Fix unused warnings.
[official-gcc/graphite-test-results.git] / gcc / ada / sem_ch5.adb
blob2de95d873a8d39982037cabe436ef9f1ef6cc717
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Expander; use Expander;
31 with Exp_Util; use Exp_Util;
32 with Freeze; use Freeze;
33 with Lib; use Lib;
34 with Lib.Xref; use Lib.Xref;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Nmake; use Nmake;
38 with Opt; use Opt;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Case; use Sem_Case;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Elab; use Sem_Elab;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
59 package body Sem_Ch5 is
61 Unblocked_Exit_Count : Nat := 0;
62 -- This variable is used when processing if statements, case statements,
63 -- and block statements. It counts the number of exit points that are not
64 -- blocked by unconditional transfer instructions: for IF and CASE, these
65 -- are the branches of the conditional; for a block, they are the statement
66 -- sequence of the block, and the statement sequences of any exception
67 -- handlers that are part of the block. When processing is complete, if
68 -- this count is zero, it means that control cannot fall through the IF,
69 -- CASE or block statement. This is used for the generation of warning
70 -- messages. This variable is recursively saved on entry to processing the
71 -- construct, and restored on exit.
73 ------------------------
74 -- Analyze_Assignment --
75 ------------------------
77 procedure Analyze_Assignment (N : Node_Id) is
78 Lhs : constant Node_Id := Name (N);
79 Rhs : constant Node_Id := Expression (N);
80 T1 : Entity_Id;
81 T2 : Entity_Id;
82 Decl : Node_Id;
84 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
85 -- N is the node for the left hand side of an assignment, and it is not
86 -- a variable. This routine issues an appropriate diagnostic.
88 procedure Kill_Lhs;
89 -- This is called to kill current value settings of a simple variable
90 -- on the left hand side. We call it if we find any error in analyzing
91 -- the assignment, and at the end of processing before setting any new
92 -- current values in place.
94 procedure Set_Assignment_Type
95 (Opnd : Node_Id;
96 Opnd_Type : in out Entity_Id);
97 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
98 -- is the nominal subtype. This procedure is used to deal with cases
99 -- where the nominal subtype must be replaced by the actual subtype.
101 -------------------------------
102 -- Diagnose_Non_Variable_Lhs --
103 -------------------------------
105 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
106 begin
107 -- Not worth posting another error if left hand side already
108 -- flagged as being illegal in some respect.
110 if Error_Posted (N) then
111 return;
113 -- Some special bad cases of entity names
115 elsif Is_Entity_Name (N) then
116 declare
117 Ent : constant Entity_Id := Entity (N);
119 begin
120 if Ekind (Ent) = E_In_Parameter then
121 Error_Msg_N
122 ("assignment to IN mode parameter not allowed", N);
124 -- Renamings of protected private components are turned into
125 -- constants when compiling a protected function. In the case
126 -- of single protected types, the private component appears
127 -- directly.
129 elsif (Is_Prival (Ent)
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else Ekind (Enclosing_Dynamic_Scope (
133 Current_Scope)) = E_Function))
134 or else
135 (Ekind (Ent) = E_Component
136 and then Is_Protected_Type (Scope (Ent)))
137 then
138 Error_Msg_N
139 ("protected function cannot modify protected object", N);
141 elsif Ekind (Ent) = E_Loop_Parameter then
142 Error_Msg_N
143 ("assignment to loop parameter not allowed", N);
145 else
146 Error_Msg_N
147 ("left hand side of assignment must be a variable", N);
148 end if;
149 end;
151 -- For indexed components or selected components, test prefix
153 elsif Nkind (N) = N_Indexed_Component then
154 Diagnose_Non_Variable_Lhs (Prefix (N));
156 -- Another special case for assignment to discriminant
158 elsif Nkind (N) = N_Selected_Component then
159 if Present (Entity (Selector_Name (N)))
160 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
161 then
162 Error_Msg_N
163 ("assignment to discriminant not allowed", N);
164 else
165 Diagnose_Non_Variable_Lhs (Prefix (N));
166 end if;
168 else
169 -- If we fall through, we have no special message to issue!
171 Error_Msg_N ("left hand side of assignment must be a variable", N);
172 end if;
173 end Diagnose_Non_Variable_Lhs;
175 --------------
176 -- Kill_LHS --
177 --------------
179 procedure Kill_Lhs is
180 begin
181 if Is_Entity_Name (Lhs) then
182 declare
183 Ent : constant Entity_Id := Entity (Lhs);
184 begin
185 if Present (Ent) then
186 Kill_Current_Values (Ent);
187 end if;
188 end;
189 end if;
190 end Kill_Lhs;
192 -------------------------
193 -- Set_Assignment_Type --
194 -------------------------
196 procedure Set_Assignment_Type
197 (Opnd : Node_Id;
198 Opnd_Type : in out Entity_Id)
200 begin
201 Require_Entity (Opnd);
203 -- If the assignment operand is an in-out or out parameter, then we
204 -- get the actual subtype (needed for the unconstrained case).
205 -- If the operand is the actual in an entry declaration, then within
206 -- the accept statement it is replaced with a local renaming, which
207 -- may also have an actual subtype.
209 if Is_Entity_Name (Opnd)
210 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
211 or else Ekind (Entity (Opnd)) =
212 E_In_Out_Parameter
213 or else Ekind (Entity (Opnd)) =
214 E_Generic_In_Out_Parameter
215 or else
216 (Ekind (Entity (Opnd)) = E_Variable
217 and then Nkind (Parent (Entity (Opnd))) =
218 N_Object_Renaming_Declaration
219 and then Nkind (Parent (Parent (Entity (Opnd)))) =
220 N_Accept_Statement))
221 then
222 Opnd_Type := Get_Actual_Subtype (Opnd);
224 -- If assignment operand is a component reference, then we get the
225 -- actual subtype of the component for the unconstrained case.
227 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
228 and then not Is_Unchecked_Union (Opnd_Type)
229 then
230 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
232 if Present (Decl) then
233 Insert_Action (N, Decl);
234 Mark_Rewrite_Insertion (Decl);
235 Analyze (Decl);
236 Opnd_Type := Defining_Identifier (Decl);
237 Set_Etype (Opnd, Opnd_Type);
238 Freeze_Itype (Opnd_Type, N);
240 elsif Is_Constrained (Etype (Opnd)) then
241 Opnd_Type := Etype (Opnd);
242 end if;
244 -- For slice, use the constrained subtype created for the slice
246 elsif Nkind (Opnd) = N_Slice then
247 Opnd_Type := Etype (Opnd);
248 end if;
249 end Set_Assignment_Type;
251 -- Start of processing for Analyze_Assignment
253 begin
254 Mark_Coextensions (N, Rhs);
256 Analyze (Rhs);
257 Analyze (Lhs);
259 -- Start type analysis for assignment
261 T1 := Etype (Lhs);
263 -- In the most general case, both Lhs and Rhs can be overloaded, and we
264 -- must compute the intersection of the possible types on each side.
266 if Is_Overloaded (Lhs) then
267 declare
268 I : Interp_Index;
269 It : Interp;
271 begin
272 T1 := Any_Type;
273 Get_First_Interp (Lhs, I, It);
275 while Present (It.Typ) loop
276 if Has_Compatible_Type (Rhs, It.Typ) then
277 if T1 /= Any_Type then
279 -- An explicit dereference is overloaded if the prefix
280 -- is. Try to remove the ambiguity on the prefix, the
281 -- error will be posted there if the ambiguity is real.
283 if Nkind (Lhs) = N_Explicit_Dereference then
284 declare
285 PI : Interp_Index;
286 PI1 : Interp_Index := 0;
287 PIt : Interp;
288 Found : Boolean;
290 begin
291 Found := False;
292 Get_First_Interp (Prefix (Lhs), PI, PIt);
294 while Present (PIt.Typ) loop
295 if Is_Access_Type (PIt.Typ)
296 and then Has_Compatible_Type
297 (Rhs, Designated_Type (PIt.Typ))
298 then
299 if Found then
300 PIt :=
301 Disambiguate (Prefix (Lhs),
302 PI1, PI, Any_Type);
304 if PIt = No_Interp then
305 Error_Msg_N
306 ("ambiguous left-hand side"
307 & " in assignment", Lhs);
308 exit;
309 else
310 Resolve (Prefix (Lhs), PIt.Typ);
311 end if;
313 exit;
314 else
315 Found := True;
316 PI1 := PI;
317 end if;
318 end if;
320 Get_Next_Interp (PI, PIt);
321 end loop;
322 end;
324 else
325 Error_Msg_N
326 ("ambiguous left-hand side in assignment", Lhs);
327 exit;
328 end if;
329 else
330 T1 := It.Typ;
331 end if;
332 end if;
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
338 if T1 = Any_Type then
339 Error_Msg_N
340 ("no valid types for left-hand side for assignment", Lhs);
341 Kill_Lhs;
342 return;
343 end if;
344 end if;
346 -- The resulting assignment type is T1, so now we will resolve the
347 -- left hand side of the assignment using this determined type.
