Merge from mainline (163495:164578).
[official-gcc/graphite-test-results.git] / gcc / ada / sem_ch3.adb
blob9662357e80788e526c999cc5686b7c1c09ea5eed
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch9; use Exp_Ch9;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Layout; use Layout;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Case; use Sem_Case;
54 with Sem_Cat; use Sem_Cat;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch7; use Sem_Ch7;
57 with Sem_Ch8; use Sem_Ch8;
58 with Sem_Ch13; use Sem_Ch13;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Elim; use Sem_Elim;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Res; use Sem_Res;
65 with Sem_Smem; use Sem_Smem;
66 with Sem_Type; use Sem_Type;
67 with Sem_Util; use Sem_Util;
68 with Sem_Warn; use Sem_Warn;
69 with Stand; use Stand;
70 with Sinfo; use Sinfo;
71 with Sinput; use Sinput;
72 with Snames; use Snames;
73 with Targparm; use Targparm;
74 with Tbuild; use Tbuild;
75 with Ttypes; use Ttypes;
76 with Uintp; use Uintp;
77 with Urealp; use Urealp;
79 package body Sem_Ch3 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
86 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
87 -- abstract interface types implemented by a record type or a derived
88 -- record type.
90 procedure Build_Derived_Type
91 (N : Node_Id;
92 Parent_Type : Entity_Id;
93 Derived_Type : Entity_Id;
94 Is_Completion : Boolean;
95 Derive_Subps : Boolean := True);
96 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
97 -- the N_Full_Type_Declaration node containing the derived type definition.
98 -- Parent_Type is the entity for the parent type in the derived type
99 -- definition and Derived_Type the actual derived type. Is_Completion must
100 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
101 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
102 -- completion of a private type declaration. If Is_Completion is set to
103 -- True, N is the completion of a private type declaration and Derived_Type
104 -- is different from the defining identifier inside N (i.e. Derived_Type /=
105 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
106 -- subprograms should be derived. The only case where this parameter is
107 -- False is when Build_Derived_Type is recursively called to process an
108 -- implicit derived full type for a type derived from a private type (in
109 -- that case the subprograms must only be derived for the private view of
110 -- the type).
112 -- ??? These flags need a bit of re-examination and re-documentation:
113 -- ??? are they both necessary (both seem related to the recursion)?
115 procedure Build_Derived_Access_Type
116 (N : Node_Id;
117 Parent_Type : Entity_Id;
118 Derived_Type : Entity_Id);
119 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
120 -- create an implicit base if the parent type is constrained or if the
121 -- subtype indication has a constraint.
123 procedure Build_Derived_Array_Type
124 (N : Node_Id;
125 Parent_Type : Entity_Id;
126 Derived_Type : Entity_Id);
127 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
128 -- create an implicit base if the parent type is constrained or if the
129 -- subtype indication has a constraint.
131 procedure Build_Derived_Concurrent_Type
132 (N : Node_Id;
133 Parent_Type : Entity_Id;
134 Derived_Type : Entity_Id);
135 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
136 -- protected type, inherit entries and protected subprograms, check
137 -- legality of discriminant constraints if any.
139 procedure Build_Derived_Enumeration_Type
140 (N : Node_Id;
141 Parent_Type : Entity_Id;
142 Derived_Type : Entity_Id);
143 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
144 -- type, we must create a new list of literals. Types derived from
145 -- Character and [Wide_]Wide_Character are special-cased.
147 procedure Build_Derived_Numeric_Type
148 (N : Node_Id;
149 Parent_Type : Entity_Id;
150 Derived_Type : Entity_Id);
151 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
152 -- an anonymous base type, and propagate constraint to subtype if needed.
154 procedure Build_Derived_Private_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id;
158 Is_Completion : Boolean;
159 Derive_Subps : Boolean := True);
160 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
161 -- because the parent may or may not have a completion, and the derivation
162 -- may itself be a completion.
164 procedure Build_Derived_Record_Type
165 (N : Node_Id;
166 Parent_Type : Entity_Id;
167 Derived_Type : Entity_Id;
168 Derive_Subps : Boolean := True);
169 -- Subsidiary procedure for Build_Derived_Type and
170 -- Analyze_Private_Extension_Declaration used for tagged and untagged
171 -- record types. All parameters are as in Build_Derived_Type except that
172 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
173 -- N_Private_Extension_Declaration node. See the definition of this routine
174 -- for much more info. Derive_Subps indicates whether subprograms should
175 -- be derived from the parent type. The only case where Derive_Subps is
176 -- False is for an implicit derived full type for a type derived from a
177 -- private type (see Build_Derived_Type).
179 procedure Build_Discriminal (Discrim : Entity_Id);
180 -- Create the discriminal corresponding to discriminant Discrim, that is
181 -- the parameter corresponding to Discrim to be used in initialization
182 -- procedures for the type where Discrim is a discriminant. Discriminals
183 -- are not used during semantic analysis, and are not fully defined
184 -- entities until expansion. Thus they are not given a scope until
185 -- initialization procedures are built.
187 function Build_Discriminant_Constraints
188 (T : Entity_Id;
189 Def : Node_Id;
190 Derived_Def : Boolean := False) return Elist_Id;
191 -- Validate discriminant constraints and return the list of the constraints
192 -- in order of discriminant declarations, where T is the discriminated
193 -- unconstrained type. Def is the N_Subtype_Indication node where the
194 -- discriminants constraints for T are specified. Derived_Def is True
195 -- when building the discriminant constraints in a derived type definition
196 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
197 -- type and Def is the constraint "(xxx)" on T and this routine sets the
198 -- Corresponding_Discriminant field of the discriminants in the derived
199 -- type D to point to the corresponding discriminants in the parent type T.
201 procedure Build_Discriminated_Subtype
202 (T : Entity_Id;
203 Def_Id : Entity_Id;
204 Elist : Elist_Id;
205 Related_Nod : Node_Id;
206 For_Access : Boolean := False);
207 -- Subsidiary procedure to Constrain_Discriminated_Type and to
208 -- Process_Incomplete_Dependents. Given
210 -- T (a possibly discriminated base type)
211 -- Def_Id (a very partially built subtype for T),
213 -- the call completes Def_Id to be the appropriate E_*_Subtype.
215 -- The Elist is the list of discriminant constraints if any (it is set
216 -- to No_Elist if T is not a discriminated type, and to an empty list if
217 -- T has discriminants but there are no discriminant constraints). The
218 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
219 -- The For_Access says whether or not this subtype is really constraining
220 -- an access type. That is its sole purpose is the designated type of an
221 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
222 -- is built to avoid freezing T when the access subtype is frozen.
224 function Build_Scalar_Bound
225 (Bound : Node_Id;
226 Par_T : Entity_Id;
227 Der_T : Entity_Id) return Node_Id;
228 -- The bounds of a derived scalar type are conversions of the bounds of
229 -- the parent type. Optimize the representation if the bounds are literals.
230 -- Needs a more complete spec--what are the parameters exactly, and what
231 -- exactly is the returned value, and how is Bound affected???
233 procedure Build_Underlying_Full_View
234 (N : Node_Id;
235 Typ : Entity_Id;
236 Par : Entity_Id);
237 -- If the completion of a private type is itself derived from a private
238 -- type, or if the full view of a private subtype is itself private, the
239 -- back-end has no way to compute the actual size of this type. We build
240 -- an internal subtype declaration of the proper parent type to convey
241 -- this information. This extra mechanism is needed because a full
242 -- view cannot itself have a full view (it would get clobbered during
243 -- view exchanges).
245 procedure Check_Access_Discriminant_Requires_Limited
246 (D : Node_Id;
247 Loc : Node_Id);
248 -- Check the restriction that the type to which an access discriminant
249 -- belongs must be a concurrent type or a descendant of a type with
250 -- the reserved word 'limited' in its declaration.
252 procedure Check_Anonymous_Access_Components
253 (Typ_Decl : Node_Id;
254 Typ : Entity_Id;
255 Prev : Entity_Id;
256 Comp_List : Node_Id);
257 -- Ada 2005 AI-382: an access component in a record definition can refer to
258 -- the enclosing record, in which case it denotes the type itself, and not
259 -- the current instance of the type. We create an anonymous access type for
260 -- the component, and flag it as an access to a component, so accessibility
261 -- checks are properly performed on it. The declaration of the access type
262 -- is placed ahead of that of the record to prevent order-of-elaboration
263 -- circularity issues in Gigi. We create an incomplete type for the record
264 -- declaration, which is the designated type of the anonymous access.
266 procedure Check_Delta_Expression (E : Node_Id);
267 -- Check that the expression represented by E is suitable for use as a
268 -- delta expression, i.e. it is of real type and is static.
270 procedure Check_Digits_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- digits expression, i.e. it is of integer type, positive and static.
274 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
275 -- Validate the initialization of an object declaration. T is the required
276 -- type, and Exp is the initialization expression.
278 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
279 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
281 procedure Check_Or_Process_Discriminants
282 (N : Node_Id;
283 T : Entity_Id;
284 Prev : Entity_Id := Empty);
285 -- If T is the full declaration of an incomplete or private type, check the
286 -- conformance of the discriminants, otherwise process them. Prev is the
287 -- entity of the partial declaration, if any.
289 procedure Check_Real_Bound (Bound : Node_Id);
290 -- Check given bound for being of real type and static. If not, post an
291 -- appropriate message, and rewrite the bound with the real literal zero.
293 procedure Constant_Redeclaration
294 (Id : Entity_Id;
295 N : Node_Id;
296 T : out Entity_Id);
297 -- Various checks on legality of full declaration of deferred constant.
298 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
299 -- node. The caller has not yet set any attributes of this entity.
301 function Contain_Interface
302 (Iface : Entity_Id;
303 Ifaces : Elist_Id) return Boolean;
304 -- Ada 2005: Determine whether Iface is present in the list Ifaces
306 procedure Convert_Scalar_Bounds
307 (N : Node_Id;
308 Parent_Type : Entity_Id;
309 Derived_Type : Entity_Id;
310 Loc : Source_Ptr);
311 -- For derived scalar types, convert the bounds in the type definition to
312 -- the derived type, and complete their analysis. Given a constraint of the
313 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
314 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
315 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
316 -- subtype are conversions of those bounds to the derived_type, so that
317 -- their typing is consistent.
319 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
320 -- Copies attributes from array base type T2 to array base type T1. Copies
321 -- only attributes that apply to base types, but not subtypes.
323 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
324 -- Copies attributes from array subtype T2 to array subtype T1. Copies
325 -- attributes that apply to both subtypes and base types.
327 procedure Create_Constrained_Components
328 (Subt : Entity_Id;
329 Decl_Node : Node_Id;
330 Typ : Entity_Id;
331 Constraints : Elist_Id);
332 -- Build the list of entities for a constrained discriminated record
333 -- subtype. If a component depends on a discriminant, replace its subtype
334 -- using the discriminant values in the discriminant constraint. Subt
335 -- is the defining identifier for the subtype whose list of constrained
336 -- entities we will create. Decl_Node is the type declaration node where
337 -- we will attach all the itypes created. Typ is the base discriminated
338 -- type for the subtype Subt. Constraints is the list of discriminant
339 -- constraints for Typ.
341 function Constrain_Component_Type
342 (Comp : Entity_Id;
343 Constrained_Typ : Entity_Id;
344 Related_Node : Node_Id;
345 Typ : Entity_Id;
346 Constraints : Elist_Id) return Entity_Id;
347 -- Given a discriminated base type Typ, a list of discriminant constraint
348 -- Constraints for Typ and a component of Typ, with type Compon_Type,
349 -- create and return the type corresponding to Compon_type where all
350 -- discriminant references are replaced with the corresponding constraint.
351 -- If no discriminant references occur in Compon_Typ then return it as is.
352 -- Constrained_Typ is the final constrained subtype to which the
353 -- constrained Compon_Type belongs. Related_Node is the node where we will
354 -- attach all the itypes created.
356 -- Above description is confused, what is Compon_Type???
358 procedure Constrain_Access
359 (Def_Id : in out Entity_Id;
360 S : Node_Id;
361 Related_Nod : Node_Id);
362 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
363 -- an anonymous type created for a subtype indication. In that case it is
364 -- created in the procedure and attached to Related_Nod.
366 procedure Constrain_Array
367 (Def_Id : in out Entity_Id;
368 SI : Node_Id;
369 Related_Nod : Node_Id;
370 Related_Id : Entity_Id;
371 Suffix : Character);
372 -- Apply a list of index constraints to an unconstrained array type. The
373 -- first parameter is the entity for the resulting subtype. A value of
374 -- Empty for Def_Id indicates that an implicit type must be created, but
375 -- creation is delayed (and must be done by this procedure) because other
376 -- subsidiary implicit types must be created first (which is why Def_Id
377 -- is an in/out parameter). The second parameter is a subtype indication
378 -- node for the constrained array to be created (e.g. something of the
379 -- form string (1 .. 10)). Related_Nod gives the place where this type
380 -- has to be inserted in the tree. The Related_Id and Suffix parameters
381 -- are used to build the associated Implicit type name.
383 procedure Constrain_Concurrent
384 (Def_Id : in out Entity_Id;
385 SI : Node_Id;
386 Related_Nod : Node_Id;
387 Related_Id : Entity_Id;
388 Suffix : Character);
389 -- Apply list of discriminant constraints to an unconstrained concurrent
390 -- type.
392 -- SI is the N_Subtype_Indication node containing the constraint and
393 -- the unconstrained type to constrain.
395 -- Def_Id is the entity for the resulting constrained subtype. A value
396 -- of Empty for Def_Id indicates that an implicit type must be created,
397 -- but creation is delayed (and must be done by this procedure) because
398 -- other subsidiary implicit types must be created first (which is why
399 -- Def_Id is an in/out parameter).
401 -- Related_Nod gives the place where this type has to be inserted
402 -- in the tree
404 -- The last two arguments are used to create its external name if needed.
406 function Constrain_Corresponding_Record
407 (Prot_Subt : Entity_Id;
408 Corr_Rec : Entity_Id;
409 Related_Nod : Node_Id;
410 Related_Id : Entity_Id) return Entity_Id;
411 -- When constraining a protected type or task type with discriminants,
412 -- constrain the corresponding record with the same discriminant values.
414 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
415 -- Constrain a decimal fixed point type with a digits constraint and/or a
416 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
418 procedure Constrain_Discriminated_Type
419 (Def_Id : Entity_Id;
420 S : Node_Id;
421 Related_Nod : Node_Id;
422 For_Access : Boolean := False);
423 -- Process discriminant constraints of composite type. Verify that values
424 -- have been provided for all discriminants, that the original type is
425 -- unconstrained, and that the types of the supplied expressions match
426 -- the discriminant types. The first three parameters are like in routine
427 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
428 -- of For_Access.
430 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
431 -- Constrain an enumeration type with a range constraint. This is identical
432 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
434 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
435 -- Constrain a floating point type with either a digits constraint
436 -- and/or a range constraint, building a E_Floating_Point_Subtype.
438 procedure Constrain_Index
439 (Index : Node_Id;
440 S : Node_Id;
441 Related_Nod : Node_Id;
442 Related_Id : Entity_Id;
443 Suffix : Character;
444 Suffix_Index : Nat);
445 -- Process an index constraint in a constrained array declaration. The
446 -- constraint can be a subtype name, or a range with or without an explicit
447 -- subtype mark. The index is the corresponding index of the unconstrained
448 -- array. The Related_Id and Suffix parameters are used to build the
449 -- associated Implicit type name.
451 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
452 -- Build subtype of a signed or modular integer type
454 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
455 -- Constrain an ordinary fixed point type with a range constraint, and
456 -- build an E_Ordinary_Fixed_Point_Subtype entity.
458 procedure Copy_And_Swap (Priv, Full : Entity_Id);
459 -- Copy the Priv entity into the entity of its full declaration then swap
460 -- the two entities in such a manner that the former private type is now
461 -- seen as a full type.
463 procedure Decimal_Fixed_Point_Type_Declaration
464 (T : Entity_Id;
465 Def : Node_Id);
466 -- Create a new decimal fixed point type, and apply the constraint to
467 -- obtain a subtype of this new type.
469 procedure Complete_Private_Subtype
470 (Priv : Entity_Id;
471 Full : Entity_Id;
472 Full_Base : Entity_Id;
473 Related_Nod : Node_Id);
474 -- Complete the implicit full view of a private subtype by setting the
475 -- appropriate semantic fields. If the full view of the parent is a record
476 -- type, build constrained components of subtype.
478 procedure Derive_Progenitor_Subprograms
479 (Parent_Type : Entity_Id;
480 Tagged_Type : Entity_Id);
481 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
482 -- operations of progenitors of Tagged_Type, and replace the subsidiary
483 -- subtypes with Tagged_Type, to build the specs of the inherited interface
484 -- primitives. The derived primitives are aliased to those of the
485 -- interface. This routine takes care also of transferring to the full-view
486 -- subprograms associated with the partial-view of Tagged_Type that cover
487 -- interface primitives.
489 procedure Derived_Standard_Character
490 (N : Node_Id;
491 Parent_Type : Entity_Id;
492 Derived_Type : Entity_Id);
493 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
494 -- derivations from types Standard.Character and Standard.Wide_Character.
496 procedure Derived_Type_Declaration
497 (T : Entity_Id;
498 N : Node_Id;
499 Is_Completion : Boolean);
500 -- Process a derived type declaration. Build_Derived_Type is invoked
501 -- to process the actual derived type definition. Parameters N and
502 -- Is_Completion have the same meaning as in Build_Derived_Type.
503 -- T is the N_Defining_Identifier for the entity defined in the
504 -- N_Full_Type_Declaration node N, that is T is the derived type.
506 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
507 -- Insert each literal in symbol table, as an overloadable identifier. Each
508 -- enumeration type is mapped into a sequence of integers, and each literal
509 -- is defined as a constant with integer value. If any of the literals are
510 -- character literals, the type is a character type, which means that
511 -- strings are legal aggregates for arrays of components of the type.
513 function Expand_To_Stored_Constraint
514 (Typ : Entity_Id;
515 Constraint : Elist_Id) return Elist_Id;
516 -- Given a constraint (i.e. a list of expressions) on the discriminants of
517 -- Typ, expand it into a constraint on the stored discriminants and return
518 -- the new list of expressions constraining the stored discriminants.
520 function Find_Type_Of_Object
521 (Obj_Def : Node_Id;
522 Related_Nod : Node_Id) return Entity_Id;
523 -- Get type entity for object referenced by Obj_Def, attaching the
524 -- implicit types generated to Related_Nod
526 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
527 -- Create a new float and apply the constraint to obtain subtype of it
529 function Has_Range_Constraint (N : Node_Id) return Boolean;
530 -- Given an N_Subtype_Indication node N, return True if a range constraint
531 -- is present, either directly, or as part of a digits or delta constraint.
532 -- In addition, a digits constraint in the decimal case returns True, since
533 -- it establishes a default range if no explicit range is present.
535 function Inherit_Components
536 (N : Node_Id;
537 Parent_Base : Entity_Id;
538 Derived_Base : Entity_Id;
539 Is_Tagged : Boolean;
540 Inherit_Discr : Boolean;
541 Discs : Elist_Id) return Elist_Id;
542 -- Called from Build_Derived_Record_Type to inherit the components of
543 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
544 -- For more information on derived types and component inheritance please
545 -- consult the comment above the body of Build_Derived_Record_Type.
547 -- N is the original derived type declaration
549 -- Is_Tagged is set if we are dealing with tagged types
551 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
552 -- Parent_Base, otherwise no discriminants are inherited.
554 -- Discs gives the list of constraints that apply to Parent_Base in the
555 -- derived type declaration. If Discs is set to No_Elist, then we have
556 -- the following situation:
558 -- type Parent (D1..Dn : ..) is [tagged] record ...;
559 -- type Derived is new Parent [with ...];
561 -- which gets treated as
563 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
565 -- For untagged types the returned value is an association list. The list
566 -- starts from the association (Parent_Base => Derived_Base), and then it
567 -- contains a sequence of the associations of the form
569 -- (Old_Component => New_Component),
571 -- where Old_Component is the Entity_Id of a component in Parent_Base and
572 -- New_Component is the Entity_Id of the corresponding component in
573 -- Derived_Base. For untagged records, this association list is needed when
574 -- copying the record declaration for the derived base. In the tagged case
575 -- the value returned is irrelevant.
577 function Is_Valid_Constraint_Kind
578 (T_Kind : Type_Kind;
579 Constraint_Kind : Node_Kind) return Boolean;
580 -- Returns True if it is legal to apply the given kind of constraint to the
581 -- given kind of type (index constraint to an array type, for example).
583 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
584 -- Create new modular type. Verify that modulus is in bounds and is
585 -- a power of two (implementation restriction).
587 procedure New_Concatenation_Op (Typ : Entity_Id);
588 -- Create an abbreviated declaration for an operator in order to
589 -- materialize concatenation on array types.
591 procedure Ordinary_Fixed_Point_Type_Declaration
592 (T : Entity_Id;
593 Def : Node_Id);
594 -- Create a new ordinary fixed point type, and apply the constraint to
595 -- obtain subtype of it.
597 procedure Prepare_Private_Subtype_Completion
598 (Id : Entity_Id;
599 Related_Nod : Node_Id);
600 -- Id is a subtype of some private type. Creates the full declaration
601 -- associated with Id whenever possible, i.e. when the full declaration
602 -- of the base type is already known. Records each subtype into
603 -- Private_Dependents of the base type.
605 procedure Process_Incomplete_Dependents
606 (N : Node_Id;
607 Full_T : Entity_Id;
608 Inc_T : Entity_Id);
609 -- Process all entities that depend on an incomplete type. There include
610 -- subtypes, subprogram types that mention the incomplete type in their
611 -- profiles, and subprogram with access parameters that designate the
612 -- incomplete type.
614 -- Inc_T is the defining identifier of an incomplete type declaration, its
615 -- Ekind is E_Incomplete_Type.
617 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
619 -- Full_T is N's defining identifier.
621 -- Subtypes of incomplete types with discriminants are completed when the
622 -- parent type is. This is simpler than private subtypes, because they can
623 -- only appear in the same scope, and there is no need to exchange views.
624 -- Similarly, access_to_subprogram types may have a parameter or a return
625 -- type that is an incomplete type, and that must be replaced with the
626 -- full type.
628 -- If the full type is tagged, subprogram with access parameters that
629 -- designated the incomplete may be primitive operations of the full type,
630 -- and have to be processed accordingly.
632 procedure Process_Real_Range_Specification (Def : Node_Id);
633 -- Given the type definition for a real type, this procedure processes and
634 -- checks the real range specification of this type definition if one is
635 -- present. If errors are found, error messages are posted, and the
636 -- Real_Range_Specification of Def is reset to Empty.
638 procedure Record_Type_Declaration
639 (T : Entity_Id;
640 N : Node_Id;
641 Prev : Entity_Id);
642 -- Process a record type declaration (for both untagged and tagged
643 -- records). Parameters T and N are exactly like in procedure
644 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
645 -- for this routine. If this is the completion of an incomplete type
646 -- declaration, Prev is the entity of the incomplete declaration, used for
647 -- cross-referencing. Otherwise Prev = T.
649 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
650 -- This routine is used to process the actual record type definition (both
651 -- for untagged and tagged records). Def is a record type definition node.
652 -- This procedure analyzes the components in this record type definition.
653 -- Prev_T is the entity for the enclosing record type. It is provided so
654 -- that its Has_Task flag can be set if any of the component have Has_Task
655 -- set. If the declaration is the completion of an incomplete type
656 -- declaration, Prev_T is the original incomplete type, whose full view is
657 -- the record type.
659 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
660 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
661 -- build a copy of the declaration tree of the parent, and we create
662 -- independently the list of components for the derived type. Semantic
663 -- information uses the component entities, but record representation
664 -- clauses are validated on the declaration tree. This procedure replaces
665 -- discriminants and components in the declaration with those that have
666 -- been created by Inherit_Components.
668 procedure Set_Fixed_Range
669 (E : Entity_Id;
670 Loc : Source_Ptr;
671 Lo : Ureal;
672 Hi : Ureal);
673 -- Build a range node with the given bounds and set it as the Scalar_Range
674 -- of the given fixed-point type entity. Loc is the source location used
675 -- for the constructed range. See body for further details.
677 procedure Set_Scalar_Range_For_Subtype
678 (Def_Id : Entity_Id;
679 R : Node_Id;
680 Subt : Entity_Id);
681 -- This routine is used to set the scalar range field for a subtype given
682 -- Def_Id, the entity for the subtype, and R, the range expression for the
683 -- scalar range. Subt provides the parent subtype to be used to analyze,
684 -- resolve, and check the given range.
686 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
687 -- Create a new signed integer entity, and apply the constraint to obtain
688 -- the required first named subtype of this type.
690 procedure Set_Stored_Constraint_From_Discriminant_Constraint
691 (E : Entity_Id);
692 -- E is some record type. This routine computes E's Stored_Constraint
693 -- from its Discriminant_Constraint.
695 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
696 -- Check that an entity in a list of progenitors is an interface,
697 -- emit error otherwise.
699 -----------------------
700 -- Access_Definition --
701 -----------------------
703 function Access_Definition
704 (Related_Nod : Node_Id;
705 N : Node_Id) return Entity_Id
707 Loc : constant Source_Ptr := Sloc (Related_Nod);
708 Anon_Type : Entity_Id;
709 Anon_Scope : Entity_Id;
710 Desig_Type : Entity_Id;
711 Decl : Entity_Id;
712 Enclosing_Prot_Type : Entity_Id := Empty;
714 begin
715 if Is_Entry (Current_Scope)
716 and then Is_Task_Type (Etype (Scope (Current_Scope)))
717 then
718 Error_Msg_N ("task entries cannot have access parameters", N);
719 return Empty;
720 end if;
722 -- Ada 2005: for an object declaration the corresponding anonymous
723 -- type is declared in the current scope.
725 -- If the access definition is the return type of another access to
726 -- function, scope is the current one, because it is the one of the
727 -- current type declaration.
729 if Nkind_In (Related_Nod, N_Object_Declaration,
730 N_Access_Function_Definition)
731 then
732 Anon_Scope := Current_Scope;
734 -- For the anonymous function result case, retrieve the scope of the
735 -- function specification's associated entity rather than using the
736 -- current scope. The current scope will be the function itself if the
737 -- formal part is currently being analyzed, but will be the parent scope
738 -- in the case of a parameterless function, and we always want to use
739 -- the function's parent scope. Finally, if the function is a child
740 -- unit, we must traverse the tree to retrieve the proper entity.
742 elsif Nkind (Related_Nod) = N_Function_Specification
743 and then Nkind (Parent (N)) /= N_Parameter_Specification
744 then
745 -- If the current scope is a protected type, the anonymous access
746 -- is associated with one of the protected operations, and must
747 -- be available in the scope that encloses the protected declaration.
748 -- Otherwise the type is in the scope enclosing the subprogram.
750 -- If the function has formals, The return type of a subprogram
751 -- declaration is analyzed in the scope of the subprogram (see
752 -- Process_Formals) and thus the protected type, if present, is
753 -- the scope of the current function scope.
755 if Ekind (Current_Scope) = E_Protected_Type then
756 Enclosing_Prot_Type := Current_Scope;
758 elsif Ekind (Current_Scope) = E_Function
759 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
760 then
761 Enclosing_Prot_Type := Scope (Current_Scope);
762 end if;
764 if Present (Enclosing_Prot_Type) then
765 Anon_Scope := Scope (Enclosing_Prot_Type);
767 else
768 Anon_Scope := Scope (Defining_Entity (Related_Nod));
769 end if;
771 else
772 -- For access formals, access components, and access discriminants,
773 -- the scope is that of the enclosing declaration,
775 Anon_Scope := Scope (Current_Scope);
776 end if;
778 Anon_Type :=
779 Create_Itype
780 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
782 if All_Present (N)
783 and then Ada_Version >= Ada_05
784 then
785 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
786 end if;
788 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
789 -- the corresponding semantic routine
791 if Present (Access_To_Subprogram_Definition (N)) then
792 Access_Subprogram_Declaration
793 (T_Name => Anon_Type,
794 T_Def => Access_To_Subprogram_Definition (N));
796 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
797 Set_Ekind
798 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
799 else
800 Set_Ekind
801 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
802 end if;
804 Set_Can_Use_Internal_Rep
805 (Anon_Type, not Always_Compatible_Rep_On_Target);
807 -- If the anonymous access is associated with a protected operation
808 -- create a reference to it after the enclosing protected definition
809 -- because the itype will be used in the subsequent bodies.
811 if Ekind (Current_Scope) = E_Protected_Type then
812 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
813 end if;
815 return Anon_Type;
816 end if;
818 Find_Type (Subtype_Mark (N));
819 Desig_Type := Entity (Subtype_Mark (N));
821 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
822 Set_Etype (Anon_Type, Anon_Type);
824 -- Make sure the anonymous access type has size and alignment fields
825 -- set, as required by gigi. This is necessary in the case of the
826 -- Task_Body_Procedure.
828 if not Has_Private_Component (Desig_Type) then
829 Layout_Type (Anon_Type);
830 end if;
832 -- ???The following makes no sense, because Anon_Type is an access type
833 -- and therefore cannot have components, private or otherwise. Hence
834 -- the assertion. Not sure what was meant, here.
835 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
836 pragma Assert (not Depends_On_Private (Anon_Type));
838 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
839 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
840 -- the null value is allowed. In Ada 95 the null value is never allowed.
842 if Ada_Version >= Ada_05 then
843 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
844 else
845 Set_Can_Never_Be_Null (Anon_Type, True);
846 end if;
848 -- The anonymous access type is as public as the discriminated type or
849 -- subprogram that defines it. It is imported (for back-end purposes)
850 -- if the designated type is.
852 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
854 -- Ada 2005 (AI-231): Propagate the access-constant attribute
856 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
858 -- The context is either a subprogram declaration, object declaration,
859 -- or an access discriminant, in a private or a full type declaration.
860 -- In the case of a subprogram, if the designated type is incomplete,
861 -- the operation will be a primitive operation of the full type, to be
862 -- updated subsequently. If the type is imported through a limited_with
863 -- clause, the subprogram is not a primitive operation of the type
864 -- (which is declared elsewhere in some other scope).
866 if Ekind (Desig_Type) = E_Incomplete_Type
867 and then not From_With_Type (Desig_Type)
868 and then Is_Overloadable (Current_Scope)
869 then
870 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
871 Set_Has_Delayed_Freeze (Current_Scope);
872 end if;
874 -- Ada 2005: if the designated type is an interface that may contain
875 -- tasks, create a Master entity for the declaration. This must be done
876 -- before expansion of the full declaration, because the declaration may
877 -- include an expression that is an allocator, whose expansion needs the
878 -- proper Master for the created tasks.
880 if Nkind (Related_Nod) = N_Object_Declaration
881 and then Expander_Active
882 then
883 if Is_Interface (Desig_Type)
884 and then Is_Limited_Record (Desig_Type)
885 then
886 Build_Class_Wide_Master (Anon_Type);
888 -- Similarly, if the type is an anonymous access that designates
889 -- tasks, create a master entity for it in the current context.
891 elsif Has_Task (Desig_Type)
892 and then Comes_From_Source (Related_Nod)
893 then
894 if not Has_Master_Entity (Current_Scope) then
895 Decl :=
896 Make_Object_Declaration (Loc,
897 Defining_Identifier =>
898 Make_Defining_Identifier (Loc, Name_uMaster),
899 Constant_Present => True,
900 Object_Definition =>
901 New_Reference_To (RTE (RE_Master_Id), Loc),
902 Expression =>
903 Make_Explicit_Dereference (Loc,
904 New_Reference_To (RTE (RE_Current_Master), Loc)));
906 Insert_Before (Related_Nod, Decl);
907 Analyze (Decl);
909 Set_Master_Id (Anon_Type, Defining_Identifier (Decl));
910 Set_Has_Master_Entity (Current_Scope);
911 else
912 Build_Master_Renaming (Related_Nod, Anon_Type);
913 end if;
914 end if;
915 end if;
917 -- For a private component of a protected type, it is imperative that
918 -- the back-end elaborate the type immediately after the protected
919 -- declaration, because this type will be used in the declarations
920 -- created for the component within each protected body, so we must
921 -- create an itype reference for it now.
923 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
924 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
926 -- Similarly, if the access definition is the return result of a
927 -- function, create an itype reference for it because it will be used
928 -- within the function body. For a regular function that is not a
929 -- compilation unit, insert reference after the declaration. For a
930 -- protected operation, insert it after the enclosing protected type
931 -- declaration. In either case, do not create a reference for a type
932 -- obtained through a limited_with clause, because this would introduce
933 -- semantic dependencies.
935 -- Similarly, do not create a reference if the designated type is a
936 -- generic formal, because no use of it will reach the backend.
938 elsif Nkind (Related_Nod) = N_Function_Specification
939 and then not From_With_Type (Desig_Type)
940 and then not Is_Generic_Type (Desig_Type)
941 then
942 if Present (Enclosing_Prot_Type) then
943 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
945 elsif Is_List_Member (Parent (Related_Nod))
946 and then Nkind (Parent (N)) /= N_Parameter_Specification
947 then
948 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
949 end if;
951 -- Finally, create an itype reference for an object declaration of an
952 -- anonymous access type. This is strictly necessary only for deferred
953 -- constants, but in any case will avoid out-of-scope problems in the
954 -- back-end.
956 elsif Nkind (Related_Nod) = N_Object_Declaration then
957 Build_Itype_Reference (Anon_Type, Related_Nod);
958 end if;
960 return Anon_Type;
961 end Access_Definition;
963 -----------------------------------
964 -- Access_Subprogram_Declaration --
965 -----------------------------------
967 procedure Access_Subprogram_Declaration
968 (T_Name : Entity_Id;
969 T_Def : Node_Id)
972 procedure Check_For_Premature_Usage (Def : Node_Id);
973 -- Check that type T_Name is not used, directly or recursively, as a
974 -- parameter or a return type in Def. Def is either a subtype, an
975 -- access_definition, or an access_to_subprogram_definition.
977 -------------------------------
978 -- Check_For_Premature_Usage --
979 -------------------------------
981 procedure Check_For_Premature_Usage (Def : Node_Id) is
982 Param : Node_Id;
984 begin
985 -- Check for a subtype mark
987 if Nkind (Def) in N_Has_Etype then
988 if Etype (Def) = T_Name then
989 Error_Msg_N
990 ("type& cannot be used before end of its declaration", Def);
991 end if;
993 -- If this is not a subtype, then this is an access_definition
995 elsif Nkind (Def) = N_Access_Definition then
996 if Present (Access_To_Subprogram_Definition (Def)) then
997 Check_For_Premature_Usage
998 (Access_To_Subprogram_Definition (Def));
999 else
1000 Check_For_Premature_Usage (Subtype_Mark (Def));
1001 end if;
1003 -- The only cases left are N_Access_Function_Definition and
1004 -- N_Access_Procedure_Definition.
1006 else
1007 if Present (Parameter_Specifications (Def)) then
1008 Param := First (Parameter_Specifications (Def));
1009 while Present (Param) loop
1010 Check_For_Premature_Usage (Parameter_Type (Param));
1011 Param := Next (Param);
1012 end loop;
1013 end if;
1015 if Nkind (Def) = N_Access_Function_Definition then
1016 Check_For_Premature_Usage (Result_Definition (Def));
1017 end if;
1018 end if;
1019 end Check_For_Premature_Usage;
1021 -- Local variables
1023 Formals : constant List_Id := Parameter_Specifications (T_Def);
1024 Formal : Entity_Id;
1025 D_Ityp : Node_Id;
1026 Desig_Type : constant Entity_Id :=
1027 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1029 -- Start of processing for Access_Subprogram_Declaration
1031 begin
1032 -- Associate the Itype node with the inner full-type declaration or
1033 -- subprogram spec or entry body. This is required to handle nested
1034 -- anonymous declarations. For example:
1036 -- procedure P
1037 -- (X : access procedure
1038 -- (Y : access procedure
1039 -- (Z : access T)))
1041 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1042 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1043 N_Private_Type_Declaration,
1044 N_Private_Extension_Declaration,
1045 N_Procedure_Specification,
1046 N_Function_Specification,
1047 N_Entry_Body)
1049 or else
1050 Nkind_In (D_Ityp, N_Object_Declaration,
1051 N_Object_Renaming_Declaration,
1052 N_Formal_Object_Declaration,
1053 N_Formal_Type_Declaration,
1054 N_Task_Type_Declaration,
1055 N_Protected_Type_Declaration))
1056 loop
1057 D_Ityp := Parent (D_Ityp);
1058 pragma Assert (D_Ityp /= Empty);
1059 end loop;
1061 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1063 if Nkind_In (D_Ityp, N_Procedure_Specification,
1064 N_Function_Specification)
1065 then
1066 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1068 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Object_Declaration,
1070 N_Object_Renaming_Declaration,
1071 N_Formal_Type_Declaration)
1072 then
1073 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1074 end if;
1076 if Nkind (T_Def) = N_Access_Function_Definition then
1077 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1078 declare
1079 Acc : constant Node_Id := Result_Definition (T_Def);
1081 begin
1082 if Present (Access_To_Subprogram_Definition (Acc))
1083 and then
1084 Protected_Present (Access_To_Subprogram_Definition (Acc))
1085 then
1086 Set_Etype
1087 (Desig_Type,
1088 Replace_Anonymous_Access_To_Protected_Subprogram
1089 (T_Def));
1091 else
1092 Set_Etype
1093 (Desig_Type,
1094 Access_Definition (T_Def, Result_Definition (T_Def)));
1095 end if;
1096 end;
1098 else
1099 Analyze (Result_Definition (T_Def));
1101 declare
1102 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1104 begin
1105 -- If a null exclusion is imposed on the result type, then
1106 -- create a null-excluding itype (an access subtype) and use
1107 -- it as the function's Etype.
1109 if Is_Access_Type (Typ)
1110 and then Null_Exclusion_In_Return_Present (T_Def)
1111 then
1112 Set_Etype (Desig_Type,
1113 Create_Null_Excluding_Itype
1114 (T => Typ,
1115 Related_Nod => T_Def,
1116 Scope_Id => Current_Scope));
1118 else
1119 if From_With_Type (Typ) then
1120 Error_Msg_NE
1121 ("illegal use of incomplete type&",
1122 Result_Definition (T_Def), Typ);
1124 elsif Ekind (Current_Scope) = E_Package
1125 and then In_Private_Part (Current_Scope)
1126 then
1127 if Ekind (Typ) = E_Incomplete_Type then
1128 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1130 elsif Is_Class_Wide_Type (Typ)
1131 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1132 then
1133 Append_Elmt
1134 (Desig_Type, Private_Dependents (Etype (Typ)));
1135 end if;
1136 end if;
1138 Set_Etype (Desig_Type, Typ);
1139 end if;
1140 end;
1141 end if;
1143 if not (Is_Type (Etype (Desig_Type))) then
1144 Error_Msg_N
1145 ("expect type in function specification",
1146 Result_Definition (T_Def));
1147 end if;
1149 else
1150 Set_Etype (Desig_Type, Standard_Void_Type);
1151 end if;
1153 if Present (Formals) then
1154 Push_Scope (Desig_Type);
1156 -- A bit of a kludge here. These kludges will be removed when Itypes
1157 -- have proper parent pointers to their declarations???
1159 -- Kludge 1) Link defining_identifier of formals. Required by
1160 -- First_Formal to provide its functionality.
1162 declare
1163 F : Node_Id;
1165 begin
1166 F := First (Formals);
1167 while Present (F) loop
1168 if No (Parent (Defining_Identifier (F))) then
1169 Set_Parent (Defining_Identifier (F), F);
1170 end if;
1172 Next (F);
1173 end loop;
1174 end;
1176 Process_Formals (Formals, Parent (T_Def));
1178 -- Kludge 2) End_Scope requires that the parent pointer be set to
1179 -- something reasonable, but Itypes don't have parent pointers. So
1180 -- we set it and then unset it ???
1182 Set_Parent (Desig_Type, T_Name);
1183 End_Scope;
1184 Set_Parent (Desig_Type, Empty);
1185 end if;
1187 -- Check for premature usage of the type being defined
1189 Check_For_Premature_Usage (T_Def);
1191 -- The return type and/or any parameter type may be incomplete. Mark
1192 -- the subprogram_type as depending on the incomplete type, so that
1193 -- it can be updated when the full type declaration is seen. This
1194 -- only applies to incomplete types declared in some enclosing scope,
1195 -- not to limited views from other packages.
1197 if Present (Formals) then
1198 Formal := First_Formal (Desig_Type);
1199 while Present (Formal) loop
1200 if Ekind (Formal) /= E_In_Parameter
1201 and then Nkind (T_Def) = N_Access_Function_Definition
1202 then
1203 Error_Msg_N ("functions can only have IN parameters", Formal);
1204 end if;
1206 if Ekind (Etype (Formal)) = E_Incomplete_Type
1207 and then In_Open_Scopes (Scope (Etype (Formal)))
1208 then
1209 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1210 Set_Has_Delayed_Freeze (Desig_Type);
1211 end if;
1213 Next_Formal (Formal);
1214 end loop;
1215 end if;
1217 -- If the return type is incomplete, this is legal as long as the
1218 -- type is declared in the current scope and will be completed in
1219 -- it (rather than being part of limited view).
1221 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1222 and then not Has_Delayed_Freeze (Desig_Type)
1223 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1224 then
1225 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1226 Set_Has_Delayed_Freeze (Desig_Type);
1227 end if;
1229 Check_Delayed_Subprogram (Desig_Type);
1231 if Protected_Present (T_Def) then
1232 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1233 Set_Convention (Desig_Type, Convention_Protected);
1234 else
1235 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1236 end if;
1238 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1240 Set_Etype (T_Name, T_Name);
1241 Init_Size_Align (T_Name);
1242 Set_Directly_Designated_Type (T_Name, Desig_Type);
1244 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1246 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1248 Check_Restriction (No_Access_Subprograms, T_Def);
1249 end Access_Subprogram_Declaration;
1251 ----------------------------
1252 -- Access_Type_Declaration --
1253 ----------------------------
1255 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1256 S : constant Node_Id := Subtype_Indication (Def);
1257 P : constant Node_Id := Parent (Def);
1258 begin
1259 -- Check for permissible use of incomplete type
1261 if Nkind (S) /= N_Subtype_Indication then
1262 Analyze (S);
1264 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1265 Set_Directly_Designated_Type (T, Entity (S));
1266 else
1267 Set_Directly_Designated_Type (T,
1268 Process_Subtype (S, P, T, 'P'));
1269 end if;
1271 else
1272 Set_Directly_Designated_Type (T,
1273 Process_Subtype (S, P, T, 'P'));
1274 end if;
1276 if All_Present (Def) or Constant_Present (Def) then
1277 Set_Ekind (T, E_General_Access_Type);
1278 else
1279 Set_Ekind (T, E_Access_Type);
1280 end if;
1282 if Base_Type (Designated_Type (T)) = T then
1283 Error_Msg_N ("access type cannot designate itself", S);
1285 -- In Ada 2005, the type may have a limited view through some unit
1286 -- in its own context, allowing the following circularity that cannot
1287 -- be detected earlier
1289 elsif Is_Class_Wide_Type (Designated_Type (T))
1290 and then Etype (Designated_Type (T)) = T
1291 then
1292 Error_Msg_N
1293 ("access type cannot designate its own classwide type", S);
1295 -- Clean up indication of tagged status to prevent cascaded errors
1297 Set_Is_Tagged_Type (T, False);
1298 end if;
1300 Set_Etype (T, T);
1302 -- If the type has appeared already in a with_type clause, it is
1303 -- frozen and the pointer size is already set. Else, initialize.
1305 if not From_With_Type (T) then
1306 Init_Size_Align (T);
1307 end if;
1309 -- Note that Has_Task is always false, since the access type itself
1310 -- is not a task type. See Einfo for more description on this point.
1311 -- Exactly the same consideration applies to Has_Controlled_Component.
1313 Set_Has_Task (T, False);
1314 Set_Has_Controlled_Component (T, False);
1316 -- Initialize Associated_Final_Chain explicitly to Empty, to avoid
1317 -- problems where an incomplete view of this entity has been previously
1318 -- established by a limited with and an overlaid version of this field
1319 -- (Stored_Constraint) was initialized for the incomplete view.
1321 Set_Associated_Final_Chain (T, Empty);
1323 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1324 -- attributes
1326 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1327 Set_Is_Access_Constant (T, Constant_Present (Def));
1328 end Access_Type_Declaration;
1330 ----------------------------------
1331 -- Add_Interface_Tag_Components --
1332 ----------------------------------
1334 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1335 Loc : constant Source_Ptr := Sloc (N);
1336 L : List_Id;
1337 Last_Tag : Node_Id;
1339 procedure Add_Tag (Iface : Entity_Id);
1340 -- Add tag for one of the progenitor interfaces
1342 -------------
1343 -- Add_Tag --
1344 -------------
1346 procedure Add_Tag (Iface : Entity_Id) is
1347 Decl : Node_Id;
1348 Def : Node_Id;
1349 Tag : Entity_Id;
1350 Offset : Entity_Id;
1352 begin
1353 pragma Assert (Is_Tagged_Type (Iface)
1354 and then Is_Interface (Iface));
1356 Def :=
1357 Make_Component_Definition (Loc,
1358 Aliased_Present => True,
1359 Subtype_Indication =>
1360 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1362 Tag := Make_Temporary (Loc, 'V');
1364 Decl :=
1365 Make_Component_Declaration (Loc,
1366 Defining_Identifier => Tag,
1367 Component_Definition => Def);
1369 Analyze_Component_Declaration (Decl);
1371 Set_Analyzed (Decl);
1372 Set_Ekind (Tag, E_Component);
1373 Set_Is_Tag (Tag);
1374 Set_Is_Aliased (Tag);
1375 Set_Related_Type (Tag, Iface);
1376 Init_Component_Location (Tag);
1378 pragma Assert (Is_Frozen (Iface));
1380 Set_DT_Entry_Count (Tag,
1381 DT_Entry_Count (First_Entity (Iface)));
1383 if No (Last_Tag) then
1384 Prepend (Decl, L);
1385 else
1386 Insert_After (Last_Tag, Decl);
1387 end if;
1389 Last_Tag := Decl;
1391 -- If the ancestor has discriminants we need to give special support
1392 -- to store the offset_to_top value of the secondary dispatch tables.
1393 -- For this purpose we add a supplementary component just after the
1394 -- field that contains the tag associated with each secondary DT.
1396 if Typ /= Etype (Typ)
1397 and then Has_Discriminants (Etype (Typ))
1398 then
1399 Def :=
1400 Make_Component_Definition (Loc,
1401 Subtype_Indication =>
1402 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1404 Offset := Make_Temporary (Loc, 'V');
1406 Decl :=
1407 Make_Component_Declaration (Loc,
1408 Defining_Identifier => Offset,
1409 Component_Definition => Def);
1411 Analyze_Component_Declaration (Decl);
1413 Set_Analyzed (Decl);
1414 Set_Ekind (Offset, E_Component);
1415 Set_Is_Aliased (Offset);
1416 Set_Related_Type (Offset, Iface);
1417 Init_Component_Location (Offset);
1418 Insert_After (Last_Tag, Decl);
1419 Last_Tag := Decl;
1420 end if;
1421 end Add_Tag;
1423 -- Local variables
1425 Elmt : Elmt_Id;
1426 Ext : Node_Id;
1427 Comp : Node_Id;
1429 -- Start of processing for Add_Interface_Tag_Components
1431 begin
1432 if not RTE_Available (RE_Interface_Tag) then
1433 Error_Msg
1434 ("(Ada 2005) interface types not supported by this run-time!",
1435 Sloc (N));
1436 return;
1437 end if;
1439 if Ekind (Typ) /= E_Record_Type
1440 or else (Is_Concurrent_Record_Type (Typ)
1441 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1442 or else (not Is_Concurrent_Record_Type (Typ)
1443 and then No (Interfaces (Typ))
1444 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1445 then
1446 return;
1447 end if;
1449 -- Find the current last tag
1451 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1452 Ext := Record_Extension_Part (Type_Definition (N));
1453 else
1454 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1455 Ext := Type_Definition (N);
1456 end if;
1458 Last_Tag := Empty;
1460 if not (Present (Component_List (Ext))) then
1461 Set_Null_Present (Ext, False);
1462 L := New_List;
1463 Set_Component_List (Ext,
1464 Make_Component_List (Loc,
1465 Component_Items => L,
1466 Null_Present => False));
1467 else
1468 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1469 L := Component_Items
1470 (Component_List
1471 (Record_Extension_Part
1472 (Type_Definition (N))));
1473 else
1474 L := Component_Items
1475 (Component_List
1476 (Type_Definition (N)));
1477 end if;
1479 -- Find the last tag component
1481 Comp := First (L);
1482 while Present (Comp) loop
1483 if Nkind (Comp) = N_Component_Declaration
1484 and then Is_Tag (Defining_Identifier (Comp))
1485 then
1486 Last_Tag := Comp;
1487 end if;
1489 Next (Comp);
1490 end loop;
1491 end if;
1493 -- At this point L references the list of components and Last_Tag
1494 -- references the current last tag (if any). Now we add the tag
1495 -- corresponding with all the interfaces that are not implemented
1496 -- by the parent.
1498 if Present (Interfaces (Typ)) then
1499 Elmt := First_Elmt (Interfaces (Typ));
1500 while Present (Elmt) loop
1501 Add_Tag (Node (Elmt));
1502 Next_Elmt (Elmt);
1503 end loop;
1504 end if;
1505 end Add_Interface_Tag_Components;
1507 -------------------------------------
1508 -- Add_Internal_Interface_Entities --
1509 -------------------------------------
1511 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1512 Elmt : Elmt_Id;
1513 Iface : Entity_Id;
1514 Iface_Elmt : Elmt_Id;
1515 Iface_Prim : Entity_Id;
1516 Ifaces_List : Elist_Id;
1517 New_Subp : Entity_Id := Empty;
1518 Prim : Entity_Id;
1519 Restore_Scope : Boolean := False;
1521 begin
1522 pragma Assert (Ada_Version >= Ada_05
1523 and then Is_Record_Type (Tagged_Type)
1524 and then Is_Tagged_Type (Tagged_Type)
1525 and then Has_Interfaces (Tagged_Type)
1526 and then not Is_Interface (Tagged_Type));
1528 -- Ensure that the internal entities are added to the scope of the type
1530 if Scope (Tagged_Type) /= Current_Scope then
1531 Push_Scope (Scope (Tagged_Type));
1532 Restore_Scope := True;
1533 end if;
1535 Collect_Interfaces (Tagged_Type, Ifaces_List);
1537 Iface_Elmt := First_Elmt (Ifaces_List);
1538 while Present (Iface_Elmt) loop
1539 Iface := Node (Iface_Elmt);
1541 -- Originally we excluded here from this processing interfaces that
1542 -- are parents of Tagged_Type because their primitives are located
1543 -- in the primary dispatch table (and hence no auxiliary internal
1544 -- entities are required to handle secondary dispatch tables in such
1545 -- case). However, these auxiliary entities are also required to
1546 -- handle derivations of interfaces in formals of generics (see
1547 -- Derive_Subprograms).
1549 Elmt := First_Elmt (Primitive_Operations (Iface));
1550 while Present (Elmt) loop
1551 Iface_Prim := Node (Elmt);
1553 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1554 Prim :=
1555 Find_Primitive_Covering_Interface
1556 (Tagged_Type => Tagged_Type,
1557 Iface_Prim => Iface_Prim);
1559 -- Handle cases where the type has no primitive covering this
1560 -- interface primitive.
1562 if No (Prim) then
1564 -- Skip non-overridden null interface primitives because
1565 -- their wrappers will be generated later.
1567 if Is_Null_Interface_Primitive (Iface_Prim) then
1568 goto Continue;
1570 -- if the tagged type is defined at library level then we
1571 -- invoke Check_Abstract_Overriding to report the error
1572 -- and thus avoid generating the dispatch tables.
1574 elsif Is_Library_Level_Tagged_Type (Tagged_Type) then
1575 Check_Abstract_Overriding (Tagged_Type);
1576 pragma Assert (Serious_Errors_Detected > 0);
1577 return;
1579 -- For tagged types defined in nested scopes it is still
1580 -- possible to cover this interface primitive by means of
1581 -- late overriding (see Override_Dispatching_Operation).
1583 -- Search in the list of primitives of the type for the
1584 -- entity that will be overridden in such case to reference
1585 -- it in the internal entity that we build here. If the
1586 -- primitive is not overridden then the error will be
1587 -- reported later as part of the analysis of entities
1588 -- defined in the enclosing scope.
1590 else
1591 declare
1592 El : Elmt_Id;
1594 begin
1595 El := First_Elmt (Primitive_Operations (Tagged_Type));
1596 while Present (El)
1597 and then Alias (Node (El)) /= Iface_Prim
1598 loop
1599 Next_Elmt (El);
1600 end loop;
1602 pragma Assert (Present (El));
1603 Prim := Node (El);
1604 end;
1605 end if;
1606 end if;
1608 Derive_Subprogram
1609 (New_Subp => New_Subp,
1610 Parent_Subp => Iface_Prim,
1611 Derived_Type => Tagged_Type,
1612 Parent_Type => Iface);
1614 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1615 -- associated with interface types. These entities are
1616 -- only registered in the list of primitives of its
1617 -- corresponding tagged type because they are only used
1618 -- to fill the contents of the secondary dispatch tables.
1619 -- Therefore they are removed from the homonym chains.
1621 Set_Is_Hidden (New_Subp);
1622 Set_Is_Internal (New_Subp);
1623 Set_Alias (New_Subp, Prim);
1624 Set_Is_Abstract_Subprogram
1625 (New_Subp, Is_Abstract_Subprogram (Prim));
1626 Set_Interface_Alias (New_Subp, Iface_Prim);
1628 -- Internal entities associated with interface types are
1629 -- only registered in the list of primitives of the tagged
1630 -- type. They are only used to fill the contents of the
1631 -- secondary dispatch tables. Therefore they are not needed
1632 -- in the homonym chains.
1634 Remove_Homonym (New_Subp);
1636 -- Hidden entities associated with interfaces must have set
1637 -- the Has_Delay_Freeze attribute to ensure that, in case of
1638 -- locally defined tagged types (or compiling with static
1639 -- dispatch tables generation disabled) the corresponding
1640 -- entry of the secondary dispatch table is filled when
1641 -- such an entity is frozen.
1643 Set_Has_Delayed_Freeze (New_Subp);
1644 end if;
1646 <<Continue>>
1647 Next_Elmt (Elmt);
1648 end loop;
1650 Next_Elmt (Iface_Elmt);
1651 end loop;
1653 if Restore_Scope then
1654 Pop_Scope;
1655 end if;
1656 end Add_Internal_Interface_Entities;
1658 -----------------------------------
1659 -- Analyze_Component_Declaration --
1660 -----------------------------------
1662 procedure Analyze_Component_Declaration (N : Node_Id) is
1663 Id : constant Entity_Id := Defining_Identifier (N);
1664 E : constant Node_Id := Expression (N);
1665 T : Entity_Id;
1666 P : Entity_Id;
1668 function Contains_POC (Constr : Node_Id) return Boolean;
1669 -- Determines whether a constraint uses the discriminant of a record
1670 -- type thus becoming a per-object constraint (POC).
1672 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1673 -- Typ is the type of the current component, check whether this type is
1674 -- a limited type. Used to validate declaration against that of
1675 -- enclosing record.
1677 ------------------
1678 -- Contains_POC --
1679 ------------------
1681 function Contains_POC (Constr : Node_Id) return Boolean is
1682 begin
1683 -- Prevent cascaded errors
1685 if Error_Posted (Constr) then
1686 return False;
1687 end if;
1689 case Nkind (Constr) is
1690 when N_Attribute_Reference =>
1691 return
1692 Attribute_Name (Constr) = Name_Access
1693 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1695 when N_Discriminant_Association =>
1696 return Denotes_Discriminant (Expression (Constr));
1698 when N_Identifier =>
1699 return Denotes_Discriminant (Constr);
1701 when N_Index_Or_Discriminant_Constraint =>
1702 declare
1703 IDC : Node_Id;
1705 begin
1706 IDC := First (Constraints (Constr));
1707 while Present (IDC) loop
1709 -- One per-object constraint is sufficient
1711 if Contains_POC (IDC) then
1712 return True;
1713 end if;
1715 Next (IDC);
1716 end loop;
1718 return False;
1719 end;
1721 when N_Range =>
1722 return Denotes_Discriminant (Low_Bound (Constr))
1723 or else
1724 Denotes_Discriminant (High_Bound (Constr));
1726 when N_Range_Constraint =>
1727 return Denotes_Discriminant (Range_Expression (Constr));
1729 when others =>
1730 return False;
1732 end case;
1733 end Contains_POC;
1735 ----------------------
1736 -- Is_Known_Limited --
1737 ----------------------
1739 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1740 P : constant Entity_Id := Etype (Typ);
1741 R : constant Entity_Id := Root_Type (Typ);
1743 begin
1744 if Is_Limited_Record (Typ) then
1745 return True;
1747 -- If the root type is limited (and not a limited interface)
1748 -- so is the current type
1750 elsif Is_Limited_Record (R)
1751 and then
1752 (not Is_Interface (R)
1753 or else not Is_Limited_Interface (R))
1754 then
1755 return True;
1757 -- Else the type may have a limited interface progenitor, but a
1758 -- limited record parent.
1760 elsif R /= P
1761 and then Is_Limited_Record (P)
1762 then
1763 return True;
1765 else
1766 return False;
1767 end if;
1768 end Is_Known_Limited;
1770 -- Start of processing for Analyze_Component_Declaration
1772 begin
1773 Generate_Definition (Id);
1774 Enter_Name (Id);
1776 if Present (Subtype_Indication (Component_Definition (N))) then
1777 T := Find_Type_Of_Object
1778 (Subtype_Indication (Component_Definition (N)), N);
1780 -- Ada 2005 (AI-230): Access Definition case
1782 else
1783 pragma Assert (Present
1784 (Access_Definition (Component_Definition (N))));
1786 T := Access_Definition
1787 (Related_Nod => N,
1788 N => Access_Definition (Component_Definition (N)));
1789 Set_Is_Local_Anonymous_Access (T);
1791 -- Ada 2005 (AI-254)
1793 if Present (Access_To_Subprogram_Definition
1794 (Access_Definition (Component_Definition (N))))
1795 and then Protected_Present (Access_To_Subprogram_Definition
1796 (Access_Definition
1797 (Component_Definition (N))))
1798 then
1799 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1800 end if;
1801 end if;
1803 -- If the subtype is a constrained subtype of the enclosing record,
1804 -- (which must have a partial view) the back-end does not properly
1805 -- handle the recursion. Rewrite the component declaration with an
1806 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1807 -- the tree directly because side effects have already been removed from
1808 -- discriminant constraints.
1810 if Ekind (T) = E_Access_Subtype
1811 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1812 and then Comes_From_Source (T)
1813 and then Nkind (Parent (T)) = N_Subtype_Declaration
1814 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1815 then
1816 Rewrite
1817 (Subtype_Indication (Component_Definition (N)),
1818 New_Copy_Tree (Subtype_Indication (Parent (T))));
1819 T := Find_Type_Of_Object
1820 (Subtype_Indication (Component_Definition (N)), N);
1821 end if;
1823 -- If the component declaration includes a default expression, then we
1824 -- check that the component is not of a limited type (RM 3.7(5)),
1825 -- and do the special preanalysis of the expression (see section on
1826 -- "Handling of Default and Per-Object Expressions" in the spec of
1827 -- package Sem).
1829 if Present (E) then
1830 Preanalyze_Spec_Expression (E, T);
1831 Check_Initialization (T, E);
1833 if Ada_Version >= Ada_05
1834 and then Ekind (T) = E_Anonymous_Access_Type
1835 and then Etype (E) /= Any_Type
1836 then
1837 -- Check RM 3.9.2(9): "if the expected type for an expression is
1838 -- an anonymous access-to-specific tagged type, then the object
1839 -- designated by the expression shall not be dynamically tagged
1840 -- unless it is a controlling operand in a call on a dispatching
1841 -- operation"
1843 if Is_Tagged_Type (Directly_Designated_Type (T))
1844 and then
1845 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1846 and then
1847 Ekind (Directly_Designated_Type (Etype (E))) =
1848 E_Class_Wide_Type
1849 then
1850 Error_Msg_N
1851 ("access to specific tagged type required (RM 3.9.2(9))", E);
1852 end if;
1854 -- (Ada 2005: AI-230): Accessibility check for anonymous
1855 -- components
1857 if Type_Access_Level (Etype (E)) > Type_Access_Level (T) then
1858 Error_Msg_N
1859 ("expression has deeper access level than component " &
1860 "(RM 3.10.2 (12.2))", E);
1861 end if;
1863 -- The initialization expression is a reference to an access
1864 -- discriminant. The type of the discriminant is always deeper
1865 -- than any access type.
1867 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1868 and then Is_Entity_Name (E)
1869 and then Ekind (Entity (E)) = E_In_Parameter
1870 and then Present (Discriminal_Link (Entity (E)))
1871 then
1872 Error_Msg_N
1873 ("discriminant has deeper accessibility level than target",
1875 end if;
1876 end if;
1877 end if;
1879 -- The parent type may be a private view with unknown discriminants,
1880 -- and thus unconstrained. Regular components must be constrained.
1882 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1883 if Is_Class_Wide_Type (T) then
1884 Error_Msg_N
1885 ("class-wide subtype with unknown discriminants" &
1886 " in component declaration",
1887 Subtype_Indication (Component_Definition (N)));
1888 else
1889 Error_Msg_N
1890 ("unconstrained subtype in component declaration",
1891 Subtype_Indication (Component_Definition (N)));
1892 end if;
1894 -- Components cannot be abstract, except for the special case of
1895 -- the _Parent field (case of extending an abstract tagged type)
1897 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1898 Error_Msg_N ("type of a component cannot be abstract", N);
1899 end if;
1901 Set_Etype (Id, T);
1902 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1904 -- The component declaration may have a per-object constraint, set
1905 -- the appropriate flag in the defining identifier of the subtype.
1907 if Present (Subtype_Indication (Component_Definition (N))) then
1908 declare
1909 Sindic : constant Node_Id :=
1910 Subtype_Indication (Component_Definition (N));
1911 begin
1912 if Nkind (Sindic) = N_Subtype_Indication
1913 and then Present (Constraint (Sindic))
1914 and then Contains_POC (Constraint (Sindic))
1915 then
1916 Set_Has_Per_Object_Constraint (Id);
1917 end if;
1918 end;
1919 end if;
1921 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1922 -- out some static checks.
1924 if Ada_Version >= Ada_05
1925 and then Can_Never_Be_Null (T)
1926 then
1927 Null_Exclusion_Static_Checks (N);
1928 end if;
1930 -- If this component is private (or depends on a private type), flag the
1931 -- record type to indicate that some operations are not available.
1933 P := Private_Component (T);
1935 if Present (P) then
1937 -- Check for circular definitions
1939 if P = Any_Type then
1940 Set_Etype (Id, Any_Type);
1942 -- There is a gap in the visibility of operations only if the
1943 -- component type is not defined in the scope of the record type.
1945 elsif Scope (P) = Scope (Current_Scope) then
1946 null;
1948 elsif Is_Limited_Type (P) then
1949 Set_Is_Limited_Composite (Current_Scope);
1951 else
1952 Set_Is_Private_Composite (Current_Scope);
1953 end if;
1954 end if;
1956 if P /= Any_Type
1957 and then Is_Limited_Type (T)
1958 and then Chars (Id) /= Name_uParent
1959 and then Is_Tagged_Type (Current_Scope)
1960 then
1961 if Is_Derived_Type (Current_Scope)
1962 and then not Is_Known_Limited (Current_Scope)
1963 then
1964 Error_Msg_N
1965 ("extension of nonlimited type cannot have limited components",
1968 if Is_Interface (Root_Type (Current_Scope)) then
1969 Error_Msg_N
1970 ("\limitedness is not inherited from limited interface", N);
1971 Error_Msg_N ("\add LIMITED to type indication", N);
1972 end if;
1974 Explain_Limited_Type (T, N);
1975 Set_Etype (Id, Any_Type);
1976 Set_Is_Limited_Composite (Current_Scope, False);
1978 elsif not Is_Derived_Type (Current_Scope)
1979 and then not Is_Limited_Record (Current_Scope)
1980 and then not Is_Concurrent_Type (Current_Scope)
1981 then
1982 Error_Msg_N
1983 ("nonlimited tagged type cannot have limited components", N);
1984 Explain_Limited_Type (T, N);
1985 Set_Etype (Id, Any_Type);
1986 Set_Is_Limited_Composite (Current_Scope, False);
1987 end if;
1988 end if;
1990 Set_Original_Record_Component (Id, Id);
1991 end Analyze_Component_Declaration;
1993 --------------------------
1994 -- Analyze_Declarations --
1995 --------------------------
1997 procedure Analyze_Declarations (L : List_Id) is
1998 D : Node_Id;
1999 Freeze_From : Entity_Id := Empty;
2000 Next_Node : Node_Id;
2002 procedure Adjust_D;
2003 -- Adjust D not to include implicit label declarations, since these
2004 -- have strange Sloc values that result in elaboration check problems.
2005 -- (They have the sloc of the label as found in the source, and that
2006 -- is ahead of the current declarative part).
2008 --------------
2009 -- Adjust_D --
2010 --------------
2012 procedure Adjust_D is
2013 begin
2014 while Present (Prev (D))
2015 and then Nkind (D) = N_Implicit_Label_Declaration
2016 loop
2017 Prev (D);
2018 end loop;
2019 end Adjust_D;
2021 -- Start of processing for Analyze_Declarations
2023 begin
2024 D := First (L);
2025 while Present (D) loop
2027 -- Complete analysis of declaration
2029 Analyze (D);
2030 Next_Node := Next (D);
2032 if No (Freeze_From) then
2033 Freeze_From := First_Entity (Current_Scope);
2034 end if;
2036 -- At the end of a declarative part, freeze remaining entities
2037 -- declared in it. The end of the visible declarations of package
2038 -- specification is not the end of a declarative part if private
2039 -- declarations are present. The end of a package declaration is a
2040 -- freezing point only if it a library package. A task definition or
2041 -- protected type definition is not a freeze point either. Finally,
2042 -- we do not freeze entities in generic scopes, because there is no
2043 -- code generated for them and freeze nodes will be generated for
2044 -- the instance.
2046 -- The end of a package instantiation is not a freeze point, but
2047 -- for now we make it one, because the generic body is inserted
2048 -- (currently) immediately after. Generic instantiations will not
2049 -- be a freeze point once delayed freezing of bodies is implemented.
2050 -- (This is needed in any case for early instantiations ???).
2052 if No (Next_Node) then
2053 if Nkind_In (Parent (L), N_Component_List,
2054 N_Task_Definition,
2055 N_Protected_Definition)
2056 then
2057 null;
2059 elsif Nkind (Parent (L)) /= N_Package_Specification then
2060 if Nkind (Parent (L)) = N_Package_Body then
2061 Freeze_From := First_Entity (Current_Scope);
2062 end if;
2064 Adjust_D;
2065 Freeze_All (Freeze_From, D);
2066 Freeze_From := Last_Entity (Current_Scope);
2068 elsif Scope (Current_Scope) /= Standard_Standard
2069 and then not Is_Child_Unit (Current_Scope)
2070 and then No (Generic_Parent (Parent (L)))
2071 then
2072 null;
2074 elsif L /= Visible_Declarations (Parent (L))
2075 or else No (Private_Declarations (Parent (L)))
2076 or else Is_Empty_List (Private_Declarations (Parent (L)))
2077 then
2078 Adjust_D;
2079 Freeze_All (Freeze_From, D);
2080 Freeze_From := Last_Entity (Current_Scope);
2081 end if;
2083 -- If next node is a body then freeze all types before the body.
2084 -- An exception occurs for some expander-generated bodies. If these
2085 -- are generated at places where in general language rules would not
2086 -- allow a freeze point, then we assume that the expander has
2087 -- explicitly checked that all required types are properly frozen,
2088 -- and we do not cause general freezing here. This special circuit
2089 -- is used when the encountered body is marked as having already
2090 -- been analyzed.
2092 -- In all other cases (bodies that come from source, and expander
2093 -- generated bodies that have not been analyzed yet), freeze all
2094 -- types now. Note that in the latter case, the expander must take
2095 -- care to attach the bodies at a proper place in the tree so as to
2096 -- not cause unwanted freezing at that point.
2098 elsif not Analyzed (Next_Node)
2099 and then (Nkind_In (Next_Node, N_Subprogram_Body,
2100 N_Entry_Body,
2101 N_Package_Body,
2102 N_Protected_Body,
2103 N_Task_Body)
2104 or else
2105 Nkind (Next_Node) in N_Body_Stub)
2106 then
2107 Adjust_D;
2108 Freeze_All (Freeze_From, D);
2109 Freeze_From := Last_Entity (Current_Scope);
2110 end if;
2112 D := Next_Node;
2113 end loop;
2114 end Analyze_Declarations;
2116 ----------------------------------
2117 -- Analyze_Incomplete_Type_Decl --
2118 ----------------------------------
2120 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2121 F : constant Boolean := Is_Pure (Current_Scope);
2122 T : Entity_Id;
2124 begin
2125 Generate_Definition (Defining_Identifier (N));
2127 -- Process an incomplete declaration. The identifier must not have been
2128 -- declared already in the scope. However, an incomplete declaration may
2129 -- appear in the private part of a package, for a private type that has
2130 -- already been declared.
2132 -- In this case, the discriminants (if any) must match
2134 T := Find_Type_Name (N);
2136 Set_Ekind (T, E_Incomplete_Type);
2137 Init_Size_Align (T);
2138 Set_Is_First_Subtype (T, True);
2139 Set_Etype (T, T);
2141 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2142 -- incomplete types.
2144 if Tagged_Present (N) then
2145 Set_Is_Tagged_Type (T);
2146 Make_Class_Wide_Type (T);
2147 Set_Primitive_Operations (T, New_Elmt_List);
2148 end if;
2150 Push_Scope (T);
2152 Set_Stored_Constraint (T, No_Elist);
2154 if Present (Discriminant_Specifications (N)) then
2155 Process_Discriminants (N);
2156 end if;
2158 End_Scope;
2160 -- If the type has discriminants, non-trivial subtypes may be
2161 -- declared before the full view of the type. The full views of those
2162 -- subtypes will be built after the full view of the type.
2164 Set_Private_Dependents (T, New_Elmt_List);
2165 Set_Is_Pure (T, F);
2166 end Analyze_Incomplete_Type_Decl;
2168 -----------------------------------
2169 -- Analyze_Interface_Declaration --
2170 -----------------------------------
2172 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2173 CW : constant Entity_Id := Class_Wide_Type (T);
2175 begin
2176 Set_Is_Tagged_Type (T);
2178 Set_Is_Limited_Record (T, Limited_Present (Def)
2179 or else Task_Present (Def)
2180 or else Protected_Present (Def)
2181 or else Synchronized_Present (Def));
2183 -- Type is abstract if full declaration carries keyword, or if previous
2184 -- partial view did.
2186 Set_Is_Abstract_Type (T);
2187 Set_Is_Interface (T);
2189 -- Type is a limited interface if it includes the keyword limited, task,
2190 -- protected, or synchronized.
2192 Set_Is_Limited_Interface
2193 (T, Limited_Present (Def)
2194 or else Protected_Present (Def)
2195 or else Synchronized_Present (Def)
2196 or else Task_Present (Def));
2198 Set_Interfaces (T, New_Elmt_List);
2199 Set_Primitive_Operations (T, New_Elmt_List);
2201 -- Complete the decoration of the class-wide entity if it was already
2202 -- built (i.e. during the creation of the limited view)
2204 if Present (CW) then
2205 Set_Is_Interface (CW);
2206 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2207 end if;
2209 -- Check runtime support for synchronized interfaces
2211 if VM_Target = No_VM
2212 and then (Is_Task_Interface (T)
2213 or else Is_Protected_Interface (T)
2214 or else Is_Synchronized_Interface (T))
2215 and then not RTE_Available (RE_Select_Specific_Data)
2216 then
2217 Error_Msg_CRT ("synchronized interfaces", T);
2218 end if;
2219 end Analyze_Interface_Declaration;
2221 -----------------------------
2222 -- Analyze_Itype_Reference --
2223 -----------------------------
2225 -- Nothing to do. This node is placed in the tree only for the benefit of
2226 -- back end processing, and has no effect on the semantic processing.
2228 procedure Analyze_Itype_Reference (N : Node_Id) is
2229 begin
2230 pragma Assert (Is_Itype (Itype (N)));
2231 null;
2232 end Analyze_Itype_Reference;
2234 --------------------------------
2235 -- Analyze_Number_Declaration --
2236 --------------------------------
2238 procedure Analyze_Number_Declaration (N : Node_Id) is
2239 Id : constant Entity_Id := Defining_Identifier (N);
2240 E : constant Node_Id := Expression (N);
2241 T : Entity_Id;
2242 Index : Interp_Index;
2243 It : Interp;
2245 begin
2246 Generate_Definition (Id);
2247 Enter_Name (Id);
2249 -- This is an optimization of a common case of an integer literal
2251 if Nkind (E) = N_Integer_Literal then
2252 Set_Is_Static_Expression (E, True);
2253 Set_Etype (E, Universal_Integer);
2255 Set_Etype (Id, Universal_Integer);
2256 Set_Ekind (Id, E_Named_Integer);
2257 Set_Is_Frozen (Id, True);
2258 return;
2259 end if;
2261 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2263 -- Process expression, replacing error by integer zero, to avoid
2264 -- cascaded errors or aborts further along in the processing
2266 -- Replace Error by integer zero, which seems least likely to
2267 -- cause cascaded errors.
