Fix unused warnings.
[official-gcc/graphite-test-results.git] / gcc / ada / s-rannum.adb
blobd85dd2efacf1a134fb6e876ceb16a41d3dcbea03
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . R A N D O M _ N U M B E R S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2007-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 ------------------------------------------------------------------------------
33 -- --
34 -- The implementation here is derived from a C-program for MT19937, with --
35 -- initialization improved 2002/1/26. As required, the following notice is --
36 -- copied from the original program. --
37 -- --
38 -- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, --
39 -- All rights reserved. --
40 -- --
41 -- Redistribution and use in source and binary forms, with or without --
42 -- modification, are permitted provided that the following conditions --
43 -- are met: --
44 -- --
45 -- 1. Redistributions of source code must retain the above copyright --
46 -- notice, this list of conditions and the following disclaimer. --
47 -- --
48 -- 2. Redistributions in binary form must reproduce the above copyright --
49 -- notice, this list of conditions and the following disclaimer in the --
50 -- documentation and/or other materials provided with the distribution.--
51 -- --
52 -- 3. The names of its contributors may not be used to endorse or promote --
53 -- products derived from this software without specific prior written --
54 -- permission. --
55 -- --
56 -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
57 -- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
58 -- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
59 -- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
60 -- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
61 -- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
62 -- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
63 -- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
64 -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
65 -- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
66 -- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
67 -- --
68 ------------------------------------------------------------------------------
70 ------------------------------------------------------------------------------
71 -- --
72 -- This is an implementation of the Mersenne Twister, twisted generalized --
73 -- feedback shift register of rational normal form, with state-bit --
74 -- reflection and tempering. This version generates 32-bit integers with a --
75 -- period of 2**19937 - 1 (a Mersenne prime, hence the name). For --
76 -- applications requiring more than 32 bits (up to 64), we concatenate two --
77 -- 32-bit numbers. --
78 -- --
79 -- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for --
80 -- details. --
81 -- --
82 -- In contrast to the original code, we do not generate random numbers in --
83 -- batches of N. Measurement seems to show this has very little if any --
84 -- effect on performance, and it may be marginally better for real-time --
85 -- applications with hard deadlines. --
86 -- --
87 ------------------------------------------------------------------------------
89 with Ada.Calendar; use Ada.Calendar;
90 with Ada.Unchecked_Conversion;
92 with Interfaces; use Interfaces;
94 use Ada;
96 package body System.Random_Numbers is
98 Y2K : constant Calendar.Time :=
99 Calendar.Time_Of
100 (Year => 2000, Month => 1, Day => 1, Seconds => 0.0);
101 -- First day of Year 2000 (what is this for???)
103 Image_Numeral_Length : constant := Max_Image_Width / N;
104 subtype Image_String is String (1 .. Max_Image_Width);
106 ----------------------------
107 -- Algorithmic Parameters --
108 ----------------------------
110 Lower_Mask : constant := 2**31-1;
111 Upper_Mask : constant := 2**31;
113 Matrix_A : constant array (State_Val range 0 .. 1) of State_Val
114 := (0, 16#9908b0df#);
115 -- The twist transformation is represented by a matrix of the form
117 -- [ 0 I(31) ]
118 -- [ _a ]
120 -- where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
121 -- _a is a particular bit row-vector, represented here by a 32-bit integer.
122 -- If integer x represents a row vector of bits (with x(0), the units bit,
123 -- last), then
124 -- x * A = [0 x(31..1)] xor Matrix_A(x(0)).
126 U : constant := 11;
127 S : constant := 7;
128 B_Mask : constant := 16#9d2c5680#;
129 T : constant := 15;
130 C_Mask : constant := 16#efc60000#;
131 L : constant := 18;
132 -- The tempering shifts and bit masks, in the order applied
134 Seed0 : constant := 5489;
135 -- Default seed, used to initialize the state vector when Reset not called
137 Seed1 : constant := 19650218;
138 -- Seed used to initialize the state vector when calling Reset with an
139 -- initialization vector.