349 Resolve (Lhs, T1);
351 -- Cases where Lhs is not a variable
353 if not Is_Variable (Lhs) then
355 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
356 -- a protected object.
358 declare
359 Ent : Entity_Id;
360 S : Entity_Id;
362 begin
363 if Ada_Version >= Ada_2005 then
365 -- Handle chains of renamings
367 Ent := Lhs;
368 while Nkind (Ent) in N_Has_Entity
369 and then Present (Entity (Ent))
370 and then Present (Renamed_Object (Entity (Ent)))
371 loop
372 Ent := Renamed_Object (Entity (Ent));
373 end loop;
375 if (Nkind (Ent) = N_Attribute_Reference
376 and then Attribute_Name (Ent) = Name_Priority)
378 -- Renamings of the attribute Priority applied to protected
379 -- objects have been previously expanded into calls to the
380 -- Get_Ceiling run-time subprogram.
382 or else
383 (Nkind (Ent) = N_Function_Call
384 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
385 or else
386 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
387 then
388 -- The enclosing subprogram cannot be a protected function
390 S := Current_Scope;
391 while not (Is_Subprogram (S)
392 and then Convention (S) = Convention_Protected)
393 and then S /= Standard_Standard
394 loop
395 S := Scope (S);
396 end loop;
398 if Ekind (S) = E_Function
399 and then Convention (S) = Convention_Protected
400 then
401 Error_Msg_N
402 ("protected function cannot modify protected object",
403 Lhs);
404 end if;
406 -- Changes of the ceiling priority of the protected object
407 -- are only effective if the Ceiling_Locking policy is in
408 -- effect (AARM D.5.2 (5/2)).
410 if Locking_Policy /= 'C' then
411 Error_Msg_N ("assignment to the attribute PRIORITY has " &
412 "no effect?", Lhs);
413 Error_Msg_N ("\since no Locking_Policy has been " &
414 "specified", Lhs);
415 end if;
417 return;
418 end if;
419 end if;
420 end;
422 Diagnose_Non_Variable_Lhs (Lhs);
423 return;
425 -- Error of assigning to limited type. We do however allow this in
426 -- certain cases where the front end generates the assignments.
428 elsif Is_Limited_Type (T1)
429 and then not Assignment_OK (Lhs)
430 and then not Assignment_OK (Original_Node (Lhs))
431 and then not Is_Value_Type (T1)
432 then
433 -- CPP constructors can only be called in declarations
435 if Is_CPP_Constructor_Call (Rhs) then
436 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
437 else
438 Error_Msg_N
439 ("left hand of assignment must not be limited type", Lhs);
440 Explain_Limited_Type (T1, Lhs);
441 end if;
442 return;
444 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
445 -- abstract. This is only checked when the assignment Comes_From_Source,
446 -- because in some cases the expander generates such assignments (such
447 -- in the _assign operation for an abstract type).
449 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
450 Error_Msg_N
451 ("target of assignment operation must not be abstract", Lhs);
452 end if;
454 -- Resolution may have updated the subtype, in case the left-hand
455 -- side is a private protected component. Use the correct subtype
456 -- to avoid scoping issues in the back-end.
458 T1 := Etype (Lhs);
460 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
461 -- type. For example:
463 -- limited with P;
464 -- package Pkg is
465 -- type Acc is access P.T;
466 -- end Pkg;
468 -- with Pkg; use Acc;
469 -- procedure Example is
470 -- A, B : Acc;
471 -- begin
472 -- A.all := B.all; -- ERROR
473 -- end Example;
475 if Nkind (Lhs) = N_Explicit_Dereference
476 and then Ekind (T1) = E_Incomplete_Type
477 then
478 Error_Msg_N ("invalid use of incomplete type", Lhs);
479 Kill_Lhs;
480 return;
481 end if;
483 -- Now we can complete the resolution of the right hand side
485 Set_Assignment_Type (Lhs, T1);
486 Resolve (Rhs, T1);
488 -- This is the point at which we check for an unset reference
490 Check_Unset_Reference (Rhs);
491 Check_Unprotected_Access (Lhs, Rhs);
493 -- Remaining steps are skipped if Rhs was syntactically in error
495 if Rhs = Error then
496 Kill_Lhs;
497 return;
498 end if;
500 T2 := Etype (Rhs);
502 if not Covers (T1, T2) then
503 Wrong_Type (Rhs, Etype (Lhs));
504 Kill_Lhs;
505 return;
506 end if;
508 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
509 -- types, use the non-limited view if available
511 if Nkind (Rhs) = N_Explicit_Dereference
512 and then Ekind (T2) = E_Incomplete_Type
513 and then Is_Tagged_Type (T2)
514 and then Present (Non_Limited_View (T2))
515 then
516 T2 := Non_Limited_View (T2);
517 end if;
519 Set_Assignment_Type (Rhs, T2);
521 if Total_Errors_Detected /= 0 then
522 if No (T1) then
523 T1 := Any_Type;
524 end if;
526 if No (T2) then
527 T2 := Any_Type;
528 end if;
529 end if;
531 if T1 = Any_Type or else T2 = Any_Type then
532 Kill_Lhs;
533 return;
534 end if;
536 -- If the rhs is class-wide or dynamically tagged, then require the lhs
537 -- to be class-wide. The case where the rhs is a dynamically tagged call
538 -- to a dispatching operation with a controlling access result is
539 -- excluded from this check, since the target has an access type (and
540 -- no tag propagation occurs in that case).
542 if (Is_Class_Wide_Type (T2)
543 or else (Is_Dynamically_Tagged (Rhs)
544 and then not Is_Access_Type (T1)))
545 and then not Is_Class_Wide_Type (T1)
546 then
547 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
549 elsif Is_Class_Wide_Type (T1)
550 and then not Is_Class_Wide_Type (T2)
551 and then not Is_Tag_Indeterminate (Rhs)
552 and then not Is_Dynamically_Tagged (Rhs)
553 then
554 Error_Msg_N ("dynamically tagged expression required!", Rhs);
555 end if;
557 -- Propagate the tag from a class-wide target to the rhs when the rhs
558 -- is a tag-indeterminate call.
560 if Is_Tag_Indeterminate (Rhs) then
561 if Is_Class_Wide_Type (T1) then
562 Propagate_Tag (Lhs, Rhs);
564 elsif Nkind (Rhs) = N_Function_Call
565 and then Is_Entity_Name (Name (Rhs))
566 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
567 then
568 Error_Msg_N
569 ("call to abstract function must be dispatching", Name (Rhs));
571 elsif Nkind (Rhs) = N_Qualified_Expression
572 and then Nkind (Expression (Rhs)) = N_Function_Call
573 and then Is_Entity_Name (Name (Expression (Rhs)))
574 and then
575 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
576 then
577 Error_Msg_N
578 ("call to abstract function must be dispatching",
579 Name (Expression (Rhs)));
580 end if;
581 end if;
583 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
584 -- apply an implicit conversion of the rhs to that type to force
585 -- appropriate static and run-time accessibility checks. This applies
586 -- as well to anonymous access-to-subprogram types that are component
587 -- subtypes or formal parameters.
589 if Ada_Version >= Ada_2005
590 and then Is_Access_Type (T1)
591 then
592 if Is_Local_Anonymous_Access (T1)
593 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
594 then
595 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
596 Analyze_And_Resolve (Rhs, T1);
597 end if;
598 end if;
600 -- Ada 2005 (AI-231): Assignment to not null variable
602 if Ada_Version >= Ada_2005
603 and then Can_Never_Be_Null (T1)
604 and then not Assignment_OK (Lhs)
605 then
606 -- Case where we know the right hand side is null
608 if Known_Null (Rhs) then
609 Apply_Compile_Time_Constraint_Error
610 (N => Rhs,
611 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
612 Reason => CE_Null_Not_Allowed);
614 -- We still mark this as a possible modification, that's necessary
615 -- to reset Is_True_Constant, and desirable for xref purposes.
617 Note_Possible_Modification (Lhs, Sure => True);
618 return;
620 -- If we know the right hand side is non-null, then we convert to the
621 -- target type, since we don't need a run time check in that case.
623 elsif not Can_Never_Be_Null (T2) then
624 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
625 Analyze_And_Resolve (Rhs, T1);
626 end if;
627 end if;
629 if Is_Scalar_Type (T1) then
630 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
632 -- For array types, verify that lengths match. If the right hand side
633 -- if a function call that has been inlined, the assignment has been
634 -- rewritten as a block, and the constraint check will be applied to the
635 -- assignment within the block.