2269 if E = Error then
2270 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2271 Set_Error_Posted (E);
2272 end if;
2274 Analyze (E);
2276 -- Verify that the expression is static and numeric. If
2277 -- the expression is overloaded, we apply the preference
2278 -- rule that favors root numeric types.
2280 if not Is_Overloaded (E) then
2281 T := Etype (E);
2283 else
2284 T := Any_Type;
2286 Get_First_Interp (E, Index, It);
2287 while Present (It.Typ) loop
2288 if (Is_Integer_Type (It.Typ)
2289 or else Is_Real_Type (It.Typ))
2290 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2291 then
2292 if T = Any_Type then
2293 T := It.Typ;
2295 elsif It.Typ = Universal_Real
2296 or else It.Typ = Universal_Integer
2297 then
2298 -- Choose universal interpretation over any other
2300 T := It.Typ;
2301 exit;
2302 end if;
2303 end if;
2305 Get_Next_Interp (Index, It);
2306 end loop;
2307 end if;
2309 if Is_Integer_Type (T) then
2310 Resolve (E, T);
2311 Set_Etype (Id, Universal_Integer);
2312 Set_Ekind (Id, E_Named_Integer);
2314 elsif Is_Real_Type (T) then
2316 -- Because the real value is converted to universal_real, this is a
2317 -- legal context for a universal fixed expression.
2319 if T = Universal_Fixed then
2320 declare
2321 Loc : constant Source_Ptr := Sloc (N);
2322 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2323 Subtype_Mark =>
2324 New_Occurrence_Of (Universal_Real, Loc),
2325 Expression => Relocate_Node (E));
2327 begin
2328 Rewrite (E, Conv);
2329 Analyze (E);
2330 end;
2332 elsif T = Any_Fixed then
2333 Error_Msg_N ("illegal context for mixed mode operation", E);
2335 -- Expression is of the form : universal_fixed * integer. Try to
2336 -- resolve as universal_real.
2338 T := Universal_Real;
2339 Set_Etype (E, T);
2340 end if;
2342 Resolve (E, T);
2343 Set_Etype (Id, Universal_Real);
2344 Set_Ekind (Id, E_Named_Real);
2346 else
2347 Wrong_Type (E, Any_Numeric);
2348 Resolve (E, T);
2350 Set_Etype (Id, T);
2351 Set_Ekind (Id, E_Constant);
2352 Set_Never_Set_In_Source (Id, True);
2353 Set_Is_True_Constant (Id, True);
2354 return;
2355 end if;
2357 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2358 Set_Etype (E, Etype (Id));
2359 end if;
2361 if not Is_OK_Static_Expression (E) then
2362 Flag_Non_Static_Expr
2363 ("non-static expression used in number declaration!", E);
2364 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2365 Set_Etype (E, Any_Type);
2366 end if;
2367 end Analyze_Number_Declaration;
2369 --------------------------------
2370 -- Analyze_Object_Declaration --
2371 --------------------------------
2373 procedure Analyze_Object_Declaration (N : Node_Id) is
2374 Loc : constant Source_Ptr := Sloc (N);
2375 Id : constant Entity_Id := Defining_Identifier (N);
2376 T : Entity_Id;
2377 Act_T : Entity_Id;
2379 E : Node_Id := Expression (N);
2380 -- E is set to Expression (N) throughout this routine. When
2381 -- Expression (N) is modified, E is changed accordingly.
2383 Prev_Entity : Entity_Id := Empty;
2385 function Count_Tasks (T : Entity_Id) return Uint;
2386 -- This function is called when a non-generic library level object of a
2387 -- task type is declared. Its function is to count the static number of
2388 -- tasks declared within the type (it is only called if Has_Tasks is set
2389 -- for T). As a side effect, if an array of tasks with non-static bounds
2390 -- or a variant record type is encountered, Check_Restrictions is called
2391 -- indicating the count is unknown.
2393 -----------------
2394 -- Count_Tasks --
2395 -----------------
2397 function Count_Tasks (T : Entity_Id) return Uint is
2398 C : Entity_Id;
2399 X : Node_Id;
2400 V : Uint;
2402 begin
2403 if Is_Task_Type (T) then
2404 return Uint_1;
2406 elsif Is_Record_Type (T) then
2407 if Has_Discriminants (T) then
2408 Check_Restriction (Max_Tasks, N);
2409 return Uint_0;
2411 else
2412 V := Uint_0;
2413 C := First_Component (T);
2414 while Present (C) loop
2415 V := V + Count_Tasks (Etype (C));
2416 Next_Component (C);
2417 end loop;
2419 return V;
2420 end if;
2422 elsif Is_Array_Type (T) then
2423 X := First_Index (T);
2424 V := Count_Tasks (Component_Type (T));
2425 while Present (X) loop
2426 C := Etype (X);
2428 if not Is_Static_Subtype (C) then
2429 Check_Restriction (Max_Tasks, N);
2430 return Uint_0;
2431 else
2432 V := V * (UI_Max (Uint_0,
2433 Expr_Value (Type_High_Bound (C)) -
2434 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2435 end if;
2437 Next_Index (X);
2438 end loop;
2440 return V;
2442 else
2443 return Uint_0;
2444 end if;
2445 end Count_Tasks;
2447 -- Start of processing for Analyze_Object_Declaration
2449 begin
2450 -- There are three kinds of implicit types generated by an
2451 -- object declaration:
2453 -- 1. Those for generated by the original Object Definition
2455 -- 2. Those generated by the Expression
2457 -- 3. Those used to constrained the Object Definition with the
2458 -- expression constraints when it is unconstrained
2460 -- They must be generated in this order to avoid order of elaboration
2461 -- issues. Thus the first step (after entering the name) is to analyze
2462 -- the object definition.
2464 if Constant_Present (N) then
2465 Prev_Entity := Current_Entity_In_Scope (Id);
2467 if Present (Prev_Entity)
2468 and then
2469 -- If the homograph is an implicit subprogram, it is overridden
2470 -- by the current declaration.
2472 ((Is_Overloadable (Prev_Entity)
2473 and then Is_Inherited_Operation (Prev_Entity))
2475 -- The current object is a discriminal generated for an entry
2476 -- family index. Even though the index is a constant, in this
2477 -- particular context there is no true constant redeclaration.
2478 -- Enter_Name will handle the visibility.
2480 or else
2481 (Is_Discriminal (Id)
2482 and then Ekind (Discriminal_Link (Id)) =
2483 E_Entry_Index_Parameter)
2485 -- The current object is the renaming for a generic declared
2486 -- within the instance.
2488 or else
2489 (Ekind (Prev_Entity) = E_Package
2490 and then Nkind (Parent (Prev_Entity)) =
2491 N_Package_Renaming_Declaration
2492 and then not Comes_From_Source (Prev_Entity)
2493 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
2494 then
2495 Prev_Entity := Empty;
2496 end if;
2497 end if;
2499 if Present (Prev_Entity) then
2500 Constant_Redeclaration (Id, N, T);
2502 Generate_Reference (Prev_Entity, Id, 'c');
2503 Set_Completion_Referenced (Id);
2505 if Error_Posted (N) then
2507 -- Type mismatch or illegal redeclaration, Do not analyze
2508 -- expression to avoid cascaded errors.
2510 T := Find_Type_Of_Object (Object_Definition (N), N);
2511 Set_Etype (Id, T);
2512 Set_Ekind (Id, E_Variable);
2513 return;
2514 end if;
2516 -- In the normal case, enter identifier at the start to catch premature
2517 -- usage in the initialization expression.
2519 else
2520 Generate_Definition (Id);
2521 Enter_Name (Id);
2523 Mark_Coextensions (N, Object_Definition (N));
2525 T := Find_Type_Of_Object (Object_Definition (N), N);
2527 if Nkind (Object_Definition (N)) = N_Access_Definition
2528 and then Present
2529 (Access_To_Subprogram_Definition (Object_Definition (N)))
2530 and then Protected_Present
2531 (Access_To_Subprogram_Definition (Object_Definition (N)))
2532 then
2533 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2534 end if;
2536 if Error_Posted (Id) then
2537 Set_Etype (Id, T);
2538 Set_Ekind (Id, E_Variable);
2539 return;
2540 end if;
2541 end if;
2543 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2544 -- out some static checks
2546 if Ada_Version >= Ada_05
2547 and then Can_Never_Be_Null (T)
2548 then
2549 -- In case of aggregates we must also take care of the correct
2550 -- initialization of nested aggregates bug this is done at the
2551 -- point of the analysis of the aggregate (see sem_aggr.adb)
2553 if Present (Expression (N))
2554 and then Nkind (Expression (N)) = N_Aggregate
2555 then
2556 null;
2558 else
2559 declare
2560 Save_Typ : constant Entity_Id := Etype (Id);
2561 begin
2562 Set_Etype (Id, T); -- Temp. decoration for static checks
2563 Null_Exclusion_Static_Checks (N);
2564 Set_Etype (Id, Save_Typ);
2565 end;
2566 end if;
2567 end if;
2569 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2571 -- If deferred constant, make sure context is appropriate. We detect
2572 -- a deferred constant as a constant declaration with no expression.
2573 -- A deferred constant can appear in a package body if its completion
2574 -- is by means of an interface pragma.
2576 if Constant_Present (N)
2577 and then No (E)
2578 then
2579 -- A deferred constant may appear in the declarative part of the
2580 -- following constructs:
2582 -- blocks
2583 -- entry bodies
2584 -- extended return statements
2585 -- package specs
2586 -- package bodies
2587 -- subprogram bodies
2588 -- task bodies
2590 -- When declared inside a package spec, a deferred constant must be
2591 -- completed by a full constant declaration or pragma Import. In all
2592 -- other cases, the only proper completion is pragma Import. Extended
2593 -- return statements are flagged as invalid contexts because they do
2594 -- not have a declarative part and so cannot accommodate the pragma.
2596 if Ekind (Current_Scope) = E_Return_Statement then
2597 Error_Msg_N
2598 ("invalid context for deferred constant declaration (RM 7.4)",
2600 Error_Msg_N
2601 ("\declaration requires an initialization expression",
2603 Set_Constant_Present (N, False);
2605 -- In Ada 83, deferred constant must be of private type
2607 elsif not Is_Private_Type (T) then
2608 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2609 Error_Msg_N
2610 ("(Ada 83) deferred constant must be private type", N);
2611 end if;
2612 end if;
2614 -- If not a deferred constant, then object declaration freezes its type
2616 else
2617 Check_Fully_Declared (T, N);
2618 Freeze_Before (N, T);
2619 end if;
2621 -- If the object was created by a constrained array definition, then
2622 -- set the link in both the anonymous base type and anonymous subtype
2623 -- that are built to represent the array type to point to the object.
2625 if Nkind (Object_Definition (Declaration_Node (Id))) =
2626 N_Constrained_Array_Definition
2627 then
2628 Set_Related_Array_Object (T, Id);
2629 Set_Related_Array_Object (Base_Type (T), Id);
2630 end if;
2632 -- Special checks for protected objects not at library level
2634 if Is_Protected_Type (T)
2635 and then not Is_Library_Level_Entity (Id)
2636 then
2637 Check_Restriction (No_Local_Protected_Objects, Id);
2639 -- Protected objects with interrupt handlers must be at library level
2641 -- Ada 2005: this test is not needed (and the corresponding clause
2642 -- in the RM is removed) because accessibility checks are sufficient
2643 -- to make handlers not at the library level illegal.
2645 if Has_Interrupt_Handler (T)
2646 and then Ada_Version < Ada_05
2647 then
2648 Error_Msg_N
2649 ("interrupt object can only be declared at library level", Id);
2650 end if;
2651 end if;
2653 -- The actual subtype of the object is the nominal subtype, unless
2654 -- the nominal one is unconstrained and obtained from the expression.
2656 Act_T := T;
2658 -- Process initialization expression if present and not in error
2660 if Present (E) and then E /= Error then
2662 -- Generate an error in case of CPP class-wide object initialization.
2663 -- Required because otherwise the expansion of the class-wide
2664 -- assignment would try to use 'size to initialize the object
2665 -- (primitive that is not available in CPP tagged types).
2667 if Is_Class_Wide_Type (Act_T)
2668 and then
2669 (Is_CPP_Class (Root_Type (Etype (Act_T)))
2670 or else
2671 (Present (Full_View (Root_Type (Etype (Act_T))))
2672 and then
2673 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
2674 then
2675 Error_Msg_N
2676 ("predefined assignment not available for 'C'P'P tagged types",
2678 end if;
2680 Mark_Coextensions (N, E);
2681 Analyze (E);
2683 -- In case of errors detected in the analysis of the expression,
2684 -- decorate it with the expected type to avoid cascaded errors
2686 if No (Etype (E)) then
2687 Set_Etype (E, T);
2688 end if;
2690 -- If an initialization expression is present, then we set the
2691 -- Is_True_Constant flag. It will be reset if this is a variable
2692 -- and it is indeed modified.
2694 Set_Is_True_Constant (Id, True);
2696 -- If we are analyzing a constant declaration, set its completion
2697 -- flag after analyzing and resolving the expression.
2699 if Constant_Present (N) then
2700 Set_Has_Completion (Id);
2701 end if;
2703 -- Set type and resolve (type may be overridden later on)
2705 Set_Etype (Id, T);
2706 Resolve (E, T);
2708 -- If E is null and has been replaced by an N_Raise_Constraint_Error
2709 -- node (which was marked already-analyzed), we need to set the type
2710 -- to something other than Any_Access in order to keep gigi happy.
2712 if Etype (E) = Any_Access then
2713 Set_Etype (E, T);
2714 end if;
2716 -- If the object is an access to variable, the initialization
2717 -- expression cannot be an access to constant.
2719 if Is_Access_Type (T)
2720 and then not Is_Access_Constant (T)
2721 and then Is_Access_Type (Etype (E))
2722 and then Is_Access_Constant (Etype (E))
2723 then
2724 Error_Msg_N
2725 ("access to variable cannot be initialized "
2726 & "with an access-to-constant expression", E);
2727 end if;
2729 if not Assignment_OK (N) then
2730 Check_Initialization (T, E);
2731 end if;
2733 Check_Unset_Reference (E);
2735 -- If this is a variable, then set current value. If this is a
2736 -- declared constant of a scalar type with a static expression,
2737 -- indicate that it is always valid.
2739 if not Constant_Present (N) then
2740 if Compile_Time_Known_Value (E) then
2741 Set_Current_Value (Id, E);
2742 end if;
2744 elsif Is_Scalar_Type (T)
2745 and then Is_OK_Static_Expression (E)
2746 then
2747 Set_Is_Known_Valid (Id);
2748 end if;
2750 -- Deal with setting of null flags
2752 if Is_Access_Type (T) then
2753 if Known_Non_Null (E) then
2754 Set_Is_Known_Non_Null (Id, True);
2755 elsif Known_Null (E)
2756 and then not Can_Never_Be_Null (Id)
2757 then
2758 Set_Is_Known_Null (Id, True);
2759 end if;
2760 end if;
2762 -- Check incorrect use of dynamically tagged expressions.
2764 if Is_Tagged_Type (T) then
2765 Check_Dynamically_Tagged_Expression
2766 (Expr => E,
2767 Typ => T,
2768 Related_Nod => N);
2769 end if;
2771 Apply_Scalar_Range_Check (E, T);
2772 Apply_Static_Length_Check (E, T);
2773 end if;
2775 -- If the No_Streams restriction is set, check that the type of the
2776 -- object is not, and does not contain, any subtype derived from
2777 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2778 -- Has_Stream just for efficiency reasons. There is no point in
2779 -- spending time on a Has_Stream check if the restriction is not set.
2781 if Restriction_Check_Required (No_Streams) then
2782 if Has_Stream (T) then
2783 Check_Restriction (No_Streams, N);
2784 end if;
2785 end if;
2787 -- Case of unconstrained type
2789 if Is_Indefinite_Subtype (T) then
2791 -- Nothing to do in deferred constant case
2793 if Constant_Present (N) and then No (E) then
2794 null;
2796 -- Case of no initialization present
2798 elsif No (E) then
2799 if No_Initialization (N) then
2800 null;
2802 elsif Is_Class_Wide_Type (T) then
2803 Error_Msg_N
2804 ("initialization required in class-wide declaration ", N);
2806 else
2807 Error_Msg_N
2808 ("unconstrained subtype not allowed (need initialization)",
2809 Object_Definition (N));
2811 if Is_Record_Type (T) and then Has_Discriminants (T) then
2812 Error_Msg_N
2813 ("\provide initial value or explicit discriminant values",
2814 Object_Definition (N));
2816 Error_Msg_NE
2817 ("\or give default discriminant values for type&",
2818 Object_Definition (N), T);
2820 elsif Is_Array_Type (T) then
2821 Error_Msg_N
2822 ("\provide initial value or explicit array bounds",
2823 Object_Definition (N));
2824 end if;
2825 end if;
2827 -- Case of initialization present but in error. Set initial
2828 -- expression as absent (but do not make above complaints)
2830 elsif E = Error then
2831 Set_Expression (N, Empty);
2832 E := Empty;
2834 -- Case of initialization present
2836 else
2837 -- Not allowed in Ada 83
2839 if not Constant_Present (N) then
2840 if Ada_Version = Ada_83
2841 and then Comes_From_Source (Object_Definition (N))
2842 then
2843 Error_Msg_N
2844 ("(Ada 83) unconstrained variable not allowed",
2845 Object_Definition (N));
2846 end if;
2847 end if;
2849 -- Now we constrain the variable from the initializing expression
2851 -- If the expression is an aggregate, it has been expanded into
2852 -- individual assignments. Retrieve the actual type from the
2853 -- expanded construct.
2855 if Is_Array_Type (T)
2856 and then No_Initialization (N)
2857 and then Nkind (Original_Node (E)) = N_Aggregate
2858 then
2859 Act_T := Etype (E);
2861 -- In case of class-wide interface object declarations we delay
2862 -- the generation of the equivalent record type declarations until
2863 -- its expansion because there are cases in they are not required.
2865 elsif Is_Interface (T) then
2866 null;
2868 else
2869 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
2870 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
2871 end if;
2873 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
2875 if Aliased_Present (N) then
2876 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2877 end if;
2879 Freeze_Before (N, Act_T);
2880 Freeze_Before (N, T);
2881 end if;
2883 elsif Is_Array_Type (T)
2884 and then No_Initialization (N)
2885 and then Nkind (Original_Node (E)) = N_Aggregate
2886 then
2887 if not Is_Entity_Name (Object_Definition (N)) then
2888 Act_T := Etype (E);
2889 Check_Compile_Time_Size (Act_T);
2891 if Aliased_Present (N) then
2892 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2893 end if;
2894 end if;
2896 -- When the given object definition and the aggregate are specified
2897 -- independently, and their lengths might differ do a length check.
2898 -- This cannot happen if the aggregate is of the form (others =>...)
2900 if not Is_Constrained (T) then
2901 null;
2903 elsif Nkind (E) = N_Raise_Constraint_Error then
2905 -- Aggregate is statically illegal. Place back in declaration
2907 Set_Expression (N, E);
2908 Set_No_Initialization (N, False);
2910 elsif T = Etype (E) then
2911 null;
2913 elsif Nkind (E) = N_Aggregate
2914 and then Present (Component_Associations (E))
2915 and then Present (Choices (First (Component_Associations (E))))
2916 and then Nkind (First
2917 (Choices (First (Component_Associations (E))))) = N_Others_Choice
2918 then
2919 null;
2921 else
2922 Apply_Length_Check (E, T);
2923 end if;
2925 -- If the type is limited unconstrained with defaulted discriminants and
2926 -- there is no expression, then the object is constrained by the
2927 -- defaults, so it is worthwhile building the corresponding subtype.
2929 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
2930 and then not Is_Constrained (T)
2931 and then Has_Discriminants (T)
2932 then
2933 if No (E) then
2934 Act_T := Build_Default_Subtype (T, N);
2935 else
2936 -- Ada 2005: a limited object may be initialized by means of an
2937 -- aggregate. If the type has default discriminants it has an
2938 -- unconstrained nominal type, Its actual subtype will be obtained
2939 -- from the aggregate, and not from the default discriminants.
2941 Act_T := Etype (E);
2942 end if;
2944 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
2946 elsif Present (Underlying_Type (T))
2947 and then not Is_Constrained (Underlying_Type (T))
2948 and then Has_Discriminants (Underlying_Type (T))
2949 and then Nkind (E) = N_Function_Call
2950 and then Constant_Present (N)
2951 then
2952 -- The back-end has problems with constants of a discriminated type
2953 -- with defaults, if the initial value is a function call. We
2954 -- generate an intermediate temporary for the result of the call.
2955 -- It is unclear why this should make it acceptable to gcc. ???
2957 Remove_Side_Effects (E);
2958 end if;
2960 -- Check No_Wide_Characters restriction
2962 Check_Wide_Character_Restriction (T, Object_Definition (N));
2964 -- Indicate this is not set in source. Certainly true for constants,
2965 -- and true for variables so far (will be reset for a variable if and
2966 -- when we encounter a modification in the source).
2968 Set_Never_Set_In_Source (Id, True);
2970 -- Now establish the proper kind and type of the object
2972 if Constant_Present (N) then
2973 Set_Ekind (Id, E_Constant);
2974 Set_Is_True_Constant (Id, True);
2976 else
2977 Set_Ekind (Id, E_Variable);
2979 -- A variable is set as shared passive if it appears in a shared
2980 -- passive package, and is at the outer level. This is not done
2981 -- for entities generated during expansion, because those are
2982 -- always manipulated locally.
2984 if Is_Shared_Passive (Current_Scope)
2985 and then Is_Library_Level_Entity (Id)
2986 and then Comes_From_Source (Id)
2987 then
2988 Set_Is_Shared_Passive (Id);
2989 Check_Shared_Var (Id, T, N);
2990 end if;
2992 -- Set Has_Initial_Value if initializing expression present. Note
2993 -- that if there is no initializing expression, we leave the state
2994 -- of this flag unchanged (usually it will be False, but notably in
2995 -- the case of exception choice variables, it will already be true).
2997 if Present (E) then
2998 Set_Has_Initial_Value (Id, True);
2999 end if;
3000 end if;
3002 -- Initialize alignment and size and capture alignment setting
3004 Init_Alignment (Id);
3005 Init_Esize (Id);
3006 Set_Optimize_Alignment_Flags (Id);
3008 -- Deal with aliased case
3010 if Aliased_Present (N) then
3011 Set_Is_Aliased (Id);
3013 -- If the object is aliased and the type is unconstrained with
3014 -- defaulted discriminants and there is no expression, then the
3015 -- object is constrained by the defaults, so it is worthwhile
3016 -- building the corresponding subtype.
3018 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3019 -- unconstrained, then only establish an actual subtype if the
3020 -- nominal subtype is indefinite. In definite cases the object is
3021 -- unconstrained in Ada 2005.
3023 if No (E)
3024 and then Is_Record_Type (T)
3025 and then not Is_Constrained (T)
3026 and then Has_Discriminants (T)
3027 and then (Ada_Version < Ada_05 or else Is_Indefinite_Subtype (T))
3028 then
3029 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3030 end if;
3031 end if;
3033 -- Now we can set the type of the object
3035 Set_Etype (Id, Act_T);
3037 -- Deal with controlled types
3039 if Has_Controlled_Component (Etype (Id))
3040 or else Is_Controlled (Etype (Id))
3041 then
3042 if not Is_Library_Level_Entity (Id) then
3043 Check_Restriction (No_Nested_Finalization, N);
3044 else
3045 Validate_Controlled_Object (Id);
3046 end if;
3048 -- Generate a warning when an initialization causes an obvious ABE
3049 -- violation. If the init expression is a simple aggregate there
3050 -- shouldn't be any initialize/adjust call generated. This will be
3051 -- true as soon as aggregates are built in place when possible.
3053 -- ??? at the moment we do not generate warnings for temporaries
3054 -- created for those aggregates although Program_Error might be
3055 -- generated if compiled with -gnato.
3057 if Is_Controlled (Etype (Id))
3058 and then Comes_From_Source (Id)
3059 then
3060 declare
3061 BT : constant Entity_Id := Base_Type (Etype (Id));
3063 Implicit_Call : Entity_Id;
3064 pragma Warnings (Off, Implicit_Call);
3065 -- ??? what is this for (never referenced!)
3067 function Is_Aggr (N : Node_Id) return Boolean;
3068 -- Check that N is an aggregate
3070 -------------
3071 -- Is_Aggr --
3072 -------------
3074 function Is_Aggr (N : Node_Id) return Boolean is
3075 begin
3076 case Nkind (Original_Node (N)) is
3077 when N_Aggregate | N_Extension_Aggregate =>
3078 return True;
3080 when N_Qualified_Expression |
3081 N_Type_Conversion |
3082 N_Unchecked_Type_Conversion =>
3083 return Is_Aggr (Expression (Original_Node (N)));
3085 when others =>
3086 return False;
3087 end case;
3088 end Is_Aggr;
3090 begin
3091 -- If no underlying type, we already are in an error situation.
3092 -- Do not try to add a warning since we do not have access to
3093 -- prim-op list.
3095 if No (Underlying_Type (BT)) then
3096 Implicit_Call := Empty;
3098 -- A generic type does not have usable primitive operators.
3099 -- Initialization calls are built for instances.
3101 elsif Is_Generic_Type (BT) then
3102 Implicit_Call := Empty;
3104 -- If the init expression is not an aggregate, an adjust call
3105 -- will be generated
3107 elsif Present (E) and then not Is_Aggr (E) then
3108 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
3110 -- If no init expression and we are not in the deferred
3111 -- constant case, an Initialize call will be generated
3113 elsif No (E) and then not Constant_Present (N) then
3114 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
3116 else
3117 Implicit_Call := Empty;
3118 end if;
3119 end;
3120 end if;
3121 end if;
3123 if Has_Task (Etype (Id)) then
3124 Check_Restriction (No_Tasking, N);
3126 -- Deal with counting max tasks
3128 -- Nothing to do if inside a generic
3130 if Inside_A_Generic then
3131 null;
3133 -- If library level entity, then count tasks
3135 elsif Is_Library_Level_Entity (Id) then
3136 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3138 -- If not library level entity, then indicate we don't know max
3139 -- tasks and also check task hierarchy restriction and blocking
3140 -- operation (since starting a task is definitely blocking!)
3142 else
3143 Check_Restriction (Max_Tasks, N);
3144 Check_Restriction (No_Task_Hierarchy, N);
3145 Check_Potentially_Blocking_Operation (N);
3146 end if;
3148 -- A rather specialized test. If we see two tasks being declared
3149 -- of the same type in the same object declaration, and the task
3150 -- has an entry with an address clause, we know that program error
3151 -- will be raised at run time since we can't have two tasks with
3152 -- entries at the same address.
3154 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3155 declare
3156 E : Entity_Id;
3158 begin
3159 E := First_Entity (Etype (Id));
3160 while Present (E) loop
3161 if Ekind (E) = E_Entry
3162 and then Present (Get_Attribute_Definition_Clause
3163 (E, Attribute_Address))
3164 then
3165 Error_Msg_N
3166 ("?more than one task with same entry address", N);
3167 Error_Msg_N
3168 ("\?Program_Error will be raised at run time", N);
3169 Insert_Action (N,
3170 Make_Raise_Program_Error (Loc,
3171 Reason => PE_Duplicated_Entry_Address));
3172 exit;
3173 end if;
3175 Next_Entity (E);
3176 end loop;
3177 end;
3178 end if;
3179 end if;
3181 -- Some simple constant-propagation: if the expression is a constant
3182 -- string initialized with a literal, share the literal. This avoids
3183 -- a run-time copy.
3185 if Present (E)
3186 and then Is_Entity_Name (E)
3187 and then Ekind (Entity (E)) = E_Constant
3188 and then Base_Type (Etype (E)) = Standard_String
3189 then
3190 declare
3191 Val : constant Node_Id := Constant_Value (Entity (E));
3192 begin
3193 if Present (Val)
3194 and then Nkind (Val) = N_String_Literal
3195 then
3196 Rewrite (E, New_Copy (Val));
3197 end if;
3198 end;
3199 end if;
3201 -- Another optimization: if the nominal subtype is unconstrained and
3202 -- the expression is a function call that returns an unconstrained
3203 -- type, rewrite the declaration as a renaming of the result of the
3204 -- call. The exceptions below are cases where the copy is expected,
3205 -- either by the back end (Aliased case) or by the semantics, as for
3206 -- initializing controlled types or copying tags for classwide types.
3208 if Present (E)
3209 and then Nkind (E) = N_Explicit_Dereference
3210 and then Nkind (Original_Node (E)) = N_Function_Call
3211 and then not Is_Library_Level_Entity (Id)
3212 and then not Is_Constrained (Underlying_Type (T))
3213 and then not Is_Aliased (Id)
3214 and then not Is_Class_Wide_Type (T)
3215 and then not Is_Controlled (T)
3216 and then not Has_Controlled_Component (Base_Type (T))
3217 and then Expander_Active
3218 then
3219 Rewrite (N,
3220 Make_Object_Renaming_Declaration (Loc,
3221 Defining_Identifier => Id,
3222 Access_Definition => Empty,
3223 Subtype_Mark => New_Occurrence_Of
3224 (Base_Type (Etype (Id)), Loc),
3225 Name => E));
3227 Set_Renamed_Object (Id, E);
3229 -- Force generation of debugging information for the constant and for
3230 -- the renamed function call.
3232 Set_Debug_Info_Needed (Id);
3233 Set_Debug_Info_Needed (Entity (Prefix (E)));
3234 end if;
3236 if Present (Prev_Entity)
3237 and then Is_Frozen (Prev_Entity)
3238 and then not Error_Posted (Id)
3239 then
3240 Error_Msg_N ("full constant declaration appears too late", N);
3241 end if;
3243 Check_Eliminated (Id);
3245 -- Deal with setting In_Private_Part flag if in private part
3247 if Ekind (Scope (Id)) = E_Package
3248 and then In_Private_Part (Scope (Id))
3249 then
3250 Set_In_Private_Part (Id);
3251 end if;
3253 -- Check for violation of No_Local_Timing_Events
3255 if Is_RTE (Etype (Id), RE_Timing_Event)
3256 and then not Is_Library_Level_Entity (Id)
3257 then
3258 Check_Restriction (No_Local_Timing_Events, N);
3259 end if;
3260 end Analyze_Object_Declaration;
3262 ---------------------------
3263 -- Analyze_Others_Choice --
3264 ---------------------------
3266 -- Nothing to do for the others choice node itself, the semantic analysis
3267 -- of the others choice will occur as part of the processing of the parent
3269 procedure Analyze_Others_Choice (N : Node_Id) is
3270 pragma Warnings (Off, N);
3271 begin
3272 null;
3273 end Analyze_Others_Choice;
3275 -------------------------------------------
3276 -- Analyze_Private_Extension_Declaration --
3277 -------------------------------------------
3279 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
3280 T : constant Entity_Id := Defining_Identifier (N);
3281 Indic : constant Node_Id := Subtype_Indication (N);
3282 Parent_Type : Entity_Id;
3283 Parent_Base : Entity_Id;
3285 begin
3286 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3288 if Is_Non_Empty_List (Interface_List (N)) then
3289 declare
3290 Intf : Node_Id;
3291 T : Entity_Id;
3293 begin
3294 Intf := First (Interface_List (N));
3295 while Present (Intf) loop
3296 T := Find_Type_Of_Subtype_Indic (Intf);
3298 Diagnose_Interface (Intf, T);
3299 Next (Intf);
3300 end loop;
3301 end;
3302 end if;
3304 Generate_Definition (T);
3305 Enter_Name (T);
3307 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
3308 Parent_Base := Base_Type (Parent_Type);
3310 if Parent_Type = Any_Type
3311 or else Etype (Parent_Type) = Any_Type
3312 then
3313 Set_Ekind (T, Ekind (Parent_Type));
3314 Set_Etype (T, Any_Type);
3315 return;
3317 elsif not Is_Tagged_Type (Parent_Type) then
3318 Error_Msg_N
3319 ("parent of type extension must be a tagged type ", Indic);
3320 return;
3322 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
3323 Error_Msg_N ("premature derivation of incomplete type", Indic);
3324 return;
3326 elsif Is_Concurrent_Type (Parent_Type) then
3327 Error_Msg_N
3328 ("parent type of a private extension cannot be "
3329 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
3331 Set_Etype (T, Any_Type);
3332 Set_Ekind (T, E_Limited_Private_Type);
3333 Set_Private_Dependents (T, New_Elmt_List);
3334 Set_Error_Posted (T);
3335 return;
3336 end if;
3338 -- Perhaps the parent type should be changed to the class-wide type's
3339 -- specific type in this case to prevent cascading errors ???
3341 if Is_Class_Wide_Type (Parent_Type) then
3342 Error_Msg_N
3343 ("parent of type extension must not be a class-wide type", Indic);
3344 return;
3345 end if;
3347 if (not Is_Package_Or_Generic_Package (Current_Scope)
3348 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
3349 or else In_Private_Part (Current_Scope)
3351 then
3352 Error_Msg_N ("invalid context for private extension", N);
3353 end if;
3355 -- Set common attributes
3357 Set_Is_Pure (T, Is_Pure (Current_Scope));
3358 Set_Scope (T, Current_Scope);
3359 Set_Ekind (T, E_Record_Type_With_Private);
3360 Init_Size_Align (T);
3362 Set_Etype (T, Parent_Base);
3363 Set_Has_Task (T, Has_Task (Parent_Base));
3365 Set_Convention (T, Convention (Parent_Type));
3366 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
3367 Set_Is_First_Subtype (T);
3368 Make_Class_Wide_Type (T);
3370 if Unknown_Discriminants_Present (N) then
3371 Set_Discriminant_Constraint (T, No_Elist);
3372 end if;
3374 Build_Derived_Record_Type (N, Parent_Type, T);
3376 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3377 -- synchronized formal derived type.
3379 if Ada_Version >= Ada_05
3380 and then Synchronized_Present (N)
3381 then
3382 Set_Is_Limited_Record (T);
3384 -- Formal derived type case
3386 if Is_Generic_Type (T) then
3388 -- The parent must be a tagged limited type or a synchronized
3389 -- interface.
3391 if (not Is_Tagged_Type (Parent_Type)
3392 or else not Is_Limited_Type (Parent_Type))
3393 and then
3394 (not Is_Interface (Parent_Type)
3395 or else not Is_Synchronized_Interface (Parent_Type))
3396 then
3397 Error_Msg_NE ("parent type of & must be tagged limited " &
3398 "or synchronized", N, T);
3399 end if;
3401 -- The progenitors (if any) must be limited or synchronized
3402 -- interfaces.
3404 if Present (Interfaces (T)) then
3405 declare
3406 Iface : Entity_Id;
3407 Iface_Elmt : Elmt_Id;
3409 begin
3410 Iface_Elmt := First_Elmt (Interfaces (T));
3411 while Present (Iface_Elmt) loop
3412 Iface := Node (Iface_Elmt);
3414 if not Is_Limited_Interface (Iface)
3415 and then not Is_Synchronized_Interface (Iface)
3416 then
3417 Error_Msg_NE ("progenitor & must be limited " &
3418 "or synchronized", N, Iface);
3419 end if;
3421 Next_Elmt (Iface_Elmt);
3422 end loop;
3423 end;
3424 end if;
3426 -- Regular derived extension, the parent must be a limited or
3427 -- synchronized interface.
3429 else
3430 if not Is_Interface (Parent_Type)
3431 or else (not Is_Limited_Interface (Parent_Type)
3432 and then
3433 not Is_Synchronized_Interface (Parent_Type))
3434 then
3435 Error_Msg_NE
3436 ("parent type of & must be limited interface", N, T);
3437 end if;
3438 end if;
3440 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3441 -- extension with a synchronized parent must be explicitly declared
3442 -- synchronized, because the full view will be a synchronized type.
3443 -- This must be checked before the check for limited types below,
3444 -- to ensure that types declared limited are not allowed to extend
3445 -- synchronized interfaces.
3447 elsif Is_Interface (Parent_Type)
3448 and then Is_Synchronized_Interface (Parent_Type)
3449 and then not Synchronized_Present (N)
3450 then
3451 Error_Msg_NE
3452 ("private extension of& must be explicitly synchronized",
3453 N, Parent_Type);
3455 elsif Limited_Present (N) then
3456 Set_Is_Limited_Record (T);
3458 if not Is_Limited_Type (Parent_Type)
3459 and then
3460 (not Is_Interface (Parent_Type)
3461 or else not Is_Limited_Interface (Parent_Type))
3462 then
3463 Error_Msg_NE ("parent type& of limited extension must be limited",
3464 N, Parent_Type);
3465 end if;
3466 end if;
3467 end Analyze_Private_Extension_Declaration;
3469 ---------------------------------
3470 -- Analyze_Subtype_Declaration --
3471 ---------------------------------
3473 procedure Analyze_Subtype_Declaration
3474 (N : Node_Id;
3475 Skip : Boolean := False)
3477 Id : constant Entity_Id := Defining_Identifier (N);
3478 T : Entity_Id;
3479 R_Checks : Check_Result;
3481 begin
3482 Generate_Definition (Id);
3483 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3484 Init_Size_Align (Id);
3486 -- The following guard condition on Enter_Name is to handle cases where
3487 -- the defining identifier has already been entered into the scope but
3488 -- the declaration as a whole needs to be analyzed.
3490 -- This case in particular happens for derived enumeration types. The
3491 -- derived enumeration type is processed as an inserted enumeration type
3492 -- declaration followed by a rewritten subtype declaration. The defining
3493 -- identifier, however, is entered into the name scope very early in the
3494 -- processing of the original type declaration and therefore needs to be
3495 -- avoided here, when the created subtype declaration is analyzed. (See
3496 -- Build_Derived_Types)
3498 -- This also happens when the full view of a private type is derived
3499 -- type with constraints. In this case the entity has been introduced
3500 -- in the private declaration.
3502 if Skip
3503 or else (Present (Etype (Id))
3504 and then (Is_Private_Type (Etype (Id))
3505 or else Is_Task_Type (Etype (Id))
3506 or else Is_Rewrite_Substitution (N)))
3507 then
3508 null;
3510 else
3511 Enter_Name (Id);
3512 end if;
3514 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
3516 -- Inherit common attributes
3518 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
3519 Set_Is_Volatile (Id, Is_Volatile (T));
3520 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
3521 Set_Is_Atomic (Id, Is_Atomic (T));
3522 Set_Is_Ada_2005_Only (Id, Is_Ada_2005_Only (T));
3523 Set_Convention (Id, Convention (T));
3525 -- In the case where there is no constraint given in the subtype
3526 -- indication, Process_Subtype just returns the Subtype_Mark, so its
3527 -- semantic attributes must be established here.
3529 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
3530 Set_Etype (Id, Base_Type (T));
3532 case Ekind (T) is
3533 when Array_Kind =>
3534 Set_Ekind (Id, E_Array_Subtype);
3535 Copy_Array_Subtype_Attributes (Id, T);
3537 when Decimal_Fixed_Point_Kind =>
3538 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
3539 Set_Digits_Value (Id, Digits_Value (T));
3540 Set_Delta_Value (Id, Delta_Value (T));
3541 Set_Scale_Value (Id, Scale_Value (T));
3542 Set_Small_Value (Id, Small_Value (T));
3543 Set_Scalar_Range (Id, Scalar_Range (T));
3544 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
3545 Set_Is_Constrained (Id, Is_Constrained (T));
3546 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3547 Set_RM_Size (Id, RM_Size (T));
3549 when Enumeration_Kind =>
3550 Set_Ekind (Id, E_Enumeration_Subtype);
3551 Set_First_Literal (Id, First_Literal (Base_Type (T)));
3552 Set_Scalar_Range (Id, Scalar_Range (T));
3553 Set_Is_Character_Type (Id, Is_Character_Type (T));
3554 Set_Is_Constrained (Id, Is_Constrained (T));
3555 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3556 Set_RM_Size (Id, RM_Size (T));
3558 when Ordinary_Fixed_Point_Kind =>
3559 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
3560 Set_Scalar_Range (Id, Scalar_Range (T));
3561 Set_Small_Value (Id, Small_Value (T));
3562 Set_Delta_Value (Id, Delta_Value (T));
3563 Set_Is_Constrained (Id, Is_Constrained (T));
3564 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3565 Set_RM_Size (Id, RM_Size (T));
3567 when Float_Kind =>
3568 Set_Ekind (Id, E_Floating_Point_Subtype);
3569 Set_Scalar_Range (Id, Scalar_Range (T));
3570 Set_Digits_Value (Id, Digits_Value (T));
3571 Set_Is_Constrained (Id, Is_Constrained (T));
3573 when Signed_Integer_Kind =>
3574 Set_Ekind (Id, E_Signed_Integer_Subtype);
3575 Set_Scalar_Range (Id, Scalar_Range (T));
3576 Set_Is_Constrained (Id, Is_Constrained (T));
3577 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3578 Set_RM_Size (Id, RM_Size (T));
3580 when Modular_Integer_Kind =>
3581 Set_Ekind (Id, E_Modular_Integer_Subtype);
3582 Set_Scalar_Range (Id, Scalar_Range (T));
3583 Set_Is_Constrained (Id, Is_Constrained (T));
3584 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3585 Set_RM_Size (Id, RM_Size (T));
3587 when Class_Wide_Kind =>
3588 Set_Ekind (Id, E_Class_Wide_Subtype);
3589 Set_First_Entity (Id, First_Entity (T));
3590 Set_Last_Entity (Id, Last_Entity (T));
3591 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3592 Set_Cloned_Subtype (Id, T);
3593 Set_Is_Tagged_Type (Id, True);
3594 Set_Has_Unknown_Discriminants
3595 (Id, True);
3597 if Ekind (T) = E_Class_Wide_Subtype then
3598 Set_Equivalent_Type (Id, Equivalent_Type (T));
3599 end if;
3601 when E_Record_Type | E_Record_Subtype =>
3602 Set_Ekind (Id, E_Record_Subtype);
3604 if Ekind (T) = E_Record_Subtype
3605 and then Present (Cloned_Subtype (T))
3606 then
3607 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
3608 else
3609 Set_Cloned_Subtype (Id, T);
3610 end if;
3612 Set_First_Entity (Id, First_Entity (T));
3613 Set_Last_Entity (Id, Last_Entity (T));
3614 Set_Has_Discriminants (Id, Has_Discriminants (T));
3615 Set_Is_Constrained (Id, Is_Constrained (T));
3616 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3617 Set_Has_Unknown_Discriminants
3618 (Id, Has_Unknown_Discriminants (T));
3620 if Has_Discriminants (T) then
3621 Set_Discriminant_Constraint
3622 (Id, Discriminant_Constraint (T));
3623 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3625 elsif Has_Unknown_Discriminants (Id) then
3626 Set_Discriminant_Constraint (Id, No_Elist);
3627 end if;
3629 if Is_Tagged_Type (T) then
3630 Set_Is_Tagged_Type (Id);
3631 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3632 Set_Primitive_Operations
3633 (Id, Primitive_Operations (T));
3634 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3636 if Is_Interface (T) then
3637 Set_Is_Interface (Id);
3638 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
3639 end if;
3640 end if;
3642 when Private_Kind =>
3643 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3644 Set_Has_Discriminants (Id, Has_Discriminants (T));
3645 Set_Is_Constrained (Id, Is_Constrained (T));
3646 Set_First_Entity (Id, First_Entity (T));
3647 Set_Last_Entity (Id, Last_Entity (T));
3648 Set_Private_Dependents (Id, New_Elmt_List);
3649 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3650 Set_Has_Unknown_Discriminants
3651 (Id, Has_Unknown_Discriminants (T));
3652 Set_Known_To_Have_Preelab_Init
3653 (Id, Known_To_Have_Preelab_Init (T));
3655 if Is_Tagged_Type (T) then
3656 Set_Is_Tagged_Type (Id);
3657 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3658 Set_Primitive_Operations (Id, Primitive_Operations (T));
3659 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3660 end if;
3662 -- In general the attributes of the subtype of a private type
3663 -- are the attributes of the partial view of parent. However,
3664 -- the full view may be a discriminated type, and the subtype
3665 -- must share the discriminant constraint to generate correct
3666 -- calls to initialization procedures.
3668 if Has_Discriminants (T) then
3669 Set_Discriminant_Constraint
3670 (Id, Discriminant_Constraint (T));
3671 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3673 elsif Present (Full_View (T))
3674 and then Has_Discriminants (Full_View (T))
3675 then
3676 Set_Discriminant_Constraint
3677 (Id, Discriminant_Constraint (Full_View (T)));
3678 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3680 -- This would seem semantically correct, but apparently
3681 -- confuses the back-end. To be explained and checked with
3682 -- current version ???
3684 -- Set_Has_Discriminants (Id);
3685 end if;
3687 Prepare_Private_Subtype_Completion (Id, N);
3689 when Access_Kind =>
3690 Set_Ekind (Id, E_Access_Subtype);
3691 Set_Is_Constrained (Id, Is_Constrained (T));
3692 Set_Is_Access_Constant
3693 (Id, Is_Access_Constant (T));
3694 Set_Directly_Designated_Type
3695 (Id, Designated_Type (T));
3696 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
3698 -- A Pure library_item must not contain the declaration of a
3699 -- named access type, except within a subprogram, generic
3700 -- subprogram, task unit, or protected unit, or if it has
3701 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
3703 if Comes_From_Source (Id)
3704 and then In_Pure_Unit
3705 and then not In_Subprogram_Task_Protected_Unit
3706 and then not No_Pool_Assigned (Id)
3707 then
3708 Error_Msg_N
3709 ("named access types not allowed in pure unit", N);
3710 end if;
3712 when Concurrent_Kind =>
3713 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3714 Set_Corresponding_Record_Type (Id,
3715 Corresponding_Record_Type (T));
3716 Set_First_Entity (Id, First_Entity (T));
3717 Set_First_Private_Entity (Id, First_Private_Entity (T));
3718 Set_Has_Discriminants (Id, Has_Discriminants (T));
3719 Set_Is_Constrained (Id, Is_Constrained (T));
3720 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
3721 Set_Last_Entity (Id, Last_Entity (T));
3723 if Has_Discriminants (T) then
3724 Set_Discriminant_Constraint (Id,
3725 Discriminant_Constraint (T));
3726 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3727 end if;
3729 when E_Incomplete_Type =>
3730 if Ada_Version >= Ada_05 then
3731 Set_Ekind (Id, E_Incomplete_Subtype);
3733 -- Ada 2005 (AI-412): Decorate an incomplete subtype
3734 -- of an incomplete type visible through a limited
3735 -- with clause.
3737 if From_With_Type (T)
3738 and then Present (Non_Limited_View (T))
3739 then
3740 Set_From_With_Type (Id);
3741 Set_Non_Limited_View (Id, Non_Limited_View (T));
3743 -- Ada 2005 (AI-412): Add the regular incomplete subtype
3744 -- to the private dependents of the original incomplete
3745 -- type for future transformation.
3747 else
3748 Append_Elmt (Id, Private_Dependents (T));
3749 end if;
3751 -- If the subtype name denotes an incomplete type an error
3752 -- was already reported by Process_Subtype.
3754 else
3755 Set_Etype (Id, Any_Type);
3756 end if;
3758 when others =>
3759 raise Program_Error;
3760 end case;
3761 end if;
3763 if Etype (Id) = Any_Type then
3764 return;
3765 end if;
3767 -- Some common processing on all types
3769 Set_Size_Info (Id, T);
3770 Set_First_Rep_Item (Id, First_Rep_Item (T));
3772 T := Etype (Id);
3774 Set_Is_Immediately_Visible (Id, True);
3775 Set_Depends_On_Private (Id, Has_Private_Component (T));
3776 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
3778 if Is_Interface (T) then
3779 Set_Is_Interface (Id);
3780 end if;
3782 if Present (Generic_Parent_Type (N))
3783 and then
3784 (Nkind
3785 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
3786 or else Nkind
3787 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
3788 /= N_Formal_Private_Type_Definition)
3789 then
3790 if Is_Tagged_Type (Id) then
3792 -- If this is a generic actual subtype for a synchronized type,
3793 -- the primitive operations are those of the corresponding record
3794 -- for which there is a separate subtype declaration.
3796 if Is_Concurrent_Type (Id) then
3797 null;
3798 elsif Is_Class_Wide_Type (Id) then
3799 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
3800 else
3801 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
3802 end if;
3804 elsif Scope (Etype (Id)) /= Standard_Standard then
3805 Derive_Subprograms (Generic_Parent_Type (N), Id);
3806 end if;
3807 end if;
3809 if Is_Private_Type (T)
3810 and then Present (Full_View (T))
3811 then
3812 Conditional_Delay (Id, Full_View (T));
3814 -- The subtypes of components or subcomponents of protected types
3815 -- do not need freeze nodes, which would otherwise appear in the
3816 -- wrong scope (before the freeze node for the protected type). The
3817 -- proper subtypes are those of the subcomponents of the corresponding
3818 -- record.
3820 elsif Ekind (Scope (Id)) /= E_Protected_Type
3821 and then Present (Scope (Scope (Id))) -- error defense!
3822 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
3823 then
3824 Conditional_Delay (Id, T);
3825 end if;
3827 -- Check that constraint_error is raised for a scalar subtype
3828 -- indication when the lower or upper bound of a non-null range
3829 -- lies outside the range of the type mark.
3831 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
3832 if Is_Scalar_Type (Etype (Id))
3833 and then Scalar_Range (Id) /=
3834 Scalar_Range (Etype (Subtype_Mark
3835 (Subtype_Indication (N))))
3836 then
3837 Apply_Range_Check
3838 (Scalar_Range (Id),
3839 Etype (Subtype_Mark (Subtype_Indication (N))));
3841 elsif Is_Array_Type (Etype (Id))
3842 and then Present (First_Index (Id))
3843 then
3844 -- This really should be a subprogram that finds the indications
3845 -- to check???
3847 if ((Nkind (First_Index (Id)) = N_Identifier
3848 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
3849 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
3850 and then
3851 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
3852 then
3853 declare
3854 Target_Typ : constant Entity_Id :=
3855 Etype
3856 (First_Index (Etype
3857 (Subtype_Mark (Subtype_Indication (N)))));
3858 begin
3859 R_Checks :=
3860 Get_Range_Checks
3861 (Scalar_Range (Etype (First_Index (Id))),
3862 Target_Typ,
3863 Etype (First_Index (Id)),
3864 Defining_Identifier (N));
3866 Insert_Range_Checks
3867 (R_Checks,
3869 Target_Typ,
3870 Sloc (Defining_Identifier (N)));
3871 end;
3872 end if;
3873 end if;
3874 end if;
3876 Set_Optimize_Alignment_Flags (Id);
3877 Check_Eliminated (Id);
3878 end Analyze_Subtype_Declaration;
3880 --------------------------------
3881 -- Analyze_Subtype_Indication --
3882 --------------------------------
3884 procedure Analyze_Subtype_Indication (N : Node_Id) is
3885 T : constant Entity_Id := Subtype_Mark (N);
3886 R : constant Node_Id := Range_Expression (Constraint (N));
3888 begin
3889 Analyze (T);
3891 if R /= Error then
3892 Analyze (R);
3893 Set_Etype (N, Etype (R));
3894 Resolve (R, Entity (T));
3895 else
3896 Set_Error_Posted (R);
3897 Set_Error_Posted (T);
3898 end if;
3899 end Analyze_Subtype_Indication;
3901 ------------------------------
3902 -- Analyze_Type_Declaration --
3903 ------------------------------
3905 procedure Analyze_Type_Declaration (N : Node_Id) is
3906 Def : constant Node_Id := Type_Definition (N);
3907 Def_Id : constant Entity_Id := Defining_Identifier (N);
3908 T : Entity_Id;
3909 Prev : Entity_Id;
3911 Is_Remote : constant Boolean :=
3912 (Is_Remote_Types (Current_Scope)
3913 or else Is_Remote_Call_Interface (Current_Scope))
3914 and then not (In_Private_Part (Current_Scope)
3915 or else In_Package_Body (Current_Scope));
3917 procedure Check_Ops_From_Incomplete_Type;
3918 -- If there is a tagged incomplete partial view of the type, transfer
3919 -- its operations to the full view, and indicate that the type of the
3920 -- controlling parameter (s) is this full view.
3922 ------------------------------------
3923 -- Check_Ops_From_Incomplete_Type --
3924 ------------------------------------
3926 procedure Check_Ops_From_Incomplete_Type is
3927 Elmt : Elmt_Id;
3928 Formal : Entity_Id;
3929 Op : Entity_Id;
3931 begin
3932 if Prev /= T
3933 and then Ekind (Prev) = E_Incomplete_Type
3934 and then Is_Tagged_Type (Prev)
3935 and then Is_Tagged_Type (T)
3936 then
3937 Elmt := First_Elmt (Primitive_Operations (Prev));
3938 while Present (Elmt) loop
3939 Op := Node (Elmt);
3940 Prepend_Elmt (Op, Primitive_Operations (T));
3942 Formal := First_Formal (Op);
3943 while Present (Formal) loop
3944 if Etype (Formal) = Prev then
3945 Set_Etype (Formal, T);
3946 end if;
3948 Next_Formal (Formal);
3949 end loop;
3951 if Etype (Op) = Prev then
3952 Set_Etype (Op, T);
3953 end if;
3955 Next_Elmt (Elmt);
3956 end loop;
3957 end if;
3958 end Check_Ops_From_Incomplete_Type;
3960 -- Start of processing for Analyze_Type_Declaration
3962 begin
3963 Prev := Find_Type_Name (N);
3965 -- The full view, if present, now points to the current type
3967 -- Ada 2005 (AI-50217): If the type was previously decorated when
3968 -- imported through a LIMITED WITH clause, it appears as incomplete
3969 -- but has no full view.
3970 -- If the incomplete view is tagged, a class_wide type has been
3971 -- created already. Use it for the full view as well, to prevent
3972 -- multiple incompatible class-wide types that may be created for
3973 -- self-referential anonymous access components.
3975 if Ekind (Prev) = E_Incomplete_Type
3976 and then Present (Full_View (Prev))
3977 then
3978 T := Full_View (Prev);
3980 if Is_Tagged_Type (Prev)
3981 and then Present (Class_Wide_Type (Prev))
3982 then
3983 Set_Ekind (T, Ekind (Prev)); -- will be reset later
3984 Set_Class_Wide_Type (T, Class_Wide_Type (Prev));
3985 Set_Etype (Class_Wide_Type (T), T);
3986 end if;
3988 else
3989 T := Prev;
3990 end if;
3992 Set_Is_Pure (T, Is_Pure (Current_Scope));
3994 -- We set the flag Is_First_Subtype here. It is needed to set the
3995 -- corresponding flag for the Implicit class-wide-type created
3996 -- during tagged types processing.
3998 Set_Is_First_Subtype (T, True);
4000 -- Only composite types other than array types are allowed to have
4001 -- discriminants.
4003 case Nkind (Def) is
4005 -- For derived types, the rule will be checked once we've figured
4006 -- out the parent type.
4008 when N_Derived_Type_Definition =>
4009 null;
4011 -- For record types, discriminants are allowed
4013 when N_Record_Definition =>
4014 null;
4016 when others =>
4017 if Present (Discriminant_Specifications (N)) then
4018 Error_Msg_N
4019 ("elementary or array type cannot have discriminants",
4020 Defining_Identifier
4021 (First (Discriminant_Specifications (N))));
4022 end if;
4023 end case;
4025 -- Elaborate the type definition according to kind, and generate
4026 -- subsidiary (implicit) subtypes where needed. We skip this if it was
4027 -- already done (this happens during the reanalysis that follows a call
4028 -- to the high level optimizer).
4030 if not Analyzed (T) then
4031 Set_Analyzed (T);
4033 case Nkind (Def) is
4035 when N_Access_To_Subprogram_Definition =>
4036 Access_Subprogram_Declaration (T, Def);
4038 -- If this is a remote access to subprogram, we must create the
4039 -- equivalent fat pointer type, and related subprograms.
4041 if Is_Remote then
4042 Process_Remote_AST_Declaration (N);
4043 end if;
4045 -- Validate categorization rule against access type declaration
4046 -- usually a violation in Pure unit, Shared_Passive unit.
4048 Validate_Access_Type_Declaration (T, N);
4050 when N_Access_To_Object_Definition =>
4051 Access_Type_Declaration (T, Def);
4053 -- Validate categorization rule against access type declaration
4054 -- usually a violation in Pure unit, Shared_Passive unit.
4056 Validate_Access_Type_Declaration (T, N);
4058 -- If we are in a Remote_Call_Interface package and define a
4059 -- RACW, then calling stubs and specific stream attributes
4060 -- must be added.
4062 if Is_Remote
4063 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
4064 then
4065 Add_RACW_Features (Def_Id);
4066 end if;
4068 -- Set no strict aliasing flag if config pragma seen
4070 if Opt.No_Strict_Aliasing then
4071 Set_No_Strict_Aliasing (Base_Type (Def_Id));
4072 end if;
4074 when N_Array_Type_Definition =>
4075 Array_Type_Declaration (T, Def);
4077 when N_Derived_Type_Definition =>
4078 Derived_Type_Declaration (T, N, T /= Def_Id);
4080 when N_Enumeration_Type_Definition =>
4081 Enumeration_Type_Declaration (T, Def);
4083 when N_Floating_Point_Definition =>
4084 Floating_Point_Type_Declaration (T, Def);
4086 when N_Decimal_Fixed_Point_Definition =>
4087 Decimal_Fixed_Point_Type_Declaration (T, Def);
4089 when N_Ordinary_Fixed_Point_Definition =>
4090 Ordinary_Fixed_Point_Type_Declaration (T, Def);
4092 when N_Signed_Integer_Type_Definition =>
4093 Signed_Integer_Type_Declaration (T, Def);
4095 when N_Modular_Type_Definition =>
4096 Modular_Type_Declaration (T, Def);
4098 when N_Record_Definition =>
4099 Record_Type_Declaration (T, N, Prev);
4101 when others =>
4102 raise Program_Error;
4104 end case;
4105 end if;
4107 if Etype (T) = Any_Type then
4108 return;
4109 end if;
4111 -- Some common processing for all types
4113 Set_Depends_On_Private (T, Has_Private_Component (T));
4114 Check_Ops_From_Incomplete_Type;
4116 -- Both the declared entity, and its anonymous base type if one
4117 -- was created, need freeze nodes allocated.
4119 declare
4120 B : constant Entity_Id := Base_Type (T);
4122 begin
4123 -- In the case where the base type differs from the first subtype, we
4124 -- pre-allocate a freeze node, and set the proper link to the first
4125 -- subtype. Freeze_Entity will use this preallocated freeze node when
4126 -- it freezes the entity.
4128 -- This does not apply if the base type is a generic type, whose
4129 -- declaration is independent of the current derived definition.
4131 if B /= T and then not Is_Generic_Type (B) then
4132 Ensure_Freeze_Node (B);
4133 Set_First_Subtype_Link (Freeze_Node (B), T);
4134 end if;
4136 -- A type that is imported through a limited_with clause cannot
4137 -- generate any code, and thus need not be frozen. However, an access
4138 -- type with an imported designated type needs a finalization list,
4139 -- which may be referenced in some other package that has non-limited
4140 -- visibility on the designated type. Thus we must create the
4141 -- finalization list at the point the access type is frozen, to
4142 -- prevent unsatisfied references at link time.
4144 if not From_With_Type (T) or else Is_Access_Type (T) then
4145 Set_Has_Delayed_Freeze (T);
4146 end if;
4147 end;
4149 -- Case where T is the full declaration of some private type which has
4150 -- been swapped in Defining_Identifier (N).
4152 if T /= Def_Id and then Is_Private_Type (Def_Id) then
4153 Process_Full_View (N, T, Def_Id);
4155 -- Record the reference. The form of this is a little strange, since
4156 -- the full declaration has been swapped in. So the first parameter
4157 -- here represents the entity to which a reference is made which is
4158 -- the "real" entity, i.e. the one swapped in, and the second
4159 -- parameter provides the reference location.
4161 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
4162 -- since we don't want a complaint about the full type being an
4163 -- unwanted reference to the private type
4165 declare
4166 B : constant Boolean := Has_Pragma_Unreferenced (T);
4167 begin
4168 Set_Has_Pragma_Unreferenced (T, False);
4169 Generate_Reference (T, T, 'c');
4170 Set_Has_Pragma_Unreferenced (T, B);
4171 end;
4173 Set_Completion_Referenced (Def_Id);
4175 -- For completion of incomplete type, process incomplete dependents
4176 -- and always mark the full type as referenced (it is the incomplete
4177 -- type that we get for any real reference).
4179 elsif Ekind (Prev) = E_Incomplete_Type then
4180 Process_Incomplete_Dependents (N, T, Prev);
4181 Generate_Reference (Prev, Def_Id, 'c');
4182 Set_Completion_Referenced (Def_Id);
4184 -- If not private type or incomplete type completion, this is a real
4185 -- definition of a new entity, so record it.
4187 else
4188 Generate_Definition (Def_Id);
4189 end if;
4191 if Chars (Scope (Def_Id)) = Name_System
4192 and then Chars (Def_Id) = Name_Address
4193 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
4194 then
4195 Set_Is_Descendent_Of_Address (Def_Id);
4196 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
4197 Set_Is_Descendent_Of_Address (Prev);
4198 end if;
4200 Set_Optimize_Alignment_Flags (Def_Id);
4201 Check_Eliminated (Def_Id);
4202 end Analyze_Type_Declaration;
4204 --------------------------
4205 -- Analyze_Variant_Part --
4206 --------------------------
4208 procedure Analyze_Variant_Part (N : Node_Id) is
4210 procedure Non_Static_Choice_Error (Choice : Node_Id);
4211 -- Error routine invoked by the generic instantiation below when the
4212 -- variant part has a non static choice.
4214 procedure Process_Declarations (Variant : Node_Id);
4215 -- Analyzes all the declarations associated with a Variant. Needed by
4216 -- the generic instantiation below.
4218 package Variant_Choices_Processing is new
4219 Generic_Choices_Processing
4220 (Get_Alternatives => Variants,
4221 Get_Choices => Discrete_Choices,
4222 Process_Empty_Choice => No_OP,
4223 Process_Non_Static_Choice => Non_Static_Choice_Error,
4224 Process_Associated_Node => Process_Declarations);
4225 use Variant_Choices_Processing;
4226 -- Instantiation of the generic choice processing package
4228 -----------------------------
4229 -- Non_Static_Choice_Error --
4230 -----------------------------
4232 procedure Non_Static_Choice_Error (Choice : Node_Id) is
4233 begin
4234 Flag_Non_Static_Expr
4235 ("choice given in variant part is not static!", Choice);
4236 end Non_Static_Choice_Error;
4238 --------------------------
4239 -- Process_Declarations --
4240 --------------------------
4242 procedure Process_Declarations (Variant : Node_Id) is
4243 begin
4244 if not Null_Present (Component_List (Variant)) then
4245 Analyze_Declarations (Component_Items (Component_List (Variant)));
4247 if Present (Variant_Part (Component_List (Variant))) then
4248 Analyze (Variant_Part (Component_List (Variant)));
4249 end if;
4250 end if;
4251 end Process_Declarations;
4253 -- Local Variables
4255 Discr_Name : Node_Id;
4256 Discr_Type : Entity_Id;
4258 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
4259 Last_Choice : Nat;
4260 Dont_Care : Boolean;
4261 Others_Present : Boolean := False;
4263 pragma Warnings (Off, Case_Table);
4264 pragma Warnings (Off, Last_Choice);
4265 pragma Warnings (Off, Dont_Care);
4266 pragma Warnings (Off, Others_Present);
4267 -- We don't care about the assigned values of any of these
4269 -- Start of processing for Analyze_Variant_Part
4271 begin
4272 Discr_Name := Name (N);
4273 Analyze (Discr_Name);
4275 -- If Discr_Name bad, get out (prevent cascaded errors)
4277 if Etype (Discr_Name) = Any_Type then
4278 return;
4279 end if;
4281 -- Check invalid discriminant in variant part
4283 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4284 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4285 end if;
4287 Discr_Type := Etype (Entity (Discr_Name));
4289 if not Is_Discrete_Type (Discr_Type) then
4290 Error_Msg_N
4291 ("discriminant in a variant part must be of a discrete type",
4292 Name (N));
4293 return;
4294 end if;
4296 -- Call the instantiated Analyze_Choices which does the rest of the work
4298 Analyze_Choices
4299 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
4300 end Analyze_Variant_Part;
4302 ----------------------------
4303 -- Array_Type_Declaration --
4304 ----------------------------
4306 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4307 Component_Def : constant Node_Id := Component_Definition (Def);
4308 Element_Type : Entity_Id;
4309 Implicit_Base : Entity_Id;
4310 Index : Node_Id;
4311 Related_Id : Entity_Id := Empty;
4312 Nb_Index : Nat;
4313 P : constant Node_Id := Parent (Def);
4314 Priv : Entity_Id;
4316 begin
4317 if Nkind (Def) = N_Constrained_Array_Definition then
4318 Index := First (Discrete_Subtype_Definitions (Def));
4319 else
4320 Index := First (Subtype_Marks (Def));
4321 end if;
4323 -- Find proper names for the implicit types which may be public. In case
4324 -- of anonymous arrays we use the name of the first object of that type
4325 -- as prefix.
4327 if No (T) then
4328 Related_Id := Defining_Identifier (P);
4329 else
4330 Related_Id := T;
4331 end if;
4333 Nb_Index := 1;
4334 while Present (Index) loop
4335 Analyze (Index);
4337 -- Add a subtype declaration for each index of private array type
4338 -- declaration whose etype is also private. For example:
4340 -- package Pkg is
4341 -- type Index is private;
4342 -- private
4343 -- type Table is array (Index) of ...
4344 -- end;
4346 -- This is currently required by the expander for the internally
4347 -- generated equality subprogram of records with variant parts in
4348 -- which the etype of some component is such private type.
4350 if Ekind (Current_Scope) = E_Package
4351 and then In_Private_Part (Current_Scope)
4352 and then Has_Private_Declaration (Etype (Index))
4353 then
4354 declare
4355 Loc : constant Source_Ptr := Sloc (Def);
4356 New_E : Entity_Id;
4357 Decl : Entity_Id;
4359 begin
4360 New_E := Make_Temporary (Loc, 'T');
4361 Set_Is_Internal (New_E);
4363 Decl :=
4364 Make_Subtype_Declaration (Loc,
4365 Defining_Identifier => New_E,
4366 Subtype_Indication =>
4367 New_Occurrence_Of (Etype (Index), Loc));
4369 Insert_Before (Parent (Def), Decl);
4370 Analyze (Decl);
4371 Set_Etype (Index, New_E);
4373 -- If the index is a range the Entity attribute is not
4374 -- available. Example:
4376 -- package Pkg is
4377 -- type T is private;
4378 -- private
4379 -- type T is new Natural;
4380 -- Table : array (T(1) .. T(10)) of Boolean;
4381 -- end Pkg;
4383 if Nkind (Index) /= N_Range then
4384 Set_Entity (Index, New_E);
4385 end if;
4386 end;
4387 end if;
4389 Make_Index (Index, P, Related_Id, Nb_Index);
4390 Next_Index (Index);
4391 Nb_Index := Nb_Index + 1;
4392 end loop;
4394 -- Process subtype indication if one is present
4396 if Present (Subtype_Indication (Component_Def)) then
4397 Element_Type :=
4398 Process_Subtype
4399 (Subtype_Indication (Component_Def), P, Related_Id, 'C');
4401 -- Ada 2005 (AI-230): Access Definition case
4403 else pragma Assert (Present (Access_Definition (Component_Def)));
4405 -- Indicate that the anonymous access type is created by the
4406 -- array type declaration.
4408 Element_Type := Access_Definition
4409 (Related_Nod => P,
4410 N => Access_Definition (Component_Def));
4411 Set_Is_Local_Anonymous_Access (Element_Type);
4413 -- Propagate the parent. This field is needed if we have to generate
4414 -- the master_id associated with an anonymous access to task type
4415 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4417 Set_Parent (Element_Type, Parent (T));
4419 -- Ada 2005 (AI-230): In case of components that are anonymous access
4420 -- types the level of accessibility depends on the enclosing type
4421 -- declaration
4423 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4425 -- Ada 2005 (AI-254)
4427 declare
4428 CD : constant Node_Id :=
4429 Access_To_Subprogram_Definition
4430 (Access_Definition (Component_Def));
4431 begin
4432 if Present (CD) and then Protected_Present (CD) then
4433 Element_Type :=
4434 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4435 end if;
4436 end;
4437 end if;
4439 -- Constrained array case
4441 if No (T) then
4442 T := Create_Itype (E_Void, P, Related_Id, 'T');
4443 end if;
4445 if Nkind (Def) = N_Constrained_Array_Definition then
4447 -- Establish Implicit_Base as unconstrained base type
4449 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
4451 Set_Etype (Implicit_Base, Implicit_Base);
4452 Set_Scope (Implicit_Base, Current_Scope);
4453 Set_Has_Delayed_Freeze (Implicit_Base);
4455 -- The constrained array type is a subtype of the unconstrained one
4457 Set_Ekind (T, E_Array_Subtype);
4458 Init_Size_Align (T);
4459 Set_Etype (T, Implicit_Base);
4460 Set_Scope (T, Current_Scope);
4461 Set_Is_Constrained (T, True);
4462 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
4463 Set_Has_Delayed_Freeze (T);
4465 -- Complete setup of implicit base type
4467 Set_First_Index (Implicit_Base, First_Index (T));
4468 Set_Component_Type (Implicit_Base, Element_Type);
4469 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
4470 Set_Component_Size (Implicit_Base, Uint_0);
4471 Set_Packed_Array_Type (Implicit_Base, Empty);
4472 Set_Has_Controlled_Component
4473 (Implicit_Base, Has_Controlled_Component
4474 (Element_Type)
4475 or else Is_Controlled
4476 (Element_Type));
4477 Set_Finalize_Storage_Only
4478 (Implicit_Base, Finalize_Storage_Only
4479 (Element_Type));
4481 -- Unconstrained array case
4483 else
4484 Set_Ekind (T, E_Array_Type);
4485 Init_Size_Align (T);
4486 Set_Etype (T, T);
4487 Set_Scope (T, Current_Scope);
4488 Set_Component_Size (T, Uint_0);
4489 Set_Is_Constrained (T, False);
4490 Set_First_Index (T, First (Subtype_Marks (Def)));
4491 Set_Has_Delayed_Freeze (T, True);
4492 Set_Has_Task (T, Has_Task (Element_Type));
4493 Set_Has_Controlled_Component (T, Has_Controlled_Component
4494 (Element_Type)
4495 or else
4496 Is_Controlled (Element_Type));
4497 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
4498 (Element_Type));
4499 end if;
4501 -- Common attributes for both cases
4503 Set_Component_Type (Base_Type (T), Element_Type);
4504 Set_Packed_Array_Type (T, Empty);
4506 if Aliased_Present (Component_Definition (Def)) then
4507 Set_Has_Aliased_Components (Etype (T));
4508 end if;
4510 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4511 -- array type to ensure that objects of this type are initialized.
4513 if Ada_Version >= Ada_05
4514 and then Can_Never_Be_Null (Element_Type)
4515 then
4516 Set_Can_Never_Be_Null (T);
4518 if Null_Exclusion_Present (Component_Definition (Def))
4520 -- No need to check itypes because in their case this check was
4521 -- done at their point of creation
4523 and then not Is_Itype (Element_Type)
4524 then
4525 Error_Msg_N
4526 ("`NOT NULL` not allowed (null already excluded)",
4527 Subtype_Indication (Component_Definition (Def)));
4528 end if;
4529 end if;
4531 Priv := Private_Component (Element_Type);
4533 if Present (Priv) then
4535 -- Check for circular definitions
4537 if Priv = Any_Type then
4538 Set_Component_Type (Etype (T), Any_Type);
4540 -- There is a gap in the visibility of operations on the composite
4541 -- type only if the component type is defined in a different scope.
4543 elsif Scope (Priv) = Current_Scope then
4544 null;
4546 elsif Is_Limited_Type (Priv) then
4547 Set_Is_Limited_Composite (Etype (T));
4548 Set_Is_Limited_Composite (T);
4549 else
4550 Set_Is_Private_Composite (Etype (T));
4551 Set_Is_Private_Composite (T);
4552 end if;
4553 end if;
4555 -- A syntax error in the declaration itself may lead to an empty index
4556 -- list, in which case do a minimal patch.
4558 if No (First_Index (T)) then
4559 Error_Msg_N ("missing index definition in array type declaration", T);
4561 declare
4562 Indices : constant List_Id :=
4563 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
4564 begin
4565 Set_Discrete_Subtype_Definitions (Def, Indices);
4566 Set_First_Index (T, First (Indices));
4567 return;
4568 end;
4569 end if;
4571 -- Create a concatenation operator for the new type. Internal array
4572 -- types created for packed entities do not need such, they are
4573 -- compatible with the user-defined type.
4575 if Number_Dimensions (T) = 1
4576 and then not Is_Packed_Array_Type (T)
4577 then
4578 New_Concatenation_Op (T);
4579 end if;
4581 -- In the case of an unconstrained array the parser has already verified
4582 -- that all the indices are unconstrained but we still need to make sure
4583 -- that the element type is constrained.
