_Real_Type (Typ));
4427 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4428 end if;
4429 end Not_Null_Range;
4431 -------------
4432 -- OK_Bits --
4433 -------------
4435 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4436 begin
4437 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4439 if Bits < 500_000 then
4440 return True;
4442 else
4443 Error_Msg_N ("static value too large, capacity exceeded", N);
4444 return False;
4445 end if;
4446 end OK_Bits;
4448 ------------------
4449 -- Out_Of_Range --
4450 ------------------
4452 procedure Out_Of_Range (N : Node_Id) is
4453 begin
4454 -- If we have the static expression case, then this is an illegality
4455 -- in Ada 95 mode, except that in an instance, we never generate an
4456 -- error (if the error is legitimate, it was already diagnosed in the
4457 -- template). The expression to compute the length of a packed array is
4458 -- attached to the array type itself, and deserves a separate message.
4460 if Is_Static_Expression (N)
4461 and then not In_Instance
4462 and then not In_Inlined_Body
4463 and then Ada_Version >= Ada_95
4464 then
4465 if Nkind (Parent (N)) = N_Defining_Identifier
4466 and then Is_Array_Type (Parent (N))
4467 and then Present (Packed_Array_Type (Parent (N)))
4468 and then Present (First_Rep_Item (Parent (N)))
4469 then
4470 Error_Msg_N
4471 ("length of packed array must not exceed Integer''Last",
4472 First_Rep_Item (Parent (N)));
4473 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4475 else
4476 Apply_Compile_Time_Constraint_Error
4477 (N, "value not in range of}", CE_Range_Check_Failed);
4478 end if;
4480 -- Here we generate a warning for the Ada 83 case, or when we are in an
4481 -- instance, or when we have a non-static expression case.
4483 else
4484 Apply_Compile_Time_Constraint_Error
4485 (N, "value not in range of}?", CE_Range_Check_Failed);
4486 end if;
4487 end Out_Of_Range;
4489 -------------------------
4490 -- Rewrite_In_Raise_CE --
4491 -------------------------
4493 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4494 Typ : constant Entity_Id := Etype (N);
4496 begin
4497 -- If we want to raise CE in the condition of a N_Raise_CE node
4498 -- we may as well get rid of the condition.
4500 if Present (Parent (N))
4501 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4502 then
4503 Set_Condition (Parent (N), Empty);
4505 -- If the expression raising CE is a N_Raise_CE node, we can use that
4506 -- one. We just preserve the type of the context.
4508 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4509 Rewrite (N, Exp);
4510 Set_Etype (N, Typ);
4512 -- Else build an explcit N_Raise_CE
4514 else
4515 Rewrite (N,
4516 Make_Raise_Constraint_Error (Sloc (Exp),
4517 Reason => CE_Range_Check_Failed));
4518 Set_Raises_Constraint_Error (N);
4519 Set_Etype (N, Typ);
4520 end if;
4521 end Rewrite_In_Raise_CE;
4523 ---------------------
4524 -- String_Type_Len --
4525 ---------------------
4527 function String_Type_Len (Stype : Entity_Id) return Uint is
4528 NT : constant Entity_Id := Etype (First_Index (Stype));
4529 T : Entity_Id;
4531 begin
4532 if Is_OK_Static_Subtype (NT) then
4533 T := NT;
4534 else
4535 T := Base_Type (NT);
4536 end if;
4538 return Expr_Value (Type_High_Bound (T)) -
4539 Expr_Value (Type_Low_Bound (T)) + 1;
4540 end String_Type_Len;
4542 ------------------------------------
4543 -- Subtypes_Statically_Compatible --
4544 ------------------------------------
4546 function Subtypes_Statically_Compatible
4547 (T1 : Entity_Id;
4548 T2 : Entity_Id) return Boolean
4550 begin
4551 if Is_Scalar_Type (T1) then
4553 -- Definitely compatible if we match
4555 if Subtypes_Statically_Match (T1, T2) then
4556 return True;
4558 -- If either subtype is nonstatic then they're not compatible
4560 elsif not Is_Static_Subtype (T1)
4561 or else not Is_Static_Subtype (T2)
4562 then
4563 return False;
4565 -- If either type has constraint error bounds, then consider that
4566 -- they match to avoid junk cascaded errors here.
