Merge from mainline (163495:164578).
[official-gcc/graphite-test-results.git] / gcc / ada / g-pehage.adb
blobc637d1c0d0bb46c154a02507466540b7547b9870
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2002-2010, AdaCore --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with Ada.IO_Exceptions; use Ada.IO_Exceptions;
35 with Ada.Characters.Handling; use Ada.Characters.Handling;
36 with Ada.Directories;
38 with GNAT.Heap_Sort_G;
39 with GNAT.OS_Lib; use GNAT.OS_Lib;
40 with GNAT.Table;
42 package body GNAT.Perfect_Hash_Generators is
44 -- We are using the algorithm of J. Czech as described in Zbigniew J.
45 -- Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
46 -- Generating Minimal Perfect Hash Functions'', Information Processing
47 -- Letters, 43(1992) pp.257-264, Oct.1992
49 -- This minimal perfect hash function generator is based on random graphs
50 -- and produces a hash function of the form:
52 -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
54 -- where f1 and f2 are functions that map strings into integers, and g is
55 -- a function that maps integers into [0, m-1]. h can be order preserving.
56 -- For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
57 -- such that h (w_i) = i.
59 -- This algorithm defines two possible constructions of f1 and f2. Method
60 -- b) stores the hash function in less memory space at the expense of
61 -- greater CPU time.
63 -- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
65 -- size (Tk) = max (for w in W) (length (w)) * size (used char set)
67 -- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
69 -- size (Tk) = max (for w in W) (length (w)) but the table lookups are
70 -- replaced by multiplications.
72 -- where Tk values are randomly generated. n is defined later on but the
73 -- algorithm recommends to use a value a little bit greater than 2m. Note
74 -- that for large values of m, the main memory space requirements comes
75 -- from the memory space for storing function g (>= 2m entries).
77 -- Random graphs are frequently used to solve difficult problems that do
78 -- not have polynomial solutions. This algorithm is based on a weighted
79 -- undirected graph. It comprises two steps: mapping and assignment.
81 -- In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
82 -- ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
83 -- assignment step to be successful, G has to be acyclic. To have a high
84 -- probability of generating an acyclic graph, n >= 2m. If it is not
85 -- acyclic, Tk have to be regenerated.
87 -- In the assignment step, the algorithm builds function g. As G is
88 -- acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
89 -- the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
90 -- construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
91 -- If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
92 -- g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
93 -- neighbor, then another vertex is selected. The algorithm traverses G to
94 -- assign values to all the vertices. It cannot assign a value to an
95 -- already assigned vertex as G is acyclic.
97 subtype Word_Id is Integer;
98 subtype Key_Id is Integer;
99 subtype Vertex_Id is Integer;
100 subtype Edge_Id is Integer;
101 subtype Table_Id is Integer;
103 No_Vertex : constant Vertex_Id := -1;
104 No_Edge : constant Edge_Id := -1;
105 No_Table : constant Table_Id := -1;
107 type Word_Type is new String_Access;
108 procedure Free_Word (W : in out Word_Type);
109 function New_Word (S : String) return Word_Type;
111 procedure Resize_Word (W : in out Word_Type; Len : Natural);
112 -- Resize string W to have a length Len
114 type Key_Type is record
115 Edge : Edge_Id;
116 end record;
117 -- A key corresponds to an edge in the algorithm graph
119 type Vertex_Type is record
120 First : Edge_Id;
121 Last : Edge_Id;
122 end record;
123 -- A vertex can be involved in several edges. First and Last are the bounds
124 -- of an array of edges stored in a global edge table.
126 type Edge_Type is record
127 X : Vertex_Id;
128 Y : Vertex_Id;
129 Key : Key_Id;
130 end record;
131 -- An edge is a peer of vertices. In the algorithm, a key is associated to
132 -- an edge.
134 package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
135 package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
136 -- The two main tables. WT is used to store the words in their initial
137 -- version and in their reduced version (that is words reduced to their
138 -- significant characters). As an instance of GNAT.Table, WT does not
139 -- initialize string pointers to null. This initialization has to be done
140 -- manually when the table is allocated. IT is used to store several
141 -- tables of components containing only integers.
143 function Image (Int : Integer; W : Natural := 0) return String;
144 function Image (Str : String; W : Natural := 0) return String;
145 -- Return a string which includes string Str or integer Int preceded by
146 -- leading spaces if required by width W.
148 function Trim_Trailing_Nuls (Str : String) return String;
149 -- Return Str with trailing NUL characters removed
151 Output : File_Descriptor renames GNAT.OS_Lib.Standout;
152 -- Shortcuts
154 EOL : constant Character := ASCII.LF;
156 Max : constant := 78;
157 Last : Natural := 0;
158 Line : String (1 .. Max);
159 -- Use this line to provide buffered IO
161 procedure Add (C : Character);
162 procedure Add (S : String);
163 -- Add a character or a string in Line and update Last
165 procedure Put
166 (F : File_Descriptor;
167 S : String;
168 F1 : Natural;
169 L1 : Natural;
170 C1 : Natural;
171 F2 : Natural;
172 L2 : Natural;
173 C2 : Natural);
174 -- Write string S into file F as a element of an array of one or two
175 -- dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
176 -- current) index in the k-th dimension. If F1 = L1 the array is considered
177 -- as a one dimension array. This dimension is described by F2 and L2. This
178 -- routine takes care of all the parenthesis, spaces and commas needed to
179 -- format correctly the array. Moreover, the array is well indented and is
180 -- wrapped to fit in a 80 col line. When the line is full, the routine
181 -- writes it into file F. When the array is completed, the routine adds
182 -- semi-colon and writes the line into file F.
184 procedure New_Line (File : File_Descriptor);
185 -- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
187 procedure Put (File : File_Descriptor; Str : String);
188 -- Simulate Ada.Text_IO.Put with GNAT.OS_Lib
190 procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
191 -- Output a title and a used character set
193 procedure Put_Int_Vector
194 (File : File_Descriptor;
195 Title : String;
196 Vector : Integer;
197 Length : Natural);
198 -- Output a title and a vector
200 procedure Put_Int_Matrix
201 (File : File_Descriptor;
202 Title : String;
203 Table : Table_Id;
204 Len_1 : Natural;
205 Len_2 : Natural);
206 -- Output a title and a matrix. When the matrix has only one non-empty
207 -- dimension (Len_2 = 0), output a vector.
209 procedure Put_Edges (File : File_Descriptor; Title : String);
210 -- Output a title and an edge table
212 procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
213 -- Output a title and a key table
215 procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
216 -- Output a title and a key table
218 procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
219 -- Output a title and a vertex table
221 function Ada_File_Base_Name (Pkg_Name : String) return String;
222 -- Return the base file name (i.e. without .ads/.adb extension) for an
223 -- Ada source file containing the named package, using the standard GNAT
224 -- file-naming convention. For example, if Pkg_Name is "Parent.Child", we
225 -- return "parent-child".
227 ----------------------------------
228 -- Character Position Selection --
229 ----------------------------------
231 -- We reduce the maximum key size by selecting representative positions
232 -- in these keys. We build a matrix with one word per line. We fill the
233 -- remaining space of a line with ASCII.NUL. The heuristic selects the
234 -- position that induces the minimum number of collisions. If there are
235 -- collisions, select another position on the reduced key set responsible
236 -- of the collisions. Apply the heuristic until there is no more collision.
238 procedure Apply_Position_Selection;
239 -- Apply Position selection and build the reduced key table
241 procedure Parse_Position_Selection (Argument : String);
242 -- Parse Argument and compute the position set. Argument is list of
243 -- substrings separated by commas. Each substring represents a position
244 -- or a range of positions (like x-y).
246 procedure Select_Character_Set;
247 -- Define an optimized used character set like Character'Pos in order not
248 -- to allocate tables of 256 entries.
250 procedure Select_Char_Position;
251 -- Find a min char position set in order to reduce the max key length. The
252 -- heuristic selects the position that induces the minimum number of
253 -- collisions. If there are collisions, select another position on the
254 -- reduced key set responsible of the collisions. Apply the heuristic until
255 -- there is no collision.
257 -----------------------------
258 -- Random Graph Generation --
259 -----------------------------
261 procedure Random (Seed : in out Natural);
262 -- Simulate Ada.Discrete_Numerics.Random
264 procedure Generate_Mapping_Table
265 (Tab : Table_Id;
266 L1 : Natural;
267 L2 : Natural;
268 Seed : in out Natural);
269 -- Random generation of the tables below. T is already allocated
271 procedure Generate_Mapping_Tables
272 (Opt : Optimization;
273 Seed : in out Natural);
274 -- Generate the mapping tables T1 and T2. They are used to define fk (w) =
275 -- sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
276 -- are used to compute the matrix size.