637 elsif Is_Array_Type (T1)
638 and then
639 (Nkind (Rhs) /= N_Type_Conversion
640 or else Is_Constrained (Etype (Rhs)))
641 and then
642 (Nkind (Rhs) /= N_Function_Call
643 or else Nkind (N) /= N_Block_Statement)
644 then
645 -- Assignment verifies that the length of the Lsh and Rhs are equal,
646 -- but of course the indices do not have to match. If the right-hand
647 -- side is a type conversion to an unconstrained type, a length check
648 -- is performed on the expression itself during expansion. In rare
649 -- cases, the redundant length check is computed on an index type
650 -- with a different representation, triggering incorrect code in
651 -- the back end.
653 Apply_Length_Check (Rhs, Etype (Lhs));
655 else
656 -- Discriminant checks are applied in the course of expansion
658 null;
659 end if;
661 -- Note: modifications of the Lhs may only be recorded after
662 -- checks have been applied.
664 Note_Possible_Modification (Lhs, Sure => True);
666 -- ??? a real accessibility check is needed when ???
668 -- Post warning for redundant assignment or variable to itself
670 if Warn_On_Redundant_Constructs
672 -- We only warn for source constructs
674 and then Comes_From_Source (N)
676 -- Where the object is the same on both sides
678 and then Same_Object (Lhs, Original_Node (Rhs))
680 -- But exclude the case where the right side was an operation
681 -- that got rewritten (e.g. JUNK + K, where K was known to be
682 -- zero). We don't want to warn in such a case, since it is
683 -- reasonable to write such expressions especially when K is
684 -- defined symbolically in some other package.
686 and then Nkind (Original_Node (Rhs)) not in N_Op
687 then
688 if Nkind (Lhs) in N_Has_Entity then
689 Error_Msg_NE -- CODEFIX
690 ("?useless assignment of & to itself!", N, Entity (Lhs));
691 else
692 Error_Msg_N -- CODEFIX
693 ("?useless assignment of object to itself!", N);
694 end if;
695 end if;
697 -- Check for non-allowed composite assignment
699 if not Support_Composite_Assign_On_Target
700 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
701 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
702 then
703 Error_Msg_CRT ("composite assignment", N);
704 end if;
706 -- Check elaboration warning for left side if not in elab code
708 if not In_Subprogram_Or_Concurrent_Unit then
709 Check_Elab_Assign (Lhs);
710 end if;
712 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
713 -- assignment is a source assignment in the extended main source unit.
714 -- We are not interested in any reference information outside this
715 -- context, or in compiler generated assignment statements.
717 if Comes_From_Source (N)
718 and then In_Extended_Main_Source_Unit (Lhs)
719 then
720 Set_Referenced_Modified (Lhs, Out_Param => False);
721 end if;
723 -- Final step. If left side is an entity, then we may be able to
724 -- reset the current tracked values to new safe values. We only have
725 -- something to do if the left side is an entity name, and expansion
726 -- has not modified the node into something other than an assignment,
727 -- and of course we only capture values if it is safe to do so.
729 if Is_Entity_Name (Lhs)
730 and then Nkind (N) = N_Assignment_Statement
731 then
732 declare
733 Ent : constant Entity_Id := Entity (Lhs);
735 begin
736 if Safe_To_Capture_Value (N, Ent) then
738 -- If simple variable on left side, warn if this assignment
739 -- blots out another one (rendering it useless) and note
740 -- location of assignment in case no one references value.
741 -- We only do this for source assignments, otherwise we can
742 -- generate bogus warnings when an assignment is rewritten as
743 -- another assignment, and gets tied up with itself.
745 -- Note: we don't use Record_Last_Assignment here, because we
746 -- have lots of other stuff to do under control of this test.
748 if Warn_On_Modified_Unread
749 and then Is_Assignable (Ent)
750 and then Comes_From_Source (N)
751 and then In_Extended_Main_Source_Unit (Ent)
752 then
753 Warn_On_Useless_Assignment (Ent, N);
754 Set_Last_Assignment (Ent, Lhs);
755 end if;
757 -- If we are assigning an access type and the left side is an
758 -- entity, then make sure that the Is_Known_[Non_]Null flags
759 -- properly reflect the state of the entity after assignment.
761 if Is_Access_Type (T1) then
762 if Known_Non_Null (Rhs) then
763 Set_Is_Known_Non_Null (Ent, True);
765 elsif Known_Null (Rhs)
766 and then not Can_Never_Be_Null (Ent)
767 then
768 Set_Is_Known_Null (Ent, True);
770 else
771 Set_Is_Known_Null (Ent, False);
773 if not Can_Never_Be_Null (Ent) then
774 Set_Is_Known_Non_Null (Ent, False);
775 end if;
776 end if;
778 -- For discrete types, we may be able to set the current value
779 -- if the value is known at compile time.
781 elsif Is_Discrete_Type (T1)
782 and then Compile_Time_Known_Value (Rhs)
783 then
784 Set_Current_Value (Ent, Rhs);
785 else
786 Set_Current_Value (Ent, Empty);
787 end if;
789 -- If not safe to capture values, kill them
791 else
792 Kill_Lhs;
793 end if;
794 end;
795 end if;
796 end Analyze_Assignment;
798 -----------------------------
799 -- Analyze_Block_Statement --
800 -----------------------------
802 procedure Analyze_Block_Statement (N : Node_Id) is
803 Decls : constant List_Id := Declarations (N);
804 Id : constant Node_Id := Identifier (N);
805 HSS : constant Node_Id := Handled_Statement_Sequence (N);
807 begin
808 -- If no handled statement sequence is present, things are really
809 -- messed up, and we just return immediately (this is a defence
810 -- against previous errors).
812 if No (HSS) then
813 return;
814 end if;
816 -- Normal processing with HSS present
818 declare
819 EH : constant List_Id := Exception_Handlers (HSS);
820 Ent : Entity_Id := Empty;
821 S : Entity_Id;
823 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
824 -- Recursively save value of this global, will be restored on exit
826 begin
827 -- Initialize unblocked exit count for statements of begin block
828 -- plus one for each exception handler that is present.
830 Unblocked_Exit_Count := 1;
832 if Present (EH) then
833 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
834 end if;
836 -- If a label is present analyze it and mark it as referenced
838 if Present (Id) then
839 Analyze (Id);
840 Ent := Entity (Id);
842 -- An error defense. If we have an identifier, but no entity,
843 -- then something is wrong. If we have previous errors, then
844 -- just remove the identifier and continue, otherwise raise
845 -- an exception.
847 if No (Ent) then
848 if Total_Errors_Detected /= 0 then
849 Set_Identifier (N, Empty);
850 else
851 raise Program_Error;
852 end if;
854 else
855 Set_Ekind (Ent, E_Block);
856 Generate_Reference (Ent, N, ' ');
857 Generate_Definition (Ent);
859 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
860 Set_Label_Construct (Parent (Ent), N);
861 end if;
862 end if;
863 end if;
865 -- If no entity set, create a label entity
867 if No (Ent) then
868 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
869 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
870 Set_Parent (Ent, N);
871 end if;
873 Set_Etype (Ent, Standard_Void_Type);
874 Set_Block_Node (Ent, Identifier (N));
875 Push_Scope (Ent);
877 if Present (Decls) then
878 Analyze_Declarations (Decls);
879 Check_Completion;
880 Inspect_Deferred_Constant_Completion (Decls);
881 end if;
883 Analyze (HSS);
884 Process_End_Label (HSS, 'e', Ent);
886 -- If exception handlers are present, then we indicate that
887 -- enclosing scopes contain a block with handlers. We only
888 -- need to mark non-generic scopes.
890 if Present (EH) then
891 S := Scope (Ent);
892 loop
893 Set_Has_Nested_Block_With_Handler (S);
894 exit when Is_Overloadable (S)
895 or else Ekind (S) = E_Package
896 or else Is_Generic_Unit (S);
897 S := Scope (S);
898 end loop;
899 end if;
901 Check_References (Ent);
902 Warn_On_Useless_Assignments (Ent);
903 End_Scope;
905 if Unblocked_Exit_Count = 0 then
906 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
907 Check_Unreachable_Code (N);
908 else
909 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
910 end if;
911 end;
912 end Analyze_Block_Statement;
914 ----------------------------
915 -- Analyze_Case_Statement --
916 ----------------------------
918 procedure Analyze_Case_Statement (N : Node_Id) is
919 Exp : Node_Id;
920 Exp_Type : Entity_Id;
921 Exp_Btype : Entity_Id;
922 Last_Choice : Nat;
923 Dont_Care : Boolean;
924 Others_Present : Boolean;
926 pragma Warnings (Off, Last_Choice);
927 pragma Warnings (Off, Dont_Care);
928 -- Don't care about assigned values
930 Statements_Analyzed : Boolean := False;
931 -- Set True if at least some statement sequences get analyzed.