4568 elsif not Is_OK_Static_Subtype (T1)
4569 or else not Is_OK_Static_Subtype (T2)
4570 then
4571 return True;
4573 -- Base types must match, but we don't check that (should
4574 -- we???) but we do at least check that both types are
4575 -- real, or both types are not real.
4577 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
4578 return False;
4580 -- Here we check the bounds
4582 else
4583 declare
4584 LB1 : constant Node_Id := Type_Low_Bound (T1);
4585 HB1 : constant Node_Id := Type_High_Bound (T1);
4586 LB2 : constant Node_Id := Type_Low_Bound (T2);
4587 HB2 : constant Node_Id := Type_High_Bound (T2);
4589 begin
4590 if Is_Real_Type (T1) then
4591 return
4592 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4593 or else
4594 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4595 and then
4596 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4598 else
4599 return
4600 (Expr_Value (LB1) > Expr_Value (HB1))
4601 or else
4602 (Expr_Value (LB2) <= Expr_Value (LB1)
4603 and then
4604 Expr_Value (HB1) <= Expr_Value (HB2));
4605 end if;
4606 end;
4607 end if;
4609 elsif Is_Access_Type (T1) then
4610 return not Is_Constrained (T2)
4611 or else Subtypes_Statically_Match
4612 (Designated_Type (T1), Designated_Type (T2));
4614 else
4615 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4616 or else Subtypes_Statically_Match (T1, T2);
4617 end if;
4618 end Subtypes_Statically_Compatible;
4620 -------------------------------
4621 -- Subtypes_Statically_Match --
4622 -------------------------------
4624 -- Subtypes statically match if they have statically matching constraints
4625 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4626 -- they are the same identical constraint, or if they are static and the
4627 -- values match (RM 4.9.1(1)).
4629 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4630 begin
4631 -- A type always statically matches itself
4633 if T1 = T2 then
4634 return True;
4636 -- Scalar types
4638 elsif Is_Scalar_Type (T1) then
4640 -- Base types must be the same
4642 if Base_Type (T1) /= Base_Type (T2) then
4643 return False;
4644 end if;
4646 -- A constrained numeric subtype never matches an unconstrained
4647 -- subtype, i.e. both types must be constrained or unconstrained.
4649 -- To understand the requirement for this test, see RM 4.9.1(1).
4650 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4651 -- a constrained subtype with constraint bounds matching the bounds
4652 -- of its corresponding unconstrained base type. In this situation,
4653 -- Integer and Integer'Base do not statically match, even though
4654 -- they have the same bounds.
4656 -- We only apply this test to types in Standard and types that appear
4657 -- in user programs. That way, we do not have to be too careful about
4658 -- setting Is_Constrained right for Itypes.
4660 if Is_Numeric_Type (T1)
4661 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4662 and then (Scope (T1) = Standard_Standard
4663 or else Comes_From_Source (T1))
4664 and then (Scope (T2) = Standard_Standard
4665 or else Comes_From_Source (T2))
4666 then
4667 return False;
4669 -- A generic scalar type does not statically match its base type
4670 -- (AI-311). In this case we make sure that the formals, which are
4671 -- first subtypes of their bases, are constrained.
4673 elsif Is_Generic_Type (T1)
4674 and then Is_Generic_Type (T2)
4675 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4676 then
4677 return False;
4678 end if;
4680 -- If there was an error in either range, then just assume the types
4681 -- statically match to avoid further junk errors.
4683 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4684 or else Error_Posted (Scalar_Range (T1))
4685 or else Error_Posted (Scalar_Range (T2))
4686 then
4687 return True;
4688 end if;
4690 -- Otherwise both types have bound that can be compared
4692 declare
4693 LB1 : constant Node_Id := Type_Low_Bound (T1);
4694 HB1 : constant Node_Id := Type_High_Bound (T1);
4695 LB2 : constant Node_Id := Type_Low_Bound (T2);
4696 HB2 : constant Node_Id := Type_High_Bound (T2);
4698 begin
4699 -- If the bounds are the same tree node, then match
4701 if LB1 = LB2 and then HB1 = HB2 then
4702 return True;
4704 -- Otherwise bounds must be static and identical value
4706 else
4707 if not Is_Static_Subtype (T1)
4708 or else not Is_Static_Subtype (T2)
4709 then
4710 return False;
4712 -- If either type has constraint error bounds, then say that
4713 -- they match to avoid junk cascaded errors here.