278 ---------------------------
279 -- Algorithm Computation --
280 ---------------------------
282 procedure Compute_Edges_And_Vertices (Opt : Optimization);
283 -- Compute the edge and vertex tables. These are empty when a self loop is
284 -- detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
285 -- Y value. Keys is the key table and NK the number of keys. Chars is the
286 -- set of characters really used in Keys. NV is the number of vertices
287 -- recommended by the algorithm. T1 and T2 are the mapping tables needed to
288 -- compute f1 (w) and f2 (w).
290 function Acyclic return Boolean;
291 -- Return True when the graph is acyclic. Vertices is the current vertex
292 -- table and Edges the current edge table.
294 procedure Assign_Values_To_Vertices;
295 -- Execute the assignment step of the algorithm. Keys is the current key
296 -- table. Vertices and Edges represent the random graph. G is the result of
297 -- the assignment step such that:
298 -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
300 function Sum
301 (Word : Word_Type;
302 Table : Table_Id;
303 Opt : Optimization) return Natural;
304 -- For an optimization of CPU_Time return
305 -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
306 -- For an optimization of Memory_Space return
307 -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
308 -- Here NV = n
310 -------------------------------
311 -- Internal Table Management --
312 -------------------------------
314 function Allocate (N : Natural; S : Natural := 1) return Table_Id;
315 -- Allocate N * S ints from IT table
317 ----------
318 -- Keys --
319 ----------
321 Keys : Table_Id := No_Table;
322 NK : Natural := 0;
323 -- NK : Number of Keys
325 function Initial (K : Key_Id) return Word_Id;
326 pragma Inline (Initial);
328 function Reduced (K : Key_Id) return Word_Id;
329 pragma Inline (Reduced);
331 function Get_Key (N : Key_Id) return Key_Type;
332 procedure Set_Key (N : Key_Id; Item : Key_Type);
333 -- Get or Set Nth element of Keys table
335 ------------------
336 -- Char_Pos_Set --
337 ------------------
339 Char_Pos_Set : Table_Id := No_Table;
340 Char_Pos_Set_Len : Natural;
341 -- Character Selected Position Set
343 function Get_Char_Pos (P : Natural) return Natural;
344 procedure Set_Char_Pos (P : Natural; Item : Natural);
345 -- Get or Set the string position of the Pth selected character
347 -------------------
348 -- Used_Char_Set --
349 -------------------
351 Used_Char_Set : Table_Id := No_Table;
352 Used_Char_Set_Len : Natural;
353 -- Used Character Set : Define a new character mapping. When all the
354 -- characters are not present in the keys, in order to reduce the size
355 -- of some tables, we redefine the character mapping.
357 function Get_Used_Char (C : Character) return Natural;
358 procedure Set_Used_Char (C : Character; Item : Natural);
360 ------------
361 -- Tables --
362 ------------
364 T1 : Table_Id := No_Table;
365 T2 : Table_Id := No_Table;
366 T1_Len : Natural;
367 T2_Len : Natural;
368 -- T1 : Values table to compute F1
369 -- T2 : Values table to compute F2
371 function Get_Table (T : Integer; X, Y : Natural) return Natural;
372 procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
374 -----------
375 -- Graph --
376 -----------
378 G : Table_Id := No_Table;
379 G_Len : Natural;
380 -- Values table to compute G
382 NT : Natural := Default_Tries;
383 -- Number of tries running the algorithm before raising an error
385 function Get_Graph (N : Natural) return Integer;
386 procedure Set_Graph (N : Natural; Item : Integer);
387 -- Get or Set Nth element of graph
389 -----------
390 -- Edges --
391 -----------
393 Edge_Size : constant := 3;
394 Edges : Table_Id := No_Table;
395 Edges_Len : Natural;
396 -- Edges : Edge table of the random graph G
398 function Get_Edges (F : Natural) return Edge_Type;
399 procedure Set_Edges (F : Natural; Item : Edge_Type);
401 --------------
402 -- Vertices --
403 --------------
405 Vertex_Size : constant := 2;
407 Vertices : Table_Id := No_Table;
408 -- Vertex table of the random graph G
410 NV : Natural;
411 -- Number of Vertices
413 function Get_Vertices (F : Natural) return Vertex_Type;
414 procedure Set_Vertices (F : Natural; Item : Vertex_Type);
415 -- Comments needed ???
417 K2V : Float;
418 -- Ratio between Keys and Vertices (parameter of Czech's algorithm)
420 Opt : Optimization;
421 -- Optimization mode (memory vs CPU)
423 Max_Key_Len : Natural := 0;
424 Min_Key_Len : Natural := 0;
425 -- Maximum and minimum of all the word length
427 S : Natural;
428 -- Seed
430 function Type_Size (L : Natural) return Natural;
431 -- Given the last L of an unsigned integer type T, return its size
433 -------------
434 -- Acyclic --
435 -------------
437 function Acyclic return Boolean is
438 Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
440 function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
441 -- Propagate Mark from X to Y. X is already marked. Mark Y and propagate
442 -- it to the edges of Y except the one representing the same key. Return
443 -- False when Y is marked with Mark.
445 --------------
446 -- Traverse --
447 --------------
449 function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
450 E : constant Edge_Type := Get_Edges (Edge);
451 K : constant Key_Id := E.Key;
452 Y : constant Vertex_Id := E.Y;
453 M : constant Vertex_Id := Marks (E.Y);
454 V : Vertex_Type;
456 begin
457 if M = Mark then
458 return False;
460 elsif M = No_Vertex then
461 Marks (Y) := Mark;
462 V := Get_Vertices (Y);
464 for J in V.First .. V.Last loop
466 -- Do not propagate to the edge representing the same key
468 if Get_Edges (J).Key /= K
469 and then not Traverse (J, Mark)
470 then
471 return False;
472 end if;
473 end loop;
474 end if;
476 return True;
477 end Traverse;
479 Edge : Edge_Type;
481 -- Start of processing for Acyclic
483 begin
484 -- Edges valid range is
486 for J in 1 .. Edges_Len - 1 loop
488 Edge := Get_Edges (J);
490 -- Mark X of E when it has not been already done
492 if Marks (Edge.X) = No_Vertex then
493 Marks (Edge.X) := Edge.X;
494 end if;
496 -- Traverse E when this has not already been done
498 if Marks (Edge.Y) = No_Vertex
499 and then not Traverse (J, Edge.X)
500 then
501 return False;
502 end if;
503 end loop;
505 return True;
506 end Acyclic;
508 ------------------------
509 -- Ada_File_Base_Name --
510 ------------------------
512 function Ada_File_Base_Name (Pkg_Name : String) return String is
513 begin
514 -- Convert to lower case, then replace '.' with '-'
516 return Result : String := To_Lower (Pkg_Name) do
517 for J in Result'Range loop
518 if Result (J) = '.' then
519 Result (J) := '-';
520 end if;
521 end loop;
522 end return;
523 end Ada_File_Base_Name;
525 ---------
526 -- Add --
527 ---------
529 procedure Add (C : Character) is
530 pragma Assert (C /= ASCII.NUL);
531 begin
532 Line (Last + 1) := C;
533 Last := Last + 1;
534 end Add;
536 ---------
537 -- Add --
538 ---------
540 procedure Add (S : String) is
541 Len : constant Natural := S'Length;
542 begin
543 for J in S'Range loop
544 pragma Assert (S (J) /= ASCII.NUL);
545 null;
546 end loop;
548 Line (Last + 1 .. Last + Len) := S;
549 Last := Last + Len;
550 end Add;
552 --------------
553 -- Allocate --
554 --------------
556 function Allocate (N : Natural; S : Natural := 1) return Table_Id is
557 L : constant Integer := IT.Last;
558 begin
559 IT.Set_Last (L + N * S);
561 -- Initialize, so debugging printouts don't trip over uninitialized
562 -- components.
564 for J in L + 1 .. IT.Last loop
565 IT.Table (J) := -1;
566 end loop;
568 return L + 1;
569 end Allocate;
571 ------------------------------
572 -- Apply_Position_Selection --
573 ------------------------------
575 procedure Apply_Position_Selection is
576 begin
577 for J in 0 .. NK - 1 loop
578 declare
579 IW : constant String := WT.Table (Initial (J)).all;
580 RW : String (1 .. IW'Length) := (others => ASCII.NUL);
581 N : Natural := IW'First - 1;
583 begin
584 -- Select the characters of Word included in the position
585 -- selection.
587 for C in 0 .. Char_Pos_Set_Len - 1 loop
588 exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
589 N := N + 1;
590 RW (N) := IW (Get_Char_Pos (C));
591 end loop;
593 -- Build the new table with the reduced word. Be careful
594 -- to deallocate the old version to avoid memory leaks.