141 Mult0 : constant := 1812433253;
142 -- Multiplier for a modified linear congruential generator used to
143 -- initialize the state vector when calling Reset with a single integer
144 -- seed.
146 Mult1 : constant := 1664525;
147 Mult2 : constant := 1566083941;
148 -- Multipliers for two modified linear congruential generators used to
149 -- initialize the state vector when calling Reset with an initialization
150 -- vector.
152 -----------------------
153 -- Local Subprograms --
154 -----------------------
156 procedure Init (Gen : Generator; Initiator : Unsigned_32);
157 -- Perform a default initialization of the state of Gen. The resulting
158 -- state is identical for identical values of Initiator.
160 procedure Insert_Image
161 (S : in out Image_String;
162 Index : Integer;
163 V : State_Val);
164 -- Insert image of V into S, in the Index'th 11-character substring
166 function Extract_Value (S : String; Index : Integer) return State_Val;
167 -- Treat S as a sequence of 11-character decimal numerals and return
168 -- the result of converting numeral #Index (numbering from 0)
170 function To_Unsigned is
171 new Unchecked_Conversion (Integer_32, Unsigned_32);
172 function To_Unsigned is
173 new Unchecked_Conversion (Integer_64, Unsigned_64);
175 ------------
176 -- Random --
177 ------------
179 function Random (Gen : Generator) return Unsigned_32 is
180 G : Generator renames Gen.Writable.Self.all;
181 Y : State_Val;
182 I : Integer; -- should avoid use of identifier I ???
184 begin
185 I := G.I;
187 if I < N - M then
188 Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
189 Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
190 I := I + 1;
192 elsif I < N - 1 then
193 Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
194 Y := G.S (I + (M - N))
195 xor Shift_Right (Y, 1)
196 xor Matrix_A (Y and 1);
197 I := I + 1;
199 elsif I = N - 1 then
200 Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
201 Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
202 I := 0;
204 else
205 Init (G, Seed0);
206 return Random (Gen);
207 end if;
209 G.S (G.I) := Y;
210 G.I := I;
212 Y := Y xor Shift_Right (Y, U);
213 Y := Y xor (Shift_Left (Y, S) and B_Mask);
214 Y := Y xor (Shift_Left (Y, T) and C_Mask);
215 Y := Y xor Shift_Right (Y, L);
217 return Y;
218 end Random;
220 generic
221 type Unsigned is mod <>;
222 type Real is digits <>;
223 with function Random (G : Generator) return Unsigned is <>;
224 function Random_Float_Template (Gen : Generator) return Real;
225 pragma Inline (Random_Float_Template);
226 -- Template for a random-number generator implementation that delivers
227 -- values of type Real in the range [0 .. 1], using values from Gen,
228 -- assuming that Unsigned is large enough to hold the bits of a mantissa
229 -- for type Real.
231 ---------------------------
232 -- Random_Float_Template --
233 ---------------------------
235 function Random_Float_Template (Gen : Generator) return Real is
237 pragma Compile_Time_Error
238 (Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
239 "insufficiently large modular type used to hold mantissa");
241 begin
242 -- This code generates random floating-point numbers from unsigned
243 -- integers. Assuming that Real'Machine_Radix = 2, it can deliver all
244 -- machine values of type Real (as implied by Real'Machine_Mantissa and
245 -- Real'Machine_Emin), which is not true of the standard method (to
246 -- which we fall back for non-binary radix): computing Real(<random
247 -- integer>) / (<max random integer>+1). To do so, we first extract an
248 -- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
249 -- decide on a normalized exponent by repeated coin flips, decrementing
250 -- from 0 as long as we flip heads (1 bits). This process yields the
251 -- proper geometric distribution for the exponent: in a uniformly
252 -- distributed set of floating-point numbers, 1/2 of them will be in
253 -- (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
254 -- further adjustment at binade boundaries (see comments below) to give
255 -- the effect of selecting a uniformly distributed real deviate in
256 -- [0..1] and then rounding to the nearest representable floating-point
257 -- number. The algorithm attempts to be stingy with random integers. In
258 -- the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
259 -- integers, but this case occurs with probability around
260 -- 2**Machine_Emin, and the expected number of calls to integer-valued
261 -- Random is 1. For another discussion of the issues addressed by this
262 -- process, see Allen Downey's unpublished paper at
263 -- http://allendowney.com/research/rand/downey07randfloat.pdf.