4585 if Is_Indefinite_Subtype (Element_Type) then
4586 Error_Msg_N
4587 ("unconstrained element type in array declaration",
4588 Subtype_Indication (Component_Def));
4590 elsif Is_Abstract_Type (Element_Type) then
4591 Error_Msg_N
4592 ("the type of a component cannot be abstract",
4593 Subtype_Indication (Component_Def));
4594 end if;
4595 end Array_Type_Declaration;
4597 ------------------------------------------------------
4598 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4599 ------------------------------------------------------
4601 function Replace_Anonymous_Access_To_Protected_Subprogram
4602 (N : Node_Id) return Entity_Id
4604 Loc : constant Source_Ptr := Sloc (N);
4606 Curr_Scope : constant Scope_Stack_Entry :=
4607 Scope_Stack.Table (Scope_Stack.Last);
4609 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
4610 Acc : Node_Id;
4611 Comp : Node_Id;
4612 Decl : Node_Id;
4613 P : Node_Id;
4615 begin
4616 Set_Is_Internal (Anon);
4618 case Nkind (N) is
4619 when N_Component_Declaration |
4620 N_Unconstrained_Array_Definition |
4621 N_Constrained_Array_Definition =>
4622 Comp := Component_Definition (N);
4623 Acc := Access_Definition (Comp);
4625 when N_Discriminant_Specification =>
4626 Comp := Discriminant_Type (N);
4627 Acc := Comp;
4629 when N_Parameter_Specification =>
4630 Comp := Parameter_Type (N);
4631 Acc := Comp;
4633 when N_Access_Function_Definition =>
4634 Comp := Result_Definition (N);
4635 Acc := Comp;
4637 when N_Object_Declaration =>
4638 Comp := Object_Definition (N);
4639 Acc := Comp;
4641 when N_Function_Specification =>
4642 Comp := Result_Definition (N);
4643 Acc := Comp;
4645 when others =>
4646 raise Program_Error;
4647 end case;
4649 Decl := Make_Full_Type_Declaration (Loc,
4650 Defining_Identifier => Anon,
4651 Type_Definition =>
4652 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
4654 Mark_Rewrite_Insertion (Decl);
4656 -- Insert the new declaration in the nearest enclosing scope. If the
4657 -- node is a body and N is its return type, the declaration belongs in
4658 -- the enclosing scope.
4660 P := Parent (N);
4662 if Nkind (P) = N_Subprogram_Body
4663 and then Nkind (N) = N_Function_Specification
4664 then
4665 P := Parent (P);
4666 end if;
4668 while Present (P) and then not Has_Declarations (P) loop
4669 P := Parent (P);
4670 end loop;
4672 pragma Assert (Present (P));
4674 if Nkind (P) = N_Package_Specification then
4675 Prepend (Decl, Visible_Declarations (P));
4676 else
4677 Prepend (Decl, Declarations (P));
4678 end if;
4680 -- Replace the anonymous type with an occurrence of the new declaration.
4681 -- In all cases the rewritten node does not have the null-exclusion
4682 -- attribute because (if present) it was already inherited by the
4683 -- anonymous entity (Anon). Thus, in case of components we do not
4684 -- inherit this attribute.
4686 if Nkind (N) = N_Parameter_Specification then
4687 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4688 Set_Etype (Defining_Identifier (N), Anon);
4689 Set_Null_Exclusion_Present (N, False);
4691 elsif Nkind (N) = N_Object_Declaration then
4692 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4693 Set_Etype (Defining_Identifier (N), Anon);
4695 elsif Nkind (N) = N_Access_Function_Definition then
4696 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4698 elsif Nkind (N) = N_Function_Specification then
4699 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4700 Set_Etype (Defining_Unit_Name (N), Anon);
4702 else
4703 Rewrite (Comp,
4704 Make_Component_Definition (Loc,
4705 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
4706 end if;
4708 Mark_Rewrite_Insertion (Comp);
4710 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
4711 Analyze (Decl);
4713 else
4714 -- Temporarily remove the current scope (record or subprogram) from
4715 -- the stack to add the new declarations to the enclosing scope.
4717 Scope_Stack.Decrement_Last;
4718 Analyze (Decl);
4719 Set_Is_Itype (Anon);
4720 Scope_Stack.Append (Curr_Scope);
4721 end if;
4723 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
4724 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
4725 return Anon;
4726 end Replace_Anonymous_Access_To_Protected_Subprogram;
4728 -------------------------------
4729 -- Build_Derived_Access_Type --
4730 -------------------------------
4732 procedure Build_Derived_Access_Type
4733 (N : Node_Id;
4734 Parent_Type : Entity_Id;
4735 Derived_Type : Entity_Id)
4737 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
4739 Desig_Type : Entity_Id;
4740 Discr : Entity_Id;
4741 Discr_Con_Elist : Elist_Id;
4742 Discr_Con_El : Elmt_Id;
4743 Subt : Entity_Id;
4745 begin
4746 -- Set the designated type so it is available in case this is an access
4747 -- to a self-referential type, e.g. a standard list type with a next
4748 -- pointer. Will be reset after subtype is built.
4750 Set_Directly_Designated_Type
4751 (Derived_Type, Designated_Type (Parent_Type));
4753 Subt := Process_Subtype (S, N);
4755 if Nkind (S) /= N_Subtype_Indication
4756 and then Subt /= Base_Type (Subt)
4757 then
4758 Set_Ekind (Derived_Type, E_Access_Subtype);
4759 end if;
4761 if Ekind (Derived_Type) = E_Access_Subtype then
4762 declare
4763 Pbase : constant Entity_Id := Base_Type (Parent_Type);
4764 Ibase : constant Entity_Id :=
4765 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
4766 Svg_Chars : constant Name_Id := Chars (Ibase);
4767 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
4769 begin
4770 Copy_Node (Pbase, Ibase);
4772 Set_Chars (Ibase, Svg_Chars);
4773 Set_Next_Entity (Ibase, Svg_Next_E);
4774 Set_Sloc (Ibase, Sloc (Derived_Type));
4775 Set_Scope (Ibase, Scope (Derived_Type));
4776 Set_Freeze_Node (Ibase, Empty);
4777 Set_Is_Frozen (Ibase, False);
4778 Set_Comes_From_Source (Ibase, False);
4779 Set_Is_First_Subtype (Ibase, False);
4781 Set_Etype (Ibase, Pbase);
4782 Set_Etype (Derived_Type, Ibase);
4783 end;
4784 end if;
4786 Set_Directly_Designated_Type
4787 (Derived_Type, Designated_Type (Subt));
4789 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
4790 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
4791 Set_Size_Info (Derived_Type, Parent_Type);
4792 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
4793 Set_Depends_On_Private (Derived_Type,
4794 Has_Private_Component (Derived_Type));
4795 Conditional_Delay (Derived_Type, Subt);
4797 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
4798 -- that it is not redundant.
4800 if Null_Exclusion_Present (Type_Definition (N)) then
4801 Set_Can_Never_Be_Null (Derived_Type);
4803 if Can_Never_Be_Null (Parent_Type)
4804 and then False
4805 then
4806 Error_Msg_NE
4807 ("`NOT NULL` not allowed (& already excludes null)",
4808 N, Parent_Type);
4809 end if;
4811 elsif Can_Never_Be_Null (Parent_Type) then
4812 Set_Can_Never_Be_Null (Derived_Type);
4813 end if;
4815 -- Note: we do not copy the Storage_Size_Variable, since we always go to
4816 -- the root type for this information.
4818 -- Apply range checks to discriminants for derived record case
4819 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
4821 Desig_Type := Designated_Type (Derived_Type);
4822 if Is_Composite_Type (Desig_Type)
4823 and then (not Is_Array_Type (Desig_Type))
4824 and then Has_Discriminants (Desig_Type)
4825 and then Base_Type (Desig_Type) /= Desig_Type
4826 then
4827 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
4828 Discr_Con_El := First_Elmt (Discr_Con_Elist);
4830 Discr := First_Discriminant (Base_Type (Desig_Type));
4831 while Present (Discr_Con_El) loop
4832 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
4833 Next_Elmt (Discr_Con_El);
4834 Next_Discriminant (Discr);
4835 end loop;
4836 end if;
4837 end Build_Derived_Access_Type;
4839 ------------------------------
4840 -- Build_Derived_Array_Type --
4841 ------------------------------
4843 procedure Build_Derived_Array_Type
4844 (N : Node_Id;
4845 Parent_Type : Entity_Id;
4846 Derived_Type : Entity_Id)
4848 Loc : constant Source_Ptr := Sloc (N);
4849 Tdef : constant Node_Id := Type_Definition (N);
4850 Indic : constant Node_Id := Subtype_Indication (Tdef);
4851 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4852 Implicit_Base : Entity_Id;
4853 New_Indic : Node_Id;
4855 procedure Make_Implicit_Base;
4856 -- If the parent subtype is constrained, the derived type is a subtype
4857 -- of an implicit base type derived from the parent base.
4859 ------------------------
4860 -- Make_Implicit_Base --
4861 ------------------------
4863 procedure Make_Implicit_Base is
4864 begin
4865 Implicit_Base :=
4866 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4868 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4869 Set_Etype (Implicit_Base, Parent_Base);
4871 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
4872 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
4874 Set_Has_Delayed_Freeze (Implicit_Base, True);
4875 end Make_Implicit_Base;
4877 -- Start of processing for Build_Derived_Array_Type
4879 begin
4880 if not Is_Constrained (Parent_Type) then
4881 if Nkind (Indic) /= N_Subtype_Indication then
4882 Set_Ekind (Derived_Type, E_Array_Type);
4884 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4885 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
4887 Set_Has_Delayed_Freeze (Derived_Type, True);
4889 else
4890 Make_Implicit_Base;
4891 Set_Etype (Derived_Type, Implicit_Base);
4893 New_Indic :=
4894 Make_Subtype_Declaration (Loc,
4895 Defining_Identifier => Derived_Type,
4896 Subtype_Indication =>
4897 Make_Subtype_Indication (Loc,
4898 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
4899 Constraint => Constraint (Indic)));
4901 Rewrite (N, New_Indic);
4902 Analyze (N);
4903 end if;
4905 else
4906 if Nkind (Indic) /= N_Subtype_Indication then
4907 Make_Implicit_Base;
4909 Set_Ekind (Derived_Type, Ekind (Parent_Type));
4910 Set_Etype (Derived_Type, Implicit_Base);
4911 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4913 else
4914 Error_Msg_N ("illegal constraint on constrained type", Indic);
4915 end if;
4916 end if;
4918 -- If parent type is not a derived type itself, and is declared in
4919 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4920 -- the new type's concatenation operator since Derive_Subprograms
4921 -- will not inherit the parent's operator. If the parent type is
4922 -- unconstrained, the operator is of the unconstrained base type.
4924 if Number_Dimensions (Parent_Type) = 1
4925 and then not Is_Limited_Type (Parent_Type)
4926 and then not Is_Derived_Type (Parent_Type)
4927 and then not Is_Package_Or_Generic_Package
4928 (Scope (Base_Type (Parent_Type)))
4929 then
4930 if not Is_Constrained (Parent_Type)
4931 and then Is_Constrained (Derived_Type)
4932 then
4933 New_Concatenation_Op (Implicit_Base);
4934 else
4935 New_Concatenation_Op (Derived_Type);
4936 end if;
4937 end if;
4938 end Build_Derived_Array_Type;
4940 -----------------------------------
4941 -- Build_Derived_Concurrent_Type --
4942 -----------------------------------
4944 procedure Build_Derived_Concurrent_Type
4945 (N : Node_Id;
4946 Parent_Type : Entity_Id;
4947 Derived_Type : Entity_Id)
4949 Loc : constant Source_Ptr := Sloc (N);
4951 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
4952 Corr_Decl : Node_Id;
4953 Corr_Decl_Needed : Boolean;
4954 -- If the derived type has fewer discriminants than its parent, the
4955 -- corresponding record is also a derived type, in order to account for
4956 -- the bound discriminants. We create a full type declaration for it in
4957 -- this case.
4959 Constraint_Present : constant Boolean :=
4960 Nkind (Subtype_Indication (Type_Definition (N))) =
4961 N_Subtype_Indication;
4963 D_Constraint : Node_Id;
4964 New_Constraint : Elist_Id;
4965 Old_Disc : Entity_Id;
4966 New_Disc : Entity_Id;
4967 New_N : Node_Id;
4969 begin
4970 Set_Stored_Constraint (Derived_Type, No_Elist);
4971 Corr_Decl_Needed := False;
4972 Old_Disc := Empty;
4974 if Present (Discriminant_Specifications (N))
4975 and then Constraint_Present
4976 then
4977 Old_Disc := First_Discriminant (Parent_Type);
4978 New_Disc := First (Discriminant_Specifications (N));
4979 while Present (New_Disc) and then Present (Old_Disc) loop
4980 Next_Discriminant (Old_Disc);
4981 Next (New_Disc);
4982 end loop;
4983 end if;
4985 if Present (Old_Disc) then
4987 -- The new type has fewer discriminants, so we need to create a new
4988 -- corresponding record, which is derived from the corresponding
4989 -- record of the parent, and has a stored constraint that captures
4990 -- the values of the discriminant constraints.
4992 -- The type declaration for the derived corresponding record has
4993 -- the same discriminant part and constraints as the current
4994 -- declaration. Copy the unanalyzed tree to build declaration.
4996 Corr_Decl_Needed := True;
4997 New_N := Copy_Separate_Tree (N);
4999 Corr_Decl :=
5000 Make_Full_Type_Declaration (Loc,
5001 Defining_Identifier => Corr_Record,
5002 Discriminant_Specifications =>
5003 Discriminant_Specifications (New_N),
5004 Type_Definition =>
5005 Make_Derived_Type_Definition (Loc,
5006 Subtype_Indication =>
5007 Make_Subtype_Indication (Loc,
5008 Subtype_Mark =>
5009 New_Occurrence_Of
5010 (Corresponding_Record_Type (Parent_Type), Loc),
5011 Constraint =>
5012 Constraint
5013 (Subtype_Indication (Type_Definition (New_N))))));
5014 end if;
5016 -- Copy Storage_Size and Relative_Deadline variables if task case
5018 if Is_Task_Type (Parent_Type) then
5019 Set_Storage_Size_Variable (Derived_Type,
5020 Storage_Size_Variable (Parent_Type));
5021 Set_Relative_Deadline_Variable (Derived_Type,
5022 Relative_Deadline_Variable (Parent_Type));
5023 end if;
5025 if Present (Discriminant_Specifications (N)) then
5026 Push_Scope (Derived_Type);
5027 Check_Or_Process_Discriminants (N, Derived_Type);
5029 if Constraint_Present then
5030 New_Constraint :=
5031 Expand_To_Stored_Constraint
5032 (Parent_Type,
5033 Build_Discriminant_Constraints
5034 (Parent_Type,
5035 Subtype_Indication (Type_Definition (N)), True));
5036 end if;
5038 End_Scope;
5040 elsif Constraint_Present then
5042 -- Build constrained subtype and derive from it
5044 declare
5045 Loc : constant Source_Ptr := Sloc (N);
5046 Anon : constant Entity_Id :=
5047 Make_Defining_Identifier (Loc,
5048 New_External_Name (Chars (Derived_Type), 'T'));
5049 Decl : Node_Id;
5051 begin
5052 Decl :=
5053 Make_Subtype_Declaration (Loc,
5054 Defining_Identifier => Anon,
5055 Subtype_Indication =>
5056 Subtype_Indication (Type_Definition (N)));
5057 Insert_Before (N, Decl);
5058 Analyze (Decl);
5060 Rewrite (Subtype_Indication (Type_Definition (N)),
5061 New_Occurrence_Of (Anon, Loc));
5062 Set_Analyzed (Derived_Type, False);
5063 Analyze (N);
5064 return;
5065 end;
5066 end if;
5068 -- By default, operations and private data are inherited from parent.
5069 -- However, in the presence of bound discriminants, a new corresponding
5070 -- record will be created, see below.
5072 Set_Has_Discriminants
5073 (Derived_Type, Has_Discriminants (Parent_Type));
5074 Set_Corresponding_Record_Type
5075 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5077 -- Is_Constrained is set according the parent subtype, but is set to
5078 -- False if the derived type is declared with new discriminants.
5080 Set_Is_Constrained
5081 (Derived_Type,
5082 (Is_Constrained (Parent_Type) or else Constraint_Present)
5083 and then not Present (Discriminant_Specifications (N)));
5085 if Constraint_Present then
5086 if not Has_Discriminants (Parent_Type) then
5087 Error_Msg_N ("untagged parent must have discriminants", N);
5089 elsif Present (Discriminant_Specifications (N)) then
5091 -- Verify that new discriminants are used to constrain old ones
5093 D_Constraint :=
5094 First
5095 (Constraints
5096 (Constraint (Subtype_Indication (Type_Definition (N)))));
5098 Old_Disc := First_Discriminant (Parent_Type);
5100 while Present (D_Constraint) loop
5101 if Nkind (D_Constraint) /= N_Discriminant_Association then
5103 -- Positional constraint. If it is a reference to a new
5104 -- discriminant, it constrains the corresponding old one.
5106 if Nkind (D_Constraint) = N_Identifier then
5107 New_Disc := First_Discriminant (Derived_Type);
5108 while Present (New_Disc) loop
5109 exit when Chars (New_Disc) = Chars (D_Constraint);
5110 Next_Discriminant (New_Disc);
5111 end loop;
5113 if Present (New_Disc) then
5114 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5115 end if;
5116 end if;
5118 Next_Discriminant (Old_Disc);
5120 -- if this is a named constraint, search by name for the old
5121 -- discriminants constrained by the new one.
5123 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5125 -- Find new discriminant with that name
5127 New_Disc := First_Discriminant (Derived_Type);
5128 while Present (New_Disc) loop
5129 exit when
5130 Chars (New_Disc) = Chars (Expression (D_Constraint));
5131 Next_Discriminant (New_Disc);
5132 end loop;
5134 if Present (New_Disc) then
5136 -- Verify that new discriminant renames some discriminant
5137 -- of the parent type, and associate the new discriminant
5138 -- with one or more old ones that it renames.
5140 declare
5141 Selector : Node_Id;
5143 begin
5144 Selector := First (Selector_Names (D_Constraint));
5145 while Present (Selector) loop
5146 Old_Disc := First_Discriminant (Parent_Type);
5147 while Present (Old_Disc) loop
5148 exit when Chars (Old_Disc) = Chars (Selector);
5149 Next_Discriminant (Old_Disc);
5150 end loop;
5152 if Present (Old_Disc) then
5153 Set_Corresponding_Discriminant
5154 (New_Disc, Old_Disc);
5155 end if;
5157 Next (Selector);
5158 end loop;
5159 end;
5160 end if;
5161 end if;
5163 Next (D_Constraint);
5164 end loop;
5166 New_Disc := First_Discriminant (Derived_Type);
5167 while Present (New_Disc) loop
5168 if No (Corresponding_Discriminant (New_Disc)) then
5169 Error_Msg_NE
5170 ("new discriminant& must constrain old one", N, New_Disc);
5172 elsif not
5173 Subtypes_Statically_Compatible
5174 (Etype (New_Disc),
5175 Etype (Corresponding_Discriminant (New_Disc)))
5176 then
5177 Error_Msg_NE
5178 ("& not statically compatible with parent discriminant",
5179 N, New_Disc);
5180 end if;
5182 Next_Discriminant (New_Disc);
5183 end loop;
5184 end if;
5186 elsif Present (Discriminant_Specifications (N)) then
5187 Error_Msg_N
5188 ("missing discriminant constraint in untagged derivation", N);
5189 end if;
5191 -- The entity chain of the derived type includes the new discriminants
5192 -- but shares operations with the parent.
5194 if Present (Discriminant_Specifications (N)) then
5195 Old_Disc := First_Discriminant (Parent_Type);
5196 while Present (Old_Disc) loop
5197 if No (Next_Entity (Old_Disc))
5198 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5199 then
5200 Set_Next_Entity
5201 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5202 exit;
5203 end if;
5205 Next_Discriminant (Old_Disc);
5206 end loop;
5208 else
5209 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5210 if Has_Discriminants (Parent_Type) then
5211 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5212 Set_Discriminant_Constraint (
5213 Derived_Type, Discriminant_Constraint (Parent_Type));
5214 end if;
5215 end if;
5217 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5219 Set_Has_Completion (Derived_Type);
5221 if Corr_Decl_Needed then
5222 Set_Stored_Constraint (Derived_Type, New_Constraint);
5223 Insert_After (N, Corr_Decl);
5224 Analyze (Corr_Decl);
5225 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5226 end if;
5227 end Build_Derived_Concurrent_Type;
5229 ------------------------------------
5230 -- Build_Derived_Enumeration_Type --
5231 ------------------------------------
5233 procedure Build_Derived_Enumeration_Type
5234 (N : Node_Id;
5235 Parent_Type : Entity_Id;
5236 Derived_Type : Entity_Id)
5238 Loc : constant Source_Ptr := Sloc (N);
5239 Def : constant Node_Id := Type_Definition (N);
5240 Indic : constant Node_Id := Subtype_Indication (Def);
5241 Implicit_Base : Entity_Id;
5242 Literal : Entity_Id;
5243 New_Lit : Entity_Id;
5244 Literals_List : List_Id;
5245 Type_Decl : Node_Id;
5246 Hi, Lo : Node_Id;
5247 Rang_Expr : Node_Id;
5249 begin
5250 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5251 -- not have explicit literals lists we need to process types derived
5252 -- from them specially. This is handled by Derived_Standard_Character.
5253 -- If the parent type is a generic type, there are no literals either,
5254 -- and we construct the same skeletal representation as for the generic
5255 -- parent type.
5257 if Is_Standard_Character_Type (Parent_Type) then
5258 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5260 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5261 declare
5262 Lo : Node_Id;
5263 Hi : Node_Id;
5265 begin
5266 if Nkind (Indic) /= N_Subtype_Indication then
5267 Lo :=
5268 Make_Attribute_Reference (Loc,
5269 Attribute_Name => Name_First,
5270 Prefix => New_Reference_To (Derived_Type, Loc));
5271 Set_Etype (Lo, Derived_Type);
5273 Hi :=
5274 Make_Attribute_Reference (Loc,
5275 Attribute_Name => Name_Last,
5276 Prefix => New_Reference_To (Derived_Type, Loc));
5277 Set_Etype (Hi, Derived_Type);
5279 Set_Scalar_Range (Derived_Type,
5280 Make_Range (Loc,
5281 Low_Bound => Lo,
5282 High_Bound => Hi));
5283 else
5285 -- Analyze subtype indication and verify compatibility
5286 -- with parent type.
5288 if Base_Type (Process_Subtype (Indic, N)) /=
5289 Base_Type (Parent_Type)
5290 then
5291 Error_Msg_N
5292 ("illegal constraint for formal discrete type", N);
5293 end if;
5294 end if;
5295 end;
5297 else
5298 -- If a constraint is present, analyze the bounds to catch
5299 -- premature usage of the derived literals.
5301 if Nkind (Indic) = N_Subtype_Indication
5302 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
5303 then
5304 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
5305 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
5306 end if;
5308 -- Introduce an implicit base type for the derived type even if there
5309 -- is no constraint attached to it, since this seems closer to the
5310 -- Ada semantics. Build a full type declaration tree for the derived
5311 -- type using the implicit base type as the defining identifier. The
5312 -- build a subtype declaration tree which applies the constraint (if
5313 -- any) have it replace the derived type declaration.
5315 Literal := First_Literal (Parent_Type);
5316 Literals_List := New_List;
5317 while Present (Literal)
5318 and then Ekind (Literal) = E_Enumeration_Literal
5319 loop
5320 -- Literals of the derived type have the same representation as
5321 -- those of the parent type, but this representation can be
5322 -- overridden by an explicit representation clause. Indicate
5323 -- that there is no explicit representation given yet. These
5324 -- derived literals are implicit operations of the new type,
5325 -- and can be overridden by explicit ones.
5327 if Nkind (Literal) = N_Defining_Character_Literal then
5328 New_Lit :=
5329 Make_Defining_Character_Literal (Loc, Chars (Literal));
5330 else
5331 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
5332 end if;
5334 Set_Ekind (New_Lit, E_Enumeration_Literal);
5335 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
5336 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
5337 Set_Enumeration_Rep_Expr (New_Lit, Empty);
5338 Set_Alias (New_Lit, Literal);
5339 Set_Is_Known_Valid (New_Lit, True);
5341 Append (New_Lit, Literals_List);
5342 Next_Literal (Literal);
5343 end loop;
5345 Implicit_Base :=
5346 Make_Defining_Identifier (Sloc (Derived_Type),
5347 New_External_Name (Chars (Derived_Type), 'B'));
5349 -- Indicate the proper nature of the derived type. This must be done
5350 -- before analysis of the literals, to recognize cases when a literal
5351 -- may be hidden by a previous explicit function definition (cf.
5352 -- c83031a).
5354 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
5355 Set_Etype (Derived_Type, Implicit_Base);
5357 Type_Decl :=
5358 Make_Full_Type_Declaration (Loc,
5359 Defining_Identifier => Implicit_Base,
5360 Discriminant_Specifications => No_List,
5361 Type_Definition =>
5362 Make_Enumeration_Type_Definition (Loc, Literals_List));
5364 Mark_Rewrite_Insertion (Type_Decl);
5365 Insert_Before (N, Type_Decl);
5366 Analyze (Type_Decl);
5368 -- After the implicit base is analyzed its Etype needs to be changed
5369 -- to reflect the fact that it is derived from the parent type which
5370 -- was ignored during analysis. We also set the size at this point.
5372 Set_Etype (Implicit_Base, Parent_Type);
5374 Set_Size_Info (Implicit_Base, Parent_Type);
5375 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
5376 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
5378 -- Copy other flags from parent type
5380 Set_Has_Non_Standard_Rep
5381 (Implicit_Base, Has_Non_Standard_Rep
5382 (Parent_Type));
5383 Set_Has_Pragma_Ordered
5384 (Implicit_Base, Has_Pragma_Ordered
5385 (Parent_Type));
5386 Set_Has_Delayed_Freeze (Implicit_Base);
5388 -- Process the subtype indication including a validation check on the
5389 -- constraint, if any. If a constraint is given, its bounds must be
5390 -- implicitly converted to the new type.
5392 if Nkind (Indic) = N_Subtype_Indication then
5393 declare
5394 R : constant Node_Id :=
5395 Range_Expression (Constraint (Indic));
5397 begin
5398 if Nkind (R) = N_Range then
5399 Hi := Build_Scalar_Bound
5400 (High_Bound (R), Parent_Type, Implicit_Base);
5401 Lo := Build_Scalar_Bound
5402 (Low_Bound (R), Parent_Type, Implicit_Base);
5404 else
5405 -- Constraint is a Range attribute. Replace with explicit
5406 -- mention of the bounds of the prefix, which must be a
5407 -- subtype.
5409 Analyze (Prefix (R));
5410 Hi :=
5411 Convert_To (Implicit_Base,
5412 Make_Attribute_Reference (Loc,
5413 Attribute_Name => Name_Last,
5414 Prefix =>
5415 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5417 Lo :=
5418 Convert_To (Implicit_Base,
5419 Make_Attribute_Reference (Loc,
5420 Attribute_Name => Name_First,
5421 Prefix =>
5422 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5423 end if;
5424 end;
5426 else
5427 Hi :=
5428 Build_Scalar_Bound
5429 (Type_High_Bound (Parent_Type),
5430 Parent_Type, Implicit_Base);
5431 Lo :=
5432 Build_Scalar_Bound
5433 (Type_Low_Bound (Parent_Type),
5434 Parent_Type, Implicit_Base);
5435 end if;
5437 Rang_Expr :=
5438 Make_Range (Loc,
5439 Low_Bound => Lo,
5440 High_Bound => Hi);
5442 -- If we constructed a default range for the case where no range
5443 -- was given, then the expressions in the range must not freeze
5444 -- since they do not correspond to expressions in the source.
5446 if Nkind (Indic) /= N_Subtype_Indication then
5447 Set_Must_Not_Freeze (Lo);
5448 Set_Must_Not_Freeze (Hi);
5449 Set_Must_Not_Freeze (Rang_Expr);
5450 end if;
5452 Rewrite (N,
5453 Make_Subtype_Declaration (Loc,
5454 Defining_Identifier => Derived_Type,
5455 Subtype_Indication =>
5456 Make_Subtype_Indication (Loc,
5457 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5458 Constraint =>
5459 Make_Range_Constraint (Loc,
5460 Range_Expression => Rang_Expr))));
5462 Analyze (N);
5464 -- If pragma Discard_Names applies on the first subtype of the parent
5465 -- type, then it must be applied on this subtype as well.
5467 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
5468 Set_Discard_Names (Derived_Type);
5469 end if;
5471 -- Apply a range check. Since this range expression doesn't have an
5472 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5473 -- this right???
5475 if Nkind (Indic) = N_Subtype_Indication then
5476 Apply_Range_Check (Range_Expression (Constraint (Indic)),
5477 Parent_Type,
5478 Source_Typ => Entity (Subtype_Mark (Indic)));
5479 end if;
5480 end if;
5481 end Build_Derived_Enumeration_Type;
5483 --------------------------------
5484 -- Build_Derived_Numeric_Type --
5485 --------------------------------
5487 procedure Build_Derived_Numeric_Type
5488 (N : Node_Id;
5489 Parent_Type : Entity_Id;
5490 Derived_Type : Entity_Id)
5492 Loc : constant Source_Ptr := Sloc (N);
5493 Tdef : constant Node_Id := Type_Definition (N);
5494 Indic : constant Node_Id := Subtype_Indication (Tdef);
5495 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5496 No_Constraint : constant Boolean := Nkind (Indic) /=
5497 N_Subtype_Indication;
5498 Implicit_Base : Entity_Id;
5500 Lo : Node_Id;
5501 Hi : Node_Id;
5503 begin
5504 -- Process the subtype indication including a validation check on
5505 -- the constraint if any.
5507 Discard_Node (Process_Subtype (Indic, N));
5509 -- Introduce an implicit base type for the derived type even if there
5510 -- is no constraint attached to it, since this seems closer to the Ada
5511 -- semantics.
5513 Implicit_Base :=
5514 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5516 Set_Etype (Implicit_Base, Parent_Base);
5517 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5518 Set_Size_Info (Implicit_Base, Parent_Base);
5519 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
5520 Set_Parent (Implicit_Base, Parent (Derived_Type));
5521 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
5523 -- Set RM Size for discrete type or decimal fixed-point type
5524 -- Ordinary fixed-point is excluded, why???
5526 if Is_Discrete_Type (Parent_Base)
5527 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
5528 then
5529 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
5530 end if;
5532 Set_Has_Delayed_Freeze (Implicit_Base);
5534 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
5535 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
5537 Set_Scalar_Range (Implicit_Base,
5538 Make_Range (Loc,
5539 Low_Bound => Lo,
5540 High_Bound => Hi));
5542 if Has_Infinities (Parent_Base) then
5543 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
5544 end if;
5546 -- The Derived_Type, which is the entity of the declaration, is a
5547 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5548 -- absence of an explicit constraint.
5550 Set_Etype (Derived_Type, Implicit_Base);
5552 -- If we did not have a constraint, then the Ekind is set from the
5553 -- parent type (otherwise Process_Subtype has set the bounds)
5555 if No_Constraint then
5556 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
5557 end if;
5559 -- If we did not have a range constraint, then set the range from the
5560 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
5562 if No_Constraint
5563 or else not Has_Range_Constraint (Indic)
5564 then
5565 Set_Scalar_Range (Derived_Type,
5566 Make_Range (Loc,
5567 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
5568 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
5569 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5571 if Has_Infinities (Parent_Type) then
5572 Set_Includes_Infinities (Scalar_Range (Derived_Type));
5573 end if;
5575 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
5576 end if;
5578 Set_Is_Descendent_Of_Address (Derived_Type,
5579 Is_Descendent_Of_Address (Parent_Type));
5580 Set_Is_Descendent_Of_Address (Implicit_Base,
5581 Is_Descendent_Of_Address (Parent_Type));
5583 -- Set remaining type-specific fields, depending on numeric type
5585 if Is_Modular_Integer_Type (Parent_Type) then
5586 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
5588 Set_Non_Binary_Modulus
5589 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
5591 Set_Is_Known_Valid
5592 (Implicit_Base, Is_Known_Valid (Parent_Base));
5594 elsif Is_Floating_Point_Type (Parent_Type) then
5596 -- Digits of base type is always copied from the digits value of
5597 -- the parent base type, but the digits of the derived type will
5598 -- already have been set if there was a constraint present.
5600 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5601 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
5603 if No_Constraint then
5604 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
5605 end if;
5607 elsif Is_Fixed_Point_Type (Parent_Type) then
5609 -- Small of base type and derived type are always copied from the
5610 -- parent base type, since smalls never change. The delta of the
5611 -- base type is also copied from the parent base type. However the
5612 -- delta of the derived type will have been set already if a
5613 -- constraint was present.
5615 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
5616 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
5617 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
5619 if No_Constraint then
5620 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
5621 end if;
5623 -- The scale and machine radix in the decimal case are always
5624 -- copied from the parent base type.
5626 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
5627 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
5628 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
5630 Set_Machine_Radix_10
5631 (Derived_Type, Machine_Radix_10 (Parent_Base));
5632 Set_Machine_Radix_10
5633 (Implicit_Base, Machine_Radix_10 (Parent_Base));
5635 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5637 if No_Constraint then
5638 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
5640 else
5641 -- the analysis of the subtype_indication sets the
5642 -- digits value of the derived type.
5644 null;
5645 end if;
5646 end if;
5647 end if;
5649 -- The type of the bounds is that of the parent type, and they
5650 -- must be converted to the derived type.
5652 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
5654 -- The implicit_base should be frozen when the derived type is frozen,
5655 -- but note that it is used in the conversions of the bounds. For fixed
5656 -- types we delay the determination of the bounds until the proper
5657 -- freezing point. For other numeric types this is rejected by GCC, for
5658 -- reasons that are currently unclear (???), so we choose to freeze the
5659 -- implicit base now. In the case of integers and floating point types
5660 -- this is harmless because subsequent representation clauses cannot
5661 -- affect anything, but it is still baffling that we cannot use the
5662 -- same mechanism for all derived numeric types.
5664 -- There is a further complication: actually *some* representation
5665 -- clauses can affect the implicit base type. Namely, attribute
5666 -- definition clauses for stream-oriented attributes need to set the
5667 -- corresponding TSS entries on the base type, and this normally cannot
5668 -- be done after the base type is frozen, so the circuitry in
5669 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
5670 -- not use Set_TSS in this case.
5672 if Is_Fixed_Point_Type (Parent_Type) then
5673 Conditional_Delay (Implicit_Base, Parent_Type);
5674 else
5675 Freeze_Before (N, Implicit_Base);
5676 end if;
5677 end Build_Derived_Numeric_Type;
5679 --------------------------------
5680 -- Build_Derived_Private_Type --
5681 --------------------------------
5683 procedure Build_Derived_Private_Type
5684 (N : Node_Id;
5685 Parent_Type : Entity_Id;
5686 Derived_Type : Entity_Id;
5687 Is_Completion : Boolean;
5688 Derive_Subps : Boolean := True)
5690 Loc : constant Source_Ptr := Sloc (N);
5691 Der_Base : Entity_Id;
5692 Discr : Entity_Id;
5693 Full_Decl : Node_Id := Empty;
5694 Full_Der : Entity_Id;
5695 Full_P : Entity_Id;
5696 Last_Discr : Entity_Id;
5697 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
5698 Swapped : Boolean := False;
5700 procedure Copy_And_Build;
5701 -- Copy derived type declaration, replace parent with its full view,
5702 -- and analyze new declaration.
5704 --------------------
5705 -- Copy_And_Build --
5706 --------------------
5708 procedure Copy_And_Build is
5709 Full_N : Node_Id;
5711 begin
5712 if Ekind (Parent_Type) in Record_Kind
5713 or else
5714 (Ekind (Parent_Type) in Enumeration_Kind
5715 and then not Is_Standard_Character_Type (Parent_Type)
5716 and then not Is_Generic_Type (Root_Type (Parent_Type)))
5717 then
5718 Full_N := New_Copy_Tree (N);
5719 Insert_After (N, Full_N);
5720 Build_Derived_Type (
5721 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
5723 else
5724 Build_Derived_Type (
5725 N, Parent_Type, Full_Der, True, Derive_Subps => False);
5726 end if;
5727 end Copy_And_Build;
5729 -- Start of processing for Build_Derived_Private_Type
5731 begin
5732 if Is_Tagged_Type (Parent_Type) then
5733 Full_P := Full_View (Parent_Type);
5735 -- A type extension of a type with unknown discriminants is an
5736 -- indefinite type that the back-end cannot handle directly.
5737 -- We treat it as a private type, and build a completion that is
5738 -- derived from the full view of the parent, and hopefully has
5739 -- known discriminants.
5741 -- If the full view of the parent type has an underlying record view,
5742 -- use it to generate the underlying record view of this derived type
5743 -- (required for chains of derivations with unknown discriminants).
5745 -- Minor optimization: we avoid the generation of useless underlying
5746 -- record view entities if the private type declaration has unknown
5747 -- discriminants but its corresponding full view has no
5748 -- discriminants.
5750 if Has_Unknown_Discriminants (Parent_Type)
5751 and then Present (Full_P)
5752 and then (Has_Discriminants (Full_P)
5753 or else Present (Underlying_Record_View (Full_P)))
5754 and then not In_Open_Scopes (Par_Scope)
5755 and then Expander_Active
5756 then
5757 declare
5758 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
5759 New_Ext : constant Node_Id :=
5760 Copy_Separate_Tree
5761 (Record_Extension_Part (Type_Definition (N)));
5762 Decl : Node_Id;
5764 begin
5765 Build_Derived_Record_Type
5766 (N, Parent_Type, Derived_Type, Derive_Subps);
5768 -- Build anonymous completion, as a derivation from the full
5769 -- view of the parent. This is not a completion in the usual
5770 -- sense, because the current type is not private.
5772 Decl :=
5773 Make_Full_Type_Declaration (Loc,
5774 Defining_Identifier => Full_Der,
5775 Type_Definition =>
5776 Make_Derived_Type_Definition (Loc,
5777 Subtype_Indication =>
5778 New_Copy_Tree
5779 (Subtype_Indication (Type_Definition (N))),
5780 Record_Extension_Part => New_Ext));
5782 -- If the parent type has an underlying record view, use it
5783 -- here to build the new underlying record view.
5785 if Present (Underlying_Record_View (Full_P)) then
5786 pragma Assert
5787 (Nkind (Subtype_Indication (Type_Definition (Decl)))
5788 = N_Identifier);
5789 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
5790 Underlying_Record_View (Full_P));
5791 end if;
5793 Install_Private_Declarations (Par_Scope);
5794 Install_Visible_Declarations (Par_Scope);
5795 Insert_Before (N, Decl);
5797 -- Mark entity as an underlying record view before analysis,
5798 -- to avoid generating the list of its primitive operations
5799 -- (which is not really required for this entity) and thus
5800 -- prevent spurious errors associated with missing overriding
5801 -- of abstract primitives (overridden only for Derived_Type).
5803 Set_Ekind (Full_Der, E_Record_Type);
5804 Set_Is_Underlying_Record_View (Full_Der);
5806 Analyze (Decl);
5808 pragma Assert (Has_Discriminants (Full_Der)
5809 and then not Has_Unknown_Discriminants (Full_Der));
5811 Uninstall_Declarations (Par_Scope);
5813 -- Freeze the underlying record view, to prevent generation of
5814 -- useless dispatching information, which is simply shared with
5815 -- the real derived type.
5817 Set_Is_Frozen (Full_Der);
5819 -- Set up links between real entity and underlying record view
5821 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
5822 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
5823 end;
5825 -- If discriminants are known, build derived record
5827 else
5828 Build_Derived_Record_Type
5829 (N, Parent_Type, Derived_Type, Derive_Subps);
5830 end if;
5832 return;
5834 elsif Has_Discriminants (Parent_Type) then
5835 if Present (Full_View (Parent_Type)) then
5836 if not Is_Completion then
5838 -- Copy declaration for subsequent analysis, to provide a
5839 -- completion for what is a private declaration. Indicate that
5840 -- the full type is internally generated.
5842 Full_Decl := New_Copy_Tree (N);
5843 Full_Der := New_Copy (Derived_Type);
5844 Set_Comes_From_Source (Full_Decl, False);
5845 Set_Comes_From_Source (Full_Der, False);
5846 Set_Parent (Full_Der, Full_Decl);
5848 Insert_After (N, Full_Decl);
5850 else
5851 -- If this is a completion, the full view being built is itself
5852 -- private. We build a subtype of the parent with the same
5853 -- constraints as this full view, to convey to the back end the
5854 -- constrained components and the size of this subtype. If the
5855 -- parent is constrained, its full view can serve as the
5856 -- underlying full view of the derived type.
5858 if No (Discriminant_Specifications (N)) then
5859 if Nkind (Subtype_Indication (Type_Definition (N))) =
5860 N_Subtype_Indication
5861 then
5862 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
5864 elsif Is_Constrained (Full_View (Parent_Type)) then
5865 Set_Underlying_Full_View
5866 (Derived_Type, Full_View (Parent_Type));
5867 end if;
5869 else
5870 -- If there are new discriminants, the parent subtype is
5871 -- constrained by them, but it is not clear how to build
5872 -- the Underlying_Full_View in this case???
5874 null;
5875 end if;
5876 end if;
5877 end if;
5879 -- Build partial view of derived type from partial view of parent
5881 Build_Derived_Record_Type
5882 (N, Parent_Type, Derived_Type, Derive_Subps);
5884 if Present (Full_View (Parent_Type)) and then not Is_Completion then
5885 if not In_Open_Scopes (Par_Scope)
5886 or else not In_Same_Source_Unit (N, Parent_Type)
5887 then
5888 -- Swap partial and full views temporarily
5890 Install_Private_Declarations (Par_Scope);
5891 Install_Visible_Declarations (Par_Scope);
5892 Swapped := True;
5893 end if;
5895 -- Build full view of derived type from full view of parent which
5896 -- is now installed. Subprograms have been derived on the partial
5897 -- view, the completion does not derive them anew.
5899 if not Is_Tagged_Type (Parent_Type) then
5901 -- If the parent is itself derived from another private type,
5902 -- installing the private declarations has not affected its
5903 -- privacy status, so use its own full view explicitly.
5905 if Is_Private_Type (Parent_Type) then
5906 Build_Derived_Record_Type
5907 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
5908 else
5909 Build_Derived_Record_Type
5910 (Full_Decl, Parent_Type, Full_Der, False);
5911 end if;
5913 else
5914 -- If full view of parent is tagged, the completion inherits
5915 -- the proper primitive operations.
5917 Set_Defining_Identifier (Full_Decl, Full_Der);
5918 Build_Derived_Record_Type
5919 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
5920 end if;
5922 -- The full declaration has been introduced into the tree and
5923 -- processed in the step above. It should not be analyzed again
5924 -- (when encountered later in the current list of declarations)
5925 -- to prevent spurious name conflicts. The full entity remains
5926 -- invisible.
5928 Set_Analyzed (Full_Decl);
5930 if Swapped then
5931 Uninstall_Declarations (Par_Scope);
5933 if In_Open_Scopes (Par_Scope) then
5934 Install_Visible_Declarations (Par_Scope);
5935 end if;
5936 end if;
5938 Der_Base := Base_Type (Derived_Type);
5939 Set_Full_View (Derived_Type, Full_Der);
5940 Set_Full_View (Der_Base, Base_Type (Full_Der));
5942 -- Copy the discriminant list from full view to the partial views
5943 -- (base type and its subtype). Gigi requires that the partial and
5944 -- full views have the same discriminants.
5946 -- Note that since the partial view is pointing to discriminants
5947 -- in the full view, their scope will be that of the full view.
5948 -- This might cause some front end problems and need adjustment???
5950 Discr := First_Discriminant (Base_Type (Full_Der));
5951 Set_First_Entity (Der_Base, Discr);
5953 loop
5954 Last_Discr := Discr;
5955 Next_Discriminant (Discr);
5956 exit when No (Discr);
5957 end loop;
5959 Set_Last_Entity (Der_Base, Last_Discr);
5961 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
5962 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
5963 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
5965 else
5966 -- If this is a completion, the derived type stays private and
5967 -- there is no need to create a further full view, except in the
5968 -- unusual case when the derivation is nested within a child unit,
5969 -- see below.
5971 null;
5972 end if;
5974 elsif Present (Full_View (Parent_Type))
5975 and then Has_Discriminants (Full_View (Parent_Type))
5976 then
5977 if Has_Unknown_Discriminants (Parent_Type)
5978 and then Nkind (Subtype_Indication (Type_Definition (N))) =
5979 N_Subtype_Indication
5980 then
5981 Error_Msg_N
5982 ("cannot constrain type with unknown discriminants",
5983 Subtype_Indication (Type_Definition (N)));
5984 return;
5985 end if;
5987 -- If full view of parent is a record type, build full view as a
5988 -- derivation from the parent's full view. Partial view remains
5989 -- private. For code generation and linking, the full view must have
5990 -- the same public status as the partial one. This full view is only
5991 -- needed if the parent type is in an enclosing scope, so that the
5992 -- full view may actually become visible, e.g. in a child unit. This
5993 -- is both more efficient, and avoids order of freezing problems with
5994 -- the added entities.
5996 if not Is_Private_Type (Full_View (Parent_Type))
5997 and then (In_Open_Scopes (Scope (Parent_Type)))
5998 then
5999 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
6000 Chars (Derived_Type));
6001 Set_Is_Itype (Full_Der);
6002 Set_Has_Private_Declaration (Full_Der);
6003 Set_Has_Private_Declaration (Derived_Type);
6004 Set_Associated_Node_For_Itype (Full_Der, N);
6005 Set_Parent (Full_Der, Parent (Derived_Type));
6006 Set_Full_View (Derived_Type, Full_Der);
6007 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6008 Full_P := Full_View (Parent_Type);
6009 Exchange_Declarations (Parent_Type);
6010 Copy_And_Build;
6011 Exchange_Declarations (Full_P);
6013 else
6014 Build_Derived_Record_Type
6015 (N, Full_View (Parent_Type), Derived_Type,
6016 Derive_Subps => False);
6017 end if;
6019 -- In any case, the primitive operations are inherited from the
6020 -- parent type, not from the internal full view.
6022 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6024 if Derive_Subps then
6025 Derive_Subprograms (Parent_Type, Derived_Type);
6026 end if;
6028 else
6029 -- Untagged type, No discriminants on either view
6031 if Nkind (Subtype_Indication (Type_Definition (N))) =
6032 N_Subtype_Indication
6033 then
6034 Error_Msg_N
6035 ("illegal constraint on type without discriminants", N);
6036 end if;
6038 if Present (Discriminant_Specifications (N))
6039 and then Present (Full_View (Parent_Type))
6040 and then not Is_Tagged_Type (Full_View (Parent_Type))
6041 then
6042 Error_Msg_N ("cannot add discriminants to untagged type", N);
6043 end if;
6045 Set_Stored_Constraint (Derived_Type, No_Elist);
6046 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6047 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6048 Set_Has_Controlled_Component
6049 (Derived_Type, Has_Controlled_Component
6050 (Parent_Type));
6052 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6054 if not Is_Controlled (Parent_Type) then
6055 Set_Finalize_Storage_Only
6056 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6057 end if;
6059 -- Construct the implicit full view by deriving from full view of the
6060 -- parent type. In order to get proper visibility, we install the
6061 -- parent scope and its declarations.
6063 -- ??? If the parent is untagged private and its completion is
6064 -- tagged, this mechanism will not work because we cannot derive from
6065 -- the tagged full view unless we have an extension.
6067 if Present (Full_View (Parent_Type))
6068 and then not Is_Tagged_Type (Full_View (Parent_Type))
6069 and then not Is_Completion
6070 then
6071 Full_Der :=
6072 Make_Defining_Identifier (Sloc (Derived_Type),
6073 Chars => Chars (Derived_Type));
6074 Set_Is_Itype (Full_Der);
6075 Set_Has_Private_Declaration (Full_Der);
6076 Set_Has_Private_Declaration (Derived_Type);
6077 Set_Associated_Node_For_Itype (Full_Der, N);
6078 Set_Parent (Full_Der, Parent (Derived_Type));
6079 Set_Full_View (Derived_Type, Full_Der);
6081 if not In_Open_Scopes (Par_Scope) then
6082 Install_Private_Declarations (Par_Scope);
6083 Install_Visible_Declarations (Par_Scope);
6084 Copy_And_Build;
6085 Uninstall_Declarations (Par_Scope);
6087 -- If parent scope is open and in another unit, and parent has a
6088 -- completion, then the derivation is taking place in the visible
6089 -- part of a child unit. In that case retrieve the full view of
6090 -- the parent momentarily.
6092 elsif not In_Same_Source_Unit (N, Parent_Type) then
6093 Full_P := Full_View (Parent_Type);
6094 Exchange_Declarations (Parent_Type);
6095 Copy_And_Build;
6096 Exchange_Declarations (Full_P);
6098 -- Otherwise it is a local derivation
6100 else
6101 Copy_And_Build;
6102 end if;
6104 Set_Scope (Full_Der, Current_Scope);
6105 Set_Is_First_Subtype (Full_Der,
6106 Is_First_Subtype (Derived_Type));
6107 Set_Has_Size_Clause (Full_Der, False);
6108 Set_Has_Alignment_Clause (Full_Der, False);
6109 Set_Next_Entity (Full_Der, Empty);
6110 Set_Has_Delayed_Freeze (Full_Der);
6111 Set_Is_Frozen (Full_Der, False);
6112 Set_Freeze_Node (Full_Der, Empty);
6113 Set_Depends_On_Private (Full_Der,
6114 Has_Private_Component (Full_Der));
6115 Set_Public_Status (Full_Der);
6116 end if;
6117 end if;
6119 Set_Has_Unknown_Discriminants (Derived_Type,
6120 Has_Unknown_Discriminants (Parent_Type));
6122 if Is_Private_Type (Derived_Type) then
6123 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6124 end if;
6126 if Is_Private_Type (Parent_Type)
6127 and then Base_Type (Parent_Type) = Parent_Type
6128 and then In_Open_Scopes (Scope (Parent_Type))
6129 then
6130 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6132 if Is_Child_Unit (Scope (Current_Scope))
6133 and then Is_Completion
6134 and then In_Private_Part (Current_Scope)
6135 and then Scope (Parent_Type) /= Current_Scope
6136 then
6137 -- This is the unusual case where a type completed by a private
6138 -- derivation occurs within a package nested in a child unit, and
6139 -- the parent is declared in an ancestor. In this case, the full
6140 -- view of the parent type will become visible in the body of
6141 -- the enclosing child, and only then will the current type be
6142 -- possibly non-private. We build a underlying full view that
6143 -- will be installed when the enclosing child body is compiled.
6145 Full_Der :=
6146 Make_Defining_Identifier (Sloc (Derived_Type),
6147 Chars => Chars (Derived_Type));
6148 Set_Is_Itype (Full_Der);
6149 Build_Itype_Reference (Full_Der, N);
6151 -- The full view will be used to swap entities on entry/exit to
6152 -- the body, and must appear in the entity list for the package.
6154 Append_Entity (Full_Der, Scope (Derived_Type));
6155 Set_Has_Private_Declaration (Full_Der);
6156 Set_Has_Private_Declaration (Derived_Type);
6157 Set_Associated_Node_For_Itype (Full_Der, N);
6158 Set_Parent (Full_Der, Parent (Derived_Type));
6159 Full_P := Full_View (Parent_Type);
6160 Exchange_Declarations (Parent_Type);
6161 Copy_And_Build;
6162 Exchange_Declarations (Full_P);
6163 Set_Underlying_Full_View (Derived_Type, Full_Der);
6164 end if;
6165 end if;
6166 end Build_Derived_Private_Type;
6168 -------------------------------
6169 -- Build_Derived_Record_Type --
6170 -------------------------------
6172 -- 1. INTRODUCTION
6174 -- Ideally we would like to use the same model of type derivation for
6175 -- tagged and untagged record types. Unfortunately this is not quite
6176 -- possible because the semantics of representation clauses is different
6177 -- for tagged and untagged records under inheritance. Consider the
6178 -- following:
6180 -- type R (...) is [tagged] record ... end record;
6181 -- type T (...) is new R (...) [with ...];
6183 -- The representation clauses for T can specify a completely different
6184 -- record layout from R's. Hence the same component can be placed in two
6185 -- very different positions in objects of type T and R. If R and T are
6186 -- tagged types, representation clauses for T can only specify the layout
6187 -- of non inherited components, thus components that are common in R and T
6188 -- have the same position in objects of type R and T.
6190 -- This has two implications. The first is that the entire tree for R's
6191 -- declaration needs to be copied for T in the untagged case, so that T
6192 -- can be viewed as a record type of its own with its own representation
6193 -- clauses. The second implication is the way we handle discriminants.
6194 -- Specifically, in the untagged case we need a way to communicate to Gigi
6195 -- what are the real discriminants in the record, while for the semantics
6196 -- we need to consider those introduced by the user to rename the
6197 -- discriminants in the parent type. This is handled by introducing the
6198 -- notion of stored discriminants. See below for more.
6200 -- Fortunately the way regular components are inherited can be handled in
6201 -- the same way in tagged and untagged types.
6203 -- To complicate things a bit more the private view of a private extension
6204 -- cannot be handled in the same way as the full view (for one thing the
6205 -- semantic rules are somewhat different). We will explain what differs
6206 -- below.
6208 -- 2. DISCRIMINANTS UNDER INHERITANCE
6210 -- The semantic rules governing the discriminants of derived types are
6211 -- quite subtle.
6213 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6214 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6216 -- If parent type has discriminants, then the discriminants that are
6217 -- declared in the derived type are [3.4 (11)]:
6219 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6220 -- there is one;
6222 -- o Otherwise, each discriminant of the parent type (implicitly declared
6223 -- in the same order with the same specifications). In this case, the
6224 -- discriminants are said to be "inherited", or if unknown in the parent
6225 -- are also unknown in the derived type.
6227 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6229 -- o The parent subtype shall be constrained;
6231 -- o If the parent type is not a tagged type, then each discriminant of
6232 -- the derived type shall be used in the constraint defining a parent
6233 -- subtype. [Implementation note: This ensures that the new discriminant
6234 -- can share storage with an existing discriminant.]
6236 -- For the derived type each discriminant of the parent type is either
6237 -- inherited, constrained to equal some new discriminant of the derived
6238 -- type, or constrained to the value of an expression.
6240 -- When inherited or constrained to equal some new discriminant, the
6241 -- parent discriminant and the discriminant of the derived type are said
6242 -- to "correspond".
6244 -- If a discriminant of the parent type is constrained to a specific value
6245 -- in the derived type definition, then the discriminant is said to be
6246 -- "specified" by that derived type definition.
6248 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6250 -- We have spoken about stored discriminants in point 1 (introduction)
6251 -- above. There are two sort of stored discriminants: implicit and
6252 -- explicit. As long as the derived type inherits the same discriminants as
6253 -- the root record type, stored discriminants are the same as regular
6254 -- discriminants, and are said to be implicit. However, if any discriminant
6255 -- in the root type was renamed in the derived type, then the derived
6256 -- type will contain explicit stored discriminants. Explicit stored
6257 -- discriminants are discriminants in addition to the semantically visible
6258 -- discriminants defined for the derived type. Stored discriminants are
6259 -- used by Gigi to figure out what are the physical discriminants in
6260 -- objects of the derived type (see precise definition in einfo.ads).
6261 -- As an example, consider the following:
6263 -- type R (D1, D2, D3 : Int) is record ... end record;
6264 -- type T1 is new R;
6265 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6266 -- type T3 is new T2;
6267 -- type T4 (Y : Int) is new T3 (Y, 99);
6269 -- The following table summarizes the discriminants and stored
6270 -- discriminants in R and T1 through T4.
6272 -- Type Discrim Stored Discrim Comment
6273 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6274 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6275 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6276 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6277 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6279 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6280 -- find the corresponding discriminant in the parent type, while
6281 -- Original_Record_Component (abbreviated ORC below), the actual physical
6282 -- component that is renamed. Finally the field Is_Completely_Hidden
6283 -- (abbreviated ICH below) is set for all explicit stored discriminants
6284 -- (see einfo.ads for more info). For the above example this gives:
6286 -- Discrim CD ORC ICH
6287 -- ^^^^^^^ ^^ ^^^ ^^^
6288 -- D1 in R empty itself no
6289 -- D2 in R empty itself no
6290 -- D3 in R empty itself no
6292 -- D1 in T1 D1 in R itself no
6293 -- D2 in T1 D2 in R itself no
6294 -- D3 in T1 D3 in R itself no
6296 -- X1 in T2 D3 in T1 D3 in T2 no
6297 -- X2 in T2 D1 in T1 D1 in T2 no
6298 -- D1 in T2 empty itself yes
6299 -- D2 in T2 empty itself yes
6300 -- D3 in T2 empty itself yes
6302 -- X1 in T3 X1 in T2 D3 in T3 no
6303 -- X2 in T3 X2 in T2 D1 in T3 no
6304 -- D1 in T3 empty itself yes
6305 -- D2 in T3 empty itself yes
6306 -- D3 in T3 empty itself yes
6308 -- Y in T4 X1 in T3 D3 in T3 no
6309 -- D1 in T3 empty itself yes
6310 -- D2 in T3 empty itself yes
6311 -- D3 in T3 empty itself yes
6313 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6315 -- Type derivation for tagged types is fairly straightforward. If no
6316 -- discriminants are specified by the derived type, these are inherited
6317 -- from the parent. No explicit stored discriminants are ever necessary.
6318 -- The only manipulation that is done to the tree is that of adding a
6319 -- _parent field with parent type and constrained to the same constraint
6320 -- specified for the parent in the derived type definition. For instance:
6322 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6323 -- type T1 is new R with null record;
6324 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6326 -- are changed into:
6328 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6329 -- _parent : R (D1, D2, D3);
6330 -- end record;
6332 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6333 -- _parent : T1 (X2, 88, X1);
6334 -- end record;
6336 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6337 -- ORC and ICH fields are:
6339 -- Discrim CD ORC ICH
6340 -- ^^^^^^^ ^^ ^^^ ^^^
6341 -- D1 in R empty itself no
6342 -- D2 in R empty itself no
6343 -- D3 in R empty itself no
6345 -- D1 in T1 D1 in R D1 in R no
6346 -- D2 in T1 D2 in R D2 in R no
6347 -- D3 in T1 D3 in R D3 in R no
6349 -- X1 in T2 D3 in T1 D3 in R no
6350 -- X2 in T2 D1 in T1 D1 in R no
6352 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6354 -- Regardless of whether we dealing with a tagged or untagged type
6355 -- we will transform all derived type declarations of the form
6357 -- type T is new R (...) [with ...];
6358 -- or
6359 -- subtype S is R (...);
6360 -- type T is new S [with ...];
6361 -- into
6362 -- type BT is new R [with ...];
6363 -- subtype T is BT (...);
6365 -- That is, the base derived type is constrained only if it has no
6366 -- discriminants. The reason for doing this is that GNAT's semantic model
6367 -- assumes that a base type with discriminants is unconstrained.
6369 -- Note that, strictly speaking, the above transformation is not always
6370 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6372 -- procedure B34011A is
6373 -- type REC (D : integer := 0) is record
6374 -- I : Integer;
6375 -- end record;
6377 -- package P is
6378 -- type T6 is new Rec;
6379 -- function F return T6;
6380 -- end P;
6382 -- use P;
6383 -- package Q6 is
6384 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6385 -- end Q6;
6387 -- The definition of Q6.U is illegal. However transforming Q6.U into
6389 -- type BaseU is new T6;
6390 -- subtype U is BaseU (Q6.F.I)
6392 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6393 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6394 -- the transformation described above.
6396 -- There is another instance where the above transformation is incorrect.
6397 -- Consider:
6399 -- package Pack is
6400 -- type Base (D : Integer) is tagged null record;
6401 -- procedure P (X : Base);
6403 -- type Der is new Base (2) with null record;
6404 -- procedure P (X : Der);
6405 -- end Pack;
6407 -- Then the above transformation turns this into
6409 -- type Der_Base is new Base with null record;
6410 -- -- procedure P (X : Base) is implicitly inherited here
6411 -- -- as procedure P (X : Der_Base).
6413 -- subtype Der is Der_Base (2);
6414 -- procedure P (X : Der);
6415 -- -- The overriding of P (X : Der_Base) is illegal since we
6416 -- -- have a parameter conformance problem.
6418 -- To get around this problem, after having semantically processed Der_Base
6419 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6420 -- Discriminant_Constraint from Der so that when parameter conformance is
6421 -- checked when P is overridden, no semantic errors are flagged.
6423 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6425 -- Regardless of whether we are dealing with a tagged or untagged type
6426 -- we will transform all derived type declarations of the form
6428 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6429 -- type T is new R [with ...];
6430 -- into
6431 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6433 -- The reason for such transformation is that it allows us to implement a
6434 -- very clean form of component inheritance as explained below.
6436 -- Note that this transformation is not achieved by direct tree rewriting
6437 -- and manipulation, but rather by redoing the semantic actions that the
6438 -- above transformation will entail. This is done directly in routine
6439 -- Inherit_Components.
6441 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6443 -- In both tagged and untagged derived types, regular non discriminant
6444 -- components are inherited in the derived type from the parent type. In
6445 -- the absence of discriminants component, inheritance is straightforward
6446 -- as components can simply be copied from the parent.
6448 -- If the parent has discriminants, inheriting components constrained with
6449 -- these discriminants requires caution. Consider the following example:
6451 -- type R (D1, D2 : Positive) is [tagged] record
6452 -- S : String (D1 .. D2);
6453 -- end record;
6455 -- type T1 is new R [with null record];
6456 -- type T2 (X : positive) is new R (1, X) [with null record];
6458 -- As explained in 6. above, T1 is rewritten as
6459 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6460 -- which makes the treatment for T1 and T2 identical.
6462 -- What we want when inheriting S, is that references to D1 and D2 in R are
6463 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6464 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6465 -- with either discriminant references in the derived type or expressions.
6466 -- This replacement is achieved as follows: before inheriting R's
6467 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6468 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6469 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6470 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6471 -- by String (1 .. X).
6473 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6475 -- We explain here the rules governing private type extensions relevant to
6476 -- type derivation. These rules are explained on the following example:
6478 -- type D [(...)] is new A [(...)] with private; <-- partial view
6479 -- type D [(...)] is new P [(...)] with null record; <-- full view
6481 -- Type A is called the ancestor subtype of the private extension.
6482 -- Type P is the parent type of the full view of the private extension. It
6483 -- must be A or a type derived from A.
6485 -- The rules concerning the discriminants of private type extensions are
6486 -- [7.3(10-13)]:
6488 -- o If a private extension inherits known discriminants from the ancestor
6489 -- subtype, then the full view shall also inherit its discriminants from
6490 -- the ancestor subtype and the parent subtype of the full view shall be
6491 -- constrained if and only if the ancestor subtype is constrained.
6493 -- o If a partial view has unknown discriminants, then the full view may
6494 -- define a definite or an indefinite subtype, with or without
6495 -- discriminants.
6497 -- o If a partial view has neither known nor unknown discriminants, then
6498 -- the full view shall define a definite subtype.
6500 -- o If the ancestor subtype of a private extension has constrained
6501 -- discriminants, then the parent subtype of the full view shall impose a
6502 -- statically matching constraint on those discriminants.
6504 -- This means that only the following forms of private extensions are
6505 -- allowed:
6507 -- type D is new A with private; <-- partial view
6508 -- type D is new P with null record; <-- full view
6510 -- If A has no discriminants than P has no discriminants, otherwise P must
6511 -- inherit A's discriminants.
6513 -- type D is new A (...) with private; <-- partial view
6514 -- type D is new P (:::) with null record; <-- full view
6516 -- P must inherit A's discriminants and (...) and (:::) must statically
6517 -- match.
6519 -- subtype A is R (...);
6520 -- type D is new A with private; <-- partial view
6521 -- type D is new P with null record; <-- full view
6523 -- P must have inherited R's discriminants and must be derived from A or
6524 -- any of its subtypes.
6526 -- type D (..) is new A with private; <-- partial view
6527 -- type D (..) is new P [(:::)] with null record; <-- full view
6529 -- No specific constraints on P's discriminants or constraint (:::).
6530 -- Note that A can be unconstrained, but the parent subtype P must either
6531 -- be constrained or (:::) must be present.
6533 -- type D (..) is new A [(...)] with private; <-- partial view
6534 -- type D (..) is new P [(:::)] with null record; <-- full view
6536 -- P's constraints on A's discriminants must statically match those
6537 -- imposed by (...).
6539 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6541 -- The full view of a private extension is handled exactly as described
6542 -- above. The model chose for the private view of a private extension is
6543 -- the same for what concerns discriminants (i.e. they receive the same
6544 -- treatment as in the tagged case). However, the private view of the
6545 -- private extension always inherits the components of the parent base,
6546 -- without replacing any discriminant reference. Strictly speaking this is
6547 -- incorrect. However, Gigi never uses this view to generate code so this
6548 -- is a purely semantic issue. In theory, a set of transformations similar
6549 -- to those given in 5. and 6. above could be applied to private views of
6550 -- private extensions to have the same model of component inheritance as
6551 -- for non private extensions. However, this is not done because it would
6552 -- further complicate private type processing. Semantically speaking, this
6553 -- leaves us in an uncomfortable situation. As an example consider:
6555 -- package Pack is
6556 -- type R (D : integer) is tagged record
6557 -- S : String (1 .. D);
6558 -- end record;
6559 -- procedure P (X : R);
6560 -- type T is new R (1) with private;
6561 -- private
6562 -- type T is new R (1) with null record;
6563 -- end;
6565 -- This is transformed into:
6567 -- package Pack is
6568 -- type R (D : integer) is tagged record
6569 -- S : String (1 .. D);
6570 -- end record;
6571 -- procedure P (X : R);
6572 -- type T is new R (1) with private;
6573 -- private
6574 -- type BaseT is new R with null record;
6575 -- subtype T is BaseT (1);
6576 -- end;
6578 -- (strictly speaking the above is incorrect Ada)
6580 -- From the semantic standpoint the private view of private extension T
6581 -- should be flagged as constrained since one can clearly have
6583 -- Obj : T;
6585 -- in a unit withing Pack. However, when deriving subprograms for the
6586 -- private view of private extension T, T must be seen as unconstrained
6587 -- since T has discriminants (this is a constraint of the current
6588 -- subprogram derivation model). Thus, when processing the private view of
6589 -- a private extension such as T, we first mark T as unconstrained, we
6590 -- process it, we perform program derivation and just before returning from
6591 -- Build_Derived_Record_Type we mark T as constrained.
6593 -- ??? Are there are other uncomfortable cases that we will have to
6594 -- deal with.
6596 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6598 -- Types that are derived from a visible record type and have a private
6599 -- extension present other peculiarities. They behave mostly like private
6600 -- types, but if they have primitive operations defined, these will not
6601 -- have the proper signatures for further inheritance, because other
6602 -- primitive operations will use the implicit base that we define for
6603 -- private derivations below. This affect subprogram inheritance (see
6604 -- Derive_Subprograms for details). We also derive the implicit base from
6605 -- the base type of the full view, so that the implicit base is a record
6606 -- type and not another private type, This avoids infinite loops.
6608 procedure Build_Derived_Record_Type
6609 (N : Node_Id;
6610 Parent_Type : Entity_Id;
6611 Derived_Type : Entity_Id;
6612 Derive_Subps : Boolean := True)
6614 Loc : constant Source_Ptr := Sloc (N);
6615 Parent_Base : Entity_Id;
6616 Type_Def : Node_Id;
6617 Indic : Node_Id;
6618 Discrim : Entity_Id;
6619 Last_Discrim : Entity_Id;
6620 Constrs : Elist_Id;
6622 Discs : Elist_Id := New_Elmt_List;
6623 -- An empty Discs list means that there were no constraints in the
6624 -- subtype indication or that there was an error processing it.
6626 Assoc_List : Elist_Id;
6627 New_Discrs : Elist_Id;
6628 New_Base : Entity_Id;
6629 New_Decl : Node_Id;
6630 New_Indic : Node_Id;
6632 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
6633 Discriminant_Specs : constant Boolean :=
6634 Present (Discriminant_Specifications (N));
6635 Private_Extension : constant Boolean :=
6636 Nkind (N) = N_Private_Extension_Declaration;
6638 Constraint_Present : Boolean;
6639 Inherit_Discrims : Boolean := False;
6640 Save_Etype : Entity_Id;
6641 Save_Discr_Constr : Elist_Id;
6642 Save_Next_Entity : Entity_Id;
6644 begin
6645 if Ekind (Parent_Type) = E_Record_Type_With_Private
6646 and then Present (Full_View (Parent_Type))
6647 and then Has_Discriminants (Parent_Type)
6648 then
6649 Parent_Base := Base_Type (Full_View (Parent_Type));
6650 else
6651 Parent_Base := Base_Type (Parent_Type);
6652 end if;
6654 -- Before we start the previously documented transformations, here is
6655 -- little fix for size and alignment of tagged types. Normally when we
6656 -- derive type D from type P, we copy the size and alignment of P as the
6657 -- default for D, and in the absence of explicit representation clauses
6658 -- for D, the size and alignment are indeed the same as the parent.
6660 -- But this is wrong for tagged types, since fields may be added, and
6661 -- the default size may need to be larger, and the default alignment may
6662 -- need to be larger.
6664 -- We therefore reset the size and alignment fields in the tagged case.
6665 -- Note that the size and alignment will in any case be at least as
6666 -- large as the parent type (since the derived type has a copy of the
6667 -- parent type in the _parent field)
6669 -- The type is also marked as being tagged here, which is needed when
6670 -- processing components with a self-referential anonymous access type
6671 -- in the call to Check_Anonymous_Access_Components below. Note that
6672 -- this flag is also set later on for completeness.
6674 if Is_Tagged then
6675 Set_Is_Tagged_Type (Derived_Type);
6676 Init_Size_Align (Derived_Type);
6677 end if;
6679 -- STEP 0a: figure out what kind of derived type declaration we have
6681 if Private_Extension then
6682 Type_Def := N;
6683 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
6685 else
6686 Type_Def := Type_Definition (N);
6688 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
6689 -- Parent_Base can be a private type or private extension. However,
6690 -- for tagged types with an extension the newly added fields are
6691 -- visible and hence the Derived_Type is always an E_Record_Type.
6692 -- (except that the parent may have its own private fields).
6693 -- For untagged types we preserve the Ekind of the Parent_Base.
6695 if Present (Record_Extension_Part (Type_Def)) then
6696 Set_Ekind (Derived_Type, E_Record_Type);
6698 -- Create internal access types for components with anonymous
6699 -- access types.
6701 if Ada_Version >= Ada_05 then
6702 Check_Anonymous_Access_Components
6703 (N, Derived_Type, Derived_Type,
6704 Component_List (Record_Extension_Part (Type_Def)));
6705 end if;
6707 else
6708 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6709 end if;
6710 end if;
6712 -- Indic can either be an N_Identifier if the subtype indication
6713 -- contains no constraint or an N_Subtype_Indication if the subtype
6714 -- indication has a constraint.
6716 Indic := Subtype_Indication (Type_Def);
6717 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
6719 -- Check that the type has visible discriminants. The type may be
6720 -- a private type with unknown discriminants whose full view has
6721 -- discriminants which are invisible.
6723 if Constraint_Present then
6724 if not Has_Discriminants (Parent_Base)
6725 or else
6726 (Has_Unknown_Discriminants (Parent_Base)
6727 and then Is_Private_Type (Parent_Base))
6728 then
6729 Error_Msg_N
6730 ("invalid constraint: type has no discriminant",
6731 Constraint (Indic));
6733 Constraint_Present := False;
6734 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6736 elsif Is_Constrained (Parent_Type) then
6737 Error_Msg_N
6738 ("invalid constraint: parent type is already constrained",
6739 Constraint (Indic));
6741 Constraint_Present := False;
6742 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6743 end if;
6744 end if;
6746 -- STEP 0b: If needed, apply transformation given in point 5. above
6748 if not Private_Extension
6749 and then Has_Discriminants (Parent_Type)
6750 and then not Discriminant_Specs
6751 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
6752 then
6753 -- First, we must analyze the constraint (see comment in point 5.)
6755 if Constraint_Present then
6756 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
6758 if Has_Discriminants (Derived_Type)
6759 and then Has_Private_Declaration (Derived_Type)
6760 and then Present (Discriminant_Constraint (Derived_Type))
6761 then
6762 -- Verify that constraints of the full view statically match
6763 -- those given in the partial view.
6765 declare
6766 C1, C2 : Elmt_Id;
6768 begin
6769 C1 := First_Elmt (New_Discrs);
6770 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
6771 while Present (C1) and then Present (C2) loop
6772 if Fully_Conformant_Expressions (Node (C1), Node (C2))
6773 or else
6774 (Is_OK_Static_Expression (Node (C1))
6775 and then
6776 Is_OK_Static_Expression (Node (C2))
6777 and then
6778 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
6779 then
6780 null;
6782 else
6783 Error_Msg_N (
6784 "constraint not conformant to previous declaration",
6785 Node (C1));
6786 end if;
6788 Next_Elmt (C1);
6789 Next_Elmt (C2);
6790 end loop;
6791 end;
6792 end if;
6793 end if;
6795 -- Insert and analyze the declaration for the unconstrained base type
6797 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
6799 New_Decl :=
6800 Make_Full_Type_Declaration (Loc,
6801 Defining_Identifier => New_Base,
6802 Type_Definition =>
6803 Make_Derived_Type_Definition (Loc,
6804 Abstract_Present => Abstract_Present (Type_Def),
6805 Limited_Present => Limited_Present (Type_Def),
6806 Subtype_Indication =>
6807 New_Occurrence_Of (Parent_Base, Loc),
6808 Record_Extension_Part =>
6809 Relocate_Node (Record_Extension_Part (Type_Def)),
6810 Interface_List => Interface_List (Type_Def)));
6812 Set_Parent (New_Decl, Parent (N));
6813 Mark_Rewrite_Insertion (New_Decl);
6814 Insert_Before (N, New_Decl);
6816 -- In the extension case, make sure ancestor is frozen appropriately
6817 -- (see also non-discriminated case below).