596 Free_Word (WT.Table (Reduced (J)));
597 WT.Table (Reduced (J)) := New_Word (RW);
598 Set_Key (J, (Edge => No_Edge));
599 end;
600 end loop;
601 end Apply_Position_Selection;
603 -------------------------------
604 -- Assign_Values_To_Vertices --
605 -------------------------------
607 procedure Assign_Values_To_Vertices is
608 X : Vertex_Id;
610 procedure Assign (X : Vertex_Id);
611 -- Execute assignment on X's neighbors except the vertex that we are
612 -- coming from which is already assigned.
614 ------------
615 -- Assign --
616 ------------
618 procedure Assign (X : Vertex_Id) is
619 E : Edge_Type;
620 V : constant Vertex_Type := Get_Vertices (X);
622 begin
623 for J in V.First .. V.Last loop
624 E := Get_Edges (J);
626 if Get_Graph (E.Y) = -1 then
627 Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
628 Assign (E.Y);
629 end if;
630 end loop;
631 end Assign;
633 -- Start of processing for Assign_Values_To_Vertices
635 begin
636 -- Value -1 denotes an uninitialized value as it is supposed to
637 -- be in the range 0 .. NK.
639 if G = No_Table then
640 G_Len := NV;
641 G := Allocate (G_Len, 1);
642 end if;
644 for J in 0 .. G_Len - 1 loop
645 Set_Graph (J, -1);
646 end loop;
648 for K in 0 .. NK - 1 loop
649 X := Get_Edges (Get_Key (K).Edge).X;
651 if Get_Graph (X) = -1 then
652 Set_Graph (X, 0);
653 Assign (X);
654 end if;
655 end loop;
657 for J in 0 .. G_Len - 1 loop
658 if Get_Graph (J) = -1 then
659 Set_Graph (J, 0);
660 end if;
661 end loop;
663 if Verbose then
664 Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
665 end if;
666 end Assign_Values_To_Vertices;
668 -------------
669 -- Compute --
670 -------------
672 procedure Compute (Position : String := Default_Position) is
673 Success : Boolean := False;
675 begin
676 if NK = 0 then
677 raise Program_Error with "keywords set cannot be empty";
678 end if;
680 if Verbose then
681 Put_Initial_Keys (Output, "Initial Key Table");
682 end if;
684 if Position'Length /= 0 then
685 Parse_Position_Selection (Position);
686 else
687 Select_Char_Position;
688 end if;
690 if Verbose then
691 Put_Int_Vector
692 (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
693 end if;
695 Apply_Position_Selection;
697 if Verbose then
698 Put_Reduced_Keys (Output, "Reduced Keys Table");
699 end if;
701 Select_Character_Set;
703 if Verbose then
704 Put_Used_Char_Set (Output, "Character Position Table");
705 end if;
707 -- Perform Czech's algorithm
709 for J in 1 .. NT loop
710 Generate_Mapping_Tables (Opt, S);
711 Compute_Edges_And_Vertices (Opt);
713 -- When graph is not empty (no self-loop from previous operation) and
714 -- not acyclic.
716 if 0 < Edges_Len and then Acyclic then
717 Success := True;
718 exit;
719 end if;
720 end loop;
722 if not Success then
723 raise Too_Many_Tries;
724 end if;
726 Assign_Values_To_Vertices;
727 end Compute;
729 --------------------------------
730 -- Compute_Edges_And_Vertices --
731 --------------------------------
733 procedure Compute_Edges_And_Vertices (Opt : Optimization) is
734 X : Natural;
735 Y : Natural;
736 Key : Key_Type;
737 Edge : Edge_Type;
738 Vertex : Vertex_Type;
739 Not_Acyclic : Boolean := False;
741 procedure Move (From : Natural; To : Natural);
742 function Lt (L, R : Natural) return Boolean;
743 -- Subprograms needed for GNAT.Heap_Sort_G
745 --------
746 -- Lt --
747 --------
749 function Lt (L, R : Natural) return Boolean is
750 EL : constant Edge_Type := Get_Edges (L);
751 ER : constant Edge_Type := Get_Edges (R);
752 begin
753 return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
754 end Lt;
756 ----------
757 -- Move --
758 ----------
760 procedure Move (From : Natural; To : Natural) is
761 begin
762 Set_Edges (To, Get_Edges (From));
763 end Move;
765 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
767 -- Start of processing for Compute_Edges_And_Vertices
769 begin
770 -- We store edges from 1 to 2 * NK and leave zero alone in order to use
771 -- GNAT.Heap_Sort_G.
773 Edges_Len := 2 * NK + 1;
775 if Edges = No_Table then
776 Edges := Allocate (Edges_Len, Edge_Size);
777 end if;
779 if Vertices = No_Table then
780 Vertices := Allocate (NV, Vertex_Size);
781 end if;
783 for J in 0 .. NV - 1 loop
784 Set_Vertices (J, (No_Vertex, No_Vertex - 1));
785 end loop;
787 -- For each w, X = f1 (w) and Y = f2 (w)
789 for J in 0 .. NK - 1 loop
790 Key := Get_Key (J);
791 Key.Edge := No_Edge;
792 Set_Key (J, Key);
794 X := Sum (WT.Table (Reduced (J)), T1, Opt);
795 Y := Sum (WT.Table (Reduced (J)), T2, Opt);
797 -- Discard T1 and T2 as soon as we discover a self loop
799 if X = Y then
800 Not_Acyclic := True;
801 exit;
802 end if;
804 -- We store (X, Y) and (Y, X) to ease assignment step
806 Set_Edges (2 * J + 1, (X, Y, J));
807 Set_Edges (2 * J + 2, (Y, X, J));
808 end loop;
810 -- Return an empty graph when self loop detected
812 if Not_Acyclic then
813 Edges_Len := 0;
815 else
816 if Verbose then
817 Put_Edges (Output, "Unsorted Edge Table");
818 Put_Int_Matrix (Output, "Function Table 1", T1,
819 T1_Len, T2_Len);
820 Put_Int_Matrix (Output, "Function Table 2", T2,
821 T1_Len, T2_Len);
822 end if;
824 -- Enforce consistency between edges and keys. Construct Vertices and
825 -- compute the list of neighbors of a vertex First .. Last as Edges
826 -- is sorted by X and then Y. To compute the neighbor list, sort the
827 -- edges.
829 Sorting.Sort (Edges_Len - 1);
831 if Verbose then
832 Put_Edges (Output, "Sorted Edge Table");
833 Put_Int_Matrix (Output, "Function Table 1", T1,
834 T1_Len, T2_Len);
835 Put_Int_Matrix (Output, "Function Table 2", T2,
836 T1_Len, T2_Len);
837 end if;
839 -- Edges valid range is 1 .. 2 * NK
841 for E in 1 .. Edges_Len - 1 loop
842 Edge := Get_Edges (E);
843 Key := Get_Key (Edge.Key);
845 if Key.Edge = No_Edge then
846 Key.Edge := E;
847 Set_Key (Edge.Key, Key);
848 end if;
850 Vertex := Get_Vertices (Edge.X);
852 if Vertex.First = No_Edge then
853 Vertex.First := E;
854 end if;
856 Vertex.Last := E;
857 Set_Vertices (Edge.X, Vertex);
858 end loop;
860 if Verbose then
861 Put_Reduced_Keys (Output, "Key Table");
862 Put_Edges (Output, "Edge Table");
863 Put_Vertex_Table (Output, "Vertex Table");
864 end if;
865 end if;
866 end Compute_Edges_And_Vertices;
868 ------------
869 -- Define --
870 ------------
872 procedure Define
873 (Name : Table_Name;
874 Item_Size : out Natural;
875 Length_1 : out Natural;
876 Length_2 : out Natural)
878 begin
879 case Name is
880 when Character_Position =>
881 Item_Size := 8;
882 Length_1 := Char_Pos_Set_Len;
883 Length_2 := 0;
885 when Used_Character_Set =>
886 Item_Size := 8;
887 Length_1 := 256;
888 Length_2 := 0;
890 when Function_Table_1
891 | Function_Table_2 =>
892 Item_Size := Type_Size (NV);
893 Length_1 := T1_Len;
894 Length_2 := T2_Len;
896 when Graph_Table =>
897 Item_Size := Type_Size (NK);
898 Length_1 := NV;
899 Length_2 := 0;
900 end case;
901 end Define;
903 --------------
904 -- Finalize --
905 --------------
907 procedure Finalize is
908 begin
909 if Verbose then
910 Put (Output, "Finalize");
911 New_Line (Output);
912 end if;
914 -- Deallocate all the WT components (both initial and reduced
915 -- ones) to avoid memory leaks.