265 if Real'Machine_Radix /= 2 then
266 return Real'Machine
267 (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
269 else
270 declare
271 type Bit_Count is range 0 .. 4;
273 subtype T is Real'Base;
275 Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
276 of Bit_Count :=
277 (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
278 2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
279 2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
280 2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
282 Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
283 := (0 => 2.0**(0 - T'Machine_Mantissa),
284 1 => 2.0**(-1 - T'Machine_Mantissa),
285 2 => 2.0**(-2 - T'Machine_Mantissa),
286 3 => 2.0**(-3 - T'Machine_Mantissa));
288 Extra_Bits : constant Natural :=
289 (Unsigned'Size - T'Machine_Mantissa + 1);
290 -- Random bits left over after selecting mantissa
292 Mantissa : Unsigned;
294 X : Real; -- Scaled mantissa
295 R : Unsigned_32; -- Supply of random bits
296 R_Bits : Natural; -- Number of bits left in R
297 K : Bit_Count; -- Next decrement to exponent
299 begin
300 Mantissa := Random (Gen) / 2**Extra_Bits;
301 R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
302 R_Bits := Extra_Bits;
303 X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
305 if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
307 -- We got lucky and got a zero in our few extra bits
309 K := Trailing_Ones (R);
311 else
312 Find_Zero : loop
314 -- R has R_Bits unprocessed random bits, a multiple of 4.
315 -- X needs to be halved for each trailing one bit. The
316 -- process stops as soon as a 0 bit is found. If R_Bits
317 -- becomes zero, reload R.
319 -- Process 4 bits at a time for speed: the two iterations
320 -- on average with three tests each was still too slow,
321 -- probably because the branches are not predictable.
322 -- This loop now will only execute once 94% of the cases,
323 -- doing more bits at a time will not help.
325 while R_Bits >= 4 loop
326 K := Trailing_Ones (R mod 16);
328 exit Find_Zero when K < 4; -- Exits 94% of the time
330 R_Bits := R_Bits - 4;
331 X := X / 16.0;
332 R := R / 16;
333 end loop;
335 -- Do not allow us to loop endlessly even in the (very
336 -- unlikely) case that Random (Gen) keeps yielding all ones.
338 exit Find_Zero when X = 0.0;
339 R := Random (Gen);
340 R_Bits := 32;
341 end loop Find_Zero;
342 end if;
344 -- K has the count of trailing ones not reflected yet in X. The
345 -- following multiplication takes care of that, as well as the
346 -- correction to move the radix point to the left of the mantissa.
347 -- Doing it at the end avoids repeated rounding errors in the
348 -- exceedingly unlikely case of ever having a subnormal result.
350 X := X * Pow_Tab (K);
352 -- The smallest value in each binade is rounded to by 0.75 of
353 -- the span of real numbers as its next larger neighbor, and
354 -- 1.0 is rounded to by half of the span of real numbers as its
355 -- next smaller neighbor. To account for this, when we encounter
356 -- the smallest number in a binade, we substitute the smallest
357 -- value in the next larger binade with probability 1/2.
359 if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
360 X := 2.0 * X;
361 end if;
363 return X;
364 end;
365 end if;
366 end Random_Float_Template;
368 ------------
369 -- Random --
370 ------------
372 function Random (Gen : Generator) return Float is
373 function F is new Random_Float_Template (Unsigned_32, Float);
374 begin
375 return F (Gen);
376 end Random;
378 function Random (Gen : Generator) return Long_Float is
379 function F is new Random_Float_Template (Unsigned_64, Long_Float);
380 begin
381 return F (Gen);
382 end Random;
384 function Random (Gen : Generator) return Unsigned_64 is
385 begin
386 return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
387 or Unsigned_64 (Unsigned_32'(Random (Gen)));
388 end Random;
390 ---------------------
391 -- Random_Discrete --
392 ---------------------
394 function Random_Discrete
395 (Gen : Generator;
396 Min : Result_Subtype := Default_Min;
397 Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
399 begin
400 if Max = Min then
401 return Max;
403 elsif Max < Min then
404 raise Constraint_Error;
406 elsif Result_Subtype'Base'Size > 32 then
407 declare
408 -- In the 64-bit case, we have to be careful, since not all 64-bit
409 -- unsigned values are representable in GNAT's root_integer type.