4715 elsif not Is_OK_Static_Subtype (T1)
4716 or else not Is_OK_Static_Subtype (T2)
4717 then
4718 return True;
4720 elsif Is_Real_Type (T1) then
4721 return
4722 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4723 and then
4724 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4726 else
4727 return
4728 Expr_Value (LB1) = Expr_Value (LB2)
4729 and then
4730 Expr_Value (HB1) = Expr_Value (HB2);
4731 end if;
4732 end if;
4733 end;
4735 -- Type with discriminants
4737 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
4739 -- Because of view exchanges in multiple instantiations, conformance
4740 -- checking might try to match a partial view of a type with no
4741 -- discriminants with a full view that has defaulted discriminants.
4742 -- In such a case, use the discriminant constraint of the full view,
4743 -- which must exist because we know that the two subtypes have the
4744 -- same base type.
4746 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
4747 if In_Instance then
4748 if Is_Private_Type (T2)
4749 and then Present (Full_View (T2))
4750 and then Has_Discriminants (Full_View (T2))
4751 then
4752 return Subtypes_Statically_Match (T1, Full_View (T2));
4754 elsif Is_Private_Type (T1)
4755 and then Present (Full_View (T1))
4756 and then Has_Discriminants (Full_View (T1))
4757 then
4758 return Subtypes_Statically_Match (Full_View (T1), T2);
4760 else
4761 return False;
4762 end if;
4763 else
4764 return False;
4765 end if;
4766 end if;
4768 declare
4769 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4770 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4772 DA1 : Elmt_Id;
4773 DA2 : Elmt_Id;
4775 begin
4776 if DL1 = DL2 then
4777 return True;
4778 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
4779 return False;
4780 end if;
4782 -- Now loop through the discriminant constraints
4784 -- Note: the guard here seems necessary, since it is possible at
4785 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
4787 if Present (DL1) and then Present (DL2) then
4788 DA1 := First_Elmt (DL1);
4789 DA2 := First_Elmt (DL2);
4790 while Present (DA1) loop
4791 declare
4792 Expr1 : constant Node_Id := Node (DA1);
4793 Expr2 : constant Node_Id := Node (DA2);
4795 begin
4796 if not Is_Static_Expression (Expr1)
4797 or else not Is_Static_Expression (Expr2)
4798 then
4799 return False;
4801 -- If either expression raised a constraint error,
4802 -- consider the expressions as matching, since this
4803 -- helps to prevent cascading errors.
4805 elsif Raises_Constraint_Error (Expr1)
4806 or else Raises_Constraint_Error (Expr2)
4807 then
4808 null;
4810 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
4811 return False;
4812 end if;
4813 end;
4815 Next_Elmt (DA1);
4816 Next_Elmt (DA2);
4817 end loop;
4818 end if;
4819 end;
4821 return True;
4823 -- A definite type does not match an indefinite or classwide type.
4824 -- However, a generic type with unknown discriminants may be
4825 -- instantiated with a type with no discriminants, and conformance
4826 -- checking on an inherited operation may compare the actual with the
4827 -- subtype that renames it in the instance.
4829 elsif
4830 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4831 then
4832 return
4833 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
4835 -- Array type
4837 elsif Is_Array_Type (T1) then
4839 -- If either subtype is unconstrained then both must be, and if both
4840 -- are unconstrained then no further checking is neede.
4842 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4843 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4844 end if;
4846 -- Both subtypes are constrained, so check that the index subtypes
4847 -- statically match.