917 for W in 0 .. WT.Last loop
918 Free_Word (WT.Table (W));
919 end loop;
920 WT.Release;
921 IT.Release;
923 -- Reset all variables for next usage
925 Keys := No_Table;
927 Char_Pos_Set := No_Table;
928 Char_Pos_Set_Len := 0;
930 Used_Char_Set := No_Table;
931 Used_Char_Set_Len := 0;
933 T1 := No_Table;
934 T2 := No_Table;
936 T1_Len := 0;
937 T2_Len := 0;
939 G := No_Table;
940 G_Len := 0;
942 Edges := No_Table;
943 Edges_Len := 0;
945 Vertices := No_Table;
946 NV := 0;
948 NK := 0;
949 Max_Key_Len := 0;
950 Min_Key_Len := 0;
951 end Finalize;
953 ---------------
954 -- Free_Word --
955 ---------------
957 procedure Free_Word (W : in out Word_Type) is
958 begin
959 if W /= null then
960 Free (W);
961 end if;
962 end Free_Word;
964 ----------------------------
965 -- Generate_Mapping_Table --
966 ----------------------------
968 procedure Generate_Mapping_Table
969 (Tab : Integer;
970 L1 : Natural;
971 L2 : Natural;
972 Seed : in out Natural)
974 begin
975 for J in 0 .. L1 - 1 loop
976 for K in 0 .. L2 - 1 loop
977 Random (Seed);
978 Set_Table (Tab, J, K, Seed mod NV);
979 end loop;
980 end loop;
981 end Generate_Mapping_Table;
983 -----------------------------
984 -- Generate_Mapping_Tables --
985 -----------------------------
987 procedure Generate_Mapping_Tables
988 (Opt : Optimization;
989 Seed : in out Natural)
991 begin
992 -- If T1 and T2 are already allocated no need to do it twice. Reuse them
993 -- as their size has not changed.
995 if T1 = No_Table and then T2 = No_Table then
996 declare
997 Used_Char_Last : Natural := 0;
998 Used_Char : Natural;
1000 begin
1001 if Opt = CPU_Time then
1002 for P in reverse Character'Range loop
1003 Used_Char := Get_Used_Char (P);
1004 if Used_Char /= 0 then
1005 Used_Char_Last := Used_Char;
1006 exit;
1007 end if;
1008 end loop;
1009 end if;
1011 T1_Len := Char_Pos_Set_Len;
1012 T2_Len := Used_Char_Last + 1;
1013 T1 := Allocate (T1_Len * T2_Len);
1014 T2 := Allocate (T1_Len * T2_Len);
1015 end;
1016 end if;
1018 Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
1019 Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
1021 if Verbose then
1022 Put_Used_Char_Set (Output, "Used Character Set");
1023 Put_Int_Matrix (Output, "Function Table 1", T1,
1024 T1_Len, T2_Len);
1025 Put_Int_Matrix (Output, "Function Table 2", T2,
1026 T1_Len, T2_Len);
1027 end if;
1028 end Generate_Mapping_Tables;
1030 ------------------
1031 -- Get_Char_Pos --
1032 ------------------
1034 function Get_Char_Pos (P : Natural) return Natural is
1035 N : constant Natural := Char_Pos_Set + P;
1036 begin
1037 return IT.Table (N);
1038 end Get_Char_Pos;
1040 ---------------
1041 -- Get_Edges --
1042 ---------------
1044 function Get_Edges (F : Natural) return Edge_Type is
1045 N : constant Natural := Edges + (F * Edge_Size);
1046 E : Edge_Type;
1047 begin
1048 E.X := IT.Table (N);
1049 E.Y := IT.Table (N + 1);
1050 E.Key := IT.Table (N + 2);
1051 return E;
1052 end Get_Edges;
1054 ---------------
1055 -- Get_Graph --
1056 ---------------
1058 function Get_Graph (N : Natural) return Integer is
1059 begin
1060 return IT.Table (G + N);
1061 end Get_Graph;
1063 -------------
1064 -- Get_Key --
1065 -------------
1067 function Get_Key (N : Key_Id) return Key_Type is
1068 K : Key_Type;
1069 begin
1070 K.Edge := IT.Table (Keys + N);
1071 return K;
1072 end Get_Key;
1074 ---------------
1075 -- Get_Table --
1076 ---------------
1078 function Get_Table (T : Integer; X, Y : Natural) return Natural is
1079 N : constant Natural := T + (Y * T1_Len) + X;
1080 begin
1081 return IT.Table (N);
1082 end Get_Table;
1084 -------------------
1085 -- Get_Used_Char --
1086 -------------------
1088 function Get_Used_Char (C : Character) return Natural is
1089 N : constant Natural := Used_Char_Set + Character'Pos (C);
1090 begin
1091 return IT.Table (N);
1092 end Get_Used_Char;
1094 ------------------
1095 -- Get_Vertices --
1096 ------------------
1098 function Get_Vertices (F : Natural) return Vertex_Type is
1099 N : constant Natural := Vertices + (F * Vertex_Size);
1100 V : Vertex_Type;
1101 begin
1102 V.First := IT.Table (N);
1103 V.Last := IT.Table (N + 1);
1104 return V;
1105 end Get_Vertices;
1107 -----------
1108 -- Image --
1109 -----------
1111 function Image (Int : Integer; W : Natural := 0) return String is
1112 B : String (1 .. 32);
1113 L : Natural := 0;
1115 procedure Img (V : Natural);
1116 -- Compute image of V into B, starting at B (L), incrementing L
1118 ---------
1119 -- Img --
1120 ---------
1122 procedure Img (V : Natural) is
1123 begin
1124 if V > 9 then
1125 Img (V / 10);
1126 end if;
1128 L := L + 1;
1129 B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
1130 end Img;
1132 -- Start of processing for Image
1134 begin
1135 if Int < 0 then
1136 L := L + 1;
1137 B (L) := '-';
1138 Img (-Int);
1139 else
1140 Img (Int);
1141 end if;
1143 return Image (B (1 .. L), W);
1144 end Image;
1146 -----------
1147 -- Image --
1148 -----------
1150 function Image (Str : String; W : Natural := 0) return String is
1151 Len : constant Natural := Str'Length;
1152 Max : Natural := Len;
1154 begin
1155 if Max < W then
1156 Max := W;
1157 end if;
1159 declare
1160 Buf : String (1 .. Max) := (1 .. Max => ' ');
1162 begin
1163 for J in 0 .. Len - 1 loop
1164 Buf (Max - Len + 1 + J) := Str (Str'First + J);
1165 end loop;
1167 return Buf;
1168 end;
1169 end Image;
1171 -------------
1172 -- Initial --
1173 -------------
1175 function Initial (K : Key_Id) return Word_Id is
1176 begin
1177 return K;
1178 end Initial;
1180 ----------------
1181 -- Initialize --
1182 ----------------
1184 procedure Initialize
1185 (Seed : Natural;
1186 K_To_V : Float := Default_K_To_V;
1187 Optim : Optimization := Memory_Space;
1188 Tries : Positive := Default_Tries)
1190 begin
1191 if Verbose then
1192 Put (Output, "Initialize");
1193 New_Line (Output);
1194 end if;
1196 -- Deallocate the part of the table concerning the reduced words.
1197 -- Initial words are already present in the table. We may have reduced
1198 -- words already there because a previous computation failed. We are
1199 -- currently retrying and the reduced words have to be deallocated.
1201 for W in Reduced (0) .. WT.Last loop
1202 Free_Word (WT.Table (W));
1203 end loop;
1205 IT.Init;
1207 -- Initialize of computation variables
1209 Keys := No_Table;
1211 Char_Pos_Set := No_Table;
1212 Char_Pos_Set_Len := 0;
1214 Used_Char_Set := No_Table;
1215 Used_Char_Set_Len := 0;
1217 T1 := No_Table;
1218 T2 := No_Table;
1220 T1_Len := 0;
1221 T2_Len := 0;
1223 G := No_Table;
1224 G_Len := 0;
1226 Edges := No_Table;
1227 Edges_Len := 0;
1229 Vertices := No_Table;
1230 NV := 0;
1232 S := Seed;
1233 K2V := K_To_V;
1234 Opt := Optim;
1235 NT := Tries;
1237 if K2V <= 2.0 then
1238 raise Program_Error with "K to V ratio cannot be lower than 2.0";
1239 end if;
1241 -- Do not accept a value of K2V too close to 2.0 such that once
1242 -- rounded up, NV = 2 * NK because the algorithm would not converge.
1244 NV := Natural (Float (NK) * K2V);
1245 if NV <= 2 * NK then
1246 NV := 2 * NK + 1;
1247 end if;
1249 Keys := Allocate (NK);
1251 -- Resize initial words to have all of them at the same size
1252 -- (so the size of the largest one).
1254 for K in 0 .. NK - 1 loop
1255 Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
1256 end loop;
1258 -- Allocated the table to store the reduced words. As WT is a
1259 -- GNAT.Table (using C memory management), pointers have to be
1260 -- explicitly initialized to null.