410 -- Ignore different-size warnings here since GNAT's handling
411 -- is correct.
413 pragma Warnings ("Z"); -- better to use msg string! ???
414 function Conv_To_Unsigned is
415 new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
416 function Conv_To_Result is
417 new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
418 pragma Warnings ("z");
420 N : constant Unsigned_64 :=
421 Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
423 X, Slop : Unsigned_64;
425 begin
426 if N = 0 then
427 return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
429 else
430 Slop := Unsigned_64'Last rem N + 1;
432 loop
433 X := Random (Gen);
434 exit when Slop = N or else X <= Unsigned_64'Last - Slop;
435 end loop;
437 return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
438 end if;
439 end;
441 elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
442 2 ** 32 - 1
443 then
444 return Result_Subtype'Val
445 (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
446 else
447 declare
448 N : constant Unsigned_32 :=
449 Unsigned_32 (Result_Subtype'Pos (Max) -
450 Result_Subtype'Pos (Min) + 1);
451 Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
452 X : Unsigned_32;
454 begin
455 loop
456 X := Random (Gen);
457 exit when Slop = N or else X <= Unsigned_32'Last - Slop;
458 end loop;
460 return
461 Result_Subtype'Val
462 (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
463 end;
464 end if;
465 end Random_Discrete;
467 ------------------
468 -- Random_Float --
469 ------------------
471 function Random_Float (Gen : Generator) return Result_Subtype is
472 begin
473 if Result_Subtype'Base'Digits > Float'Digits then
474 return Result_Subtype'Machine (Result_Subtype
475 (Long_Float'(Random (Gen))));
476 else
477 return Result_Subtype'Machine (Result_Subtype
478 (Float'(Random (Gen))));
479 end if;
480 end Random_Float;
482 -----------
483 -- Reset --
484 -----------
486 procedure Reset (Gen : Generator) is
487 Clock : constant Time := Calendar.Clock;
488 Duration_Since_Y2K : constant Duration := Clock - Y2K;
490 X : constant Unsigned_32 :=
491 Unsigned_32'Mod (Unsigned_64 (Duration_Since_Y2K) * 64);
493 begin
494 Init (Gen, X);
495 end Reset;
497 procedure Reset (Gen : Generator; Initiator : Integer_32) is
498 begin
499 Init (Gen, To_Unsigned (Initiator));
500 end Reset;
502 procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
503 begin
504 Init (Gen, Initiator);
505 end Reset;
507 procedure Reset (Gen : Generator; Initiator : Integer) is
508 begin
509 pragma Warnings (Off, "condition is always *");
510 -- This is probably an unnecessary precaution against future change, but
511 -- since the test is a static expression, no extra code is involved.
