Don't use uint8_t.
[official-gcc/constexpr.git] / gcc / tree-cfg.c
blob01fefc306ef5c47c1261403973d2e004a0ae649a
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
88 location_t locus;
89 int discriminator;
91 static htab_t discriminator_per_locus;
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq);
95 static void factor_computed_gotos (void);
97 /* Edges. */
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block);
100 static void make_gimple_switch_edges (basic_block);
101 static void make_goto_expr_edges (basic_block);
102 static void make_gimple_asm_edges (basic_block);
103 static unsigned int locus_map_hash (const void *);
104 static int locus_map_eq (const void *, const void *);
105 static void assign_discriminator (location_t, basic_block);
106 static edge gimple_redirect_edge_and_branch (edge, basic_block);
107 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
108 static unsigned int split_critical_edges (void);
110 /* Various helpers. */
111 static inline bool stmt_starts_bb_p (gimple, gimple);
112 static int gimple_verify_flow_info (void);
113 static void gimple_make_forwarder_block (edge);
114 static void gimple_cfg2vcg (FILE *);
115 static gimple first_non_label_stmt (basic_block);
117 /* Flowgraph optimization and cleanup. */
118 static void gimple_merge_blocks (basic_block, basic_block);
119 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
120 static void remove_bb (basic_block);
121 static edge find_taken_edge_computed_goto (basic_block, tree);
122 static edge find_taken_edge_cond_expr (basic_block, tree);
123 static edge find_taken_edge_switch_expr (basic_block, tree);
124 static tree find_case_label_for_value (gimple, tree);
126 void
127 init_empty_tree_cfg_for_function (struct function *fn)
129 /* Initialize the basic block array. */
130 init_flow (fn);
131 profile_status_for_function (fn) = PROFILE_ABSENT;
132 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
133 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
134 basic_block_info_for_function (fn)
135 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
136 VEC_safe_grow_cleared (basic_block, gc,
137 basic_block_info_for_function (fn),
138 initial_cfg_capacity);
140 /* Build a mapping of labels to their associated blocks. */
141 label_to_block_map_for_function (fn)
142 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
143 VEC_safe_grow_cleared (basic_block, gc,
144 label_to_block_map_for_function (fn),
145 initial_cfg_capacity);
147 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
148 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
149 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
150 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
152 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
153 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
154 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
155 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
158 void
159 init_empty_tree_cfg (void)
161 init_empty_tree_cfg_for_function (cfun);
164 /*---------------------------------------------------------------------------
165 Create basic blocks
166 ---------------------------------------------------------------------------*/
168 /* Entry point to the CFG builder for trees. SEQ is the sequence of
169 statements to be added to the flowgraph. */
171 static void
172 build_gimple_cfg (gimple_seq seq)
174 /* Register specific gimple functions. */
175 gimple_register_cfg_hooks ();
177 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
179 init_empty_tree_cfg ();
181 found_computed_goto = 0;
182 make_blocks (seq);
184 /* Computed gotos are hell to deal with, especially if there are
185 lots of them with a large number of destinations. So we factor
186 them to a common computed goto location before we build the
187 edge list. After we convert back to normal form, we will un-factor
188 the computed gotos since factoring introduces an unwanted jump. */
189 if (found_computed_goto)
190 factor_computed_gotos ();
192 /* Make sure there is always at least one block, even if it's empty. */
193 if (n_basic_blocks == NUM_FIXED_BLOCKS)
194 create_empty_bb (ENTRY_BLOCK_PTR);
196 /* Adjust the size of the array. */
197 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
198 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
200 /* To speed up statement iterator walks, we first purge dead labels. */
201 cleanup_dead_labels ();
203 /* Group case nodes to reduce the number of edges.
204 We do this after cleaning up dead labels because otherwise we miss
205 a lot of obvious case merging opportunities. */
206 group_case_labels ();
208 /* Create the edges of the flowgraph. */
209 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
210 free);
211 make_edges ();
212 cleanup_dead_labels ();
213 htab_delete (discriminator_per_locus);
215 /* Debugging dumps. */
217 /* Write the flowgraph to a VCG file. */
219 int local_dump_flags;
220 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
221 if (vcg_file)
223 gimple_cfg2vcg (vcg_file);
224 dump_end (TDI_vcg, vcg_file);
228 #ifdef ENABLE_CHECKING
229 verify_stmts ();
230 #endif
233 static unsigned int
234 execute_build_cfg (void)
236 gimple_seq body = gimple_body (current_function_decl);
238 build_gimple_cfg (body);
239 gimple_set_body (current_function_decl, NULL);
240 if (dump_file && (dump_flags & TDF_DETAILS))
242 fprintf (dump_file, "Scope blocks:\n");
243 dump_scope_blocks (dump_file, dump_flags);
245 return 0;
248 struct gimple_opt_pass pass_build_cfg =
251 GIMPLE_PASS,
252 "cfg", /* name */
253 NULL, /* gate */
254 execute_build_cfg, /* execute */
255 NULL, /* sub */
256 NULL, /* next */
257 0, /* static_pass_number */
258 TV_TREE_CFG, /* tv_id */
259 PROP_gimple_leh, /* properties_required */
260 PROP_cfg, /* properties_provided */
261 0, /* properties_destroyed */
262 0, /* todo_flags_start */
263 TODO_verify_stmts | TODO_cleanup_cfg
264 | TODO_dump_func /* todo_flags_finish */
269 /* Return true if T is a computed goto. */
271 static bool
272 computed_goto_p (gimple t)
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
284 static void
285 factor_computed_gotos (void)
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
297 FOR_EACH_BB (bb)
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
302 if (gsi_end_p (gsi))
303 continue;
305 last = gsi_stmt (gsi);
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
315 gimple assignment;
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
355 /* Build a flowgraph for the sequence of stmts SEQ. */
357 static void
358 make_blocks (gimple_seq seq)
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
366 while (!gsi_end_p (i))
368 gimple prev_stmt;
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 start_new_block = true;
418 gsi_next (&i);
419 first_stmt_of_seq = false;
424 /* Create and return a new empty basic block after bb AFTER. */
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
429 basic_block bb;
431 gcc_assert (!e);
433 /* Create and initialize a new basic block. Since alloc_block uses
434 ggc_alloc_cleared to allocate a basic block, we do not have to
435 clear the newly allocated basic block here. */
436 bb = alloc_block ();
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
456 n_basic_blocks++;
457 last_basic_block++;
459 return bb;
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
469 void
470 fold_cond_expr_cond (void)
472 basic_block bb;
474 FOR_EACH_BB (bb)
476 gimple stmt = last_stmt (bb);
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
492 else
493 zerop = onep = false;
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
506 /* Join all the blocks in the flowgraph. */
508 static void
509 make_edges (void)
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
521 gimple last = last_stmt (bb);
522 bool fallthru;
524 if (last)
526 enum gimple_code code = gimple_code (last);
527 switch (code)
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
564 /* Some calls are known not to return. */
565 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
566 break;
568 case GIMPLE_ASSIGN:
569 /* A GIMPLE_ASSIGN may throw internally and thus be considered
570 control-altering. */
571 if (is_ctrl_altering_stmt (last))
572 make_eh_edges (last);
573 fallthru = true;
574 break;
576 case GIMPLE_ASM:
577 make_gimple_asm_edges (bb);
578 fallthru = true;
579 break;
581 case GIMPLE_OMP_PARALLEL:
582 case GIMPLE_OMP_TASK:
583 case GIMPLE_OMP_FOR:
584 case GIMPLE_OMP_SINGLE:
585 case GIMPLE_OMP_MASTER:
586 case GIMPLE_OMP_ORDERED:
587 case GIMPLE_OMP_CRITICAL:
588 case GIMPLE_OMP_SECTION:
589 cur_region = new_omp_region (bb, code, cur_region);
590 fallthru = true;
591 break;
593 case GIMPLE_OMP_SECTIONS:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS_SWITCH:
599 fallthru = false;
600 break;
602 case GIMPLE_OMP_ATOMIC_LOAD:
603 case GIMPLE_OMP_ATOMIC_STORE:
604 fallthru = true;
605 break;
607 case GIMPLE_OMP_RETURN:
608 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
609 somewhere other than the next block. This will be
610 created later. */
611 cur_region->exit = bb;
612 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
613 cur_region = cur_region->outer;
614 break;
616 case GIMPLE_OMP_CONTINUE:
617 cur_region->cont = bb;
618 switch (cur_region->type)
620 case GIMPLE_OMP_FOR:
621 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
622 succs edges as abnormal to prevent splitting
623 them. */
624 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
625 /* Make the loopback edge. */
626 make_edge (bb, single_succ (cur_region->entry),
627 EDGE_ABNORMAL);
629 /* Create an edge from GIMPLE_OMP_FOR to exit, which
630 corresponds to the case that the body of the loop
631 is not executed at all. */
632 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
633 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
634 fallthru = false;
635 break;
637 case GIMPLE_OMP_SECTIONS:
638 /* Wire up the edges into and out of the nested sections. */
640 basic_block switch_bb = single_succ (cur_region->entry);
642 struct omp_region *i;
643 for (i = cur_region->inner; i ; i = i->next)
645 gcc_assert (i->type == GIMPLE_OMP_SECTION);
646 make_edge (switch_bb, i->entry, 0);
647 make_edge (i->exit, bb, EDGE_FALLTHRU);
650 /* Make the loopback edge to the block with
651 GIMPLE_OMP_SECTIONS_SWITCH. */
652 make_edge (bb, switch_bb, 0);
654 /* Make the edge from the switch to exit. */
655 make_edge (switch_bb, bb->next_bb, 0);
656 fallthru = false;
658 break;
660 default:
661 gcc_unreachable ();
663 break;
665 default:
666 gcc_assert (!stmt_ends_bb_p (last));
667 fallthru = true;
670 else
671 fallthru = true;
673 if (fallthru)
675 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
676 if (last)
677 assign_discriminator (gimple_location (last), bb->next_bb);
681 if (root_omp_region)
682 free_omp_regions ();
684 /* Fold COND_EXPR_COND of each COND_EXPR. */
685 fold_cond_expr_cond ();
688 /* Trivial hash function for a location_t. ITEM is a pointer to
689 a hash table entry that maps a location_t to a discriminator. */
691 static unsigned int
692 locus_map_hash (const void *item)
694 return ((const struct locus_discrim_map *) item)->locus;
697 /* Equality function for the locus-to-discriminator map. VA and VB
698 point to the two hash table entries to compare. */
700 static int
701 locus_map_eq (const void *va, const void *vb)
703 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
704 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
705 return a->locus == b->locus;
708 /* Find the next available discriminator value for LOCUS. The
709 discriminator distinguishes among several basic blocks that
710 share a common locus, allowing for more accurate sample-based
711 profiling. */
713 static int
714 next_discriminator_for_locus (location_t locus)
716 struct locus_discrim_map item;
717 struct locus_discrim_map **slot;
719 item.locus = locus;
720 item.discriminator = 0;
721 slot = (struct locus_discrim_map **)
722 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
723 (hashval_t) locus, INSERT);
724 gcc_assert (slot);
725 if (*slot == HTAB_EMPTY_ENTRY)
727 *slot = XNEW (struct locus_discrim_map);
728 gcc_assert (*slot);
729 (*slot)->locus = locus;
730 (*slot)->discriminator = 0;
732 (*slot)->discriminator++;
733 return (*slot)->discriminator;
736 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
738 static bool
739 same_line_p (location_t locus1, location_t locus2)
741 expanded_location from, to;
743 if (locus1 == locus2)
744 return true;
746 from = expand_location (locus1);
747 to = expand_location (locus2);
749 if (from.line != to.line)
750 return false;
751 if (from.file == to.file)
752 return true;
753 return (from.file != NULL
754 && to.file != NULL
755 && strcmp (from.file, to.file) == 0);
758 /* Assign a unique discriminator value to block BB if it begins at the same
759 LOCUS as its predecessor block. */
761 static void
762 assign_discriminator (location_t locus, basic_block bb)
764 gimple first_in_to_bb, last_in_to_bb;
766 if (locus == 0 || bb->discriminator != 0)
767 return;
769 first_in_to_bb = first_non_label_stmt (bb);
770 last_in_to_bb = last_stmt (bb);
771 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
772 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
773 bb->discriminator = next_discriminator_for_locus (locus);
776 /* Create the edges for a GIMPLE_COND starting at block BB. */
778 static void
779 make_cond_expr_edges (basic_block bb)
781 gimple entry = last_stmt (bb);
782 gimple then_stmt, else_stmt;
783 basic_block then_bb, else_bb;
784 tree then_label, else_label;
785 edge e;
786 location_t entry_locus;
788 gcc_assert (entry);
789 gcc_assert (gimple_code (entry) == GIMPLE_COND);
791 entry_locus = gimple_location (entry);
793 /* Entry basic blocks for each component. */
794 then_label = gimple_cond_true_label (entry);
795 else_label = gimple_cond_false_label (entry);
796 then_bb = label_to_block (then_label);
797 else_bb = label_to_block (else_label);
798 then_stmt = first_stmt (then_bb);
799 else_stmt = first_stmt (else_bb);
801 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
802 assign_discriminator (entry_locus, then_bb);
803 e->goto_locus = gimple_location (then_stmt);
804 if (e->goto_locus)
805 e->goto_block = gimple_block (then_stmt);
806 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
807 if (e)
809 assign_discriminator (entry_locus, else_bb);
810 e->goto_locus = gimple_location (else_stmt);
811 if (e->goto_locus)
812 e->goto_block = gimple_block (else_stmt);
815 /* We do not need the labels anymore. */
816 gimple_cond_set_true_label (entry, NULL_TREE);
817 gimple_cond_set_false_label (entry, NULL_TREE);
821 /* Called for each element in the hash table (P) as we delete the
822 edge to cases hash table.