932 -- If False on exit, means we had a serious error that prevented
933 -- full analysis of the case statement, and as a result it is not
934 -- a good idea to output warning messages about unreachable code.
936 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
937 -- Recursively save value of this global, will be restored on exit
939 procedure Non_Static_Choice_Error (Choice : Node_Id);
940 -- Error routine invoked by the generic instantiation below when
941 -- the case statement has a non static choice.
943 procedure Process_Statements (Alternative : Node_Id);
944 -- Analyzes all the statements associated with a case alternative.
945 -- Needed by the generic instantiation below.
947 package Case_Choices_Processing is new
948 Generic_Choices_Processing
949 (Get_Alternatives => Alternatives,
950 Get_Choices => Discrete_Choices,
951 Process_Empty_Choice => No_OP,
952 Process_Non_Static_Choice => Non_Static_Choice_Error,
953 Process_Associated_Node => Process_Statements);
954 use Case_Choices_Processing;
955 -- Instantiation of the generic choice processing package
957 -----------------------------
958 -- Non_Static_Choice_Error --
959 -----------------------------
961 procedure Non_Static_Choice_Error (Choice : Node_Id) is
962 begin
963 Flag_Non_Static_Expr
964 ("choice given in case statement is not static!", Choice);
965 end Non_Static_Choice_Error;
967 ------------------------
968 -- Process_Statements --
969 ------------------------
971 procedure Process_Statements (Alternative : Node_Id) is
972 Choices : constant List_Id := Discrete_Choices (Alternative);
973 Ent : Entity_Id;
975 begin
976 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
977 Statements_Analyzed := True;
979 -- An interesting optimization. If the case statement expression
980 -- is a simple entity, then we can set the current value within
981 -- an alternative if the alternative has one possible value.
983 -- case N is
984 -- when 1 => alpha
985 -- when 2 | 3 => beta
986 -- when others => gamma
988 -- Here we know that N is initially 1 within alpha, but for beta
989 -- and gamma, we do not know anything more about the initial value.
991 if Is_Entity_Name (Exp) then
992 Ent := Entity (Exp);
994 if Ekind_In (Ent, E_Variable,
995 E_In_Out_Parameter,
996 E_Out_Parameter)
997 then
998 if List_Length (Choices) = 1
999 and then Nkind (First (Choices)) in N_Subexpr
1000 and then Compile_Time_Known_Value (First (Choices))
1001 then
1002 Set_Current_Value (Entity (Exp), First (Choices));
1003 end if;
1005 Analyze_Statements (Statements (Alternative));
1007 -- After analyzing the case, set the current value to empty
1008 -- since we won't know what it is for the next alternative
1009 -- (unless reset by this same circuit), or after the case.
1011 Set_Current_Value (Entity (Exp), Empty);
1012 return;
1013 end if;
1014 end if;
1016 -- Case where expression is not an entity name of a variable
1018 Analyze_Statements (Statements (Alternative));
1019 end Process_Statements;
1021 -- Table to record choices. Put after subprograms since we make
1022 -- a call to Number_Of_Choices to get the right number of entries.
1024 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1025 pragma Warnings (Off, Case_Table);
1027 -- Start of processing for Analyze_Case_Statement
1029 begin
1030 Unblocked_Exit_Count := 0;
1031 Exp := Expression (N);
1032 Analyze (Exp);
1034 -- The expression must be of any discrete type. In rare cases, the
1035 -- expander constructs a case statement whose expression has a private
1036 -- type whose full view is discrete. This can happen when generating
1037 -- a stream operation for a variant type after the type is frozen,
1038 -- when the partial of view of the type of the discriminant is private.
1039 -- In that case, use the full view to analyze case alternatives.
1041 if not Is_Overloaded (Exp)
1042 and then not Comes_From_Source (N)
1043 and then Is_Private_Type (Etype (Exp))
1044 and then Present (Full_View (Etype (Exp)))
1045 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1046 then
1047 Resolve (Exp, Etype (Exp));
1048 Exp_Type := Full_View (Etype (Exp));
1050 else
1051 Analyze_And_Resolve (Exp, Any_Discrete);
1052 Exp_Type := Etype (Exp);
1053 end if;
1055 Check_Unset_Reference (Exp);
1056 Exp_Btype := Base_Type (Exp_Type);
1058 -- The expression must be of a discrete type which must be determinable
1059 -- independently of the context in which the expression occurs, but
1060 -- using the fact that the expression must be of a discrete type.
1061 -- Moreover, the type this expression must not be a character literal
1062 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1064 -- If error already reported by Resolve, nothing more to do
1066 if Exp_Btype = Any_Discrete
1067 or else Exp_Btype = Any_Type
1068 then
1069 return;
1071 elsif Exp_Btype = Any_Character then
1072 Error_Msg_N
1073 ("character literal as case expression is ambiguous", Exp);
1074 return;
1076 elsif Ada_Version = Ada_83
1077 and then (Is_Generic_Type (Exp_Btype)
1078 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1079 then
1080 Error_Msg_N
1081 ("(Ada 83) case expression cannot be of a generic type", Exp);
1082 return;
1083 end if;
1085 -- If the case expression is a formal object of mode in out, then
1086 -- treat it as having a nonstatic subtype by forcing use of the base
1087 -- type (which has to get passed to Check_Case_Choices below). Also
1088 -- use base type when the case expression is parenthesized.
1090 if Paren_Count (Exp) > 0
1091 or else (Is_Entity_Name (Exp)
1092 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1093 then
1094 Exp_Type := Exp_Btype;
1095 end if;
1097 -- Call instantiated Analyze_Choices which does the rest of the work
1099 Analyze_Choices
1100 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1102 if Exp_Type = Universal_Integer and then not Others_Present then
1103 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1104 end if;
1106 -- If all our exits were blocked by unconditional transfers of control,
1107 -- then the entire CASE statement acts as an unconditional transfer of
1108 -- control, so treat it like one, and check unreachable code. Skip this
1109 -- test if we had serious errors preventing any statement analysis.
1111 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1112 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1113 Check_Unreachable_Code (N);
1114 else
1115 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1116 end if;
1118 if not Expander_Active
1119 and then Compile_Time_Known_Value (Expression (N))
1120 and then Serious_Errors_Detected = 0
1121 then
1122 declare
1123 Chosen : constant Node_Id := Find_Static_Alternative (N);
1124 Alt : Node_Id;
1126 begin
1127 Alt := First (Alternatives (N));
1128 while Present (Alt) loop
1129 if Alt /= Chosen then
1130 Remove_Warning_Messages (Statements (Alt));
1131 end if;
1133 Next (Alt);
1134 end loop;
1135 end;
1136 end if;
1137 end Analyze_Case_Statement;
1139 ----------------------------
1140 -- Analyze_Exit_Statement --
1141 ----------------------------
1143 -- If the exit includes a name, it must be the name of a currently open
1144 -- loop. Otherwise there must be an innermost open loop on the stack,
1145 -- to which the statement implicitly refers.
1147 procedure Analyze_Exit_Statement (N : Node_Id) is
1148 Target : constant Node_Id := Name (N);
1149 Cond : constant Node_Id := Condition (N);
1150 Scope_Id : Entity_Id;
1151 U_Name : Entity_Id;
1152 Kind : Entity_Kind;
1154 begin
1155 if No (Cond) then
1156 Check_Unreachable_Code (N);
1157 end if;
1159 if Present (Target) then
1160 Analyze (Target);
1161 U_Name := Entity (Target);
1163 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1164 Error_Msg_N ("invalid loop name in exit statement", N);
1165 return;
1166 else
1167 Set_Has_Exit (U_Name);
1168 end if;
1170 else
1171 U_Name := Empty;
1172 end if;
1174 for J in reverse 0 .. Scope_Stack.Last loop
1175 Scope_Id := Scope_Stack.Table (J).Entity;
1176 Kind := Ekind (Scope_Id);
1178 if Kind = E_Loop
1179 and then (No (Target) or else Scope_Id = U_Name) then
1180 Set_Has_Exit (Scope_Id);
1181 exit;
1183 elsif Kind = E_Block
1184 or else Kind = E_Loop
1185 or else Kind = E_Return_Statement
1186 then
1187 null;
1189 else
1190 Error_Msg_N
1191 ("cannot exit from program unit or accept statement", N);
1192 return;
1193 end if;
1194 end loop;
1196 -- Verify that if present the condition is a Boolean expression
1198 if Present (Cond) then
1199 Analyze_And_Resolve (Cond, Any_Boolean);
1200 Check_Unset_Reference (Cond);
1201 end if;
1203 -- Chain exit statement to associated loop entity
1205 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1206 Set_First_Exit_Statement (Scope_Id, N);
1208 -- Since the exit may take us out of a loop, any previous assignment
1209 -- statement is not useless, so clear last assignment indications. It
1210 -- is OK to keep other current values, since if the exit statement
1211 -- does not exit, then the current values are still valid.