4849 declare
4850 Index1 : Node_Id := First_Index (T1);
4851 Index2 : Node_Id := First_Index (T2);
4853 begin
4854 while Present (Index1) loop
4855 if not
4856 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4857 then
4858 return False;
4859 end if;
4861 Next_Index (Index1);
4862 Next_Index (Index2);
4863 end loop;
4865 return True;
4866 end;
4868 elsif Is_Access_Type (T1) then
4869 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4870 return False;
4872 elsif Ekind_In (T1, E_Access_Subprogram_Type,
4873 E_Anonymous_Access_Subprogram_Type)
4874 then
4875 return
4876 Subtype_Conformant
4877 (Designated_Type (T1),
4878 Designated_Type (T2));
4879 else
4880 return
4881 Subtypes_Statically_Match
4882 (Designated_Type (T1),
4883 Designated_Type (T2))
4884 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4885 end if;
4887 -- All other types definitely match
4889 else
4890 return True;
4891 end if;
4892 end Subtypes_Statically_Match;
4894 ----------
4895 -- Test --
4896 ----------
4898 function Test (Cond : Boolean) return Uint is
4899 begin
4900 if Cond then
4901 return Uint_1;
4902 else
4903 return Uint_0;
4904 end if;
4905 end Test;
4907 ---------------------------------
4908 -- Test_Expression_Is_Foldable --
4909 ---------------------------------
4911 -- One operand case
4913 procedure Test_Expression_Is_Foldable
4914 (N : Node_Id;
4915 Op1 : Node_Id;
4916 Stat : out Boolean;
4917 Fold : out Boolean)
4919 begin
4920 Stat := False;
4921 Fold := False;
4923 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4924 return;
4925 end if;
4927 -- If operand is Any_Type, just propagate to result and do not
4928 -- try to fold, this prevents cascaded errors.
4930 if Etype (Op1) = Any_Type then
4931 Set_Etype (N, Any_Type);
4932 return;
4934 -- If operand raises constraint error, then replace node N with the
4935 -- raise constraint error node, and we are obviously not foldable.
4936 -- Note that this replacement inherits the Is_Static_Expression flag
4937 -- from the operand.
4939 elsif Raises_Constraint_Error (Op1) then
4940 Rewrite_In_Raise_CE (N, Op1);
4941 return;
4943 -- If the operand is not static, then the result is not static, and
4944 -- all we have to do is to check the operand since it is now known
4945 -- to appear in a non-static context.
4947 elsif not Is_Static_Expression (Op1) then
4948 Check_Non_Static_Context (Op1);
4949 Fold := Compile_Time_Known_Value (Op1);
4950 return;
4952 -- An expression of a formal modular type is not foldable because
4953 -- the modulus is unknown.
4955 elsif Is_Modular_Integer_Type (Etype (Op1))
4956 and then Is_Generic_Type (Etype (Op1))
4957 then
4958 Check_Non_Static_Context (Op1);
4959 return;
4961 -- Here we have the case of an operand whose type is OK, which is
4962 -- static, and which does not raise constraint error, we can fold.
4964 else
4965 Set_Is_Static_Expression (N);
4966 Fold := True;
4967 Stat := True;
4968 end if;
4969 end Test_Expression_Is_Foldable;
4971 -- Two operand case
4973 procedure Test_Expression_Is_Foldable
4974 (N : Node_Id;
4975 Op1 : Node_Id;
4976 Op2 : Node_Id;
4977 Stat : out Boolean;
4978 Fold : out Boolean)
4980 Rstat : constant Boolean := Is_Static_Expression (Op1)
4981 and then Is_Static_Expression (Op2);
4983 begin
4984 Stat := False;
4985 Fold := False;
4987 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4988 return;
4989 end if;
4991 -- If either operand is Any_Type, just propagate to result and
4992 -- do not try to fold, this prevents cascaded errors.
4994 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
4995 Set_Etype (N, Any_Type);
4996 return;
4998 -- If left operand raises constraint error, then replace node N with the
4999 -- Raise_Constraint_Error node, and we are obviously not foldable.
5000 -- Is_Static_Expression is set from the two operands in the normal way,
5001 -- and we check the right operand if it is in a non-static context.
5003 elsif Raises_Constraint_Error (Op1) then
5004 if not Rstat then
5005 Check_Non_Static_Context (Op2);
5006 end if;
5008 Rewrite_In_Raise_CE (N, Op1);
5009 Set_Is_Static_Expression (N, Rstat);
5010 return;
5012 -- Similar processing for the case of the right operand. Note that we
5013 -- don't use this routine for the short-circuit case, so we do not have
5014 -- to worry about that special case here.