824 Clear all the TREE_CHAINs to prevent problems with copying of
825 SWITCH_EXPRs and structure sharing rules, then free the hash table
826 element. */
828 static bool
829 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
830 void *data ATTRIBUTE_UNUSED)
832 tree t, next;
834 for (t = (tree) *value; t; t = next)
836 next = TREE_CHAIN (t);
837 TREE_CHAIN (t) = NULL;
840 *value = NULL;
841 return false;
844 /* Start recording information mapping edges to case labels. */
846 void
847 start_recording_case_labels (void)
849 gcc_assert (edge_to_cases == NULL);
850 edge_to_cases = pointer_map_create ();
853 /* Return nonzero if we are recording information for case labels. */
855 static bool
856 recording_case_labels_p (void)
858 return (edge_to_cases != NULL);
861 /* Stop recording information mapping edges to case labels and
862 remove any information we have recorded. */
863 void
864 end_recording_case_labels (void)
866 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
867 pointer_map_destroy (edge_to_cases);
868 edge_to_cases = NULL;
871 /* If we are inside a {start,end}_recording_cases block, then return
872 a chain of CASE_LABEL_EXPRs from T which reference E.
874 Otherwise return NULL. */
876 static tree
877 get_cases_for_edge (edge e, gimple t)
879 void **slot;
880 size_t i, n;
882 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
883 chains available. Return NULL so the caller can detect this case. */
884 if (!recording_case_labels_p ())
885 return NULL;
887 slot = pointer_map_contains (edge_to_cases, e);
888 if (slot)
889 return (tree) *slot;
891 /* If we did not find E in the hash table, then this must be the first
892 time we have been queried for information about E & T. Add all the
893 elements from T to the hash table then perform the query again. */
895 n = gimple_switch_num_labels (t);
896 for (i = 0; i < n; i++)
898 tree elt = gimple_switch_label (t, i);
899 tree lab = CASE_LABEL (elt);
900 basic_block label_bb = label_to_block (lab);
901 edge this_edge = find_edge (e->src, label_bb);
903 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
904 a new chain. */
905 slot = pointer_map_insert (edge_to_cases, this_edge);
906 TREE_CHAIN (elt) = (tree) *slot;
907 *slot = elt;
910 return (tree) *pointer_map_contains (edge_to_cases, e);
913 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
915 static void
916 make_gimple_switch_edges (basic_block bb)
918 gimple entry = last_stmt (bb);
919 location_t entry_locus;
920 size_t i, n;
922 entry_locus = gimple_location (entry);
924 n = gimple_switch_num_labels (entry);
926 for (i = 0; i < n; ++i)
928 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
929 basic_block label_bb = label_to_block (lab);
930 make_edge (bb, label_bb, 0);
931 assign_discriminator (entry_locus, label_bb);
936 /* Return the basic block holding label DEST. */
938 basic_block
939 label_to_block_fn (struct function *ifun, tree dest)
941 int uid = LABEL_DECL_UID (dest);
943 /* We would die hard when faced by an undefined label. Emit a label to
944 the very first basic block. This will hopefully make even the dataflow
945 and undefined variable warnings quite right. */
946 if ((errorcount || sorrycount) && uid < 0)
948 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
949 gimple stmt;
951 stmt = gimple_build_label (dest);
952 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
953 uid = LABEL_DECL_UID (dest);
955 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
956 <= (unsigned int) uid)
957 return NULL;
958 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
961 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
962 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
964 void
965 make_abnormal_goto_edges (basic_block bb, bool for_call)
967 basic_block target_bb;
968 gimple_stmt_iterator gsi;
970 FOR_EACH_BB (target_bb)
971 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
973 gimple label_stmt = gsi_stmt (gsi);
974 tree target;
976 if (gimple_code (label_stmt) != GIMPLE_LABEL)
977 break;
979 target = gimple_label_label (label_stmt);
981 /* Make an edge to every label block that has been marked as a
982 potential target for a computed goto or a non-local goto. */
983 if ((FORCED_LABEL (target) && !for_call)
984 || (DECL_NONLOCAL (target) && for_call))
986 make_edge (bb, target_bb, EDGE_ABNORMAL);
987 break;
992 /* Create edges for a goto statement at block BB. */
994 static void
995 make_goto_expr_edges (basic_block bb)
997 gimple_stmt_iterator last = gsi_last_bb (bb);
998 gimple goto_t = gsi_stmt (last);
1000 /* A simple GOTO creates normal edges. */
1001 if (simple_goto_p (goto_t))
1003 tree dest = gimple_goto_dest (goto_t);
1004 basic_block label_bb = label_to_block (dest);
1005 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1006 e->goto_locus = gimple_location (goto_t);
1007 assign_discriminator (e->goto_locus, label_bb);
1008 if (e->goto_locus)
1009 e->goto_block = gimple_block (goto_t);
1010 gsi_remove (&last, true);
1011 return;
1014 /* A computed GOTO creates abnormal edges. */
1015 make_abnormal_goto_edges (bb, false);
1018 /* Create edges for an asm statement with labels at block BB. */
1020 static void
1021 make_gimple_asm_edges (basic_block bb)
1023 gimple stmt = last_stmt (bb);
1024 location_t stmt_loc = gimple_location (stmt);
1025 int i, n = gimple_asm_nlabels (stmt);
1027 for (i = 0; i < n; ++i)
1029 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1030 basic_block label_bb = label_to_block (label);
1031 make_edge (bb, label_bb, 0);
1032 assign_discriminator (stmt_loc, label_bb);
1036 /*---------------------------------------------------------------------------
1037 Flowgraph analysis
1038 ---------------------------------------------------------------------------*/
1040 /* Cleanup useless labels in basic blocks. This is something we wish
1041 to do early because it allows us to group case labels before creating
1042 the edges for the CFG, and it speeds up block statement iterators in
1043 all passes later on.
1044 We rerun this pass after CFG is created, to get rid of the labels that
1045 are no longer referenced. After then we do not run it any more, since
1046 (almost) no new labels should be created. */
1048 /* A map from basic block index to the leading label of that block. */
1049 static struct label_record
1051 /* The label. */
1052 tree label;
1054 /* True if the label is referenced from somewhere. */
1055 bool used;
1056 } *label_for_bb;
1058 /* Given LABEL return the first label in the same basic block. */
1060 static tree
1061 main_block_label (tree label)
1063 basic_block bb = label_to_block (label);
1064 tree main_label = label_for_bb[bb->index].label;
1066 /* label_to_block possibly inserted undefined label into the chain. */
1067 if (!main_label)
1069 label_for_bb[bb->index].label = label;
1070 main_label = label;
1073 label_for_bb[bb->index].used = true;
1074 return main_label;
1077 /* Clean up redundant labels within the exception tree. */
1079 static void
1080 cleanup_dead_labels_eh (void)
1082 eh_landing_pad lp;
1083 eh_region r;
1084 tree lab;
1085 int i;
1087 if (cfun->eh == NULL)
1088 return;
1090 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1091 if (lp && lp->post_landing_pad)
1093 lab = main_block_label (lp->post_landing_pad);
1094 if (lab != lp->post_landing_pad)
1096 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1097 EH_LANDING_PAD_NR (lab) = lp->index;
1101 FOR_ALL_EH_REGION (r)
1102 switch (r->type)
1104 case ERT_CLEANUP:
1105 case ERT_MUST_NOT_THROW:
1106 break;
1108 case ERT_TRY:
1110 eh_catch c;
1111 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1113 lab = c->label;
1114 if (lab)
1115 c->label = main_block_label (lab);
1118 break;
1120 case ERT_ALLOWED_EXCEPTIONS:
1121 lab = r->u.allowed.label;
1122 if (lab)
1123 r->u.allowed.label = main_block_label (lab);
1124 break;
1129 /* Cleanup redundant labels. This is a three-step process:
1130 1) Find the leading label for each block.
1131 2) Redirect all references to labels to the leading labels.
1132 3) Cleanup all useless labels. */
1134 void
1135 cleanup_dead_labels (void)
1137 basic_block bb;
1138 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1140 /* Find a suitable label for each block. We use the first user-defined
1141 label if there is one, or otherwise just the first label we see. */
1142 FOR_EACH_BB (bb)
1144 gimple_stmt_iterator i;
1146 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1148 tree label;
1149 gimple stmt = gsi_stmt (i);
1151 if (gimple_code (stmt) != GIMPLE_LABEL)
1152 break;
1154 label = gimple_label_label (stmt);
1156 /* If we have not yet seen a label for the current block,
1157 remember this one and see if there are more labels. */
1158 if (!label_for_bb[bb->index].label)
1160 label_for_bb[bb->index].label = label;
1161 continue;
1164 /* If we did see a label for the current block already, but it
1165 is an artificially created label, replace it if the current
1166 label is a user defined label. */
1167 if (!DECL_ARTIFICIAL (label)
1168 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1170 label_for_bb[bb->index].label = label;
1171 break;
1176 /* Now redirect all jumps/branches to the selected label.