1213 Kill_Current_Values (Last_Assignment_Only => True);
1214 end Analyze_Exit_Statement;
1216 ----------------------------
1217 -- Analyze_Goto_Statement --
1218 ----------------------------
1220 procedure Analyze_Goto_Statement (N : Node_Id) is
1221 Label : constant Node_Id := Name (N);
1222 Scope_Id : Entity_Id;
1223 Label_Scope : Entity_Id;
1224 Label_Ent : Entity_Id;
1226 begin
1227 Check_Unreachable_Code (N);
1228 Kill_Current_Values (Last_Assignment_Only => True);
1230 Analyze (Label);
1231 Label_Ent := Entity (Label);
1233 -- Ignore previous error
1235 if Label_Ent = Any_Id then
1236 return;
1238 -- We just have a label as the target of a goto
1240 elsif Ekind (Label_Ent) /= E_Label then
1241 Error_Msg_N ("target of goto statement must be a label", Label);
1242 return;
1244 -- Check that the target of the goto is reachable according to Ada
1245 -- scoping rules. Note: the special gotos we generate for optimizing
1246 -- local handling of exceptions would violate these rules, but we mark
1247 -- such gotos as analyzed when built, so this code is never entered.
1249 elsif not Reachable (Label_Ent) then
1250 Error_Msg_N ("target of goto statement is not reachable", Label);
1251 return;
1252 end if;
1254 -- Here if goto passes initial validity checks
1256 Label_Scope := Enclosing_Scope (Label_Ent);
1258 for J in reverse 0 .. Scope_Stack.Last loop
1259 Scope_Id := Scope_Stack.Table (J).Entity;
1261 if Label_Scope = Scope_Id
1262 or else (Ekind (Scope_Id) /= E_Block
1263 and then Ekind (Scope_Id) /= E_Loop
1264 and then Ekind (Scope_Id) /= E_Return_Statement)
1265 then
1266 if Scope_Id /= Label_Scope then
1267 Error_Msg_N
1268 ("cannot exit from program unit or accept statement", N);
1269 end if;
1271 return;
1272 end if;
1273 end loop;
1275 raise Program_Error;
1276 end Analyze_Goto_Statement;
1278 --------------------------
1279 -- Analyze_If_Statement --
1280 --------------------------
1282 -- A special complication arises in the analysis of if statements
1284 -- The expander has circuitry to completely delete code that it
1285 -- can tell will not be executed (as a result of compile time known
1286 -- conditions). In the analyzer, we ensure that code that will be
1287 -- deleted in this manner is analyzed but not expanded. This is
1288 -- obviously more efficient, but more significantly, difficulties
1289 -- arise if code is expanded and then eliminated (e.g. exception
1290 -- table entries disappear). Similarly, itypes generated in deleted
1291 -- code must be frozen from start, because the nodes on which they
1292 -- depend will not be available at the freeze point.
1294 procedure Analyze_If_Statement (N : Node_Id) is
1295 E : Node_Id;
1297 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1298 -- Recursively save value of this global, will be restored on exit
1300 Save_In_Deleted_Code : Boolean;
1302 Del : Boolean := False;
1303 -- This flag gets set True if a True condition has been found,
1304 -- which means that remaining ELSE/ELSIF parts are deleted.
1306 procedure Analyze_Cond_Then (Cnode : Node_Id);
1307 -- This is applied to either the N_If_Statement node itself or
1308 -- to an N_Elsif_Part node. It deals with analyzing the condition
1309 -- and the THEN statements associated with it.
1311 -----------------------
1312 -- Analyze_Cond_Then --
1313 -----------------------
1315 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1316 Cond : constant Node_Id := Condition (Cnode);
1317 Tstm : constant List_Id := Then_Statements (Cnode);
1319 begin
1320 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1321 Analyze_And_Resolve (Cond, Any_Boolean);
1322 Check_Unset_Reference (Cond);
1323 Set_Current_Value_Condition (Cnode);
1325 -- If already deleting, then just analyze then statements
1327 if Del then
1328 Analyze_Statements (Tstm);
1330 -- Compile time known value, not deleting yet
1332 elsif Compile_Time_Known_Value (Cond) then
1333 Save_In_Deleted_Code := In_Deleted_Code;
1335 -- If condition is True, then analyze the THEN statements
1336 -- and set no expansion for ELSE and ELSIF parts.
1338 if Is_True (Expr_Value (Cond)) then
1339 Analyze_Statements (Tstm);
1340 Del := True;
1341 Expander_Mode_Save_And_Set (False);
1342 In_Deleted_Code := True;
1344 -- If condition is False, analyze THEN with expansion off
1346 else -- Is_False (Expr_Value (Cond))
1347 Expander_Mode_Save_And_Set (False);
1348 In_Deleted_Code := True;
1349 Analyze_Statements (Tstm);
1350 Expander_Mode_Restore;
1351 In_Deleted_Code := Save_In_Deleted_Code;
1352 end if;
1354 -- Not known at compile time, not deleting, normal analysis
1356 else
1357 Analyze_Statements (Tstm);
1358 end if;
1359 end Analyze_Cond_Then;
1361 -- Start of Analyze_If_Statement
1363 begin
1364 -- Initialize exit count for else statements. If there is no else
1365 -- part, this count will stay non-zero reflecting the fact that the
1366 -- uncovered else case is an unblocked exit.
1368 Unblocked_Exit_Count := 1;
1369 Analyze_Cond_Then (N);
1371 -- Now to analyze the elsif parts if any are present
1373 if Present (Elsif_Parts (N)) then
1374 E := First (Elsif_Parts (N));
1375 while Present (E) loop
1376 Analyze_Cond_Then (E);
1377 Next (E);
1378 end loop;
1379 end if;
1381 if Present (Else_Statements (N)) then
1382 Analyze_Statements (Else_Statements (N));
1383 end if;
1385 -- If all our exits were blocked by unconditional transfers of control,
1386 -- then the entire IF statement acts as an unconditional transfer of
1387 -- control, so treat it like one, and check unreachable code.
1389 if Unblocked_Exit_Count = 0 then
1390 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1391 Check_Unreachable_Code (N);
1392 else
1393 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1394 end if;
1396 if Del then
1397 Expander_Mode_Restore;
1398 In_Deleted_Code := Save_In_Deleted_Code;
1399 end if;
1401 if not Expander_Active
1402 and then Compile_Time_Known_Value (Condition (N))
1403 and then Serious_Errors_Detected = 0
1404 then
1405 if Is_True (Expr_Value (Condition (N))) then
1406 Remove_Warning_Messages (Else_Statements (N));
1408 if Present (Elsif_Parts (N)) then
1409 E := First (Elsif_Parts (N));
1410 while Present (E) loop
1411 Remove_Warning_Messages (Then_Statements (E));
1412 Next (E);
1413 end loop;
1414 end if;
1416 else
1417 Remove_Warning_Messages (Then_Statements (N));
1418 end if;
1419 end if;
1420 end Analyze_If_Statement;
1422 ----------------------------------------
1423 -- Analyze_Implicit_Label_Declaration --
1424 ----------------------------------------
1426 -- An implicit label declaration is generated in the innermost
1427 -- enclosing declarative part. This is done for labels as well as
1428 -- block and loop names.
1430 -- Note: any changes in this routine may need to be reflected in
1431 -- Analyze_Label_Entity.
1433 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1434 Id : constant Node_Id := Defining_Identifier (N);
1435 begin
1436 Enter_Name (Id);
1437 Set_Ekind (Id, E_Label);
1438 Set_Etype (Id, Standard_Void_Type);
1439 Set_Enclosing_Scope (Id, Current_Scope);
1440 end Analyze_Implicit_Label_Declaration;
1442 ------------------------------
1443 -- Analyze_Iteration_Scheme --
1444 ------------------------------
1446 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1448 procedure Process_Bounds (R : Node_Id);
1449 -- If the iteration is given by a range, create temporaries and
1450 -- assignment statements block to capture the bounds and perform
1451 -- required finalization actions in case a bound includes a function
1452 -- call that uses the temporary stack. We first pre-analyze a copy of
1453 -- the range in order to determine the expected type, and analyze and
1454 -- resolve the original bounds.