1262 WT.Set_Last (Reduced (NK - 1));
1263 for W in 0 .. NK - 1 loop
1264 WT.Table (Reduced (W)) := null;
1265 end loop;
1266 end Initialize;
1268 ------------
1269 -- Insert --
1270 ------------
1272 procedure Insert (Value : String) is
1273 Len : constant Natural := Value'Length;
1275 begin
1276 if Verbose then
1277 Put (Output, "Inserting """ & Value & """");
1278 New_Line (Output);
1279 end if;
1281 for J in Value'Range loop
1282 pragma Assert (Value (J) /= ASCII.NUL);
1283 null;
1284 end loop;
1286 WT.Set_Last (NK);
1287 WT.Table (NK) := New_Word (Value);
1288 NK := NK + 1;
1290 if Max_Key_Len < Len then
1291 Max_Key_Len := Len;
1292 end if;
1294 if Min_Key_Len = 0 or else Len < Min_Key_Len then
1295 Min_Key_Len := Len;
1296 end if;
1297 end Insert;
1299 --------------
1300 -- New_Line --
1301 --------------
1303 procedure New_Line (File : File_Descriptor) is
1304 begin
1305 if Write (File, EOL'Address, 1) /= 1 then
1306 raise Program_Error;
1307 end if;
1308 end New_Line;
1310 --------------
1311 -- New_Word --
1312 --------------
1314 function New_Word (S : String) return Word_Type is
1315 begin
1316 return new String'(S);
1317 end New_Word;
1319 ------------------------------
1320 -- Parse_Position_Selection --
1321 ------------------------------
1323 procedure Parse_Position_Selection (Argument : String) is
1324 N : Natural := Argument'First;
1325 L : constant Natural := Argument'Last;
1326 M : constant Natural := Max_Key_Len;
1328 T : array (1 .. M) of Boolean := (others => False);
1330 function Parse_Index return Natural;
1331 -- Parse argument starting at index N to find an index
1333 -----------------
1334 -- Parse_Index --
1335 -----------------
1337 function Parse_Index return Natural is
1338 C : Character := Argument (N);
1339 V : Natural := 0;
1341 begin
1342 if C = '$' then
1343 N := N + 1;
1344 return M;
1345 end if;
1347 if C not in '0' .. '9' then
1348 raise Program_Error with "cannot read position argument";
1349 end if;
1351 while C in '0' .. '9' loop
1352 V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
1353 N := N + 1;
1354 exit when L < N;
1355 C := Argument (N);
1356 end loop;
1358 return V;
1359 end Parse_Index;
1361 -- Start of processing for Parse_Position_Selection
1363 begin
1364 -- Empty specification means all the positions
1366 if L < N then
1367 Char_Pos_Set_Len := M;
1368 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1370 for C in 0 .. Char_Pos_Set_Len - 1 loop
1371 Set_Char_Pos (C, C + 1);
1372 end loop;
1374 else
1375 loop
1376 declare
1377 First, Last : Natural;
1379 begin
1380 First := Parse_Index;
1381 Last := First;
1383 -- Detect a range
1385 if N <= L and then Argument (N) = '-' then
1386 N := N + 1;
1387 Last := Parse_Index;
1388 end if;
1390 -- Include the positions in the selection
1392 for J in First .. Last loop
1393 T (J) := True;
1394 end loop;
1395 end;
1397 exit when L < N;
1399 if Argument (N) /= ',' then
1400 raise Program_Error with "cannot read position argument";
1401 end if;
1403 N := N + 1;
1404 end loop;
1406 -- Compute position selection length
1408 N := 0;
1409 for J in T'Range loop
1410 if T (J) then
1411 N := N + 1;
1412 end if;
1413 end loop;
1415 -- Fill position selection
1417 Char_Pos_Set_Len := N;
1418 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1420 N := 0;
1421 for J in T'Range loop
1422 if T (J) then
1423 Set_Char_Pos (N, J);
1424 N := N + 1;
1425 end if;
1426 end loop;
1427 end if;
1428 end Parse_Position_Selection;
1430 -------------
1431 -- Produce --
1432 -------------
1434 procedure Produce
1435 (Pkg_Name : String := Default_Pkg_Name;
1436 Use_Stdout : Boolean := False)
1438 File : File_Descriptor := Standout;
1440 Status : Boolean;
1441 -- For call to Close
1443 function Array_Img (N, T, R1 : String; R2 : String := "") return String;
1444 -- Return string "N : constant array (R1[, R2]) of T;"
1446 function Range_Img (F, L : Natural; T : String := "") return String;
1447 -- Return string "[T range ]F .. L"
1449 function Type_Img (L : Natural) return String;
1450 -- Return the larger unsigned type T such that T'Last < L
1452 ---------------
1453 -- Array_Img --
1454 ---------------
1456 function Array_Img
1457 (N, T, R1 : String;
1458 R2 : String := "") return String
1460 begin
1461 Last := 0;
1462 Add (" ");
1463 Add (N);
1464 Add (" : constant array (");
1465 Add (R1);
1467 if R2 /= "" then
1468 Add (", ");
1469 Add (R2);
1470 end if;
1472 Add (") of ");
1473 Add (T);
1474 Add (" :=");
1475 return Line (1 .. Last);
1476 end Array_Img;
1478 ---------------
1479 -- Range_Img --
1480 ---------------
1482 function Range_Img (F, L : Natural; T : String := "") return String is
1483 FI : constant String := Image (F);
1484 FL : constant Natural := FI'Length;
1485 LI : constant String := Image (L);
1486 LL : constant Natural := LI'Length;
1487 TL : constant Natural := T'Length;
1488 RI : String (1 .. TL + 7 + FL + 4 + LL);
1489 Len : Natural := 0;
1491 begin
1492 if TL /= 0 then
1493 RI (Len + 1 .. Len + TL) := T;
1494 Len := Len + TL;
1495 RI (Len + 1 .. Len + 7) := " range ";
1496 Len := Len + 7;
1497 end if;
1499 RI (Len + 1 .. Len + FL) := FI;
1500 Len := Len + FL;
1501 RI (Len + 1 .. Len + 4) := " .. ";
1502 Len := Len + 4;
1503 RI (Len + 1 .. Len + LL) := LI;
1504 Len := Len + LL;
1505 return RI (1 .. Len);
1506 end Range_Img;
1508 --------------
1509 -- Type_Img --
1510 --------------
1512 function Type_Img (L : Natural) return String is
1513 S : constant String := Image (Type_Size (L));
1514 U : String := "Unsigned_ ";
1515 N : Natural := 9;
1517 begin
1518 for J in S'Range loop
1519 N := N + 1;
1520 U (N) := S (J);
1521 end loop;
1523 return U (1 .. N);
1524 end Type_Img;
1526 F : Natural;
1527 L : Natural;
1528 P : Natural;
1530 FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
1531 -- Initially, the name of the spec file, then modified to be the name of
1532 -- the body file. Not used if Use_Stdout is True.