1177 First do so for each block ending in a control statement. */
1178 FOR_EACH_BB (bb)
1180 gimple stmt = last_stmt (bb);
1181 if (!stmt)
1182 continue;
1184 switch (gimple_code (stmt))
1186 case GIMPLE_COND:
1188 tree true_label = gimple_cond_true_label (stmt);
1189 tree false_label = gimple_cond_false_label (stmt);
1191 if (true_label)
1192 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1193 if (false_label)
1194 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1195 break;
1198 case GIMPLE_SWITCH:
1200 size_t i, n = gimple_switch_num_labels (stmt);
1202 /* Replace all destination labels. */
1203 for (i = 0; i < n; ++i)
1205 tree case_label = gimple_switch_label (stmt, i);
1206 tree label = main_block_label (CASE_LABEL (case_label));
1207 CASE_LABEL (case_label) = label;
1209 break;
1212 case GIMPLE_ASM:
1214 int i, n = gimple_asm_nlabels (stmt);
1216 for (i = 0; i < n; ++i)
1218 tree cons = gimple_asm_label_op (stmt, i);
1219 tree label = main_block_label (TREE_VALUE (cons));
1220 TREE_VALUE (cons) = label;
1222 break;
1225 /* We have to handle gotos until they're removed, and we don't
1226 remove them until after we've created the CFG edges. */
1227 case GIMPLE_GOTO:
1228 if (!computed_goto_p (stmt))
1230 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1231 gimple_goto_set_dest (stmt, new_dest);
1233 break;
1235 default:
1236 break;
1240 /* Do the same for the exception region tree labels. */
1241 cleanup_dead_labels_eh ();
1243 /* Finally, purge dead labels. All user-defined labels and labels that
1244 can be the target of non-local gotos and labels which have their
1245 address taken are preserved. */
1246 FOR_EACH_BB (bb)
1248 gimple_stmt_iterator i;
1249 tree label_for_this_bb = label_for_bb[bb->index].label;
1251 if (!label_for_this_bb)
1252 continue;
1254 /* If the main label of the block is unused, we may still remove it. */
1255 if (!label_for_bb[bb->index].used)
1256 label_for_this_bb = NULL;
1258 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1260 tree label;
1261 gimple stmt = gsi_stmt (i);
1263 if (gimple_code (stmt) != GIMPLE_LABEL)
1264 break;
1266 label = gimple_label_label (stmt);
1268 if (label == label_for_this_bb
1269 || !DECL_ARTIFICIAL (label)
1270 || DECL_NONLOCAL (label)
1271 || FORCED_LABEL (label))
1272 gsi_next (&i);
1273 else
1274 gsi_remove (&i, true);
1278 free (label_for_bb);
1281 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1282 and scan the sorted vector of cases. Combine the ones jumping to the
1283 same label.
1284 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1286 void
1287 group_case_labels (void)
1289 basic_block bb;
1291 FOR_EACH_BB (bb)
1293 gimple stmt = last_stmt (bb);
1294 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1296 int old_size = gimple_switch_num_labels (stmt);
1297 int i, j, new_size = old_size;
1298 tree default_case = NULL_TREE;
1299 tree default_label = NULL_TREE;
1300 bool has_default;
1302 /* The default label is always the first case in a switch
1303 statement after gimplification if it was not optimized
1304 away */
1305 if (!CASE_LOW (gimple_switch_default_label (stmt))
1306 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1308 default_case = gimple_switch_default_label (stmt);
1309 default_label = CASE_LABEL (default_case);
1310 has_default = true;
1312 else
1313 has_default = false;
1315 /* Look for possible opportunities to merge cases. */
1316 if (has_default)
1317 i = 1;
1318 else
1319 i = 0;
1320 while (i < old_size)
1322 tree base_case, base_label, base_high;
1323 base_case = gimple_switch_label (stmt, i);
1325 gcc_assert (base_case);
1326 base_label = CASE_LABEL (base_case);
1328 /* Discard cases that have the same destination as the
1329 default case. */
1330 if (base_label == default_label)
1332 gimple_switch_set_label (stmt, i, NULL_TREE);
1333 i++;
1334 new_size--;
1335 continue;
1338 base_high = CASE_HIGH (base_case)
1339 ? CASE_HIGH (base_case)
1340 : CASE_LOW (base_case);
1341 i++;
1343 /* Try to merge case labels. Break out when we reach the end
1344 of the label vector or when we cannot merge the next case
1345 label with the current one. */
1346 while (i < old_size)
1348 tree merge_case = gimple_switch_label (stmt, i);
1349 tree merge_label = CASE_LABEL (merge_case);
1350 tree t = int_const_binop (PLUS_EXPR, base_high,
1351 integer_one_node, 1);
1353 /* Merge the cases if they jump to the same place,
1354 and their ranges are consecutive. */
1355 if (merge_label == base_label
1356 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1358 base_high = CASE_HIGH (merge_case) ?
1359 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1360 CASE_HIGH (base_case) = base_high;
1361 gimple_switch_set_label (stmt, i, NULL_TREE);
1362 new_size--;
1363 i++;
1365 else
1366 break;
1370 /* Compress the case labels in the label vector, and adjust the
1371 length of the vector. */
1372 for (i = 0, j = 0; i < new_size; i++)
1374 while (! gimple_switch_label (stmt, j))
1375 j++;
1376 gimple_switch_set_label (stmt, i,
1377 gimple_switch_label (stmt, j++));
1380 gcc_assert (new_size <= old_size);
1381 gimple_switch_set_num_labels (stmt, new_size);
1386 /* Checks whether we can merge block B into block A. */
1388 static bool
1389 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1391 gimple stmt;
1392 gimple_stmt_iterator gsi;
1393 gimple_seq phis;
1395 if (!single_succ_p (a))
1396 return false;
1398 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1399 return false;
1401 if (single_succ (a) != b)
1402 return false;
1404 if (!single_pred_p (b))
1405 return false;
1407 if (b == EXIT_BLOCK_PTR)
1408 return false;
1410 /* If A ends by a statement causing exceptions or something similar, we
1411 cannot merge the blocks. */
1412 stmt = last_stmt (a);
1413 if (stmt && stmt_ends_bb_p (stmt))
1414 return false;
1416 /* Do not allow a block with only a non-local label to be merged. */
1417 if (stmt
1418 && gimple_code (stmt) == GIMPLE_LABEL
1419 && DECL_NONLOCAL (gimple_label_label (stmt)))
1420 return false;
1422 /* Examine the labels at the beginning of B. */
1423 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1425 tree lab;
1426 stmt = gsi_stmt (gsi);
1427 if (gimple_code (stmt) != GIMPLE_LABEL)
1428 break;
1429 lab = gimple_label_label (stmt);
1431 /* Do not remove user labels. */
1432 if (!DECL_ARTIFICIAL (lab))
1433 return false;
1436 /* Protect the loop latches. */
1437 if (current_loops && b->loop_father->latch == b)
1438 return false;
1440 /* It must be possible to eliminate all phi nodes in B. If ssa form
1441 is not up-to-date and a name-mapping is registered, we cannot eliminate
1442 any phis. Symbols marked for renaming are never a problem though. */
1443 phis = phi_nodes (b);
1444 if (!gimple_seq_empty_p (phis)
1445 && name_mappings_registered_p ())
1446 return false;
1448 return true;
1451 /* Return true if the var whose chain of uses starts at PTR has no
1452 nondebug uses. */
1453 bool
1454 has_zero_uses_1 (const ssa_use_operand_t *head)
1456 const ssa_use_operand_t *ptr;
1458 for (ptr = head->next; ptr != head; ptr = ptr->next)
1459 if (!is_gimple_debug (USE_STMT (ptr)))
1460 return false;
1462 return true;
1465 /* Return true if the var whose chain of uses starts at PTR has a
1466 single nondebug use. Set USE_P and STMT to that single nondebug
1467 use, if so, or to NULL otherwise. */
1468 bool
1469 single_imm_use_1 (const ssa_use_operand_t *head,
1470 use_operand_p *use_p, gimple *stmt)
1472 ssa_use_operand_t *ptr, *single_use = 0;
1474 for (ptr = head->next; ptr != head; ptr = ptr->next)
1475 if (!is_gimple_debug (USE_STMT (ptr)))
1477 if (single_use)
1479 single_use = NULL;
1480 break;
1482 single_use = ptr;
1485 if (use_p)
1486 *use_p = single_use;
1488 if (stmt)
1489 *stmt = single_use ? single_use->loc.stmt : NULL;
1491 return !!single_use;
1494 /* Replaces all uses of NAME by VAL. */
1496 void
1497 replace_uses_by (tree name, tree val)
1499 imm_use_iterator imm_iter;
1500 use_operand_p use;
1501 gimple stmt;
1502 edge e;
1504 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1506 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1508 replace_exp (use, val);
1510 if (gimple_code (stmt) == GIMPLE_PHI)
1512 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1513 if (e->flags & EDGE_ABNORMAL)
1515 /* This can only occur for virtual operands, since
1516 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1517 would prevent replacement. */
1518 gcc_assert (!is_gimple_reg (name));
1519 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1524 if (gimple_code (stmt) != GIMPLE_PHI)
1526 size_t i;
1528 fold_stmt_inplace (stmt);
1529 if (cfgcleanup_altered_bbs)
1530 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1532 /* FIXME. This should go in update_stmt. */
1533 for (i = 0; i < gimple_num_ops (stmt); i++)
1535 tree op = gimple_op (stmt, i);
1536 /* Operands may be empty here. For example, the labels
1537 of a GIMPLE_COND are nulled out following the creation
1538 of the corresponding CFG edges. */
1539 if (op && TREE_CODE (op) == ADDR_EXPR)
1540 recompute_tree_invariant_for_addr_expr (op);
1543 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1544 update_stmt (stmt);
1548 gcc_assert (has_zero_uses (name));
1550 /* Also update the trees stored in loop structures. */
1551 if (current_loops)
1553 struct loop *loop;
1554 loop_iterator li;
1556 FOR_EACH_LOOP (li, loop, 0)
1558 substitute_in_loop_info (loop, name, val);
1563 /* Merge block B into block A. */
1565 static void
1566 gimple_merge_blocks (basic_block a, basic_block b)
1568 gimple_stmt_iterator last, gsi, psi;
1569 gimple_seq phis = phi_nodes (b);
1571 if (dump_file)
1572 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1574 /* Remove all single-valued PHI nodes from block B of the form
1575 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1576 gsi = gsi_last_bb (a);
1577 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1579 gimple phi = gsi_stmt (psi);
1580 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1581 gimple copy;
1582 bool may_replace_uses = !is_gimple_reg (def)
1583 || may_propagate_copy (def, use);
1585 /* In case we maintain loop closed ssa form, do not propagate arguments
1586 of loop exit phi nodes. */
1587 if (current_loops
1588 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1589 && is_gimple_reg (def)
1590 && TREE_CODE (use) == SSA_NAME