1456 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1457 -- If the bounds are given by a 'Range reference on a function call
1458 -- that returns a controlled array, introduce an explicit declaration
1459 -- to capture the bounds, so that the function result can be finalized
1460 -- in timely fashion.
1462 --------------------
1463 -- Process_Bounds --
1464 --------------------
1466 procedure Process_Bounds (R : Node_Id) is
1467 Loc : constant Source_Ptr := Sloc (N);
1468 R_Copy : constant Node_Id := New_Copy_Tree (R);
1469 Lo : constant Node_Id := Low_Bound (R);
1470 Hi : constant Node_Id := High_Bound (R);
1471 New_Lo_Bound : Node_Id;
1472 New_Hi_Bound : Node_Id;
1473 Typ : Entity_Id;
1474 Save_Analysis : Boolean;
1476 function One_Bound
1477 (Original_Bound : Node_Id;
1478 Analyzed_Bound : Node_Id) return Node_Id;
1479 -- Capture value of bound and return captured value
1481 ---------------
1482 -- One_Bound --
1483 ---------------
1485 function One_Bound
1486 (Original_Bound : Node_Id;
1487 Analyzed_Bound : Node_Id) return Node_Id
1489 Assign : Node_Id;
1490 Id : Entity_Id;
1491 Decl : Node_Id;
1493 begin
1494 -- If the bound is a constant or an object, no need for a separate
1495 -- declaration. If the bound is the result of previous expansion
1496 -- it is already analyzed and should not be modified. Note that
1497 -- the Bound will be resolved later, if needed, as part of the
1498 -- call to Make_Index (literal bounds may need to be resolved to
1499 -- type Integer).
1501 if Analyzed (Original_Bound) then
1502 return Original_Bound;
1504 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
1505 N_Character_Literal)
1506 or else Is_Entity_Name (Analyzed_Bound)
1507 then
1508 Analyze_And_Resolve (Original_Bound, Typ);
1509 return Original_Bound;
1510 end if;
1512 -- Here we need to capture the value
1514 Analyze_And_Resolve (Original_Bound, Typ);
1516 Id := Make_Temporary (Loc, 'S', Original_Bound);
1518 -- Normally, the best approach is simply to generate a constant
1519 -- declaration that captures the bound. However, there is a nasty
1520 -- case where this is wrong. If the bound is complex, and has a
1521 -- possible use of the secondary stack, we need to generate a
1522 -- separate assignment statement to ensure the creation of a block
1523 -- which will release the secondary stack.
1525 -- We prefer the constant declaration, since it leaves us with a
1526 -- proper trace of the value, useful in optimizations that get rid
1527 -- of junk range checks.
1529 -- Probably we want something like the Side_Effect_Free routine
1530 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1531 -- and 'First applied to an entity, since these are the important
1532 -- cases for range check optimizations.
1534 if Nkind (Original_Bound) = N_Attribute_Reference
1535 and then (Attribute_Name (Original_Bound) = Name_First
1536 or else
1537 Attribute_Name (Original_Bound) = Name_Last)
1538 and then Is_Entity_Name (Prefix (Original_Bound))
1539 then
1540 Decl :=
1541 Make_Object_Declaration (Loc,
1542 Defining_Identifier => Id,
1543 Constant_Present => True,
1544 Object_Definition => New_Occurrence_Of (Typ, Loc),
1545 Expression => Relocate_Node (Original_Bound));
1547 Insert_Before (Parent (N), Decl);
1548 Analyze (Decl);
1549 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1550 return Expression (Decl);
1551 end if;
1553 -- Here we make a declaration with a separate assignment statement
1555 Decl :=
1556 Make_Object_Declaration (Loc,
1557 Defining_Identifier => Id,
1558 Object_Definition => New_Occurrence_Of (Typ, Loc));
1560 Insert_Before (Parent (N), Decl);
1561 Analyze (Decl);
1563 Assign :=
1564 Make_Assignment_Statement (Loc,
1565 Name => New_Occurrence_Of (Id, Loc),
1566 Expression => Relocate_Node (Original_Bound));
1568 Insert_Before (Parent (N), Assign);
1569 Analyze (Assign);
1571 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1573 if Nkind (Assign) = N_Assignment_Statement then
1574 return Expression (Assign);
1575 else
1576 return Original_Bound;
1577 end if;
1578 end One_Bound;
1580 -- Start of processing for Process_Bounds
1582 begin
1583 -- Determine expected type of range by analyzing separate copy
1584 -- Do the analysis and resolution of the copy of the bounds with
1585 -- expansion disabled, to prevent the generation of finalization
1586 -- actions on each bound. This prevents memory leaks when the
1587 -- bounds contain calls to functions returning controlled arrays.
1589 Set_Parent (R_Copy, Parent (R));
1590 Save_Analysis := Full_Analysis;
1591 Full_Analysis := False;
1592 Expander_Mode_Save_And_Set (False);
1594 Analyze (R_Copy);
1596 if Is_Overloaded (R_Copy) then
1598 -- Apply preference rules for range of predefined integer types,
1599 -- or diagnose true ambiguity.
1601 declare
1602 I : Interp_Index;
1603 It : Interp;
1604 Found : Entity_Id := Empty;
1606 begin
1607 Get_First_Interp (R_Copy, I, It);
1608 while Present (It.Typ) loop
1609 if Is_Discrete_Type (It.Typ) then
1610 if No (Found) then
1611 Found := It.Typ;
1612 else
1613 if Scope (Found) = Standard_Standard then
1614 null;
1616 elsif Scope (It.Typ) = Standard_Standard then
1617 Found := It.Typ;
1619 else
1620 -- Both of them are user-defined
1622 Error_Msg_N
1623 ("ambiguous bounds in range of iteration",
1624 R_Copy);
1625 Error_Msg_N ("\possible interpretations:", R_Copy);
1626 Error_Msg_NE ("\\} ", R_Copy, Found);
1627 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
1628 exit;
1629 end if;
1630 end if;
1631 end if;
1633 Get_Next_Interp (I, It);
1634 end loop;
1635 end;
1636 end if;
1638 Resolve (R_Copy);
1639 Expander_Mode_Restore;
1640 Full_Analysis := Save_Analysis;
1642 Typ := Etype (R_Copy);
1644 -- If the type of the discrete range is Universal_Integer, then
1645 -- the bound's type must be resolved to Integer, and any object
1646 -- used to hold the bound must also have type Integer, unless the
1647 -- literal bounds are constant-folded expressions that carry a user-
1648 -- defined type.
1650 if Typ = Universal_Integer then
1651 if Nkind (Lo) = N_Integer_Literal
1652 and then Present (Etype (Lo))
1653 and then Scope (Etype (Lo)) /= Standard_Standard
1654 then
1655 Typ := Etype (Lo);
1657 elsif Nkind (Hi) = N_Integer_Literal
1658 and then Present (Etype (Hi))
1659 and then Scope (Etype (Hi)) /= Standard_Standard
1660 then
1661 Typ := Etype (Hi);
1663 else
1664 Typ := Standard_Integer;
1665 end if;
1666 end if;
1668 Set_Etype (R, Typ);
1670 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1671 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1673 -- Propagate staticness to loop range itself, in case the
1674 -- corresponding subtype is static.
1676 if New_Lo_Bound /= Lo
1677 and then Is_Static_Expression (New_Lo_Bound)
1678 then
1679 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1680 end if;
1682 if New_Hi_Bound /= Hi
1683 and then Is_Static_Expression (New_Hi_Bound)
1684 then
1685 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1686 end if;
1687 end Process_Bounds;
1689 --------------------------------------
1690 -- Check_Controlled_Array_Attribute --
1691 --------------------------------------
1693 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1694 begin
1695 if Nkind (DS) = N_Attribute_Reference
1696 and then Is_Entity_Name (Prefix (DS))
1697 and then Ekind (Entity (Prefix (DS))) = E_Function
1698 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1699 and then
1700 Is_Controlled (
1701 Component_Type (Etype (Entity (Prefix (DS)))))
1702 and then Expander_Active
1703 then
1704 declare
1705 Loc : constant Source_Ptr := Sloc (N);
1706 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1707 Indx : constant Entity_Id :=
1708 Base_Type (Etype (First_Index (Arr)));
1709 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1710 Decl : Node_Id;
1712 begin
1713 Decl :=
1714 Make_Subtype_Declaration (Loc,
1715 Defining_Identifier => Subt,
1716 Subtype_Indication =>
1717 Make_Subtype_Indication (Loc,
1718 Subtype_Mark => New_Reference_To (Indx, Loc),
1719 Constraint =>
1720 Make_Range_Constraint (Loc,
1721 Relocate_Node (DS))));
1722 Insert_Before (Parent (N), Decl);
1723 Analyze (Decl);
1725 Rewrite (DS,
1726 Make_Attribute_Reference (Loc,
1727 Prefix => New_Reference_To (Subt, Loc),
1728 Attribute_Name => Attribute_Name (DS)));
1729 Analyze (DS);
1730 end;
1731 end if;
1732 end Check_Controlled_Array_Attribute;
1734 -- Start of processing for Analyze_Iteration_Scheme
1736 begin
1737 -- For an infinite loop, there is no iteration scheme
1739 if No (N) then
1740 return;
1742 else
1743 declare
1744 Cond : constant Node_Id := Condition (N);
1746 begin
1747 -- For WHILE loop, verify that the condition is a Boolean
1748 -- expression and resolve and check it.