5016 elsif Raises_Constraint_Error (Op2) then
5017 if not Rstat then
5018 Check_Non_Static_Context (Op1);
5019 end if;
5021 Rewrite_In_Raise_CE (N, Op2);
5022 Set_Is_Static_Expression (N, Rstat);
5023 return;
5025 -- Exclude expressions of a generic modular type, as above
5027 elsif Is_Modular_Integer_Type (Etype (Op1))
5028 and then Is_Generic_Type (Etype (Op1))
5029 then
5030 Check_Non_Static_Context (Op1);
5031 return;
5033 -- If result is not static, then check non-static contexts on operands
5034 -- since one of them may be static and the other one may not be static.
5036 elsif not Rstat then
5037 Check_Non_Static_Context (Op1);
5038 Check_Non_Static_Context (Op2);
5039 Fold := Compile_Time_Known_Value (Op1)
5040 and then Compile_Time_Known_Value (Op2);
5041 return;
5043 -- Else result is static and foldable. Both operands are static, and
5044 -- neither raises constraint error, so we can definitely fold.
5046 else
5047 Set_Is_Static_Expression (N);
5048 Fold := True;
5049 Stat := True;
5050 return;
5051 end if;
5052 end Test_Expression_Is_Foldable;
5054 -------------------
5055 -- Test_In_Range --
5056 -------------------
5058 function Test_In_Range
5059 (N : Node_Id;
5060 Typ : Entity_Id;
5061 Assume_Valid : Boolean;
5062 Fixed_Int : Boolean;
5063 Int_Real : Boolean) return Range_Membership
5065 Val : Uint;
5066 Valr : Ureal;
5068 pragma Warnings (Off, Assume_Valid);
5069 -- For now Assume_Valid is unreferenced since the current implementation
5070 -- always returns Unknown if N is not a compile time known value, but we
5071 -- keep the parameter to allow for future enhancements in which we try
5072 -- to get the information in the variable case as well.
5074 begin
5075 -- Universal types have no range limits, so always in range
5077 if Typ = Universal_Integer or else Typ = Universal_Real then
5078 return In_Range;
5080 -- Never known if not scalar type. Don't know if this can actually
5081 -- happen, but our spec allows it, so we must check!
5083 elsif not Is_Scalar_Type (Typ) then
5084 return Unknown;
5086 -- Never known if this is a generic type, since the bounds of generic
5087 -- types are junk. Note that if we only checked for static expressions
5088 -- (instead of compile time known values) below, we would not need this
5089 -- check, because values of a generic type can never be static, but they
5090 -- can be known at compile time.
5092 elsif Is_Generic_Type (Typ) then
5093 return Unknown;
5095 -- Never known unless we have a compile time known value
5097 elsif not Compile_Time_Known_Value (N) then
5098 return Unknown;
5100 -- General processing with a known compile time value
5102 else
5103 declare
5104 Lo : Node_Id;
5105 Hi : Node_Id;
5107 LB_Known : Boolean;
5108 HB_Known : Boolean;
5110 begin
5111 Lo := Type_Low_Bound (Typ);
5112 Hi := Type_High_Bound (Typ);
5114 LB_Known := Compile_Time_Known_Value (Lo);
5115 HB_Known := Compile_Time_Known_Value (Hi);
5117 -- Fixed point types should be considered as such only if flag
5118 -- Fixed_Int is set to False.