1591 && a->loop_father != b->loop_father)
1592 may_replace_uses = false;
1594 if (!may_replace_uses)
1596 gcc_assert (is_gimple_reg (def));
1598 /* Note that just emitting the copies is fine -- there is no problem
1599 with ordering of phi nodes. This is because A is the single
1600 predecessor of B, therefore results of the phi nodes cannot
1601 appear as arguments of the phi nodes. */
1602 copy = gimple_build_assign (def, use);
1603 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1604 remove_phi_node (&psi, false);
1606 else
1608 /* If we deal with a PHI for virtual operands, we can simply
1609 propagate these without fussing with folding or updating
1610 the stmt. */
1611 if (!is_gimple_reg (def))
1613 imm_use_iterator iter;
1614 use_operand_p use_p;
1615 gimple stmt;
1617 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1618 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1619 SET_USE (use_p, use);
1621 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1622 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1624 else
1625 replace_uses_by (def, use);
1627 remove_phi_node (&psi, true);
1631 /* Ensure that B follows A. */
1632 move_block_after (b, a);
1634 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1635 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1637 /* Remove labels from B and set gimple_bb to A for other statements. */
1638 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1640 gimple stmt = gsi_stmt (gsi);
1641 if (gimple_code (stmt) == GIMPLE_LABEL)
1643 tree label = gimple_label_label (stmt);
1644 int lp_nr;
1646 gsi_remove (&gsi, false);
1648 /* Now that we can thread computed gotos, we might have
1649 a situation where we have a forced label in block B
1650 However, the label at the start of block B might still be
1651 used in other ways (think about the runtime checking for
1652 Fortran assigned gotos). So we can not just delete the
1653 label. Instead we move the label to the start of block A. */
1654 if (FORCED_LABEL (label))
1656 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1657 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1660 lp_nr = EH_LANDING_PAD_NR (label);
1661 if (lp_nr)
1663 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1664 lp->post_landing_pad = NULL;
1667 else
1669 gimple_set_bb (stmt, a);
1670 gsi_next (&gsi);
1674 /* Merge the sequences. */
1675 last = gsi_last_bb (a);
1676 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1677 set_bb_seq (b, NULL);
1679 if (cfgcleanup_altered_bbs)
1680 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1684 /* Return the one of two successors of BB that is not reachable by a
1685 complex edge, if there is one. Else, return BB. We use
1686 this in optimizations that use post-dominators for their heuristics,
1687 to catch the cases in C++ where function calls are involved. */
1689 basic_block
1690 single_noncomplex_succ (basic_block bb)
1692 edge e0, e1;
1693 if (EDGE_COUNT (bb->succs) != 2)
1694 return bb;
1696 e0 = EDGE_SUCC (bb, 0);
1697 e1 = EDGE_SUCC (bb, 1);
1698 if (e0->flags & EDGE_COMPLEX)
1699 return e1->dest;
1700 if (e1->flags & EDGE_COMPLEX)
1701 return e0->dest;
1703 return bb;
1706 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1708 void
1709 notice_special_calls (gimple call)
1711 int flags = gimple_call_flags (call);
1713 if (flags & ECF_MAY_BE_ALLOCA)
1714 cfun->calls_alloca = true;
1715 if (flags & ECF_RETURNS_TWICE)
1716 cfun->calls_setjmp = true;
1720 /* Clear flags set by notice_special_calls. Used by dead code removal
1721 to update the flags. */
1723 void
1724 clear_special_calls (void)
1726 cfun->calls_alloca = false;
1727 cfun->calls_setjmp = false;
1730 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1732 static void
1733 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1735 /* Since this block is no longer reachable, we can just delete all
1736 of its PHI nodes. */
1737 remove_phi_nodes (bb);
1739 /* Remove edges to BB's successors. */
1740 while (EDGE_COUNT (bb->succs) > 0)
1741 remove_edge (EDGE_SUCC (bb, 0));
1745 /* Remove statements of basic block BB. */
1747 static void
1748 remove_bb (basic_block bb)
1750 gimple_stmt_iterator i;
1752 if (dump_file)
1754 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1755 if (dump_flags & TDF_DETAILS)
1757 dump_bb (bb, dump_file, 0);
1758 fprintf (dump_file, "\n");
1762 if (current_loops)
1764 struct loop *loop = bb->loop_father;
1766 /* If a loop gets removed, clean up the information associated
1767 with it. */
1768 if (loop->latch == bb
1769 || loop->header == bb)
1770 free_numbers_of_iterations_estimates_loop (loop);
1773 /* Remove all the instructions in the block. */
1774 if (bb_seq (bb) != NULL)
1776 /* Walk backwards so as to get a chance to substitute all
1777 released DEFs into debug stmts. See
1778 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1779 details. */
1780 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1782 gimple stmt = gsi_stmt (i);
1783 if (gimple_code (stmt) == GIMPLE_LABEL
1784 && (FORCED_LABEL (gimple_label_label (stmt))
1785 || DECL_NONLOCAL (gimple_label_label (stmt))))
1787 basic_block new_bb;
1788 gimple_stmt_iterator new_gsi;
1790 /* A non-reachable non-local label may still be referenced.
1791 But it no longer needs to carry the extra semantics of
1792 non-locality. */
1793 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1795 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1796 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1799 new_bb = bb->prev_bb;
1800 new_gsi = gsi_start_bb (new_bb);
1801 gsi_remove (&i, false);
1802 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1804 else
1806 /* Release SSA definitions if we are in SSA. Note that we
1807 may be called when not in SSA. For example,
1808 final_cleanup calls this function via
1809 cleanup_tree_cfg. */
1810 if (gimple_in_ssa_p (cfun))
1811 release_defs (stmt);
1813 gsi_remove (&i, true);
1816 if (gsi_end_p (i))
1817 i = gsi_last_bb (bb);
1818 else
1819 gsi_prev (&i);
1823 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1824 bb->il.gimple = NULL;
1828 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1829 predicate VAL, return the edge that will be taken out of the block.
1830 If VAL does not match a unique edge, NULL is returned. */
1832 edge
1833 find_taken_edge (basic_block bb, tree val)
1835 gimple stmt;
1837 stmt = last_stmt (bb);
1839 gcc_assert (stmt);
1840 gcc_assert (is_ctrl_stmt (stmt));
1842 if (val == NULL)
1843 return NULL;
1845 if (!is_gimple_min_invariant (val))
1846 return NULL;
1848 if (gimple_code (stmt) == GIMPLE_COND)
1849 return find_taken_edge_cond_expr (bb, val);
1851 if (gimple_code (stmt) == GIMPLE_SWITCH)
1852 return find_taken_edge_switch_expr (bb, val);
1854 if (computed_goto_p (stmt))
1856 /* Only optimize if the argument is a label, if the argument is
1857 not a label then we can not construct a proper CFG.
1859 It may be the case that we only need to allow the LABEL_REF to
1860 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1861 appear inside a LABEL_EXPR just to be safe. */
1862 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1863 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1864 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1865 return NULL;
1868 gcc_unreachable ();
1871 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1872 statement, determine which of the outgoing edges will be taken out of the
1873 block. Return NULL if either edge may be taken. */
1875 static edge
1876 find_taken_edge_computed_goto (basic_block bb, tree val)
1878 basic_block dest;
1879 edge e = NULL;
1881 dest = label_to_block (val);
1882 if (dest)
1884 e = find_edge (bb, dest);
1885 gcc_assert (e != NULL);
1888 return e;
1891 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1892 statement, determine which of the two edges will be taken out of the
1893 block. Return NULL if either edge may be taken. */
1895 static edge
1896 find_taken_edge_cond_expr (basic_block bb, tree val)
1898 edge true_edge, false_edge;
1900 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1902 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1903 return (integer_zerop (val) ? false_edge : true_edge);
1906 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1907 statement, determine which edge will be taken out of the block. Return
1908 NULL if any edge may be taken. */
1910 static edge
1911 find_taken_edge_switch_expr (basic_block bb, tree val)
1913 basic_block dest_bb;
1914 edge e;
1915 gimple switch_stmt;
1916 tree taken_case;
1918 switch_stmt = last_stmt (bb);
1919 taken_case = find_case_label_for_value (switch_stmt, val);
1920 dest_bb = label_to_block (CASE_LABEL (taken_case));
1922 e = find_edge (bb, dest_bb);
1923 gcc_assert (e);
1924 return e;
1928 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1929 We can make optimal use here of the fact that the case labels are
1930 sorted: We can do a binary search for a case matching VAL. */
1932 static tree
1933 find_case_label_for_value (gimple switch_stmt, tree val)
1935 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1936 tree default_case = gimple_switch_default_label (switch_stmt);
1938 for (low = 0, high = n; high - low > 1; )
1940 size_t i = (high + low) / 2;
1941 tree t = gimple_switch_label (switch_stmt, i);
1942 int cmp;
1944 /* Cache the result of comparing CASE_LOW and val. */
1945 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1947 if (cmp > 0)
1948 high = i;
1949 else
1950 low = i;
1952 if (CASE_HIGH (t) == NULL)
1954 /* A singe-valued case label. */
1955 if (cmp == 0)
1956 return t;
1958 else
1960 /* A case range. We can only handle integer ranges. */
1961 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
1962 return t;
1966 return default_case;
1970 /* Dump a basic block on stderr. */
1972 void
1973 gimple_debug_bb (basic_block bb)
1975 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
1979 /* Dump basic block with index N on stderr. */
1981 basic_block
1982 gimple_debug_bb_n (int n)
1984 gimple_debug_bb (BASIC_BLOCK (n));
1985 return BASIC_BLOCK (n);
1989 /* Dump the CFG on stderr.
1991 FLAGS are the same used by the tree dumping functions
1992 (see TDF_* in tree-pass.h). */
1994 void
1995 gimple_debug_cfg (int flags)
1997 gimple_dump_cfg (stderr, flags);
2001 /* Dump the program showing basic block boundaries on the given FILE.