1750 if Present (Cond) then
1751 Analyze_And_Resolve (Cond, Any_Boolean);
1752 Check_Unset_Reference (Cond);
1753 Set_Current_Value_Condition (N);
1754 return;
1756 -- Else we have a FOR loop
1758 else
1759 declare
1760 LP : constant Node_Id := Loop_Parameter_Specification (N);
1761 Id : constant Entity_Id := Defining_Identifier (LP);
1762 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1764 begin
1765 Enter_Name (Id);
1767 -- We always consider the loop variable to be referenced,
1768 -- since the loop may be used just for counting purposes.
1770 Generate_Reference (Id, N, ' ');
1772 -- Check for case of loop variable hiding a local
1773 -- variable (used later on to give a nice warning
1774 -- if the hidden variable is never assigned).
1776 declare
1777 H : constant Entity_Id := Homonym (Id);
1778 begin
1779 if Present (H)
1780 and then Enclosing_Dynamic_Scope (H) =
1781 Enclosing_Dynamic_Scope (Id)
1782 and then Ekind (H) = E_Variable
1783 and then Is_Discrete_Type (Etype (H))
1784 then
1785 Set_Hiding_Loop_Variable (H, Id);
1786 end if;
1787 end;
1789 -- Now analyze the subtype definition. If it is
1790 -- a range, create temporaries for bounds.
1792 if Nkind (DS) = N_Range
1793 and then Expander_Active
1794 then
1795 Process_Bounds (DS);
1796 else
1797 Analyze (DS);
1798 end if;
1800 if DS = Error then
1801 return;
1802 end if;
1804 -- The subtype indication may denote the completion
1805 -- of an incomplete type declaration.
1807 if Is_Entity_Name (DS)
1808 and then Present (Entity (DS))
1809 and then Is_Type (Entity (DS))
1810 and then Ekind (Entity (DS)) = E_Incomplete_Type
1811 then
1812 Set_Entity (DS, Get_Full_View (Entity (DS)));
1813 Set_Etype (DS, Entity (DS));
1814 end if;
1816 if not Is_Discrete_Type (Etype (DS)) then
1817 Wrong_Type (DS, Any_Discrete);
1818 Set_Etype (DS, Any_Type);
1819 end if;
1821 Check_Controlled_Array_Attribute (DS);
1823 Make_Index (DS, LP);
1825 Set_Ekind (Id, E_Loop_Parameter);
1826 Set_Etype (Id, Etype (DS));
1828 -- Treat a range as an implicit reference to the type, to
1829 -- inhibit spurious warnings.
1831 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
1832 Set_Is_Known_Valid (Id, True);
1834 -- The loop is not a declarative part, so the only entity
1835 -- declared "within" must be frozen explicitly.
1837 declare
1838 Flist : constant List_Id := Freeze_Entity (Id, N);
1839 begin
1840 if Is_Non_Empty_List (Flist) then
1841 Insert_Actions (N, Flist);
1842 end if;
1843 end;
1845 -- Check for null or possibly null range and issue warning.
1846 -- We suppress such messages in generic templates and
1847 -- instances, because in practice they tend to be dubious
1848 -- in these cases.
1850 if Nkind (DS) = N_Range
1851 and then Comes_From_Source (N)
1852 then
1853 declare
1854 L : constant Node_Id := Low_Bound (DS);
1855 H : constant Node_Id := High_Bound (DS);
1857 begin
1858 -- If range of loop is null, issue warning
1860 if Compile_Time_Compare
1861 (L, H, Assume_Valid => True) = GT
1862 then
1863 -- Suppress the warning if inside a generic
1864 -- template or instance, since in practice
1865 -- they tend to be dubious in these cases since
1866 -- they can result from intended parametrization.
1868 if not Inside_A_Generic
1869 and then not In_Instance
1870 then
1871 -- Specialize msg if invalid values could make
1872 -- the loop non-null after all.
1874 if Compile_Time_Compare
1875 (L, H, Assume_Valid => False) = GT
1876 then
1877 Error_Msg_N
1878 ("?loop range is null, "
1879 & "loop will not execute",
1880 DS);
1882 -- Since we know the range of the loop is
1883 -- null, set the appropriate flag to remove
1884 -- the loop entirely during expansion.
1886 Set_Is_Null_Loop (Parent (N));
1888 -- Here is where the loop could execute because
1889 -- of invalid values, so issue appropriate
1890 -- message and in this case we do not set the
1891 -- Is_Null_Loop flag since the loop may execute.
1893 else
1894 Error_Msg_N
1895 ("?loop range may be null, "
1896 & "loop may not execute",
1897 DS);
1898 Error_Msg_N
1899 ("?can only execute if invalid values "
1900 & "are present",
1901 DS);
1902 end if;
1903 end if;
1905 -- In either case, suppress warnings in the body of
1906 -- the loop, since it is likely that these warnings
1907 -- will be inappropriate if the loop never actually
1908 -- executes, which is unlikely.
1910 Set_Suppress_Loop_Warnings (Parent (N));
1912 -- The other case for a warning is a reverse loop
1913 -- where the upper bound is the integer literal
1914 -- zero or one, and the lower bound can be positive.
1916 -- For example, we have
1918 -- for J in reverse N .. 1 loop
1920 -- In practice, this is very likely to be a case
1921 -- of reversing the bounds incorrectly in the range.
1923 elsif Reverse_Present (LP)
1924 and then Nkind (Original_Node (H)) =
1925 N_Integer_Literal
1926 and then (Intval (Original_Node (H)) = Uint_0
1927 or else
1928 Intval (Original_Node (H)) = Uint_1)
1929 then
1930 Error_Msg_N ("?loop range may be null", DS);
1931 Error_Msg_N ("\?bounds may be wrong way round", DS);
1932 end if;
1933 end;
1934 end if;
1935 end;
1936 end if;
1937 end;
1938 end if;
1939 end Analyze_Iteration_Scheme;
1941 -------------------
1942 -- Analyze_Label --
1943 -------------------
1945 -- Note: the semantic work required for analyzing labels (setting them as
1946 -- reachable) was done in a prepass through the statements in the block,
1947 -- so that forward gotos would be properly handled. See Analyze_Statements
1948 -- for further details. The only processing required here is to deal with
1949 -- optimizations that depend on an assumption of sequential control flow,
1950 -- since of course the occurrence of a label breaks this assumption.
1952 procedure Analyze_Label (N : Node_Id) is
1953 pragma Warnings (Off, N);
1954 begin
1955 Kill_Current_Values;
1956 end Analyze_Label;
1958 --------------------------
1959 -- Analyze_Label_Entity --
1960 --------------------------
1962 procedure Analyze_Label_Entity (E : Entity_Id) is
1963 begin
1964 Set_Ekind (E, E_Label);
1965 Set_Etype (E, Standard_Void_Type);
1966 Set_Enclosing_Scope (E, Current_Scope);
1967 Set_Reachable (E, True);
1968 end Analyze_Label_Entity;
1970 ----------------------------
1971 -- Analyze_Loop_Statement --
1972 ----------------------------
1974 procedure Analyze_Loop_Statement (N : Node_Id) is
1975 Loop_Statement : constant Node_Id := N;
1977 Id : constant Node_Id := Identifier (Loop_Statement);
1978 Iter : constant Node_Id := Iteration_Scheme (Loop_Statement);
1979 Ent : Entity_Id;
1981 begin
1982 if Present (Id) then
1984 -- Make name visible, e.g. for use in exit statements. Loop
1985 -- labels are always considered to be referenced.
1987 Analyze (Id);
1988 Ent := Entity (Id);
1990 -- Guard against serious error (typically, a scope mismatch when
1991 -- semantic analysis is requested) by creating loop entity to
1992 -- continue analysis.