5120 if Is_Floating_Point_Type (Typ)
5121 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5122 or else Int_Real
5123 then
5124 Valr := Expr_Value_R (N);
5126 if LB_Known and HB_Known then
5127 if Valr >= Expr_Value_R (Lo)
5128 and then
5129 Valr <= Expr_Value_R (Hi)
5130 then
5131 return In_Range;
5132 else
5133 return Out_Of_Range;
5134 end if;
5136 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5137 or else
5138 (HB_Known and then Valr > Expr_Value_R (Hi))
5139 then
5140 return Out_Of_Range;
5142 else
5143 return Unknown;
5144 end if;
5146 else
5147 Val := Expr_Value (N);
5149 if LB_Known and HB_Known then
5150 if Val >= Expr_Value (Lo)
5151 and then
5152 Val <= Expr_Value (Hi)
5153 then
5154 return In_Range;
5155 else
5156 return Out_Of_Range;
5157 end if;
5159 elsif (LB_Known and then Val < Expr_Value (Lo))
5160 or else
5161 (HB_Known and then Val > Expr_Value (Hi))
5162 then
5163 return Out_Of_Range;
5165 else
5166 return Unknown;
5167 end if;
5168 end if;
5169 end;
5170 end if;
5171 end Test_In_Range;
5173 --------------
5174 -- To_Bits --
5175 --------------
5177 procedure To_Bits (U : Uint; B : out Bits) is
5178 begin
5179 for J in 0 .. B'Last loop
5180 B (J) := (U / (2 ** J)) mod 2 /= 0;
5181 end loop;
5182 end To_Bits;
5184 --------------------
5185 -- Why_Not_Static --
5186 --------------------
5188 procedure Why_Not_Static (Expr : Node_Id) is
5189 N : constant Node_Id := Original_Node (Expr);
5190 Typ : Entity_Id;
5191 E : Entity_Id;
5193 procedure Why_Not_Static_List (L : List_Id);
5194 -- A version that can be called on a list of expressions. Finds all
5195 -- non-static violations in any element of the list.
5197 -------------------------
5198 -- Why_Not_Static_List --
5199 -------------------------
5201 procedure Why_Not_Static_List (L : List_Id) is
5202 N : Node_Id;
5204 begin
5205 if Is_Non_Empty_List (L) then
5206 N := First (L);
5207 while Present (N) loop
5208 Why_Not_Static (N);
5209 Next (N);
5210 end loop;
5211 end if;
5212 end Why_Not_Static_List;
5214 -- Start of processing for Why_Not_Static
5216 begin
5217 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5218 -- this avoids massive updates to the ACATS base line.
5220 if Debug_Flag_2 then
5221 return;
5222 end if;
5224 -- Ignore call on error or empty node
5226 if No (Expr) or else Nkind (Expr) = N_Error then
5227 return;
5228 end if;
5230 -- Preprocessing for sub expressions
5232 if Nkind (Expr) in N_Subexpr then
5234 -- Nothing to do if expression is static
5236 if Is_OK_Static_Expression (Expr) then
5237 return;
5238 end if;
5240 -- Test for constraint error raised
5242 if Raises_Constraint_Error (Expr) then
5243 Error_Msg_N
5244 ("expression raises exception, cannot be static " &
5245 "(RM 4.9(34))!", N);
5246 return;
5247 end if;
5249 -- If no type, then something is pretty wrong, so ignore
5251 Typ := Etype (Expr);
5253 if No (Typ) then
5254 return;
5255 end if;
5257 -- Type must be scalar or string type
5259 if not Is_Scalar_Type (Typ)
5260 and then not Is_String_Type (Typ)
5261 then
5262 Error_Msg_N
5263 ("static expression must have scalar or string type " &
5264 "(RM 4.9(2))!", N);
5265 return;
5266 end if;
5267 end if;
5269 -- If we got through those checks, test particular node kind
5271 case Nkind (N) is
5272 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5273 E := Entity (N);
5275 if Is_Named_Number (E) then
5276 null;
5278 elsif Ekind (E) = E_Constant then
5279 if not Is_Static_Expression (Constant_Value (E)) then
5280 Error_Msg_NE
5281 ("& is not a static constant (RM 4.9(5))!", N, E);
5282 end if;
5284 else
5285 Error_Msg_NE
5286 ("& is not static constant or named number " &
5287 "(RM 4.9(5))!", N, E);
5288 end if;
5290 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
5291 if Nkind (N) in N_Op_Shift then
5292 Error_Msg_N
5293 ("shift functions are never static (RM 4.9(6,18))!", N);
5295 else
5296 Why_Not_Static (Left_Opnd (N));
5297 Why_Not_Static (Right_Opnd (N));
5298 end if;
5300 when N_Unary_Op =>
5301 Why_Not_Static (Right_Opnd (N));
5303 when N_Attribute_Reference =>
5304 Why_Not_Static_List (Expressions (N));
5306 E := Etype (Prefix (N));
5308 if E = Standard_Void_Type then
5309 return;
5310 end if;
5312 -- Special case non-scalar'Size since this is a common error
5314 if Attribute_Name (N) = Name_Size then
5315 Error_Msg_N
5316 ("size attribute is only static for static scalar type " &
5317 "(RM 4.9(7,8))", N);
5319 -- Flag array cases
5321 elsif Is_Array_Type (E) then
5322 if Attribute_Name (N) /= Name_First
5323 and then
5324 Attribute_Name (N) /= Name_Last
5325 and then
5326 Attribute_Name (N) /= Name_Length
5327 then
5328 Error_Msg_N
5329 ("static array attribute must be Length, First, or Last " &
5330 "(RM 4.9(8))!", N);
5332 -- Since we know the expression is not-static (we already
5333 -- tested for this, must mean array is not static).