2003 FLAGS are the same used by the tree dumping functions (see TDF_* in
2004 tree.h). */
2006 void
2007 gimple_dump_cfg (FILE *file, int flags)
2009 if (flags & TDF_DETAILS)
2011 const char *funcname
2012 = lang_hooks.decl_printable_name (current_function_decl, 2);
2014 fputc ('\n', file);
2015 fprintf (file, ";; Function %s\n\n", funcname);
2016 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2017 n_basic_blocks, n_edges, last_basic_block);
2019 brief_dump_cfg (file);
2020 fprintf (file, "\n");
2023 if (flags & TDF_STATS)
2024 dump_cfg_stats (file);
2026 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2030 /* Dump CFG statistics on FILE. */
2032 void
2033 dump_cfg_stats (FILE *file)
2035 static long max_num_merged_labels = 0;
2036 unsigned long size, total = 0;
2037 long num_edges;
2038 basic_block bb;
2039 const char * const fmt_str = "%-30s%-13s%12s\n";
2040 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2041 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2042 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2043 const char *funcname
2044 = lang_hooks.decl_printable_name (current_function_decl, 2);
2047 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2049 fprintf (file, "---------------------------------------------------------\n");
2050 fprintf (file, fmt_str, "", " Number of ", "Memory");
2051 fprintf (file, fmt_str, "", " instances ", "used ");
2052 fprintf (file, "---------------------------------------------------------\n");
2054 size = n_basic_blocks * sizeof (struct basic_block_def);
2055 total += size;
2056 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2057 SCALE (size), LABEL (size));
2059 num_edges = 0;
2060 FOR_EACH_BB (bb)
2061 num_edges += EDGE_COUNT (bb->succs);
2062 size = num_edges * sizeof (struct edge_def);
2063 total += size;
2064 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2066 fprintf (file, "---------------------------------------------------------\n");
2067 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2068 LABEL (total));
2069 fprintf (file, "---------------------------------------------------------\n");
2070 fprintf (file, "\n");
2072 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2073 max_num_merged_labels = cfg_stats.num_merged_labels;
2075 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2076 cfg_stats.num_merged_labels, max_num_merged_labels);
2078 fprintf (file, "\n");
2082 /* Dump CFG statistics on stderr. Keep extern so that it's always
2083 linked in the final executable. */
2085 void
2086 debug_cfg_stats (void)
2088 dump_cfg_stats (stderr);
2092 /* Dump the flowgraph to a .vcg FILE. */
2094 static void
2095 gimple_cfg2vcg (FILE *file)
2097 edge e;
2098 edge_iterator ei;
2099 basic_block bb;
2100 const char *funcname
2101 = lang_hooks.decl_printable_name (current_function_decl, 2);
2103 /* Write the file header. */
2104 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2105 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2106 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2108 /* Write blocks and edges. */
2109 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2111 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2112 e->dest->index);
2114 if (e->flags & EDGE_FAKE)
2115 fprintf (file, " linestyle: dotted priority: 10");
2116 else
2117 fprintf (file, " linestyle: solid priority: 100");
2119 fprintf (file, " }\n");
2121 fputc ('\n', file);
2123 FOR_EACH_BB (bb)
2125 enum gimple_code head_code, end_code;
2126 const char *head_name, *end_name;
2127 int head_line = 0;
2128 int end_line = 0;
2129 gimple first = first_stmt (bb);
2130 gimple last = last_stmt (bb);
2132 if (first)
2134 head_code = gimple_code (first);
2135 head_name = gimple_code_name[head_code];
2136 head_line = get_lineno (first);
2138 else
2139 head_name = "no-statement";
2141 if (last)
2143 end_code = gimple_code (last);
2144 end_name = gimple_code_name[end_code];
2145 end_line = get_lineno (last);
2147 else
2148 end_name = "no-statement";
2150 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2151 bb->index, bb->index, head_name, head_line, end_name,
2152 end_line);
2154 FOR_EACH_EDGE (e, ei, bb->succs)
2156 if (e->dest == EXIT_BLOCK_PTR)
2157 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2158 else
2159 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2161 if (e->flags & EDGE_FAKE)
2162 fprintf (file, " priority: 10 linestyle: dotted");
2163 else
2164 fprintf (file, " priority: 100 linestyle: solid");
2166 fprintf (file, " }\n");
2169 if (bb->next_bb != EXIT_BLOCK_PTR)
2170 fputc ('\n', file);
2173 fputs ("}\n\n", file);
2178 /*---------------------------------------------------------------------------
2179 Miscellaneous helpers
2180 ---------------------------------------------------------------------------*/
2182 /* Return true if T represents a stmt that always transfers control. */
2184 bool
2185 is_ctrl_stmt (gimple t)
2187 switch (gimple_code (t))
2189 case GIMPLE_COND:
2190 case GIMPLE_SWITCH:
2191 case GIMPLE_GOTO:
2192 case GIMPLE_RETURN:
2193 case GIMPLE_RESX:
2194 return true;
2195 default:
2196 return false;
2201 /* Return true if T is a statement that may alter the flow of control
2202 (e.g., a call to a non-returning function). */
2204 bool
2205 is_ctrl_altering_stmt (gimple t)
2207 gcc_assert (t);
2209 switch (gimple_code (t))
2211 case GIMPLE_CALL:
2213 int flags = gimple_call_flags (t);
2215 /* A non-pure/const call alters flow control if the current
2216 function has nonlocal labels. */
2217 if (!(flags & (ECF_CONST | ECF_PURE)) && cfun->has_nonlocal_label)
2218 return true;
2220 /* A call also alters control flow if it does not return. */
2221 if (flags & ECF_NORETURN)
2222 return true;
2224 break;
2226 case GIMPLE_EH_DISPATCH:
2227 /* EH_DISPATCH branches to the individual catch handlers at
2228 this level of a try or allowed-exceptions region. It can
2229 fallthru to the next statement as well. */
2230 return true;
2232 case GIMPLE_ASM:
2233 if (gimple_asm_nlabels (t) > 0)
2234 return true;
2235 break;
2237 CASE_GIMPLE_OMP:
2238 /* OpenMP directives alter control flow. */
2239 return true;
2241 default:
2242 break;
2245 /* If a statement can throw, it alters control flow. */
2246 return stmt_can_throw_internal (t);
2250 /* Return true if T is a simple local goto. */
2252 bool
2253 simple_goto_p (gimple t)
2255 return (gimple_code (t) == GIMPLE_GOTO
2256 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2260 /* Return true if T can make an abnormal transfer of control flow.
2261 Transfers of control flow associated with EH are excluded. */
2263 bool
2264 stmt_can_make_abnormal_goto (gimple t)
2266 if (computed_goto_p (t))
2267 return true;
2268 if (is_gimple_call (t))
2269 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2270 return false;
2274 /* Return true if STMT should start a new basic block. PREV_STMT is
2275 the statement preceding STMT. It is used when STMT is a label or a
2276 case label. Labels should only start a new basic block if their
2277 previous statement wasn't a label. Otherwise, sequence of labels
2278 would generate unnecessary basic blocks that only contain a single
2279 label. */
2281 static inline bool
2282 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2284 if (stmt == NULL)
2285 return false;
2287 /* Labels start a new basic block only if the preceding statement
2288 wasn't a label of the same type. This prevents the creation of
2289 consecutive blocks that have nothing but a single label. */
2290 if (gimple_code (stmt) == GIMPLE_LABEL)
2292 /* Nonlocal and computed GOTO targets always start a new block. */
2293 if (DECL_NONLOCAL (gimple_label_label (stmt))
2294 || FORCED_LABEL (gimple_label_label (stmt)))
2295 return true;
2297 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2299 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2300 return true;
2302 cfg_stats.num_merged_labels++;
2303 return false;
2305 else
2306 return true;
2309 return false;
2313 /* Return true if T should end a basic block. */
2315 bool
2316 stmt_ends_bb_p (gimple t)
2318 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2321 /* Remove block annotations and other data structures. */
2323 void
2324 delete_tree_cfg_annotations (void)
2326 label_to_block_map = NULL;
2330 /* Return the first statement in basic block BB. */
2332 gimple
2333 first_stmt (basic_block bb)
2335 gimple_stmt_iterator i = gsi_start_bb (bb);
2336 gimple stmt = NULL;
2338 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2340 gsi_next (&i);
2341 stmt = NULL;
2343 return stmt;
2346 /* Return the first non-label statement in basic block BB. */
2348 static gimple
2349 first_non_label_stmt (basic_block bb)
2351 gimple_stmt_iterator i = gsi_start_bb (bb);
2352 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2353 gsi_next (&i);
2354 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2357 /* Return the last statement in basic block BB. */
2359 gimple
2360 last_stmt (basic_block bb)
2362 gimple_stmt_iterator i = gsi_last_bb (bb);
2363 gimple stmt = NULL;
2365 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2367 gsi_prev (&i);
2368 stmt = NULL;
2370 return stmt;
2373 /* Return the last statement of an otherwise empty block. Return NULL
2374 if the block is totally empty, or if it contains more than one
2375 statement. */
2377 gimple
2378 last_and_only_stmt (basic_block bb)
2380 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2381 gimple last, prev;
2383 if (gsi_end_p (i))
2384 return NULL;
2386 last = gsi_stmt (i);
2387 gsi_prev_nondebug (&i);
2388 if (gsi_end_p (i))
2389 return last;
2391 /* Empty statements should no longer appear in the instruction stream.
2392 Everything that might have appeared before should be deleted by
2393 remove_useless_stmts, and the optimizers should just gsi_remove
2394 instead of smashing with build_empty_stmt.
2396 Thus the only thing that should appear here in a block containing
2397 one executable statement is a label. */
2398 prev = gsi_stmt (i);
2399 if (gimple_code (prev) == GIMPLE_LABEL)
2400 return last;
2401 else
2402 return NULL;
2405 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2407 static void
2408 reinstall_phi_args (edge new_edge, edge old_edge)
2410 edge_var_map_vector v;
2411 edge_var_map *vm;
2412 int i;
2413 gimple_stmt_iterator phis;
2415 v = redirect_edge_var_map_vector (old_edge);
2416 if (!v)
2417 return;
2419 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2420 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2421 i++, gsi_next (&phis))
2423 gimple phi = gsi_stmt (phis);
2424 tree result = redirect_edge_var_map_result (vm);
2425 tree arg = redirect_edge_var_map_def (vm);
2427 gcc_assert (result == gimple_phi_result (phi));
2429 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2432 redirect_edge_var_map_clear (old_edge);
2435 /* Returns the basic block after which the new basic block created
2436 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2437 near its "logical" location. This is of most help to humans looking
2438 at debugging dumps. */
2440 static basic_block
2441 split_edge_bb_loc (edge edge_in)
2443 basic_block dest = edge_in->dest;
2444 basic_block dest_prev = dest->prev_bb;
2446 if (dest_prev)
2448 edge e = find_edge (dest_prev, dest);
2449 if (e && !(e->flags & EDGE_COMPLEX))
2450 return edge_in->src;
2452 return dest_prev;
2455 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2456 Abort on abnormal edges. */
2458 static basic_block
2459 gimple_split_edge (edge edge_in)
2461 basic_block new_bb, after_bb, dest;
2462 edge new_edge, e;
2464 /* Abnormal edges cannot be split. */
2465 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2467 dest = edge_in->dest;
2469 after_bb = split_edge_bb_loc (edge_in);
2471 new_bb = create_empty_bb (after_bb);
2472 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2473 new_bb->count = edge_in->count;
2474 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2475 new_edge->probability = REG_BR_PROB_BASE;
2476 new_edge->count = edge_in->count;
2478 e = redirect_edge_and_branch (edge_in, new_bb);
2479 gcc_assert (e == edge_in);
2480 reinstall_phi_args (new_edge, e);
2482 return new_bb;
2485 /* Callback for walk_tree, check that all elements with address taken are
2486 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2487 inside a PHI node. */
2489 static tree
2490 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2492 tree t = *tp, x;