1994 if No (Ent) then
1995 if Total_Errors_Detected /= 0 then
1996 Ent :=
1997 New_Internal_Entity
1998 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
1999 else
2000 raise Program_Error;
2001 end if;
2003 else
2004 Generate_Reference (Ent, Loop_Statement, ' ');
2005 Generate_Definition (Ent);
2007 -- If we found a label, mark its type. If not, ignore it, since it
2008 -- means we have a conflicting declaration, which would already
2009 -- have been diagnosed at declaration time. Set Label_Construct
2010 -- of the implicit label declaration, which is not created by the
2011 -- parser for generic units.
2013 if Ekind (Ent) = E_Label then
2014 Set_Ekind (Ent, E_Loop);
2016 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2017 Set_Label_Construct (Parent (Ent), Loop_Statement);
2018 end if;
2019 end if;
2020 end if;
2022 -- Case of no identifier present
2024 else
2025 Ent :=
2026 New_Internal_Entity
2027 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2028 Set_Etype (Ent, Standard_Void_Type);
2029 Set_Parent (Ent, Loop_Statement);
2030 end if;
2032 -- Kill current values on entry to loop, since statements in body of
2033 -- loop may have been executed before the loop is entered. Similarly we
2034 -- kill values after the loop, since we do not know that the body of the
2035 -- loop was executed.
2037 Kill_Current_Values;
2038 Push_Scope (Ent);
2039 Analyze_Iteration_Scheme (Iter);
2040 Analyze_Statements (Statements (Loop_Statement));
2041 Process_End_Label (Loop_Statement, 'e', Ent);
2042 End_Scope;
2043 Kill_Current_Values;
2045 -- Check for infinite loop. Skip check for generated code, since it
2046 -- justs waste time and makes debugging the routine called harder.
2048 -- Note that we have to wait till the body of the loop is fully analyzed
2049 -- before making this call, since Check_Infinite_Loop_Warning relies on
2050 -- being able to use semantic visibility information to find references.
2052 if Comes_From_Source (N) then
2053 Check_Infinite_Loop_Warning (N);
2054 end if;
2056 -- Code after loop is unreachable if the loop has no WHILE or FOR
2057 -- and contains no EXIT statements within the body of the loop.
2059 if No (Iter) and then not Has_Exit (Ent) then
2060 Check_Unreachable_Code (N);
2061 end if;
2062 end Analyze_Loop_Statement;
2064 ----------------------------
2065 -- Analyze_Null_Statement --
2066 ----------------------------
2068 -- Note: the semantics of the null statement is implemented by a single
2069 -- null statement, too bad everything isn't as simple as this!
2071 procedure Analyze_Null_Statement (N : Node_Id) is
2072 pragma Warnings (Off, N);
2073 begin
2074 null;
2075 end Analyze_Null_Statement;
2077 ------------------------
2078 -- Analyze_Statements --
2079 ------------------------
2081 procedure Analyze_Statements (L : List_Id) is
2082 S : Node_Id;
2083 Lab : Entity_Id;
2085 begin
2086 -- The labels declared in the statement list are reachable from
2087 -- statements in the list. We do this as a prepass so that any
2088 -- goto statement will be properly flagged if its target is not
2089 -- reachable. This is not required, but is nice behavior!
2091 S := First (L);
2092 while Present (S) loop
2093 if Nkind (S) = N_Label then
2094 Analyze (Identifier (S));
2095 Lab := Entity (Identifier (S));
2097 -- If we found a label mark it as reachable
2099 if Ekind (Lab) = E_Label then
2100 Generate_Definition (Lab);
2101 Set_Reachable (Lab);
2103 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2104 Set_Label_Construct (Parent (Lab), S);
2105 end if;
2107 -- If we failed to find a label, it means the implicit declaration
2108 -- of the label was hidden. A for-loop parameter can do this to
2109 -- a label with the same name inside the loop, since the implicit
2110 -- label declaration is in the innermost enclosing body or block
2111 -- statement.
2113 else
2114 Error_Msg_Sloc := Sloc (Lab);
2115 Error_Msg_N
2116 ("implicit label declaration for & is hidden#",
2117 Identifier (S));
2118 end if;
2119 end if;
2121 Next (S);
2122 end loop;
2124 -- Perform semantic analysis on all statements
2126 Conditional_Statements_Begin;
2128 S := First (L);
2129 while Present (S) loop
2130 Analyze (S);
2131 Next (S);
2132 end loop;
2134 Conditional_Statements_End;
2136 -- Make labels unreachable. Visibility is not sufficient, because
2137 -- labels in one if-branch for example are not reachable from the
2138 -- other branch, even though their declarations are in the enclosing
2139 -- declarative part.
2141 S := First (L);
2142 while Present (S) loop
2143 if Nkind (S) = N_Label then
2144 Set_Reachable (Entity (Identifier (S)), False);
2145 end if;
2147 Next (S);
2148 end loop;
2149 end Analyze_Statements;
2151 ----------------------------
2152 -- Check_Unreachable_Code --
2153 ----------------------------
2155 procedure Check_Unreachable_Code (N : Node_Id) is
2156 Error_Loc : Source_Ptr;
2157 P : Node_Id;
2159 begin
2160 if Is_List_Member (N)
2161 and then Comes_From_Source (N)
2162 then
2163 declare
2164 Nxt : Node_Id;
2166 begin
2167 Nxt := Original_Node (Next (N));
2169 -- If a label follows us, then we never have dead code, since
2170 -- someone could branch to the label, so we just ignore it.
2172 if Nkind (Nxt) = N_Label then
2173 return;
2175 -- Otherwise see if we have a real statement following us
2177 elsif Present (Nxt)
2178 and then Comes_From_Source (Nxt)
2179 and then Is_Statement (Nxt)
2180 then
2181 -- Special very annoying exception. If we have a return that
2182 -- follows a raise, then we allow it without a warning, since
2183 -- the Ada RM annoyingly requires a useless return here!
2185 if Nkind (Original_Node (N)) /= N_Raise_Statement
2186 or else Nkind (Nxt) /= N_Simple_Return_Statement
2187 then
2188 -- The rather strange shenanigans with the warning message
2189 -- here reflects the fact that Kill_Dead_Code is very good
2190 -- at removing warnings in deleted code, and this is one
2191 -- warning we would prefer NOT to have removed.
2193 Error_Loc := Sloc (Nxt);
2195 -- If we have unreachable code, analyze and remove the
2196 -- unreachable code, since it is useless and we don't
2197 -- want to generate junk warnings.
2199 -- We skip this step if we are not in code generation mode.
2200 -- This is the one case where we remove dead code in the
2201 -- semantics as opposed to the expander, and we do not want
2202 -- to remove code if we are not in code generation mode,
2203 -- since this messes up the ASIS trees.
2205 -- Note that one might react by moving the whole circuit to
2206 -- exp_ch5, but then we lose the warning in -gnatc mode.
2208 if Operating_Mode = Generate_Code then
2209 loop
2210 Nxt := Next (N);
2212 -- Quit deleting when we have nothing more to delete
2213 -- or if we hit a label (since someone could transfer
2214 -- control to a label, so we should not delete it).
2216 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2218 -- Statement/declaration is to be deleted
2220 Analyze (Nxt);
2221 Remove (Nxt);
2222 Kill_Dead_Code (Nxt);
2223 end loop;
2224 end if;
2226 -- Now issue the warning
2228 Error_Msg ("?unreachable code!", Error_Loc);
2229 end if;
2231 -- If the unconditional transfer of control instruction is
2232 -- the last statement of a sequence, then see if our parent
2233 -- is one of the constructs for which we count unblocked exits,
2234 -- and if so, adjust the count.
2236 else
2237 P := Parent (N);
2239 -- Statements in THEN part or ELSE part of IF statement
2241 if Nkind (P) = N_If_Statement then
2242 null;
2244 -- Statements in ELSIF part of an IF statement
2246 elsif Nkind (P) = N_Elsif_Part then
2247 P := Parent (P);
2248 pragma Assert (Nkind (P) = N_If_Statement);
2250 -- Statements in CASE statement alternative
2252 elsif Nkind (P) = N_Case_Statement_Alternative then
2253 P := Parent (P);
2254 pragma Assert (Nkind (P) = N_Case_Statement);
2256 -- Statements in body of block
2258 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2259 and then Nkind (Parent (P)) = N_Block_Statement
2260 then
2261 null;
2263 -- Statements in exception handler in a block
2265 elsif Nkind (P) = N_Exception_Handler
2266 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2267 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2268 then
2269 null;
2271 -- None of these cases, so return
2273 else
2274 return;
2275 end if;
2277 -- This was one of the cases we are looking for (i.e. the
2278 -- parent construct was IF, CASE or block) so decrement count.
2280 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2281 end if;
2282 end;
2283 end if;
2284 end Check_Unreachable_Code;
2286 end Sem_Ch5;