1534 -- Start of processing for Produce
1536 begin
1538 if Verbose and then not Use_Stdout then
1539 Put (Output,
1540 "Producing " & Ada.Directories.Current_Directory & "/" & FName);
1541 New_Line (Output);
1542 end if;
1544 if not Use_Stdout then
1545 File := Create_File (FName, Binary);
1547 if File = Invalid_FD then
1548 raise Program_Error with "cannot create: " & FName;
1549 end if;
1550 end if;
1552 Put (File, "package ");
1553 Put (File, Pkg_Name);
1554 Put (File, " is");
1555 New_Line (File);
1556 Put (File, " function Hash (S : String) return Natural;");
1557 New_Line (File);
1558 Put (File, "end ");
1559 Put (File, Pkg_Name);
1560 Put (File, ";");
1561 New_Line (File);
1563 if not Use_Stdout then
1564 Close (File, Status);
1566 if not Status then
1567 raise Device_Error;
1568 end if;
1569 end if;
1571 if not Use_Stdout then
1573 -- Set to body file name
1575 FName (FName'Last) := 'b';
1577 File := Create_File (FName, Binary);
1579 if File = Invalid_FD then
1580 raise Program_Error with "cannot create: " & FName;
1581 end if;
1582 end if;
1584 Put (File, "with Interfaces; use Interfaces;");
1585 New_Line (File);
1586 New_Line (File);
1587 Put (File, "package body ");
1588 Put (File, Pkg_Name);
1589 Put (File, " is");
1590 New_Line (File);
1591 New_Line (File);
1593 if Opt = CPU_Time then
1594 Put (File, Array_Img ("C", Type_Img (256), "Character"));
1595 New_Line (File);
1597 F := Character'Pos (Character'First);
1598 L := Character'Pos (Character'Last);
1600 for J in Character'Range loop
1601 P := Get_Used_Char (J);
1602 Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
1603 end loop;
1605 New_Line (File);
1606 end if;
1608 F := 0;
1609 L := Char_Pos_Set_Len - 1;
1611 Put (File, Array_Img ("P", "Natural", Range_Img (F, L)));
1612 New_Line (File);
1614 for J in F .. L loop
1615 Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
1616 end loop;
1618 New_Line (File);
1620 case Opt is
1621 when CPU_Time =>
1622 Put_Int_Matrix
1623 (File,
1624 Array_Img ("T1", Type_Img (NV),
1625 Range_Img (0, T1_Len - 1),
1626 Range_Img (0, T2_Len - 1, Type_Img (256))),
1627 T1, T1_Len, T2_Len);
1629 when Memory_Space =>
1630 Put_Int_Matrix
1631 (File,
1632 Array_Img ("T1", Type_Img (NV),
1633 Range_Img (0, T1_Len - 1)),
1634 T1, T1_Len, 0);
1635 end case;
1637 New_Line (File);
1639 case Opt is
1640 when CPU_Time =>
1641 Put_Int_Matrix
1642 (File,
1643 Array_Img ("T2", Type_Img (NV),
1644 Range_Img (0, T1_Len - 1),
1645 Range_Img (0, T2_Len - 1, Type_Img (256))),
1646 T2, T1_Len, T2_Len);
1648 when Memory_Space =>
1649 Put_Int_Matrix
1650 (File,
1651 Array_Img ("T2", Type_Img (NV),
1652 Range_Img (0, T1_Len - 1)),
1653 T2, T1_Len, 0);
1654 end case;
1656 New_Line (File);
1658 Put_Int_Vector
1659 (File,
1660 Array_Img ("G", Type_Img (NK),
1661 Range_Img (0, G_Len - 1)),
1662 G, G_Len);
1663 New_Line (File);
1665 Put (File, " function Hash (S : String) return Natural is");
1666 New_Line (File);
1667 Put (File, " F : constant Natural := S'First - 1;");
1668 New_Line (File);
1669 Put (File, " L : constant Natural := S'Length;");
1670 New_Line (File);
1671 Put (File, " F1, F2 : Natural := 0;");
1672 New_Line (File);
1674 Put (File, " J : ");
1676 case Opt is
1677 when CPU_Time =>
1678 Put (File, Type_Img (256));
1679 when Memory_Space =>
1680 Put (File, "Natural");
1681 end case;
1683 Put (File, ";");
1684 New_Line (File);
1686 Put (File, " begin");
1687 New_Line (File);
1688 Put (File, " for K in P'Range loop");
1689 New_Line (File);
1690 Put (File, " exit when L < P (K);");
1691 New_Line (File);
1692 Put (File, " J := ");
1694 case Opt is
1695 when CPU_Time =>
1696 Put (File, "C");
1697 when Memory_Space =>
1698 Put (File, "Character'Pos");
1699 end case;
1701 Put (File, " (S (P (K) + F));");
1702 New_Line (File);
1704 Put (File, " F1 := (F1 + Natural (T1 (K");
1706 if Opt = CPU_Time then
1707 Put (File, ", J");
1708 end if;
1710 Put (File, "))");
1712 if Opt = Memory_Space then
1713 Put (File, " * J");
1714 end if;
1716 Put (File, ") mod ");
1717 Put (File, Image (NV));
1718 Put (File, ";");
1719 New_Line (File);
1721 Put (File, " F2 := (F2 + Natural (T2 (K");
1723 if Opt = CPU_Time then
1724 Put (File, ", J");
1725 end if;
1727 Put (File, "))");
1729 if Opt = Memory_Space then
1730 Put (File, " * J");
1731 end if;
1733 Put (File, ") mod ");
1734 Put (File, Image (NV));
1735 Put (File, ";");
1736 New_Line (File);
1738 Put (File, " end loop;");
1739 New_Line (File);
1741 Put (File,
1742 " return (Natural (G (F1)) + Natural (G (F2))) mod ");
1744 Put (File, Image (NK));
1745 Put (File, ";");
1746 New_Line (File);
1747 Put (File, " end Hash;");
1748 New_Line (File);
1749 New_Line (File);
1750 Put (File, "end ");
1751 Put (File, Pkg_Name);
1752 Put (File, ";");
1753 New_Line (File);
1755 if not Use_Stdout then
1756 Close (File, Status);
1758 if not Status then
1759 raise Device_Error;
1760 end if;
1761 end if;
1762 end Produce;
1764 ---------
1765 -- Put --
1766 ---------
1768 procedure Put (File : File_Descriptor; Str : String) is
1769 Len : constant Natural := Str'Length;
1770 begin
1771 for J in Str'Range loop
1772 pragma Assert (Str (J) /= ASCII.NUL);
1773 null;
1774 end loop;
1776 if Write (File, Str'Address, Len) /= Len then
1777 raise Program_Error;
1778 end if;
1779 end Put;
1781 ---------
1782 -- Put --
1783 ---------
1785 procedure Put
1786 (F : File_Descriptor;
1787 S : String;
1788 F1 : Natural;
1789 L1 : Natural;
1790 C1 : Natural;
1791 F2 : Natural;
1792 L2 : Natural;
1793 C2 : Natural)
1795 Len : constant Natural := S'Length;
1797 procedure Flush;
1798 -- Write current line, followed by LF
1800 -----------
1801 -- Flush --
1802 -----------
1804 procedure Flush is
1805 begin
1806 Put (F, Line (1 .. Last));
1807 New_Line (F);
1808 Last := 0;
1809 end Flush;
1811 -- Start of processing for Put
1813 begin
1814 if C1 = F1 and then C2 = F2 then
1815 Last := 0;
1816 end if;
1818 if Last + Len + 3 >= Max then
1819 Flush;
1820 end if;
1822 if Last = 0 then
1823 Add (" ");
1825 if F1 <= L1 then
1826 if C1 = F1 and then C2 = F2 then
1827 Add ('(');
1829 if F1 = L1 then
1830 Add ("0 .. 0 => ");
1831 end if;
1833 else
1834 Add (' ');
1835 end if;
1836 end if;
1837 end if;
1839 if C2 = F2 then
1840 Add ('(');
1842 if F2 = L2 then
1843 Add ("0 .. 0 => ");
1844 end if;
1846 else
1847 Add (' ');
1848 end if;
1850 Add (S);
1852 if C2 = L2 then
1853 Add (')');
1855 if F1 > L1 then
1856 Add (';');
1857 Flush;
1859 elsif C1 /= L1 then
1860 Add (',');
1861 Flush;
1863 else
1864 Add (')');
1865 Add (';');
1866 Flush;
1867 end if;
1869 else
1870 Add (',');
1871 end if;
1872 end Put;
1874 ---------------
1875 -- Put_Edges --
1876 ---------------
1878 procedure Put_Edges (File : File_Descriptor; Title : String) is
1879 E : Edge_Type;
1880 F1 : constant Natural := 1;
1881 L1 : constant Natural := Edges_Len - 1;
1882 M : constant Natural := Max / 5;
1884 begin
1885 Put (File, Title);
1886 New_Line (File);
1888 -- Edges valid range is 1 .. Edge_Len - 1
1890 for J in F1 .. L1 loop
1891 E := Get_Edges (J);
1892 Put (File, Image (J, M), F1, L1, J, 1, 4, 1);
1893 Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2);
1894 Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3);
1895 Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
1896 end loop;
1897 end Put_Edges;
1899 ----------------------
1900 -- Put_Initial_Keys --
1901 ----------------------
1903 procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
1904 F1 : constant Natural := 0;
1905 L1 : constant Natural := NK - 1;
1906 M : constant Natural := Max / 5;
1907 K : Key_Type;
1909 begin
1910 Put (File, Title);
1911 New_Line (File);
1913 for J in F1 .. L1 loop
1914 K := Get_Key (J);
1915 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
1916 Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
1917 Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
1918 F1, L1, J, 1, 3, 3);
1919 end loop;
1920 end Put_Initial_Keys;
1922 --------------------
1923 -- Put_Int_Matrix --
1924 --------------------
1926 procedure Put_Int_Matrix
1927 (File : File_Descriptor;
1928 Title : String;
1929 Table : Integer;
1930 Len_1 : Natural;
1931 Len_2 : Natural)
1933 F1 : constant Integer := 0;
1934 L1 : constant Integer := Len_1 - 1;
1935 F2 : constant Integer := 0;
1936 L2 : constant Integer := Len_2 - 1;
1937 Ix : Natural;
1939 begin
1940 Put (File, Title);
1941 New_Line (File);