2494 if (TYPE_P (t))
2495 *walk_subtrees = 0;
2497 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2498 #define CHECK_OP(N, MSG) \
2499 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2500 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2502 switch (TREE_CODE (t))
2504 case SSA_NAME:
2505 if (SSA_NAME_IN_FREE_LIST (t))
2507 error ("SSA name in freelist but still referenced");
2508 return *tp;
2510 break;
2512 case INDIRECT_REF:
2513 x = TREE_OPERAND (t, 0);
2514 if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
2516 error ("Indirect reference's operand is not a register or a constant.");
2517 return x;
2519 break;
2521 case ASSERT_EXPR:
2522 x = fold (ASSERT_EXPR_COND (t));
2523 if (x == boolean_false_node)
2525 error ("ASSERT_EXPR with an always-false condition");
2526 return *tp;
2528 break;
2530 case MODIFY_EXPR:
2531 error ("MODIFY_EXPR not expected while having tuples.");
2532 return *tp;
2534 case ADDR_EXPR:
2536 bool old_constant;
2537 bool old_side_effects;
2538 bool new_constant;
2539 bool new_side_effects;
2541 gcc_assert (is_gimple_address (t));
2543 old_constant = TREE_CONSTANT (t);
2544 old_side_effects = TREE_SIDE_EFFECTS (t);
2546 recompute_tree_invariant_for_addr_expr (t);
2547 new_side_effects = TREE_SIDE_EFFECTS (t);
2548 new_constant = TREE_CONSTANT (t);
2550 if (old_constant != new_constant)
2552 error ("constant not recomputed when ADDR_EXPR changed");
2553 return t;
2555 if (old_side_effects != new_side_effects)
2557 error ("side effects not recomputed when ADDR_EXPR changed");
2558 return t;
2561 /* Skip any references (they will be checked when we recurse down the
2562 tree) and ensure that any variable used as a prefix is marked
2563 addressable. */
2564 for (x = TREE_OPERAND (t, 0);
2565 handled_component_p (x);
2566 x = TREE_OPERAND (x, 0))
2569 if (!(TREE_CODE (x) == VAR_DECL
2570 || TREE_CODE (x) == PARM_DECL
2571 || TREE_CODE (x) == RESULT_DECL))
2572 return NULL;
2573 if (!TREE_ADDRESSABLE (x))
2575 error ("address taken, but ADDRESSABLE bit not set");
2576 return x;
2578 if (DECL_GIMPLE_REG_P (x))
2580 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2581 return x;
2584 break;
2587 case COND_EXPR:
2588 x = COND_EXPR_COND (t);
2589 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2591 error ("non-integral used in condition");
2592 return x;
2594 if (!is_gimple_condexpr (x))
2596 error ("invalid conditional operand");
2597 return x;
2599 break;
2601 case NON_LVALUE_EXPR:
2602 gcc_unreachable ();
2604 CASE_CONVERT:
2605 case FIX_TRUNC_EXPR:
2606 case FLOAT_EXPR:
2607 case NEGATE_EXPR:
2608 case ABS_EXPR:
2609 case BIT_NOT_EXPR:
2610 case TRUTH_NOT_EXPR:
2611 CHECK_OP (0, "invalid operand to unary operator");
2612 break;
2614 case REALPART_EXPR:
2615 case IMAGPART_EXPR:
2616 case COMPONENT_REF:
2617 case ARRAY_REF:
2618 case ARRAY_RANGE_REF:
2619 case BIT_FIELD_REF:
2620 case VIEW_CONVERT_EXPR:
2621 /* We have a nest of references. Verify that each of the operands
2622 that determine where to reference is either a constant or a variable,
2623 verify that the base is valid, and then show we've already checked
2624 the subtrees. */
2625 while (handled_component_p (t))
2627 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2628 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2629 else if (TREE_CODE (t) == ARRAY_REF
2630 || TREE_CODE (t) == ARRAY_RANGE_REF)
2632 CHECK_OP (1, "invalid array index");
2633 if (TREE_OPERAND (t, 2))
2634 CHECK_OP (2, "invalid array lower bound");
2635 if (TREE_OPERAND (t, 3))
2636 CHECK_OP (3, "invalid array stride");
2638 else if (TREE_CODE (t) == BIT_FIELD_REF)
2640 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2641 || !host_integerp (TREE_OPERAND (t, 2), 1))
2643 error ("invalid position or size operand to BIT_FIELD_REF");
2644 return t;
2646 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2647 && (TYPE_PRECISION (TREE_TYPE (t))
2648 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2650 error ("integral result type precision does not match "
2651 "field size of BIT_FIELD_REF");
2652 return t;
2654 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2655 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2656 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2658 error ("mode precision of non-integral result does not "
2659 "match field size of BIT_FIELD_REF");
2660 return t;
2664 t = TREE_OPERAND (t, 0);
2667 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2669 error ("invalid reference prefix");
2670 return t;
2672 *walk_subtrees = 0;
2673 break;
2674 case PLUS_EXPR:
2675 case MINUS_EXPR:
2676 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2677 POINTER_PLUS_EXPR. */
2678 if (POINTER_TYPE_P (TREE_TYPE (t)))
2680 error ("invalid operand to plus/minus, type is a pointer");
2681 return t;
2683 CHECK_OP (0, "invalid operand to binary operator");
2684 CHECK_OP (1, "invalid operand to binary operator");
2685 break;
2687 case POINTER_PLUS_EXPR:
2688 /* Check to make sure the first operand is a pointer or reference type. */
2689 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2691 error ("invalid operand to pointer plus, first operand is not a pointer");
2692 return t;
2694 /* Check to make sure the second operand is an integer with type of
2695 sizetype. */
2696 if (!useless_type_conversion_p (sizetype,
2697 TREE_TYPE (TREE_OPERAND (t, 1))))
2699 error ("invalid operand to pointer plus, second operand is not an "
2700 "integer with type of sizetype.");
2701 return t;
2703 /* FALLTHROUGH */
2704 case LT_EXPR:
2705 case LE_EXPR:
2706 case GT_EXPR:
2707 case GE_EXPR:
2708 case EQ_EXPR:
2709 case NE_EXPR:
2710 case UNORDERED_EXPR:
2711 case ORDERED_EXPR:
2712 case UNLT_EXPR:
2713 case UNLE_EXPR:
2714 case UNGT_EXPR:
2715 case UNGE_EXPR:
2716 case UNEQ_EXPR:
2717 case LTGT_EXPR:
2718 case MULT_EXPR:
2719 case TRUNC_DIV_EXPR:
2720 case CEIL_DIV_EXPR:
2721 case FLOOR_DIV_EXPR:
2722 case ROUND_DIV_EXPR:
2723 case TRUNC_MOD_EXPR:
2724 case CEIL_MOD_EXPR:
2725 case FLOOR_MOD_EXPR:
2726 case ROUND_MOD_EXPR:
2727 case RDIV_EXPR:
2728 case EXACT_DIV_EXPR:
2729 case MIN_EXPR:
2730 case MAX_EXPR:
2731 case LSHIFT_EXPR:
2732 case RSHIFT_EXPR:
2733 case LROTATE_EXPR:
2734 case RROTATE_EXPR:
2735 case BIT_IOR_EXPR:
2736 case BIT_XOR_EXPR:
2737 case BIT_AND_EXPR:
2738 CHECK_OP (0, "invalid operand to binary operator");
2739 CHECK_OP (1, "invalid operand to binary operator");
2740 break;
2742 case CONSTRUCTOR:
2743 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2744 *walk_subtrees = 0;
2745 break;
2747 default:
2748 break;
2750 return NULL;
2752 #undef CHECK_OP
2756 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2757 Returns true if there is an error, otherwise false. */
2759 static bool
2760 verify_types_in_gimple_min_lval (tree expr)
2762 tree op;
2764 if (is_gimple_id (expr))
2765 return false;
2767 if (!INDIRECT_REF_P (expr)
2768 && TREE_CODE (expr) != TARGET_MEM_REF)
2770 error ("invalid expression for min lvalue");
2771 return true;
2774 /* TARGET_MEM_REFs are strange beasts. */
2775 if (TREE_CODE (expr) == TARGET_MEM_REF)
2776 return false;
2778 op = TREE_OPERAND (expr, 0);
2779 if (!is_gimple_val (op))
2781 error ("invalid operand in indirect reference");
2782 debug_generic_stmt (op);
2783 return true;
2785 if (!useless_type_conversion_p (TREE_TYPE (expr),
2786 TREE_TYPE (TREE_TYPE (op))))
2788 error ("type mismatch in indirect reference");
2789 debug_generic_stmt (TREE_TYPE (expr));
2790 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2791 return true;
2794 return false;
2797 /* Verify if EXPR is a valid GIMPLE reference expression. If
2798 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2799 if there is an error, otherwise false. */
2801 static bool
2802 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2804 while (handled_component_p (expr))
2806 tree op = TREE_OPERAND (expr, 0);
2808 if (TREE_CODE (expr) == ARRAY_REF
2809 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2811 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2812 || (TREE_OPERAND (expr, 2)
2813 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2814 || (TREE_OPERAND (expr, 3)
2815 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2817 error ("invalid operands to array reference");
2818 debug_generic_stmt (expr);
2819 return true;
2823 /* Verify if the reference array element types are compatible. */
2824 if (TREE_CODE (expr) == ARRAY_REF
2825 && !useless_type_conversion_p (TREE_TYPE (expr),
2826 TREE_TYPE (TREE_TYPE (op))))
2828 error ("type mismatch in array reference");
2829 debug_generic_stmt (TREE_TYPE (expr));
2830 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2831 return true;
2833 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2834 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2835 TREE_TYPE (TREE_TYPE (op))))
2837 error ("type mismatch in array range reference");
2838 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2839 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2840 return true;
2843 if ((TREE_CODE (expr) == REALPART_EXPR
2844 || TREE_CODE (expr) == IMAGPART_EXPR)
2845 && !useless_type_conversion_p (TREE_TYPE (expr),
2846 TREE_TYPE (TREE_TYPE (op))))
2848 error ("type mismatch in real/imagpart reference");
2849 debug_generic_stmt (TREE_TYPE (expr));
2850 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2851 return true;
2854 if (TREE_CODE (expr) == COMPONENT_REF
2855 && !useless_type_conversion_p (TREE_TYPE (expr),
2856 TREE_TYPE (TREE_OPERAND (expr, 1))))
2858 error ("type mismatch in component reference");
2859 debug_generic_stmt (TREE_TYPE (expr));
2860 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2861 return true;
2864 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2866 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2867 that their operand is not an SSA name or an invariant when
2868 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2869 bug). Otherwise there is nothing to verify, gross mismatches at
2870 most invoke undefined behavior. */
2871 if (require_lvalue
2872 && (TREE_CODE (op) == SSA_NAME
2873 || is_gimple_min_invariant (op)))
2875 error ("Conversion of an SSA_NAME on the left hand side.");
2876 debug_generic_stmt (expr);
2877 return true;
2879 else if (!handled_component_p (op))
2880 return false;
2883 expr = op;
2886 return ((require_lvalue || !is_gimple_min_invariant (expr))
2887 && verify_types_in_gimple_min_lval (expr));
2890 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2891 list of pointer-to types that is trivially convertible to DEST. */
2893 static bool
2894 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2896 tree src;
2898 if (!TYPE_POINTER_TO (src_obj))
2899 return true;
2901 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
2902 if (useless_type_conversion_p (dest, src))
2903 return true;
2905 return false;
2908 /* Return true if TYPE1 is a fixed-point type and if conversions to and
2909 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
2911 static bool
2912 valid_fixed_convert_types_p (tree type1, tree type2)
2914 return (FIXED_POINT_TYPE_P (type1)
2915 && (INTEGRAL_TYPE_P (type2)
2916 || SCALAR_FLOAT_TYPE_P (type2)
2917 || FIXED_POINT_TYPE_P (type2)));
2920 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
2921 is a problem, otherwise false. */
2923 static bool
2924 verify_gimple_call (gimple stmt)
2926 tree fn = gimple_call_fn (stmt);
2927 tree fntype;
2928 unsigned i;
2930 if (TREE_CODE (fn) != OBJ_TYPE_REF
2931 && !is_gimple_val (fn))
2933 error ("invalid function in gimple call");
2934 debug_generic_stmt (fn);
2935 return true;
2938 if (!POINTER_TYPE_P (TREE_TYPE (fn))
2939 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
2940 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
2942 error ("non-function in gimple call");
2943 return true;
2946 if (gimple_call_lhs (stmt)
2947 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
2948 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
2950 error ("invalid LHS in gimple call");
2951 return true;
2954 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
2956 error ("LHS in noreturn call");
2957 return true;
2960 fntype = TREE_TYPE (TREE_TYPE (fn));
2961 if (gimple_call_lhs (stmt)
2962 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
2963 TREE_TYPE (fntype))
2964 /* ??? At least C++ misses conversions at assignments from
2965 void * call results.