6819 if Present (Record_Extension_Part (Type_Def))
6820 or else Is_Interface (Parent_Base)
6821 then
6822 Freeze_Before (New_Decl, Parent_Type);
6823 end if;
6825 -- Note that this call passes False for the Derive_Subps parameter
6826 -- because subprogram derivation is deferred until after creating
6827 -- the subtype (see below).
6829 Build_Derived_Type
6830 (New_Decl, Parent_Base, New_Base,
6831 Is_Completion => True, Derive_Subps => False);
6833 -- ??? This needs re-examination to determine whether the
6834 -- above call can simply be replaced by a call to Analyze.
6836 Set_Analyzed (New_Decl);
6838 -- Insert and analyze the declaration for the constrained subtype
6840 if Constraint_Present then
6841 New_Indic :=
6842 Make_Subtype_Indication (Loc,
6843 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6844 Constraint => Relocate_Node (Constraint (Indic)));
6846 else
6847 declare
6848 Constr_List : constant List_Id := New_List;
6849 C : Elmt_Id;
6850 Expr : Node_Id;
6852 begin
6853 C := First_Elmt (Discriminant_Constraint (Parent_Type));
6854 while Present (C) loop
6855 Expr := Node (C);
6857 -- It is safe here to call New_Copy_Tree since
6858 -- Force_Evaluation was called on each constraint in
6859 -- Build_Discriminant_Constraints.
6861 Append (New_Copy_Tree (Expr), To => Constr_List);
6863 Next_Elmt (C);
6864 end loop;
6866 New_Indic :=
6867 Make_Subtype_Indication (Loc,
6868 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6869 Constraint =>
6870 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
6871 end;
6872 end if;
6874 Rewrite (N,
6875 Make_Subtype_Declaration (Loc,
6876 Defining_Identifier => Derived_Type,
6877 Subtype_Indication => New_Indic));
6879 Analyze (N);
6881 -- Derivation of subprograms must be delayed until the full subtype
6882 -- has been established to ensure proper overriding of subprograms
6883 -- inherited by full types. If the derivations occurred as part of
6884 -- the call to Build_Derived_Type above, then the check for type
6885 -- conformance would fail because earlier primitive subprograms
6886 -- could still refer to the full type prior the change to the new
6887 -- subtype and hence would not match the new base type created here.
6889 Derive_Subprograms (Parent_Type, Derived_Type);
6891 -- For tagged types the Discriminant_Constraint of the new base itype
6892 -- is inherited from the first subtype so that no subtype conformance
6893 -- problem arise when the first subtype overrides primitive
6894 -- operations inherited by the implicit base type.
6896 if Is_Tagged then
6897 Set_Discriminant_Constraint
6898 (New_Base, Discriminant_Constraint (Derived_Type));
6899 end if;
6901 return;
6902 end if;
6904 -- If we get here Derived_Type will have no discriminants or it will be
6905 -- a discriminated unconstrained base type.
6907 -- STEP 1a: perform preliminary actions/checks for derived tagged types
6909 if Is_Tagged then
6911 -- The parent type is frozen for non-private extensions (RM 13.14(7))
6912 -- The declaration of a specific descendant of an interface type
6913 -- freezes the interface type (RM 13.14).
6915 if not Private_Extension or else Is_Interface (Parent_Base) then
6916 Freeze_Before (N, Parent_Type);
6917 end if;
6919 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
6920 -- cannot be declared at a deeper level than its parent type is
6921 -- removed. The check on derivation within a generic body is also
6922 -- relaxed, but there's a restriction that a derived tagged type
6923 -- cannot be declared in a generic body if it's derived directly
6924 -- or indirectly from a formal type of that generic.
6926 if Ada_Version >= Ada_05 then
6927 if Present (Enclosing_Generic_Body (Derived_Type)) then
6928 declare
6929 Ancestor_Type : Entity_Id;
6931 begin
6932 -- Check to see if any ancestor of the derived type is a
6933 -- formal type.
6935 Ancestor_Type := Parent_Type;
6936 while not Is_Generic_Type (Ancestor_Type)
6937 and then Etype (Ancestor_Type) /= Ancestor_Type
6938 loop
6939 Ancestor_Type := Etype (Ancestor_Type);
6940 end loop;
6942 -- If the derived type does have a formal type as an
6943 -- ancestor, then it's an error if the derived type is
6944 -- declared within the body of the generic unit that
6945 -- declares the formal type in its generic formal part. It's
6946 -- sufficient to check whether the ancestor type is declared
6947 -- inside the same generic body as the derived type (such as
6948 -- within a nested generic spec), in which case the
6949 -- derivation is legal. If the formal type is declared
6950 -- outside of that generic body, then it's guaranteed that
6951 -- the derived type is declared within the generic body of
6952 -- the generic unit declaring the formal type.
6954 if Is_Generic_Type (Ancestor_Type)
6955 and then Enclosing_Generic_Body (Ancestor_Type) /=
6956 Enclosing_Generic_Body (Derived_Type)
6957 then
6958 Error_Msg_NE
6959 ("parent type of& must not be descendant of formal type"
6960 & " of an enclosing generic body",
6961 Indic, Derived_Type);
6962 end if;
6963 end;
6964 end if;
6966 elsif Type_Access_Level (Derived_Type) /=
6967 Type_Access_Level (Parent_Type)
6968 and then not Is_Generic_Type (Derived_Type)
6969 then
6970 if Is_Controlled (Parent_Type) then
6971 Error_Msg_N
6972 ("controlled type must be declared at the library level",
6973 Indic);
6974 else
6975 Error_Msg_N
6976 ("type extension at deeper accessibility level than parent",
6977 Indic);
6978 end if;
6980 else
6981 declare
6982 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
6984 begin
6985 if Present (GB)
6986 and then GB /= Enclosing_Generic_Body (Parent_Base)
6987 then
6988 Error_Msg_NE
6989 ("parent type of& must not be outside generic body"
6990 & " (RM 3.9.1(4))",
6991 Indic, Derived_Type);
6992 end if;
6993 end;
6994 end if;
6995 end if;
6997 -- Ada 2005 (AI-251)
6999 if Ada_Version >= Ada_05 and then Is_Tagged then
7001 -- "The declaration of a specific descendant of an interface type
7002 -- freezes the interface type" (RM 13.14).
7004 declare
7005 Iface : Node_Id;
7006 begin
7007 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7008 Iface := First (Interface_List (Type_Def));
7009 while Present (Iface) loop
7010 Freeze_Before (N, Etype (Iface));
7011 Next (Iface);
7012 end loop;
7013 end if;
7014 end;
7015 end if;
7017 -- STEP 1b : preliminary cleanup of the full view of private types
7019 -- If the type is already marked as having discriminants, then it's the
7020 -- completion of a private type or private extension and we need to
7021 -- retain the discriminants from the partial view if the current
7022 -- declaration has Discriminant_Specifications so that we can verify
7023 -- conformance. However, we must remove any existing components that
7024 -- were inherited from the parent (and attached in Copy_And_Swap)
7025 -- because the full type inherits all appropriate components anyway, and
7026 -- we do not want the partial view's components interfering.
7028 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7029 Discrim := First_Discriminant (Derived_Type);
7030 loop
7031 Last_Discrim := Discrim;
7032 Next_Discriminant (Discrim);
7033 exit when No (Discrim);
7034 end loop;
7036 Set_Last_Entity (Derived_Type, Last_Discrim);
7038 -- In all other cases wipe out the list of inherited components (even
7039 -- inherited discriminants), it will be properly rebuilt here.
7041 else
7042 Set_First_Entity (Derived_Type, Empty);
7043 Set_Last_Entity (Derived_Type, Empty);
7044 end if;
7046 -- STEP 1c: Initialize some flags for the Derived_Type
7048 -- The following flags must be initialized here so that
7049 -- Process_Discriminants can check that discriminants of tagged types do
7050 -- not have a default initial value and that access discriminants are
7051 -- only specified for limited records. For completeness, these flags are
7052 -- also initialized along with all the other flags below.
7054 -- AI-419: Limitedness is not inherited from an interface parent, so to
7055 -- be limited in that case the type must be explicitly declared as
7056 -- limited. However, task and protected interfaces are always limited.
7058 if Limited_Present (Type_Def) then
7059 Set_Is_Limited_Record (Derived_Type);
7061 elsif Is_Limited_Record (Parent_Type)
7062 or else (Present (Full_View (Parent_Type))
7063 and then Is_Limited_Record (Full_View (Parent_Type)))
7064 then
7065 if not Is_Interface (Parent_Type)
7066 or else Is_Synchronized_Interface (Parent_Type)
7067 or else Is_Protected_Interface (Parent_Type)
7068 or else Is_Task_Interface (Parent_Type)
7069 then
7070 Set_Is_Limited_Record (Derived_Type);
7071 end if;
7072 end if;
7074 -- STEP 2a: process discriminants of derived type if any
7076 Push_Scope (Derived_Type);
7078 if Discriminant_Specs then
7079 Set_Has_Unknown_Discriminants (Derived_Type, False);
7081 -- The following call initializes fields Has_Discriminants and
7082 -- Discriminant_Constraint, unless we are processing the completion
7083 -- of a private type declaration.
7085 Check_Or_Process_Discriminants (N, Derived_Type);
7087 -- For non-tagged types the constraint on the Parent_Type must be
7088 -- present and is used to rename the discriminants.
7090 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7091 Error_Msg_N ("untagged parent must have discriminants", Indic);
7093 elsif not Is_Tagged and then not Constraint_Present then
7094 Error_Msg_N
7095 ("discriminant constraint needed for derived untagged records",
7096 Indic);
7098 -- Otherwise the parent subtype must be constrained unless we have a
7099 -- private extension.
7101 elsif not Constraint_Present
7102 and then not Private_Extension
7103 and then not Is_Constrained (Parent_Type)
7104 then
7105 Error_Msg_N
7106 ("unconstrained type not allowed in this context", Indic);
7108 elsif Constraint_Present then
7109 -- The following call sets the field Corresponding_Discriminant
7110 -- for the discriminants in the Derived_Type.
7112 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7114 -- For untagged types all new discriminants must rename
7115 -- discriminants in the parent. For private extensions new
7116 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7118 Discrim := First_Discriminant (Derived_Type);
7119 while Present (Discrim) loop
7120 if not Is_Tagged
7121 and then No (Corresponding_Discriminant (Discrim))
7122 then
7123 Error_Msg_N
7124 ("new discriminants must constrain old ones", Discrim);
7126 elsif Private_Extension
7127 and then Present (Corresponding_Discriminant (Discrim))
7128 then
7129 Error_Msg_N
7130 ("only static constraints allowed for parent"
7131 & " discriminants in the partial view", Indic);
7132 exit;
7133 end if;
7135 -- If a new discriminant is used in the constraint, then its
7136 -- subtype must be statically compatible with the parent
7137 -- discriminant's subtype (3.7(15)).
7139 if Present (Corresponding_Discriminant (Discrim))
7140 and then
7141 not Subtypes_Statically_Compatible
7142 (Etype (Discrim),
7143 Etype (Corresponding_Discriminant (Discrim)))
7144 then
7145 Error_Msg_N
7146 ("subtype must be compatible with parent discriminant",
7147 Discrim);
7148 end if;
7150 Next_Discriminant (Discrim);
7151 end loop;
7153 -- Check whether the constraints of the full view statically
7154 -- match those imposed by the parent subtype [7.3(13)].
7156 if Present (Stored_Constraint (Derived_Type)) then
7157 declare
7158 C1, C2 : Elmt_Id;
7160 begin
7161 C1 := First_Elmt (Discs);
7162 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7163 while Present (C1) and then Present (C2) loop
7164 if not
7165 Fully_Conformant_Expressions (Node (C1), Node (C2))
7166 then
7167 Error_Msg_N
7168 ("not conformant with previous declaration",
7169 Node (C1));
7170 end if;
7172 Next_Elmt (C1);
7173 Next_Elmt (C2);
7174 end loop;
7175 end;
7176 end if;
7177 end if;
7179 -- STEP 2b: No new discriminants, inherit discriminants if any
7181 else
7182 if Private_Extension then
7183 Set_Has_Unknown_Discriminants
7184 (Derived_Type,
7185 Has_Unknown_Discriminants (Parent_Type)
7186 or else Unknown_Discriminants_Present (N));
7188 -- The partial view of the parent may have unknown discriminants,
7189 -- but if the full view has discriminants and the parent type is
7190 -- in scope they must be inherited.
7192 elsif Has_Unknown_Discriminants (Parent_Type)
7193 and then
7194 (not Has_Discriminants (Parent_Type)
7195 or else not In_Open_Scopes (Scope (Parent_Type)))
7196 then
7197 Set_Has_Unknown_Discriminants (Derived_Type);
7198 end if;
7200 if not Has_Unknown_Discriminants (Derived_Type)
7201 and then not Has_Unknown_Discriminants (Parent_Base)
7202 and then Has_Discriminants (Parent_Type)
7203 then
7204 Inherit_Discrims := True;
7205 Set_Has_Discriminants
7206 (Derived_Type, True);
7207 Set_Discriminant_Constraint
7208 (Derived_Type, Discriminant_Constraint (Parent_Base));
7209 end if;
7211 -- The following test is true for private types (remember
7212 -- transformation 5. is not applied to those) and in an error
7213 -- situation.
7215 if Constraint_Present then
7216 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
7217 end if;
7219 -- For now mark a new derived type as constrained only if it has no
7220 -- discriminants. At the end of Build_Derived_Record_Type we properly
7221 -- set this flag in the case of private extensions. See comments in
7222 -- point 9. just before body of Build_Derived_Record_Type.
7224 Set_Is_Constrained
7225 (Derived_Type,
7226 not (Inherit_Discrims
7227 or else Has_Unknown_Discriminants (Derived_Type)));
7228 end if;
7230 -- STEP 3: initialize fields of derived type
7232 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
7233 Set_Stored_Constraint (Derived_Type, No_Elist);
7235 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7236 -- but cannot be interfaces
7238 if not Private_Extension
7239 and then Ekind (Derived_Type) /= E_Private_Type
7240 and then Ekind (Derived_Type) /= E_Limited_Private_Type
7241 then
7242 if Interface_Present (Type_Def) then
7243 Analyze_Interface_Declaration (Derived_Type, Type_Def);
7244 end if;
7246 Set_Interfaces (Derived_Type, No_Elist);
7247 end if;
7249 -- Fields inherited from the Parent_Type
7251 Set_Discard_Names
7252 (Derived_Type, Einfo.Discard_Names (Parent_Type));
7253 Set_Has_Specified_Layout
7254 (Derived_Type, Has_Specified_Layout (Parent_Type));
7255 Set_Is_Limited_Composite
7256 (Derived_Type, Is_Limited_Composite (Parent_Type));
7257 Set_Is_Private_Composite
7258 (Derived_Type, Is_Private_Composite (Parent_Type));
7260 -- Fields inherited from the Parent_Base
7262 Set_Has_Controlled_Component
7263 (Derived_Type, Has_Controlled_Component (Parent_Base));
7264 Set_Has_Non_Standard_Rep
7265 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7266 Set_Has_Primitive_Operations
7267 (Derived_Type, Has_Primitive_Operations (Parent_Base));
7269 -- Fields inherited from the Parent_Base in the non-private case
7271 if Ekind (Derived_Type) = E_Record_Type then
7272 Set_Has_Complex_Representation
7273 (Derived_Type, Has_Complex_Representation (Parent_Base));
7274 end if;
7276 -- Fields inherited from the Parent_Base for record types
7278 if Is_Record_Type (Derived_Type) then
7280 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7281 -- Parent_Base can be a private type or private extension.
7283 if Present (Full_View (Parent_Base)) then
7284 Set_OK_To_Reorder_Components
7285 (Derived_Type,
7286 OK_To_Reorder_Components (Full_View (Parent_Base)));
7287 Set_Reverse_Bit_Order
7288 (Derived_Type, Reverse_Bit_Order (Full_View (Parent_Base)));
7289 else
7290 Set_OK_To_Reorder_Components
7291 (Derived_Type, OK_To_Reorder_Components (Parent_Base));
7292 Set_Reverse_Bit_Order
7293 (Derived_Type, Reverse_Bit_Order (Parent_Base));
7294 end if;
7295 end if;
7297 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7299 if not Is_Controlled (Parent_Type) then
7300 Set_Finalize_Storage_Only
7301 (Derived_Type, Finalize_Storage_Only (Parent_Type));
7302 end if;
7304 -- Set fields for private derived types
7306 if Is_Private_Type (Derived_Type) then
7307 Set_Depends_On_Private (Derived_Type, True);
7308 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7310 -- Inherit fields from non private record types. If this is the
7311 -- completion of a derivation from a private type, the parent itself
7312 -- is private, and the attributes come from its full view, which must
7313 -- be present.
7315 else
7316 if Is_Private_Type (Parent_Base)
7317 and then not Is_Record_Type (Parent_Base)
7318 then
7319 Set_Component_Alignment
7320 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
7321 Set_C_Pass_By_Copy
7322 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
7323 else
7324 Set_Component_Alignment
7325 (Derived_Type, Component_Alignment (Parent_Base));
7326 Set_C_Pass_By_Copy
7327 (Derived_Type, C_Pass_By_Copy (Parent_Base));
7328 end if;
7329 end if;
7331 -- Set fields for tagged types
7333 if Is_Tagged then
7334 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
7336 -- All tagged types defined in Ada.Finalization are controlled
7338 if Chars (Scope (Derived_Type)) = Name_Finalization
7339 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
7340 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
7341 then
7342 Set_Is_Controlled (Derived_Type);
7343 else
7344 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
7345 end if;
7347 -- Minor optimization: there is no need to generate the class-wide
7348 -- entity associated with an underlying record view.
7350 if not Is_Underlying_Record_View (Derived_Type) then
7351 Make_Class_Wide_Type (Derived_Type);
7352 end if;
7354 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
7356 if Has_Discriminants (Derived_Type)
7357 and then Constraint_Present
7358 then
7359 Set_Stored_Constraint
7360 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
7361 end if;
7363 if Ada_Version >= Ada_05 then
7364 declare
7365 Ifaces_List : Elist_Id;
7367 begin
7368 -- Checks rules 3.9.4 (13/2 and 14/2)
7370 if Comes_From_Source (Derived_Type)
7371 and then not Is_Private_Type (Derived_Type)
7372 and then Is_Interface (Parent_Type)
7373 and then not Is_Interface (Derived_Type)
7374 then
7375 if Is_Task_Interface (Parent_Type) then
7376 Error_Msg_N
7377 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7378 Derived_Type);
7380 elsif Is_Protected_Interface (Parent_Type) then
7381 Error_Msg_N
7382 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7383 Derived_Type);
7384 end if;
7385 end if;
7387 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7389 Check_Interfaces (N, Type_Def);
7391 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7392 -- not already in the parents.
7394 Collect_Interfaces
7395 (T => Derived_Type,
7396 Ifaces_List => Ifaces_List,
7397 Exclude_Parents => True);
7399 Set_Interfaces (Derived_Type, Ifaces_List);
7401 -- If the derived type is the anonymous type created for
7402 -- a declaration whose parent has a constraint, propagate
7403 -- the interface list to the source type. This must be done
7404 -- prior to the completion of the analysis of the source type
7405 -- because the components in the extension may contain current
7406 -- instances whose legality depends on some ancestor.
7408 if Is_Itype (Derived_Type) then
7409 declare
7410 Def : constant Node_Id :=
7411 Associated_Node_For_Itype (Derived_Type);
7412 begin
7413 if Present (Def)
7414 and then Nkind (Def) = N_Full_Type_Declaration
7415 then
7416 Set_Interfaces
7417 (Defining_Identifier (Def), Ifaces_List);
7418 end if;
7419 end;
7420 end if;
7421 end;
7422 end if;
7424 else
7425 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
7426 Set_Has_Non_Standard_Rep
7427 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7428 end if;
7430 -- STEP 4: Inherit components from the parent base and constrain them.
7431 -- Apply the second transformation described in point 6. above.
7433 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
7434 or else not Has_Discriminants (Parent_Type)
7435 or else not Is_Constrained (Parent_Type)
7436 then
7437 Constrs := Discs;
7438 else
7439 Constrs := Discriminant_Constraint (Parent_Type);
7440 end if;
7442 Assoc_List :=
7443 Inherit_Components
7444 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
7446 -- STEP 5a: Copy the parent record declaration for untagged types
7448 if not Is_Tagged then
7450 -- Discriminant_Constraint (Derived_Type) has been properly
7451 -- constructed. Save it and temporarily set it to Empty because we
7452 -- do not want the call to New_Copy_Tree below to mess this list.
7454 if Has_Discriminants (Derived_Type) then
7455 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
7456 Set_Discriminant_Constraint (Derived_Type, No_Elist);
7457 else
7458 Save_Discr_Constr := No_Elist;
7459 end if;
7461 -- Save the Etype field of Derived_Type. It is correctly set now,
7462 -- but the call to New_Copy tree may remap it to point to itself,
7463 -- which is not what we want. Ditto for the Next_Entity field.
7465 Save_Etype := Etype (Derived_Type);
7466 Save_Next_Entity := Next_Entity (Derived_Type);
7468 -- Assoc_List maps all stored discriminants in the Parent_Base to
7469 -- stored discriminants in the Derived_Type. It is fundamental that
7470 -- no types or itypes with discriminants other than the stored
7471 -- discriminants appear in the entities declared inside
7472 -- Derived_Type, since the back end cannot deal with it.
7474 New_Decl :=
7475 New_Copy_Tree
7476 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
7478 -- Restore the fields saved prior to the New_Copy_Tree call
7479 -- and compute the stored constraint.
7481 Set_Etype (Derived_Type, Save_Etype);
7482 Set_Next_Entity (Derived_Type, Save_Next_Entity);
7484 if Has_Discriminants (Derived_Type) then
7485 Set_Discriminant_Constraint
7486 (Derived_Type, Save_Discr_Constr);
7487 Set_Stored_Constraint
7488 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
7489 Replace_Components (Derived_Type, New_Decl);
7490 end if;
7492 -- Insert the new derived type declaration
7494 Rewrite (N, New_Decl);
7496 -- STEP 5b: Complete the processing for record extensions in generics
7498 -- There is no completion for record extensions declared in the
7499 -- parameter part of a generic, so we need to complete processing for
7500 -- these generic record extensions here. The Record_Type_Definition call
7501 -- will change the Ekind of the components from E_Void to E_Component.
7503 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
7504 Record_Type_Definition (Empty, Derived_Type);
7506 -- STEP 5c: Process the record extension for non private tagged types
7508 elsif not Private_Extension then
7510 -- Add the _parent field in the derived type
7512 Expand_Record_Extension (Derived_Type, Type_Def);
7514 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7515 -- implemented interfaces if we are in expansion mode
7517 if Expander_Active
7518 and then Has_Interfaces (Derived_Type)
7519 then
7520 Add_Interface_Tag_Components (N, Derived_Type);
7521 end if;
7523 -- Analyze the record extension
7525 Record_Type_Definition
7526 (Record_Extension_Part (Type_Def), Derived_Type);
7527 end if;
7529 End_Scope;
7531 -- Nothing else to do if there is an error in the derivation.
7532 -- An unusual case: the full view may be derived from a type in an
7533 -- instance, when the partial view was used illegally as an actual
7534 -- in that instance, leading to a circular definition.
7536 if Etype (Derived_Type) = Any_Type
7537 or else Etype (Parent_Type) = Derived_Type
7538 then
7539 return;
7540 end if;
7542 -- Set delayed freeze and then derive subprograms, we need to do
7543 -- this in this order so that derived subprograms inherit the
7544 -- derived freeze if necessary.
7546 Set_Has_Delayed_Freeze (Derived_Type);
7548 if Derive_Subps then
7549 Derive_Subprograms (Parent_Type, Derived_Type);
7550 end if;
7552 -- If we have a private extension which defines a constrained derived
7553 -- type mark as constrained here after we have derived subprograms. See
7554 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7556 if Private_Extension and then Inherit_Discrims then
7557 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
7558 Set_Is_Constrained (Derived_Type, True);
7559 Set_Discriminant_Constraint (Derived_Type, Discs);
7561 elsif Is_Constrained (Parent_Type) then
7562 Set_Is_Constrained
7563 (Derived_Type, True);
7564 Set_Discriminant_Constraint
7565 (Derived_Type, Discriminant_Constraint (Parent_Type));
7566 end if;
7567 end if;
7569 -- Update the class-wide type, which shares the now-completed entity
7570 -- list with its specific type. In case of underlying record views,
7571 -- we do not generate the corresponding class wide entity.
7573 if Is_Tagged
7574 and then not Is_Underlying_Record_View (Derived_Type)
7575 then
7576 Set_First_Entity
7577 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
7578 Set_Last_Entity
7579 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
7580 end if;
7582 -- Update the scope of anonymous access types of discriminants and other
7583 -- components, to prevent scope anomalies in gigi, when the derivation
7584 -- appears in a scope nested within that of the parent.
7586 declare
7587 D : Entity_Id;
7589 begin
7590 D := First_Entity (Derived_Type);
7591 while Present (D) loop
7592 if Ekind_In (D, E_Discriminant, E_Component) then
7593 if Is_Itype (Etype (D))
7594 and then Ekind (Etype (D)) = E_Anonymous_Access_Type
7595 then
7596 Set_Scope (Etype (D), Current_Scope);
7597 end if;
7598 end if;
7600 Next_Entity (D);
7601 end loop;
7602 end;
7603 end Build_Derived_Record_Type;
7605 ------------------------
7606 -- Build_Derived_Type --
7607 ------------------------
7609 procedure Build_Derived_Type
7610 (N : Node_Id;
7611 Parent_Type : Entity_Id;
7612 Derived_Type : Entity_Id;
7613 Is_Completion : Boolean;
7614 Derive_Subps : Boolean := True)
7616 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7618 begin
7619 -- Set common attributes
7621 Set_Scope (Derived_Type, Current_Scope);
7623 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7624 Set_Etype (Derived_Type, Parent_Base);
7625 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
7627 Set_Size_Info (Derived_Type, Parent_Type);
7628 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
7629 Set_Convention (Derived_Type, Convention (Parent_Type));
7630 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7631 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
7633 -- The derived type inherits the representation clauses of the parent.
7634 -- However, for a private type that is completed by a derivation, there
7635 -- may be operation attributes that have been specified already (stream
7636 -- attributes and External_Tag) and those must be provided. Finally,
7637 -- if the partial view is a private extension, the representation items
7638 -- of the parent have been inherited already, and should not be chained
7639 -- twice to the derived type.
7641 if Is_Tagged_Type (Parent_Type)
7642 and then Present (First_Rep_Item (Derived_Type))
7643 then
7644 -- The existing items are either operational items or items inherited
7645 -- from a private extension declaration.
7647 declare
7648 Rep : Node_Id;
7649 -- Used to iterate over representation items of the derived type
7651 Last_Rep : Node_Id;
7652 -- Last representation item of the (non-empty) representation
7653 -- item list of the derived type.
7655 Found : Boolean := False;
7657 begin
7658 Rep := First_Rep_Item (Derived_Type);
7659 Last_Rep := Rep;
7660 while Present (Rep) loop
7661 if Rep = First_Rep_Item (Parent_Type) then
7662 Found := True;
7663 exit;
7665 else
7666 Rep := Next_Rep_Item (Rep);
7668 if Present (Rep) then
7669 Last_Rep := Rep;
7670 end if;
7671 end if;
7672 end loop;
7674 -- Here if we either encountered the parent type's first rep
7675 -- item on the derived type's rep item list (in which case
7676 -- Found is True, and we have nothing else to do), or if we
7677 -- reached the last rep item of the derived type, which is
7678 -- Last_Rep, in which case we further chain the parent type's
7679 -- rep items to those of the derived type.
7681 if not Found then
7682 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
7683 end if;
7684 end;
7686 else
7687 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
7688 end if;
7690 case Ekind (Parent_Type) is
7691 when Numeric_Kind =>
7692 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
7694 when Array_Kind =>
7695 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
7697 when E_Record_Type
7698 | E_Record_Subtype
7699 | Class_Wide_Kind =>
7700 Build_Derived_Record_Type
7701 (N, Parent_Type, Derived_Type, Derive_Subps);
7702 return;
7704 when Enumeration_Kind =>
7705 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
7707 when Access_Kind =>
7708 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
7710 when Incomplete_Or_Private_Kind =>
7711 Build_Derived_Private_Type
7712 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
7714 -- For discriminated types, the derivation includes deriving
7715 -- primitive operations. For others it is done below.
7717 if Is_Tagged_Type (Parent_Type)
7718 or else Has_Discriminants (Parent_Type)
7719 or else (Present (Full_View (Parent_Type))
7720 and then Has_Discriminants (Full_View (Parent_Type)))
7721 then
7722 return;
7723 end if;
7725 when Concurrent_Kind =>
7726 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
7728 when others =>
7729 raise Program_Error;
7730 end case;
7732 if Etype (Derived_Type) = Any_Type then
7733 return;
7734 end if;
7736 -- Set delayed freeze and then derive subprograms, we need to do this
7737 -- in this order so that derived subprograms inherit the derived freeze
7738 -- if necessary.
7740 Set_Has_Delayed_Freeze (Derived_Type);
7741 if Derive_Subps then
7742 Derive_Subprograms (Parent_Type, Derived_Type);
7743 end if;
7745 Set_Has_Primitive_Operations
7746 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
7747 end Build_Derived_Type;
7749 -----------------------
7750 -- Build_Discriminal --
7751 -----------------------
7753 procedure Build_Discriminal (Discrim : Entity_Id) is
7754 D_Minal : Entity_Id;
7755 CR_Disc : Entity_Id;
7757 begin
7758 -- A discriminal has the same name as the discriminant
7760 D_Minal :=
7761 Make_Defining_Identifier (Sloc (Discrim),
7762 Chars => Chars (Discrim));
7764 Set_Ekind (D_Minal, E_In_Parameter);
7765 Set_Mechanism (D_Minal, Default_Mechanism);
7766 Set_Etype (D_Minal, Etype (Discrim));
7767 Set_Scope (D_Minal, Current_Scope);
7769 Set_Discriminal (Discrim, D_Minal);
7770 Set_Discriminal_Link (D_Minal, Discrim);
7772 -- For task types, build at once the discriminants of the corresponding
7773 -- record, which are needed if discriminants are used in entry defaults
7774 -- and in family bounds.
7776 if Is_Concurrent_Type (Current_Scope)
7777 or else Is_Limited_Type (Current_Scope)
7778 then
7779 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
7781 Set_Ekind (CR_Disc, E_In_Parameter);
7782 Set_Mechanism (CR_Disc, Default_Mechanism);
7783 Set_Etype (CR_Disc, Etype (Discrim));
7784 Set_Scope (CR_Disc, Current_Scope);
7785 Set_Discriminal_Link (CR_Disc, Discrim);
7786 Set_CR_Discriminant (Discrim, CR_Disc);
7787 end if;
7788 end Build_Discriminal;
7790 ------------------------------------
7791 -- Build_Discriminant_Constraints --
7792 ------------------------------------
7794 function Build_Discriminant_Constraints
7795 (T : Entity_Id;
7796 Def : Node_Id;
7797 Derived_Def : Boolean := False) return Elist_Id
7799 C : constant Node_Id := Constraint (Def);
7800 Nb_Discr : constant Nat := Number_Discriminants (T);
7802 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
7803 -- Saves the expression corresponding to a given discriminant in T
7805 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
7806 -- Return the Position number within array Discr_Expr of a discriminant
7807 -- D within the discriminant list of the discriminated type T.
7809 ------------------
7810 -- Pos_Of_Discr --
7811 ------------------
7813 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
7814 Disc : Entity_Id;
7816 begin
7817 Disc := First_Discriminant (T);
7818 for J in Discr_Expr'Range loop
7819 if Disc = D then
7820 return J;
7821 end if;
7823 Next_Discriminant (Disc);
7824 end loop;
7826 -- Note: Since this function is called on discriminants that are
7827 -- known to belong to the discriminated type, falling through the
7828 -- loop with no match signals an internal compiler error.
7830 raise Program_Error;
7831 end Pos_Of_Discr;
7833 -- Declarations local to Build_Discriminant_Constraints
7835 Discr : Entity_Id;
7836 E : Entity_Id;
7837 Elist : constant Elist_Id := New_Elmt_List;
7839 Constr : Node_Id;
7840 Expr : Node_Id;
7841 Id : Node_Id;
7842 Position : Nat;
7843 Found : Boolean;
7845 Discrim_Present : Boolean := False;
7847 -- Start of processing for Build_Discriminant_Constraints
7849 begin
7850 -- The following loop will process positional associations only.
7851 -- For a positional association, the (single) discriminant is
7852 -- implicitly specified by position, in textual order (RM 3.7.2).
7854 Discr := First_Discriminant (T);
7855 Constr := First (Constraints (C));
7856 for D in Discr_Expr'Range loop
7857 exit when Nkind (Constr) = N_Discriminant_Association;
7859 if No (Constr) then
7860 Error_Msg_N ("too few discriminants given in constraint", C);
7861 return New_Elmt_List;
7863 elsif Nkind (Constr) = N_Range
7864 or else (Nkind (Constr) = N_Attribute_Reference
7865 and then
7866 Attribute_Name (Constr) = Name_Range)
7867 then
7868 Error_Msg_N
7869 ("a range is not a valid discriminant constraint", Constr);
7870 Discr_Expr (D) := Error;
7872 else
7873 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
7874 Discr_Expr (D) := Constr;
7875 end if;
7877 Next_Discriminant (Discr);
7878 Next (Constr);
7879 end loop;
7881 if No (Discr) and then Present (Constr) then
7882 Error_Msg_N ("too many discriminants given in constraint", Constr);
7883 return New_Elmt_List;
7884 end if;
7886 -- Named associations can be given in any order, but if both positional
7887 -- and named associations are used in the same discriminant constraint,
7888 -- then positional associations must occur first, at their normal
7889 -- position. Hence once a named association is used, the rest of the
7890 -- discriminant constraint must use only named associations.
7892 while Present (Constr) loop
7894 -- Positional association forbidden after a named association
7896 if Nkind (Constr) /= N_Discriminant_Association then
7897 Error_Msg_N ("positional association follows named one", Constr);
7898 return New_Elmt_List;
7900 -- Otherwise it is a named association
7902 else
7903 -- E records the type of the discriminants in the named
7904 -- association. All the discriminants specified in the same name
7905 -- association must have the same type.
7907 E := Empty;
7909 -- Search the list of discriminants in T to see if the simple name
7910 -- given in the constraint matches any of them.
7912 Id := First (Selector_Names (Constr));
7913 while Present (Id) loop
7914 Found := False;
7916 -- If Original_Discriminant is present, we are processing a
7917 -- generic instantiation and this is an instance node. We need
7918 -- to find the name of the corresponding discriminant in the
7919 -- actual record type T and not the name of the discriminant in
7920 -- the generic formal. Example:
7922 -- generic
7923 -- type G (D : int) is private;
7924 -- package P is
7925 -- subtype W is G (D => 1);
7926 -- end package;
7927 -- type Rec (X : int) is record ... end record;
7928 -- package Q is new P (G => Rec);
7930 -- At the point of the instantiation, formal type G is Rec
7931 -- and therefore when reanalyzing "subtype W is G (D => 1);"
7932 -- which really looks like "subtype W is Rec (D => 1);" at
7933 -- the point of instantiation, we want to find the discriminant
7934 -- that corresponds to D in Rec, i.e. X.
7936 if Present (Original_Discriminant (Id)) then
7937 Discr := Find_Corresponding_Discriminant (Id, T);
7938 Found := True;
7940 else
7941 Discr := First_Discriminant (T);
7942 while Present (Discr) loop
7943 if Chars (Discr) = Chars (Id) then
7944 Found := True;
7945 exit;
7946 end if;
7948 Next_Discriminant (Discr);
7949 end loop;
7951 if not Found then
7952 Error_Msg_N ("& does not match any discriminant", Id);
7953 return New_Elmt_List;
7955 -- The following is only useful for the benefit of generic
7956 -- instances but it does not interfere with other
7957 -- processing for the non-generic case so we do it in all
7958 -- cases (for generics this statement is executed when
7959 -- processing the generic definition, see comment at the
7960 -- beginning of this if statement).
7962 else
7963 Set_Original_Discriminant (Id, Discr);
7964 end if;
7965 end if;
7967 Position := Pos_Of_Discr (T, Discr);
7969 if Present (Discr_Expr (Position)) then
7970 Error_Msg_N ("duplicate constraint for discriminant&", Id);
7972 else
7973 -- Each discriminant specified in the same named association
7974 -- must be associated with a separate copy of the
7975 -- corresponding expression.
7977 if Present (Next (Id)) then
7978 Expr := New_Copy_Tree (Expression (Constr));
7979 Set_Parent (Expr, Parent (Expression (Constr)));
7980 else
7981 Expr := Expression (Constr);
7982 end if;
7984 Discr_Expr (Position) := Expr;
7985 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
7986 end if;
7988 -- A discriminant association with more than one discriminant
7989 -- name is only allowed if the named discriminants are all of
7990 -- the same type (RM 3.7.1(8)).
7992 if E = Empty then
7993 E := Base_Type (Etype (Discr));
7995 elsif Base_Type (Etype (Discr)) /= E then
7996 Error_Msg_N
7997 ("all discriminants in an association " &
7998 "must have the same type", Id);
7999 end if;
8001 Next (Id);
8002 end loop;
8003 end if;
8005 Next (Constr);
8006 end loop;
8008 -- A discriminant constraint must provide exactly one value for each
8009 -- discriminant of the type (RM 3.7.1(8)).
8011 for J in Discr_Expr'Range loop
8012 if No (Discr_Expr (J)) then
8013 Error_Msg_N ("too few discriminants given in constraint", C);
8014 return New_Elmt_List;
8015 end if;
8016 end loop;
8018 -- Determine if there are discriminant expressions in the constraint
8020 for J in Discr_Expr'Range loop
8021 if Denotes_Discriminant
8022 (Discr_Expr (J), Check_Concurrent => True)
8023 then
8024 Discrim_Present := True;
8025 end if;
8026 end loop;
8028 -- Build an element list consisting of the expressions given in the
8029 -- discriminant constraint and apply the appropriate checks. The list
8030 -- is constructed after resolving any named discriminant associations
8031 -- and therefore the expressions appear in the textual order of the
8032 -- discriminants.
8034 Discr := First_Discriminant (T);
8035 for J in Discr_Expr'Range loop
8036 if Discr_Expr (J) /= Error then
8037 Append_Elmt (Discr_Expr (J), Elist);
8039 -- If any of the discriminant constraints is given by a
8040 -- discriminant and we are in a derived type declaration we
8041 -- have a discriminant renaming. Establish link between new
8042 -- and old discriminant.
8044 if Denotes_Discriminant (Discr_Expr (J)) then
8045 if Derived_Def then
8046 Set_Corresponding_Discriminant
8047 (Entity (Discr_Expr (J)), Discr);
8048 end if;
8050 -- Force the evaluation of non-discriminant expressions.
8051 -- If we have found a discriminant in the constraint 3.4(26)
8052 -- and 3.8(18) demand that no range checks are performed are
8053 -- after evaluation. If the constraint is for a component
8054 -- definition that has a per-object constraint, expressions are
8055 -- evaluated but not checked either. In all other cases perform
8056 -- a range check.
8058 else
8059 if Discrim_Present then
8060 null;
8062 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8063 and then
8064 Has_Per_Object_Constraint
8065 (Defining_Identifier (Parent (Parent (Def))))
8066 then
8067 null;
8069 elsif Is_Access_Type (Etype (Discr)) then
8070 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8072 else
8073 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8074 end if;
8076 Force_Evaluation (Discr_Expr (J));
8077 end if;
8079 -- Check that the designated type of an access discriminant's
8080 -- expression is not a class-wide type unless the discriminant's
8081 -- designated type is also class-wide.
8083 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8084 and then not Is_Class_Wide_Type
8085 (Designated_Type (Etype (Discr)))
8086 and then Etype (Discr_Expr (J)) /= Any_Type
8087 and then Is_Class_Wide_Type
8088 (Designated_Type (Etype (Discr_Expr (J))))
8089 then
8090 Wrong_Type (Discr_Expr (J), Etype (Discr));
8092 elsif Is_Access_Type (Etype (Discr))
8093 and then not Is_Access_Constant (Etype (Discr))
8094 and then Is_Access_Type (Etype (Discr_Expr (J)))
8095 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8096 then
8097 Error_Msg_NE
8098 ("constraint for discriminant& must be access to variable",
8099 Def, Discr);
8100 end if;
8101 end if;
8103 Next_Discriminant (Discr);
8104 end loop;
8106 return Elist;
8107 end Build_Discriminant_Constraints;
8109 ---------------------------------
8110 -- Build_Discriminated_Subtype --
8111 ---------------------------------
8113 procedure Build_Discriminated_Subtype
8114 (T : Entity_Id;
8115 Def_Id : Entity_Id;
8116 Elist : Elist_Id;
8117 Related_Nod : Node_Id;
8118 For_Access : Boolean := False)
8120 Has_Discrs : constant Boolean := Has_Discriminants (T);
8121 Constrained : constant Boolean :=
8122 (Has_Discrs
8123 and then not Is_Empty_Elmt_List (Elist)
8124 and then not Is_Class_Wide_Type (T))
8125 or else Is_Constrained (T);
8127 begin
8128 if Ekind (T) = E_Record_Type then
8129 if For_Access then
8130 Set_Ekind (Def_Id, E_Private_Subtype);
8131 Set_Is_For_Access_Subtype (Def_Id, True);
8132 else
8133 Set_Ekind (Def_Id, E_Record_Subtype);
8134 end if;
8136 -- Inherit preelaboration flag from base, for types for which it
8137 -- may have been set: records, private types, protected types.
8139 Set_Known_To_Have_Preelab_Init
8140 (Def_Id, Known_To_Have_Preelab_Init (T));
8142 elsif Ekind (T) = E_Task_Type then
8143 Set_Ekind (Def_Id, E_Task_Subtype);
8145 elsif Ekind (T) = E_Protected_Type then
8146 Set_Ekind (Def_Id, E_Protected_Subtype);
8147 Set_Known_To_Have_Preelab_Init
8148 (Def_Id, Known_To_Have_Preelab_Init (T));
8150 elsif Is_Private_Type (T) then
8151 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8152 Set_Known_To_Have_Preelab_Init
8153 (Def_Id, Known_To_Have_Preelab_Init (T));
8155 elsif Is_Class_Wide_Type (T) then
8156 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
8158 else
8159 -- Incomplete type. Attach subtype to list of dependents, to be
8160 -- completed with full view of parent type, unless is it the
8161 -- designated subtype of a record component within an init_proc.
8162 -- This last case arises for a component of an access type whose
8163 -- designated type is incomplete (e.g. a Taft Amendment type).
8164 -- The designated subtype is within an inner scope, and needs no
8165 -- elaboration, because only the access type is needed in the
8166 -- initialization procedure.
8168 Set_Ekind (Def_Id, Ekind (T));
8170 if For_Access and then Within_Init_Proc then
8171 null;
8172 else
8173 Append_Elmt (Def_Id, Private_Dependents (T));
8174 end if;
8175 end if;
8177 Set_Etype (Def_Id, T);
8178 Init_Size_Align (Def_Id);
8179 Set_Has_Discriminants (Def_Id, Has_Discrs);
8180 Set_Is_Constrained (Def_Id, Constrained);
8182 Set_First_Entity (Def_Id, First_Entity (T));
8183 Set_Last_Entity (Def_Id, Last_Entity (T));
8185 -- If the subtype is the completion of a private declaration, there may
8186 -- have been representation clauses for the partial view, and they must
8187 -- be preserved. Build_Derived_Type chains the inherited clauses with
8188 -- the ones appearing on the extension. If this comes from a subtype
8189 -- declaration, all clauses are inherited.
8191 if No (First_Rep_Item (Def_Id)) then
8192 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8193 end if;
8195 if Is_Tagged_Type (T) then
8196 Set_Is_Tagged_Type (Def_Id);
8197 Make_Class_Wide_Type (Def_Id);
8198 end if;
8200 Set_Stored_Constraint (Def_Id, No_Elist);
8202 if Has_Discrs then
8203 Set_Discriminant_Constraint (Def_Id, Elist);
8204 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
8205 end if;
8207 if Is_Tagged_Type (T) then
8209 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8210 -- concurrent record type (which has the list of primitive
8211 -- operations).
8213 if Ada_Version >= Ada_05
8214 and then Is_Concurrent_Type (T)
8215 then
8216 Set_Corresponding_Record_Type (Def_Id,
8217 Corresponding_Record_Type (T));
8218 else
8219 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
8220 end if;
8222 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
8223 end if;
8225 -- Subtypes introduced by component declarations do not need to be
8226 -- marked as delayed, and do not get freeze nodes, because the semantics
8227 -- verifies that the parents of the subtypes are frozen before the
8228 -- enclosing record is frozen.
8230 if not Is_Type (Scope (Def_Id)) then
8231 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8233 if Is_Private_Type (T)
8234 and then Present (Full_View (T))
8235 then
8236 Conditional_Delay (Def_Id, Full_View (T));
8237 else
8238 Conditional_Delay (Def_Id, T);
8239 end if;
8240 end if;
8242 if Is_Record_Type (T) then
8243 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
8245 if Has_Discrs
8246 and then not Is_Empty_Elmt_List (Elist)
8247 and then not For_Access
8248 then
8249 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
8250 elsif not For_Access then
8251 Set_Cloned_Subtype (Def_Id, T);
8252 end if;
8253 end if;
8254 end Build_Discriminated_Subtype;
8256 ---------------------------
8257 -- Build_Itype_Reference --
8258 ---------------------------
8260 procedure Build_Itype_Reference
8261 (Ityp : Entity_Id;
8262 Nod : Node_Id)
8264 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
8265 begin
8266 Set_Itype (IR, Ityp);
8267 Insert_After (Nod, IR);
8268 end Build_Itype_Reference;
8270 ------------------------
8271 -- Build_Scalar_Bound --
8272 ------------------------
8274 function Build_Scalar_Bound
8275 (Bound : Node_Id;
8276 Par_T : Entity_Id;
8277 Der_T : Entity_Id) return Node_Id
8279 New_Bound : Entity_Id;
8281 begin
8282 -- Note: not clear why this is needed, how can the original bound
8283 -- be unanalyzed at this point? and if it is, what business do we
8284 -- have messing around with it? and why is the base type of the
8285 -- parent type the right type for the resolution. It probably is
8286 -- not! It is OK for the new bound we are creating, but not for
8287 -- the old one??? Still if it never happens, no problem!
8289 Analyze_And_Resolve (Bound, Base_Type (Par_T));
8291 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
8292 New_Bound := New_Copy (Bound);
8293 Set_Etype (New_Bound, Der_T);
8294 Set_Analyzed (New_Bound);
8296 elsif Is_Entity_Name (Bound) then
8297 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
8299 -- The following is almost certainly wrong. What business do we have
8300 -- relocating a node (Bound) that is presumably still attached to
8301 -- the tree elsewhere???
8303 else
8304 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
8305 end if;
8307 Set_Etype (New_Bound, Der_T);
8308 return New_Bound;
8309 end Build_Scalar_Bound;
8311 --------------------------------
8312 -- Build_Underlying_Full_View --
8313 --------------------------------
8315 procedure Build_Underlying_Full_View
8316 (N : Node_Id;
8317 Typ : Entity_Id;
8318 Par : Entity_Id)
8320 Loc : constant Source_Ptr := Sloc (N);
8321 Subt : constant Entity_Id :=
8322 Make_Defining_Identifier
8323 (Loc, New_External_Name (Chars (Typ), 'S'));
8325 Constr : Node_Id;
8326 Indic : Node_Id;
8327 C : Node_Id;
8328 Id : Node_Id;
8330 procedure Set_Discriminant_Name (Id : Node_Id);
8331 -- If the derived type has discriminants, they may rename discriminants
8332 -- of the parent. When building the full view of the parent, we need to
8333 -- recover the names of the original discriminants if the constraint is
8334 -- given by named associations.
8336 ---------------------------
8337 -- Set_Discriminant_Name --
8338 ---------------------------
8340 procedure Set_Discriminant_Name (Id : Node_Id) is
8341 Disc : Entity_Id;
8343 begin
8344 Set_Original_Discriminant (Id, Empty);
8346 if Has_Discriminants (Typ) then
8347 Disc := First_Discriminant (Typ);
8348 while Present (Disc) loop
8349 if Chars (Disc) = Chars (Id)
8350 and then Present (Corresponding_Discriminant (Disc))
8351 then
8352 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
8353 end if;
8354 Next_Discriminant (Disc);
8355 end loop;
8356 end if;
8357 end Set_Discriminant_Name;
8359 -- Start of processing for Build_Underlying_Full_View
8361 begin
8362 if Nkind (N) = N_Full_Type_Declaration then
8363 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
8365 elsif Nkind (N) = N_Subtype_Declaration then
8366 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
8368 elsif Nkind (N) = N_Component_Declaration then
8369 Constr :=
8370 New_Copy_Tree
8371 (Constraint (Subtype_Indication (Component_Definition (N))));
8373 else
8374 raise Program_Error;
8375 end if;
8377 C := First (Constraints (Constr));
8378 while Present (C) loop
8379 if Nkind (C) = N_Discriminant_Association then
8380 Id := First (Selector_Names (C));
8381 while Present (Id) loop
8382 Set_Discriminant_Name (Id);
8383 Next (Id);
8384 end loop;
8385 end if;
8387 Next (C);
8388 end loop;
8390 Indic :=
8391 Make_Subtype_Declaration (Loc,
8392 Defining_Identifier => Subt,
8393 Subtype_Indication =>
8394 Make_Subtype_Indication (Loc,
8395 Subtype_Mark => New_Reference_To (Par, Loc),
8396 Constraint => New_Copy_Tree (Constr)));
8398 -- If this is a component subtype for an outer itype, it is not
8399 -- a list member, so simply set the parent link for analysis: if
8400 -- the enclosing type does not need to be in a declarative list,
8401 -- neither do the components.
8403 if Is_List_Member (N)
8404 and then Nkind (N) /= N_Component_Declaration
8405 then
8406 Insert_Before (N, Indic);
8407 else
8408 Set_Parent (Indic, Parent (N));
8409 end if;
8411 Analyze (Indic);
8412 Set_Underlying_Full_View (Typ, Full_View (Subt));
8413 end Build_Underlying_Full_View;
8415 -------------------------------
8416 -- Check_Abstract_Overriding --
8417 -------------------------------
8419 procedure Check_Abstract_Overriding (T : Entity_Id) is
8420 Alias_Subp : Entity_Id;
8421 Elmt : Elmt_Id;
8422 Op_List : Elist_Id;
8423 Subp : Entity_Id;
8424 Type_Def : Node_Id;
8426 begin
8427 Op_List := Primitive_Operations (T);
8429 -- Loop to check primitive operations
8431 Elmt := First_Elmt (Op_List);
8432 while Present (Elmt) loop
8433 Subp := Node (Elmt);
8434 Alias_Subp := Alias (Subp);
8436 -- Inherited subprograms are identified by the fact that they do not
8437 -- come from source, and the associated source location is the
8438 -- location of the first subtype of the derived type.
8440 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
8441 -- subprograms that "require overriding".
8443 -- Special exception, do not complain about failure to override the
8444 -- stream routines _Input and _Output, as well as the primitive
8445 -- operations used in dispatching selects since we always provide
8446 -- automatic overridings for these subprograms.
8448 -- Also ignore this rule for convention CIL since .NET libraries
8449 -- do bizarre things with interfaces???
8451 -- The partial view of T may have been a private extension, for
8452 -- which inherited functions dispatching on result are abstract.
8453 -- If the full view is a null extension, there is no need for
8454 -- overriding in Ada2005, but wrappers need to be built for them
8455 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
8457 if Is_Null_Extension (T)
8458 and then Has_Controlling_Result (Subp)
8459 and then Ada_Version >= Ada_05
8460 and then Present (Alias_Subp)
8461 and then not Comes_From_Source (Subp)
8462 and then not Is_Abstract_Subprogram (Alias_Subp)
8463 and then not Is_Access_Type (Etype (Subp))
8464 then
8465 null;
8467 -- Ada 2005 (AI-251): Internal entities of interfaces need no
8468 -- processing because this check is done with the aliased
8469 -- entity
8471 elsif Present (Interface_Alias (Subp)) then
8472 null;
8474 elsif (Is_Abstract_Subprogram (Subp)
8475 or else Requires_Overriding (Subp)
8476 or else
8477 (Has_Controlling_Result (Subp)
8478 and then Present (Alias_Subp)
8479 and then not Comes_From_Source (Subp)
8480 and then Sloc (Subp) = Sloc (First_Subtype (T))))
8481 and then not Is_TSS (Subp, TSS_Stream_Input)
8482 and then not Is_TSS (Subp, TSS_Stream_Output)
8483 and then not Is_Abstract_Type (T)
8484 and then Convention (T) /= Convention_CIL
8485 and then not Is_Predefined_Interface_Primitive (Subp)
8487 -- Ada 2005 (AI-251): Do not consider hidden entities associated
8488 -- with abstract interface types because the check will be done
8489 -- with the aliased entity (otherwise we generate a duplicated
8490 -- error message).
8492 and then not Present (Interface_Alias (Subp))
8493 then
8494 if Present (Alias_Subp) then
8496 -- Only perform the check for a derived subprogram when the
8497 -- type has an explicit record extension. This avoids incorrect
8498 -- flagging of abstract subprograms for the case of a type
8499 -- without an extension that is derived from a formal type
8500 -- with a tagged actual (can occur within a private part).
8502 -- Ada 2005 (AI-391): In the case of an inherited function with
8503 -- a controlling result of the type, the rule does not apply if
8504 -- the type is a null extension (unless the parent function
8505 -- itself is abstract, in which case the function must still be
8506 -- be overridden). The expander will generate an overriding
8507 -- wrapper function calling the parent subprogram (see
8508 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
8510 Type_Def := Type_Definition (Parent (T));
8512 if Nkind (Type_Def) = N_Derived_Type_Definition
8513 and then Present (Record_Extension_Part (Type_Def))
8514 and then
8515 (Ada_Version < Ada_05
8516 or else not Is_Null_Extension (T)
8517 or else Ekind (Subp) = E_Procedure
8518 or else not Has_Controlling_Result (Subp)
8519 or else Is_Abstract_Subprogram (Alias_Subp)
8520 or else Requires_Overriding (Subp)
8521 or else Is_Access_Type (Etype (Subp)))
8522 then
8523 -- Avoid reporting error in case of abstract predefined
8524 -- primitive inherited from interface type because the
8525 -- body of internally generated predefined primitives
8526 -- of tagged types are generated later by Freeze_Type
8528 if Is_Interface (Root_Type (T))
8529 and then Is_Abstract_Subprogram (Subp)
8530 and then Is_Predefined_Dispatching_Operation (Subp)
8531 and then not Comes_From_Source (Ultimate_Alias (Subp))
8532 then
8533 null;
8535 else
8536 Error_Msg_NE
8537 ("type must be declared abstract or & overridden",
8538 T, Subp);
8540 -- Traverse the whole chain of aliased subprograms to
8541 -- complete the error notification. This is especially
8542 -- useful for traceability of the chain of entities when
8543 -- the subprogram corresponds with an interface
8544 -- subprogram (which may be defined in another package).
8546 if Present (Alias_Subp) then
8547 declare
8548 E : Entity_Id;
8550 begin
8551 E := Subp;
8552 while Present (Alias (E)) loop
8553 Error_Msg_Sloc := Sloc (E);
8554 Error_Msg_NE
8555 ("\& has been inherited #", T, Subp);
8556 E := Alias (E);
8557 end loop;
8559 Error_Msg_Sloc := Sloc (E);
8560 Error_Msg_NE
8561 ("\& has been inherited from subprogram #",
8562 T, Subp);
8563 end;
8564 end if;
8565 end if;
8567 -- Ada 2005 (AI-345): Protected or task type implementing
8568 -- abstract interfaces.
8570 elsif Is_Concurrent_Record_Type (T)
8571 and then Present (Interfaces (T))
8572 then
8573 -- The controlling formal of Subp must be of mode "out",
8574 -- "in out" or an access-to-variable to be overridden.
8576 -- Error message below needs rewording (remember comma
8577 -- in -gnatj mode) ???
8579 if Ekind (First_Formal (Subp)) = E_In_Parameter
8580 and then Ekind (Subp) /= E_Function
8581 then
8582 if not Is_Predefined_Dispatching_Operation (Subp) then
8583 Error_Msg_NE
8584 ("first formal of & must be of mode `OUT`, " &
8585 "`IN OUT` or access-to-variable", T, Subp);
8586 Error_Msg_N
8587 ("\to be overridden by protected procedure or " &
8588 "entry (RM 9.4(11.9/2))", T);
8589 end if;
8591 -- Some other kind of overriding failure
8593 else
8594 Error_Msg_NE
8595 ("interface subprogram & must be overridden",
8596 T, Subp);
8598 -- Examine primitive operations of synchronized type,
8599 -- to find homonyms that have the wrong profile.
8601 declare
8602 Prim : Entity_Id;
8604 begin
8605 Prim :=
8606 First_Entity (Corresponding_Concurrent_Type (T));
8607 while Present (Prim) loop
8608 if Chars (Prim) = Chars (Subp) then
8609 Error_Msg_NE
8610 ("profile is not type conformant with "
8611 & "prefixed view profile of "
8612 & "inherited operation&", Prim, Subp);
8613 end if;
8615 Next_Entity (Prim);
8616 end loop;
8617 end;
8618 end if;
8619 end if;
8621 else
8622 Error_Msg_Node_2 := T;
8623 Error_Msg_N
8624 ("abstract subprogram& not allowed for type&", Subp);
8626 -- Also post unconditional warning on the type (unconditional
8627 -- so that if there are more than one of these cases, we get
8628 -- them all, and not just the first one).
8630 Error_Msg_Node_2 := Subp;
8631 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
8632 end if;
8633 end if;
8635 -- Ada 2005 (AI05-0030): Inspect hidden subprograms which provide
8636 -- the mapping between interface and implementing type primitives.
8637 -- If the interface alias is marked as Implemented_By_Entry, the
8638 -- alias must be an entry wrapper.
8640 if Ada_Version >= Ada_05
8641 and then Is_Hidden (Subp)
8642 and then Present (Interface_Alias (Subp))
8643 and then Implemented_By_Entry (Interface_Alias (Subp))
8644 and then Present (Alias_Subp)
8645 and then
8646 (not Is_Primitive_Wrapper (Alias_Subp)
8647 or else Ekind (Wrapped_Entity (Alias_Subp)) /= E_Entry)
8648 then
8649 declare
8650 Error_Ent : Entity_Id := T;
8652 begin
8653 if Is_Concurrent_Record_Type (Error_Ent) then
8654 Error_Ent := Corresponding_Concurrent_Type (Error_Ent);
8655 end if;
8657 Error_Msg_Node_2 := Interface_Alias (Subp);
8658 Error_Msg_NE
8659 ("type & must implement abstract subprogram & with an entry",
8660 Error_Ent, Error_Ent);
8661 end;
8662 end if;
8664 Next_Elmt (Elmt);
8665 end loop;
8666 end Check_Abstract_Overriding;
8668 ------------------------------------------------
8669 -- Check_Access_Discriminant_Requires_Limited --
8670 ------------------------------------------------
8672 procedure Check_Access_Discriminant_Requires_Limited
8673 (D : Node_Id;
8674 Loc : Node_Id)
8676 begin
8677 -- A discriminant_specification for an access discriminant shall appear
8678 -- only in the declaration for a task or protected type, or for a type
8679 -- with the reserved word 'limited' in its definition or in one of its
8680 -- ancestors. (RM 3.7(10))
8682 if Nkind (Discriminant_Type (D)) = N_Access_Definition
8683 and then not Is_Concurrent_Type (Current_Scope)
8684 and then not Is_Concurrent_Record_Type (Current_Scope)
8685 and then not Is_Limited_Record (Current_Scope)
8686 and then Ekind (Current_Scope) /= E_Limited_Private_Type
8687 then
8688 Error_Msg_N
8689 ("access discriminants allowed only for limited types", Loc);
8690 end if;
8691 end Check_Access_Discriminant_Requires_Limited;
8693 -----------------------------------
8694 -- Check_Aliased_Component_Types --
8695 -----------------------------------
8697 procedure Check_Aliased_Component_Types (T : Entity_Id) is
8698 C : Entity_Id;
8700 begin
8701 -- ??? Also need to check components of record extensions, but not
8702 -- components of protected types (which are always limited).
8704 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
8705 -- types to be unconstrained. This is safe because it is illegal to
8706 -- create access subtypes to such types with explicit discriminant
8707 -- constraints.
8709 if not Is_Limited_Type (T) then
8710 if Ekind (T) = E_Record_Type then
8711 C := First_Component (T);
8712 while Present (C) loop
8713 if Is_Aliased (C)
8714 and then Has_Discriminants (Etype (C))
8715 and then not Is_Constrained (Etype (C))
8716 and then not In_Instance_Body
8717 and then Ada_Version < Ada_05
8718 then
8719 Error_Msg_N
8720 ("aliased component must be constrained (RM 3.6(11))",
8722 end if;
8724 Next_Component (C);
8725 end loop;
8727 elsif Ekind (T) = E_Array_Type then
8728 if Has_Aliased_Components (T)
8729 and then Has_Discriminants (Component_Type (T))
8730 and then not Is_Constrained (Component_Type (T))
8731 and then not In_Instance_Body
8732 and then Ada_Version < Ada_05
8733 then
8734 Error_Msg_N
8735 ("aliased component type must be constrained (RM 3.6(11))",
8737 end if;
8738 end if;
8739 end if;
8740 end Check_Aliased_Component_Types;
8742 ----------------------
8743 -- Check_Completion --
8744 ----------------------
8746 procedure Check_Completion (Body_Id : Node_Id := Empty) is
8747 E : Entity_Id;
8749 procedure Post_Error;
8750 -- Post error message for lack of completion for entity E
8752 ----------------
8753 -- Post_Error --
8754 ----------------
8756 procedure Post_Error is
8758 procedure Missing_Body;
8759 -- Output missing body message
8761 ------------------
8762 -- Missing_Body --
8763 ------------------
8765 procedure Missing_Body is
8766 begin
8767 -- Spec is in same unit, so we can post on spec
8769 if In_Same_Source_Unit (Body_Id, E) then
8770 Error_Msg_N ("missing body for &", E);
8772 -- Spec is in a separate unit, so we have to post on the body
8774 else
8775 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
8776 end if;
8777 end Missing_Body;
8779 -- Start of processing for Post_Error
8781 begin
8782 if not Comes_From_Source (E) then
8784 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
8785 -- It may be an anonymous protected type created for a
8786 -- single variable. Post error on variable, if present.
8788 declare
8789 Var : Entity_Id;
8791 begin
8792 Var := First_Entity (Current_Scope);
8793 while Present (Var) loop
8794 exit when Etype (Var) = E
8795 and then Comes_From_Source (Var);
8797 Next_Entity (Var);
8798 end loop;
8800 if Present (Var) then
8801 E := Var;
8802 end if;
8803 end;
8804 end if;
8805 end if;
8807 -- If a generated entity has no completion, then either previous
8808 -- semantic errors have disabled the expansion phase, or else we had
8809 -- missing subunits, or else we are compiling without expansion,
8810 -- or else something is very wrong.
8812 if not Comes_From_Source (E) then
8813 pragma Assert
8814 (Serious_Errors_Detected > 0
8815 or else Configurable_Run_Time_Violations > 0
8816 or else Subunits_Missing
8817 or else not Expander_Active);
8818 return;
8820 -- Here for source entity
8822 else
8823 -- Here if no body to post the error message, so we post the error
8824 -- on the declaration that has no completion. This is not really
8825 -- the right place to post it, think about this later ???
8827 if No (Body_Id) then
8828 if Is_Type (E) then
8829 Error_Msg_NE
8830 ("missing full declaration for }", Parent (E), E);
8831 else
8832 Error_Msg_NE ("missing body for &", Parent (E), E);
8833 end if;
8835 -- Package body has no completion for a declaration that appears
8836 -- in the corresponding spec. Post error on the body, with a
8837 -- reference to the non-completed declaration.
8839 else
8840 Error_Msg_Sloc := Sloc (E);
8842 if Is_Type (E) then
8843 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
8845 elsif Is_Overloadable (E)
8846 and then Current_Entity_In_Scope (E) /= E
8847 then
8848 -- It may be that the completion is mistyped and appears as
8849 -- a distinct overloading of the entity.
8851 declare
8852 Candidate : constant Entity_Id :=
8853 Current_Entity_In_Scope (E);
8854 Decl : constant Node_Id :=
8855 Unit_Declaration_Node (Candidate);
8857 begin
8858 if Is_Overloadable (Candidate)
8859 and then Ekind (Candidate) = Ekind (E)
8860 and then Nkind (Decl) = N_Subprogram_Body
8861 and then Acts_As_Spec (Decl)
8862 then
8863 Check_Type_Conformant (Candidate, E);
8865 else
8866 Missing_Body;
8867 end if;
8868 end;
8870 else
8871 Missing_Body;
8872 end if;
8873 end if;
8874 end if;
8875 end Post_Error;
8877 -- Start of processing for Check_Completion
8879 begin
8880 E := First_Entity (Current_Scope);
8881 while Present (E) loop
8882 if Is_Intrinsic_Subprogram (E) then
8883 null;
8885 -- The following situation requires special handling: a child unit
8886 -- that appears in the context clause of the body of its parent:
8888 -- procedure Parent.Child (...);
8890 -- with Parent.Child;
8891 -- package body Parent is
8893 -- Here Parent.Child appears as a local entity, but should not be
8894 -- flagged as requiring completion, because it is a compilation
8895 -- unit.
8897 -- Ignore missing completion for a subprogram that does not come from
8898 -- source (including the _Call primitive operation of RAS types,
8899 -- which has to have the flag Comes_From_Source for other purposes):
8900 -- we assume that the expander will provide the missing completion.
8901 -- In case of previous errors, other expansion actions that provide
8902 -- bodies for null procedures with not be invoked, so inhibit message
8903 -- in those cases.
8904 -- Note that E_Operator is not in the list that follows, because
8905 -- this kind is reserved for predefined operators, that are
8906 -- intrinsic and do not need completion.
8908 elsif Ekind (E) = E_Function
8909 or else Ekind (E) = E_Procedure
8910 or else Ekind (E) = E_Generic_Function
8911 or else Ekind (E) = E_Generic_Procedure
8912 then
8913 if Has_Completion (E) then
8914 null;
8916 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
8917 null;
8919 elsif Is_Subprogram (E)
8920 and then (not Comes_From_Source (E)
8921 or else Chars (E) = Name_uCall)
8922 then
8923 null;
8925 elsif
8926 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8927 then
8928 null;
8930 elsif Nkind (Parent (E)) = N_Procedure_Specification
8931 and then Null_Present (Parent (E))
8932 and then Serious_Errors_Detected > 0
8933 then
8934 null;
8936 else
8937 Post_Error;
8938 end if;
8940 elsif Is_Entry (E) then
8941 if not Has_Completion (E) and then
8942 (Ekind (Scope (E)) = E_Protected_Object
8943 or else Ekind (Scope (E)) = E_Protected_Type)
8944 then
8945 Post_Error;
8946 end if;
8948 elsif Is_Package_Or_Generic_Package (E) then
8949 if Unit_Requires_Body (E) then
8950 if not Has_Completion (E)
8951 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
8952 N_Compilation_Unit
8953 then
8954 Post_Error;
8955 end if;
8957 elsif not Is_Child_Unit (E) then
8958 May_Need_Implicit_Body (E);
8959 end if;
8961 elsif Ekind (E) = E_Incomplete_Type
8962 and then No (Underlying_Type (E))
8963 then
8964 Post_Error;
8966 elsif (Ekind (E) = E_Task_Type or else
8967 Ekind (E) = E_Protected_Type)
8968 and then not Has_Completion (E)
8969 then
8970 Post_Error;
8972 -- A single task declared in the current scope is a constant, verify
8973 -- that the body of its anonymous type is in the same scope. If the
8974 -- task is defined elsewhere, this may be a renaming declaration for
8975 -- which no completion is needed.
8977 elsif Ekind (E) = E_Constant
8978 and then Ekind (Etype (E)) = E_Task_Type
8979 and then not Has_Completion (Etype (E))
8980 and then Scope (Etype (E)) = Current_Scope
8981 then
8982 Post_Error;
8984 elsif Ekind (E) = E_Protected_Object
8985 and then not Has_Completion (Etype (E))
8986 then
8987 Post_Error;
8989 elsif Ekind (E) = E_Record_Type then
8990 if Is_Tagged_Type (E) then
8991 Check_Abstract_Overriding (E);
8992 Check_Conventions (E);
8993 end if;
8995 Check_Aliased_Component_Types (E);
8997 elsif Ekind (E) = E_Array_Type then
8998 Check_Aliased_Component_Types (E);
9000 end if;
9002 Next_Entity (E);
9003 end loop;
9004 end Check_Completion;
9006 ----------------------------
9007 -- Check_Delta_Expression --
9008 ----------------------------
9010 procedure Check_Delta_Expression (E : Node_Id) is
9011 begin
9012 if not (Is_Real_Type (Etype (E))) then
9013 Wrong_Type (E, Any_Real);
9015 elsif not Is_OK_Static_Expression (E) then
9016 Flag_Non_Static_Expr
9017 ("non-static expression used for delta value!", E);
9019 elsif not UR_Is_Positive (Expr_Value_R (E)) then
9020 Error_Msg_N ("delta expression must be positive", E);
9022 else
9023 return;
9024 end if;
9026 -- If any of above errors occurred, then replace the incorrect
9027 -- expression by the real 0.1, which should prevent further errors.
9029 Rewrite (E,
9030 Make_Real_Literal (Sloc (E), Ureal_Tenth));
9031 Analyze_And_Resolve (E, Standard_Float);
9032 end Check_Delta_Expression;
9034 -----------------------------
9035 -- Check_Digits_Expression --
9036 -----------------------------
9038 procedure Check_Digits_Expression (E : Node_Id) is
9039 begin
9040 if not (Is_Integer_Type (Etype (E))) then
9041 Wrong_Type (E, Any_Integer);
9043 elsif not Is_OK_Static_Expression (E) then
9044 Flag_Non_Static_Expr
9045 ("non-static expression used for digits value!", E);
9047 elsif Expr_Value (E) <= 0 then
9048 Error_Msg_N ("digits value must be greater than zero", E);
9050 else
9051 return;
9052 end if;
9054 -- If any of above errors occurred, then replace the incorrect
9055 -- expression by the integer 1, which should prevent further errors.
9057 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
9058 Analyze_And_Resolve (E, Standard_Integer);
9060 end Check_Digits_Expression;
9062 --------------------------
9063 -- Check_Initialization --
9064 --------------------------
9066 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
9067 begin
9068 if Is_Limited_Type (T)
9069 and then not In_Instance
9070 and then not In_Inlined_Body
9071 then
9072 if not OK_For_Limited_Init (T, Exp) then
9074 -- In GNAT mode, this is just a warning, to allow it to be evilly
9075 -- turned off. Otherwise it is a real error.
9077 if GNAT_Mode then
9078 Error_Msg_N
9079 ("?cannot initialize entities of limited type!", Exp);
9081 elsif Ada_Version < Ada_05 then
9082 Error_Msg_N
9083 ("cannot initialize entities of limited type", Exp);
9084 Explain_Limited_Type (T, Exp);
9086 else
9087 -- Specialize error message according to kind of illegal
9088 -- initial expression.
9090 if Nkind (Exp) = N_Type_Conversion
9091 and then Nkind (Expression (Exp)) = N_Function_Call
9092 then
9093 Error_Msg_N
9094 ("illegal context for call"
9095 & " to function with limited result", Exp);
9097 else
9098 Error_Msg_N
9099 ("initialization of limited object requires aggregate "
9100 & "or function call", Exp);
9101 end if;
9102 end if;
9103 end if;
9104 end if;
9105 end Check_Initialization;
9107 ----------------------
9108 -- Check_Interfaces --
9109 ----------------------
9111 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
9112 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
9114 Iface : Node_Id;
9115 Iface_Def : Node_Id;
9116 Iface_Typ : Entity_Id;
9117 Parent_Node : Node_Id;
9119 Is_Task : Boolean := False;
9120 -- Set True if parent type or any progenitor is a task interface
9122 Is_Protected : Boolean := False;
9123 -- Set True if parent type or any progenitor is a protected interface
9125 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
9126 -- Check that a progenitor is compatible with declaration.
9127 -- Error is posted on Error_Node.