1943 if Len_2 = 0 then
1944 for J in F1 .. L1 loop
1945 Ix := IT.Table (Table + J);
1946 Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
1947 end loop;
1949 else
1950 for J in F1 .. L1 loop
1951 for K in F2 .. L2 loop
1952 Ix := IT.Table (Table + J + K * Len_1);
1953 Put (File, Image (Ix), F1, L1, J, F2, L2, K);
1954 end loop;
1955 end loop;
1956 end if;
1957 end Put_Int_Matrix;
1959 --------------------
1960 -- Put_Int_Vector --
1961 --------------------
1963 procedure Put_Int_Vector
1964 (File : File_Descriptor;
1965 Title : String;
1966 Vector : Integer;
1967 Length : Natural)
1969 F2 : constant Natural := 0;
1970 L2 : constant Natural := Length - 1;
1972 begin
1973 Put (File, Title);
1974 New_Line (File);
1976 for J in F2 .. L2 loop
1977 Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
1978 end loop;
1979 end Put_Int_Vector;
1981 ----------------------
1982 -- Put_Reduced_Keys --
1983 ----------------------
1985 procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
1986 F1 : constant Natural := 0;
1987 L1 : constant Natural := NK - 1;
1988 M : constant Natural := Max / 5;
1989 K : Key_Type;
1991 begin
1992 Put (File, Title);
1993 New_Line (File);
1995 for J in F1 .. L1 loop
1996 K := Get_Key (J);
1997 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
1998 Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
1999 Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
2000 F1, L1, J, 1, 3, 3);
2001 end loop;
2002 end Put_Reduced_Keys;
2004 -----------------------
2005 -- Put_Used_Char_Set --
2006 -----------------------
2008 procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
2009 F : constant Natural := Character'Pos (Character'First);
2010 L : constant Natural := Character'Pos (Character'Last);
2012 begin
2013 Put (File, Title);
2014 New_Line (File);
2016 for J in Character'Range loop
2018 (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
2019 end loop;
2020 end Put_Used_Char_Set;
2022 ----------------------
2023 -- Put_Vertex_Table --
2024 ----------------------
2026 procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
2027 F1 : constant Natural := 0;
2028 L1 : constant Natural := NV - 1;
2029 M : constant Natural := Max / 4;
2030 V : Vertex_Type;
2032 begin
2033 Put (File, Title);
2034 New_Line (File);
2036 for J in F1 .. L1 loop
2037 V := Get_Vertices (J);
2038 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
2039 Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
2040 Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3);
2041 end loop;
2042 end Put_Vertex_Table;
2044 ------------
2045 -- Random --
2046 ------------
2048 procedure Random (Seed : in out Natural) is
2050 -- Park & Miller Standard Minimal using Schrage's algorithm to avoid
2051 -- overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
2053 R : Natural;
2054 Q : Natural;
2055 X : Integer;
2057 begin
2058 R := Seed mod 127773;
2059 Q := Seed / 127773;
2060 X := 16807 * R - 2836 * Q;
2062 Seed := (if X < 0 then X + 2147483647 else X);
2063 end Random;
2065 -------------
2066 -- Reduced --
2067 -------------
2069 function Reduced (K : Key_Id) return Word_Id is
2070 begin
2071 return K + NK + 1;
2072 end Reduced;
2074 -----------------
2075 -- Resize_Word --
2076 -----------------
2078 procedure Resize_Word (W : in out Word_Type; Len : Natural) is
2079 S1 : constant String := W.all;
2080 S2 : String (1 .. Len) := (others => ASCII.NUL);
2081 L : constant Natural := S1'Length;
2082 begin
2083 if L /= Len then
2084 Free_Word (W);
2085 S2 (1 .. L) := S1;
2086 W := New_Word (S2);
2087 end if;
2088 end Resize_Word;
2090 --------------------------
2091 -- Select_Char_Position --
2092 --------------------------
2094 procedure Select_Char_Position is
2096 type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
2098 procedure Build_Identical_Keys_Sets
2099 (Table : in out Vertex_Table_Type;
2100 Last : in out Natural;
2101 Pos : Natural);
2102 -- Build a list of keys subsets that are identical with the current
2103 -- position selection plus Pos. Once this routine is called, reduced
2104 -- words are sorted by subsets and each item (First, Last) in Sets
2105 -- defines the range of identical keys.
2106 -- Need comment saying exactly what Last is ???
2108 function Count_Different_Keys
2109 (Table : Vertex_Table_Type;
2110 Last : Natural;
2111 Pos : Natural) return Natural;
2112 -- For each subset in Sets, count the number of different keys if we add
2113 -- Pos to the current position selection.
2115 Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
2116 Last_Sel_Pos : Natural := 0;
2117 Max_Sel_Pos : Natural := 0;
2119 -------------------------------
2120 -- Build_Identical_Keys_Sets --
2121 -------------------------------
2123 procedure Build_Identical_Keys_Sets
2124 (Table : in out Vertex_Table_Type;
2125 Last : in out Natural;
2126 Pos : Natural)
2128 S : constant Vertex_Table_Type := Table (Table'First .. Last);
2129 C : constant Natural := Pos;
2130 -- Shortcuts (why are these not renames ???)
2132 F : Integer;
2133 L : Integer;
2134 -- First and last words of a subset
2136 Offset : Natural;
2137 -- GNAT.Heap_Sort assumes that the first array index is 1. Offset
2138 -- defines the translation to operate.
2140 function Lt (L, R : Natural) return Boolean;
2141 procedure Move (From : Natural; To : Natural);
2142 -- Subprograms needed by GNAT.Heap_Sort_G
2144 --------
2145 -- Lt --
2146 --------
2148 function Lt (L, R : Natural) return Boolean is
2149 C : constant Natural := Pos;
2150 Left : Natural;
2151 Right : Natural;
2153 begin
2154 if L = 0 then
2155 Left := NK;
2156 Right := Offset + R;
2157 elsif R = 0 then
2158 Left := Offset + L;
2159 Right := NK;
2160 else
2161 Left := Offset + L;
2162 Right := Offset + R;
2163 end if;
2165 return WT.Table (Left)(C) < WT.Table (Right)(C);
2166 end Lt;
2168 ----------
2169 -- Move --
2170 ----------
2172 procedure Move (From : Natural; To : Natural) is
2173 Target, Source : Natural;
2175 begin
2176 if From = 0 then
2177 Source := NK;
2178 Target := Offset + To;
2179 elsif To = 0 then
2180 Source := Offset + From;
2181 Target := NK;
2182 else
2183 Source := Offset + From;
2184 Target := Offset + To;
2185 end if;
2187 WT.Table (Target) := WT.Table (Source);
2188 WT.Table (Source) := null;
2189 end Move;
2191 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
2193 -- Start of processing for Build_Identical_Key_Sets
2195 begin
2196 Last := 0;
2198 -- For each subset in S, extract the new subsets we have by adding C
2199 -- in the position selection.
2201 for J in S'Range loop
2202 if S (J).First = S (J).Last then
2203 F := S (J).First;
2204 L := S (J).Last;
2205 Last := Last + 1;
2206 Table (Last) := (F, L);
2208 else
2209 Offset := Reduced (S (J).First) - 1;
2210 Sorting.Sort (S (J).Last - S (J).First + 1);
2212 F := S (J).First;
2213 L := F;
2214 for N in S (J).First .. S (J).Last loop
2216 -- For the last item, close the last subset
2218 if N = S (J).Last then
2219 Last := Last + 1;
2220 Table (Last) := (F, N);
2222 -- Two contiguous words are identical when they have the
2223 -- same Cth character.
2225 elsif WT.Table (Reduced (N))(C) =
2226 WT.Table (Reduced (N + 1))(C)
2227 then
2228 L := N + 1;
2230 -- Find a new subset of identical keys. Store the current
2231 -- one and create a new subset.
2233 else
2234 Last := Last + 1;
2235 Table (Last) := (F, L);
2236 F := N + 1;
2237 L := F;
2238 end if;
2239 end loop;
2240 end if;
2241 end loop;
2242 end Build_Identical_Keys_Sets;
2244 --------------------------
2245 -- Count_Different_Keys --
2246 --------------------------
2248 function Count_Different_Keys
2249 (Table : Vertex_Table_Type;
2250 Last : Natural;
2251 Pos : Natural) return Natural
2253 N : array (Character) of Natural;
2254 C : Character;
2255 T : Natural := 0;
2257 begin
2258 -- For each subset, count the number of words that are still
2259 -- different when we include Pos in the position selection. Only
2260 -- focus on this position as the other positions already produce
2261 -- identical keys.
2263 for S in 1 .. Last loop
2265 -- Count the occurrences of the different characters
2267 N := (others => 0);
2268 for K in Table (S).First .. Table (S).Last loop
2269 C := WT.Table (Reduced (K))(Pos);
2270 N (C) := N (C) + 1;
2271 end loop;
2273 -- Update the number of different keys. Each character used
2274 -- denotes a different key.