2966 ??? Java is completely off. Especially with functions
2967 returning java.lang.Object.
2968 For now simply allow arbitrary pointer type conversions. */
2969 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
2970 && POINTER_TYPE_P (TREE_TYPE (fntype))))
2972 error ("invalid conversion in gimple call");
2973 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
2974 debug_generic_stmt (TREE_TYPE (fntype));
2975 return true;
2978 if (gimple_call_chain (stmt)
2979 && !is_gimple_val (gimple_call_chain (stmt)))
2981 error ("invalid static chain in gimple call");
2982 debug_generic_stmt (gimple_call_chain (stmt));
2983 return true;
2986 /* If there is a static chain argument, this should not be an indirect
2987 call, and the decl should have DECL_STATIC_CHAIN set. */
2988 if (gimple_call_chain (stmt))
2990 if (TREE_CODE (fn) != ADDR_EXPR
2991 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
2993 error ("static chain in indirect gimple call");
2994 return true;
2996 fn = TREE_OPERAND (fn, 0);
2998 if (!DECL_STATIC_CHAIN (fn))
3000 error ("static chain with function that doesn't use one");
3001 return true;
3005 /* ??? The C frontend passes unpromoted arguments in case it
3006 didn't see a function declaration before the call. So for now
3007 leave the call arguments mostly unverified. Once we gimplify
3008 unit-at-a-time we have a chance to fix this. */
3010 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3012 tree arg = gimple_call_arg (stmt, i);
3013 if (!is_gimple_operand (arg))
3015 error ("invalid argument to gimple call");
3016 debug_generic_expr (arg);
3020 return false;
3023 /* Verifies the gimple comparison with the result type TYPE and
3024 the operands OP0 and OP1. */
3026 static bool
3027 verify_gimple_comparison (tree type, tree op0, tree op1)
3029 tree op0_type = TREE_TYPE (op0);
3030 tree op1_type = TREE_TYPE (op1);
3032 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3034 error ("invalid operands in gimple comparison");
3035 return true;
3038 /* For comparisons we do not have the operations type as the
3039 effective type the comparison is carried out in. Instead
3040 we require that either the first operand is trivially
3041 convertible into the second, or the other way around.
3042 The resulting type of a comparison may be any integral type.
3043 Because we special-case pointers to void we allow
3044 comparisons of pointers with the same mode as well. */
3045 if ((!useless_type_conversion_p (op0_type, op1_type)
3046 && !useless_type_conversion_p (op1_type, op0_type)
3047 && (!POINTER_TYPE_P (op0_type)
3048 || !POINTER_TYPE_P (op1_type)
3049 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3050 || !INTEGRAL_TYPE_P (type))
3052 error ("type mismatch in comparison expression");
3053 debug_generic_expr (type);
3054 debug_generic_expr (op0_type);
3055 debug_generic_expr (op1_type);
3056 return true;
3059 return false;
3062 /* Verify a gimple assignment statement STMT with an unary rhs.
3063 Returns true if anything is wrong. */
3065 static bool
3066 verify_gimple_assign_unary (gimple stmt)
3068 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3069 tree lhs = gimple_assign_lhs (stmt);
3070 tree lhs_type = TREE_TYPE (lhs);
3071 tree rhs1 = gimple_assign_rhs1 (stmt);
3072 tree rhs1_type = TREE_TYPE (rhs1);
3074 if (!is_gimple_reg (lhs)
3075 && !(optimize == 0
3076 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3078 error ("non-register as LHS of unary operation");
3079 return true;
3082 if (!is_gimple_val (rhs1))
3084 error ("invalid operand in unary operation");
3085 return true;
3088 /* First handle conversions. */
3089 switch (rhs_code)
3091 CASE_CONVERT:
3093 /* Allow conversions between integral types and pointers only if
3094 there is no sign or zero extension involved.
3095 For targets were the precision of sizetype doesn't match that
3096 of pointers we need to allow arbitrary conversions from and
3097 to sizetype. */
3098 if ((POINTER_TYPE_P (lhs_type)
3099 && INTEGRAL_TYPE_P (rhs1_type)
3100 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3101 || rhs1_type == sizetype))
3102 || (POINTER_TYPE_P (rhs1_type)
3103 && INTEGRAL_TYPE_P (lhs_type)
3104 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3105 || lhs_type == sizetype)))
3106 return false;
3108 /* Allow conversion from integer to offset type and vice versa. */
3109 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3110 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3111 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3112 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3113 return false;
3115 /* Otherwise assert we are converting between types of the
3116 same kind. */
3117 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3119 error ("invalid types in nop conversion");
3120 debug_generic_expr (lhs_type);
3121 debug_generic_expr (rhs1_type);
3122 return true;
3125 return false;
3128 case ADDR_SPACE_CONVERT_EXPR:
3130 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3131 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3132 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3134 error ("invalid types in address space conversion");
3135 debug_generic_expr (lhs_type);
3136 debug_generic_expr (rhs1_type);
3137 return true;
3140 return false;
3143 case FIXED_CONVERT_EXPR:
3145 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3146 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3148 error ("invalid types in fixed-point conversion");
3149 debug_generic_expr (lhs_type);
3150 debug_generic_expr (rhs1_type);
3151 return true;
3154 return false;
3157 case FLOAT_EXPR:
3159 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3161 error ("invalid types in conversion to floating point");
3162 debug_generic_expr (lhs_type);
3163 debug_generic_expr (rhs1_type);
3164 return true;
3167 return false;
3170 case FIX_TRUNC_EXPR:
3172 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3174 error ("invalid types in conversion to integer");
3175 debug_generic_expr (lhs_type);
3176 debug_generic_expr (rhs1_type);
3177 return true;
3180 return false;
3183 case VEC_UNPACK_HI_EXPR:
3184 case VEC_UNPACK_LO_EXPR:
3185 case REDUC_MAX_EXPR:
3186 case REDUC_MIN_EXPR:
3187 case REDUC_PLUS_EXPR:
3188 case VEC_UNPACK_FLOAT_HI_EXPR:
3189 case VEC_UNPACK_FLOAT_LO_EXPR:
3190 /* FIXME. */
3191 return false;
3193 case TRUTH_NOT_EXPR:
3194 case NEGATE_EXPR:
3195 case ABS_EXPR:
3196 case BIT_NOT_EXPR:
3197 case PAREN_EXPR:
3198 case NON_LVALUE_EXPR:
3199 case CONJ_EXPR:
3200 break;
3202 default:
3203 gcc_unreachable ();
3206 /* For the remaining codes assert there is no conversion involved. */
3207 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3209 error ("non-trivial conversion in unary operation");
3210 debug_generic_expr (lhs_type);
3211 debug_generic_expr (rhs1_type);
3212 return true;
3215 return false;
3218 /* Verify a gimple assignment statement STMT with a binary rhs.
3219 Returns true if anything is wrong. */
3221 static bool
3222 verify_gimple_assign_binary (gimple stmt)
3224 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3225 tree lhs = gimple_assign_lhs (stmt);
3226 tree lhs_type = TREE_TYPE (lhs);
3227 tree rhs1 = gimple_assign_rhs1 (stmt);
3228 tree rhs1_type = TREE_TYPE (rhs1);
3229 tree rhs2 = gimple_assign_rhs2 (stmt);
3230 tree rhs2_type = TREE_TYPE (rhs2);
3232 if (!is_gimple_reg (lhs)
3233 && !(optimize == 0
3234 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3236 error ("non-register as LHS of binary operation");
3237 return true;
3240 if (!is_gimple_val (rhs1)
3241 || !is_gimple_val (rhs2))
3243 error ("invalid operands in binary operation");
3244 return true;
3247 /* First handle operations that involve different types. */
3248 switch (rhs_code)
3250 case COMPLEX_EXPR:
3252 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3253 || !(INTEGRAL_TYPE_P (rhs1_type)
3254 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3255 || !(INTEGRAL_TYPE_P (rhs2_type)
3256 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3258 error ("type mismatch in complex expression");
3259 debug_generic_expr (lhs_type);
3260 debug_generic_expr (rhs1_type);
3261 debug_generic_expr (rhs2_type);
3262 return true;
3265 return false;
3268 case LSHIFT_EXPR:
3269 case RSHIFT_EXPR:
3270 case LROTATE_EXPR:
3271 case RROTATE_EXPR:
3273 /* Shifts and rotates are ok on integral types, fixed point
3274 types and integer vector types. */
3275 if ((!INTEGRAL_TYPE_P (rhs1_type)
3276 && !FIXED_POINT_TYPE_P (rhs1_type)
3277 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3278 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3279 || (!INTEGRAL_TYPE_P (rhs2_type)
3280 /* Vector shifts of vectors are also ok. */
3281 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3282 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3283 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3284 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3285 || !useless_type_conversion_p (lhs_type, rhs1_type))
3287 error ("type mismatch in shift expression");
3288 debug_generic_expr (lhs_type);
3289 debug_generic_expr (rhs1_type);
3290 debug_generic_expr (rhs2_type);
3291 return true;
3294 return false;
3297 case VEC_LSHIFT_EXPR:
3298 case VEC_RSHIFT_EXPR:
3300 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3301 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3302 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3303 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3304 || (!INTEGRAL_TYPE_P (rhs2_type)
3305 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3306 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3307 || !useless_type_conversion_p (lhs_type, rhs1_type))
3309 error ("type mismatch in vector shift expression");
3310 debug_generic_expr (lhs_type);
3311 debug_generic_expr (rhs1_type);
3312 debug_generic_expr (rhs2_type);
3313 return true;
3315 /* For shifting a vector of floating point components we
3316 only allow shifting by a constant multiple of the element size. */
3317 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3318 && (TREE_CODE (rhs2) != INTEGER_CST
3319 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3320 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3322 error ("non-element sized vector shift of floating point vector");
3323 return true;
3326 return false;
3329 case PLUS_EXPR:
3331 /* We use regular PLUS_EXPR for vectors.