9129 ------------------
9130 -- Check_Ifaces --
9131 ------------------
9133 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
9134 Iface_Id : constant Entity_Id :=
9135 Defining_Identifier (Parent (Iface_Def));
9136 Type_Def : Node_Id;
9138 begin
9139 if Nkind (N) = N_Private_Extension_Declaration then
9140 Type_Def := N;
9141 else
9142 Type_Def := Type_Definition (N);
9143 end if;
9145 if Is_Task_Interface (Iface_Id) then
9146 Is_Task := True;
9148 elsif Is_Protected_Interface (Iface_Id) then
9149 Is_Protected := True;
9150 end if;
9152 if Is_Synchronized_Interface (Iface_Id) then
9154 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9155 -- extension derived from a synchronized interface must explicitly
9156 -- be declared synchronized, because the full view will be a
9157 -- synchronized type.
9159 if Nkind (N) = N_Private_Extension_Declaration then
9160 if not Synchronized_Present (N) then
9161 Error_Msg_NE
9162 ("private extension of& must be explicitly synchronized",
9163 N, Iface_Id);
9164 end if;
9166 -- However, by 3.9.4(16/2), a full type that is a record extension
9167 -- is never allowed to derive from a synchronized interface (note
9168 -- that interfaces must be excluded from this check, because those
9169 -- are represented by derived type definitions in some cases).
9171 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9172 and then not Interface_Present (Type_Definition (N))
9173 then
9174 Error_Msg_N ("record extension cannot derive from synchronized"
9175 & " interface", Error_Node);
9176 end if;
9177 end if;
9179 -- Check that the characteristics of the progenitor are compatible
9180 -- with the explicit qualifier in the declaration.
9181 -- The check only applies to qualifiers that come from source.
9182 -- Limited_Present also appears in the declaration of corresponding
9183 -- records, and the check does not apply to them.
9185 if Limited_Present (Type_Def)
9186 and then not
9187 Is_Concurrent_Record_Type (Defining_Identifier (N))
9188 then
9189 if Is_Limited_Interface (Parent_Type)
9190 and then not Is_Limited_Interface (Iface_Id)
9191 then
9192 Error_Msg_NE
9193 ("progenitor& must be limited interface",
9194 Error_Node, Iface_Id);
9196 elsif
9197 (Task_Present (Iface_Def)
9198 or else Protected_Present (Iface_Def)
9199 or else Synchronized_Present (Iface_Def))
9200 and then Nkind (N) /= N_Private_Extension_Declaration
9201 and then not Error_Posted (N)
9202 then
9203 Error_Msg_NE
9204 ("progenitor& must be limited interface",
9205 Error_Node, Iface_Id);
9206 end if;
9208 -- Protected interfaces can only inherit from limited, synchronized
9209 -- or protected interfaces.
9211 elsif Nkind (N) = N_Full_Type_Declaration
9212 and then Protected_Present (Type_Def)
9213 then
9214 if Limited_Present (Iface_Def)
9215 or else Synchronized_Present (Iface_Def)
9216 or else Protected_Present (Iface_Def)
9217 then
9218 null;
9220 elsif Task_Present (Iface_Def) then
9221 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9222 & " from task interface", Error_Node);
9224 else
9225 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9226 & " from non-limited interface", Error_Node);
9227 end if;
9229 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9230 -- limited and synchronized.
9232 elsif Synchronized_Present (Type_Def) then
9233 if Limited_Present (Iface_Def)
9234 or else Synchronized_Present (Iface_Def)
9235 then
9236 null;
9238 elsif Protected_Present (Iface_Def)
9239 and then Nkind (N) /= N_Private_Extension_Declaration
9240 then
9241 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9242 & " from protected interface", Error_Node);
9244 elsif Task_Present (Iface_Def)
9245 and then Nkind (N) /= N_Private_Extension_Declaration
9246 then
9247 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9248 & " from task interface", Error_Node);
9250 elsif not Is_Limited_Interface (Iface_Id) then
9251 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9252 & " from non-limited interface", Error_Node);
9253 end if;
9255 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9256 -- synchronized or task interfaces.
9258 elsif Nkind (N) = N_Full_Type_Declaration
9259 and then Task_Present (Type_Def)
9260 then
9261 if Limited_Present (Iface_Def)
9262 or else Synchronized_Present (Iface_Def)
9263 or else Task_Present (Iface_Def)
9264 then
9265 null;
9267 elsif Protected_Present (Iface_Def) then
9268 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9269 & " protected interface", Error_Node);
9271 else
9272 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9273 & " non-limited interface", Error_Node);
9274 end if;
9275 end if;
9276 end Check_Ifaces;
9278 -- Start of processing for Check_Interfaces
9280 begin
9281 if Is_Interface (Parent_Type) then
9282 if Is_Task_Interface (Parent_Type) then
9283 Is_Task := True;
9285 elsif Is_Protected_Interface (Parent_Type) then
9286 Is_Protected := True;
9287 end if;
9288 end if;
9290 if Nkind (N) = N_Private_Extension_Declaration then
9292 -- Check that progenitors are compatible with declaration
9294 Iface := First (Interface_List (Def));
9295 while Present (Iface) loop
9296 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9298 Parent_Node := Parent (Base_Type (Iface_Typ));
9299 Iface_Def := Type_Definition (Parent_Node);
9301 if not Is_Interface (Iface_Typ) then
9302 Diagnose_Interface (Iface, Iface_Typ);
9304 else
9305 Check_Ifaces (Iface_Def, Iface);
9306 end if;
9308 Next (Iface);
9309 end loop;
9311 if Is_Task and Is_Protected then
9312 Error_Msg_N
9313 ("type cannot derive from task and protected interface", N);
9314 end if;
9316 return;
9317 end if;
9319 -- Full type declaration of derived type.
9320 -- Check compatibility with parent if it is interface type
9322 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9323 and then Is_Interface (Parent_Type)
9324 then
9325 Parent_Node := Parent (Parent_Type);
9327 -- More detailed checks for interface varieties
9329 Check_Ifaces
9330 (Iface_Def => Type_Definition (Parent_Node),
9331 Error_Node => Subtype_Indication (Type_Definition (N)));
9332 end if;
9334 Iface := First (Interface_List (Def));
9335 while Present (Iface) loop
9336 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9338 Parent_Node := Parent (Base_Type (Iface_Typ));
9339 Iface_Def := Type_Definition (Parent_Node);
9341 if not Is_Interface (Iface_Typ) then
9342 Diagnose_Interface (Iface, Iface_Typ);
9344 else
9345 -- "The declaration of a specific descendant of an interface
9346 -- type freezes the interface type" RM 13.14
9348 Freeze_Before (N, Iface_Typ);
9349 Check_Ifaces (Iface_Def, Error_Node => Iface);
9350 end if;
9352 Next (Iface);
9353 end loop;
9355 if Is_Task and Is_Protected then
9356 Error_Msg_N
9357 ("type cannot derive from task and protected interface", N);
9358 end if;
9359 end Check_Interfaces;
9361 ------------------------------------
9362 -- Check_Or_Process_Discriminants --
9363 ------------------------------------
9365 -- If an incomplete or private type declaration was already given for the
9366 -- type, the discriminants may have already been processed if they were
9367 -- present on the incomplete declaration. In this case a full conformance
9368 -- check is performed otherwise just process them.
9370 procedure Check_Or_Process_Discriminants
9371 (N : Node_Id;
9372 T : Entity_Id;
9373 Prev : Entity_Id := Empty)
9375 begin
9376 if Has_Discriminants (T) then
9378 -- Make the discriminants visible to component declarations
9380 declare
9381 D : Entity_Id;
9382 Prev : Entity_Id;
9384 begin
9385 D := First_Discriminant (T);
9386 while Present (D) loop
9387 Prev := Current_Entity (D);
9388 Set_Current_Entity (D);
9389 Set_Is_Immediately_Visible (D);
9390 Set_Homonym (D, Prev);
9392 -- Ada 2005 (AI-230): Access discriminant allowed in
9393 -- non-limited record types.
9395 if Ada_Version < Ada_05 then
9397 -- This restriction gets applied to the full type here. It
9398 -- has already been applied earlier to the partial view.
9400 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
9401 end if;
9403 Next_Discriminant (D);
9404 end loop;
9405 end;
9407 elsif Present (Discriminant_Specifications (N)) then
9408 Process_Discriminants (N, Prev);
9409 end if;
9410 end Check_Or_Process_Discriminants;
9412 ----------------------
9413 -- Check_Real_Bound --
9414 ----------------------
9416 procedure Check_Real_Bound (Bound : Node_Id) is
9417 begin
9418 if not Is_Real_Type (Etype (Bound)) then
9419 Error_Msg_N
9420 ("bound in real type definition must be of real type", Bound);
9422 elsif not Is_OK_Static_Expression (Bound) then
9423 Flag_Non_Static_Expr
9424 ("non-static expression used for real type bound!", Bound);
9426 else
9427 return;
9428 end if;
9430 Rewrite
9431 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
9432 Analyze (Bound);
9433 Resolve (Bound, Standard_Float);
9434 end Check_Real_Bound;
9436 ------------------------------
9437 -- Complete_Private_Subtype --
9438 ------------------------------
9440 procedure Complete_Private_Subtype
9441 (Priv : Entity_Id;
9442 Full : Entity_Id;
9443 Full_Base : Entity_Id;
9444 Related_Nod : Node_Id)
9446 Save_Next_Entity : Entity_Id;
9447 Save_Homonym : Entity_Id;
9449 begin
9450 -- Set semantic attributes for (implicit) private subtype completion.
9451 -- If the full type has no discriminants, then it is a copy of the full
9452 -- view of the base. Otherwise, it is a subtype of the base with a
9453 -- possible discriminant constraint. Save and restore the original
9454 -- Next_Entity field of full to ensure that the calls to Copy_Node
9455 -- do not corrupt the entity chain.
9457 -- Note that the type of the full view is the same entity as the type of
9458 -- the partial view. In this fashion, the subtype has access to the
9459 -- correct view of the parent.
9461 Save_Next_Entity := Next_Entity (Full);
9462 Save_Homonym := Homonym (Priv);
9464 case Ekind (Full_Base) is
9465 when E_Record_Type |
9466 E_Record_Subtype |
9467 Class_Wide_Kind |
9468 Private_Kind |
9469 Task_Kind |
9470 Protected_Kind =>
9471 Copy_Node (Priv, Full);
9473 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
9474 Set_First_Entity (Full, First_Entity (Full_Base));
9475 Set_Last_Entity (Full, Last_Entity (Full_Base));
9477 when others =>
9478 Copy_Node (Full_Base, Full);
9479 Set_Chars (Full, Chars (Priv));
9480 Conditional_Delay (Full, Priv);
9481 Set_Sloc (Full, Sloc (Priv));
9482 end case;
9484 Set_Next_Entity (Full, Save_Next_Entity);
9485 Set_Homonym (Full, Save_Homonym);
9486 Set_Associated_Node_For_Itype (Full, Related_Nod);
9488 -- Set common attributes for all subtypes
9490 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
9492 -- The Etype of the full view is inconsistent. Gigi needs to see the
9493 -- structural full view, which is what the current scheme gives:
9494 -- the Etype of the full view is the etype of the full base. However,
9495 -- if the full base is a derived type, the full view then looks like
9496 -- a subtype of the parent, not a subtype of the full base. If instead
9497 -- we write:
9499 -- Set_Etype (Full, Full_Base);
9501 -- then we get inconsistencies in the front-end (confusion between
9502 -- views). Several outstanding bugs are related to this ???
9504 Set_Is_First_Subtype (Full, False);
9505 Set_Scope (Full, Scope (Priv));
9506 Set_Size_Info (Full, Full_Base);
9507 Set_RM_Size (Full, RM_Size (Full_Base));
9508 Set_Is_Itype (Full);
9510 -- A subtype of a private-type-without-discriminants, whose full-view
9511 -- has discriminants with default expressions, is not constrained!
9513 if not Has_Discriminants (Priv) then
9514 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
9516 if Has_Discriminants (Full_Base) then
9517 Set_Discriminant_Constraint
9518 (Full, Discriminant_Constraint (Full_Base));
9520 -- The partial view may have been indefinite, the full view
9521 -- might not be.
9523 Set_Has_Unknown_Discriminants
9524 (Full, Has_Unknown_Discriminants (Full_Base));
9525 end if;
9526 end if;
9528 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
9529 Set_Depends_On_Private (Full, Has_Private_Component (Full));
9531 -- Freeze the private subtype entity if its parent is delayed, and not
9532 -- already frozen. We skip this processing if the type is an anonymous
9533 -- subtype of a record component, or is the corresponding record of a
9534 -- protected type, since ???
9536 if not Is_Type (Scope (Full)) then
9537 Set_Has_Delayed_Freeze (Full,
9538 Has_Delayed_Freeze (Full_Base)
9539 and then (not Is_Frozen (Full_Base)));
9540 end if;
9542 Set_Freeze_Node (Full, Empty);
9543 Set_Is_Frozen (Full, False);
9544 Set_Full_View (Priv, Full);
9546 if Has_Discriminants (Full) then
9547 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
9548 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
9550 if Has_Unknown_Discriminants (Full) then
9551 Set_Discriminant_Constraint (Full, No_Elist);
9552 end if;
9553 end if;
9555 if Ekind (Full_Base) = E_Record_Type
9556 and then Has_Discriminants (Full_Base)
9557 and then Has_Discriminants (Priv) -- might not, if errors
9558 and then not Has_Unknown_Discriminants (Priv)
9559 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
9560 then
9561 Create_Constrained_Components
9562 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
9564 -- If the full base is itself derived from private, build a congruent
9565 -- subtype of its underlying type, for use by the back end. For a
9566 -- constrained record component, the declaration cannot be placed on
9567 -- the component list, but it must nevertheless be built an analyzed, to
9568 -- supply enough information for Gigi to compute the size of component.
9570 elsif Ekind (Full_Base) in Private_Kind
9571 and then Is_Derived_Type (Full_Base)
9572 and then Has_Discriminants (Full_Base)
9573 and then (Ekind (Current_Scope) /= E_Record_Subtype)
9574 then
9575 if not Is_Itype (Priv)
9576 and then
9577 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
9578 then
9579 Build_Underlying_Full_View
9580 (Parent (Priv), Full, Etype (Full_Base));
9582 elsif Nkind (Related_Nod) = N_Component_Declaration then
9583 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
9584 end if;
9586 elsif Is_Record_Type (Full_Base) then
9588 -- Show Full is simply a renaming of Full_Base
9590 Set_Cloned_Subtype (Full, Full_Base);
9591 end if;
9593 -- It is unsafe to share to bounds of a scalar type, because the Itype
9594 -- is elaborated on demand, and if a bound is non-static then different
9595 -- orders of elaboration in different units will lead to different
9596 -- external symbols.
9598 if Is_Scalar_Type (Full_Base) then
9599 Set_Scalar_Range (Full,
9600 Make_Range (Sloc (Related_Nod),
9601 Low_Bound =>
9602 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
9603 High_Bound =>
9604 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
9606 -- This completion inherits the bounds of the full parent, but if
9607 -- the parent is an unconstrained floating point type, so is the
9608 -- completion.
9610 if Is_Floating_Point_Type (Full_Base) then
9611 Set_Includes_Infinities
9612 (Scalar_Range (Full), Has_Infinities (Full_Base));
9613 end if;
9614 end if;
9616 -- ??? It seems that a lot of fields are missing that should be copied
9617 -- from Full_Base to Full. Here are some that are introduced in a
9618 -- non-disruptive way but a cleanup is necessary.
9620 if Is_Tagged_Type (Full_Base) then
9621 Set_Is_Tagged_Type (Full);
9622 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
9624 -- Inherit class_wide type of full_base in case the partial view was
9625 -- not tagged. Otherwise it has already been created when the private
9626 -- subtype was analyzed.
9628 if No (Class_Wide_Type (Full)) then
9629 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
9630 end if;
9632 -- If this is a subtype of a protected or task type, constrain its
9633 -- corresponding record, unless this is a subtype without constraints,
9634 -- i.e. a simple renaming as with an actual subtype in an instance.
9636 elsif Is_Concurrent_Type (Full_Base) then
9637 if Has_Discriminants (Full)
9638 and then Present (Corresponding_Record_Type (Full_Base))
9639 and then
9640 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
9641 then
9642 Set_Corresponding_Record_Type (Full,
9643 Constrain_Corresponding_Record
9644 (Full, Corresponding_Record_Type (Full_Base),
9645 Related_Nod, Full_Base));
9647 else
9648 Set_Corresponding_Record_Type (Full,
9649 Corresponding_Record_Type (Full_Base));
9650 end if;
9651 end if;
9652 end Complete_Private_Subtype;
9654 ----------------------------
9655 -- Constant_Redeclaration --
9656 ----------------------------
9658 procedure Constant_Redeclaration
9659 (Id : Entity_Id;
9660 N : Node_Id;
9661 T : out Entity_Id)
9663 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
9664 Obj_Def : constant Node_Id := Object_Definition (N);
9665 New_T : Entity_Id;
9667 procedure Check_Possible_Deferred_Completion
9668 (Prev_Id : Entity_Id;
9669 Prev_Obj_Def : Node_Id;
9670 Curr_Obj_Def : Node_Id);
9671 -- Determine whether the two object definitions describe the partial
9672 -- and the full view of a constrained deferred constant. Generate
9673 -- a subtype for the full view and verify that it statically matches
9674 -- the subtype of the partial view.
9676 procedure Check_Recursive_Declaration (Typ : Entity_Id);
9677 -- If deferred constant is an access type initialized with an allocator,
9678 -- check whether there is an illegal recursion in the definition,
9679 -- through a default value of some record subcomponent. This is normally
9680 -- detected when generating init procs, but requires this additional
9681 -- mechanism when expansion is disabled.
9683 ----------------------------------------
9684 -- Check_Possible_Deferred_Completion --
9685 ----------------------------------------
9687 procedure Check_Possible_Deferred_Completion
9688 (Prev_Id : Entity_Id;
9689 Prev_Obj_Def : Node_Id;
9690 Curr_Obj_Def : Node_Id)
9692 begin
9693 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
9694 and then Present (Constraint (Prev_Obj_Def))
9695 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
9696 and then Present (Constraint (Curr_Obj_Def))
9697 then
9698 declare
9699 Loc : constant Source_Ptr := Sloc (N);
9700 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
9701 Decl : constant Node_Id :=
9702 Make_Subtype_Declaration (Loc,
9703 Defining_Identifier => Def_Id,
9704 Subtype_Indication =>
9705 Relocate_Node (Curr_Obj_Def));
9707 begin
9708 Insert_Before_And_Analyze (N, Decl);
9709 Set_Etype (Id, Def_Id);
9711 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
9712 Error_Msg_Sloc := Sloc (Prev_Id);
9713 Error_Msg_N ("subtype does not statically match deferred " &
9714 "declaration#", N);
9715 end if;
9716 end;
9717 end if;
9718 end Check_Possible_Deferred_Completion;
9720 ---------------------------------
9721 -- Check_Recursive_Declaration --
9722 ---------------------------------
9724 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
9725 Comp : Entity_Id;
9727 begin
9728 if Is_Record_Type (Typ) then
9729 Comp := First_Component (Typ);
9730 while Present (Comp) loop
9731 if Comes_From_Source (Comp) then
9732 if Present (Expression (Parent (Comp)))
9733 and then Is_Entity_Name (Expression (Parent (Comp)))
9734 and then Entity (Expression (Parent (Comp))) = Prev
9735 then
9736 Error_Msg_Sloc := Sloc (Parent (Comp));
9737 Error_Msg_NE
9738 ("illegal circularity with declaration for&#",
9739 N, Comp);
9740 return;
9742 elsif Is_Record_Type (Etype (Comp)) then
9743 Check_Recursive_Declaration (Etype (Comp));
9744 end if;
9745 end if;
9747 Next_Component (Comp);
9748 end loop;
9749 end if;
9750 end Check_Recursive_Declaration;
9752 -- Start of processing for Constant_Redeclaration
9754 begin
9755 if Nkind (Parent (Prev)) = N_Object_Declaration then
9756 if Nkind (Object_Definition
9757 (Parent (Prev))) = N_Subtype_Indication
9758 then
9759 -- Find type of new declaration. The constraints of the two
9760 -- views must match statically, but there is no point in
9761 -- creating an itype for the full view.
9763 if Nkind (Obj_Def) = N_Subtype_Indication then
9764 Find_Type (Subtype_Mark (Obj_Def));
9765 New_T := Entity (Subtype_Mark (Obj_Def));
9767 else
9768 Find_Type (Obj_Def);
9769 New_T := Entity (Obj_Def);
9770 end if;
9772 T := Etype (Prev);
9774 else
9775 -- The full view may impose a constraint, even if the partial
9776 -- view does not, so construct the subtype.
9778 New_T := Find_Type_Of_Object (Obj_Def, N);
9779 T := New_T;
9780 end if;
9782 else
9783 -- Current declaration is illegal, diagnosed below in Enter_Name
9785 T := Empty;
9786 New_T := Any_Type;
9787 end if;
9789 -- If previous full declaration or a renaming declaration exists, or if
9790 -- a homograph is present, let Enter_Name handle it, either with an
9791 -- error or with the removal of an overridden implicit subprogram.
9793 if Ekind (Prev) /= E_Constant
9794 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
9795 or else Present (Expression (Parent (Prev)))
9796 or else Present (Full_View (Prev))
9797 then
9798 Enter_Name (Id);
9800 -- Verify that types of both declarations match, or else that both types
9801 -- are anonymous access types whose designated subtypes statically match
9802 -- (as allowed in Ada 2005 by AI-385).
9804 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
9805 and then
9806 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
9807 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
9808 or else Is_Access_Constant (Etype (New_T)) /=
9809 Is_Access_Constant (Etype (Prev))
9810 or else Can_Never_Be_Null (Etype (New_T)) /=
9811 Can_Never_Be_Null (Etype (Prev))
9812 or else Null_Exclusion_Present (Parent (Prev)) /=
9813 Null_Exclusion_Present (Parent (Id))
9814 or else not Subtypes_Statically_Match
9815 (Designated_Type (Etype (Prev)),
9816 Designated_Type (Etype (New_T))))
9817 then
9818 Error_Msg_Sloc := Sloc (Prev);
9819 Error_Msg_N ("type does not match declaration#", N);
9820 Set_Full_View (Prev, Id);
9821 Set_Etype (Id, Any_Type);
9823 elsif
9824 Null_Exclusion_Present (Parent (Prev))
9825 and then not Null_Exclusion_Present (N)
9826 then
9827 Error_Msg_Sloc := Sloc (Prev);
9828 Error_Msg_N ("null-exclusion does not match declaration#", N);
9829 Set_Full_View (Prev, Id);
9830 Set_Etype (Id, Any_Type);
9832 -- If so, process the full constant declaration
9834 else
9835 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
9836 -- the deferred declaration is constrained, then the subtype defined
9837 -- by the subtype_indication in the full declaration shall match it
9838 -- statically.
9840 Check_Possible_Deferred_Completion
9841 (Prev_Id => Prev,
9842 Prev_Obj_Def => Object_Definition (Parent (Prev)),
9843 Curr_Obj_Def => Obj_Def);
9845 Set_Full_View (Prev, Id);
9846 Set_Is_Public (Id, Is_Public (Prev));
9847 Set_Is_Internal (Id);
9848 Append_Entity (Id, Current_Scope);
9850 -- Check ALIASED present if present before (RM 7.4(7))
9852 if Is_Aliased (Prev)
9853 and then not Aliased_Present (N)
9854 then
9855 Error_Msg_Sloc := Sloc (Prev);
9856 Error_Msg_N ("ALIASED required (see declaration#)", N);
9857 end if;
9859 -- Check that placement is in private part and that the incomplete
9860 -- declaration appeared in the visible part.
9862 if Ekind (Current_Scope) = E_Package
9863 and then not In_Private_Part (Current_Scope)
9864 then
9865 Error_Msg_Sloc := Sloc (Prev);
9866 Error_Msg_N
9867 ("full constant for declaration#"
9868 & " must be in private part", N);
9870 elsif Ekind (Current_Scope) = E_Package
9871 and then
9872 List_Containing (Parent (Prev)) /=
9873 Visible_Declarations
9874 (Specification (Unit_Declaration_Node (Current_Scope)))
9875 then
9876 Error_Msg_N
9877 ("deferred constant must be declared in visible part",
9878 Parent (Prev));
9879 end if;
9881 if Is_Access_Type (T)
9882 and then Nkind (Expression (N)) = N_Allocator
9883 then
9884 Check_Recursive_Declaration (Designated_Type (T));
9885 end if;
9886 end if;
9887 end Constant_Redeclaration;
9889 ----------------------
9890 -- Constrain_Access --
9891 ----------------------
9893 procedure Constrain_Access
9894 (Def_Id : in out Entity_Id;
9895 S : Node_Id;
9896 Related_Nod : Node_Id)
9898 T : constant Entity_Id := Entity (Subtype_Mark (S));
9899 Desig_Type : constant Entity_Id := Designated_Type (T);
9900 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
9901 Constraint_OK : Boolean := True;
9903 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
9904 -- Simple predicate to test for defaulted discriminants
9905 -- Shouldn't this be in sem_util???
9907 ---------------------------------
9908 -- Has_Defaulted_Discriminants --
9909 ---------------------------------
9911 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
9912 begin
9913 return Has_Discriminants (Typ)
9914 and then Present (First_Discriminant (Typ))
9915 and then Present
9916 (Discriminant_Default_Value (First_Discriminant (Typ)));
9917 end Has_Defaulted_Discriminants;
9919 -- Start of processing for Constrain_Access
9921 begin
9922 if Is_Array_Type (Desig_Type) then
9923 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
9925 elsif (Is_Record_Type (Desig_Type)
9926 or else Is_Incomplete_Or_Private_Type (Desig_Type))
9927 and then not Is_Constrained (Desig_Type)
9928 then
9929 -- ??? The following code is a temporary kludge to ignore a
9930 -- discriminant constraint on access type if it is constraining
9931 -- the current record. Avoid creating the implicit subtype of the
9932 -- record we are currently compiling since right now, we cannot
9933 -- handle these. For now, just return the access type itself.
9935 if Desig_Type = Current_Scope
9936 and then No (Def_Id)
9937 then
9938 Set_Ekind (Desig_Subtype, E_Record_Subtype);
9939 Def_Id := Entity (Subtype_Mark (S));
9941 -- This call added to ensure that the constraint is analyzed
9942 -- (needed for a B test). Note that we still return early from
9943 -- this procedure to avoid recursive processing. ???
9945 Constrain_Discriminated_Type
9946 (Desig_Subtype, S, Related_Nod, For_Access => True);
9947 return;
9948 end if;
9950 if (Ekind (T) = E_General_Access_Type
9951 or else Ada_Version >= Ada_05)
9952 and then Has_Private_Declaration (Desig_Type)
9953 and then In_Open_Scopes (Scope (Desig_Type))
9954 and then Has_Discriminants (Desig_Type)
9955 then
9956 -- Enforce rule that the constraint is illegal if there is
9957 -- an unconstrained view of the designated type. This means
9958 -- that the partial view (either a private type declaration or
9959 -- a derivation from a private type) has no discriminants.
9960 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
9961 -- by ACATS B371001).
9963 -- Rule updated for Ada 2005: the private type is said to have
9964 -- a constrained partial view, given that objects of the type
9965 -- can be declared. Furthermore, the rule applies to all access
9966 -- types, unlike the rule concerning default discriminants.
9968 declare
9969 Pack : constant Node_Id :=
9970 Unit_Declaration_Node (Scope (Desig_Type));
9971 Decls : List_Id;
9972 Decl : Node_Id;
9974 begin
9975 if Nkind (Pack) = N_Package_Declaration then
9976 Decls := Visible_Declarations (Specification (Pack));
9977 Decl := First (Decls);
9978 while Present (Decl) loop
9979 if (Nkind (Decl) = N_Private_Type_Declaration
9980 and then
9981 Chars (Defining_Identifier (Decl)) =
9982 Chars (Desig_Type))
9984 or else
9985 (Nkind (Decl) = N_Full_Type_Declaration
9986 and then
9987 Chars (Defining_Identifier (Decl)) =
9988 Chars (Desig_Type)
9989 and then Is_Derived_Type (Desig_Type)
9990 and then
9991 Has_Private_Declaration (Etype (Desig_Type)))
9992 then
9993 if No (Discriminant_Specifications (Decl)) then
9994 Error_Msg_N
9995 ("cannot constrain general access type if " &
9996 "designated type has constrained partial view",
9998 end if;
10000 exit;
10001 end if;
10003 Next (Decl);
10004 end loop;
10005 end if;
10006 end;
10007 end if;
10009 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
10010 For_Access => True);
10012 elsif (Is_Task_Type (Desig_Type)
10013 or else Is_Protected_Type (Desig_Type))
10014 and then not Is_Constrained (Desig_Type)
10015 then
10016 Constrain_Concurrent
10017 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
10019 else
10020 Error_Msg_N ("invalid constraint on access type", S);
10021 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
10022 Constraint_OK := False;
10023 end if;
10025 if No (Def_Id) then
10026 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
10027 else
10028 Set_Ekind (Def_Id, E_Access_Subtype);
10029 end if;
10031 if Constraint_OK then
10032 Set_Etype (Def_Id, Base_Type (T));
10034 if Is_Private_Type (Desig_Type) then
10035 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
10036 end if;
10037 else
10038 Set_Etype (Def_Id, Any_Type);
10039 end if;
10041 Set_Size_Info (Def_Id, T);
10042 Set_Is_Constrained (Def_Id, Constraint_OK);
10043 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
10044 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10045 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
10047 Conditional_Delay (Def_Id, T);
10049 -- AI-363 : Subtypes of general access types whose designated types have
10050 -- default discriminants are disallowed. In instances, the rule has to
10051 -- be checked against the actual, of which T is the subtype. In a
10052 -- generic body, the rule is checked assuming that the actual type has
10053 -- defaulted discriminants.
10055 if Ada_Version >= Ada_05 or else Warn_On_Ada_2005_Compatibility then
10056 if Ekind (Base_Type (T)) = E_General_Access_Type
10057 and then Has_Defaulted_Discriminants (Desig_Type)
10058 then
10059 if Ada_Version < Ada_05 then
10060 Error_Msg_N
10061 ("access subtype of general access type would not " &
10062 "be allowed in Ada 2005?", S);
10063 else
10064 Error_Msg_N
10065 ("access subype of general access type not allowed", S);
10066 end if;
10068 Error_Msg_N ("\discriminants have defaults", S);
10070 elsif Is_Access_Type (T)
10071 and then Is_Generic_Type (Desig_Type)
10072 and then Has_Discriminants (Desig_Type)
10073 and then In_Package_Body (Current_Scope)
10074 then
10075 if Ada_Version < Ada_05 then
10076 Error_Msg_N
10077 ("access subtype would not be allowed in generic body " &
10078 "in Ada 2005?", S);
10079 else
10080 Error_Msg_N
10081 ("access subtype not allowed in generic body", S);
10082 end if;
10084 Error_Msg_N
10085 ("\designated type is a discriminated formal", S);
10086 end if;
10087 end if;
10088 end Constrain_Access;
10090 ---------------------
10091 -- Constrain_Array --
10092 ---------------------
10094 procedure Constrain_Array
10095 (Def_Id : in out Entity_Id;
10096 SI : Node_Id;
10097 Related_Nod : Node_Id;
10098 Related_Id : Entity_Id;
10099 Suffix : Character)
10101 C : constant Node_Id := Constraint (SI);
10102 Number_Of_Constraints : Nat := 0;
10103 Index : Node_Id;
10104 S, T : Entity_Id;
10105 Constraint_OK : Boolean := True;
10107 begin
10108 T := Entity (Subtype_Mark (SI));
10110 if Ekind (T) in Access_Kind then
10111 T := Designated_Type (T);
10112 end if;
10114 -- If an index constraint follows a subtype mark in a subtype indication
10115 -- then the type or subtype denoted by the subtype mark must not already
10116 -- impose an index constraint. The subtype mark must denote either an
10117 -- unconstrained array type or an access type whose designated type
10118 -- is such an array type... (RM 3.6.1)
10120 if Is_Constrained (T) then
10121 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
10122 Constraint_OK := False;
10124 else
10125 S := First (Constraints (C));
10126 while Present (S) loop
10127 Number_Of_Constraints := Number_Of_Constraints + 1;
10128 Next (S);
10129 end loop;
10131 -- In either case, the index constraint must provide a discrete
10132 -- range for each index of the array type and the type of each
10133 -- discrete range must be the same as that of the corresponding
10134 -- index. (RM 3.6.1)
10136 if Number_Of_Constraints /= Number_Dimensions (T) then
10137 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
10138 Constraint_OK := False;
10140 else
10141 S := First (Constraints (C));
10142 Index := First_Index (T);
10143 Analyze (Index);
10145 -- Apply constraints to each index type
10147 for J in 1 .. Number_Of_Constraints loop
10148 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
10149 Next (Index);
10150 Next (S);
10151 end loop;
10153 end if;
10154 end if;
10156 if No (Def_Id) then
10157 Def_Id :=
10158 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
10159 Set_Parent (Def_Id, Related_Nod);
10161 else
10162 Set_Ekind (Def_Id, E_Array_Subtype);
10163 end if;
10165 Set_Size_Info (Def_Id, (T));
10166 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10167 Set_Etype (Def_Id, Base_Type (T));
10169 if Constraint_OK then
10170 Set_First_Index (Def_Id, First (Constraints (C)));
10171 else
10172 Set_First_Index (Def_Id, First_Index (T));
10173 end if;
10175 Set_Is_Constrained (Def_Id, True);
10176 Set_Is_Aliased (Def_Id, Is_Aliased (T));
10177 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10179 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
10180 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
10182 -- A subtype does not inherit the packed_array_type of is parent. We
10183 -- need to initialize the attribute because if Def_Id is previously
10184 -- analyzed through a limited_with clause, it will have the attributes
10185 -- of an incomplete type, one of which is an Elist that overlaps the
10186 -- Packed_Array_Type field.
10188 Set_Packed_Array_Type (Def_Id, Empty);
10190 -- Build a freeze node if parent still needs one. Also make sure that
10191 -- the Depends_On_Private status is set because the subtype will need
10192 -- reprocessing at the time the base type does, and also we must set a
10193 -- conditional delay.
10195 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10196 Conditional_Delay (Def_Id, T);
10197 end Constrain_Array;
10199 ------------------------------
10200 -- Constrain_Component_Type --
10201 ------------------------------
10203 function Constrain_Component_Type
10204 (Comp : Entity_Id;
10205 Constrained_Typ : Entity_Id;
10206 Related_Node : Node_Id;
10207 Typ : Entity_Id;
10208 Constraints : Elist_Id) return Entity_Id
10210 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
10211 Compon_Type : constant Entity_Id := Etype (Comp);
10213 function Build_Constrained_Array_Type
10214 (Old_Type : Entity_Id) return Entity_Id;
10215 -- If Old_Type is an array type, one of whose indices is constrained
10216 -- by a discriminant, build an Itype whose constraint replaces the
10217 -- discriminant with its value in the constraint.
10219 function Build_Constrained_Discriminated_Type
10220 (Old_Type : Entity_Id) return Entity_Id;
10221 -- Ditto for record components
10223 function Build_Constrained_Access_Type
10224 (Old_Type : Entity_Id) return Entity_Id;
10225 -- Ditto for access types. Makes use of previous two functions, to
10226 -- constrain designated type.
10228 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
10229 -- T is an array or discriminated type, C is a list of constraints
10230 -- that apply to T. This routine builds the constrained subtype.
10232 function Is_Discriminant (Expr : Node_Id) return Boolean;
10233 -- Returns True if Expr is a discriminant
10235 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
10236 -- Find the value of discriminant Discrim in Constraint
10238 -----------------------------------
10239 -- Build_Constrained_Access_Type --
10240 -----------------------------------
10242 function Build_Constrained_Access_Type
10243 (Old_Type : Entity_Id) return Entity_Id
10245 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
10246 Itype : Entity_Id;
10247 Desig_Subtype : Entity_Id;
10248 Scop : Entity_Id;
10250 begin
10251 -- if the original access type was not embedded in the enclosing
10252 -- type definition, there is no need to produce a new access
10253 -- subtype. In fact every access type with an explicit constraint
10254 -- generates an itype whose scope is the enclosing record.
10256 if not Is_Type (Scope (Old_Type)) then
10257 return Old_Type;
10259 elsif Is_Array_Type (Desig_Type) then
10260 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
10262 elsif Has_Discriminants (Desig_Type) then
10264 -- This may be an access type to an enclosing record type for
10265 -- which we are constructing the constrained components. Return
10266 -- the enclosing record subtype. This is not always correct,
10267 -- but avoids infinite recursion. ???
10269 Desig_Subtype := Any_Type;
10271 for J in reverse 0 .. Scope_Stack.Last loop
10272 Scop := Scope_Stack.Table (J).Entity;
10274 if Is_Type (Scop)
10275 and then Base_Type (Scop) = Base_Type (Desig_Type)
10276 then
10277 Desig_Subtype := Scop;
10278 end if;
10280 exit when not Is_Type (Scop);
10281 end loop;
10283 if Desig_Subtype = Any_Type then
10284 Desig_Subtype :=
10285 Build_Constrained_Discriminated_Type (Desig_Type);
10286 end if;
10288 else
10289 return Old_Type;
10290 end if;
10292 if Desig_Subtype /= Desig_Type then
10294 -- The Related_Node better be here or else we won't be able
10295 -- to attach new itypes to a node in the tree.
10297 pragma Assert (Present (Related_Node));
10299 Itype := Create_Itype (E_Access_Subtype, Related_Node);
10301 Set_Etype (Itype, Base_Type (Old_Type));
10302 Set_Size_Info (Itype, (Old_Type));
10303 Set_Directly_Designated_Type (Itype, Desig_Subtype);
10304 Set_Depends_On_Private (Itype, Has_Private_Component
10305 (Old_Type));
10306 Set_Is_Access_Constant (Itype, Is_Access_Constant
10307 (Old_Type));
10309 -- The new itype needs freezing when it depends on a not frozen
10310 -- type and the enclosing subtype needs freezing.
10312 if Has_Delayed_Freeze (Constrained_Typ)
10313 and then not Is_Frozen (Constrained_Typ)
10314 then
10315 Conditional_Delay (Itype, Base_Type (Old_Type));
10316 end if;
10318 return Itype;
10320 else
10321 return Old_Type;
10322 end if;
10323 end Build_Constrained_Access_Type;
10325 ----------------------------------
10326 -- Build_Constrained_Array_Type --
10327 ----------------------------------
10329 function Build_Constrained_Array_Type
10330 (Old_Type : Entity_Id) return Entity_Id
10332 Lo_Expr : Node_Id;
10333 Hi_Expr : Node_Id;
10334 Old_Index : Node_Id;
10335 Range_Node : Node_Id;
10336 Constr_List : List_Id;
10338 Need_To_Create_Itype : Boolean := False;
10340 begin
10341 Old_Index := First_Index (Old_Type);
10342 while Present (Old_Index) loop
10343 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
10345 if Is_Discriminant (Lo_Expr)
10346 or else Is_Discriminant (Hi_Expr)
10347 then
10348 Need_To_Create_Itype := True;
10349 end if;
10351 Next_Index (Old_Index);
10352 end loop;
10354 if Need_To_Create_Itype then
10355 Constr_List := New_List;
10357 Old_Index := First_Index (Old_Type);
10358 while Present (Old_Index) loop
10359 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
10361 if Is_Discriminant (Lo_Expr) then
10362 Lo_Expr := Get_Discr_Value (Lo_Expr);
10363 end if;
10365 if Is_Discriminant (Hi_Expr) then
10366 Hi_Expr := Get_Discr_Value (Hi_Expr);
10367 end if;
10369 Range_Node :=
10370 Make_Range
10371 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
10373 Append (Range_Node, To => Constr_List);
10375 Next_Index (Old_Index);
10376 end loop;
10378 return Build_Subtype (Old_Type, Constr_List);
10380 else
10381 return Old_Type;
10382 end if;
10383 end Build_Constrained_Array_Type;
10385 ------------------------------------------
10386 -- Build_Constrained_Discriminated_Type --
10387 ------------------------------------------
10389 function Build_Constrained_Discriminated_Type
10390 (Old_Type : Entity_Id) return Entity_Id
10392 Expr : Node_Id;
10393 Constr_List : List_Id;
10394 Old_Constraint : Elmt_Id;
10396 Need_To_Create_Itype : Boolean := False;
10398 begin
10399 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
10400 while Present (Old_Constraint) loop
10401 Expr := Node (Old_Constraint);
10403 if Is_Discriminant (Expr) then
10404 Need_To_Create_Itype := True;
10405 end if;
10407 Next_Elmt (Old_Constraint);
10408 end loop;
10410 if Need_To_Create_Itype then
10411 Constr_List := New_List;
10413 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
10414 while Present (Old_Constraint) loop
10415 Expr := Node (Old_Constraint);
10417 if Is_Discriminant (Expr) then
10418 Expr := Get_Discr_Value (Expr);
10419 end if;
10421 Append (New_Copy_Tree (Expr), To => Constr_List);
10423 Next_Elmt (Old_Constraint);
10424 end loop;
10426 return Build_Subtype (Old_Type, Constr_List);
10428 else
10429 return Old_Type;
10430 end if;
10431 end Build_Constrained_Discriminated_Type;
10433 -------------------
10434 -- Build_Subtype --
10435 -------------------
10437 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
10438 Indic : Node_Id;
10439 Subtyp_Decl : Node_Id;
10440 Def_Id : Entity_Id;
10441 Btyp : Entity_Id := Base_Type (T);
10443 begin
10444 -- The Related_Node better be here or else we won't be able to
10445 -- attach new itypes to a node in the tree.
10447 pragma Assert (Present (Related_Node));
10449 -- If the view of the component's type is incomplete or private
10450 -- with unknown discriminants, then the constraint must be applied
10451 -- to the full type.
10453 if Has_Unknown_Discriminants (Btyp)
10454 and then Present (Underlying_Type (Btyp))
10455 then
10456 Btyp := Underlying_Type (Btyp);
10457 end if;
10459 Indic :=
10460 Make_Subtype_Indication (Loc,
10461 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
10462 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
10464 Def_Id := Create_Itype (Ekind (T), Related_Node);
10466 Subtyp_Decl :=
10467 Make_Subtype_Declaration (Loc,
10468 Defining_Identifier => Def_Id,
10469 Subtype_Indication => Indic);
10471 Set_Parent (Subtyp_Decl, Parent (Related_Node));
10473 -- Itypes must be analyzed with checks off (see package Itypes)
10475 Analyze (Subtyp_Decl, Suppress => All_Checks);
10477 return Def_Id;
10478 end Build_Subtype;
10480 ---------------------
10481 -- Get_Discr_Value --
10482 ---------------------
10484 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
10485 D : Entity_Id;
10486 E : Elmt_Id;
10488 begin
10489 -- The discriminant may be declared for the type, in which case we
10490 -- find it by iterating over the list of discriminants. If the
10491 -- discriminant is inherited from a parent type, it appears as the
10492 -- corresponding discriminant of the current type. This will be the
10493 -- case when constraining an inherited component whose constraint is
10494 -- given by a discriminant of the parent.
10496 D := First_Discriminant (Typ);
10497 E := First_Elmt (Constraints);
10499 while Present (D) loop
10500 if D = Entity (Discrim)
10501 or else D = CR_Discriminant (Entity (Discrim))
10502 or else Corresponding_Discriminant (D) = Entity (Discrim)
10503 then
10504 return Node (E);
10505 end if;
10507 Next_Discriminant (D);
10508 Next_Elmt (E);
10509 end loop;
10511 -- The corresponding_Discriminant mechanism is incomplete, because
10512 -- the correspondence between new and old discriminants is not one
10513 -- to one: one new discriminant can constrain several old ones. In
10514 -- that case, scan sequentially the stored_constraint, the list of
10515 -- discriminants of the parents, and the constraints.
10516 -- Previous code checked for the present of the Stored_Constraint
10517 -- list for the derived type, but did not use it at all. Should it
10518 -- be present when the component is a discriminated task type?
10520 if Is_Derived_Type (Typ)
10521 and then Scope (Entity (Discrim)) = Etype (Typ)
10522 then
10523 D := First_Discriminant (Etype (Typ));
10524 E := First_Elmt (Constraints);
10525 while Present (D) loop
10526 if D = Entity (Discrim) then
10527 return Node (E);
10528 end if;
10530 Next_Discriminant (D);
10531 Next_Elmt (E);
10532 end loop;
10533 end if;
10535 -- Something is wrong if we did not find the value
10537 raise Program_Error;
10538 end Get_Discr_Value;
10540 ---------------------
10541 -- Is_Discriminant --
10542 ---------------------
10544 function Is_Discriminant (Expr : Node_Id) return Boolean is
10545 Discrim_Scope : Entity_Id;
10547 begin
10548 if Denotes_Discriminant (Expr) then
10549 Discrim_Scope := Scope (Entity (Expr));
10551 -- Either we have a reference to one of Typ's discriminants,
10553 pragma Assert (Discrim_Scope = Typ
10555 -- or to the discriminants of the parent type, in the case
10556 -- of a derivation of a tagged type with variants.
10558 or else Discrim_Scope = Etype (Typ)
10559 or else Full_View (Discrim_Scope) = Etype (Typ)
10561 -- or same as above for the case where the discriminants
10562 -- were declared in Typ's private view.
10564 or else (Is_Private_Type (Discrim_Scope)
10565 and then Chars (Discrim_Scope) = Chars (Typ))
10567 -- or else we are deriving from the full view and the
10568 -- discriminant is declared in the private entity.
10570 or else (Is_Private_Type (Typ)
10571 and then Chars (Discrim_Scope) = Chars (Typ))
10573 -- Or we are constrained the corresponding record of a
10574 -- synchronized type that completes a private declaration.
10576 or else (Is_Concurrent_Record_Type (Typ)
10577 and then
10578 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
10580 -- or we have a class-wide type, in which case make sure the
10581 -- discriminant found belongs to the root type.
10583 or else (Is_Class_Wide_Type (Typ)
10584 and then Etype (Typ) = Discrim_Scope));
10586 return True;
10587 end if;
10589 -- In all other cases we have something wrong
10591 return False;
10592 end Is_Discriminant;
10594 -- Start of processing for Constrain_Component_Type
10596 begin
10597 if Nkind (Parent (Comp)) = N_Component_Declaration
10598 and then Comes_From_Source (Parent (Comp))
10599 and then Comes_From_Source
10600 (Subtype_Indication (Component_Definition (Parent (Comp))))
10601 and then
10602 Is_Entity_Name
10603 (Subtype_Indication (Component_Definition (Parent (Comp))))
10604 then
10605 return Compon_Type;
10607 elsif Is_Array_Type (Compon_Type) then
10608 return Build_Constrained_Array_Type (Compon_Type);
10610 elsif Has_Discriminants (Compon_Type) then
10611 return Build_Constrained_Discriminated_Type (Compon_Type);
10613 elsif Is_Access_Type (Compon_Type) then
10614 return Build_Constrained_Access_Type (Compon_Type);
10616 else
10617 return Compon_Type;
10618 end if;
10619 end Constrain_Component_Type;
10621 --------------------------
10622 -- Constrain_Concurrent --
10623 --------------------------
10625 -- For concurrent types, the associated record value type carries the same
10626 -- discriminants, so when we constrain a concurrent type, we must constrain
10627 -- the corresponding record type as well.
10629 procedure Constrain_Concurrent
10630 (Def_Id : in out Entity_Id;
10631 SI : Node_Id;
10632 Related_Nod : Node_Id;
10633 Related_Id : Entity_Id;
10634 Suffix : Character)
10636 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
10637 T_Val : Entity_Id;
10639 begin
10640 if Ekind (T_Ent) in Access_Kind then
10641 T_Ent := Designated_Type (T_Ent);
10642 end if;
10644 T_Val := Corresponding_Record_Type (T_Ent);
10646 if Present (T_Val) then
10648 if No (Def_Id) then
10649 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
10650 end if;
10652 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
10654 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10655 Set_Corresponding_Record_Type (Def_Id,
10656 Constrain_Corresponding_Record
10657 (Def_Id, T_Val, Related_Nod, Related_Id));
10659 else
10660 -- If there is no associated record, expansion is disabled and this
10661 -- is a generic context. Create a subtype in any case, so that
10662 -- semantic analysis can proceed.
10664 if No (Def_Id) then
10665 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
10666 end if;
10668 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
10669 end if;
10670 end Constrain_Concurrent;
10672 ------------------------------------
10673 -- Constrain_Corresponding_Record --
10674 ------------------------------------
10676 function Constrain_Corresponding_Record
10677 (Prot_Subt : Entity_Id;
10678 Corr_Rec : Entity_Id;
10679 Related_Nod : Node_Id;
10680 Related_Id : Entity_Id) return Entity_Id
10682 T_Sub : constant Entity_Id :=
10683 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
10685 begin
10686 Set_Etype (T_Sub, Corr_Rec);
10687 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
10688 Set_Is_Constrained (T_Sub, True);
10689 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
10690 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
10692 -- As elsewhere, we do not want to create a freeze node for this itype
10693 -- if it is created for a constrained component of an enclosing record
10694 -- because references to outer discriminants will appear out of scope.
10696 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
10697 Conditional_Delay (T_Sub, Corr_Rec);
10698 else
10699 Set_Is_Frozen (T_Sub);
10700 end if;
10702 if Has_Discriminants (Prot_Subt) then -- False only if errors.
10703 Set_Discriminant_Constraint
10704 (T_Sub, Discriminant_Constraint (Prot_Subt));
10705 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
10706 Create_Constrained_Components
10707 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
10708 end if;
10710 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
10712 return T_Sub;
10713 end Constrain_Corresponding_Record;
10715 -----------------------
10716 -- Constrain_Decimal --
10717 -----------------------
10719 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
10720 T : constant Entity_Id := Entity (Subtype_Mark (S));
10721 C : constant Node_Id := Constraint (S);
10722 Loc : constant Source_Ptr := Sloc (C);
10723 Range_Expr : Node_Id;
10724 Digits_Expr : Node_Id;
10725 Digits_Val : Uint;
10726 Bound_Val : Ureal;
10728 begin
10729 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
10731 if Nkind (C) = N_Range_Constraint then
10732 Range_Expr := Range_Expression (C);
10733 Digits_Val := Digits_Value (T);
10735 else
10736 pragma Assert (Nkind (C) = N_Digits_Constraint);
10737 Digits_Expr := Digits_Expression (C);
10738 Analyze_And_Resolve (Digits_Expr, Any_Integer);
10740 Check_Digits_Expression (Digits_Expr);
10741 Digits_Val := Expr_Value (Digits_Expr);
10743 if Digits_Val > Digits_Value (T) then
10744 Error_Msg_N
10745 ("digits expression is incompatible with subtype", C);
10746 Digits_Val := Digits_Value (T);
10747 end if;
10749 if Present (Range_Constraint (C)) then
10750 Range_Expr := Range_Expression (Range_Constraint (C));
10751 else
10752 Range_Expr := Empty;
10753 end if;
10754 end if;
10756 Set_Etype (Def_Id, Base_Type (T));
10757 Set_Size_Info (Def_Id, (T));
10758 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10759 Set_Delta_Value (Def_Id, Delta_Value (T));
10760 Set_Scale_Value (Def_Id, Scale_Value (T));
10761 Set_Small_Value (Def_Id, Small_Value (T));
10762 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
10763 Set_Digits_Value (Def_Id, Digits_Val);
10765 -- Manufacture range from given digits value if no range present
10767 if No (Range_Expr) then
10768 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
10769 Range_Expr :=
10770 Make_Range (Loc,
10771 Low_Bound =>
10772 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
10773 High_Bound =>
10774 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
10775 end if;
10777 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
10778 Set_Discrete_RM_Size (Def_Id);
10780 -- Unconditionally delay the freeze, since we cannot set size
10781 -- information in all cases correctly until the freeze point.
10783 Set_Has_Delayed_Freeze (Def_Id);
10784 end Constrain_Decimal;
10786 ----------------------------------
10787 -- Constrain_Discriminated_Type --
10788 ----------------------------------
10790 procedure Constrain_Discriminated_Type
10791 (Def_Id : Entity_Id;
10792 S : Node_Id;
10793 Related_Nod : Node_Id;
10794 For_Access : Boolean := False)
10796 E : constant Entity_Id := Entity (Subtype_Mark (S));
10797 T : Entity_Id;
10798 C : Node_Id;
10799 Elist : Elist_Id := New_Elmt_List;
10801 procedure Fixup_Bad_Constraint;
10802 -- This is called after finding a bad constraint, and after having
10803 -- posted an appropriate error message. The mission is to leave the
10804 -- entity T in as reasonable state as possible!
10806 --------------------------
10807 -- Fixup_Bad_Constraint --
10808 --------------------------
10810 procedure Fixup_Bad_Constraint is
10811 begin
10812 -- Set a reasonable Ekind for the entity. For an incomplete type,
10813 -- we can't do much, but for other types, we can set the proper
10814 -- corresponding subtype kind.
10816 if Ekind (T) = E_Incomplete_Type then
10817 Set_Ekind (Def_Id, Ekind (T));
10818 else
10819 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10820 end if;
10822 -- Set Etype to the known type, to reduce chances of cascaded errors
10824 Set_Etype (Def_Id, E);
10825 Set_Error_Posted (Def_Id);
10826 end Fixup_Bad_Constraint;
10828 -- Start of processing for Constrain_Discriminated_Type
10830 begin
10831 C := Constraint (S);
10833 -- A discriminant constraint is only allowed in a subtype indication,
10834 -- after a subtype mark. This subtype mark must denote either a type
10835 -- with discriminants, or an access type whose designated type is a
10836 -- type with discriminants. A discriminant constraint specifies the
10837 -- values of these discriminants (RM 3.7.2(5)).
10839 T := Base_Type (Entity (Subtype_Mark (S)));
10841 if Ekind (T) in Access_Kind then
10842 T := Designated_Type (T);
10843 end if;
10845 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
10846 -- Avoid generating an error for access-to-incomplete subtypes.
10848 if Ada_Version >= Ada_05
10849 and then Ekind (T) = E_Incomplete_Type
10850 and then Nkind (Parent (S)) = N_Subtype_Declaration
10851 and then not Is_Itype (Def_Id)
10852 then
10853 -- A little sanity check, emit an error message if the type
10854 -- has discriminants to begin with. Type T may be a regular
10855 -- incomplete type or imported via a limited with clause.
10857 if Has_Discriminants (T)
10858 or else
10859 (From_With_Type (T)
10860 and then Present (Non_Limited_View (T))
10861 and then Nkind (Parent (Non_Limited_View (T))) =
10862 N_Full_Type_Declaration
10863 and then Present (Discriminant_Specifications
10864 (Parent (Non_Limited_View (T)))))
10865 then
10866 Error_Msg_N
10867 ("(Ada 2005) incomplete subtype may not be constrained", C);
10868 else
10869 Error_Msg_N ("invalid constraint: type has no discriminant", C);
10870 end if;
10872 Fixup_Bad_Constraint;
10873 return;
10875 -- Check that the type has visible discriminants. The type may be
10876 -- a private type with unknown discriminants whose full view has
10877 -- discriminants which are invisible.
10879 elsif not Has_Discriminants (T)
10880 or else
10881 (Has_Unknown_Discriminants (T)
10882 and then Is_Private_Type (T))
10883 then
10884 Error_Msg_N ("invalid constraint: type has no discriminant", C);
10885 Fixup_Bad_Constraint;
10886 return;
10888 elsif Is_Constrained (E)
10889 or else (Ekind (E) = E_Class_Wide_Subtype
10890 and then Present (Discriminant_Constraint (E)))
10891 then
10892 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
10893 Fixup_Bad_Constraint;
10894 return;
10895 end if;
10897 -- T may be an unconstrained subtype (e.g. a generic actual).
10898 -- Constraint applies to the base type.
10900 T := Base_Type (T);
10902 Elist := Build_Discriminant_Constraints (T, S);
10904 -- If the list returned was empty we had an error in building the
10905 -- discriminant constraint. We have also already signalled an error
10906 -- in the incomplete type case
10908 if Is_Empty_Elmt_List (Elist) then
10909 Fixup_Bad_Constraint;
10910 return;
10911 end if;
10913 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
10914 end Constrain_Discriminated_Type;
10916 ---------------------------
10917 -- Constrain_Enumeration --
10918 ---------------------------
10920 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
10921 T : constant Entity_Id := Entity (Subtype_Mark (S));
10922 C : constant Node_Id := Constraint (S);
10924 begin
10925 Set_Ekind (Def_Id, E_Enumeration_Subtype);
10927 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
10929 Set_Etype (Def_Id, Base_Type (T));
10930 Set_Size_Info (Def_Id, (T));
10931 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10932 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
10934 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10936 Set_Discrete_RM_Size (Def_Id);
10937 end Constrain_Enumeration;
10939 ----------------------
10940 -- Constrain_Float --
10941 ----------------------
10943 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
10944 T : constant Entity_Id := Entity (Subtype_Mark (S));
10945 C : Node_Id;
10946 D : Node_Id;
10947 Rais : Node_Id;
10949 begin
10950 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
10952 Set_Etype (Def_Id, Base_Type (T));
10953 Set_Size_Info (Def_Id, (T));
10954 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10956 -- Process the constraint
10958 C := Constraint (S);
10960 -- Digits constraint present
10962 if Nkind (C) = N_Digits_Constraint then
10963 Check_Restriction (No_Obsolescent_Features, C);
10965 if Warn_On_Obsolescent_Feature then
10966 Error_Msg_N
10967 ("subtype digits constraint is an " &
10968 "obsolescent feature (RM J.3(8))?", C);
10969 end if;
10971 D := Digits_Expression (C);
10972 Analyze_And_Resolve (D, Any_Integer);
10973 Check_Digits_Expression (D);
10974 Set_Digits_Value (Def_Id, Expr_Value (D));
10976 -- Check that digits value is in range. Obviously we can do this
10977 -- at compile time, but it is strictly a runtime check, and of
10978 -- course there is an ACVC test that checks this!
10980 if Digits_Value (Def_Id) > Digits_Value (T) then
10981 Error_Msg_Uint_1 := Digits_Value (T);
10982 Error_Msg_N ("?digits value is too large, maximum is ^", D);
10983 Rais :=
10984 Make_Raise_Constraint_Error (Sloc (D),
10985 Reason => CE_Range_Check_Failed);
10986 Insert_Action (Declaration_Node (Def_Id), Rais);
10987 end if;
10989 C := Range_Constraint (C);
10991 -- No digits constraint present
10993 else
10994 Set_Digits_Value (Def_Id, Digits_Value (T));
10995 end if;
10997 -- Range constraint present
10999 if Nkind (C) = N_Range_Constraint then
11000 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11002 -- No range constraint present
11004 else
11005 pragma Assert (No (C));
11006 Set_Scalar_Range (Def_Id, Scalar_Range (T));
11007 end if;
11009 Set_Is_Constrained (Def_Id);
11010 end Constrain_Float;
11012 ---------------------
11013 -- Constrain_Index --
11014 ---------------------
11016 procedure Constrain_Index
11017 (Index : Node_Id;
11018 S : Node_Id;
11019 Related_Nod : Node_Id;
11020 Related_Id : Entity_Id;
11021 Suffix : Character;
11022 Suffix_Index : Nat)
11024 Def_Id : Entity_Id;
11025 R : Node_Id := Empty;
11026 T : constant Entity_Id := Etype (Index);
11028 begin
11029 if Nkind (S) = N_Range
11030 or else
11031 (Nkind (S) = N_Attribute_Reference
11032 and then Attribute_Name (S) = Name_Range)
11033 then
11034 -- A Range attribute will transformed into N_Range by Resolve
11036 Analyze (S);
11037 Set_Etype (S, T);
11038 R := S;
11040 Process_Range_Expr_In_Decl (R, T, Empty_List);
11042 if not Error_Posted (S)
11043 and then
11044 (Nkind (S) /= N_Range
11045 or else not Covers (T, (Etype (Low_Bound (S))))
11046 or else not Covers (T, (Etype (High_Bound (S)))))
11047 then
11048 if Base_Type (T) /= Any_Type
11049 and then Etype (Low_Bound (S)) /= Any_Type
11050 and then Etype (High_Bound (S)) /= Any_Type
11051 then
11052 Error_Msg_N ("range expected", S);
11053 end if;
11054 end if;
11056 elsif Nkind (S) = N_Subtype_Indication then
11058 -- The parser has verified that this is a discrete indication
11060 Resolve_Discrete_Subtype_Indication (S, T);
11061 R := Range_Expression (Constraint (S));
11063 elsif Nkind (S) = N_Discriminant_Association then
11065 -- Syntactically valid in subtype indication
11067 Error_Msg_N ("invalid index constraint", S);
11068 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11069 return;
11071 -- Subtype_Mark case, no anonymous subtypes to construct
11073 else
11074 Analyze (S);
11076 if Is_Entity_Name (S) then
11077 if not Is_Type (Entity (S)) then
11078 Error_Msg_N ("expect subtype mark for index constraint", S);
11080 elsif Base_Type (Entity (S)) /= Base_Type (T) then
11081 Wrong_Type (S, Base_Type (T));
11082 end if;
11084 return;
11086 else
11087 Error_Msg_N ("invalid index constraint", S);
11088 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11089 return;
11090 end if;
11091 end if;
11093 Def_Id :=
11094 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
11096 Set_Etype (Def_Id, Base_Type (T));
11098 if Is_Modular_Integer_Type (T) then
11099 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11101 elsif Is_Integer_Type (T) then
11102 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11104 else
11105 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11106 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11107 Set_First_Literal (Def_Id, First_Literal (T));
11108 end if;
11110 Set_Size_Info (Def_Id, (T));
11111 Set_RM_Size (Def_Id, RM_Size (T));
11112 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11114 Set_Scalar_Range (Def_Id, R);
11116 Set_Etype (S, Def_Id);
11117 Set_Discrete_RM_Size (Def_Id);
11118 end Constrain_Index;
11120 -----------------------
11121 -- Constrain_Integer --
11122 -----------------------
11124 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
11125 T : constant Entity_Id := Entity (Subtype_Mark (S));
11126 C : constant Node_Id := Constraint (S);
11128 begin
11129 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11131 if Is_Modular_Integer_Type (T) then
11132 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11133 else
11134 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11135 end if;
11137 Set_Etype (Def_Id, Base_Type (T));
11138 Set_Size_Info (Def_Id, (T));
11139 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11140 Set_Discrete_RM_Size (Def_Id);
11141 end Constrain_Integer;
11143 ------------------------------
11144 -- Constrain_Ordinary_Fixed --
11145 ------------------------------
11147 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
11148 T : constant Entity_Id := Entity (Subtype_Mark (S));
11149 C : Node_Id;
11150 D : Node_Id;
11151 Rais : Node_Id;
11153 begin
11154 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
11155 Set_Etype (Def_Id, Base_Type (T));
11156 Set_Size_Info (Def_Id, (T));
11157 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11158 Set_Small_Value (Def_Id, Small_Value (T));
11160 -- Process the constraint
11162 C := Constraint (S);
11164 -- Delta constraint present
11166 if Nkind (C) = N_Delta_Constraint then
11167 Check_Restriction (No_Obsolescent_Features, C);
11169 if Warn_On_Obsolescent_Feature then
11170 Error_Msg_S
11171 ("subtype delta constraint is an " &
11172 "obsolescent feature (RM J.3(7))?");
11173 end if;
11175 D := Delta_Expression (C);
11176 Analyze_And_Resolve (D, Any_Real);
11177 Check_Delta_Expression (D);
11178 Set_Delta_Value (Def_Id, Expr_Value_R (D));
11180 -- Check that delta value is in range. Obviously we can do this
11181 -- at compile time, but it is strictly a runtime check, and of
11182 -- course there is an ACVC test that checks this!
11184 if Delta_Value (Def_Id) < Delta_Value (T) then
11185 Error_Msg_N ("?delta value is too small", D);
11186 Rais :=
11187 Make_Raise_Constraint_Error (Sloc (D),
11188 Reason => CE_Range_Check_Failed);
11189 Insert_Action (Declaration_Node (Def_Id), Rais);
11190 end if;
11192 C := Range_Constraint (C);
11194 -- No delta constraint present
11196 else
11197 Set_Delta_Value (Def_Id, Delta_Value (T));
11198 end if;
11200 -- Range constraint present
11202 if Nkind (C) = N_Range_Constraint then
11203 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11205 -- No range constraint present
11207 else
11208 pragma Assert (No (C));
11209 Set_Scalar_Range (Def_Id, Scalar_Range (T));
11211 end if;
11213 Set_Discrete_RM_Size (Def_Id);
11215 -- Unconditionally delay the freeze, since we cannot set size
11216 -- information in all cases correctly until the freeze point.
11218 Set_Has_Delayed_Freeze (Def_Id);
11219 end Constrain_Ordinary_Fixed;
11221 -----------------------
11222 -- Contain_Interface --
11223 -----------------------
11225 function Contain_Interface
11226 (Iface : Entity_Id;
11227 Ifaces : Elist_Id) return Boolean
11229 Iface_Elmt : Elmt_Id;
11231 begin
11232 if Present (Ifaces) then
11233 Iface_Elmt := First_Elmt (Ifaces);
11234 while Present (Iface_Elmt) loop
11235 if Node (Iface_Elmt) = Iface then
11236 return True;
11237 end if;
11239 Next_Elmt (Iface_Elmt);
11240 end loop;
11241 end if;
11243 return False;
11244 end Contain_Interface;
11246 ---------------------------
11247 -- Convert_Scalar_Bounds --
11248 ---------------------------
11250 procedure Convert_Scalar_Bounds
11251 (N : Node_Id;
11252 Parent_Type : Entity_Id;
11253 Derived_Type : Entity_Id;
11254 Loc : Source_Ptr)
11256 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
11258 Lo : Node_Id;
11259 Hi : Node_Id;
11260 Rng : Node_Id;
11262 begin
11263 -- Defend against previous errors
11265 if No (Scalar_Range (Derived_Type)) then
11266 return;
11267 end if;
11269 Lo := Build_Scalar_Bound
11270 (Type_Low_Bound (Derived_Type),
11271 Parent_Type, Implicit_Base);
11273 Hi := Build_Scalar_Bound
11274 (Type_High_Bound (Derived_Type),
11275 Parent_Type, Implicit_Base);
11277 Rng :=
11278 Make_Range (Loc,
11279 Low_Bound => Lo,
11280 High_Bound => Hi);
11282 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
11284 Set_Parent (Rng, N);
11285 Set_Scalar_Range (Derived_Type, Rng);
11287 -- Analyze the bounds
11289 Analyze_And_Resolve (Lo, Implicit_Base);
11290 Analyze_And_Resolve (Hi, Implicit_Base);
11292 -- Analyze the range itself, except that we do not analyze it if
11293 -- the bounds are real literals, and we have a fixed-point type.
11294 -- The reason for this is that we delay setting the bounds in this
11295 -- case till we know the final Small and Size values (see circuit
11296 -- in Freeze.Freeze_Fixed_Point_Type for further details).
11298 if Is_Fixed_Point_Type (Parent_Type)
11299 and then Nkind (Lo) = N_Real_Literal
11300 and then Nkind (Hi) = N_Real_Literal
11301 then
11302 return;
11304 -- Here we do the analysis of the range
11306 -- Note: we do this manually, since if we do a normal Analyze and
11307 -- Resolve call, there are problems with the conversions used for
11308 -- the derived type range.
11310 else
11311 Set_Etype (Rng, Implicit_Base);
11312 Set_Analyzed (Rng, True);
11313 end if;
11314 end Convert_Scalar_Bounds;
11316 -------------------
11317 -- Copy_And_Swap --
11318 -------------------
11320 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
11321 begin
11322 -- Initialize new full declaration entity by copying the pertinent
11323 -- fields of the corresponding private declaration entity.
11325 -- We temporarily set Ekind to a value appropriate for a type to
11326 -- avoid assert failures in Einfo from checking for setting type
11327 -- attributes on something that is not a type. Ekind (Priv) is an
11328 -- appropriate choice, since it allowed the attributes to be set
11329 -- in the first place. This Ekind value will be modified later.
11331 Set_Ekind (Full, Ekind (Priv));
11333 -- Also set Etype temporarily to Any_Type, again, in the absence
11334 -- of errors, it will be properly reset, and if there are errors,
11335 -- then we want a value of Any_Type to remain.
11337 Set_Etype (Full, Any_Type);
11339 -- Now start copying attributes
11341 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
11343 if Has_Discriminants (Full) then
11344 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
11345 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
11346 end if;
11348 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11349 Set_Homonym (Full, Homonym (Priv));
11350 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
11351 Set_Is_Public (Full, Is_Public (Priv));
11352 Set_Is_Pure (Full, Is_Pure (Priv));
11353 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
11354 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
11355 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
11356 Set_Has_Pragma_Unreferenced_Objects
11357 (Full, Has_Pragma_Unreferenced_Objects
11358 (Priv));
11360 Conditional_Delay (Full, Priv);
11362 if Is_Tagged_Type (Full) then
11363 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
11365 if Priv = Base_Type (Priv) then
11366 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
11367 end if;
11368 end if;
11370 Set_Is_Volatile (Full, Is_Volatile (Priv));
11371 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
11372 Set_Scope (Full, Scope (Priv));
11373 Set_Next_Entity (Full, Next_Entity (Priv));
11374 Set_First_Entity (Full, First_Entity (Priv));
11375 Set_Last_Entity (Full, Last_Entity (Priv));
11377 -- If access types have been recorded for later handling, keep them in
11378 -- the full view so that they get handled when the full view freeze
11379 -- node is expanded.
11381 if Present (Freeze_Node (Priv))
11382 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
11383 then
11384 Ensure_Freeze_Node (Full);
11385 Set_Access_Types_To_Process
11386 (Freeze_Node (Full),
11387 Access_Types_To_Process (Freeze_Node (Priv)));
11388 end if;
11390 -- Swap the two entities. Now Privat is the full type entity and Full is
11391 -- the private one. They will be swapped back at the end of the private
11392 -- part. This swapping ensures that the entity that is visible in the
11393 -- private part is the full declaration.
11395 Exchange_Entities (Priv, Full);
11396 Append_Entity (Full, Scope (Full));
11397 end Copy_And_Swap;
11399 -------------------------------------
11400 -- Copy_Array_Base_Type_Attributes --
11401 -------------------------------------
11403 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
11404 begin
11405 Set_Component_Alignment (T1, Component_Alignment (T2));
11406 Set_Component_Type (T1, Component_Type (T2));
11407 Set_Component_Size (T1, Component_Size (T2));
11408 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
11409 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
11410 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
11411 Set_Has_Task (T1, Has_Task (T2));
11412 Set_Is_Packed (T1, Is_Packed (T2));
11413 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
11414 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
11415 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
11416 end Copy_Array_Base_Type_Attributes;
11418 -----------------------------------
11419 -- Copy_Array_Subtype_Attributes --
11420 -----------------------------------
11422 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
11423 begin
11424 Set_Size_Info (T1, T2);
11426 Set_First_Index (T1, First_Index (T2));
11427 Set_Is_Aliased (T1, Is_Aliased (T2));
11428 Set_Is_Atomic (T1, Is_Atomic (T2));
11429 Set_Is_Volatile (T1, Is_Volatile (T2));
11430 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
11431 Set_Is_Constrained (T1, Is_Constrained (T2));
11432 Set_Depends_On_Private (T1, Has_Private_Component (T2));
11433 Set_First_Rep_Item (T1, First_Rep_Item (T2));
11434 Set_Convention (T1, Convention (T2));
11435 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
11436 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
11437 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
11438 end Copy_Array_Subtype_Attributes;
11440 -----------------------------------
11441 -- Create_Constrained_Components --
11442 -----------------------------------
11444 procedure Create_Constrained_Components
11445 (Subt : Entity_Id;
11446 Decl_Node : Node_Id;
11447 Typ : Entity_Id;
11448 Constraints : Elist_Id)
11450 Loc : constant Source_Ptr := Sloc (Subt);
11451 Comp_List : constant Elist_Id := New_Elmt_List;
11452 Parent_Type : constant Entity_Id := Etype (Typ);
11453 Assoc_List : constant List_Id := New_List;
11454 Discr_Val : Elmt_Id;
11455 Errors : Boolean;
11456 New_C : Entity_Id;
11457 Old_C : Entity_Id;
11458 Is_Static : Boolean := True;
11460 procedure Collect_Fixed_Components (Typ : Entity_Id);
11461 -- Collect parent type components that do not appear in a variant part
11463 procedure Create_All_Components;
11464 -- Iterate over Comp_List to create the components of the subtype
11466 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
11467 -- Creates a new component from Old_Compon, copying all the fields from
11468 -- it, including its Etype, inserts the new component in the Subt entity
11469 -- chain and returns the new component.
11471 function Is_Variant_Record (T : Entity_Id) return Boolean;
11472 -- If true, and discriminants are static, collect only components from
11473 -- variants selected by discriminant values.
11475 ------------------------------
11476 -- Collect_Fixed_Components --
11477 ------------------------------
11479 procedure Collect_Fixed_Components (Typ : Entity_Id) is
11480 begin
11481 -- Build association list for discriminants, and find components of the
11482 -- variant part selected by the values of the discriminants.
11484 Old_C := First_Discriminant (Typ);
11485 Discr_Val := First_Elmt (Constraints);
11486 while Present (Old_C) loop
11487 Append_To (Assoc_List,
11488 Make_Component_Association (Loc,
11489 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
11490 Expression => New_Copy (Node (Discr_Val))));
11492 Next_Elmt (Discr_Val);
11493 Next_Discriminant (Old_C);
11494 end loop;
11496 -- The tag, and the possible parent and controller components
11497 -- are unconditionally in the subtype.