513 if Integer'Size <= 32 then
514 Init (Gen, To_Unsigned (Integer_32 (Initiator)));
516 else
517 declare
518 Initiator1 : constant Unsigned_64 :=
519 To_Unsigned (Integer_64 (Initiator));
520 Init0 : constant Unsigned_32 :=
521 Unsigned_32 (Initiator1 mod 2 ** 32);
522 Init1 : constant Unsigned_32 :=
523 Unsigned_32 (Shift_Right (Initiator1, 32));
524 begin
525 Reset (Gen, Initialization_Vector'(Init0, Init1));
526 end;
527 end if;
529 pragma Warnings (On, "condition is always *");
530 end Reset;
532 procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
533 G : Generator renames Gen.Writable.Self.all;
534 I, J : Integer;
536 begin
537 Init (G, Seed1);
538 I := 1;
539 J := 0;
541 if Initiator'Length > 0 then
542 for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
543 G.S (I) :=
544 (G.S (I) xor ((G.S (I - 1)
545 xor Shift_Right (G.S (I - 1), 30)) * Mult1))
546 + Initiator (J + Initiator'First) + Unsigned_32 (J);
548 I := I + 1;
549 J := J + 1;
551 if I >= N then
552 G.S (0) := G.S (N - 1);
553 I := 1;
554 end if;
556 if J >= Initiator'Length then
557 J := 0;
558 end if;
559 end loop;
560 end if;
562 for K in reverse 1 .. N - 1 loop
563 G.S (I) :=
564 (G.S (I) xor ((G.S (I - 1)
565 xor Shift_Right (G.S (I - 1), 30)) * Mult2))
566 - Unsigned_32 (I);
567 I := I + 1;
569 if I >= N then
570 G.S (0) := G.S (N - 1);
571 I := 1;
572 end if;
573 end loop;
575 G.S (0) := Upper_Mask;
576 end Reset;
578 procedure Reset (Gen : Generator; From_State : Generator) is
579 G : Generator renames Gen.Writable.Self.all;
580 begin
581 G.S := From_State.S;
582 G.I := From_State.I;
583 end Reset;
585 procedure Reset (Gen : Generator; From_State : State) is
586 G : Generator renames Gen.Writable.Self.all;
587 begin
588 G.I := 0;
589 G.S := From_State;
590 end Reset;
592 procedure Reset (Gen : Generator; From_Image : String) is
593 G : Generator renames Gen.Writable.Self.all;
594 begin
595 G.I := 0;
597 for J in 0 .. N - 1 loop
598 G.S (J) := Extract_Value (From_Image, J);
599 end loop;
600 end Reset;
602 ----------
603 -- Save --
604 ----------
606 procedure Save (Gen : Generator; To_State : out State) is
607 Gen2 : Generator;
609 begin
610 if Gen.I = N then
611 Init (Gen2, 5489);
612 To_State := Gen2.S;
614 else
615 To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
616 To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
617 end if;
618 end Save;
620 -----------
621 -- Image --
622 -----------
624 function Image (Of_State : State) return String is
625 Result : Image_String;
627 begin
628 Result := (others => ' ');
630 for J in Of_State'Range loop
631 Insert_Image (Result, J, Of_State (J));
632 end loop;
634 return Result;
635 end Image;
637 function Image (Gen : Generator) return String is
638 Result : Image_String;
640 begin
641 Result := (others => ' ');
642 for J in 0 .. N - 1 loop
643 Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
644 end loop;
646 return Result;
647 end Image;
649 -----------
650 -- Value --
651 -----------
653 function Value (Coded_State : String) return State is
654 Gen : Generator;
655 S : State;
656 begin
657 Reset (Gen, Coded_State);
658 Save (Gen, S);
659 return S;
660 end Value;
662 ----------
663 -- Init --
664 ----------
666 procedure Init (Gen : Generator; Initiator : Unsigned_32) is
667 G : Generator renames Gen.Writable.Self.all;
668 begin
669 G.S (0) := Initiator;
671 for I in 1 .. N - 1 loop
672 G.S (I) :=
673 (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
674 + Unsigned_32 (I);
675 end loop;
677 G.I := 0;
678 end Init;
680 ------------------
681 -- Insert_Image --
682 ------------------
684 procedure Insert_Image
685 (S : in out Image_String;
686 Index : Integer;
687 V : State_Val)
689 Value : constant String := State_Val'Image (V);
690 begin
691 S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
692 end Insert_Image;
694 -------------------
695 -- Extract_Value --
696 -------------------
698 function Extract_Value (S : String; Index : Integer) return State_Val is
699 Start : constant Integer := S'First + Index * Image_Numeral_Length;
700 begin
701 return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
702 end Extract_Value;
703 end System.Random_Numbers;