5335 else
5336 Error_Msg_N
5337 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
5338 end if;
5340 return;
5342 -- Special case generic types, since again this is a common source
5343 -- of confusion.
5345 elsif Is_Generic_Actual_Type (E)
5346 or else
5347 Is_Generic_Type (E)
5348 then
5349 Error_Msg_N
5350 ("attribute of generic type is never static " &
5351 "(RM 4.9(7,8))!", N);
5353 elsif Is_Static_Subtype (E) then
5354 null;
5356 elsif Is_Scalar_Type (E) then
5357 Error_Msg_N
5358 ("prefix type for attribute is not static scalar subtype " &
5359 "(RM 4.9(7))!", N);
5361 else
5362 Error_Msg_N
5363 ("static attribute must apply to array/scalar type " &
5364 "(RM 4.9(7,8))!", N);
5365 end if;
5367 when N_String_Literal =>
5368 Error_Msg_N
5369 ("subtype of string literal is non-static (RM 4.9(4))!", N);
5371 when N_Explicit_Dereference =>
5372 Error_Msg_N
5373 ("explicit dereference is never static (RM 4.9)!", N);
5375 when N_Function_Call =>
5376 Why_Not_Static_List (Parameter_Associations (N));
5377 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
5379 when N_Parameter_Association =>
5380 Why_Not_Static (Explicit_Actual_Parameter (N));
5382 when N_Indexed_Component =>
5383 Error_Msg_N
5384 ("indexed component is never static (RM 4.9)!", N);
5386 when N_Procedure_Call_Statement =>
5387 Error_Msg_N
5388 ("procedure call is never static (RM 4.9)!", N);
5390 when N_Qualified_Expression =>
5391 Why_Not_Static (Expression (N));
5393 when N_Aggregate | N_Extension_Aggregate =>
5394 Error_Msg_N
5395 ("an aggregate is never static (RM 4.9)!", N);
5397 when N_Range =>
5398 Why_Not_Static (Low_Bound (N));
5399 Why_Not_Static (High_Bound (N));
5401 when N_Range_Constraint =>
5402 Why_Not_Static (Range_Expression (N));
5404 when N_Subtype_Indication =>
5405 Why_Not_Static (Constraint (N));
5407 when N_Selected_Component =>
5408 Error_Msg_N
5409 ("selected component is never static (RM 4.9)!", N);
5411 when N_Slice =>
5412 Error_Msg_N
5413 ("slice is never static (RM 4.9)!", N);
5415 when N_Type_Conversion =>
5416 Why_Not_Static (Expression (N));
5418 if not Is_Scalar_Type (Etype (Prefix (N)))
5419 or else not Is_Static_Subtype (Etype (Prefix (N)))
5420 then
5421 Error_Msg_N
5422 ("static conversion requires static scalar subtype result " &
5423 "(RM 4.9(9))!", N);
5424 end if;
5426 when N_Unchecked_Type_Conversion =>
5427 Error_Msg_N
5428 ("unchecked type conversion is never static (RM 4.9)!", N);
5430 when others =>
5431 null;
5433 end case;
5434 end Why_Not_Static;
5436 end Sem_Eval;