11499 if Is_Tagged_Type (Typ)
11500 or else Has_Controlled_Component (Typ)
11501 then
11502 Old_C := First_Component (Typ);
11503 while Present (Old_C) loop
11504 if Chars ((Old_C)) = Name_uTag
11505 or else Chars ((Old_C)) = Name_uParent
11506 or else Chars ((Old_C)) = Name_uController
11507 then
11508 Append_Elmt (Old_C, Comp_List);
11509 end if;
11511 Next_Component (Old_C);
11512 end loop;
11513 end if;
11514 end Collect_Fixed_Components;
11516 ---------------------------
11517 -- Create_All_Components --
11518 ---------------------------
11520 procedure Create_All_Components is
11521 Comp : Elmt_Id;
11523 begin
11524 Comp := First_Elmt (Comp_List);
11525 while Present (Comp) loop
11526 Old_C := Node (Comp);
11527 New_C := Create_Component (Old_C);
11529 Set_Etype
11530 (New_C,
11531 Constrain_Component_Type
11532 (Old_C, Subt, Decl_Node, Typ, Constraints));
11533 Set_Is_Public (New_C, Is_Public (Subt));
11535 Next_Elmt (Comp);
11536 end loop;
11537 end Create_All_Components;
11539 ----------------------
11540 -- Create_Component --
11541 ----------------------
11543 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
11544 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
11546 begin
11547 if Ekind (Old_Compon) = E_Discriminant
11548 and then Is_Completely_Hidden (Old_Compon)
11549 then
11550 -- This is a shadow discriminant created for a discriminant of
11551 -- the parent type, which needs to be present in the subtype.
11552 -- Give the shadow discriminant an internal name that cannot
11553 -- conflict with that of visible components.
11555 Set_Chars (New_Compon, New_Internal_Name ('C'));
11556 end if;
11558 -- Set the parent so we have a proper link for freezing etc. This is
11559 -- not a real parent pointer, since of course our parent does not own
11560 -- up to us and reference us, we are an illegitimate child of the
11561 -- original parent!
11563 Set_Parent (New_Compon, Parent (Old_Compon));
11565 -- If the old component's Esize was already determined and is a
11566 -- static value, then the new component simply inherits it. Otherwise
11567 -- the old component's size may require run-time determination, but
11568 -- the new component's size still might be statically determinable
11569 -- (if, for example it has a static constraint). In that case we want
11570 -- Layout_Type to recompute the component's size, so we reset its
11571 -- size and positional fields.
11573 if Frontend_Layout_On_Target
11574 and then not Known_Static_Esize (Old_Compon)
11575 then
11576 Set_Esize (New_Compon, Uint_0);
11577 Init_Normalized_First_Bit (New_Compon);
11578 Init_Normalized_Position (New_Compon);
11579 Init_Normalized_Position_Max (New_Compon);
11580 end if;
11582 -- We do not want this node marked as Comes_From_Source, since
11583 -- otherwise it would get first class status and a separate cross-
11584 -- reference line would be generated. Illegitimate children do not
11585 -- rate such recognition.
11587 Set_Comes_From_Source (New_Compon, False);
11589 -- But it is a real entity, and a birth certificate must be properly
11590 -- registered by entering it into the entity list.
11592 Enter_Name (New_Compon);
11594 return New_Compon;
11595 end Create_Component;
11597 -----------------------
11598 -- Is_Variant_Record --
11599 -----------------------
11601 function Is_Variant_Record (T : Entity_Id) return Boolean is
11602 begin
11603 return Nkind (Parent (T)) = N_Full_Type_Declaration
11604 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
11605 and then Present (Component_List (Type_Definition (Parent (T))))
11606 and then
11607 Present
11608 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
11609 end Is_Variant_Record;
11611 -- Start of processing for Create_Constrained_Components
11613 begin
11614 pragma Assert (Subt /= Base_Type (Subt));
11615 pragma Assert (Typ = Base_Type (Typ));
11617 Set_First_Entity (Subt, Empty);
11618 Set_Last_Entity (Subt, Empty);
11620 -- Check whether constraint is fully static, in which case we can
11621 -- optimize the list of components.
11623 Discr_Val := First_Elmt (Constraints);
11624 while Present (Discr_Val) loop
11625 if not Is_OK_Static_Expression (Node (Discr_Val)) then
11626 Is_Static := False;
11627 exit;
11628 end if;
11630 Next_Elmt (Discr_Val);
11631 end loop;
11633 Set_Has_Static_Discriminants (Subt, Is_Static);
11635 Push_Scope (Subt);
11637 -- Inherit the discriminants of the parent type
11639 Add_Discriminants : declare
11640 Num_Disc : Int;
11641 Num_Gird : Int;
11643 begin
11644 Num_Disc := 0;
11645 Old_C := First_Discriminant (Typ);
11647 while Present (Old_C) loop
11648 Num_Disc := Num_Disc + 1;
11649 New_C := Create_Component (Old_C);
11650 Set_Is_Public (New_C, Is_Public (Subt));
11651 Next_Discriminant (Old_C);
11652 end loop;
11654 -- For an untagged derived subtype, the number of discriminants may
11655 -- be smaller than the number of inherited discriminants, because
11656 -- several of them may be renamed by a single new discriminant or
11657 -- constrained. In this case, add the hidden discriminants back into
11658 -- the subtype, because they need to be present if the optimizer of
11659 -- the GCC 4.x back-end decides to break apart assignments between
11660 -- objects using the parent view into member-wise assignments.
11662 Num_Gird := 0;
11664 if Is_Derived_Type (Typ)
11665 and then not Is_Tagged_Type (Typ)
11666 then
11667 Old_C := First_Stored_Discriminant (Typ);
11669 while Present (Old_C) loop
11670 Num_Gird := Num_Gird + 1;
11671 Next_Stored_Discriminant (Old_C);
11672 end loop;
11673 end if;
11675 if Num_Gird > Num_Disc then
11677 -- Find out multiple uses of new discriminants, and add hidden
11678 -- components for the extra renamed discriminants. We recognize
11679 -- multiple uses through the Corresponding_Discriminant of a
11680 -- new discriminant: if it constrains several old discriminants,
11681 -- this field points to the last one in the parent type. The
11682 -- stored discriminants of the derived type have the same name
11683 -- as those of the parent.
11685 declare
11686 Constr : Elmt_Id;
11687 New_Discr : Entity_Id;
11688 Old_Discr : Entity_Id;
11690 begin
11691 Constr := First_Elmt (Stored_Constraint (Typ));
11692 Old_Discr := First_Stored_Discriminant (Typ);
11693 while Present (Constr) loop
11694 if Is_Entity_Name (Node (Constr))
11695 and then Ekind (Entity (Node (Constr))) = E_Discriminant
11696 then
11697 New_Discr := Entity (Node (Constr));
11699 if Chars (Corresponding_Discriminant (New_Discr)) /=
11700 Chars (Old_Discr)
11701 then
11702 -- The new discriminant has been used to rename a
11703 -- subsequent old discriminant. Introduce a shadow
11704 -- component for the current old discriminant.
11706 New_C := Create_Component (Old_Discr);
11707 Set_Original_Record_Component (New_C, Old_Discr);
11708 end if;
11710 else
11711 -- The constraint has eliminated the old discriminant.
11712 -- Introduce a shadow component.
11714 New_C := Create_Component (Old_Discr);
11715 Set_Original_Record_Component (New_C, Old_Discr);
11716 end if;
11718 Next_Elmt (Constr);
11719 Next_Stored_Discriminant (Old_Discr);
11720 end loop;
11721 end;
11722 end if;
11723 end Add_Discriminants;
11725 if Is_Static
11726 and then Is_Variant_Record (Typ)
11727 then
11728 Collect_Fixed_Components (Typ);
11730 Gather_Components (
11731 Typ,
11732 Component_List (Type_Definition (Parent (Typ))),
11733 Governed_By => Assoc_List,
11734 Into => Comp_List,
11735 Report_Errors => Errors);
11736 pragma Assert (not Errors);
11738 Create_All_Components;
11740 -- If the subtype declaration is created for a tagged type derivation
11741 -- with constraints, we retrieve the record definition of the parent
11742 -- type to select the components of the proper variant.
11744 elsif Is_Static
11745 and then Is_Tagged_Type (Typ)
11746 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
11747 and then
11748 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
11749 and then Is_Variant_Record (Parent_Type)
11750 then
11751 Collect_Fixed_Components (Typ);
11753 Gather_Components (
11754 Typ,
11755 Component_List (Type_Definition (Parent (Parent_Type))),
11756 Governed_By => Assoc_List,
11757 Into => Comp_List,
11758 Report_Errors => Errors);
11759 pragma Assert (not Errors);
11761 -- If the tagged derivation has a type extension, collect all the
11762 -- new components therein.
11764 if Present
11765 (Record_Extension_Part (Type_Definition (Parent (Typ))))
11766 then
11767 Old_C := First_Component (Typ);
11768 while Present (Old_C) loop
11769 if Original_Record_Component (Old_C) = Old_C
11770 and then Chars (Old_C) /= Name_uTag
11771 and then Chars (Old_C) /= Name_uParent
11772 and then Chars (Old_C) /= Name_uController
11773 then
11774 Append_Elmt (Old_C, Comp_List);
11775 end if;
11777 Next_Component (Old_C);
11778 end loop;
11779 end if;
11781 Create_All_Components;
11783 else
11784 -- If discriminants are not static, or if this is a multi-level type
11785 -- extension, we have to include all components of the parent type.
11787 Old_C := First_Component (Typ);
11788 while Present (Old_C) loop
11789 New_C := Create_Component (Old_C);
11791 Set_Etype
11792 (New_C,
11793 Constrain_Component_Type
11794 (Old_C, Subt, Decl_Node, Typ, Constraints));
11795 Set_Is_Public (New_C, Is_Public (Subt));
11797 Next_Component (Old_C);
11798 end loop;
11799 end if;
11801 End_Scope;
11802 end Create_Constrained_Components;
11804 ------------------------------------------
11805 -- Decimal_Fixed_Point_Type_Declaration --
11806 ------------------------------------------
11808 procedure Decimal_Fixed_Point_Type_Declaration
11809 (T : Entity_Id;
11810 Def : Node_Id)
11812 Loc : constant Source_Ptr := Sloc (Def);
11813 Digs_Expr : constant Node_Id := Digits_Expression (Def);
11814 Delta_Expr : constant Node_Id := Delta_Expression (Def);
11815 Implicit_Base : Entity_Id;
11816 Digs_Val : Uint;
11817 Delta_Val : Ureal;
11818 Scale_Val : Uint;
11819 Bound_Val : Ureal;
11821 begin
11822 Check_Restriction (No_Fixed_Point, Def);
11824 -- Create implicit base type
11826 Implicit_Base :=
11827 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
11828 Set_Etype (Implicit_Base, Implicit_Base);
11830 -- Analyze and process delta expression
11832 Analyze_And_Resolve (Delta_Expr, Universal_Real);
11834 Check_Delta_Expression (Delta_Expr);
11835 Delta_Val := Expr_Value_R (Delta_Expr);
11837 -- Check delta is power of 10, and determine scale value from it
11839 declare
11840 Val : Ureal;
11842 begin
11843 Scale_Val := Uint_0;
11844 Val := Delta_Val;
11846 if Val < Ureal_1 then
11847 while Val < Ureal_1 loop
11848 Val := Val * Ureal_10;
11849 Scale_Val := Scale_Val + 1;
11850 end loop;
11852 if Scale_Val > 18 then
11853 Error_Msg_N ("scale exceeds maximum value of 18", Def);
11854 Scale_Val := UI_From_Int (+18);
11855 end if;
11857 else
11858 while Val > Ureal_1 loop
11859 Val := Val / Ureal_10;
11860 Scale_Val := Scale_Val - 1;
11861 end loop;
11863 if Scale_Val < -18 then
11864 Error_Msg_N ("scale is less than minimum value of -18", Def);
11865 Scale_Val := UI_From_Int (-18);
11866 end if;
11867 end if;
11869 if Val /= Ureal_1 then
11870 Error_Msg_N ("delta expression must be a power of 10", Def);
11871 Delta_Val := Ureal_10 ** (-Scale_Val);
11872 end if;
11873 end;
11875 -- Set delta, scale and small (small = delta for decimal type)
11877 Set_Delta_Value (Implicit_Base, Delta_Val);
11878 Set_Scale_Value (Implicit_Base, Scale_Val);
11879 Set_Small_Value (Implicit_Base, Delta_Val);
11881 -- Analyze and process digits expression
11883 Analyze_And_Resolve (Digs_Expr, Any_Integer);
11884 Check_Digits_Expression (Digs_Expr);
11885 Digs_Val := Expr_Value (Digs_Expr);
11887 if Digs_Val > 18 then
11888 Digs_Val := UI_From_Int (+18);
11889 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
11890 end if;
11892 Set_Digits_Value (Implicit_Base, Digs_Val);
11893 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
11895 -- Set range of base type from digits value for now. This will be
11896 -- expanded to represent the true underlying base range by Freeze.
11898 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
11900 -- Note: We leave size as zero for now, size will be set at freeze
11901 -- time. We have to do this for ordinary fixed-point, because the size
11902 -- depends on the specified small, and we might as well do the same for
11903 -- decimal fixed-point.
11905 pragma Assert (Esize (Implicit_Base) = Uint_0);
11907 -- If there are bounds given in the declaration use them as the
11908 -- bounds of the first named subtype.
11910 if Present (Real_Range_Specification (Def)) then
11911 declare
11912 RRS : constant Node_Id := Real_Range_Specification (Def);
11913 Low : constant Node_Id := Low_Bound (RRS);
11914 High : constant Node_Id := High_Bound (RRS);
11915 Low_Val : Ureal;
11916 High_Val : Ureal;
11918 begin
11919 Analyze_And_Resolve (Low, Any_Real);
11920 Analyze_And_Resolve (High, Any_Real);
11921 Check_Real_Bound (Low);
11922 Check_Real_Bound (High);
11923 Low_Val := Expr_Value_R (Low);
11924 High_Val := Expr_Value_R (High);
11926 if Low_Val < (-Bound_Val) then
11927 Error_Msg_N
11928 ("range low bound too small for digits value", Low);
11929 Low_Val := -Bound_Val;
11930 end if;
11932 if High_Val > Bound_Val then
11933 Error_Msg_N
11934 ("range high bound too large for digits value", High);
11935 High_Val := Bound_Val;
11936 end if;
11938 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
11939 end;
11941 -- If no explicit range, use range that corresponds to given
11942 -- digits value. This will end up as the final range for the
11943 -- first subtype.
11945 else
11946 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
11947 end if;
11949 -- Complete entity for first subtype
11951 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
11952 Set_Etype (T, Implicit_Base);
11953 Set_Size_Info (T, Implicit_Base);
11954 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11955 Set_Digits_Value (T, Digs_Val);
11956 Set_Delta_Value (T, Delta_Val);
11957 Set_Small_Value (T, Delta_Val);
11958 Set_Scale_Value (T, Scale_Val);
11959 Set_Is_Constrained (T);
11960 end Decimal_Fixed_Point_Type_Declaration;
11962 -----------------------------------
11963 -- Derive_Progenitor_Subprograms --
11964 -----------------------------------
11966 procedure Derive_Progenitor_Subprograms
11967 (Parent_Type : Entity_Id;
11968 Tagged_Type : Entity_Id)
11970 E : Entity_Id;
11971 Elmt : Elmt_Id;
11972 Iface : Entity_Id;
11973 Iface_Elmt : Elmt_Id;
11974 Iface_Subp : Entity_Id;
11975 New_Subp : Entity_Id := Empty;
11976 Prim_Elmt : Elmt_Id;
11977 Subp : Entity_Id;
11978 Typ : Entity_Id;
11980 begin
11981 pragma Assert (Ada_Version >= Ada_05
11982 and then Is_Record_Type (Tagged_Type)
11983 and then Is_Tagged_Type (Tagged_Type)
11984 and then Has_Interfaces (Tagged_Type));
11986 -- Step 1: Transfer to the full-view primitives associated with the
11987 -- partial-view that cover interface primitives. Conceptually this
11988 -- work should be done later by Process_Full_View; done here to
11989 -- simplify its implementation at later stages. It can be safely
11990 -- done here because interfaces must be visible in the partial and
11991 -- private view (RM 7.3(7.3/2)).
11993 -- Small optimization: This work is only required if the parent is
11994 -- abstract. If the tagged type is not abstract, it cannot have
11995 -- abstract primitives (the only entities in the list of primitives of
11996 -- non-abstract tagged types that can reference abstract primitives
11997 -- through its Alias attribute are the internal entities that have
11998 -- attribute Interface_Alias, and these entities are generated later
11999 -- by Add_Internal_Interface_Entities).
12001 if In_Private_Part (Current_Scope)
12002 and then Is_Abstract_Type (Parent_Type)
12003 then
12004 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
12005 while Present (Elmt) loop
12006 Subp := Node (Elmt);
12008 -- At this stage it is not possible to have entities in the list
12009 -- of primitives that have attribute Interface_Alias
12011 pragma Assert (No (Interface_Alias (Subp)));
12013 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
12015 if Is_Interface (Typ) then
12016 E := Find_Primitive_Covering_Interface
12017 (Tagged_Type => Tagged_Type,
12018 Iface_Prim => Subp);
12020 if Present (E)
12021 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
12022 then
12023 Replace_Elmt (Elmt, E);
12024 Remove_Homonym (Subp);
12025 end if;
12026 end if;
12028 Next_Elmt (Elmt);
12029 end loop;
12030 end if;
12032 -- Step 2: Add primitives of progenitors that are not implemented by
12033 -- parents of Tagged_Type
12035 if Present (Interfaces (Base_Type (Tagged_Type))) then
12036 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
12037 while Present (Iface_Elmt) loop
12038 Iface := Node (Iface_Elmt);
12040 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
12041 while Present (Prim_Elmt) loop
12042 Iface_Subp := Node (Prim_Elmt);
12044 -- Exclude derivation of predefined primitives except those
12045 -- that come from source. Required to catch declarations of
12046 -- equality operators of interfaces. For example:
12048 -- type Iface is interface;
12049 -- function "=" (Left, Right : Iface) return Boolean;
12051 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
12052 or else Comes_From_Source (Iface_Subp)
12053 then
12054 E := Find_Primitive_Covering_Interface
12055 (Tagged_Type => Tagged_Type,
12056 Iface_Prim => Iface_Subp);
12058 -- If not found we derive a new primitive leaving its alias
12059 -- attribute referencing the interface primitive
12061 if No (E) then
12062 Derive_Subprogram
12063 (New_Subp, Iface_Subp, Tagged_Type, Iface);
12065 -- Propagate to the full view interface entities associated
12066 -- with the partial view
12068 elsif In_Private_Part (Current_Scope)
12069 and then Present (Alias (E))
12070 and then Alias (E) = Iface_Subp
12071 and then
12072 List_Containing (Parent (E)) /=
12073 Private_Declarations
12074 (Specification
12075 (Unit_Declaration_Node (Current_Scope)))
12076 then
12077 Append_Elmt (E, Primitive_Operations (Tagged_Type));
12078 end if;
12079 end if;
12081 Next_Elmt (Prim_Elmt);
12082 end loop;
12084 Next_Elmt (Iface_Elmt);
12085 end loop;
12086 end if;
12087 end Derive_Progenitor_Subprograms;
12089 -----------------------
12090 -- Derive_Subprogram --
12091 -----------------------
12093 procedure Derive_Subprogram
12094 (New_Subp : in out Entity_Id;
12095 Parent_Subp : Entity_Id;
12096 Derived_Type : Entity_Id;
12097 Parent_Type : Entity_Id;
12098 Actual_Subp : Entity_Id := Empty)
12100 Formal : Entity_Id;
12101 -- Formal parameter of parent primitive operation
12103 Formal_Of_Actual : Entity_Id;
12104 -- Formal parameter of actual operation, when the derivation is to
12105 -- create a renaming for a primitive operation of an actual in an
12106 -- instantiation.
12108 New_Formal : Entity_Id;
12109 -- Formal of inherited operation
12111 Visible_Subp : Entity_Id := Parent_Subp;
12113 function Is_Private_Overriding return Boolean;
12114 -- If Subp is a private overriding of a visible operation, the inherited
12115 -- operation derives from the overridden op (even though its body is the
12116 -- overriding one) and the inherited operation is visible now. See
12117 -- sem_disp to see the full details of the handling of the overridden
12118 -- subprogram, which is removed from the list of primitive operations of
12119 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12120 -- and used to diagnose abstract operations that need overriding in the
12121 -- derived type.
12123 procedure Replace_Type (Id, New_Id : Entity_Id);
12124 -- When the type is an anonymous access type, create a new access type
12125 -- designating the derived type.
12127 procedure Set_Derived_Name;
12128 -- This procedure sets the appropriate Chars name for New_Subp. This
12129 -- is normally just a copy of the parent name. An exception arises for
12130 -- type support subprograms, where the name is changed to reflect the
12131 -- name of the derived type, e.g. if type foo is derived from type bar,
12132 -- then a procedure barDA is derived with a name fooDA.
12134 ---------------------------
12135 -- Is_Private_Overriding --
12136 ---------------------------
12138 function Is_Private_Overriding return Boolean is
12139 Prev : Entity_Id;
12141 begin
12142 -- If the parent is not a dispatching operation there is no
12143 -- need to investigate overridings
12145 if not Is_Dispatching_Operation (Parent_Subp) then
12146 return False;
12147 end if;
12149 -- The visible operation that is overridden is a homonym of the
12150 -- parent subprogram. We scan the homonym chain to find the one
12151 -- whose alias is the subprogram we are deriving.
12153 Prev := Current_Entity (Parent_Subp);
12154 while Present (Prev) loop
12155 if Ekind (Prev) = Ekind (Parent_Subp)
12156 and then Alias (Prev) = Parent_Subp
12157 and then Scope (Parent_Subp) = Scope (Prev)
12158 and then not Is_Hidden (Prev)
12159 then
12160 Visible_Subp := Prev;
12161 return True;
12162 end if;
12164 Prev := Homonym (Prev);
12165 end loop;
12167 return False;
12168 end Is_Private_Overriding;
12170 ------------------
12171 -- Replace_Type --
12172 ------------------
12174 procedure Replace_Type (Id, New_Id : Entity_Id) is
12175 Acc_Type : Entity_Id;
12176 Par : constant Node_Id := Parent (Derived_Type);
12178 begin
12179 -- When the type is an anonymous access type, create a new access
12180 -- type designating the derived type. This itype must be elaborated
12181 -- at the point of the derivation, not on subsequent calls that may
12182 -- be out of the proper scope for Gigi, so we insert a reference to
12183 -- it after the derivation.
12185 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
12186 declare
12187 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
12189 begin
12190 if Ekind (Desig_Typ) = E_Record_Type_With_Private
12191 and then Present (Full_View (Desig_Typ))
12192 and then not Is_Private_Type (Parent_Type)
12193 then
12194 Desig_Typ := Full_View (Desig_Typ);
12195 end if;
12197 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
12199 -- Ada 2005 (AI-251): Handle also derivations of abstract
12200 -- interface primitives.
12202 or else (Is_Interface (Desig_Typ)
12203 and then not Is_Class_Wide_Type (Desig_Typ))
12204 then
12205 Acc_Type := New_Copy (Etype (Id));
12206 Set_Etype (Acc_Type, Acc_Type);
12207 Set_Scope (Acc_Type, New_Subp);
12209 -- Compute size of anonymous access type
12211 if Is_Array_Type (Desig_Typ)
12212 and then not Is_Constrained (Desig_Typ)
12213 then
12214 Init_Size (Acc_Type, 2 * System_Address_Size);
12215 else
12216 Init_Size (Acc_Type, System_Address_Size);
12217 end if;
12219 Init_Alignment (Acc_Type);
12220 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
12222 Set_Etype (New_Id, Acc_Type);
12223 Set_Scope (New_Id, New_Subp);
12225 -- Create a reference to it
12226 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
12228 else
12229 Set_Etype (New_Id, Etype (Id));
12230 end if;
12231 end;
12233 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
12234 or else
12235 (Ekind (Etype (Id)) = E_Record_Type_With_Private
12236 and then Present (Full_View (Etype (Id)))
12237 and then
12238 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
12239 then
12240 -- Constraint checks on formals are generated during expansion,
12241 -- based on the signature of the original subprogram. The bounds
12242 -- of the derived type are not relevant, and thus we can use
12243 -- the base type for the formals. However, the return type may be
12244 -- used in a context that requires that the proper static bounds
12245 -- be used (a case statement, for example) and for those cases
12246 -- we must use the derived type (first subtype), not its base.
12248 -- If the derived_type_definition has no constraints, we know that
12249 -- the derived type has the same constraints as the first subtype
12250 -- of the parent, and we can also use it rather than its base,
12251 -- which can lead to more efficient code.
12253 if Etype (Id) = Parent_Type then
12254 if Is_Scalar_Type (Parent_Type)
12255 and then
12256 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
12257 then
12258 Set_Etype (New_Id, Derived_Type);
12260 elsif Nkind (Par) = N_Full_Type_Declaration
12261 and then
12262 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
12263 and then
12264 Is_Entity_Name
12265 (Subtype_Indication (Type_Definition (Par)))
12266 then
12267 Set_Etype (New_Id, Derived_Type);
12269 else
12270 Set_Etype (New_Id, Base_Type (Derived_Type));
12271 end if;
12273 else
12274 Set_Etype (New_Id, Base_Type (Derived_Type));
12275 end if;
12277 else
12278 Set_Etype (New_Id, Etype (Id));
12279 end if;
12280 end Replace_Type;
12282 ----------------------
12283 -- Set_Derived_Name --
12284 ----------------------
12286 procedure Set_Derived_Name is
12287 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
12288 begin
12289 if Nm = TSS_Null then
12290 Set_Chars (New_Subp, Chars (Parent_Subp));
12291 else
12292 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
12293 end if;
12294 end Set_Derived_Name;
12296 -- Start of processing for Derive_Subprogram
12298 begin
12299 New_Subp :=
12300 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
12301 Set_Ekind (New_Subp, Ekind (Parent_Subp));
12303 -- Check whether the inherited subprogram is a private operation that
12304 -- should be inherited but not yet made visible. Such subprograms can
12305 -- become visible at a later point (e.g., the private part of a public
12306 -- child unit) via Declare_Inherited_Private_Subprograms. If the
12307 -- following predicate is true, then this is not such a private
12308 -- operation and the subprogram simply inherits the name of the parent
12309 -- subprogram. Note the special check for the names of controlled
12310 -- operations, which are currently exempted from being inherited with
12311 -- a hidden name because they must be findable for generation of
12312 -- implicit run-time calls.
12314 if not Is_Hidden (Parent_Subp)
12315 or else Is_Internal (Parent_Subp)
12316 or else Is_Private_Overriding
12317 or else Is_Internal_Name (Chars (Parent_Subp))
12318 or else Chars (Parent_Subp) = Name_Initialize
12319 or else Chars (Parent_Subp) = Name_Adjust
12320 or else Chars (Parent_Subp) = Name_Finalize
12321 then
12322 Set_Derived_Name;
12324 -- An inherited dispatching equality will be overridden by an internally
12325 -- generated one, or by an explicit one, so preserve its name and thus
12326 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
12327 -- private operation it may become invisible if the full view has
12328 -- progenitors, and the dispatch table will be malformed.
12329 -- We check that the type is limited to handle the anomalous declaration
12330 -- of Limited_Controlled, which is derived from a non-limited type, and
12331 -- which is handled specially elsewhere as well.
12333 elsif Chars (Parent_Subp) = Name_Op_Eq
12334 and then Is_Dispatching_Operation (Parent_Subp)
12335 and then Etype (Parent_Subp) = Standard_Boolean
12336 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
12337 and then
12338 Etype (First_Formal (Parent_Subp)) =
12339 Etype (Next_Formal (First_Formal (Parent_Subp)))
12340 then
12341 Set_Derived_Name;
12343 -- If parent is hidden, this can be a regular derivation if the
12344 -- parent is immediately visible in a non-instantiating context,
12345 -- or if we are in the private part of an instance. This test
12346 -- should still be refined ???
12348 -- The test for In_Instance_Not_Visible avoids inheriting the derived
12349 -- operation as a non-visible operation in cases where the parent
12350 -- subprogram might not be visible now, but was visible within the
12351 -- original generic, so it would be wrong to make the inherited
12352 -- subprogram non-visible now. (Not clear if this test is fully
12353 -- correct; are there any cases where we should declare the inherited
12354 -- operation as not visible to avoid it being overridden, e.g., when
12355 -- the parent type is a generic actual with private primitives ???)
12357 -- (they should be treated the same as other private inherited
12358 -- subprograms, but it's not clear how to do this cleanly). ???
12360 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
12361 and then Is_Immediately_Visible (Parent_Subp)
12362 and then not In_Instance)
12363 or else In_Instance_Not_Visible
12364 then
12365 Set_Derived_Name;
12367 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
12368 -- overrides an interface primitive because interface primitives
12369 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
12371 elsif Ada_Version >= Ada_05
12372 and then Is_Dispatching_Operation (Parent_Subp)
12373 and then Covers_Some_Interface (Parent_Subp)
12374 then
12375 Set_Derived_Name;
12377 -- Otherwise, the type is inheriting a private operation, so enter
12378 -- it with a special name so it can't be overridden.
12380 else
12381 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
12382 end if;
12384 Set_Parent (New_Subp, Parent (Derived_Type));
12386 if Present (Actual_Subp) then
12387 Replace_Type (Actual_Subp, New_Subp);
12388 else
12389 Replace_Type (Parent_Subp, New_Subp);
12390 end if;
12392 Conditional_Delay (New_Subp, Parent_Subp);
12394 -- If we are creating a renaming for a primitive operation of an
12395 -- actual of a generic derived type, we must examine the signature
12396 -- of the actual primitive, not that of the generic formal, which for
12397 -- example may be an interface. However the name and initial value
12398 -- of the inherited operation are those of the formal primitive.
12400 Formal := First_Formal (Parent_Subp);
12402 if Present (Actual_Subp) then
12403 Formal_Of_Actual := First_Formal (Actual_Subp);
12404 else
12405 Formal_Of_Actual := Empty;
12406 end if;
12408 while Present (Formal) loop
12409 New_Formal := New_Copy (Formal);
12411 -- Normally we do not go copying parents, but in the case of
12412 -- formals, we need to link up to the declaration (which is the
12413 -- parameter specification), and it is fine to link up to the
12414 -- original formal's parameter specification in this case.
12416 Set_Parent (New_Formal, Parent (Formal));
12417 Append_Entity (New_Formal, New_Subp);
12419 if Present (Formal_Of_Actual) then
12420 Replace_Type (Formal_Of_Actual, New_Formal);
12421 Next_Formal (Formal_Of_Actual);
12422 else
12423 Replace_Type (Formal, New_Formal);
12424 end if;
12426 Next_Formal (Formal);
12427 end loop;
12429 -- If this derivation corresponds to a tagged generic actual, then
12430 -- primitive operations rename those of the actual. Otherwise the
12431 -- primitive operations rename those of the parent type, If the parent
12432 -- renames an intrinsic operator, so does the new subprogram. We except
12433 -- concatenation, which is always properly typed, and does not get
12434 -- expanded as other intrinsic operations.
12436 if No (Actual_Subp) then
12437 if Is_Intrinsic_Subprogram (Parent_Subp) then
12438 Set_Is_Intrinsic_Subprogram (New_Subp);
12440 if Present (Alias (Parent_Subp))
12441 and then Chars (Parent_Subp) /= Name_Op_Concat
12442 then
12443 Set_Alias (New_Subp, Alias (Parent_Subp));
12444 else
12445 Set_Alias (New_Subp, Parent_Subp);
12446 end if;
12448 else
12449 Set_Alias (New_Subp, Parent_Subp);
12450 end if;
12452 else
12453 Set_Alias (New_Subp, Actual_Subp);
12454 end if;
12456 -- Derived subprograms of a tagged type must inherit the convention
12457 -- of the parent subprogram (a requirement of AI-117). Derived
12458 -- subprograms of untagged types simply get convention Ada by default.
12460 if Is_Tagged_Type (Derived_Type) then
12461 Set_Convention (New_Subp, Convention (Parent_Subp));
12462 end if;
12464 -- Predefined controlled operations retain their name even if the parent
12465 -- is hidden (see above), but they are not primitive operations if the
12466 -- ancestor is not visible, for example if the parent is a private
12467 -- extension completed with a controlled extension. Note that a full
12468 -- type that is controlled can break privacy: the flag Is_Controlled is
12469 -- set on both views of the type.
12471 if Is_Controlled (Parent_Type)
12472 and then
12473 (Chars (Parent_Subp) = Name_Initialize
12474 or else Chars (Parent_Subp) = Name_Adjust
12475 or else Chars (Parent_Subp) = Name_Finalize)
12476 and then Is_Hidden (Parent_Subp)
12477 and then not Is_Visibly_Controlled (Parent_Type)
12478 then
12479 Set_Is_Hidden (New_Subp);
12480 end if;
12482 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
12483 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
12485 if Ekind (Parent_Subp) = E_Procedure then
12486 Set_Is_Valued_Procedure
12487 (New_Subp, Is_Valued_Procedure (Parent_Subp));
12488 end if;
12490 -- No_Return must be inherited properly. If this is overridden in the
12491 -- case of a dispatching operation, then a check is made in Sem_Disp
12492 -- that the overriding operation is also No_Return (no such check is
12493 -- required for the case of non-dispatching operation.
12495 Set_No_Return (New_Subp, No_Return (Parent_Subp));
12497 -- A derived function with a controlling result is abstract. If the
12498 -- Derived_Type is a nonabstract formal generic derived type, then
12499 -- inherited operations are not abstract: the required check is done at
12500 -- instantiation time. If the derivation is for a generic actual, the
12501 -- function is not abstract unless the actual is.
12503 if Is_Generic_Type (Derived_Type)
12504 and then not Is_Abstract_Type (Derived_Type)
12505 then
12506 null;
12508 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
12509 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
12511 elsif Ada_Version >= Ada_05
12512 and then (Is_Abstract_Subprogram (Alias (New_Subp))
12513 or else (Is_Tagged_Type (Derived_Type)
12514 and then Etype (New_Subp) = Derived_Type
12515 and then not Is_Null_Extension (Derived_Type))
12516 or else (Is_Tagged_Type (Derived_Type)
12517 and then Ekind (Etype (New_Subp)) =
12518 E_Anonymous_Access_Type
12519 and then Designated_Type (Etype (New_Subp)) =
12520 Derived_Type
12521 and then not Is_Null_Extension (Derived_Type)))
12522 and then No (Actual_Subp)
12523 then
12524 if not Is_Tagged_Type (Derived_Type)
12525 or else Is_Abstract_Type (Derived_Type)
12526 or else Is_Abstract_Subprogram (Alias (New_Subp))
12527 then
12528 Set_Is_Abstract_Subprogram (New_Subp);
12529 else
12530 Set_Requires_Overriding (New_Subp);
12531 end if;
12533 elsif Ada_Version < Ada_05
12534 and then (Is_Abstract_Subprogram (Alias (New_Subp))
12535 or else (Is_Tagged_Type (Derived_Type)
12536 and then Etype (New_Subp) = Derived_Type
12537 and then No (Actual_Subp)))
12538 then
12539 Set_Is_Abstract_Subprogram (New_Subp);
12541 -- Finally, if the parent type is abstract we must verify that all
12542 -- inherited operations are either non-abstract or overridden, or that
12543 -- the derived type itself is abstract (this check is performed at the
12544 -- end of a package declaration, in Check_Abstract_Overriding). A
12545 -- private overriding in the parent type will not be visible in the
12546 -- derivation if we are not in an inner package or in a child unit of
12547 -- the parent type, in which case the abstractness of the inherited
12548 -- operation is carried to the new subprogram.
12550 elsif Is_Abstract_Type (Parent_Type)
12551 and then not In_Open_Scopes (Scope (Parent_Type))
12552 and then Is_Private_Overriding
12553 and then Is_Abstract_Subprogram (Visible_Subp)
12554 then
12555 if No (Actual_Subp) then
12556 Set_Alias (New_Subp, Visible_Subp);
12557 Set_Is_Abstract_Subprogram (New_Subp, True);
12559 else
12560 -- If this is a derivation for an instance of a formal derived
12561 -- type, abstractness comes from the primitive operation of the
12562 -- actual, not from the operation inherited from the ancestor.
12564 Set_Is_Abstract_Subprogram
12565 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
12566 end if;
12567 end if;
12569 New_Overloaded_Entity (New_Subp, Derived_Type);
12571 -- Check for case of a derived subprogram for the instantiation of a
12572 -- formal derived tagged type, if so mark the subprogram as dispatching
12573 -- and inherit the dispatching attributes of the parent subprogram. The
12574 -- derived subprogram is effectively renaming of the actual subprogram,
12575 -- so it needs to have the same attributes as the actual.
12577 if Present (Actual_Subp)
12578 and then Is_Dispatching_Operation (Parent_Subp)
12579 then
12580 Set_Is_Dispatching_Operation (New_Subp);
12582 if Present (DTC_Entity (Parent_Subp)) then
12583 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
12584 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
12585 end if;
12586 end if;
12588 -- Indicate that a derived subprogram does not require a body and that
12589 -- it does not require processing of default expressions.
12591 Set_Has_Completion (New_Subp);
12592 Set_Default_Expressions_Processed (New_Subp);
12594 if Ekind (New_Subp) = E_Function then
12595 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
12596 end if;
12597 end Derive_Subprogram;
12599 ------------------------
12600 -- Derive_Subprograms --
12601 ------------------------
12603 procedure Derive_Subprograms
12604 (Parent_Type : Entity_Id;
12605 Derived_Type : Entity_Id;
12606 Generic_Actual : Entity_Id := Empty)
12608 Op_List : constant Elist_Id :=
12609 Collect_Primitive_Operations (Parent_Type);
12611 function Check_Derived_Type return Boolean;
12612 -- Check that all primitive inherited from Parent_Type are found in
12613 -- the list of primitives of Derived_Type exactly in the same order.
12615 function Check_Derived_Type return Boolean is
12616 E : Entity_Id;
12617 Elmt : Elmt_Id;
12618 List : Elist_Id;
12619 New_Subp : Entity_Id;
12620 Op_Elmt : Elmt_Id;
12621 Subp : Entity_Id;
12623 begin
12624 -- Traverse list of entities in the current scope searching for
12625 -- an incomplete type whose full-view is derived type
12627 E := First_Entity (Scope (Derived_Type));
12628 while Present (E)
12629 and then E /= Derived_Type
12630 loop
12631 if Ekind (E) = E_Incomplete_Type
12632 and then Present (Full_View (E))
12633 and then Full_View (E) = Derived_Type
12634 then
12635 -- Disable this test if Derived_Type completes an incomplete
12636 -- type because in such case more primitives can be added
12637 -- later to the list of primitives of Derived_Type by routine
12638 -- Process_Incomplete_Dependents
12640 return True;
12641 end if;
12643 E := Next_Entity (E);
12644 end loop;
12646 List := Collect_Primitive_Operations (Derived_Type);
12647 Elmt := First_Elmt (List);
12649 Op_Elmt := First_Elmt (Op_List);
12650 while Present (Op_Elmt) loop
12651 Subp := Node (Op_Elmt);
12652 New_Subp := Node (Elmt);
12654 -- At this early stage Derived_Type has no entities with attribute
12655 -- Interface_Alias. In addition, such primitives are always
12656 -- located at the end of the list of primitives of Parent_Type.
12657 -- Therefore, if found we can safely stop processing pending
12658 -- entities.
12660 exit when Present (Interface_Alias (Subp));
12662 -- Handle hidden entities
12664 if not Is_Predefined_Dispatching_Operation (Subp)
12665 and then Is_Hidden (Subp)
12666 then
12667 if Present (New_Subp)
12668 and then Primitive_Names_Match (Subp, New_Subp)
12669 then
12670 Next_Elmt (Elmt);
12671 end if;
12673 else
12674 if not Present (New_Subp)
12675 or else Ekind (Subp) /= Ekind (New_Subp)
12676 or else not Primitive_Names_Match (Subp, New_Subp)
12677 then
12678 return False;
12679 end if;
12681 Next_Elmt (Elmt);
12682 end if;
12684 Next_Elmt (Op_Elmt);
12685 end loop;
12687 return True;
12688 end Check_Derived_Type;
12690 -- Local variables
12692 Alias_Subp : Entity_Id;
12693 Act_List : Elist_Id;
12694 Act_Elmt : Elmt_Id := No_Elmt;
12695 Act_Subp : Entity_Id := Empty;
12696 Elmt : Elmt_Id;
12697 Need_Search : Boolean := False;
12698 New_Subp : Entity_Id := Empty;
12699 Parent_Base : Entity_Id;
12700 Subp : Entity_Id;
12702 -- Start of processing for Derive_Subprograms
12704 begin
12705 if Ekind (Parent_Type) = E_Record_Type_With_Private
12706 and then Has_Discriminants (Parent_Type)
12707 and then Present (Full_View (Parent_Type))
12708 then
12709 Parent_Base := Full_View (Parent_Type);
12710 else
12711 Parent_Base := Parent_Type;
12712 end if;
12714 if Present (Generic_Actual) then
12715 Act_List := Collect_Primitive_Operations (Generic_Actual);
12716 Act_Elmt := First_Elmt (Act_List);
12717 end if;
12719 -- Derive primitives inherited from the parent. Note that if the generic
12720 -- actual is present, this is not really a type derivation, it is a
12721 -- completion within an instance.
12723 -- Case 1: Derived_Type does not implement interfaces
12725 if not Is_Tagged_Type (Derived_Type)
12726 or else (not Has_Interfaces (Derived_Type)
12727 and then not (Present (Generic_Actual)
12728 and then
12729 Has_Interfaces (Generic_Actual)))
12730 then
12731 Elmt := First_Elmt (Op_List);
12732 while Present (Elmt) loop
12733 Subp := Node (Elmt);
12735 -- Literals are derived earlier in the process of building the
12736 -- derived type, and are skipped here.
12738 if Ekind (Subp) = E_Enumeration_Literal then
12739 null;
12741 -- The actual is a direct descendant and the common primitive
12742 -- operations appear in the same order.
12744 -- If the generic parent type is present, the derived type is an
12745 -- instance of a formal derived type, and within the instance its
12746 -- operations are those of the actual. We derive from the formal
12747 -- type but make the inherited operations aliases of the
12748 -- corresponding operations of the actual.
12750 else
12751 pragma Assert (No (Node (Act_Elmt))
12752 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
12753 and then
12754 Type_Conformant (Subp, Node (Act_Elmt),
12755 Skip_Controlling_Formals => True)));
12757 Derive_Subprogram
12758 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
12760 if Present (Act_Elmt) then
12761 Next_Elmt (Act_Elmt);
12762 end if;
12763 end if;
12765 Next_Elmt (Elmt);
12766 end loop;
12768 -- Case 2: Derived_Type implements interfaces
12770 else
12771 -- If the parent type has no predefined primitives we remove
12772 -- predefined primitives from the list of primitives of generic
12773 -- actual to simplify the complexity of this algorithm.
12775 if Present (Generic_Actual) then
12776 declare
12777 Has_Predefined_Primitives : Boolean := False;
12779 begin
12780 -- Check if the parent type has predefined primitives
12782 Elmt := First_Elmt (Op_List);
12783 while Present (Elmt) loop
12784 Subp := Node (Elmt);
12786 if Is_Predefined_Dispatching_Operation (Subp)
12787 and then not Comes_From_Source (Ultimate_Alias (Subp))
12788 then
12789 Has_Predefined_Primitives := True;
12790 exit;
12791 end if;
12793 Next_Elmt (Elmt);
12794 end loop;
12796 -- Remove predefined primitives of Generic_Actual. We must use
12797 -- an auxiliary list because in case of tagged types the value
12798 -- returned by Collect_Primitive_Operations is the value stored
12799 -- in its Primitive_Operations attribute (and we don't want to
12800 -- modify its current contents).
12802 if not Has_Predefined_Primitives then
12803 declare
12804 Aux_List : constant Elist_Id := New_Elmt_List;
12806 begin
12807 Elmt := First_Elmt (Act_List);
12808 while Present (Elmt) loop
12809 Subp := Node (Elmt);
12811 if not Is_Predefined_Dispatching_Operation (Subp)
12812 or else Comes_From_Source (Subp)
12813 then
12814 Append_Elmt (Subp, Aux_List);
12815 end if;
12817 Next_Elmt (Elmt);
12818 end loop;
12820 Act_List := Aux_List;
12821 end;
12822 end if;
12824 Act_Elmt := First_Elmt (Act_List);
12825 Act_Subp := Node (Act_Elmt);
12826 end;
12827 end if;
12829 -- Stage 1: If the generic actual is not present we derive the
12830 -- primitives inherited from the parent type. If the generic parent
12831 -- type is present, the derived type is an instance of a formal
12832 -- derived type, and within the instance its operations are those of
12833 -- the actual. We derive from the formal type but make the inherited
12834 -- operations aliases of the corresponding operations of the actual.
12836 Elmt := First_Elmt (Op_List);
12837 while Present (Elmt) loop
12838 Subp := Node (Elmt);
12839 Alias_Subp := Ultimate_Alias (Subp);
12841 -- Do not derive internal entities of the parent that link
12842 -- interface primitives and its covering primitive. These
12843 -- entities will be added to this type when frozen.
12845 if Present (Interface_Alias (Subp)) then
12846 goto Continue;
12847 end if;
12849 -- If the generic actual is present find the corresponding
12850 -- operation in the generic actual. If the parent type is a
12851 -- direct ancestor of the derived type then, even if it is an
12852 -- interface, the operations are inherited from the primary
12853 -- dispatch table and are in the proper order. If we detect here
12854 -- that primitives are not in the same order we traverse the list
12855 -- of primitive operations of the actual to find the one that
12856 -- implements the interface primitive.
12858 if Need_Search
12859 or else
12860 (Present (Generic_Actual)
12861 and then Present (Act_Subp)
12862 and then not
12863 (Primitive_Names_Match (Subp, Act_Subp)
12864 and then
12865 Type_Conformant (Subp, Act_Subp,
12866 Skip_Controlling_Formals => True)))
12867 then
12868 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual));
12870 -- Remember that we need searching for all pending primitives
12872 Need_Search := True;
12874 -- Handle entities associated with interface primitives
12876 if Present (Alias_Subp)
12877 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
12878 and then not Is_Predefined_Dispatching_Operation (Subp)
12879 then
12880 -- Search for the primitive in the homonym chain
12882 Act_Subp :=
12883 Find_Primitive_Covering_Interface
12884 (Tagged_Type => Generic_Actual,
12885 Iface_Prim => Alias_Subp);
12887 -- Previous search may not locate primitives covering
12888 -- interfaces defined in generics units or instantiations.
12889 -- (it fails if the covering primitive has formals whose
12890 -- type is also defined in generics or instantiations).
12891 -- In such case we search in the list of primitives of the
12892 -- generic actual for the internal entity that links the
12893 -- interface primitive and the covering primitive.
12895 if No (Act_Subp)
12896 and then Is_Generic_Type (Parent_Type)
12897 then
12898 -- This code has been designed to handle only generic
12899 -- formals that implement interfaces that are defined
12900 -- in a generic unit or instantiation. If this code is
12901 -- needed for other cases we must review it because
12902 -- (given that it relies on Original_Location to locate
12903 -- the primitive of Generic_Actual that covers the
12904 -- interface) it could leave linked through attribute
12905 -- Alias entities of unrelated instantiations).
12907 pragma Assert
12908 (Is_Generic_Unit
12909 (Scope (Find_Dispatching_Type (Alias_Subp)))
12910 or else
12911 Instantiation_Depth
12912 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
12914 declare
12915 Iface_Prim_Loc : constant Source_Ptr :=
12916 Original_Location (Sloc (Alias_Subp));
12917 Elmt : Elmt_Id;
12918 Prim : Entity_Id;
12919 begin
12920 Elmt :=
12921 First_Elmt (Primitive_Operations (Generic_Actual));
12923 Search : while Present (Elmt) loop
12924 Prim := Node (Elmt);
12926 if Present (Interface_Alias (Prim))
12927 and then Original_Location
12928 (Sloc (Interface_Alias (Prim)))
12929 = Iface_Prim_Loc
12930 then
12931 Act_Subp := Alias (Prim);
12932 exit Search;
12933 end if;
12935 Next_Elmt (Elmt);
12936 end loop Search;
12937 end;
12938 end if;
12940 pragma Assert (Present (Act_Subp)
12941 or else Is_Abstract_Type (Generic_Actual)
12942 or else Serious_Errors_Detected > 0);
12944 -- Handle predefined primitives plus the rest of user-defined
12945 -- primitives
12947 else
12948 Act_Elmt := First_Elmt (Act_List);
12949 while Present (Act_Elmt) loop
12950 Act_Subp := Node (Act_Elmt);
12952 exit when Primitive_Names_Match (Subp, Act_Subp)
12953 and then Type_Conformant
12954 (Subp, Act_Subp,
12955 Skip_Controlling_Formals => True)
12956 and then No (Interface_Alias (Act_Subp));
12958 Next_Elmt (Act_Elmt);
12959 end loop;
12961 if No (Act_Elmt) then
12962 Act_Subp := Empty;
12963 end if;
12964 end if;
12965 end if;
12967 -- Case 1: If the parent is a limited interface then it has the
12968 -- predefined primitives of synchronized interfaces. However, the
12969 -- actual type may be a non-limited type and hence it does not
12970 -- have such primitives.
12972 if Present (Generic_Actual)
12973 and then not Present (Act_Subp)
12974 and then Is_Limited_Interface (Parent_Base)
12975 and then Is_Predefined_Interface_Primitive (Subp)
12976 then
12977 null;
12979 -- Case 2: Inherit entities associated with interfaces that were
12980 -- not covered by the parent type. We exclude here null interface
12981 -- primitives because they do not need special management.
12983 -- We also exclude interface operations that are renamings. If the
12984 -- subprogram is an explicit renaming of an interface primitive,
12985 -- it is a regular primitive operation, and the presence of its
12986 -- alias is not relevant: it has to be derived like any other
12987 -- primitive.
12989 elsif Present (Alias (Subp))
12990 and then Nkind (Unit_Declaration_Node (Subp)) /=
12991 N_Subprogram_Renaming_Declaration
12992 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
12993 and then not
12994 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
12995 and then Null_Present (Parent (Alias_Subp)))
12996 then
12997 Derive_Subprogram
12998 (New_Subp => New_Subp,
12999 Parent_Subp => Alias_Subp,
13000 Derived_Type => Derived_Type,
13001 Parent_Type => Find_Dispatching_Type (Alias_Subp),
13002 Actual_Subp => Act_Subp);
13004 if No (Generic_Actual) then
13005 Set_Alias (New_Subp, Subp);
13006 end if;
13008 -- Case 3: Common derivation
13010 else
13011 Derive_Subprogram
13012 (New_Subp => New_Subp,
13013 Parent_Subp => Subp,
13014 Derived_Type => Derived_Type,
13015 Parent_Type => Parent_Base,
13016 Actual_Subp => Act_Subp);
13017 end if;
13019 -- No need to update Act_Elm if we must search for the
13020 -- corresponding operation in the generic actual
13022 if not Need_Search
13023 and then Present (Act_Elmt)
13024 then
13025 Next_Elmt (Act_Elmt);
13026 Act_Subp := Node (Act_Elmt);
13027 end if;
13029 <<Continue>>
13030 Next_Elmt (Elmt);
13031 end loop;
13033 -- Inherit additional operations from progenitors. If the derived
13034 -- type is a generic actual, there are not new primitive operations
13035 -- for the type because it has those of the actual, and therefore
13036 -- nothing needs to be done. The renamings generated above are not
13037 -- primitive operations, and their purpose is simply to make the
13038 -- proper operations visible within an instantiation.
13040 if No (Generic_Actual) then
13041 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
13042 end if;
13043 end if;
13045 -- Final check: Direct descendants must have their primitives in the
13046 -- same order. We exclude from this test non-tagged types and instances
13047 -- of formal derived types. We skip this test if we have already
13048 -- reported serious errors in the sources.
13050 pragma Assert (not Is_Tagged_Type (Derived_Type)
13051 or else Present (Generic_Actual)
13052 or else Serious_Errors_Detected > 0
13053 or else Check_Derived_Type);
13054 end Derive_Subprograms;
13056 --------------------------------
13057 -- Derived_Standard_Character --
13058 --------------------------------
13060 procedure Derived_Standard_Character
13061 (N : Node_Id;
13062 Parent_Type : Entity_Id;
13063 Derived_Type : Entity_Id)
13065 Loc : constant Source_Ptr := Sloc (N);
13066 Def : constant Node_Id := Type_Definition (N);
13067 Indic : constant Node_Id := Subtype_Indication (Def);
13068 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
13069 Implicit_Base : constant Entity_Id :=
13070 Create_Itype
13071 (E_Enumeration_Type, N, Derived_Type, 'B');
13073 Lo : Node_Id;
13074 Hi : Node_Id;
13076 begin
13077 Discard_Node (Process_Subtype (Indic, N));
13079 Set_Etype (Implicit_Base, Parent_Base);
13080 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
13081 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
13083 Set_Is_Character_Type (Implicit_Base, True);
13084 Set_Has_Delayed_Freeze (Implicit_Base);
13086 -- The bounds of the implicit base are the bounds of the parent base.
13087 -- Note that their type is the parent base.
13089 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
13090 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
13092 Set_Scalar_Range (Implicit_Base,
13093 Make_Range (Loc,
13094 Low_Bound => Lo,
13095 High_Bound => Hi));
13097 Conditional_Delay (Derived_Type, Parent_Type);
13099 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
13100 Set_Etype (Derived_Type, Implicit_Base);
13101 Set_Size_Info (Derived_Type, Parent_Type);
13103 if Unknown_RM_Size (Derived_Type) then
13104 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
13105 end if;
13107 Set_Is_Character_Type (Derived_Type, True);
13109 if Nkind (Indic) /= N_Subtype_Indication then
13111 -- If no explicit constraint, the bounds are those
13112 -- of the parent type.
13114 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
13115 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
13116 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
13117 end if;
13119 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
13121 -- Because the implicit base is used in the conversion of the bounds, we
13122 -- have to freeze it now. This is similar to what is done for numeric
13123 -- types, and it equally suspicious, but otherwise a non-static bound
13124 -- will have a reference to an unfrozen type, which is rejected by Gigi
13125 -- (???). This requires specific care for definition of stream
13126 -- attributes. For details, see comments at the end of
13127 -- Build_Derived_Numeric_Type.
13129 Freeze_Before (N, Implicit_Base);
13130 end Derived_Standard_Character;
13132 ------------------------------
13133 -- Derived_Type_Declaration --
13134 ------------------------------
13136 procedure Derived_Type_Declaration
13137 (T : Entity_Id;
13138 N : Node_Id;
13139 Is_Completion : Boolean)
13141 Parent_Type : Entity_Id;
13143 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
13144 -- Check whether the parent type is a generic formal, or derives
13145 -- directly or indirectly from one.
13147 ------------------------
13148 -- Comes_From_Generic --
13149 ------------------------
13151 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
13152 begin
13153 if Is_Generic_Type (Typ) then
13154 return True;
13156 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
13157 return True;
13159 elsif Is_Private_Type (Typ)
13160 and then Present (Full_View (Typ))
13161 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
13162 then
13163 return True;
13165 elsif Is_Generic_Actual_Type (Typ) then
13166 return True;
13168 else
13169 return False;
13170 end if;
13171 end Comes_From_Generic;
13173 -- Local variables
13175 Def : constant Node_Id := Type_Definition (N);
13176 Iface_Def : Node_Id;
13177 Indic : constant Node_Id := Subtype_Indication (Def);
13178 Extension : constant Node_Id := Record_Extension_Part (Def);
13179 Parent_Node : Node_Id;
13180 Parent_Scope : Entity_Id;
13181 Taggd : Boolean;
13183 -- Start of processing for Derived_Type_Declaration
13185 begin
13186 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
13188 -- Ada 2005 (AI-251): In case of interface derivation check that the
13189 -- parent is also an interface.
13191 if Interface_Present (Def) then
13192 if not Is_Interface (Parent_Type) then
13193 Diagnose_Interface (Indic, Parent_Type);
13195 else
13196 Parent_Node := Parent (Base_Type (Parent_Type));
13197 Iface_Def := Type_Definition (Parent_Node);
13199 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
13200 -- other limited interfaces.
13202 if Limited_Present (Def) then
13203 if Limited_Present (Iface_Def) then
13204 null;
13206 elsif Protected_Present (Iface_Def) then
13207 Error_Msg_NE
13208 ("descendant of& must be declared"
13209 & " as a protected interface",
13210 N, Parent_Type);
13212 elsif Synchronized_Present (Iface_Def) then
13213 Error_Msg_NE
13214 ("descendant of& must be declared"
13215 & " as a synchronized interface",
13216 N, Parent_Type);
13218 elsif Task_Present (Iface_Def) then
13219 Error_Msg_NE
13220 ("descendant of& must be declared as a task interface",
13221 N, Parent_Type);
13223 else
13224 Error_Msg_N
13225 ("(Ada 2005) limited interface cannot "
13226 & "inherit from non-limited interface", Indic);
13227 end if;
13229 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
13230 -- from non-limited or limited interfaces.
13232 elsif not Protected_Present (Def)
13233 and then not Synchronized_Present (Def)
13234 and then not Task_Present (Def)
13235 then
13236 if Limited_Present (Iface_Def) then
13237 null;
13239 elsif Protected_Present (Iface_Def) then
13240 Error_Msg_NE
13241 ("descendant of& must be declared"
13242 & " as a protected interface",
13243 N, Parent_Type);
13245 elsif Synchronized_Present (Iface_Def) then
13246 Error_Msg_NE
13247 ("descendant of& must be declared"
13248 & " as a synchronized interface",
13249 N, Parent_Type);
13251 elsif Task_Present (Iface_Def) then
13252 Error_Msg_NE
13253 ("descendant of& must be declared as a task interface",
13254 N, Parent_Type);
13255 else
13256 null;
13257 end if;
13258 end if;
13259 end if;
13260 end if;
13262 if Is_Tagged_Type (Parent_Type)
13263 and then Is_Concurrent_Type (Parent_Type)
13264 and then not Is_Interface (Parent_Type)
13265 then
13266 Error_Msg_N
13267 ("parent type of a record extension cannot be "
13268 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
13269 Set_Etype (T, Any_Type);
13270 return;
13271 end if;
13273 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
13274 -- interfaces
13276 if Is_Tagged_Type (Parent_Type)
13277 and then Is_Non_Empty_List (Interface_List (Def))
13278 then
13279 declare
13280 Intf : Node_Id;
13281 T : Entity_Id;
13283 begin
13284 Intf := First (Interface_List (Def));
13285 while Present (Intf) loop
13286 T := Find_Type_Of_Subtype_Indic (Intf);
13288 if not Is_Interface (T) then
13289 Diagnose_Interface (Intf, T);
13291 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
13292 -- a limited type from having a nonlimited progenitor.
13294 elsif (Limited_Present (Def)
13295 or else (not Is_Interface (Parent_Type)
13296 and then Is_Limited_Type (Parent_Type)))
13297 and then not Is_Limited_Interface (T)
13298 then
13299 Error_Msg_NE
13300 ("progenitor interface& of limited type must be limited",
13301 N, T);
13302 end if;
13304 Next (Intf);
13305 end loop;
13306 end;
13307 end if;
13309 if Parent_Type = Any_Type
13310 or else Etype (Parent_Type) = Any_Type
13311 or else (Is_Class_Wide_Type (Parent_Type)
13312 and then Etype (Parent_Type) = T)
13313 then
13314 -- If Parent_Type is undefined or illegal, make new type into a
13315 -- subtype of Any_Type, and set a few attributes to prevent cascaded
13316 -- errors. If this is a self-definition, emit error now.
13318 if T = Parent_Type
13319 or else T = Etype (Parent_Type)
13320 then
13321 Error_Msg_N ("type cannot be used in its own definition", Indic);
13322 end if;
13324 Set_Ekind (T, Ekind (Parent_Type));
13325 Set_Etype (T, Any_Type);
13326 Set_Scalar_Range (T, Scalar_Range (Any_Type));
13328 if Is_Tagged_Type (T) then
13329 Set_Primitive_Operations (T, New_Elmt_List);
13330 end if;
13332 return;
13333 end if;
13335 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
13336 -- an interface is special because the list of interfaces in the full
13337 -- view can be given in any order. For example:
13339 -- type A is interface;
13340 -- type B is interface and A;
13341 -- type D is new B with private;
13342 -- private
13343 -- type D is new A and B with null record; -- 1 --
13345 -- In this case we perform the following transformation of -1-:
13347 -- type D is new B and A with null record;
13349 -- If the parent of the full-view covers the parent of the partial-view
13350 -- we have two possible cases:
13352 -- 1) They have the same parent
13353 -- 2) The parent of the full-view implements some further interfaces
13355 -- In both cases we do not need to perform the transformation. In the
13356 -- first case the source program is correct and the transformation is
13357 -- not needed; in the second case the source program does not fulfill
13358 -- the no-hidden interfaces rule (AI-396) and the error will be reported
13359 -- later.
13361 -- This transformation not only simplifies the rest of the analysis of
13362 -- this type declaration but also simplifies the correct generation of
13363 -- the object layout to the expander.
13365 if In_Private_Part (Current_Scope)
13366 and then Is_Interface (Parent_Type)
13367 then
13368 declare
13369 Iface : Node_Id;
13370 Partial_View : Entity_Id;
13371 Partial_View_Parent : Entity_Id;
13372 New_Iface : Node_Id;
13374 begin
13375 -- Look for the associated private type declaration
13377 Partial_View := First_Entity (Current_Scope);
13378 loop
13379 exit when No (Partial_View)
13380 or else (Has_Private_Declaration (Partial_View)
13381 and then Full_View (Partial_View) = T);
13383 Next_Entity (Partial_View);
13384 end loop;
13386 -- If the partial view was not found then the source code has
13387 -- errors and the transformation is not needed.
13389 if Present (Partial_View) then
13390 Partial_View_Parent := Etype (Partial_View);
13392 -- If the parent of the full-view covers the parent of the
13393 -- partial-view we have nothing else to do.
13395 if Interface_Present_In_Ancestor
13396 (Parent_Type, Partial_View_Parent)
13397 then
13398 null;
13400 -- Traverse the list of interfaces of the full-view to look
13401 -- for the parent of the partial-view and perform the tree
13402 -- transformation.
13404 else
13405 Iface := First (Interface_List (Def));
13406 while Present (Iface) loop
13407 if Etype (Iface) = Etype (Partial_View) then
13408 Rewrite (Subtype_Indication (Def),
13409 New_Copy (Subtype_Indication
13410 (Parent (Partial_View))));
13412 New_Iface := Make_Identifier (Sloc (N),
13413 Chars (Parent_Type));
13414 Append (New_Iface, Interface_List (Def));
13416 -- Analyze the transformed code
13418 Derived_Type_Declaration (T, N, Is_Completion);
13419 return;
13420 end if;
13422 Next (Iface);
13423 end loop;
13424 end if;
13425 end if;
13426 end;
13427 end if;
13429 -- Only composite types other than array types are allowed to have
13430 -- discriminants.
13432 if Present (Discriminant_Specifications (N))
13433 and then (Is_Elementary_Type (Parent_Type)
13434 or else Is_Array_Type (Parent_Type))
13435 and then not Error_Posted (N)
13436 then
13437 Error_Msg_N
13438 ("elementary or array type cannot have discriminants",
13439 Defining_Identifier (First (Discriminant_Specifications (N))));
13440 Set_Has_Discriminants (T, False);
13441 end if;
13443 -- In Ada 83, a derived type defined in a package specification cannot
13444 -- be used for further derivation until the end of its visible part.
13445 -- Note that derivation in the private part of the package is allowed.
13447 if Ada_Version = Ada_83
13448 and then Is_Derived_Type (Parent_Type)
13449 and then In_Visible_Part (Scope (Parent_Type))
13450 then
13451 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
13452 Error_Msg_N
13453 ("(Ada 83): premature use of type for derivation", Indic);
13454 end if;
13455 end if;
13457 -- Check for early use of incomplete or private type
13459 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
13460 Error_Msg_N ("premature derivation of incomplete type", Indic);
13461 return;
13463 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
13464 and then not Comes_From_Generic (Parent_Type))
13465 or else Has_Private_Component (Parent_Type)
13466 then
13467 -- The ancestor type of a formal type can be incomplete, in which
13468 -- case only the operations of the partial view are available in
13469 -- the generic. Subsequent checks may be required when the full
13470 -- view is analyzed, to verify that derivation from a tagged type
13471 -- has an extension.
13473 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
13474 null;
13476 elsif No (Underlying_Type (Parent_Type))
13477 or else Has_Private_Component (Parent_Type)
13478 then
13479 Error_Msg_N
13480 ("premature derivation of derived or private type", Indic);
13482 -- Flag the type itself as being in error, this prevents some
13483 -- nasty problems with subsequent uses of the malformed type.
13485 Set_Error_Posted (T);
13487 -- Check that within the immediate scope of an untagged partial
13488 -- view it's illegal to derive from the partial view if the
13489 -- full view is tagged. (7.3(7))
13491 -- We verify that the Parent_Type is a partial view by checking
13492 -- that it is not a Full_Type_Declaration (i.e. a private type or
13493 -- private extension declaration), to distinguish a partial view
13494 -- from a derivation from a private type which also appears as
13495 -- E_Private_Type.
13497 elsif Present (Full_View (Parent_Type))
13498 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
13499 and then not Is_Tagged_Type (Parent_Type)
13500 and then Is_Tagged_Type (Full_View (Parent_Type))
13501 then
13502 Parent_Scope := Scope (T);
13503 while Present (Parent_Scope)
13504 and then Parent_Scope /= Standard_Standard
13505 loop
13506 if Parent_Scope = Scope (Parent_Type) then
13507 Error_Msg_N
13508 ("premature derivation from type with tagged full view",
13509 Indic);
13510 end if;
13512 Parent_Scope := Scope (Parent_Scope);
13513 end loop;
13514 end if;
13515 end if;
13517 -- Check that form of derivation is appropriate
13519 Taggd := Is_Tagged_Type (Parent_Type);
13521 -- Perhaps the parent type should be changed to the class-wide type's
13522 -- specific type in this case to prevent cascading errors ???
13524 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
13525 Error_Msg_N ("parent type must not be a class-wide type", Indic);
13526 return;
13527 end if;
13529 if Present (Extension) and then not Taggd then
13530 Error_Msg_N
13531 ("type derived from untagged type cannot have extension", Indic);
13533 elsif No (Extension) and then Taggd then
13535 -- If this declaration is within a private part (or body) of a
13536 -- generic instantiation then the derivation is allowed (the parent
13537 -- type can only appear tagged in this case if it's a generic actual
13538 -- type, since it would otherwise have been rejected in the analysis
13539 -- of the generic template).
13541 if not Is_Generic_Actual_Type (Parent_Type)
13542 or else In_Visible_Part (Scope (Parent_Type))
13543 then
13544 if Is_Class_Wide_Type (Parent_Type) then
13545 Error_Msg_N
13546 ("parent type must not be a class-wide type", Indic);
13548 -- Use specific type to prevent cascaded errors.
13550 Parent_Type := Etype (Parent_Type);
13552 else
13553 Error_Msg_N
13554 ("type derived from tagged type must have extension", Indic);
13555 end if;
13556 end if;
13557 end if;
13559 -- AI-443: Synchronized formal derived types require a private
13560 -- extension. There is no point in checking the ancestor type or
13561 -- the progenitors since the construct is wrong to begin with.
13563 if Ada_Version >= Ada_05
13564 and then Is_Generic_Type (T)
13565 and then Present (Original_Node (N))
13566 then
13567 declare
13568 Decl : constant Node_Id := Original_Node (N);
13570 begin
13571 if Nkind (Decl) = N_Formal_Type_Declaration
13572 and then Nkind (Formal_Type_Definition (Decl)) =
13573 N_Formal_Derived_Type_Definition
13574 and then Synchronized_Present (Formal_Type_Definition (Decl))
13575 and then No (Extension)
13577 -- Avoid emitting a duplicate error message
13579 and then not Error_Posted (Indic)
13580 then
13581 Error_Msg_N
13582 ("synchronized derived type must have extension", N);
13583 end if;
13584 end;
13585 end if;
13587 if Null_Exclusion_Present (Def)
13588 and then not Is_Access_Type (Parent_Type)
13589 then
13590 Error_Msg_N ("null exclusion can only apply to an access type", N);
13591 end if;
13593 -- Avoid deriving parent primitives of underlying record views
13595 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
13596 Derive_Subps => not Is_Underlying_Record_View (T));
13598 -- AI-419: The parent type of an explicitly limited derived type must
13599 -- be a limited type or a limited interface.
13601 if Limited_Present (Def) then
13602 Set_Is_Limited_Record (T);
13604 if Is_Interface (T) then
13605 Set_Is_Limited_Interface (T);
13606 end if;
13608 if not Is_Limited_Type (Parent_Type)
13609 and then
13610 (not Is_Interface (Parent_Type)
13611 or else not Is_Limited_Interface (Parent_Type))
13612 then
13613 Error_Msg_NE
13614 ("parent type& of limited type must be limited",
13615 N, Parent_Type);
13616 end if;
13617 end if;
13618 end Derived_Type_Declaration;
13620 ------------------------
13621 -- Diagnose_Interface --
13622 ------------------------
13624 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
13625 begin
13626 if not Is_Interface (E)
13627 and then E /= Any_Type
13628 then
13629 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
13630 end if;
13631 end Diagnose_Interface;
13633 ----------------------------------
13634 -- Enumeration_Type_Declaration --
13635 ----------------------------------
13637 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
13638 Ev : Uint;
13639 L : Node_Id;
13640 R_Node : Node_Id;
13641 B_Node : Node_Id;
13643 begin
13644 -- Create identifier node representing lower bound
13646 B_Node := New_Node (N_Identifier, Sloc (Def));
13647 L := First (Literals (Def));
13648 Set_Chars (B_Node, Chars (L));
13649 Set_Entity (B_Node, L);
13650 Set_Etype (B_Node, T);
13651 Set_Is_Static_Expression (B_Node, True);
13653 R_Node := New_Node (N_Range, Sloc (Def));
13654 Set_Low_Bound (R_Node, B_Node);
13656 Set_Ekind (T, E_Enumeration_Type);
13657 Set_First_Literal (T, L);
13658 Set_Etype (T, T);
13659 Set_Is_Constrained (T);
13661 Ev := Uint_0;
13663 -- Loop through literals of enumeration type setting pos and rep values
13664 -- except that if the Ekind is already set, then it means the literal
13665 -- was already constructed (case of a derived type declaration and we
13666 -- should not disturb the Pos and Rep values.
13668 while Present (L) loop
13669 if Ekind (L) /= E_Enumeration_Literal then
13670 Set_Ekind (L, E_Enumeration_Literal);
13671 Set_Enumeration_Pos (L, Ev);
13672 Set_Enumeration_Rep (L, Ev);
13673 Set_Is_Known_Valid (L, True);
13674 end if;
13676 Set_Etype (L, T);
13677 New_Overloaded_Entity (L);
13678 Generate_Definition (L);
13679 Set_Convention (L, Convention_Intrinsic);
13681 -- Case of character literal
13683 if Nkind (L) = N_Defining_Character_Literal then
13684 Set_Is_Character_Type (T, True);
13686 -- Check violation of No_Wide_Characters
13688 if Restriction_Check_Required (No_Wide_Characters) then
13689 Get_Name_String (Chars (L));
13691 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
13692 Check_Restriction (No_Wide_Characters, L);
13693 end if;
13694 end if;
13695 end if;
13697 Ev := Ev + 1;
13698 Next (L);
13699 end loop;
13701 -- Now create a node representing upper bound
13703 B_Node := New_Node (N_Identifier, Sloc (Def));
13704 Set_Chars (B_Node, Chars (Last (Literals (Def))));
13705 Set_Entity (B_Node, Last (Literals (Def)));
13706 Set_Etype (B_Node, T);
13707 Set_Is_Static_Expression (B_Node, True);
13709 Set_High_Bound (R_Node, B_Node);
13711 -- Initialize various fields of the type. Some of this information
13712 -- may be overwritten later through rep.clauses.