2276 for J in N'Range loop
2277 if N (J) > 0 then
2278 T := T + 1;
2279 end if;
2280 end loop;
2281 end loop;
2283 return T;
2284 end Count_Different_Keys;
2286 -- Start of processing for Select_Char_Position
2288 begin
2289 -- Initialize the reduced words set
2291 for K in 0 .. NK - 1 loop
2292 WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
2293 end loop;
2295 declare
2296 Differences : Natural;
2297 Max_Differences : Natural := 0;
2298 Old_Differences : Natural;
2299 Max_Diff_Sel_Pos : Natural := 0; -- init to kill warning
2300 Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
2301 Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
2302 Same_Keys_Sets_Last : Natural := 1;
2304 begin
2305 for C in Sel_Position'Range loop
2306 Sel_Position (C) := C;
2307 end loop;
2309 Same_Keys_Sets_Table (1) := (0, NK - 1);
2311 loop
2312 -- Preserve maximum number of different keys and check later on
2313 -- that this value is strictly incrementing. Otherwise, it means
2314 -- that two keys are strictly identical.
2316 Old_Differences := Max_Differences;
2318 -- The first position should not exceed the minimum key length.
2319 -- Otherwise, we may end up with an empty word once reduced.
2321 Max_Sel_Pos :=
2322 (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
2324 -- Find which position increases more the number of differences
2326 for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
2327 Differences := Count_Different_Keys
2328 (Same_Keys_Sets_Table,
2329 Same_Keys_Sets_Last,
2330 Sel_Position (J));
2332 if Verbose then
2333 Put (Output,
2334 "Selecting position" & Sel_Position (J)'Img &
2335 " results in" & Differences'Img &
2336 " differences");
2337 New_Line (Output);
2338 end if;
2340 if Differences > Max_Differences then
2341 Max_Differences := Differences;
2342 Max_Diff_Sel_Pos := Sel_Position (J);
2343 Max_Diff_Sel_Pos_Idx := J;
2344 end if;
2345 end loop;
2347 if Old_Differences = Max_Differences then
2348 raise Program_Error with "some keys are identical";
2349 end if;
2351 -- Insert selected position and sort Sel_Position table
2353 Last_Sel_Pos := Last_Sel_Pos + 1;
2354 Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
2355 Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
2356 Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
2358 for P in 1 .. Last_Sel_Pos - 1 loop
2359 if Max_Diff_Sel_Pos < Sel_Position (P) then
2360 Sel_Position (P + 1 .. Last_Sel_Pos) :=
2361 Sel_Position (P .. Last_Sel_Pos - 1);
2362 Sel_Position (P) := Max_Diff_Sel_Pos;
2363 exit;
2364 end if;
2365 end loop;
2367 exit when Max_Differences = NK;
2369 Build_Identical_Keys_Sets
2370 (Same_Keys_Sets_Table,
2371 Same_Keys_Sets_Last,
2372 Max_Diff_Sel_Pos);
2374 if Verbose then
2375 Put (Output,
2376 "Selecting position" & Max_Diff_Sel_Pos'Img &
2377 " results in" & Max_Differences'Img &
2378 " differences");
2379 New_Line (Output);
2380 Put (Output, "--");
2381 New_Line (Output);
2382 for J in 1 .. Same_Keys_Sets_Last loop
2383 for K in
2384 Same_Keys_Sets_Table (J).First ..
2385 Same_Keys_Sets_Table (J).Last
2386 loop
2387 Put (Output,
2388 Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
2389 New_Line (Output);
2390 end loop;
2391 Put (Output, "--");
2392 New_Line (Output);
2393 end loop;
2394 end if;
2395 end loop;
2396 end;
2398 Char_Pos_Set_Len := Last_Sel_Pos;
2399 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
2401 for C in 1 .. Last_Sel_Pos loop
2402 Set_Char_Pos (C - 1, Sel_Position (C));
2403 end loop;
2404 end Select_Char_Position;
2406 --------------------------
2407 -- Select_Character_Set --
2408 --------------------------
2410 procedure Select_Character_Set is
2411 Last : Natural := 0;
2412 Used : array (Character) of Boolean := (others => False);
2413 Char : Character;
2415 begin
2416 for J in 0 .. NK - 1 loop
2417 for K in 0 .. Char_Pos_Set_Len - 1 loop
2418 Char := WT.Table (Initial (J))(Get_Char_Pos (K));
2419 exit when Char = ASCII.NUL;
2420 Used (Char) := True;
2421 end loop;
2422 end loop;
2424 Used_Char_Set_Len := 256;
2425 Used_Char_Set := Allocate (Used_Char_Set_Len);
2427 for J in Used'Range loop
2428 if Used (J) then
2429 Set_Used_Char (J, Last);
2430 Last := Last + 1;
2431 else
2432 Set_Used_Char (J, 0);
2433 end if;
2434 end loop;
2435 end Select_Character_Set;
2437 ------------------
2438 -- Set_Char_Pos --
2439 ------------------
2441 procedure Set_Char_Pos (P : Natural; Item : Natural) is
2442 N : constant Natural := Char_Pos_Set + P;
2443 begin
2444 IT.Table (N) := Item;
2445 end Set_Char_Pos;
2447 ---------------
2448 -- Set_Edges --
2449 ---------------
2451 procedure Set_Edges (F : Natural; Item : Edge_Type) is
2452 N : constant Natural := Edges + (F * Edge_Size);
2453 begin
2454 IT.Table (N) := Item.X;
2455 IT.Table (N + 1) := Item.Y;
2456 IT.Table (N + 2) := Item.Key;
2457 end Set_Edges;
2459 ---------------
2460 -- Set_Graph --
2461 ---------------
2463 procedure Set_Graph (N : Natural; Item : Integer) is
2464 begin
2465 IT.Table (G + N) := Item;
2466 end Set_Graph;
2468 -------------
2469 -- Set_Key --
2470 -------------
2472 procedure Set_Key (N : Key_Id; Item : Key_Type) is
2473 begin
2474 IT.Table (Keys + N) := Item.Edge;
2475 end Set_Key;
2477 ---------------
2478 -- Set_Table --
2479 ---------------
2481 procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
2482 N : constant Natural := T + ((Y * T1_Len) + X);
2483 begin
2484 IT.Table (N) := Item;
2485 end Set_Table;
2487 -------------------
2488 -- Set_Used_Char --
2489 -------------------
2491 procedure Set_Used_Char (C : Character; Item : Natural) is
2492 N : constant Natural := Used_Char_Set + Character'Pos (C);
2493 begin
2494 IT.Table (N) := Item;
2495 end Set_Used_Char;
2497 ------------------
2498 -- Set_Vertices --
2499 ------------------
2501 procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
2502 N : constant Natural := Vertices + (F * Vertex_Size);
2503 begin
2504 IT.Table (N) := Item.First;
2505 IT.Table (N + 1) := Item.Last;
2506 end Set_Vertices;
2508 ---------
2509 -- Sum --
2510 ---------
2512 function Sum
2513 (Word : Word_Type;
2514 Table : Table_Id;
2515 Opt : Optimization) return Natural
2517 S : Natural := 0;
2518 R : Natural;
2520 begin
2521 case Opt is
2522 when CPU_Time =>
2523 for J in 0 .. T1_Len - 1 loop
2524 exit when Word (J + 1) = ASCII.NUL;
2525 R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
2526 S := (S + R) mod NV;
2527 end loop;
2529 when Memory_Space =>
2530 for J in 0 .. T1_Len - 1 loop
2531 exit when Word (J + 1) = ASCII.NUL;
2532 R := Get_Table (Table, J, 0);
2533 S := (S + R * Character'Pos (Word (J + 1))) mod NV;
2534 end loop;
2535 end case;
2537 return S;
2538 end Sum;
2540 ------------------------
2541 -- Trim_Trailing_Nuls --
2542 ------------------------
2544 function Trim_Trailing_Nuls (Str : String) return String is
2545 begin
2546 for J in reverse Str'Range loop
2547 if Str (J) /= ASCII.NUL then
2548 return Str (Str'First .. J);
2549 end if;
2550 end loop;
2552 return Str;
2553 end Trim_Trailing_Nuls;
2555 ---------------
2556 -- Type_Size --
2557 ---------------
2559 function Type_Size (L : Natural) return Natural is
2560 begin
2561 if L <= 2 ** 8 then
2562 return 8;
2563 elsif L <= 2 ** 16 then
2564 return 16;
2565 else
2566 return 32;
2567 end if;
2568 end Type_Size;
2570 -----------
2571 -- Value --
2572 -----------
2574 function Value
2575 (Name : Table_Name;
2576 J : Natural;
2577 K : Natural := 0) return Natural
2579 begin
2580 case Name is
2581 when Character_Position =>
2582 return Get_Char_Pos (J);
2584 when Used_Character_Set =>
2585 return Get_Used_Char (Character'Val (J));
2587 when Function_Table_1 =>
2588 return Get_Table (T1, J, K);
2590 when Function_Table_2 =>
2591 return Get_Table (T2, J, K);
2593 when Graph_Table =>
2594 return Get_Graph (J);
2596 end case;
2597 end Value;
2599 end GNAT.Perfect_Hash_Generators;