13714 Set_Scalar_Range (T, R_Node);
13715 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
13716 Set_Enum_Esize (T);
13717 Set_Enum_Pos_To_Rep (T, Empty);
13719 -- Set Discard_Names if configuration pragma set, or if there is
13720 -- a parameterless pragma in the current declarative region
13722 if Global_Discard_Names
13723 or else Discard_Names (Scope (T))
13724 then
13725 Set_Discard_Names (T);
13726 end if;
13728 -- Process end label if there is one
13730 if Present (Def) then
13731 Process_End_Label (Def, 'e', T);
13732 end if;
13733 end Enumeration_Type_Declaration;
13735 ---------------------------------
13736 -- Expand_To_Stored_Constraint --
13737 ---------------------------------
13739 function Expand_To_Stored_Constraint
13740 (Typ : Entity_Id;
13741 Constraint : Elist_Id) return Elist_Id
13743 Explicitly_Discriminated_Type : Entity_Id;
13744 Expansion : Elist_Id;
13745 Discriminant : Entity_Id;
13747 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
13748 -- Find the nearest type that actually specifies discriminants
13750 ---------------------------------
13751 -- Type_With_Explicit_Discrims --
13752 ---------------------------------
13754 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
13755 Typ : constant E := Base_Type (Id);
13757 begin
13758 if Ekind (Typ) in Incomplete_Or_Private_Kind then
13759 if Present (Full_View (Typ)) then
13760 return Type_With_Explicit_Discrims (Full_View (Typ));
13761 end if;
13763 else
13764 if Has_Discriminants (Typ) then
13765 return Typ;
13766 end if;
13767 end if;
13769 if Etype (Typ) = Typ then
13770 return Empty;
13771 elsif Has_Discriminants (Typ) then
13772 return Typ;
13773 else
13774 return Type_With_Explicit_Discrims (Etype (Typ));
13775 end if;
13777 end Type_With_Explicit_Discrims;
13779 -- Start of processing for Expand_To_Stored_Constraint
13781 begin
13782 if No (Constraint)
13783 or else Is_Empty_Elmt_List (Constraint)
13784 then
13785 return No_Elist;
13786 end if;
13788 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
13790 if No (Explicitly_Discriminated_Type) then
13791 return No_Elist;
13792 end if;
13794 Expansion := New_Elmt_List;
13796 Discriminant :=
13797 First_Stored_Discriminant (Explicitly_Discriminated_Type);
13798 while Present (Discriminant) loop
13799 Append_Elmt (
13800 Get_Discriminant_Value (
13801 Discriminant, Explicitly_Discriminated_Type, Constraint),
13802 Expansion);
13803 Next_Stored_Discriminant (Discriminant);
13804 end loop;
13806 return Expansion;
13807 end Expand_To_Stored_Constraint;
13809 ---------------------------
13810 -- Find_Hidden_Interface --
13811 ---------------------------
13813 function Find_Hidden_Interface
13814 (Src : Elist_Id;
13815 Dest : Elist_Id) return Entity_Id
13817 Iface : Entity_Id;
13818 Iface_Elmt : Elmt_Id;
13820 begin
13821 if Present (Src) and then Present (Dest) then
13822 Iface_Elmt := First_Elmt (Src);
13823 while Present (Iface_Elmt) loop
13824 Iface := Node (Iface_Elmt);
13826 if Is_Interface (Iface)
13827 and then not Contain_Interface (Iface, Dest)
13828 then
13829 return Iface;
13830 end if;
13832 Next_Elmt (Iface_Elmt);
13833 end loop;
13834 end if;
13836 return Empty;
13837 end Find_Hidden_Interface;
13839 --------------------
13840 -- Find_Type_Name --
13841 --------------------
13843 function Find_Type_Name (N : Node_Id) return Entity_Id is
13844 Id : constant Entity_Id := Defining_Identifier (N);
13845 Prev : Entity_Id;
13846 New_Id : Entity_Id;
13847 Prev_Par : Node_Id;
13849 procedure Tag_Mismatch;
13850 -- Diagnose a tagged partial view whose full view is untagged.
13851 -- We post the message on the full view, with a reference to
13852 -- the previous partial view. The partial view can be private
13853 -- or incomplete, and these are handled in a different manner,
13854 -- so we determine the position of the error message from the
13855 -- respective slocs of both.
13857 ------------------
13858 -- Tag_Mismatch --
13859 ------------------
13861 procedure Tag_Mismatch is
13862 begin
13863 if Sloc (Prev) < Sloc (Id) then
13864 Error_Msg_NE
13865 ("full declaration of } must be a tagged type ", Id, Prev);
13866 else
13867 Error_Msg_NE
13868 ("full declaration of } must be a tagged type ", Prev, Id);
13869 end if;
13870 end Tag_Mismatch;
13872 -- Start of processing for Find_Type_Name
13874 begin
13875 -- Find incomplete declaration, if one was given
13877 Prev := Current_Entity_In_Scope (Id);
13879 if Present (Prev) then
13881 -- Previous declaration exists. Error if not incomplete/private case
13882 -- except if previous declaration is implicit, etc. Enter_Name will
13883 -- emit error if appropriate.
13885 Prev_Par := Parent (Prev);
13887 if not Is_Incomplete_Or_Private_Type (Prev) then
13888 Enter_Name (Id);
13889 New_Id := Id;
13891 elsif not Nkind_In (N, N_Full_Type_Declaration,
13892 N_Task_Type_Declaration,
13893 N_Protected_Type_Declaration)
13894 then
13895 -- Completion must be a full type declarations (RM 7.3(4))
13897 Error_Msg_Sloc := Sloc (Prev);
13898 Error_Msg_NE ("invalid completion of }", Id, Prev);
13900 -- Set scope of Id to avoid cascaded errors. Entity is never
13901 -- examined again, except when saving globals in generics.
13903 Set_Scope (Id, Current_Scope);
13904 New_Id := Id;
13906 -- If this is a repeated incomplete declaration, no further
13907 -- checks are possible.
13909 if Nkind (N) = N_Incomplete_Type_Declaration then
13910 return Prev;
13911 end if;
13913 -- Case of full declaration of incomplete type
13915 elsif Ekind (Prev) = E_Incomplete_Type then
13917 -- Indicate that the incomplete declaration has a matching full
13918 -- declaration. The defining occurrence of the incomplete
13919 -- declaration remains the visible one, and the procedure
13920 -- Get_Full_View dereferences it whenever the type is used.
13922 if Present (Full_View (Prev)) then
13923 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
13924 end if;
13926 Set_Full_View (Prev, Id);
13927 Append_Entity (Id, Current_Scope);
13928 Set_Is_Public (Id, Is_Public (Prev));
13929 Set_Is_Internal (Id);
13930 New_Id := Prev;
13932 -- Case of full declaration of private type
13934 else
13935 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
13936 if Etype (Prev) /= Prev then
13938 -- Prev is a private subtype or a derived type, and needs
13939 -- no completion.
13941 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
13942 New_Id := Id;
13944 elsif Ekind (Prev) = E_Private_Type
13945 and then Nkind_In (N, N_Task_Type_Declaration,
13946 N_Protected_Type_Declaration)
13947 then
13948 Error_Msg_N
13949 ("completion of nonlimited type cannot be limited", N);
13951 elsif Ekind (Prev) = E_Record_Type_With_Private
13952 and then Nkind_In (N, N_Task_Type_Declaration,
13953 N_Protected_Type_Declaration)
13954 then
13955 if not Is_Limited_Record (Prev) then
13956 Error_Msg_N
13957 ("completion of nonlimited type cannot be limited", N);
13959 elsif No (Interface_List (N)) then
13960 Error_Msg_N
13961 ("completion of tagged private type must be tagged",
13963 end if;
13965 elsif Nkind (N) = N_Full_Type_Declaration
13966 and then
13967 Nkind (Type_Definition (N)) = N_Record_Definition
13968 and then Interface_Present (Type_Definition (N))
13969 then
13970 Error_Msg_N
13971 ("completion of private type cannot be an interface", N);
13972 end if;
13974 -- Ada 2005 (AI-251): Private extension declaration of a task
13975 -- type or a protected type. This case arises when covering
13976 -- interface types.
13978 elsif Nkind_In (N, N_Task_Type_Declaration,
13979 N_Protected_Type_Declaration)
13980 then
13981 null;
13983 elsif Nkind (N) /= N_Full_Type_Declaration
13984 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
13985 then
13986 Error_Msg_N
13987 ("full view of private extension must be an extension", N);
13989 elsif not (Abstract_Present (Parent (Prev)))
13990 and then Abstract_Present (Type_Definition (N))
13991 then
13992 Error_Msg_N
13993 ("full view of non-abstract extension cannot be abstract", N);
13994 end if;
13996 if not In_Private_Part (Current_Scope) then
13997 Error_Msg_N
13998 ("declaration of full view must appear in private part", N);
13999 end if;
14001 Copy_And_Swap (Prev, Id);
14002 Set_Has_Private_Declaration (Prev);
14003 Set_Has_Private_Declaration (Id);
14005 -- If no error, propagate freeze_node from private to full view.
14006 -- It may have been generated for an early operational item.
14008 if Present (Freeze_Node (Id))
14009 and then Serious_Errors_Detected = 0
14010 and then No (Full_View (Id))
14011 then
14012 Set_Freeze_Node (Prev, Freeze_Node (Id));
14013 Set_Freeze_Node (Id, Empty);
14014 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
14015 end if;
14017 Set_Full_View (Id, Prev);
14018 New_Id := Prev;
14019 end if;
14021 -- Verify that full declaration conforms to partial one
14023 if Is_Incomplete_Or_Private_Type (Prev)
14024 and then Present (Discriminant_Specifications (Prev_Par))
14025 then
14026 if Present (Discriminant_Specifications (N)) then
14027 if Ekind (Prev) = E_Incomplete_Type then
14028 Check_Discriminant_Conformance (N, Prev, Prev);
14029 else
14030 Check_Discriminant_Conformance (N, Prev, Id);
14031 end if;
14033 else
14034 Error_Msg_N
14035 ("missing discriminants in full type declaration", N);
14037 -- To avoid cascaded errors on subsequent use, share the
14038 -- discriminants of the partial view.
14040 Set_Discriminant_Specifications (N,
14041 Discriminant_Specifications (Prev_Par));
14042 end if;
14043 end if;
14045 -- A prior untagged partial view can have an associated class-wide
14046 -- type due to use of the class attribute, and in this case the full
14047 -- type must also be tagged. This Ada 95 usage is deprecated in favor
14048 -- of incomplete tagged declarations, but we check for it.
14050 if Is_Type (Prev)
14051 and then (Is_Tagged_Type (Prev)
14052 or else Present (Class_Wide_Type (Prev)))
14053 then
14054 -- The full declaration is either a tagged type (including
14055 -- a synchronized type that implements interfaces) or a
14056 -- type extension, otherwise this is an error.
14058 if Nkind_In (N, N_Task_Type_Declaration,
14059 N_Protected_Type_Declaration)
14060 then
14061 if No (Interface_List (N))
14062 and then not Error_Posted (N)
14063 then
14064 Tag_Mismatch;
14065 end if;
14067 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
14069 -- Indicate that the previous declaration (tagged incomplete
14070 -- or private declaration) requires the same on the full one.
14072 if not Tagged_Present (Type_Definition (N)) then
14073 Tag_Mismatch;
14074 Set_Is_Tagged_Type (Id);
14075 Set_Primitive_Operations (Id, New_Elmt_List);
14076 end if;
14078 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
14079 if No (Record_Extension_Part (Type_Definition (N))) then
14080 Error_Msg_NE
14081 ("full declaration of } must be a record extension",
14082 Prev, Id);
14084 -- Set some attributes to produce a usable full view
14086 Set_Is_Tagged_Type (Id);
14087 Set_Primitive_Operations (Id, New_Elmt_List);
14088 end if;
14090 else
14091 Tag_Mismatch;
14092 end if;
14093 end if;
14095 return New_Id;
14097 else
14098 -- New type declaration
14100 Enter_Name (Id);
14101 return Id;
14102 end if;
14103 end Find_Type_Name;
14105 -------------------------
14106 -- Find_Type_Of_Object --
14107 -------------------------
14109 function Find_Type_Of_Object
14110 (Obj_Def : Node_Id;
14111 Related_Nod : Node_Id) return Entity_Id
14113 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
14114 P : Node_Id := Parent (Obj_Def);
14115 T : Entity_Id;
14116 Nam : Name_Id;
14118 begin
14119 -- If the parent is a component_definition node we climb to the
14120 -- component_declaration node
14122 if Nkind (P) = N_Component_Definition then
14123 P := Parent (P);
14124 end if;
14126 -- Case of an anonymous array subtype
14128 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
14129 N_Unconstrained_Array_Definition)
14130 then
14131 T := Empty;
14132 Array_Type_Declaration (T, Obj_Def);
14134 -- Create an explicit subtype whenever possible
14136 elsif Nkind (P) /= N_Component_Declaration
14137 and then Def_Kind = N_Subtype_Indication
14138 then
14139 -- Base name of subtype on object name, which will be unique in
14140 -- the current scope.
14142 -- If this is a duplicate declaration, return base type, to avoid
14143 -- generating duplicate anonymous types.
14145 if Error_Posted (P) then
14146 Analyze (Subtype_Mark (Obj_Def));
14147 return Entity (Subtype_Mark (Obj_Def));
14148 end if;
14150 Nam :=
14151 New_External_Name
14152 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
14154 T := Make_Defining_Identifier (Sloc (P), Nam);
14156 Insert_Action (Obj_Def,
14157 Make_Subtype_Declaration (Sloc (P),
14158 Defining_Identifier => T,
14159 Subtype_Indication => Relocate_Node (Obj_Def)));
14161 -- This subtype may need freezing, and this will not be done
14162 -- automatically if the object declaration is not in declarative
14163 -- part. Since this is an object declaration, the type cannot always
14164 -- be frozen here. Deferred constants do not freeze their type
14165 -- (which often enough will be private).
14167 if Nkind (P) = N_Object_Declaration
14168 and then Constant_Present (P)
14169 and then No (Expression (P))
14170 then
14171 null;
14172 else
14173 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
14174 end if;
14176 -- Ada 2005 AI-406: the object definition in an object declaration
14177 -- can be an access definition.
14179 elsif Def_Kind = N_Access_Definition then
14180 T := Access_Definition (Related_Nod, Obj_Def);
14181 Set_Is_Local_Anonymous_Access (T);
14183 -- Otherwise, the object definition is just a subtype_mark
14185 else
14186 T := Process_Subtype (Obj_Def, Related_Nod);
14187 end if;
14189 return T;
14190 end Find_Type_Of_Object;
14192 --------------------------------
14193 -- Find_Type_Of_Subtype_Indic --
14194 --------------------------------
14196 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
14197 Typ : Entity_Id;
14199 begin
14200 -- Case of subtype mark with a constraint
14202 if Nkind (S) = N_Subtype_Indication then
14203 Find_Type (Subtype_Mark (S));
14204 Typ := Entity (Subtype_Mark (S));
14206 if not
14207 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
14208 then
14209 Error_Msg_N
14210 ("incorrect constraint for this kind of type", Constraint (S));
14211 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
14212 end if;
14214 -- Otherwise we have a subtype mark without a constraint
14216 elsif Error_Posted (S) then
14217 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
14218 return Any_Type;
14220 else
14221 Find_Type (S);
14222 Typ := Entity (S);
14223 end if;
14225 -- Check No_Wide_Characters restriction
14227 Check_Wide_Character_Restriction (Typ, S);
14229 return Typ;
14230 end Find_Type_Of_Subtype_Indic;
14232 -------------------------------------
14233 -- Floating_Point_Type_Declaration --
14234 -------------------------------------
14236 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14237 Digs : constant Node_Id := Digits_Expression (Def);
14238 Digs_Val : Uint;
14239 Base_Typ : Entity_Id;
14240 Implicit_Base : Entity_Id;
14241 Bound : Node_Id;
14243 function Can_Derive_From (E : Entity_Id) return Boolean;
14244 -- Find if given digits value allows derivation from specified type
14246 ---------------------
14247 -- Can_Derive_From --
14248 ---------------------
14250 function Can_Derive_From (E : Entity_Id) return Boolean is
14251 Spec : constant Entity_Id := Real_Range_Specification (Def);
14253 begin
14254 if Digs_Val > Digits_Value (E) then
14255 return False;
14256 end if;
14258 if Present (Spec) then
14259 if Expr_Value_R (Type_Low_Bound (E)) >
14260 Expr_Value_R (Low_Bound (Spec))
14261 then
14262 return False;
14263 end if;
14265 if Expr_Value_R (Type_High_Bound (E)) <
14266 Expr_Value_R (High_Bound (Spec))
14267 then
14268 return False;
14269 end if;
14270 end if;
14272 return True;
14273 end Can_Derive_From;
14275 -- Start of processing for Floating_Point_Type_Declaration
14277 begin
14278 Check_Restriction (No_Floating_Point, Def);
14280 -- Create an implicit base type
14282 Implicit_Base :=
14283 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
14285 -- Analyze and verify digits value
14287 Analyze_And_Resolve (Digs, Any_Integer);
14288 Check_Digits_Expression (Digs);
14289 Digs_Val := Expr_Value (Digs);
14291 -- Process possible range spec and find correct type to derive from
14293 Process_Real_Range_Specification (Def);
14295 if Can_Derive_From (Standard_Short_Float) then
14296 Base_Typ := Standard_Short_Float;
14297 elsif Can_Derive_From (Standard_Float) then
14298 Base_Typ := Standard_Float;
14299 elsif Can_Derive_From (Standard_Long_Float) then
14300 Base_Typ := Standard_Long_Float;
14301 elsif Can_Derive_From (Standard_Long_Long_Float) then
14302 Base_Typ := Standard_Long_Long_Float;
14304 -- If we can't derive from any existing type, use long_long_float
14305 -- and give appropriate message explaining the problem.
14307 else
14308 Base_Typ := Standard_Long_Long_Float;
14310 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
14311 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
14312 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
14314 else
14315 Error_Msg_N
14316 ("range too large for any predefined type",
14317 Real_Range_Specification (Def));
14318 end if;
14319 end if;
14321 -- If there are bounds given in the declaration use them as the bounds
14322 -- of the type, otherwise use the bounds of the predefined base type
14323 -- that was chosen based on the Digits value.
14325 if Present (Real_Range_Specification (Def)) then
14326 Set_Scalar_Range (T, Real_Range_Specification (Def));
14327 Set_Is_Constrained (T);
14329 -- The bounds of this range must be converted to machine numbers
14330 -- in accordance with RM 4.9(38).
14332 Bound := Type_Low_Bound (T);
14334 if Nkind (Bound) = N_Real_Literal then
14335 Set_Realval
14336 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
14337 Set_Is_Machine_Number (Bound);
14338 end if;
14340 Bound := Type_High_Bound (T);
14342 if Nkind (Bound) = N_Real_Literal then
14343 Set_Realval
14344 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
14345 Set_Is_Machine_Number (Bound);
14346 end if;
14348 else
14349 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
14350 end if;
14352 -- Complete definition of implicit base and declared first subtype
14354 Set_Etype (Implicit_Base, Base_Typ);
14356 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
14357 Set_Size_Info (Implicit_Base, (Base_Typ));
14358 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
14359 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
14360 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
14361 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
14363 Set_Ekind (T, E_Floating_Point_Subtype);
14364 Set_Etype (T, Implicit_Base);
14366 Set_Size_Info (T, (Implicit_Base));
14367 Set_RM_Size (T, RM_Size (Implicit_Base));
14368 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
14369 Set_Digits_Value (T, Digs_Val);
14370 end Floating_Point_Type_Declaration;
14372 ----------------------------
14373 -- Get_Discriminant_Value --
14374 ----------------------------
14376 -- This is the situation:
14378 -- There is a non-derived type
14380 -- type T0 (Dx, Dy, Dz...)
14382 -- There are zero or more levels of derivation, with each derivation
14383 -- either purely inheriting the discriminants, or defining its own.
14385 -- type Ti is new Ti-1
14386 -- or
14387 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
14388 -- or
14389 -- subtype Ti is ...
14391 -- The subtype issue is avoided by the use of Original_Record_Component,
14392 -- and the fact that derived subtypes also derive the constraints.
14394 -- This chain leads back from
14396 -- Typ_For_Constraint
14398 -- Typ_For_Constraint has discriminants, and the value for each
14399 -- discriminant is given by its corresponding Elmt of Constraints.
14401 -- Discriminant is some discriminant in this hierarchy
14403 -- We need to return its value
14405 -- We do this by recursively searching each level, and looking for
14406 -- Discriminant. Once we get to the bottom, we start backing up
14407 -- returning the value for it which may in turn be a discriminant
14408 -- further up, so on the backup we continue the substitution.
14410 function Get_Discriminant_Value
14411 (Discriminant : Entity_Id;
14412 Typ_For_Constraint : Entity_Id;
14413 Constraint : Elist_Id) return Node_Id
14415 function Search_Derivation_Levels
14416 (Ti : Entity_Id;
14417 Discrim_Values : Elist_Id;
14418 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
14419 -- This is the routine that performs the recursive search of levels
14420 -- as described above.
14422 ------------------------------
14423 -- Search_Derivation_Levels --
14424 ------------------------------
14426 function Search_Derivation_Levels
14427 (Ti : Entity_Id;
14428 Discrim_Values : Elist_Id;
14429 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
14431 Assoc : Elmt_Id;
14432 Disc : Entity_Id;
14433 Result : Node_Or_Entity_Id;
14434 Result_Entity : Node_Id;
14436 begin
14437 -- If inappropriate type, return Error, this happens only in
14438 -- cascaded error situations, and we want to avoid a blow up.
14440 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
14441 return Error;
14442 end if;
14444 -- Look deeper if possible. Use Stored_Constraints only for
14445 -- untagged types. For tagged types use the given constraint.
14446 -- This asymmetry needs explanation???
14448 if not Stored_Discrim_Values
14449 and then Present (Stored_Constraint (Ti))
14450 and then not Is_Tagged_Type (Ti)
14451 then
14452 Result :=
14453 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
14454 else
14455 declare
14456 Td : constant Entity_Id := Etype (Ti);
14458 begin
14459 if Td = Ti then
14460 Result := Discriminant;
14462 else
14463 if Present (Stored_Constraint (Ti)) then
14464 Result :=
14465 Search_Derivation_Levels
14466 (Td, Stored_Constraint (Ti), True);
14467 else
14468 Result :=
14469 Search_Derivation_Levels
14470 (Td, Discrim_Values, Stored_Discrim_Values);
14471 end if;
14472 end if;
14473 end;
14474 end if;
14476 -- Extra underlying places to search, if not found above. For
14477 -- concurrent types, the relevant discriminant appears in the
14478 -- corresponding record. For a type derived from a private type
14479 -- without discriminant, the full view inherits the discriminants
14480 -- of the full view of the parent.
14482 if Result = Discriminant then
14483 if Is_Concurrent_Type (Ti)
14484 and then Present (Corresponding_Record_Type (Ti))
14485 then
14486 Result :=
14487 Search_Derivation_Levels (
14488 Corresponding_Record_Type (Ti),
14489 Discrim_Values,
14490 Stored_Discrim_Values);
14492 elsif Is_Private_Type (Ti)
14493 and then not Has_Discriminants (Ti)
14494 and then Present (Full_View (Ti))
14495 and then Etype (Full_View (Ti)) /= Ti
14496 then
14497 Result :=
14498 Search_Derivation_Levels (
14499 Full_View (Ti),
14500 Discrim_Values,
14501 Stored_Discrim_Values);
14502 end if;
14503 end if;
14505 -- If Result is not a (reference to a) discriminant, return it,
14506 -- otherwise set Result_Entity to the discriminant.
14508 if Nkind (Result) = N_Defining_Identifier then
14509 pragma Assert (Result = Discriminant);
14510 Result_Entity := Result;
14512 else
14513 if not Denotes_Discriminant (Result) then
14514 return Result;
14515 end if;
14517 Result_Entity := Entity (Result);
14518 end if;
14520 -- See if this level of derivation actually has discriminants
14521 -- because tagged derivations can add them, hence the lower
14522 -- levels need not have any.
14524 if not Has_Discriminants (Ti) then
14525 return Result;
14526 end if;
14528 -- Scan Ti's discriminants for Result_Entity,
14529 -- and return its corresponding value, if any.
14531 Result_Entity := Original_Record_Component (Result_Entity);
14533 Assoc := First_Elmt (Discrim_Values);
14535 if Stored_Discrim_Values then
14536 Disc := First_Stored_Discriminant (Ti);
14537 else
14538 Disc := First_Discriminant (Ti);
14539 end if;
14541 while Present (Disc) loop
14542 pragma Assert (Present (Assoc));
14544 if Original_Record_Component (Disc) = Result_Entity then
14545 return Node (Assoc);
14546 end if;
14548 Next_Elmt (Assoc);
14550 if Stored_Discrim_Values then
14551 Next_Stored_Discriminant (Disc);
14552 else
14553 Next_Discriminant (Disc);
14554 end if;
14555 end loop;
14557 -- Could not find it
14559 return Result;
14560 end Search_Derivation_Levels;
14562 -- Local Variables
14564 Result : Node_Or_Entity_Id;
14566 -- Start of processing for Get_Discriminant_Value
14568 begin
14569 -- ??? This routine is a gigantic mess and will be deleted. For the
14570 -- time being just test for the trivial case before calling recurse.
14572 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
14573 declare
14574 D : Entity_Id;
14575 E : Elmt_Id;
14577 begin
14578 D := First_Discriminant (Typ_For_Constraint);
14579 E := First_Elmt (Constraint);
14580 while Present (D) loop
14581 if Chars (D) = Chars (Discriminant) then
14582 return Node (E);
14583 end if;
14585 Next_Discriminant (D);
14586 Next_Elmt (E);
14587 end loop;
14588 end;
14589 end if;
14591 Result := Search_Derivation_Levels
14592 (Typ_For_Constraint, Constraint, False);
14594 -- ??? hack to disappear when this routine is gone
14596 if Nkind (Result) = N_Defining_Identifier then
14597 declare
14598 D : Entity_Id;
14599 E : Elmt_Id;
14601 begin
14602 D := First_Discriminant (Typ_For_Constraint);
14603 E := First_Elmt (Constraint);
14604 while Present (D) loop
14605 if Corresponding_Discriminant (D) = Discriminant then
14606 return Node (E);
14607 end if;
14609 Next_Discriminant (D);
14610 Next_Elmt (E);
14611 end loop;
14612 end;
14613 end if;
14615 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
14616 return Result;
14617 end Get_Discriminant_Value;
14619 --------------------------
14620 -- Has_Range_Constraint --
14621 --------------------------
14623 function Has_Range_Constraint (N : Node_Id) return Boolean is
14624 C : constant Node_Id := Constraint (N);
14626 begin
14627 if Nkind (C) = N_Range_Constraint then
14628 return True;
14630 elsif Nkind (C) = N_Digits_Constraint then
14631 return
14632 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
14633 or else
14634 Present (Range_Constraint (C));
14636 elsif Nkind (C) = N_Delta_Constraint then
14637 return Present (Range_Constraint (C));
14639 else
14640 return False;
14641 end if;
14642 end Has_Range_Constraint;
14644 ------------------------
14645 -- Inherit_Components --
14646 ------------------------
14648 function Inherit_Components
14649 (N : Node_Id;
14650 Parent_Base : Entity_Id;
14651 Derived_Base : Entity_Id;
14652 Is_Tagged : Boolean;
14653 Inherit_Discr : Boolean;
14654 Discs : Elist_Id) return Elist_Id
14656 Assoc_List : constant Elist_Id := New_Elmt_List;
14658 procedure Inherit_Component
14659 (Old_C : Entity_Id;
14660 Plain_Discrim : Boolean := False;
14661 Stored_Discrim : Boolean := False);
14662 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
14663 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
14664 -- True, Old_C is a stored discriminant. If they are both false then
14665 -- Old_C is a regular component.
14667 -----------------------
14668 -- Inherit_Component --
14669 -----------------------
14671 procedure Inherit_Component
14672 (Old_C : Entity_Id;
14673 Plain_Discrim : Boolean := False;
14674 Stored_Discrim : Boolean := False)
14676 New_C : constant Entity_Id := New_Copy (Old_C);
14678 Discrim : Entity_Id;
14679 Corr_Discrim : Entity_Id;
14681 begin
14682 pragma Assert (not Is_Tagged or else not Stored_Discrim);
14684 Set_Parent (New_C, Parent (Old_C));
14686 -- Regular discriminants and components must be inserted in the scope
14687 -- of the Derived_Base. Do it here.
14689 if not Stored_Discrim then
14690 Enter_Name (New_C);
14691 end if;
14693 -- For tagged types the Original_Record_Component must point to
14694 -- whatever this field was pointing to in the parent type. This has
14695 -- already been achieved by the call to New_Copy above.
14697 if not Is_Tagged then
14698 Set_Original_Record_Component (New_C, New_C);
14699 end if;
14701 -- If we have inherited a component then see if its Etype contains
14702 -- references to Parent_Base discriminants. In this case, replace
14703 -- these references with the constraints given in Discs. We do not
14704 -- do this for the partial view of private types because this is
14705 -- not needed (only the components of the full view will be used
14706 -- for code generation) and cause problem. We also avoid this
14707 -- transformation in some error situations.
14709 if Ekind (New_C) = E_Component then
14710 if (Is_Private_Type (Derived_Base)
14711 and then not Is_Generic_Type (Derived_Base))
14712 or else (Is_Empty_Elmt_List (Discs)
14713 and then not Expander_Active)
14714 then
14715 Set_Etype (New_C, Etype (Old_C));
14717 else
14718 -- The current component introduces a circularity of the
14719 -- following kind:
14721 -- limited with Pack_2;
14722 -- package Pack_1 is
14723 -- type T_1 is tagged record
14724 -- Comp : access Pack_2.T_2;
14725 -- ...
14726 -- end record;
14727 -- end Pack_1;
14729 -- with Pack_1;
14730 -- package Pack_2 is
14731 -- type T_2 is new Pack_1.T_1 with ...;
14732 -- end Pack_2;
14734 Set_Etype
14735 (New_C,
14736 Constrain_Component_Type
14737 (Old_C, Derived_Base, N, Parent_Base, Discs));
14738 end if;
14739 end if;
14741 -- In derived tagged types it is illegal to reference a non
14742 -- discriminant component in the parent type. To catch this, mark
14743 -- these components with an Ekind of E_Void. This will be reset in
14744 -- Record_Type_Definition after processing the record extension of
14745 -- the derived type.
14747 -- If the declaration is a private extension, there is no further
14748 -- record extension to process, and the components retain their
14749 -- current kind, because they are visible at this point.
14751 if Is_Tagged and then Ekind (New_C) = E_Component
14752 and then Nkind (N) /= N_Private_Extension_Declaration
14753 then
14754 Set_Ekind (New_C, E_Void);
14755 end if;
14757 if Plain_Discrim then
14758 Set_Corresponding_Discriminant (New_C, Old_C);
14759 Build_Discriminal (New_C);
14761 -- If we are explicitly inheriting a stored discriminant it will be
14762 -- completely hidden.
14764 elsif Stored_Discrim then
14765 Set_Corresponding_Discriminant (New_C, Empty);
14766 Set_Discriminal (New_C, Empty);
14767 Set_Is_Completely_Hidden (New_C);
14769 -- Set the Original_Record_Component of each discriminant in the
14770 -- derived base to point to the corresponding stored that we just
14771 -- created.
14773 Discrim := First_Discriminant (Derived_Base);
14774 while Present (Discrim) loop
14775 Corr_Discrim := Corresponding_Discriminant (Discrim);
14777 -- Corr_Discrim could be missing in an error situation
14779 if Present (Corr_Discrim)
14780 and then Original_Record_Component (Corr_Discrim) = Old_C
14781 then
14782 Set_Original_Record_Component (Discrim, New_C);
14783 end if;
14785 Next_Discriminant (Discrim);
14786 end loop;
14788 Append_Entity (New_C, Derived_Base);
14789 end if;
14791 if not Is_Tagged then
14792 Append_Elmt (Old_C, Assoc_List);
14793 Append_Elmt (New_C, Assoc_List);
14794 end if;
14795 end Inherit_Component;
14797 -- Variables local to Inherit_Component
14799 Loc : constant Source_Ptr := Sloc (N);
14801 Parent_Discrim : Entity_Id;
14802 Stored_Discrim : Entity_Id;
14803 D : Entity_Id;
14804 Component : Entity_Id;
14806 -- Start of processing for Inherit_Components
14808 begin
14809 if not Is_Tagged then
14810 Append_Elmt (Parent_Base, Assoc_List);
14811 Append_Elmt (Derived_Base, Assoc_List);
14812 end if;
14814 -- Inherit parent discriminants if needed
14816 if Inherit_Discr then
14817 Parent_Discrim := First_Discriminant (Parent_Base);
14818 while Present (Parent_Discrim) loop
14819 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
14820 Next_Discriminant (Parent_Discrim);
14821 end loop;
14822 end if;
14824 -- Create explicit stored discrims for untagged types when necessary
14826 if not Has_Unknown_Discriminants (Derived_Base)
14827 and then Has_Discriminants (Parent_Base)
14828 and then not Is_Tagged
14829 and then
14830 (not Inherit_Discr
14831 or else First_Discriminant (Parent_Base) /=
14832 First_Stored_Discriminant (Parent_Base))
14833 then
14834 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
14835 while Present (Stored_Discrim) loop
14836 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
14837 Next_Stored_Discriminant (Stored_Discrim);
14838 end loop;
14839 end if;
14841 -- See if we can apply the second transformation for derived types, as
14842 -- explained in point 6. in the comments above Build_Derived_Record_Type
14843 -- This is achieved by appending Derived_Base discriminants into Discs,
14844 -- which has the side effect of returning a non empty Discs list to the
14845 -- caller of Inherit_Components, which is what we want. This must be
14846 -- done for private derived types if there are explicit stored
14847 -- discriminants, to ensure that we can retrieve the values of the
14848 -- constraints provided in the ancestors.
14850 if Inherit_Discr
14851 and then Is_Empty_Elmt_List (Discs)
14852 and then Present (First_Discriminant (Derived_Base))
14853 and then
14854 (not Is_Private_Type (Derived_Base)
14855 or else Is_Completely_Hidden
14856 (First_Stored_Discriminant (Derived_Base))
14857 or else Is_Generic_Type (Derived_Base))
14858 then
14859 D := First_Discriminant (Derived_Base);
14860 while Present (D) loop
14861 Append_Elmt (New_Reference_To (D, Loc), Discs);
14862 Next_Discriminant (D);
14863 end loop;
14864 end if;
14866 -- Finally, inherit non-discriminant components unless they are not
14867 -- visible because defined or inherited from the full view of the
14868 -- parent. Don't inherit the _parent field of the parent type.
14870 Component := First_Entity (Parent_Base);
14871 while Present (Component) loop
14873 -- Ada 2005 (AI-251): Do not inherit components associated with
14874 -- secondary tags of the parent.
14876 if Ekind (Component) = E_Component
14877 and then Present (Related_Type (Component))
14878 then
14879 null;
14881 elsif Ekind (Component) /= E_Component
14882 or else Chars (Component) = Name_uParent
14883 then
14884 null;
14886 -- If the derived type is within the parent type's declarative
14887 -- region, then the components can still be inherited even though
14888 -- they aren't visible at this point. This can occur for cases
14889 -- such as within public child units where the components must
14890 -- become visible upon entering the child unit's private part.
14892 elsif not Is_Visible_Component (Component)
14893 and then not In_Open_Scopes (Scope (Parent_Base))
14894 then
14895 null;
14897 elsif Ekind_In (Derived_Base, E_Private_Type,
14898 E_Limited_Private_Type)
14899 then
14900 null;
14902 else
14903 Inherit_Component (Component);
14904 end if;
14906 Next_Entity (Component);
14907 end loop;
14909 -- For tagged derived types, inherited discriminants cannot be used in
14910 -- component declarations of the record extension part. To achieve this
14911 -- we mark the inherited discriminants as not visible.
14913 if Is_Tagged and then Inherit_Discr then
14914 D := First_Discriminant (Derived_Base);
14915 while Present (D) loop
14916 Set_Is_Immediately_Visible (D, False);
14917 Next_Discriminant (D);
14918 end loop;
14919 end if;
14921 return Assoc_List;
14922 end Inherit_Components;
14924 -----------------------
14925 -- Is_Null_Extension --
14926 -----------------------
14928 function Is_Null_Extension (T : Entity_Id) return Boolean is
14929 Type_Decl : constant Node_Id := Parent (Base_Type (T));
14930 Comp_List : Node_Id;
14931 Comp : Node_Id;
14933 begin
14934 if Nkind (Type_Decl) /= N_Full_Type_Declaration
14935 or else not Is_Tagged_Type (T)
14936 or else Nkind (Type_Definition (Type_Decl)) /=
14937 N_Derived_Type_Definition
14938 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
14939 then
14940 return False;
14941 end if;
14943 Comp_List :=
14944 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
14946 if Present (Discriminant_Specifications (Type_Decl)) then
14947 return False;
14949 elsif Present (Comp_List)
14950 and then Is_Non_Empty_List (Component_Items (Comp_List))
14951 then
14952 Comp := First (Component_Items (Comp_List));
14954 -- Only user-defined components are relevant. The component list
14955 -- may also contain a parent component and internal components
14956 -- corresponding to secondary tags, but these do not determine
14957 -- whether this is a null extension.
14959 while Present (Comp) loop
14960 if Comes_From_Source (Comp) then
14961 return False;
14962 end if;
14964 Next (Comp);
14965 end loop;
14967 return True;
14968 else
14969 return True;
14970 end if;
14971 end Is_Null_Extension;
14973 ------------------------------
14974 -- Is_Valid_Constraint_Kind --
14975 ------------------------------
14977 function Is_Valid_Constraint_Kind
14978 (T_Kind : Type_Kind;
14979 Constraint_Kind : Node_Kind) return Boolean
14981 begin
14982 case T_Kind is
14983 when Enumeration_Kind |
14984 Integer_Kind =>
14985 return Constraint_Kind = N_Range_Constraint;
14987 when Decimal_Fixed_Point_Kind =>
14988 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
14989 N_Range_Constraint);
14991 when Ordinary_Fixed_Point_Kind =>
14992 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
14993 N_Range_Constraint);
14995 when Float_Kind =>
14996 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
14997 N_Range_Constraint);
14999 when Access_Kind |
15000 Array_Kind |
15001 E_Record_Type |
15002 E_Record_Subtype |
15003 Class_Wide_Kind |
15004 E_Incomplete_Type |
15005 Private_Kind |
15006 Concurrent_Kind =>
15007 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
15009 when others =>
15010 return True; -- Error will be detected later
15011 end case;
15012 end Is_Valid_Constraint_Kind;
15014 --------------------------
15015 -- Is_Visible_Component --
15016 --------------------------
15018 function Is_Visible_Component (C : Entity_Id) return Boolean is
15019 Original_Comp : Entity_Id := Empty;
15020 Original_Scope : Entity_Id;
15021 Type_Scope : Entity_Id;
15023 function Is_Local_Type (Typ : Entity_Id) return Boolean;
15024 -- Check whether parent type of inherited component is declared locally,
15025 -- possibly within a nested package or instance. The current scope is
15026 -- the derived record itself.
15028 -------------------
15029 -- Is_Local_Type --
15030 -------------------
15032 function Is_Local_Type (Typ : Entity_Id) return Boolean is
15033 Scop : Entity_Id;
15035 begin
15036 Scop := Scope (Typ);
15037 while Present (Scop)
15038 and then Scop /= Standard_Standard
15039 loop
15040 if Scop = Scope (Current_Scope) then
15041 return True;
15042 end if;
15044 Scop := Scope (Scop);
15045 end loop;
15047 return False;
15048 end Is_Local_Type;
15050 -- Start of processing for Is_Visible_Component
15052 begin
15053 if Ekind_In (C, E_Component, E_Discriminant) then
15054 Original_Comp := Original_Record_Component (C);
15055 end if;
15057 if No (Original_Comp) then
15059 -- Premature usage, or previous error
15061 return False;
15063 else
15064 Original_Scope := Scope (Original_Comp);
15065 Type_Scope := Scope (Base_Type (Scope (C)));
15066 end if;
15068 -- This test only concerns tagged types
15070 if not Is_Tagged_Type (Original_Scope) then
15071 return True;
15073 -- If it is _Parent or _Tag, there is no visibility issue
15075 elsif not Comes_From_Source (Original_Comp) then
15076 return True;
15078 -- If we are in the body of an instantiation, the component is visible
15079 -- even when the parent type (possibly defined in an enclosing unit or
15080 -- in a parent unit) might not.
15082 elsif In_Instance_Body then
15083 return True;
15085 -- Discriminants are always visible
15087 elsif Ekind (Original_Comp) = E_Discriminant
15088 and then not Has_Unknown_Discriminants (Original_Scope)
15089 then
15090 return True;
15092 -- If the component has been declared in an ancestor which is currently
15093 -- a private type, then it is not visible. The same applies if the
15094 -- component's containing type is not in an open scope and the original
15095 -- component's enclosing type is a visible full view of a private type
15096 -- (which can occur in cases where an attempt is being made to reference
15097 -- a component in a sibling package that is inherited from a visible
15098 -- component of a type in an ancestor package; the component in the
15099 -- sibling package should not be visible even though the component it
15100 -- inherited from is visible). This does not apply however in the case
15101 -- where the scope of the type is a private child unit, or when the
15102 -- parent comes from a local package in which the ancestor is currently
15103 -- visible. The latter suppression of visibility is needed for cases
15104 -- that are tested in B730006.
15106 elsif Is_Private_Type (Original_Scope)
15107 or else
15108 (not Is_Private_Descendant (Type_Scope)
15109 and then not In_Open_Scopes (Type_Scope)
15110 and then Has_Private_Declaration (Original_Scope))
15111 then
15112 -- If the type derives from an entity in a formal package, there
15113 -- are no additional visible components.
15115 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
15116 N_Formal_Package_Declaration
15117 then
15118 return False;
15120 -- if we are not in the private part of the current package, there
15121 -- are no additional visible components.
15123 elsif Ekind (Scope (Current_Scope)) = E_Package
15124 and then not In_Private_Part (Scope (Current_Scope))
15125 then
15126 return False;
15127 else
15128 return
15129 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
15130 and then In_Open_Scopes (Scope (Original_Scope))
15131 and then Is_Local_Type (Type_Scope);
15132 end if;
15134 -- There is another weird way in which a component may be invisible
15135 -- when the private and the full view are not derived from the same
15136 -- ancestor. Here is an example :
15138 -- type A1 is tagged record F1 : integer; end record;
15139 -- type A2 is new A1 with record F2 : integer; end record;
15140 -- type T is new A1 with private;
15141 -- private
15142 -- type T is new A2 with null record;
15144 -- In this case, the full view of T inherits F1 and F2 but the private
15145 -- view inherits only F1
15147 else
15148 declare
15149 Ancestor : Entity_Id := Scope (C);
15151 begin
15152 loop
15153 if Ancestor = Original_Scope then
15154 return True;
15155 elsif Ancestor = Etype (Ancestor) then
15156 return False;
15157 end if;
15159 Ancestor := Etype (Ancestor);
15160 end loop;
15161 end;
15162 end if;
15163 end Is_Visible_Component;
15165 --------------------------
15166 -- Make_Class_Wide_Type --
15167 --------------------------
15169 procedure Make_Class_Wide_Type (T : Entity_Id) is
15170 CW_Type : Entity_Id;
15171 CW_Name : Name_Id;
15172 Next_E : Entity_Id;
15174 begin
15175 -- The class wide type can have been defined by the partial view, in
15176 -- which case everything is already done.
15178 if Present (Class_Wide_Type (T)) then
15179 return;
15180 end if;
15182 CW_Type :=
15183 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
15185 -- Inherit root type characteristics
15187 CW_Name := Chars (CW_Type);
15188 Next_E := Next_Entity (CW_Type);
15189 Copy_Node (T, CW_Type);
15190 Set_Comes_From_Source (CW_Type, False);
15191 Set_Chars (CW_Type, CW_Name);
15192 Set_Parent (CW_Type, Parent (T));
15193 Set_Next_Entity (CW_Type, Next_E);
15195 -- Ensure we have a new freeze node for the class-wide type. The partial
15196 -- view may have freeze action of its own, requiring a proper freeze
15197 -- node, and the same freeze node cannot be shared between the two
15198 -- types.
15200 Set_Has_Delayed_Freeze (CW_Type);
15201 Set_Freeze_Node (CW_Type, Empty);
15203 -- Customize the class-wide type: It has no prim. op., it cannot be
15204 -- abstract and its Etype points back to the specific root type.
15206 Set_Ekind (CW_Type, E_Class_Wide_Type);
15207 Set_Is_Tagged_Type (CW_Type, True);
15208 Set_Primitive_Operations (CW_Type, New_Elmt_List);
15209 Set_Is_Abstract_Type (CW_Type, False);
15210 Set_Is_Constrained (CW_Type, False);
15211 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
15213 if Ekind (T) = E_Class_Wide_Subtype then
15214 Set_Etype (CW_Type, Etype (Base_Type (T)));
15215 else
15216 Set_Etype (CW_Type, T);
15217 end if;
15219 -- If this is the class_wide type of a constrained subtype, it does
15220 -- not have discriminants.
15222 Set_Has_Discriminants (CW_Type,
15223 Has_Discriminants (T) and then not Is_Constrained (T));
15225 Set_Has_Unknown_Discriminants (CW_Type, True);
15226 Set_Class_Wide_Type (T, CW_Type);
15227 Set_Equivalent_Type (CW_Type, Empty);
15229 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
15231 Set_Class_Wide_Type (CW_Type, CW_Type);
15232 end Make_Class_Wide_Type;
15234 ----------------
15235 -- Make_Index --
15236 ----------------
15238 procedure Make_Index
15239 (I : Node_Id;
15240 Related_Nod : Node_Id;
15241 Related_Id : Entity_Id := Empty;
15242 Suffix_Index : Nat := 1)
15244 R : Node_Id;
15245 T : Entity_Id;
15246 Def_Id : Entity_Id := Empty;
15247 Found : Boolean := False;
15249 begin
15250 -- For a discrete range used in a constrained array definition and
15251 -- defined by a range, an implicit conversion to the predefined type
15252 -- INTEGER is assumed if each bound is either a numeric literal, a named
15253 -- number, or an attribute, and the type of both bounds (prior to the
15254 -- implicit conversion) is the type universal_integer. Otherwise, both
15255 -- bounds must be of the same discrete type, other than universal
15256 -- integer; this type must be determinable independently of the
15257 -- context, but using the fact that the type must be discrete and that
15258 -- both bounds must have the same type.
15260 -- Character literals also have a universal type in the absence of
15261 -- of additional context, and are resolved to Standard_Character.
15263 if Nkind (I) = N_Range then
15265 -- The index is given by a range constraint. The bounds are known
15266 -- to be of a consistent type.
15268 if not Is_Overloaded (I) then
15269 T := Etype (I);
15271 -- For universal bounds, choose the specific predefined type
15273 if T = Universal_Integer then
15274 T := Standard_Integer;
15276 elsif T = Any_Character then
15277 Ambiguous_Character (Low_Bound (I));
15279 T := Standard_Character;
15280 end if;
15282 -- The node may be overloaded because some user-defined operators
15283 -- are available, but if a universal interpretation exists it is
15284 -- also the selected one.
15286 elsif Universal_Interpretation (I) = Universal_Integer then
15287 T := Standard_Integer;
15289 else
15290 T := Any_Type;
15292 declare
15293 Ind : Interp_Index;
15294 It : Interp;
15296 begin
15297 Get_First_Interp (I, Ind, It);
15298 while Present (It.Typ) loop
15299 if Is_Discrete_Type (It.Typ) then
15301 if Found
15302 and then not Covers (It.Typ, T)
15303 and then not Covers (T, It.Typ)
15304 then
15305 Error_Msg_N ("ambiguous bounds in discrete range", I);
15306 exit;
15307 else
15308 T := It.Typ;
15309 Found := True;
15310 end if;
15311 end if;
15313 Get_Next_Interp (Ind, It);
15314 end loop;
15316 if T = Any_Type then
15317 Error_Msg_N ("discrete type required for range", I);
15318 Set_Etype (I, Any_Type);
15319 return;
15321 elsif T = Universal_Integer then
15322 T := Standard_Integer;
15323 end if;
15324 end;
15325 end if;
15327 if not Is_Discrete_Type (T) then
15328 Error_Msg_N ("discrete type required for range", I);
15329 Set_Etype (I, Any_Type);
15330 return;
15331 end if;
15333 if Nkind (Low_Bound (I)) = N_Attribute_Reference
15334 and then Attribute_Name (Low_Bound (I)) = Name_First
15335 and then Is_Entity_Name (Prefix (Low_Bound (I)))
15336 and then Is_Type (Entity (Prefix (Low_Bound (I))))
15337 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
15338 then
15339 -- The type of the index will be the type of the prefix, as long
15340 -- as the upper bound is 'Last of the same type.
15342 Def_Id := Entity (Prefix (Low_Bound (I)));
15344 if Nkind (High_Bound (I)) /= N_Attribute_Reference
15345 or else Attribute_Name (High_Bound (I)) /= Name_Last
15346 or else not Is_Entity_Name (Prefix (High_Bound (I)))
15347 or else Entity (Prefix (High_Bound (I))) /= Def_Id
15348 then
15349 Def_Id := Empty;
15350 end if;
15351 end if;
15353 R := I;
15354 Process_Range_Expr_In_Decl (R, T);
15356 elsif Nkind (I) = N_Subtype_Indication then
15358 -- The index is given by a subtype with a range constraint
15360 T := Base_Type (Entity (Subtype_Mark (I)));
15362 if not Is_Discrete_Type (T) then
15363 Error_Msg_N ("discrete type required for range", I);
15364 Set_Etype (I, Any_Type);
15365 return;
15366 end if;
15368 R := Range_Expression (Constraint (I));
15370 Resolve (R, T);
15371 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
15373 elsif Nkind (I) = N_Attribute_Reference then
15375 -- The parser guarantees that the attribute is a RANGE attribute
15377 -- If the node denotes the range of a type mark, that is also the
15378 -- resulting type, and we do no need to create an Itype for it.
15380 if Is_Entity_Name (Prefix (I))
15381 and then Comes_From_Source (I)
15382 and then Is_Type (Entity (Prefix (I)))
15383 and then Is_Discrete_Type (Entity (Prefix (I)))
15384 then
15385 Def_Id := Entity (Prefix (I));
15386 end if;
15388 Analyze_And_Resolve (I);
15389 T := Etype (I);
15390 R := I;
15392 -- If none of the above, must be a subtype. We convert this to a
15393 -- range attribute reference because in the case of declared first
15394 -- named subtypes, the types in the range reference can be different
15395 -- from the type of the entity. A range attribute normalizes the
15396 -- reference and obtains the correct types for the bounds.
15398 -- This transformation is in the nature of an expansion, is only
15399 -- done if expansion is active. In particular, it is not done on
15400 -- formal generic types, because we need to retain the name of the
15401 -- original index for instantiation purposes.
15403 else
15404 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
15405 Error_Msg_N ("invalid subtype mark in discrete range ", I);
15406 Set_Etype (I, Any_Integer);
15407 return;
15409 else
15410 -- The type mark may be that of an incomplete type. It is only
15411 -- now that we can get the full view, previous analysis does
15412 -- not look specifically for a type mark.
15414 Set_Entity (I, Get_Full_View (Entity (I)));
15415 Set_Etype (I, Entity (I));
15416 Def_Id := Entity (I);
15418 if not Is_Discrete_Type (Def_Id) then
15419 Error_Msg_N ("discrete type required for index", I);
15420 Set_Etype (I, Any_Type);
15421 return;
15422 end if;
15423 end if;
15425 if Expander_Active then
15426 Rewrite (I,
15427 Make_Attribute_Reference (Sloc (I),
15428 Attribute_Name => Name_Range,
15429 Prefix => Relocate_Node (I)));
15431 -- The original was a subtype mark that does not freeze. This
15432 -- means that the rewritten version must not freeze either.
15434 Set_Must_Not_Freeze (I);
15435 Set_Must_Not_Freeze (Prefix (I));
15437 -- Is order critical??? if so, document why, if not
15438 -- use Analyze_And_Resolve
15440 Analyze_And_Resolve (I);
15441 T := Etype (I);
15442 R := I;
15444 -- If expander is inactive, type is legal, nothing else to construct
15446 else
15447 return;
15448 end if;
15449 end if;
15451 if not Is_Discrete_Type (T) then
15452 Error_Msg_N ("discrete type required for range", I);
15453 Set_Etype (I, Any_Type);
15454 return;
15456 elsif T = Any_Type then
15457 Set_Etype (I, Any_Type);
15458 return;
15459 end if;
15461 -- We will now create the appropriate Itype to describe the range, but
15462 -- first a check. If we originally had a subtype, then we just label
15463 -- the range with this subtype. Not only is there no need to construct
15464 -- a new subtype, but it is wrong to do so for two reasons:
15466 -- 1. A legality concern, if we have a subtype, it must not freeze,
15467 -- and the Itype would cause freezing incorrectly
15469 -- 2. An efficiency concern, if we created an Itype, it would not be
15470 -- recognized as the same type for the purposes of eliminating
15471 -- checks in some circumstances.
15473 -- We signal this case by setting the subtype entity in Def_Id
15475 if No (Def_Id) then
15476 Def_Id :=
15477 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
15478 Set_Etype (Def_Id, Base_Type (T));
15480 if Is_Signed_Integer_Type (T) then
15481 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
15483 elsif Is_Modular_Integer_Type (T) then
15484 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
15486 else
15487 Set_Ekind (Def_Id, E_Enumeration_Subtype);
15488 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
15489 Set_First_Literal (Def_Id, First_Literal (T));
15490 end if;
15492 Set_Size_Info (Def_Id, (T));
15493 Set_RM_Size (Def_Id, RM_Size (T));
15494 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
15496 Set_Scalar_Range (Def_Id, R);
15497 Conditional_Delay (Def_Id, T);
15499 -- In the subtype indication case, if the immediate parent of the
15500 -- new subtype is non-static, then the subtype we create is non-
15501 -- static, even if its bounds are static.
15503 if Nkind (I) = N_Subtype_Indication
15504 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
15505 then
15506 Set_Is_Non_Static_Subtype (Def_Id);
15507 end if;
15508 end if;
15510 -- Final step is to label the index with this constructed type
15512 Set_Etype (I, Def_Id);
15513 end Make_Index;
15515 ------------------------------
15516 -- Modular_Type_Declaration --
15517 ------------------------------
15519 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15520 Mod_Expr : constant Node_Id := Expression (Def);
15521 M_Val : Uint;
15523 procedure Set_Modular_Size (Bits : Int);
15524 -- Sets RM_Size to Bits, and Esize to normal word size above this
15526 ----------------------
15527 -- Set_Modular_Size --
15528 ----------------------
15530 procedure Set_Modular_Size (Bits : Int) is
15531 begin
15532 Set_RM_Size (T, UI_From_Int (Bits));
15534 if Bits <= 8 then
15535 Init_Esize (T, 8);
15537 elsif Bits <= 16 then
15538 Init_Esize (T, 16);
15540 elsif Bits <= 32 then
15541 Init_Esize (T, 32);
15543 else
15544 Init_Esize (T, System_Max_Binary_Modulus_Power);
15545 end if;
15547 if not Non_Binary_Modulus (T)
15548 and then Esize (T) = RM_Size (T)
15549 then
15550 Set_Is_Known_Valid (T);
15551 end if;
15552 end Set_Modular_Size;
15554 -- Start of processing for Modular_Type_Declaration
15556 begin
15557 Analyze_And_Resolve (Mod_Expr, Any_Integer);
15558 Set_Etype (T, T);
15559 Set_Ekind (T, E_Modular_Integer_Type);
15560 Init_Alignment (T);
15561 Set_Is_Constrained (T);
15563 if not Is_OK_Static_Expression (Mod_Expr) then
15564 Flag_Non_Static_Expr
15565 ("non-static expression used for modular type bound!", Mod_Expr);
15566 M_Val := 2 ** System_Max_Binary_Modulus_Power;
15567 else
15568 M_Val := Expr_Value (Mod_Expr);
15569 end if;
15571 if M_Val < 1 then
15572 Error_Msg_N ("modulus value must be positive", Mod_Expr);
15573 M_Val := 2 ** System_Max_Binary_Modulus_Power;
15574 end if;
15576 Set_Modulus (T, M_Val);
15578 -- Create bounds for the modular type based on the modulus given in
15579 -- the type declaration and then analyze and resolve those bounds.
15581 Set_Scalar_Range (T,
15582 Make_Range (Sloc (Mod_Expr),
15583 Low_Bound =>
15584 Make_Integer_Literal (Sloc (Mod_Expr), 0),
15585 High_Bound =>
15586 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
15588 -- Properly analyze the literals for the range. We do this manually
15589 -- because we can't go calling Resolve, since we are resolving these
15590 -- bounds with the type, and this type is certainly not complete yet!
15592 Set_Etype (Low_Bound (Scalar_Range (T)), T);
15593 Set_Etype (High_Bound (Scalar_Range (T)), T);
15594 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
15595 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
15597 -- Loop through powers of two to find number of bits required
15599 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
15601 -- Binary case
15603 if M_Val = 2 ** Bits then
15604 Set_Modular_Size (Bits);
15605 return;
15607 -- Non-binary case
15609 elsif M_Val < 2 ** Bits then
15610 Set_Non_Binary_Modulus (T);
15612 if Bits > System_Max_Nonbinary_Modulus_Power then
15613 Error_Msg_Uint_1 :=
15614 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
15615 Error_Msg_F
15616 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
15617 Set_Modular_Size (System_Max_Binary_Modulus_Power);
15618 return;
15620 else
15621 -- In the non-binary case, set size as per RM 13.3(55)
15623 Set_Modular_Size (Bits);
15624 return;
15625 end if;
15626 end if;
15628 end loop;
15630 -- If we fall through, then the size exceed System.Max_Binary_Modulus
15631 -- so we just signal an error and set the maximum size.
15633 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
15634 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
15636 Set_Modular_Size (System_Max_Binary_Modulus_Power);
15637 Init_Alignment (T);
15639 end Modular_Type_Declaration;
15641 --------------------------
15642 -- New_Concatenation_Op --
15643 --------------------------
15645 procedure New_Concatenation_Op (Typ : Entity_Id) is
15646 Loc : constant Source_Ptr := Sloc (Typ);
15647 Op : Entity_Id;
15649 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
15650 -- Create abbreviated declaration for the formal of a predefined
15651 -- Operator 'Op' of type 'Typ'
15653 --------------------
15654 -- Make_Op_Formal --
15655 --------------------
15657 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
15658 Formal : Entity_Id;
15659 begin
15660 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
15661 Set_Etype (Formal, Typ);
15662 Set_Mechanism (Formal, Default_Mechanism);
15663 return Formal;
15664 end Make_Op_Formal;
15666 -- Start of processing for New_Concatenation_Op
15668 begin
15669 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
15671 Set_Ekind (Op, E_Operator);
15672 Set_Scope (Op, Current_Scope);
15673 Set_Etype (Op, Typ);
15674 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
15675 Set_Is_Immediately_Visible (Op);
15676 Set_Is_Intrinsic_Subprogram (Op);
15677 Set_Has_Completion (Op);
15678 Append_Entity (Op, Current_Scope);
15680 Set_Name_Entity_Id (Name_Op_Concat, Op);
15682 Append_Entity (Make_Op_Formal (Typ, Op), Op);
15683 Append_Entity (Make_Op_Formal (Typ, Op), Op);
15684 end New_Concatenation_Op;
15686 -------------------------
15687 -- OK_For_Limited_Init --
15688 -------------------------
15690 -- ???Check all calls of this, and compare the conditions under which it's
15691 -- called.
15693 function OK_For_Limited_Init
15694 (Typ : Entity_Id;
15695 Exp : Node_Id) return Boolean
15697 begin
15698 return Is_CPP_Constructor_Call (Exp)
15699 or else (Ada_Version >= Ada_05
15700 and then not Debug_Flag_Dot_L
15701 and then OK_For_Limited_Init_In_05 (Typ, Exp));
15702 end OK_For_Limited_Init;
15704 -------------------------------
15705 -- OK_For_Limited_Init_In_05 --
15706 -------------------------------
15708 function OK_For_Limited_Init_In_05
15709 (Typ : Entity_Id;
15710 Exp : Node_Id) return Boolean
15712 begin
15713 -- An object of a limited interface type can be initialized with any
15714 -- expression of a nonlimited descendant type.
15716 if Is_Class_Wide_Type (Typ)
15717 and then Is_Limited_Interface (Typ)
15718 and then not Is_Limited_Type (Etype (Exp))
15719 then
15720 return True;
15721 end if;
15723 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
15724 -- case of limited aggregates (including extension aggregates), and
15725 -- function calls. The function call may have been give in prefixed
15726 -- notation, in which case the original node is an indexed component.
15728 case Nkind (Original_Node (Exp)) is
15729 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
15730 return True;
15732 when N_Qualified_Expression =>
15733 return
15734 OK_For_Limited_Init_In_05
15735 (Typ, Expression (Original_Node (Exp)));
15737 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
15738 -- with a function call, the expander has rewritten the call into an
15739 -- N_Type_Conversion node to force displacement of the pointer to
15740 -- reference the component containing the secondary dispatch table.
15741 -- Otherwise a type conversion is not a legal context.
15742 -- A return statement for a build-in-place function returning a
15743 -- synchronized type also introduces an unchecked conversion.
15745 when N_Type_Conversion | N_Unchecked_Type_Conversion =>
15746 return not Comes_From_Source (Exp)
15747 and then
15748 OK_For_Limited_Init_In_05
15749 (Typ, Expression (Original_Node (Exp)));
15751 when N_Indexed_Component | N_Selected_Component =>
15752 return Nkind (Exp) = N_Function_Call;
15754 -- A use of 'Input is a function call, hence allowed. Normally the
15755 -- attribute will be changed to a call, but the attribute by itself
15756 -- can occur with -gnatc.
15758 when N_Attribute_Reference =>
15759 return Attribute_Name (Original_Node (Exp)) = Name_Input;
15761 when others =>
15762 return False;
15763 end case;
15764 end OK_For_Limited_Init_In_05;
15766 -------------------------------------------
15767 -- Ordinary_Fixed_Point_Type_Declaration --
15768 -------------------------------------------
15770 procedure Ordinary_Fixed_Point_Type_Declaration
15771 (T : Entity_Id;
15772 Def : Node_Id)
15774 Loc : constant Source_Ptr := Sloc (Def);
15775 Delta_Expr : constant Node_Id := Delta_Expression (Def);
15776 RRS : constant Node_Id := Real_Range_Specification (Def);
15777 Implicit_Base : Entity_Id;
15778 Delta_Val : Ureal;
15779 Small_Val : Ureal;
15780 Low_Val : Ureal;
15781 High_Val : Ureal;
15783 begin
15784 Check_Restriction (No_Fixed_Point, Def);
15786 -- Create implicit base type
15788 Implicit_Base :=
15789 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
15790 Set_Etype (Implicit_Base, Implicit_Base);
15792 -- Analyze and process delta expression
15794 Analyze_And_Resolve (Delta_Expr, Any_Real);
15796 Check_Delta_Expression (Delta_Expr);
15797 Delta_Val := Expr_Value_R (Delta_Expr);
15799 Set_Delta_Value (Implicit_Base, Delta_Val);
15801 -- Compute default small from given delta, which is the largest power
15802 -- of two that does not exceed the given delta value.
15804 declare
15805 Tmp : Ureal;
15806 Scale : Int;
15808 begin
15809 Tmp := Ureal_1;
15810 Scale := 0;
15812 if Delta_Val < Ureal_1 then
15813 while Delta_Val < Tmp loop
15814 Tmp := Tmp / Ureal_2;
15815 Scale := Scale + 1;
15816 end loop;
15818 else
15819 loop
15820 Tmp := Tmp * Ureal_2;
15821 exit when Tmp > Delta_Val;
15822 Scale := Scale - 1;
15823 end loop;
15824 end if;
15826 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
15827 end;
15829 Set_Small_Value (Implicit_Base, Small_Val);
15831 -- If no range was given, set a dummy range
15833 if RRS <= Empty_Or_Error then
15834 Low_Val := -Small_Val;
15835 High_Val := Small_Val;
15837 -- Otherwise analyze and process given range
15839 else
15840 declare
15841 Low : constant Node_Id := Low_Bound (RRS);
15842 High : constant Node_Id := High_Bound (RRS);
15844 begin
15845 Analyze_And_Resolve (Low, Any_Real);
15846 Analyze_And_Resolve (High, Any_Real);
15847 Check_Real_Bound (Low);
15848 Check_Real_Bound (High);
15850 -- Obtain and set the range
15852 Low_Val := Expr_Value_R (Low);
15853 High_Val := Expr_Value_R (High);
15855 if Low_Val > High_Val then
15856 Error_Msg_NE ("?fixed point type& has null range", Def, T);
15857 end if;
15858 end;
15859 end if;
15861 -- The range for both the implicit base and the declared first subtype
15862 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
15863 -- set a temporary range in place. Note that the bounds of the base
15864 -- type will be widened to be symmetrical and to fill the available
15865 -- bits when the type is frozen.
15867 -- We could do this with all discrete types, and probably should, but
15868 -- we absolutely have to do it for fixed-point, since the end-points
15869 -- of the range and the size are determined by the small value, which
15870 -- could be reset before the freeze point.
15872 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
15873 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15875 -- Complete definition of first subtype
15877 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
15878 Set_Etype (T, Implicit_Base);
15879 Init_Size_Align (T);
15880 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15881 Set_Small_Value (T, Small_Val);
15882 Set_Delta_Value (T, Delta_Val);
15883 Set_Is_Constrained (T);
15885 end Ordinary_Fixed_Point_Type_Declaration;
15887 ----------------------------------------
15888 -- Prepare_Private_Subtype_Completion --
15889 ----------------------------------------
15891 procedure Prepare_Private_Subtype_Completion
15892 (Id : Entity_Id;
15893 Related_Nod : Node_Id)
15895 Id_B : constant Entity_Id := Base_Type (Id);
15896 Full_B : constant Entity_Id := Full_View (Id_B);
15897 Full : Entity_Id;
15899 begin
15900 if Present (Full_B) then
15902 -- The Base_Type is already completed, we can complete the subtype
15903 -- now. We have to create a new entity with the same name, Thus we
15904 -- can't use Create_Itype.
15906 -- This is messy, should be fixed ???
15908 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
15909 Set_Is_Itype (Full);
15910 Set_Associated_Node_For_Itype (Full, Related_Nod);
15911 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
15912 end if;
15914 -- The parent subtype may be private, but the base might not, in some
15915 -- nested instances. In that case, the subtype does not need to be
15916 -- exchanged. It would still be nice to make private subtypes and their
15917 -- bases consistent at all times ???
15919 if Is_Private_Type (Id_B) then
15920 Append_Elmt (Id, Private_Dependents (Id_B));
15921 end if;
15923 end Prepare_Private_Subtype_Completion;
15925 ---------------------------
15926 -- Process_Discriminants --
15927 ---------------------------
15929 procedure Process_Discriminants
15930 (N : Node_Id;
15931 Prev : Entity_Id := Empty)
15933 Elist : constant Elist_Id := New_Elmt_List;
15934 Id : Node_Id;
15935 Discr : Node_Id;
15936 Discr_Number : Uint;
15937 Discr_Type : Entity_Id;
15938 Default_Present : Boolean := False;
15939 Default_Not_Present : Boolean := False;
15941 begin
15942 -- A composite type other than an array type can have discriminants.
15943 -- On entry, the current scope is the composite type.
15945 -- The discriminants are initially entered into the scope of the type
15946 -- via Enter_Name with the default Ekind of E_Void to prevent premature
15947 -- use, as explained at the end of this procedure.
15949 Discr := First (Discriminant_Specifications (N));
15950 while Present (Discr) loop
15951 Enter_Name (Defining_Identifier (Discr));
15953 -- For navigation purposes we add a reference to the discriminant
15954 -- in the entity for the type. If the current declaration is a
15955 -- completion, place references on the partial view. Otherwise the
15956 -- type is the current scope.
15958 if Present (Prev) then
15960 -- The references go on the partial view, if present. If the
15961 -- partial view has discriminants, the references have been
15962 -- generated already.
15964 if not Has_Discriminants (Prev) then
15965 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
15966 end if;
15967 else
15968 Generate_Reference
15969 (Current_Scope, Defining_Identifier (Discr), 'd');
15970 end if;
15972 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
15973 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
15975 -- Ada 2005 (AI-254)
15977 if Present (Access_To_Subprogram_Definition
15978 (Discriminant_Type (Discr)))
15979 and then Protected_Present (Access_To_Subprogram_Definition
15980 (Discriminant_Type (Discr)))
15981 then
15982 Discr_Type :=
15983 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
15984 end if;
15986 else
15987 Find_Type (Discriminant_Type (Discr));
15988 Discr_Type := Etype (Discriminant_Type (Discr));
15990 if Error_Posted (Discriminant_Type (Discr)) then
15991 Discr_Type := Any_Type;
15992 end if;
15993 end if;
15995 if Is_Access_Type (Discr_Type) then
15997 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
15998 -- record types
16000 if Ada_Version < Ada_05 then
16001 Check_Access_Discriminant_Requires_Limited
16002 (Discr, Discriminant_Type (Discr));
16003 end if;
16005 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
16006 Error_Msg_N
16007 ("(Ada 83) access discriminant not allowed", Discr);
16008 end if;
16010 elsif not Is_Discrete_Type (Discr_Type) then
16011 Error_Msg_N ("discriminants must have a discrete or access type",
16012 Discriminant_Type (Discr));
16013 end if;
16015 Set_Etype (Defining_Identifier (Discr), Discr_Type);
16017 -- If a discriminant specification includes the assignment compound
16018 -- delimiter followed by an expression, the expression is the default
16019 -- expression of the discriminant; the default expression must be of
16020 -- the type of the discriminant. (RM 3.7.1) Since this expression is
16021 -- a default expression, we do the special preanalysis, since this
16022 -- expression does not freeze (see "Handling of Default and Per-
16023 -- Object Expressions" in spec of package Sem).
16025 if Present (Expression (Discr)) then
16026 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
16028 if Nkind (N) = N_Formal_Type_Declaration then
16029 Error_Msg_N
16030 ("discriminant defaults not allowed for formal type",
16031 Expression (Discr));
16033 -- Tagged types cannot have defaulted discriminants, but a
16034 -- non-tagged private type with defaulted discriminants
16035 -- can have a tagged completion.
16037 elsif Is_Tagged_Type (Current_Scope)
16038 and then Comes_From_Source (N)
16039 then
16040 Error_Msg_N
16041 ("discriminants of tagged type cannot have defaults",
16042 Expression (Discr));
16044 else
16045 Default_Present := True;
16046 Append_Elmt (Expression (Discr), Elist);
16048 -- Tag the defining identifiers for the discriminants with
16049 -- their corresponding default expressions from the tree.
16051 Set_Discriminant_Default_Value
16052 (Defining_Identifier (Discr), Expression (Discr));
16053 end if;
16055 else
16056 Default_Not_Present := True;
16057 end if;
16059 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
16060 -- Discr_Type but with the null-exclusion attribute
16062 if Ada_Version >= Ada_05 then
16064 -- Ada 2005 (AI-231): Static checks
16066 if Can_Never_Be_Null (Discr_Type) then
16067 Null_Exclusion_Static_Checks (Discr);
16069 elsif Is_Access_Type (Discr_Type)
16070 and then Null_Exclusion_Present (Discr)
16072 -- No need to check itypes because in their case this check
16073 -- was done at their point of creation
16075 and then not Is_Itype (Discr_Type)
16076 then
16077 if Can_Never_Be_Null (Discr_Type) then
16078 Error_Msg_NE
16079 ("`NOT NULL` not allowed (& already excludes null)",
16080 Discr,
16081 Discr_Type);
16082 end if;
16084 Set_Etype (Defining_Identifier (Discr),
16085 Create_Null_Excluding_Itype
16086 (T => Discr_Type,
16087 Related_Nod => Discr));
16089 -- Check for improper null exclusion if the type is otherwise
16090 -- legal for a discriminant.
16092 elsif Null_Exclusion_Present (Discr)
16093 and then Is_Discrete_Type (Discr_Type)
16094 then
16095 Error_Msg_N
16096 ("null exclusion can only apply to an access type", Discr);
16097 end if;
16099 -- Ada 2005 (AI-402): access discriminants of nonlimited types
16100 -- can't have defaults. Synchronized types, or types that are
16101 -- explicitly limited are fine, but special tests apply to derived
16102 -- types in generics: in a generic body we have to assume the
16103 -- worst, and therefore defaults are not allowed if the parent is
16104 -- a generic formal private type (see ACATS B370001).
16106 if Is_Access_Type (Discr_Type) then
16107 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
16108 or else not Default_Present
16109 or else Is_Limited_Record (Current_Scope)
16110 or else Is_Concurrent_Type (Current_Scope)
16111 or else Is_Concurrent_Record_Type (Current_Scope)
16112 or else Ekind (Current_Scope) = E_Limited_Private_Type
16113 then
16114 if not Is_Derived_Type (Current_Scope)
16115 or else not Is_Generic_Type (Etype (Current_Scope))
16116 or else not In_Package_Body (Scope (Etype (Current_Scope)))
16117 or else Limited_Present
16118 (Type_Definition (Parent (Current_Scope)))
16119 then
16120 null;
16122 else
16123 Error_Msg_N ("access discriminants of nonlimited types",
16124 Expression (Discr));
16125 Error_Msg_N ("\cannot have defaults", Expression (Discr));
16126 end if;
16128 elsif Present (Expression (Discr)) then
16129 Error_Msg_N
16130 ("(Ada 2005) access discriminants of nonlimited types",
16131 Expression (Discr));
16132 Error_Msg_N ("\cannot have defaults", Expression (Discr));
16133 end if;
16134 end if;
16135 end if;
16137 Next (Discr);
16138 end loop;
16140 -- An element list consisting of the default expressions of the
16141 -- discriminants is constructed in the above loop and used to set
16142 -- the Discriminant_Constraint attribute for the type. If an object
16143 -- is declared of this (record or task) type without any explicit
16144 -- discriminant constraint given, this element list will form the
16145 -- actual parameters for the corresponding initialization procedure
16146 -- for the type.
16148 Set_Discriminant_Constraint (Current_Scope, Elist);
16149 Set_Stored_Constraint (Current_Scope, No_Elist);
16151 -- Default expressions must be provided either for all or for none
16152 -- of the discriminants of a discriminant part. (RM 3.7.1)
16154 if Default_Present and then Default_Not_Present then
16155 Error_Msg_N
16156 ("incomplete specification of defaults for discriminants", N);
16157 end if;
16159 -- The use of the name of a discriminant is not allowed in default
16160 -- expressions of a discriminant part if the specification of the
16161 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
16163 -- To detect this, the discriminant names are entered initially with an
16164 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
16165 -- attempt to use a void entity (for example in an expression that is
16166 -- type-checked) produces the error message: premature usage. Now after
16167 -- completing the semantic analysis of the discriminant part, we can set
16168 -- the Ekind of all the discriminants appropriately.
16170 Discr := First (Discriminant_Specifications (N));
16171 Discr_Number := Uint_1;
16172 while Present (Discr) loop
16173 Id := Defining_Identifier (Discr);
16174 Set_Ekind (Id, E_Discriminant);
16175 Init_Component_Location (Id);
16176 Init_Esize (Id);
16177 Set_Discriminant_Number (Id, Discr_Number);
16179 -- Make sure this is always set, even in illegal programs
16181 Set_Corresponding_Discriminant (Id, Empty);
16183 -- Initialize the Original_Record_Component to the entity itself.
16184 -- Inherit_Components will propagate the right value to
16185 -- discriminants in derived record types.
16187 Set_Original_Record_Component (Id, Id);
16189 -- Create the discriminal for the discriminant
16191 Build_Discriminal (Id);
16193 Next (Discr);
16194 Discr_Number := Discr_Number + 1;
16195 end loop;
16197 Set_Has_Discriminants (Current_Scope);
16198 end Process_Discriminants;
16200 -----------------------
16201 -- Process_Full_View --
16202 -----------------------
16204 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
16205 Priv_Parent : Entity_Id;
16206 Full_Parent : Entity_Id;
16207 Full_Indic : Node_Id;
16209 procedure Collect_Implemented_Interfaces
16210 (Typ : Entity_Id;
16211 Ifaces : Elist_Id);
16212 -- Ada 2005: Gather all the interfaces that Typ directly or
16213 -- inherently implements. Duplicate entries are not added to
16214 -- the list Ifaces.
16216 ------------------------------------
16217 -- Collect_Implemented_Interfaces --
16218 ------------------------------------
16220 procedure Collect_Implemented_Interfaces
16221 (Typ : Entity_Id;
16222 Ifaces : Elist_Id)
16224 Iface : Entity_Id;
16225 Iface_Elmt : Elmt_Id;
16227 begin
16228 -- Abstract interfaces are only associated with tagged record types
16230 if not Is_Tagged_Type (Typ)
16231 or else not Is_Record_Type (Typ)
16232 then
16233 return;
16234 end if;
16236 -- Recursively climb to the ancestors
16238 if Etype (Typ) /= Typ
16240 -- Protect the frontend against wrong cyclic declarations like:
16242 -- type B is new A with private;
16243 -- type C is new A with private;
16244 -- private
16245 -- type B is new C with null record;
16246 -- type C is new B with null record;
16248 and then Etype (Typ) /= Priv_T
16249 and then Etype (Typ) /= Full_T
16250 then
16251 -- Keep separate the management of private type declarations
16253 if Ekind (Typ) = E_Record_Type_With_Private then
16255 -- Handle the following erronous case:
16256 -- type Private_Type is tagged private;
16257 -- private
16258 -- type Private_Type is new Type_Implementing_Iface;
16260 if Present (Full_View (Typ))
16261 and then Etype (Typ) /= Full_View (Typ)
16262 then
16263 if Is_Interface (Etype (Typ)) then
16264 Append_Unique_Elmt (Etype (Typ), Ifaces);
16265 end if;
16267 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
16268 end if;
16270 -- Non-private types
16272 else
16273 if Is_Interface (Etype (Typ)) then
16274 Append_Unique_Elmt (Etype (Typ), Ifaces);
16275 end if;
16277 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
16278 end if;
16279 end if;
16281 -- Handle entities in the list of abstract interfaces
16283 if Present (Interfaces (Typ)) then
16284 Iface_Elmt := First_Elmt (Interfaces (Typ));
16285 while Present (Iface_Elmt) loop
16286 Iface := Node (Iface_Elmt);
16288 pragma Assert (Is_Interface (Iface));
16290 if not Contain_Interface (Iface, Ifaces) then
16291 Append_Elmt (Iface, Ifaces);
16292 Collect_Implemented_Interfaces (Iface, Ifaces);
16293 end if;
16295 Next_Elmt (Iface_Elmt);
16296 end loop;
16297 end if;
16298 end Collect_Implemented_Interfaces;
16300 -- Start of processing for Process_Full_View
16302 begin
16303 -- First some sanity checks that must be done after semantic
16304 -- decoration of the full view and thus cannot be placed with other
16305 -- similar checks in Find_Type_Name
16307 if not Is_Limited_Type (Priv_T)
16308 and then (Is_Limited_Type (Full_T)
16309 or else Is_Limited_Composite (Full_T))
16310 then
16311 Error_Msg_N
16312 ("completion of nonlimited type cannot be limited", Full_T);
16313 Explain_Limited_Type (Full_T, Full_T);
16315 elsif Is_Abstract_Type (Full_T)
16316 and then not Is_Abstract_Type (Priv_T)
16317 then
16318 Error_Msg_N
16319 ("completion of nonabstract type cannot be abstract", Full_T);
16321 elsif Is_Tagged_Type (Priv_T)
16322 and then Is_Limited_Type (Priv_T)
16323 and then not Is_Limited_Type (Full_T)
16324 then
16325 -- If pragma CPP_Class was applied to the private declaration
16326 -- propagate the limitedness to the full-view
16328 if Is_CPP_Class (Priv_T) then
16329 Set_Is_Limited_Record (Full_T);
16331 -- GNAT allow its own definition of Limited_Controlled to disobey
16332 -- this rule in order in ease the implementation. The next test is
16333 -- safe because Root_Controlled is defined in a private system child
16335 elsif Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
16336 Set_Is_Limited_Composite (Full_T);
16337 else
16338 Error_Msg_N
16339 ("completion of limited tagged type must be limited", Full_T);
16340 end if;
16342 elsif Is_Generic_Type (Priv_T) then
16343 Error_Msg_N ("generic type cannot have a completion", Full_T);
16344 end if;
16346 -- Check that ancestor interfaces of private and full views are
16347 -- consistent. We omit this check for synchronized types because
16348 -- they are performed on the corresponding record type when frozen.
16350 if Ada_Version >= Ada_05
16351 and then Is_Tagged_Type (Priv_T)
16352 and then Is_Tagged_Type (Full_T)
16353 and then not Is_Concurrent_Type (Full_T)
16354 then
16355 declare
16356 Iface : Entity_Id;
16357 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
16358 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
16360 begin
16361 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
16362 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
16364 -- Ada 2005 (AI-251): The partial view shall be a descendant of
16365 -- an interface type if and only if the full type is descendant
16366 -- of the interface type (AARM 7.3 (7.3/2).
16368 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
16370 if Present (Iface) then
16371 Error_Msg_NE
16372 ("interface & not implemented by full type " &
16373 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
16374 end if;
16376 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
16378 if Present (Iface) then
16379 Error_Msg_NE
16380 ("interface & not implemented by partial view " &
16381 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
16382 end if;
16383 end;
16384 end if;
16386 if Is_Tagged_Type (Priv_T)
16387 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16388 and then Is_Derived_Type (Full_T)
16389 then
16390 Priv_Parent := Etype (Priv_T);
16392 -- The full view of a private extension may have been transformed
16393 -- into an unconstrained derived type declaration and a subtype
16394 -- declaration (see build_derived_record_type for details).
16396 if Nkind (N) = N_Subtype_Declaration then
16397 Full_Indic := Subtype_Indication (N);
16398 Full_Parent := Etype (Base_Type (Full_T));
16399 else
16400 Full_Indic := Subtype_Indication (Type_Definition (N));
16401 Full_Parent := Etype (Full_T);
16402 end if;
16404 -- Check that the parent type of the full type is a descendant of
16405 -- the ancestor subtype given in the private extension. If either
16406 -- entity has an Etype equal to Any_Type then we had some previous
16407 -- error situation [7.3(8)].
16409 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
16410 return;
16412 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
16413 -- any order. Therefore we don't have to check that its parent must
16414 -- be a descendant of the parent of the private type declaration.
16416 elsif Is_Interface (Priv_Parent)
16417 and then Is_Interface (Full_Parent)
16418 then
16419 null;
16421 -- Ada 2005 (AI-251): If the parent of the private type declaration
16422 -- is an interface there is no need to check that it is an ancestor
16423 -- of the associated full type declaration. The required tests for
16424 -- this case are performed by Build_Derived_Record_Type.
16426 elsif not Is_Interface (Base_Type (Priv_Parent))
16427 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
16428 then
16429 Error_Msg_N
16430 ("parent of full type must descend from parent"
16431 & " of private extension", Full_Indic);
16433 -- Check the rules of 7.3(10): if the private extension inherits
16434 -- known discriminants, then the full type must also inherit those
16435 -- discriminants from the same (ancestor) type, and the parent
16436 -- subtype of the full type must be constrained if and only if
16437 -- the ancestor subtype of the private extension is constrained.
16439 elsif No (Discriminant_Specifications (Parent (Priv_T)))
16440 and then not Has_Unknown_Discriminants (Priv_T)
16441 and then Has_Discriminants (Base_Type (Priv_Parent))
16442 then
16443 declare
16444 Priv_Indic : constant Node_Id :=
16445 Subtype_Indication (Parent (Priv_T));
16447 Priv_Constr : constant Boolean :=
16448 Is_Constrained (Priv_Parent)
16449 or else
16450 Nkind (Priv_Indic) = N_Subtype_Indication
16451 or else Is_Constrained (Entity (Priv_Indic));
16453 Full_Constr : constant Boolean :=
16454 Is_Constrained (Full_Parent)
16455 or else
16456 Nkind (Full_Indic) = N_Subtype_Indication
16457 or else Is_Constrained (Entity (Full_Indic));
16459 Priv_Discr : Entity_Id;
16460 Full_Discr : Entity_Id;
16462 begin
16463 Priv_Discr := First_Discriminant (Priv_Parent);
16464 Full_Discr := First_Discriminant (Full_Parent);
16465 while Present (Priv_Discr) and then Present (Full_Discr) loop
16466 if Original_Record_Component (Priv_Discr) =
16467 Original_Record_Component (Full_Discr)
16468 or else
16469 Corresponding_Discriminant (Priv_Discr) =
16470 Corresponding_Discriminant (Full_Discr)
16471 then
16472 null;
16473 else
16474 exit;
16475 end if;
16477 Next_Discriminant (Priv_Discr);
16478 Next_Discriminant (Full_Discr);
16479 end loop;
16481 if Present (Priv_Discr) or else Present (Full_Discr) then
16482 Error_Msg_N
16483 ("full view must inherit discriminants of the parent type"
16484 & " used in the private extension", Full_Indic);
16486 elsif Priv_Constr and then not Full_Constr then
16487 Error_Msg_N
16488 ("parent subtype of full type must be constrained",
16489 Full_Indic);
16491 elsif Full_Constr and then not Priv_Constr then
16492 Error_Msg_N
16493 ("parent subtype of full type must be unconstrained",
16494 Full_Indic);
16495 end if;
16496 end;
16498 -- Check the rules of 7.3(12): if a partial view has neither known
16499 -- or unknown discriminants, then the full type declaration shall
16500 -- define a definite subtype.
16502 elsif not Has_Unknown_Discriminants (Priv_T)
16503 and then not Has_Discriminants (Priv_T)
16504 and then not Is_Constrained (Full_T)
16505 then
16506 Error_Msg_N
16507 ("full view must define a constrained type if partial view"
16508 & " has no discriminants", Full_T);
16509 end if;
16511 -- ??????? Do we implement the following properly ?????
16512 -- If the ancestor subtype of a private extension has constrained
16513 -- discriminants, then the parent subtype of the full view shall
16514 -- impose a statically matching constraint on those discriminants
16515 -- [7.3(13)].
16517 else
16518 -- For untagged types, verify that a type without discriminants
16519 -- is not completed with an unconstrained type.
16521 if not Is_Indefinite_Subtype (Priv_T)
16522 and then Is_Indefinite_Subtype (Full_T)
16523 then
16524 Error_Msg_N ("full view of type must be definite subtype", Full_T);
16525 end if;
16526 end if;
16528 -- AI-419: verify that the use of "limited" is consistent
16530 declare
16531 Orig_Decl : constant Node_Id := Original_Node (N);
16533 begin
16534 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16535 and then not Limited_Present (Parent (Priv_T))
16536 and then not Synchronized_Present (Parent (Priv_T))
16537 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
16538 and then Nkind
16539 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
16540 and then Limited_Present (Type_Definition (Orig_Decl))
16541 then
16542 Error_Msg_N
16543 ("full view of non-limited extension cannot be limited", N);
16544 end if;
16545 end;
16547 -- Ada 2005 (AI-443): A synchronized private extension must be
16548 -- completed by a task or protected type.
16550 if Ada_Version >= Ada_05
16551 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16552 and then Synchronized_Present (Parent (Priv_T))
16553 and then not Is_Concurrent_Type (Full_T)
16554 then
16555 Error_Msg_N ("full view of synchronized extension must " &
16556 "be synchronized type", N);
16557 end if;
16559 -- Ada 2005 AI-363: if the full view has discriminants with
16560 -- defaults, it is illegal to declare constrained access subtypes
16561 -- whose designated type is the current type. This allows objects
16562 -- of the type that are declared in the heap to be unconstrained.
16564 if not Has_Unknown_Discriminants (Priv_T)
16565 and then not Has_Discriminants (Priv_T)
16566 and then Has_Discriminants (Full_T)
16567 and then
16568 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
16569 then
16570 Set_Has_Constrained_Partial_View (Full_T);
16571 Set_Has_Constrained_Partial_View (Priv_T);
16572 end if;
16574 -- Create a full declaration for all its subtypes recorded in
16575 -- Private_Dependents and swap them similarly to the base type. These
16576 -- are subtypes that have been define before the full declaration of
16577 -- the private type. We also swap the entry in Private_Dependents list
16578 -- so we can properly restore the private view on exit from the scope.
16580 declare
16581 Priv_Elmt : Elmt_Id;
16582 Priv : Entity_Id;
16583 Full : Entity_Id;
16585 begin
16586 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
16587 while Present (Priv_Elmt) loop
16588 Priv := Node (Priv_Elmt);
16590 if Ekind_In (Priv, E_Private_Subtype,
16591 E_Limited_Private_Subtype,
16592 E_Record_Subtype_With_Private)
16593 then
16594 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
16595 Set_Is_Itype (Full);
16596 Set_Parent (Full, Parent (Priv));
16597 Set_Associated_Node_For_Itype (Full, N);
16599 -- Now we need to complete the private subtype, but since the
16600 -- base type has already been swapped, we must also swap the
16601 -- subtypes (and thus, reverse the arguments in the call to
16602 -- Complete_Private_Subtype).
16604 Copy_And_Swap (Priv, Full);
16605 Complete_Private_Subtype (Full, Priv, Full_T, N);
16606 Replace_Elmt (Priv_Elmt, Full);
16607 end if;
16609 Next_Elmt (Priv_Elmt);
16610 end loop;
16611 end;
16613 -- If the private view was tagged, copy the new primitive operations
16614 -- from the private view to the full view.
16616 if Is_Tagged_Type (Full_T) then
16617 declare
16618 Disp_Typ : Entity_Id;
16619 Full_List : Elist_Id;
16620 Prim : Entity_Id;
16621 Prim_Elmt : Elmt_Id;
16622 Priv_List : Elist_Id;
16624 function Contains
16625 (E : Entity_Id;
16626 L : Elist_Id) return Boolean;
16627 -- Determine whether list L contains element E
16629 --------------
16630 -- Contains --
16631 --------------
16633 function Contains
16634 (E : Entity_Id;
16635 L : Elist_Id) return Boolean
16637 List_Elmt : Elmt_Id;
16639 begin
16640 List_Elmt := First_Elmt (L);
16641 while Present (List_Elmt) loop
16642 if Node (List_Elmt) = E then
16643 return True;
16644 end if;
16646 Next_Elmt (List_Elmt);
16647 end loop;
16649 return False;
16650 end Contains;
16652 -- Start of processing
16654 begin
16655 if Is_Tagged_Type (Priv_T) then
16656 Priv_List := Primitive_Operations (Priv_T);
16657 Prim_Elmt := First_Elmt (Priv_List);
16659 -- In the case of a concurrent type completing a private tagged
16660 -- type, primitives may have been declared in between the two
16661 -- views. These subprograms need to be wrapped the same way
16662 -- entries and protected procedures are handled because they
16663 -- cannot be directly shared by the two views.
16665 if Is_Concurrent_Type (Full_T) then
16666 declare
16667 Conc_Typ : constant Entity_Id :=
16668 Corresponding_Record_Type (Full_T);
16669 Curr_Nod : Node_Id := Parent (Conc_Typ);
16670 Wrap_Spec : Node_Id;
16672 begin
16673 while Present (Prim_Elmt) loop
16674 Prim := Node (Prim_Elmt);
16676 if Comes_From_Source (Prim)
16677 and then not Is_Abstract_Subprogram (Prim)
16678 then
16679 Wrap_Spec :=
16680 Make_Subprogram_Declaration (Sloc (Prim),
16681 Specification =>
16682 Build_Wrapper_Spec
16683 (Subp_Id => Prim,
16684 Obj_Typ => Conc_Typ,
16685 Formals =>
16686 Parameter_Specifications (
16687 Parent (Prim))));
16689 Insert_After (Curr_Nod, Wrap_Spec);
16690 Curr_Nod := Wrap_Spec;
16692 Analyze (Wrap_Spec);
16693 end if;
16695 Next_Elmt (Prim_Elmt);
16696 end loop;
16698 return;
16699 end;
16701 -- For non-concurrent types, transfer explicit primitives, but
16702 -- omit those inherited from the parent of the private view
16703 -- since they will be re-inherited later on.
16705 else
16706 Full_List := Primitive_Operations (Full_T);
16708 while Present (Prim_Elmt) loop
16709 Prim := Node (Prim_Elmt);
16711 if Comes_From_Source (Prim)
16712 and then not Contains (Prim, Full_List)
16713 then
16714 Append_Elmt (Prim, Full_List);
16715 end if;
16717 Next_Elmt (Prim_Elmt);
16718 end loop;
16719 end if;
16721 -- Untagged private view
16723 else
16724 Full_List := Primitive_Operations (Full_T);
16726 -- In this case the partial view is untagged, so here we locate
16727 -- all of the earlier primitives that need to be treated as
16728 -- dispatching (those that appear between the two views). Note
16729 -- that these additional operations must all be new operations
16730 -- (any earlier operations that override inherited operations
16731 -- of the full view will already have been inserted in the
16732 -- primitives list, marked by Check_Operation_From_Private_View
16733 -- as dispatching. Note that implicit "/=" operators are
16734 -- excluded from being added to the primitives list since they
16735 -- shouldn't be treated as dispatching (tagged "/=" is handled
16736 -- specially).
16738 Prim := Next_Entity (Full_T);
16739 while Present (Prim) and then Prim /= Priv_T loop
16740 if Ekind_In (Prim, E_Procedure, E_Function) then
16741 Disp_Typ := Find_Dispatching_Type (Prim);
16743 if Disp_Typ = Full_T
16744 and then (Chars (Prim) /= Name_Op_Ne
16745 or else Comes_From_Source (Prim))
16746 then
16747 Check_Controlling_Formals (Full_T, Prim);
16749 if not Is_Dispatching_Operation (Prim) then
16750 Append_Elmt (Prim, Full_List);
16751 Set_Is_Dispatching_Operation (Prim, True);
16752 Set_DT_Position (Prim, No_Uint);
16753 end if;
16755 elsif Is_Dispatching_Operation (Prim)
16756 and then Disp_Typ /= Full_T
16757 then
16759 -- Verify that it is not otherwise controlled by a
16760 -- formal or a return value of type T.
16762 Check_Controlling_Formals (Disp_Typ, Prim);
16763 end if;
16764 end if;
16766 Next_Entity (Prim);
16767 end loop;
16768 end if;
16770 -- For the tagged case, the two views can share the same primitive
16771 -- operations list and the same class-wide type. Update attributes
16772 -- of the class-wide type which depend on the full declaration.
16774 if Is_Tagged_Type (Priv_T) then
16775 Set_Primitive_Operations (Priv_T, Full_List);
16776 Set_Class_Wide_Type
16777 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
16779 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
16780 end if;
16781 end;
16782 end if;
16784 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
16786 if Known_To_Have_Preelab_Init (Priv_T) then
16788 -- Case where there is a pragma Preelaborable_Initialization. We
16789 -- always allow this in predefined units, which is a bit of a kludge,
16790 -- but it means we don't have to struggle to meet the requirements in
16791 -- the RM for having Preelaborable Initialization. Otherwise we
16792 -- require that the type meets the RM rules. But we can't check that
16793 -- yet, because of the rule about overriding Ininitialize, so we
16794 -- simply set a flag that will be checked at freeze time.
16796 if not In_Predefined_Unit (Full_T) then
16797 Set_Must_Have_Preelab_Init (Full_T);
16798 end if;
16799 end if;
16801 -- If pragma CPP_Class was applied to the private type declaration,
16802 -- propagate it now to the full type declaration.
16804 if Is_CPP_Class (Priv_T) then
16805 Set_Is_CPP_Class (Full_T);
16806 Set_Convention (Full_T, Convention_CPP);
16807 end if;
16809 -- If the private view has user specified stream attributes, then so has
16810 -- the full view.
16812 if Has_Specified_Stream_Read (Priv_T) then
16813 Set_Has_Specified_Stream_Read (Full_T);
16814 end if;
16815 if Has_Specified_Stream_Write (Priv_T) then
16816 Set_Has_Specified_Stream_Write (Full_T);
16817 end if;
16818 if Has_Specified_Stream_Input (Priv_T) then
16819 Set_Has_Specified_Stream_Input (Full_T);
16820 end if;
16821 if Has_Specified_Stream_Output (Priv_T) then
16822 Set_Has_Specified_Stream_Output (Full_T);
16823 end if;
16824 end Process_Full_View;
16826 -----------------------------------
16827 -- Process_Incomplete_Dependents --
16828 -----------------------------------
16830 procedure Process_Incomplete_Dependents
16831 (N : Node_Id;
16832 Full_T : Entity_Id;
16833 Inc_T : Entity_Id)
16835 Inc_Elmt : Elmt_Id;
16836 Priv_Dep : Entity_Id;
16837 New_Subt : Entity_Id;
16839 Disc_Constraint : Elist_Id;
16841 begin
16842 if No (Private_Dependents (Inc_T)) then
16843 return;
16844 end if;
16846 -- Itypes that may be generated by the completion of an incomplete
16847 -- subtype are not used by the back-end and not attached to the tree.
16848 -- They are created only for constraint-checking purposes.
16850 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
16851 while Present (Inc_Elmt) loop
16852 Priv_Dep := Node (Inc_Elmt);
16854 if Ekind (Priv_Dep) = E_Subprogram_Type then
16856 -- An Access_To_Subprogram type may have a return type or a
16857 -- parameter type that is incomplete. Replace with the full view.
16859 if Etype (Priv_Dep) = Inc_T then
16860 Set_Etype (Priv_Dep, Full_T);
16861 end if;
16863 declare
16864 Formal : Entity_Id;
16866 begin
16867 Formal := First_Formal (Priv_Dep);
16868 while Present (Formal) loop
16869 if Etype (Formal) = Inc_T then
16870 Set_Etype (Formal, Full_T);
16871 end if;
16873 Next_Formal (Formal);
16874 end loop;
16875 end;
16877 elsif Is_Overloadable (Priv_Dep) then
16879 -- A protected operation is never dispatching: only its
16880 -- wrapper operation (which has convention Ada) is.
16882 if Is_Tagged_Type (Full_T)
16883 and then Convention (Priv_Dep) /= Convention_Protected
16884 then
16886 -- Subprogram has an access parameter whose designated type
16887 -- was incomplete. Reexamine declaration now, because it may
16888 -- be a primitive operation of the full type.
16890 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
16891 Set_Is_Dispatching_Operation (Priv_Dep);
16892 Check_Controlling_Formals (Full_T, Priv_Dep);
16893 end if;
16895 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
16897 -- Can happen during processing of a body before the completion
16898 -- of a TA type. Ignore, because spec is also on dependent list.
16900 return;
16902 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
16903 -- corresponding subtype of the full view.
16905 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
16906 Set_Subtype_Indication
16907 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
16908 Set_Etype (Priv_Dep, Full_T);
16909 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
16910 Set_Analyzed (Parent (Priv_Dep), False);
16912 -- Reanalyze the declaration, suppressing the call to
16913 -- Enter_Name to avoid duplicate names.
16915 Analyze_Subtype_Declaration
16916 (N => Parent (Priv_Dep),
16917 Skip => True);
16919 -- Dependent is a subtype
16921 else
16922 -- We build a new subtype indication using the full view of the
16923 -- incomplete parent. The discriminant constraints have been
16924 -- elaborated already at the point of the subtype declaration.
16926 New_Subt := Create_Itype (E_Void, N);
16928 if Has_Discriminants (Full_T) then
16929 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
16930 else
16931 Disc_Constraint := No_Elist;
16932 end if;
16934 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
16935 Set_Full_View (Priv_Dep, New_Subt);
16936 end if;
16938 Next_Elmt (Inc_Elmt);
16939 end loop;
16940 end Process_Incomplete_Dependents;
16942 --------------------------------
16943 -- Process_Range_Expr_In_Decl --
16944 --------------------------------
16946 procedure Process_Range_Expr_In_Decl
16947 (R : Node_Id;
16948 T : Entity_Id;
16949 Check_List : List_Id := Empty_List;
16950 R_Check_Off : Boolean := False)
16952 Lo, Hi : Node_Id;
16953 R_Checks : Check_Result;
16954 Type_Decl : Node_Id;
16955 Def_Id : Entity_Id;
16957 begin
16958 Analyze_And_Resolve (R, Base_Type (T));
16960 if Nkind (R) = N_Range then
16961 Lo := Low_Bound (R);
16962 Hi := High_Bound (R);
16964 -- We need to ensure validity of the bounds here, because if we
16965 -- go ahead and do the expansion, then the expanded code will get
16966 -- analyzed with range checks suppressed and we miss the check.
16968 Validity_Check_Range (R);
16970 -- If there were errors in the declaration, try and patch up some
16971 -- common mistakes in the bounds. The cases handled are literals
16972 -- which are Integer where the expected type is Real and vice versa.
16973 -- These corrections allow the compilation process to proceed further
16974 -- along since some basic assumptions of the format of the bounds
16975 -- are guaranteed.
16977 if Etype (R) = Any_Type then
16979 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
16980 Rewrite (Lo,
16981 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
16983 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
16984 Rewrite (Hi,
16985 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
16987 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
16988 Rewrite (Lo,
16989 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
16991 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
16992 Rewrite (Hi,
16993 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
16994 end if;
16996 Set_Etype (Lo, T);
16997 Set_Etype (Hi, T);
16998 end if;
17000 -- If the bounds of the range have been mistakenly given as string
17001 -- literals (perhaps in place of character literals), then an error
17002 -- has already been reported, but we rewrite the string literal as a
17003 -- bound of the range's type to avoid blowups in later processing
17004 -- that looks at static values.
17006 if Nkind (Lo) = N_String_Literal then
17007 Rewrite (Lo,
17008 Make_Attribute_Reference (Sloc (Lo),
17009 Attribute_Name => Name_First,
17010 Prefix => New_Reference_To (T, Sloc (Lo))));
17011 Analyze_And_Resolve (Lo);
17012 end if;
17014 if Nkind (Hi) = N_String_Literal then
17015 Rewrite (Hi,
17016 Make_Attribute_Reference (Sloc (Hi),
17017 Attribute_Name => Name_First,
17018 Prefix => New_Reference_To (T, Sloc (Hi))));
17019 Analyze_And_Resolve (Hi);
17020 end if;
17022 -- If bounds aren't scalar at this point then exit, avoiding
17023 -- problems with further processing of the range in this procedure.
17025 if not Is_Scalar_Type (Etype (Lo)) then
17026 return;
17027 end if;
17029 -- Resolve (actually Sem_Eval) has checked that the bounds are in
17030 -- then range of the base type. Here we check whether the bounds
17031 -- are in the range of the subtype itself. Note that if the bounds
17032 -- represent the null range the Constraint_Error exception should
17033 -- not be raised.
17035 -- ??? The following code should be cleaned up as follows
17037 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
17038 -- is done in the call to Range_Check (R, T); below
17040 -- 2. The use of R_Check_Off should be investigated and possibly
17041 -- removed, this would clean up things a bit.
17043 if Is_Null_Range (Lo, Hi) then
17044 null;
17046 else
17047 -- Capture values of bounds and generate temporaries for them
17048 -- if needed, before applying checks, since checks may cause
17049 -- duplication of the expression without forcing evaluation.
17051 if Expander_Active then
17052 Force_Evaluation (Lo);
17053 Force_Evaluation (Hi);
17054 end if;
17056 -- We use a flag here instead of suppressing checks on the
17057 -- type because the type we check against isn't necessarily
17058 -- the place where we put the check.
17060 if not R_Check_Off then
17061 R_Checks := Get_Range_Checks (R, T);
17063 -- Look up tree to find an appropriate insertion point.
17064 -- This seems really junk code, and very brittle, couldn't
17065 -- we just use an insert actions call of some kind ???
17067 Type_Decl := Parent (R);
17068 while Present (Type_Decl) and then not
17069 (Nkind_In (Type_Decl, N_Full_Type_Declaration,
17070 N_Subtype_Declaration,
17071 N_Loop_Statement,
17072 N_Task_Type_Declaration)
17073 or else
17074 Nkind_In (Type_Decl, N_Single_Task_Declaration,
17075 N_Protected_Type_Declaration,
17076 N_Single_Protected_Declaration))
17077 loop
17078 Type_Decl := Parent (Type_Decl);
17079 end loop;
17081 -- Why would Type_Decl not be present??? Without this test,
17082 -- short regression tests fail.
17084 if Present (Type_Decl) then
17086 -- Case of loop statement (more comments ???)
17088 if Nkind (Type_Decl) = N_Loop_Statement then
17089 declare
17090 Indic : Node_Id;
17092 begin
17093 Indic := Parent (R);
17094 while Present (Indic)
17095 and then Nkind (Indic) /= N_Subtype_Indication
17096 loop
17097 Indic := Parent (Indic);
17098 end loop;
17100 if Present (Indic) then
17101 Def_Id := Etype (Subtype_Mark (Indic));
17103 Insert_Range_Checks
17104 (R_Checks,
17105 Type_Decl,
17106 Def_Id,
17107 Sloc (Type_Decl),
17109 Do_Before => True);
17110 end if;
17111 end;
17113 -- All other cases (more comments ???)
17115 else
17116 Def_Id := Defining_Identifier (Type_Decl);
17118 if (Ekind (Def_Id) = E_Record_Type
17119 and then Depends_On_Discriminant (R))
17120 or else
17121 (Ekind (Def_Id) = E_Protected_Type
17122 and then Has_Discriminants (Def_Id))
17123 then
17124 Append_Range_Checks
17125 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
17127 else
17128 Insert_Range_Checks
17129 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
17131 end if;
17132 end if;
17133 end if;
17134 end if;
17135 end if;
17137 elsif Expander_Active then
17138 Get_Index_Bounds (R, Lo, Hi);
17139 Force_Evaluation (Lo);
17140 Force_Evaluation (Hi);
17141 end if;
17142 end Process_Range_Expr_In_Decl;
17144 --------------------------------------
17145 -- Process_Real_Range_Specification --
17146 --------------------------------------
17148 procedure Process_Real_Range_Specification (Def : Node_Id) is
17149 Spec : constant Node_Id := Real_Range_Specification (Def);
17150 Lo : Node_Id;
17151 Hi : Node_Id;
17152 Err : Boolean := False;
17154 procedure Analyze_Bound (N : Node_Id);
17155 -- Analyze and check one bound
17157 -------------------
17158 -- Analyze_Bound --
17159 -------------------
17161 procedure Analyze_Bound (N : Node_Id) is
17162 begin
17163 Analyze_And_Resolve (N, Any_Real);
17165 if not Is_OK_Static_Expression (N) then
17166 Flag_Non_Static_Expr
17167 ("bound in real type definition is not static!", N);
17168 Err := True;
17169 end if;
17170 end Analyze_Bound;
17172 -- Start of processing for Process_Real_Range_Specification
17174 begin
17175 if Present (Spec) then
17176 Lo := Low_Bound (Spec);
17177 Hi := High_Bound (Spec);
17178 Analyze_Bound (Lo);
17179 Analyze_Bound (Hi);
17181 -- If error, clear away junk range specification
17183 if Err then
17184 Set_Real_Range_Specification (Def, Empty);
17185 end if;
17186 end if;
17187 end Process_Real_Range_Specification;
17189 ---------------------
17190 -- Process_Subtype --
17191 ---------------------
17193 function Process_Subtype
17194 (S : Node_Id;
17195 Related_Nod : Node_Id;
17196 Related_Id : Entity_Id := Empty;
17197 Suffix : Character := ' ') return Entity_Id
17199 P : Node_Id;
17200 Def_Id : Entity_Id;
17201 Error_Node : Node_Id;
17202 Full_View_Id : Entity_Id;
17203 Subtype_Mark_Id : Entity_Id;
17205 May_Have_Null_Exclusion : Boolean;
17207 procedure Check_Incomplete (T : Entity_Id);
17208 -- Called to verify that an incomplete type is not used prematurely
17210 ----------------------
17211 -- Check_Incomplete --
17212 ----------------------
17214 procedure Check_Incomplete (T : Entity_Id) is
17215 begin
17216 -- Ada 2005 (AI-412): Incomplete subtypes are legal
17218 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
17219 and then
17220 not (Ada_Version >= Ada_05
17221 and then
17222 (Nkind (Parent (T)) = N_Subtype_Declaration
17223 or else
17224 (Nkind (Parent (T)) = N_Subtype_Indication
17225 and then Nkind (Parent (Parent (T))) =
17226 N_Subtype_Declaration)))
17227 then
17228 Error_Msg_N ("invalid use of type before its full declaration", T);
17229 end if;
17230 end Check_Incomplete;
17232 -- Start of processing for Process_Subtype
17234 begin
17235 -- Case of no constraints present
17237 if Nkind (S) /= N_Subtype_Indication then
17238 Find_Type (S);
17239 Check_Incomplete (S);
17240 P := Parent (S);
17242 -- Ada 2005 (AI-231): Static check
17244 if Ada_Version >= Ada_05
17245 and then Present (P)
17246 and then Null_Exclusion_Present (P)
17247 and then Nkind (P) /= N_Access_To_Object_Definition
17248 and then not Is_Access_Type (Entity (S))
17249 then
17250 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
17251 end if;
17253 -- The following is ugly, can't we have a range or even a flag???
17255 May_Have_Null_Exclusion :=
17256 Nkind_In (P, N_Access_Definition,
17257 N_Access_Function_Definition,
17258 N_Access_Procedure_Definition,
17259 N_Access_To_Object_Definition,
17260 N_Allocator,
17261 N_Component_Definition)
17262 or else
17263 Nkind_In (P, N_Derived_Type_Definition,
17264 N_Discriminant_Specification,
17265 N_Formal_Object_Declaration,
17266 N_Object_Declaration,
17267 N_Object_Renaming_Declaration,
17268 N_Parameter_Specification,
17269 N_Subtype_Declaration);
17271 -- Create an Itype that is a duplicate of Entity (S) but with the
17272 -- null-exclusion attribute.
17274 if May_Have_Null_Exclusion
17275 and then Is_Access_Type (Entity (S))
17276 and then Null_Exclusion_Present (P)
17278 -- No need to check the case of an access to object definition.
17279 -- It is correct to define double not-null pointers.
17281 -- Example:
17282 -- type Not_Null_Int_Ptr is not null access Integer;
17283 -- type Acc is not null access Not_Null_Int_Ptr;
17285 and then Nkind (P) /= N_Access_To_Object_Definition
17286 then
17287 if Can_Never_Be_Null (Entity (S)) then
17288 case Nkind (Related_Nod) is
17289 when N_Full_Type_Declaration =>
17290 if Nkind (Type_Definition (Related_Nod))
17291 in N_Array_Type_Definition
17292 then
17293 Error_Node :=
17294 Subtype_Indication
17295 (Component_Definition
17296 (Type_Definition (Related_Nod)));
17297 else
17298 Error_Node :=
17299 Subtype_Indication (Type_Definition (Related_Nod));
17300 end if;
17302 when N_Subtype_Declaration =>
17303 Error_Node := Subtype_Indication (Related_Nod);
17305 when N_Object_Declaration =>
17306 Error_Node := Object_Definition (Related_Nod);
17308 when N_Component_Declaration =>
17309 Error_Node :=
17310 Subtype_Indication (Component_Definition (Related_Nod));
17312 when N_Allocator =>
17313 Error_Node := Expression (Related_Nod);
17315 when others =>
17316 pragma Assert (False);
17317 Error_Node := Related_Nod;
17318 end case;
17320 Error_Msg_NE
17321 ("`NOT NULL` not allowed (& already excludes null)",
17322 Error_Node,
17323 Entity (S));
17324 end if;
17326 Set_Etype (S,
17327 Create_Null_Excluding_Itype
17328 (T => Entity (S),
17329 Related_Nod => P));
17330 Set_Entity (S, Etype (S));
17331 end if;
17333 return Entity (S);
17335 -- Case of constraint present, so that we have an N_Subtype_Indication
17336 -- node (this node is created only if constraints are present).
17338 else
17339 Find_Type (Subtype_Mark (S));
17341 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
17342 and then not
17343 (Nkind (Parent (S)) = N_Subtype_Declaration
17344 and then Is_Itype (Defining_Identifier (Parent (S))))
17345 then
17346 Check_Incomplete (Subtype_Mark (S));
17347 end if;
17349 P := Parent (S);
17350 Subtype_Mark_Id := Entity (Subtype_Mark (S));
17352 -- Explicit subtype declaration case
17354 if Nkind (P) = N_Subtype_Declaration then
17355 Def_Id := Defining_Identifier (P);
17357 -- Explicit derived type definition case
17359 elsif Nkind (P) = N_Derived_Type_Definition then
17360 Def_Id := Defining_Identifier (Parent (P));
17362 -- Implicit case, the Def_Id must be created as an implicit type.
17363 -- The one exception arises in the case of concurrent types, array
17364 -- and access types, where other subsidiary implicit types may be
17365 -- created and must appear before the main implicit type. In these
17366 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
17367 -- has not yet been called to create Def_Id.
17369 else
17370 if Is_Array_Type (Subtype_Mark_Id)
17371 or else Is_Concurrent_Type (Subtype_Mark_Id)
17372 or else Is_Access_Type (Subtype_Mark_Id)
17373 then
17374 Def_Id := Empty;
17376 -- For the other cases, we create a new unattached Itype,
17377 -- and set the indication to ensure it gets attached later.
17379 else
17380 Def_Id :=
17381 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
17382 end if;
17383 end if;
17385 -- If the kind of constraint is invalid for this kind of type,
17386 -- then give an error, and then pretend no constraint was given.
17388 if not Is_Valid_Constraint_Kind
17389 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
17390 then
17391 Error_Msg_N
17392 ("incorrect constraint for this kind of type", Constraint (S));
17394 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17396 -- Set Ekind of orphan itype, to prevent cascaded errors
17398 if Present (Def_Id) then
17399 Set_Ekind (Def_Id, Ekind (Any_Type));
17400 end if;
17402 -- Make recursive call, having got rid of the bogus constraint
17404 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
17405 end if;
17407 -- Remaining processing depends on type
17409 case Ekind (Subtype_Mark_Id) is
17410 when Access_Kind =>
17411 Constrain_Access (Def_Id, S, Related_Nod);
17413 if Expander_Active
17414 and then Is_Itype (Designated_Type (Def_Id))
17415 and then Nkind (Related_Nod) = N_Subtype_Declaration
17416 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
17417 then
17418 Build_Itype_Reference
17419 (Designated_Type (Def_Id), Related_Nod);
17420 end if;
17422 when Array_Kind =>
17423 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
17425 when Decimal_Fixed_Point_Kind =>
17426 Constrain_Decimal (Def_Id, S);
17428 when Enumeration_Kind =>
17429 Constrain_Enumeration (Def_Id, S);
17431 when Ordinary_Fixed_Point_Kind =>
17432 Constrain_Ordinary_Fixed (Def_Id, S);
17434 when Float_Kind =>
17435 Constrain_Float (Def_Id, S);
17437 when Integer_Kind =>
17438 Constrain_Integer (Def_Id, S);
17440 when E_Record_Type |
17441 E_Record_Subtype |
17442 Class_Wide_Kind |
17443 E_Incomplete_Type =>
17444 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
17446 if Ekind (Def_Id) = E_Incomplete_Type then
17447 Set_Private_Dependents (Def_Id, New_Elmt_List);
17448 end if;
17450 when Private_Kind =>
17451 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
17452 Set_Private_Dependents (Def_Id, New_Elmt_List);
17454 -- In case of an invalid constraint prevent further processing
17455 -- since the type constructed is missing expected fields.
17457 if Etype (Def_Id) = Any_Type then
17458 return Def_Id;
17459 end if;
17461 -- If the full view is that of a task with discriminants,
17462 -- we must constrain both the concurrent type and its
17463 -- corresponding record type. Otherwise we will just propagate
17464 -- the constraint to the full view, if available.
17466 if Present (Full_View (Subtype_Mark_Id))
17467 and then Has_Discriminants (Subtype_Mark_Id)
17468 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
17469 then
17470 Full_View_Id :=
17471 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
17473 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
17474 Constrain_Concurrent (Full_View_Id, S,
17475 Related_Nod, Related_Id, Suffix);
17476 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
17477 Set_Full_View (Def_Id, Full_View_Id);
17479 -- Introduce an explicit reference to the private subtype,
17480 -- to prevent scope anomalies in gigi if first use appears
17481 -- in a nested context, e.g. a later function body.
17482 -- Should this be generated in other contexts than a full
17483 -- type declaration?
17485 if Is_Itype (Def_Id)
17486 and then
17487 Nkind (Parent (P)) = N_Full_Type_Declaration
17488 then
17489 Build_Itype_Reference (Def_Id, Parent (P));
17490 end if;
17492 else
17493 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
17494 end if;
17496 when Concurrent_Kind =>
17497 Constrain_Concurrent (Def_Id, S,
17498 Related_Nod, Related_Id, Suffix);
17500 when others =>
17501 Error_Msg_N ("invalid subtype mark in subtype indication", S);
17502 end case;
17504 -- Size and Convention are always inherited from the base type
17506 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
17507 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
17509 return Def_Id;
17510 end if;
17511 end Process_Subtype;
17513 ---------------------------------------
17514 -- Check_Anonymous_Access_Components --
17515 ---------------------------------------
17517 procedure Check_Anonymous_Access_Components
17518 (Typ_Decl : Node_Id;
17519 Typ : Entity_Id;
17520 Prev : Entity_Id;
17521 Comp_List : Node_Id)
17523 Loc : constant Source_Ptr := Sloc (Typ_Decl);
17524 Anon_Access : Entity_Id;
17525 Acc_Def : Node_Id;
17526 Comp : Node_Id;
17527 Comp_Def : Node_Id;
17528 Decl : Node_Id;
17529 Type_Def : Node_Id;
17531 procedure Build_Incomplete_Type_Declaration;
17532 -- If the record type contains components that include an access to the
17533 -- current record, then create an incomplete type declaration for the
17534 -- record, to be used as the designated type of the anonymous access.
17535 -- This is done only once, and only if there is no previous partial
17536 -- view of the type.
17538 function Designates_T (Subt : Node_Id) return Boolean;
17539 -- Check whether a node designates the enclosing record type, or 'Class
17540 -- of that type
17542 function Mentions_T (Acc_Def : Node_Id) return Boolean;
17543 -- Check whether an access definition includes a reference to
17544 -- the enclosing record type. The reference can be a subtype mark
17545 -- in the access definition itself, a 'Class attribute reference, or
17546 -- recursively a reference appearing in a parameter specification
17547 -- or result definition of an access_to_subprogram definition.
17549 --------------------------------------
17550 -- Build_Incomplete_Type_Declaration --
17551 --------------------------------------
17553 procedure Build_Incomplete_Type_Declaration is
17554 Decl : Node_Id;
17555 Inc_T : Entity_Id;
17556 H : Entity_Id;
17558 -- Is_Tagged indicates whether the type is tagged. It is tagged if
17559 -- it's "is new ... with record" or else "is tagged record ...".
17561 Is_Tagged : constant Boolean :=
17562 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
17563 and then
17564 Present
17565 (Record_Extension_Part (Type_Definition (Typ_Decl))))
17566 or else
17567 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
17568 and then Tagged_Present (Type_Definition (Typ_Decl)));
17570 begin
17571 -- If there is a previous partial view, no need to create a new one
17572 -- If the partial view, given by Prev, is incomplete, If Prev is
17573 -- a private declaration, full declaration is flagged accordingly.
17575 if Prev /= Typ then
17576 if Is_Tagged then
17577 Make_Class_Wide_Type (Prev);
17578 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
17579 Set_Etype (Class_Wide_Type (Typ), Typ);
17580 end if;
17582 return;
17584 elsif Has_Private_Declaration (Typ) then
17586 -- If we refer to T'Class inside T, and T is the completion of a
17587 -- private type, then we need to make sure the class-wide type
17588 -- exists.
17590 if Is_Tagged then
17591 Make_Class_Wide_Type (Typ);
17592 end if;
17594 return;
17596 -- If there was a previous anonymous access type, the incomplete
17597 -- type declaration will have been created already.
17599 elsif Present (Current_Entity (Typ))
17600 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
17601 and then Full_View (Current_Entity (Typ)) = Typ
17602 then
17603 if Is_Tagged
17604 and then Comes_From_Source (Current_Entity (Typ))
17605 and then not Is_Tagged_Type (Current_Entity (Typ))
17606 then
17607 Make_Class_Wide_Type (Typ);
17608 Error_Msg_N
17609 ("incomplete view of tagged type should be declared tagged?",
17610 Parent (Current_Entity (Typ)));
17611 end if;
17612 return;
17614 else
17615 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
17616 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
17618 -- Type has already been inserted into the current scope. Remove
17619 -- it, and add incomplete declaration for type, so that subsequent
17620 -- anonymous access types can use it. The entity is unchained from
17621 -- the homonym list and from immediate visibility. After analysis,
17622 -- the entity in the incomplete declaration becomes immediately
17623 -- visible in the record declaration that follows.
17625 H := Current_Entity (Typ);
17627 if H = Typ then
17628 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
17629 else
17630 while Present (H)
17631 and then Homonym (H) /= Typ
17632 loop
17633 H := Homonym (Typ);
17634 end loop;
17636 Set_Homonym (H, Homonym (Typ));
17637 end if;
17639 Insert_Before (Typ_Decl, Decl);
17640 Analyze (Decl);
17641 Set_Full_View (Inc_T, Typ);
17643 if Is_Tagged then
17645 -- Create a common class-wide type for both views, and set the
17646 -- Etype of the class-wide type to the full view.
17648 Make_Class_Wide_Type (Inc_T);
17649 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
17650 Set_Etype (Class_Wide_Type (Typ), Typ);
17651 end if;
17652 end if;
17653 end Build_Incomplete_Type_Declaration;
17655 ------------------
17656 -- Designates_T --
17657 ------------------
17659 function Designates_T (Subt : Node_Id) return Boolean is
17660 Type_Id : constant Name_Id := Chars (Typ);
17662 function Names_T (Nam : Node_Id) return Boolean;
17663 -- The record type has not been introduced in the current scope
17664 -- yet, so we must examine the name of the type itself, either
17665 -- an identifier T, or an expanded name of the form P.T, where
17666 -- P denotes the current scope.
17668 -------------
17669 -- Names_T --
17670 -------------
17672 function Names_T (Nam : Node_Id) return Boolean is
17673 begin
17674 if Nkind (Nam) = N_Identifier then
17675 return Chars (Nam) = Type_Id;
17677 elsif Nkind (Nam) = N_Selected_Component then
17678 if Chars (Selector_Name (Nam)) = Type_Id then
17679 if Nkind (Prefix (Nam)) = N_Identifier then
17680 return Chars (Prefix (Nam)) = Chars (Current_Scope);
17682 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
17683 return Chars (Selector_Name (Prefix (Nam))) =
17684 Chars (Current_Scope);
17685 else
17686 return False;
17687 end if;
17689 else
17690 return False;
17691 end if;
17693 else
17694 return False;
17695 end if;
17696 end Names_T;
17698 -- Start of processing for Designates_T
17700 begin
17701 if Nkind (Subt) = N_Identifier then
17702 return Chars (Subt) = Type_Id;
17704 -- Reference can be through an expanded name which has not been
17705 -- analyzed yet, and which designates enclosing scopes.
17707 elsif Nkind (Subt) = N_Selected_Component then
17708 if Names_T (Subt) then
17709 return True;
17711 -- Otherwise it must denote an entity that is already visible.
17712 -- The access definition may name a subtype of the enclosing
17713 -- type, if there is a previous incomplete declaration for it.
17715 else
17716 Find_Selected_Component (Subt);
17717 return
17718 Is_Entity_Name (Subt)
17719 and then Scope (Entity (Subt)) = Current_Scope
17720 and then
17721 (Chars (Base_Type (Entity (Subt))) = Type_Id
17722 or else
17723 (Is_Class_Wide_Type (Entity (Subt))
17724 and then
17725 Chars (Etype (Base_Type (Entity (Subt)))) =
17726 Type_Id));
17727 end if;
17729 -- A reference to the current type may appear as the prefix of
17730 -- a 'Class attribute.
17732 elsif Nkind (Subt) = N_Attribute_Reference
17733 and then Attribute_Name (Subt) = Name_Class
17734 then
17735 return Names_T (Prefix (Subt));
17737 else
17738 return False;
17739 end if;
17740 end Designates_T;
17742 ----------------
17743 -- Mentions_T --
17744 ----------------
17746 function Mentions_T (Acc_Def : Node_Id) return Boolean is
17747 Param_Spec : Node_Id;
17749 Acc_Subprg : constant Node_Id :=
17750 Access_To_Subprogram_Definition (Acc_Def);
17752 begin
17753 if No (Acc_Subprg) then
17754 return Designates_T (Subtype_Mark (Acc_Def));
17755 end if;
17757 -- Component is an access_to_subprogram: examine its formals,
17758 -- and result definition in the case of an access_to_function.
17760 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
17761 while Present (Param_Spec) loop
17762 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
17763 and then Mentions_T (Parameter_Type (Param_Spec))
17764 then
17765 return True;
17767 elsif Designates_T (Parameter_Type (Param_Spec)) then
17768 return True;
17769 end if;
17771 Next (Param_Spec);
17772 end loop;
17774 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
17775 if Nkind (Result_Definition (Acc_Subprg)) =
17776 N_Access_Definition
17777 then
17778 return Mentions_T (Result_Definition (Acc_Subprg));
17779 else
17780 return Designates_T (Result_Definition (Acc_Subprg));
17781 end if;
17782 end if;
17784 return False;
17785 end Mentions_T;
17787 -- Start of processing for Check_Anonymous_Access_Components
17789 begin
17790 if No (Comp_List) then
17791 return;
17792 end if;
17794 Comp := First (Component_Items (Comp_List));
17795 while Present (Comp) loop
17796 if Nkind (Comp) = N_Component_Declaration
17797 and then Present
17798 (Access_Definition (Component_Definition (Comp)))
17799 and then
17800 Mentions_T (Access_Definition (Component_Definition (Comp)))
17801 then
17802 Comp_Def := Component_Definition (Comp);
17803 Acc_Def :=
17804 Access_To_Subprogram_Definition
17805 (Access_Definition (Comp_Def));
17807 Build_Incomplete_Type_Declaration;
17808 Anon_Access := Make_Temporary (Loc, 'S');
17810 -- Create a declaration for the anonymous access type: either
17811 -- an access_to_object or an access_to_subprogram.
17813 if Present (Acc_Def) then
17814 if Nkind (Acc_Def) = N_Access_Function_Definition then
17815 Type_Def :=
17816 Make_Access_Function_Definition (Loc,
17817 Parameter_Specifications =>
17818 Parameter_Specifications (Acc_Def),
17819 Result_Definition => Result_Definition (Acc_Def));
17820 else
17821 Type_Def :=
17822 Make_Access_Procedure_Definition (Loc,
17823 Parameter_Specifications =>
17824 Parameter_Specifications (Acc_Def));
17825 end if;
17827 else
17828 Type_Def :=
17829 Make_Access_To_Object_Definition (Loc,
17830 Subtype_Indication =>
17831 Relocate_Node
17832 (Subtype_Mark
17833 (Access_Definition (Comp_Def))));
17835 Set_Constant_Present
17836 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
17837 Set_All_Present
17838 (Type_Def, All_Present (Access_Definition (Comp_Def)));
17839 end if;
17841 Set_Null_Exclusion_Present
17842 (Type_Def,
17843 Null_Exclusion_Present (Access_Definition (Comp_Def)));
17845 Decl :=
17846 Make_Full_Type_Declaration (Loc,
17847 Defining_Identifier => Anon_Access,
17848 Type_Definition => Type_Def);
17850 Insert_Before (Typ_Decl, Decl);
17851 Analyze (Decl);
17853 -- If an access to object, Preserve entity of designated type,
17854 -- for ASIS use, before rewriting the component definition.
17856 if No (Acc_Def) then
17857 declare
17858 Desig : Entity_Id;
17860 begin
17861 Desig := Entity (Subtype_Indication (Type_Def));
17863 -- If the access definition is to the current record,
17864 -- the visible entity at this point is an incomplete
17865 -- type. Retrieve the full view to simplify ASIS queries
17867 if Ekind (Desig) = E_Incomplete_Type then
17868 Desig := Full_View (Desig);
17869 end if;
17871 Set_Entity
17872 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
17873 end;
17874 end if;
17876 Rewrite (Comp_Def,
17877 Make_Component_Definition (Loc,
17878 Subtype_Indication =>
17879 New_Occurrence_Of (Anon_Access, Loc)));
17881 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
17882 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
17883 else
17884 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
17885 end if;
17887 Set_Is_Local_Anonymous_Access (Anon_Access);
17888 end if;
17890 Next (Comp);
17891 end loop;
17893 if Present (Variant_Part (Comp_List)) then
17894 declare
17895 V : Node_Id;
17896 begin
17897 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
17898 while Present (V) loop
17899 Check_Anonymous_Access_Components
17900 (Typ_Decl, Typ, Prev, Component_List (V));
17901 Next_Non_Pragma (V);
17902 end loop;
17903 end;
17904 end if;
17905 end Check_Anonymous_Access_Components;
17907 --------------------------------
17908 -- Preanalyze_Spec_Expression --
17909 --------------------------------
17911 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
17912 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
17913 begin
17914 In_Spec_Expression := True;
17915 Preanalyze_And_Resolve (N, T);
17916 In_Spec_Expression := Save_In_Spec_Expression;
17917 end Preanalyze_Spec_Expression;
17919 -----------------------------
17920 -- Record_Type_Declaration --
17921 -----------------------------
17923 procedure Record_Type_Declaration
17924 (T : Entity_Id;
17925 N : Node_Id;
17926 Prev : Entity_Id)
17928 Def : constant Node_Id := Type_Definition (N);
17929 Is_Tagged : Boolean;
17930 Tag_Comp : Entity_Id;
17932 begin
17933 -- These flags must be initialized before calling Process_Discriminants
17934 -- because this routine makes use of them.
17936 Set_Ekind (T, E_Record_Type);
17937 Set_Etype (T, T);
17938 Init_Size_Align (T);
17939 Set_Interfaces (T, No_Elist);
17940 Set_Stored_Constraint (T, No_Elist);
17942 -- Normal case
17944 if Ada_Version < Ada_05
17945 or else not Interface_Present (Def)
17946 then
17947 -- The flag Is_Tagged_Type might have already been set by
17948 -- Find_Type_Name if it detected an error for declaration T. This
17949 -- arises in the case of private tagged types where the full view
17950 -- omits the word tagged.
17952 Is_Tagged :=
17953 Tagged_Present (Def)
17954 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
17956 Set_Is_Tagged_Type (T, Is_Tagged);
17957 Set_Is_Limited_Record (T, Limited_Present (Def));
17959 -- Type is abstract if full declaration carries keyword, or if
17960 -- previous partial view did.
17962 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
17963 or else Abstract_Present (Def));
17965 else
17966 Is_Tagged := True;
17967 Analyze_Interface_Declaration (T, Def);
17969 if Present (Discriminant_Specifications (N)) then
17970 Error_Msg_N
17971 ("interface types cannot have discriminants",
17972 Defining_Identifier
17973 (First (Discriminant_Specifications (N))));
17974 end if;
17975 end if;
17977 -- First pass: if there are self-referential access components,
17978 -- create the required anonymous access type declarations, and if
17979 -- need be an incomplete type declaration for T itself.
17981 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
17983 if Ada_Version >= Ada_05
17984 and then Present (Interface_List (Def))
17985 then
17986 Check_Interfaces (N, Def);
17988 declare
17989 Ifaces_List : Elist_Id;
17991 begin
17992 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
17993 -- already in the parents.
17995 Collect_Interfaces
17996 (T => T,
17997 Ifaces_List => Ifaces_List,
17998 Exclude_Parents => True);
18000 Set_Interfaces (T, Ifaces_List);
18001 end;
18002 end if;
18004 -- Records constitute a scope for the component declarations within.
18005 -- The scope is created prior to the processing of these declarations.
18006 -- Discriminants are processed first, so that they are visible when
18007 -- processing the other components. The Ekind of the record type itself
18008 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
18010 -- Enter record scope
18012 Push_Scope (T);
18014 -- If an incomplete or private type declaration was already given for
18015 -- the type, then this scope already exists, and the discriminants have
18016 -- been declared within. We must verify that the full declaration
18017 -- matches the incomplete one.
18019 Check_Or_Process_Discriminants (N, T, Prev);
18021 Set_Is_Constrained (T, not Has_Discriminants (T));
18022 Set_Has_Delayed_Freeze (T, True);
18024 -- For tagged types add a manually analyzed component corresponding
18025 -- to the component _tag, the corresponding piece of tree will be
18026 -- expanded as part of the freezing actions if it is not a CPP_Class.
18028 if Is_Tagged then
18030 -- Do not add the tag unless we are in expansion mode
18032 if Expander_Active then
18033 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
18034 Enter_Name (Tag_Comp);
18036 Set_Ekind (Tag_Comp, E_Component);
18037 Set_Is_Tag (Tag_Comp);
18038 Set_Is_Aliased (Tag_Comp);
18039 Set_Etype (Tag_Comp, RTE (RE_Tag));
18040 Set_DT_Entry_Count (Tag_Comp, No_Uint);
18041 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
18042 Init_Component_Location (Tag_Comp);
18044 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
18045 -- implemented interfaces.
18047 if Has_Interfaces (T) then
18048 Add_Interface_Tag_Components (N, T);
18049 end if;
18050 end if;
18052 Make_Class_Wide_Type (T);
18053 Set_Primitive_Operations (T, New_Elmt_List);
18054 end if;
18056 -- We must suppress range checks when processing the components
18057 -- of a record in the presence of discriminants, since we don't
18058 -- want spurious checks to be generated during their analysis, but
18059 -- must reset the Suppress_Range_Checks flags after having processed
18060 -- the record definition.
18062 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
18063 -- couldn't we just use the normal range check suppression method here.
18064 -- That would seem cleaner ???
18066 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
18067 Set_Kill_Range_Checks (T, True);
18068 Record_Type_Definition (Def, Prev);
18069 Set_Kill_Range_Checks (T, False);
18070 else
18071 Record_Type_Definition (Def, Prev);
18072 end if;
18074 -- Exit from record scope
18076 End_Scope;
18078 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
18079 -- the implemented interfaces and associate them an aliased entity.
18081 if Is_Tagged
18082 and then not Is_Empty_List (Interface_List (Def))
18083 then
18084 Derive_Progenitor_Subprograms (T, T);
18085 end if;
18086 end Record_Type_Declaration;
18088 ----------------------------
18089 -- Record_Type_Definition --
18090 ----------------------------
18092 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
18093 Component : Entity_Id;
18094 Ctrl_Components : Boolean := False;
18095 Final_Storage_Only : Boolean;
18096 T : Entity_Id;
18098 begin
18099 if Ekind (Prev_T) = E_Incomplete_Type then
18100 T := Full_View (Prev_T);
18101 else
18102 T := Prev_T;
18103 end if;
18105 Final_Storage_Only := not Is_Controlled (T);
18107 -- Ada 2005: check whether an explicit Limited is present in a derived
18108 -- type declaration.
18110 if Nkind (Parent (Def)) = N_Derived_Type_Definition
18111 and then Limited_Present (Parent (Def))
18112 then
18113 Set_Is_Limited_Record (T);
18114 end if;
18116 -- If the component list of a record type is defined by the reserved
18117 -- word null and there is no discriminant part, then the record type has
18118 -- no components and all records of the type are null records (RM 3.7)
18119 -- This procedure is also called to process the extension part of a
18120 -- record extension, in which case the current scope may have inherited
18121 -- components.
18123 if No (Def)
18124 or else No (Component_List (Def))
18125 or else Null_Present (Component_List (Def))
18126 then
18127 null;
18129 else
18130 Analyze_Declarations (Component_Items (Component_List (Def)));
18132 if Present (Variant_Part (Component_List (Def))) then
18133 Analyze (Variant_Part (Component_List (Def)));
18134 end if;
18135 end if;
18137 -- After completing the semantic analysis of the record definition,
18138 -- record components, both new and inherited, are accessible. Set their
18139 -- kind accordingly. Exclude malformed itypes from illegal declarations,
18140 -- whose Ekind may be void.
18142 Component := First_Entity (Current_Scope);
18143 while Present (Component) loop
18144 if Ekind (Component) = E_Void
18145 and then not Is_Itype (Component)
18146 then
18147 Set_Ekind (Component, E_Component);
18148 Init_Component_Location (Component);
18149 end if;
18151 if Has_Task (Etype (Component)) then
18152 Set_Has_Task (T);
18153 end if;
18155 if Ekind (Component) /= E_Component then
18156 null;
18158 -- Do not set Has_Controlled_Component on a class-wide equivalent
18159 -- type. See Make_CW_Equivalent_Type.
18161 elsif not Is_Class_Wide_Equivalent_Type (T)
18162 and then (Has_Controlled_Component (Etype (Component))
18163 or else (Chars (Component) /= Name_uParent
18164 and then Is_Controlled (Etype (Component))))
18165 then
18166 Set_Has_Controlled_Component (T, True);
18167 Final_Storage_Only :=
18168 Final_Storage_Only
18169 and then Finalize_Storage_Only (Etype (Component));
18170 Ctrl_Components := True;
18171 end if;
18173 Next_Entity (Component);
18174 end loop;
18176 -- A Type is Finalize_Storage_Only only if all its controlled components
18177 -- are also.
18179 if Ctrl_Components then
18180 Set_Finalize_Storage_Only (T, Final_Storage_Only);
18181 end if;
18183 -- Place reference to end record on the proper entity, which may
18184 -- be a partial view.
18186 if Present (Def) then
18187 Process_End_Label (Def, 'e', Prev_T);
18188 end if;
18189 end Record_Type_Definition;
18191 ------------------------
18192 -- Replace_Components --
18193 ------------------------
18195 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
18196 function Process (N : Node_Id) return Traverse_Result;
18198 -------------
18199 -- Process --
18200 -------------
18202 function Process (N : Node_Id) return Traverse_Result is
18203 Comp : Entity_Id;
18205 begin
18206 if Nkind (N) = N_Discriminant_Specification then
18207 Comp := First_Discriminant (Typ);
18208 while Present (Comp) loop
18209 if Chars (Comp) = Chars (Defining_Identifier (N)) then
18210 Set_Defining_Identifier (N, Comp);
18211 exit;
18212 end if;
18214 Next_Discriminant (Comp);
18215 end loop;
18217 elsif Nkind (N) = N_Component_Declaration then
18218 Comp := First_Component (Typ);
18219 while Present (Comp) loop
18220 if Chars (Comp) = Chars (Defining_Identifier (N)) then
18221 Set_Defining_Identifier (N, Comp);
18222 exit;
18223 end if;
18225 Next_Component (Comp);
18226 end loop;
18227 end if;
18229 return OK;
18230 end Process;
18232 procedure Replace is new Traverse_Proc (Process);
18234 -- Start of processing for Replace_Components
18236 begin
18237 Replace (Decl);
18238 end Replace_Components;
18240 -------------------------------
18241 -- Set_Completion_Referenced --
18242 -------------------------------
18244 procedure Set_Completion_Referenced (E : Entity_Id) is
18245 begin
18246 -- If in main unit, mark entity that is a completion as referenced,
18247 -- warnings go on the partial view when needed.
18249 if In_Extended_Main_Source_Unit (E) then
18250 Set_Referenced (E);
18251 end if;
18252 end Set_Completion_Referenced;
18254 ---------------------
18255 -- Set_Fixed_Range --
18256 ---------------------
18258 -- The range for fixed-point types is complicated by the fact that we
18259 -- do not know the exact end points at the time of the declaration. This
18260 -- is true for three reasons:
18262 -- A size clause may affect the fudging of the end-points
18263 -- A small clause may affect the values of the end-points
18264 -- We try to include the end-points if it does not affect the size
18266 -- This means that the actual end-points must be established at the point
18267 -- when the type is frozen. Meanwhile, we first narrow the range as
18268 -- permitted (so that it will fit if necessary in a small specified size),
18269 -- and then build a range subtree with these narrowed bounds.
18271 -- Set_Fixed_Range constructs the range from real literal values, and sets
18272 -- the range as the Scalar_Range of the given fixed-point type entity.
18274 -- The parent of this range is set to point to the entity so that it is
18275 -- properly hooked into the tree (unlike normal Scalar_Range entries for
18276 -- other scalar types, which are just pointers to the range in the
18277 -- original tree, this would otherwise be an orphan).
18279 -- The tree is left unanalyzed. When the type is frozen, the processing
18280 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
18281 -- analyzed, and uses this as an indication that it should complete
18282 -- work on the range (it will know the final small and size values).
18284 procedure Set_Fixed_Range
18285 (E : Entity_Id;
18286 Loc : Source_Ptr;
18287 Lo : Ureal;
18288 Hi : Ureal)
18290 S : constant Node_Id :=
18291 Make_Range (Loc,
18292 Low_Bound => Make_Real_Literal (Loc, Lo),
18293 High_Bound => Make_Real_Literal (Loc, Hi));
18294 begin
18295 Set_Scalar_Range (E, S);
18296 Set_Parent (S, E);
18297 end Set_Fixed_Range;
18299 ----------------------------------
18300 -- Set_Scalar_Range_For_Subtype --
18301 ----------------------------------
18303 procedure Set_Scalar_Range_For_Subtype
18304 (Def_Id : Entity_Id;
18305 R : Node_Id;
18306 Subt : Entity_Id)
18308 Kind : constant Entity_Kind := Ekind (Def_Id);
18310 begin
18311 -- Defend against previous error
18313 if Nkind (R) = N_Error then
18314 return;
18315 end if;
18317 Set_Scalar_Range (Def_Id, R);
18319 -- We need to link the range into the tree before resolving it so
18320 -- that types that are referenced, including importantly the subtype
18321 -- itself, are properly frozen (Freeze_Expression requires that the
18322 -- expression be properly linked into the tree). Of course if it is
18323 -- already linked in, then we do not disturb the current link.
18325 if No (Parent (R)) then
18326 Set_Parent (R, Def_Id);
18327 end if;
18329 -- Reset the kind of the subtype during analysis of the range, to
18330 -- catch possible premature use in the bounds themselves.
18332 Set_Ekind (Def_Id, E_Void);
18333 Process_Range_Expr_In_Decl (R, Subt);
18334 Set_Ekind (Def_Id, Kind);
18335 end Set_Scalar_Range_For_Subtype;
18337 --------------------------------------------------------
18338 -- Set_Stored_Constraint_From_Discriminant_Constraint --
18339 --------------------------------------------------------
18341 procedure Set_Stored_Constraint_From_Discriminant_Constraint
18342 (E : Entity_Id)
18344 begin
18345 -- Make sure set if encountered during Expand_To_Stored_Constraint
18347 Set_Stored_Constraint (E, No_Elist);
18349 -- Give it the right value
18351 if Is_Constrained (E) and then Has_Discriminants (E) then
18352 Set_Stored_Constraint (E,
18353 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
18354 end if;
18355 end Set_Stored_Constraint_From_Discriminant_Constraint;
18357 -------------------------------------
18358 -- Signed_Integer_Type_Declaration --
18359 -------------------------------------
18361 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18362 Implicit_Base : Entity_Id;
18363 Base_Typ : Entity_Id;
18364 Lo_Val : Uint;
18365 Hi_Val : Uint;
18366 Errs : Boolean := False;
18367 Lo : Node_Id;
18368 Hi : Node_Id;
18370 function Can_Derive_From (E : Entity_Id) return Boolean;
18371 -- Determine whether given bounds allow derivation from specified type
18373 procedure Check_Bound (Expr : Node_Id);
18374 -- Check bound to make sure it is integral and static. If not, post
18375 -- appropriate error message and set Errs flag
18377 ---------------------
18378 -- Can_Derive_From --
18379 ---------------------
18381 -- Note we check both bounds against both end values, to deal with
18382 -- strange types like ones with a range of 0 .. -12341234.
18384 function Can_Derive_From (E : Entity_Id) return Boolean is
18385 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
18386 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
18387 begin
18388 return Lo <= Lo_Val and then Lo_Val <= Hi
18389 and then
18390 Lo <= Hi_Val and then Hi_Val <= Hi;
18391 end Can_Derive_From;
18393 -----------------
18394 -- Check_Bound --
18395 -----------------
18397 procedure Check_Bound (Expr : Node_Id) is
18398 begin
18399 -- If a range constraint is used as an integer type definition, each
18400 -- bound of the range must be defined by a static expression of some
18401 -- integer type, but the two bounds need not have the same integer
18402 -- type (Negative bounds are allowed.) (RM 3.5.4)
18404 if not Is_Integer_Type (Etype (Expr)) then
18405 Error_Msg_N
18406 ("integer type definition bounds must be of integer type", Expr);
18407 Errs := True;
18409 elsif not Is_OK_Static_Expression (Expr) then
18410 Flag_Non_Static_Expr
18411 ("non-static expression used for integer type bound!", Expr);
18412 Errs := True;
18414 -- The bounds are folded into literals, and we set their type to be
18415 -- universal, to avoid typing difficulties: we cannot set the type
18416 -- of the literal to the new type, because this would be a forward
18417 -- reference for the back end, and if the original type is user-
18418 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
18420 else
18421 if Is_Entity_Name (Expr) then
18422 Fold_Uint (Expr, Expr_Value (Expr), True);
18423 end if;
18425 Set_Etype (Expr, Universal_Integer);
18426 end if;
18427 end Check_Bound;
18429 -- Start of processing for Signed_Integer_Type_Declaration
18431 begin
18432 -- Create an anonymous base type
18434 Implicit_Base :=
18435 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
18437 -- Analyze and check the bounds, they can be of any integer type
18439 Lo := Low_Bound (Def);
18440 Hi := High_Bound (Def);
18442 -- Arbitrarily use Integer as the type if either bound had an error
18444 if Hi = Error or else Lo = Error then
18445 Base_Typ := Any_Integer;
18446 Set_Error_Posted (T, True);
18448 -- Here both bounds are OK expressions
18450 else
18451 Analyze_And_Resolve (Lo, Any_Integer);
18452 Analyze_And_Resolve (Hi, Any_Integer);
18454 Check_Bound (Lo);
18455 Check_Bound (Hi);
18457 if Errs then
18458 Hi := Type_High_Bound (Standard_Long_Long_Integer);
18459 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
18460 end if;
18462 -- Find type to derive from
18464 Lo_Val := Expr_Value (Lo);
18465 Hi_Val := Expr_Value (Hi);
18467 if Can_Derive_From (Standard_Short_Short_Integer) then
18468 Base_Typ := Base_Type (Standard_Short_Short_Integer);
18470 elsif Can_Derive_From (Standard_Short_Integer) then
18471 Base_Typ := Base_Type (Standard_Short_Integer);
18473 elsif Can_Derive_From (Standard_Integer) then
18474 Base_Typ := Base_Type (Standard_Integer);
18476 elsif Can_Derive_From (Standard_Long_Integer) then
18477 Base_Typ := Base_Type (Standard_Long_Integer);
18479 elsif Can_Derive_From (Standard_Long_Long_Integer) then
18480 Base_Typ := Base_Type (Standard_Long_Long_Integer);
18482 else
18483 Base_Typ := Base_Type (Standard_Long_Long_Integer);
18484 Error_Msg_N ("integer type definition bounds out of range", Def);
18485 Hi := Type_High_Bound (Standard_Long_Long_Integer);
18486 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
18487 end if;
18488 end if;
18490 -- Complete both implicit base and declared first subtype entities
18492 Set_Etype (Implicit_Base, Base_Typ);
18493 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
18494 Set_Size_Info (Implicit_Base, (Base_Typ));
18495 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
18496 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
18498 Set_Ekind (T, E_Signed_Integer_Subtype);
18499 Set_Etype (T, Implicit_Base);
18501 Set_Size_Info (T, (Implicit_Base));
18502 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
18503 Set_Scalar_Range (T, Def);
18504 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
18505 Set_Is_Constrained (T);
18506 end Signed_Integer_Type_Declaration;
18508 end Sem_Ch3;