3332 ??? This just makes the checker happy and may not be what is
3333 intended. */
3334 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3335 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3337 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3338 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3340 error ("invalid non-vector operands to vector valued plus");
3341 return true;
3343 lhs_type = TREE_TYPE (lhs_type);
3344 rhs1_type = TREE_TYPE (rhs1_type);
3345 rhs2_type = TREE_TYPE (rhs2_type);
3346 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3347 the pointer to 2nd place. */
3348 if (POINTER_TYPE_P (rhs2_type))
3350 tree tem = rhs1_type;
3351 rhs1_type = rhs2_type;
3352 rhs2_type = tem;
3354 goto do_pointer_plus_expr_check;
3357 /* Fallthru. */
3358 case MINUS_EXPR:
3360 if (POINTER_TYPE_P (lhs_type)
3361 || POINTER_TYPE_P (rhs1_type)
3362 || POINTER_TYPE_P (rhs2_type))
3364 error ("invalid (pointer) operands to plus/minus");
3365 return true;
3368 /* Continue with generic binary expression handling. */
3369 break;
3372 case POINTER_PLUS_EXPR:
3374 do_pointer_plus_expr_check:
3375 if (!POINTER_TYPE_P (rhs1_type)
3376 || !useless_type_conversion_p (lhs_type, rhs1_type)
3377 || !useless_type_conversion_p (sizetype, rhs2_type))
3379 error ("type mismatch in pointer plus expression");
3380 debug_generic_stmt (lhs_type);
3381 debug_generic_stmt (rhs1_type);
3382 debug_generic_stmt (rhs2_type);
3383 return true;
3386 return false;
3389 case TRUTH_ANDIF_EXPR:
3390 case TRUTH_ORIF_EXPR:
3391 gcc_unreachable ();
3393 case TRUTH_AND_EXPR:
3394 case TRUTH_OR_EXPR:
3395 case TRUTH_XOR_EXPR:
3397 /* We allow any kind of integral typed argument and result. */
3398 if (!INTEGRAL_TYPE_P (rhs1_type)
3399 || !INTEGRAL_TYPE_P (rhs2_type)
3400 || !INTEGRAL_TYPE_P (lhs_type))
3402 error ("type mismatch in binary truth expression");
3403 debug_generic_expr (lhs_type);
3404 debug_generic_expr (rhs1_type);
3405 debug_generic_expr (rhs2_type);
3406 return true;
3409 return false;
3412 case LT_EXPR:
3413 case LE_EXPR:
3414 case GT_EXPR:
3415 case GE_EXPR:
3416 case EQ_EXPR:
3417 case NE_EXPR:
3418 case UNORDERED_EXPR:
3419 case ORDERED_EXPR:
3420 case UNLT_EXPR:
3421 case UNLE_EXPR:
3422 case UNGT_EXPR:
3423 case UNGE_EXPR:
3424 case UNEQ_EXPR:
3425 case LTGT_EXPR:
3426 /* Comparisons are also binary, but the result type is not
3427 connected to the operand types. */
3428 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3430 case WIDEN_SUM_EXPR:
3431 case WIDEN_MULT_EXPR:
3432 case VEC_WIDEN_MULT_HI_EXPR:
3433 case VEC_WIDEN_MULT_LO_EXPR:
3434 case VEC_PACK_TRUNC_EXPR:
3435 case VEC_PACK_SAT_EXPR:
3436 case VEC_PACK_FIX_TRUNC_EXPR:
3437 case VEC_EXTRACT_EVEN_EXPR:
3438 case VEC_EXTRACT_ODD_EXPR:
3439 case VEC_INTERLEAVE_HIGH_EXPR:
3440 case VEC_INTERLEAVE_LOW_EXPR:
3441 /* FIXME. */
3442 return false;
3444 case MULT_EXPR:
3445 case TRUNC_DIV_EXPR:
3446 case CEIL_DIV_EXPR:
3447 case FLOOR_DIV_EXPR:
3448 case ROUND_DIV_EXPR:
3449 case TRUNC_MOD_EXPR:
3450 case CEIL_MOD_EXPR:
3451 case FLOOR_MOD_EXPR:
3452 case ROUND_MOD_EXPR:
3453 case RDIV_EXPR:
3454 case EXACT_DIV_EXPR:
3455 case MIN_EXPR:
3456 case MAX_EXPR:
3457 case BIT_IOR_EXPR:
3458 case BIT_XOR_EXPR:
3459 case BIT_AND_EXPR:
3460 /* Continue with generic binary expression handling. */
3461 break;
3463 default:
3464 gcc_unreachable ();
3467 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3468 || !useless_type_conversion_p (lhs_type, rhs2_type))
3470 error ("type mismatch in binary expression");
3471 debug_generic_stmt (lhs_type);
3472 debug_generic_stmt (rhs1_type);
3473 debug_generic_stmt (rhs2_type);
3474 return true;
3477 return false;
3480 /* Verify a gimple assignment statement STMT with a single rhs.
3481 Returns true if anything is wrong. */
3483 static bool
3484 verify_gimple_assign_single (gimple stmt)
3486 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3487 tree lhs = gimple_assign_lhs (stmt);
3488 tree lhs_type = TREE_TYPE (lhs);
3489 tree rhs1 = gimple_assign_rhs1 (stmt);
3490 tree rhs1_type = TREE_TYPE (rhs1);
3491 bool res = false;
3493 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3495 error ("non-trivial conversion at assignment");
3496 debug_generic_expr (lhs_type);
3497 debug_generic_expr (rhs1_type);
3498 return true;
3501 if (handled_component_p (lhs))
3502 res |= verify_types_in_gimple_reference (lhs, true);
3504 /* Special codes we cannot handle via their class. */
3505 switch (rhs_code)
3507 case ADDR_EXPR:
3509 tree op = TREE_OPERAND (rhs1, 0);
3510 if (!is_gimple_addressable (op))
3512 error ("invalid operand in unary expression");
3513 return true;
3516 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3517 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3518 TREE_TYPE (op)))
3520 error ("type mismatch in address expression");
3521 debug_generic_stmt (TREE_TYPE (rhs1));
3522 debug_generic_stmt (TREE_TYPE (op));
3523 return true;
3526 return verify_types_in_gimple_reference (op, true);
3529 /* tcc_reference */
3530 case COMPONENT_REF:
3531 case BIT_FIELD_REF:
3532 case INDIRECT_REF:
3533 case ALIGN_INDIRECT_REF:
3534 case MISALIGNED_INDIRECT_REF:
3535 case ARRAY_REF:
3536 case ARRAY_RANGE_REF:
3537 case VIEW_CONVERT_EXPR:
3538 case REALPART_EXPR:
3539 case IMAGPART_EXPR:
3540 case TARGET_MEM_REF:
3541 if (!is_gimple_reg (lhs)
3542 && is_gimple_reg_type (TREE_TYPE (lhs)))
3544 error ("invalid rhs for gimple memory store");
3545 debug_generic_stmt (lhs);
3546 debug_generic_stmt (rhs1);
3547 return true;
3549 return res || verify_types_in_gimple_reference (rhs1, false);
3551 /* tcc_constant */
3552 case SSA_NAME:
3553 case INTEGER_CST:
3554 case REAL_CST:
3555 case FIXED_CST:
3556 case COMPLEX_CST:
3557 case VECTOR_CST:
3558 case STRING_CST:
3559 return res;
3561 /* tcc_declaration */
3562 case CONST_DECL:
3563 return res;
3564 case VAR_DECL:
3565 case PARM_DECL:
3566 if (!is_gimple_reg (lhs)
3567 && !is_gimple_reg (rhs1)
3568 && is_gimple_reg_type (TREE_TYPE (lhs)))
3570 error ("invalid rhs for gimple memory store");
3571 debug_generic_stmt (lhs);
3572 debug_generic_stmt (rhs1);
3573 return true;
3575 return res;
3577 case COND_EXPR:
3578 case CONSTRUCTOR:
3579 case OBJ_TYPE_REF:
3580 case ASSERT_EXPR:
3581 case WITH_SIZE_EXPR:
3582 case POLYNOMIAL_CHREC:
3583 case DOT_PROD_EXPR:
3584 case VEC_COND_EXPR:
3585 case REALIGN_LOAD_EXPR:
3586 /* FIXME. */
3587 return res;
3589 default:;
3592 return res;
3595 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3596 is a problem, otherwise false. */
3598 static bool
3599 verify_gimple_assign (gimple stmt)
3601 switch (gimple_assign_rhs_class (stmt))
3603 case GIMPLE_SINGLE_RHS:
3604 return verify_gimple_assign_single (stmt);
3606 case GIMPLE_UNARY_RHS:
3607 return verify_gimple_assign_unary (stmt);
3609 case GIMPLE_BINARY_RHS:
3610 return verify_gimple_assign_binary (stmt);
3612 default:
3613 gcc_unreachable ();
3617 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3618 is a problem, otherwise false. */
3620 static bool
3621 verify_gimple_return (gimple stmt)
3623 tree op = gimple_return_retval (stmt);
3624 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3626 /* We cannot test for present return values as we do not fix up missing
3627 return values from the original source. */
3628 if (op == NULL)
3629 return false;
3631 if (!is_gimple_val (op)
3632 && TREE_CODE (op) != RESULT_DECL)
3634 error ("invalid operand in return statement");
3635 debug_generic_stmt (op);
3636 return true;
3639 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3640 /* ??? With C++ we can have the situation that the result
3641 decl is a reference type while the return type is an aggregate. */
3642 && !(TREE_CODE (op) == RESULT_DECL
3643 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3644 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3646 error ("invalid conversion in return statement");
3647 debug_generic_stmt (restype);
3648 debug_generic_stmt (TREE_TYPE (op));
3649 return true;
3652 return false;
3656 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3657 is a problem, otherwise false. */
3659 static bool
3660 verify_gimple_goto (gimple stmt)
3662 tree dest = gimple_goto_dest (stmt);
3664 /* ??? We have two canonical forms of direct goto destinations, a
3665 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3666 if (TREE_CODE (dest) != LABEL_DECL
3667 && (!is_gimple_val (dest)
3668 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3670 error ("goto destination is neither a label nor a pointer");
3671 return true;
3674 return false;
3677 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3678 is a problem, otherwise false. */
3680 static bool
3681 verify_gimple_switch (gimple stmt)
3683 if (!is_gimple_val (gimple_switch_index (stmt)))
3685 error ("invalid operand to switch statement");
3686 debug_generic_stmt (gimple_switch_index (stmt));
3687 return true;
3690 return false;
3694 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3695 and false otherwise. */
3697 static bool
3698 verify_gimple_phi (gimple stmt)
3700 tree type = TREE_TYPE (gimple_phi_result (stmt));
3701 unsigned i;
3703 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3705 error ("Invalid PHI result");
3706 return true;
3709 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3711 tree arg = gimple_phi_arg_def (stmt, i);
3712 if ((is_gimple_reg (gimple_phi_result (stmt))
3713 && !is_gimple_val (arg))
3714 || (!is_gimple_reg (gimple_phi_result (stmt))
3715 && !is_gimple_addressable (arg)))
3717 error ("Invalid PHI argument");
3718 debug_generic_stmt (arg);
3719 return true;
3721 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3723 error ("Incompatible types in PHI argument %u", i);
3724 debug_generic_stmt (type);
3725 debug_generic_stmt (TREE_TYPE (arg));
3726 return true;
3730 return false;
3734 /* Verify a gimple debug statement STMT.
3735 Returns true if anything is wrong. */
3737 static bool
3738 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3740 /* There isn't much that could be wrong in a gimple debug stmt. A
3741 gimple debug bind stmt, for example, maps a tree, that's usually
3742 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3743 component or member of an aggregate type, to another tree, that
3744 can be an arbitrary expression. These stmts expand into debug
3745 insns, and are converted to debug notes by var-tracking.c. */
3746 return false;
3750 /* Verify the GIMPLE statement STMT. Returns true if there is an
3751 error, otherwise false. */
3753 static bool
3754 verify_types_in_gimple_stmt (gimple stmt)
3756 switch (gimple_code (stmt))
3758 case GIMPLE_ASSIGN:
3759 return verify_gimple_assign (stmt);
3761 case GIMPLE_LABEL:
3762 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3764 case GIMPLE_CALL:
3765 return verify_gimple_call (stmt);
3767 case GIMPLE_COND:
3768 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3770 error ("invalid comparison code in gimple cond");
3771 return true;
3773 if (!(!gimple_cond_true_label (stmt)
3774 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3775 || !(!gimple_cond_false_label (stmt)
3776 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3778 error ("invalid labels in gimple cond");
3779 return true;
3782 return verify_gimple_comparison (boolean_type_node,
3783 gimple_cond_lhs (stmt),
3784 gimple_cond_rhs (stmt));
3786 case GIMPLE_GOTO:
3787 return verify_gimple_goto (stmt);
3789 case GIMPLE_SWITCH:
3790 return verify_gimple_switch (stmt);
3792 case GIMPLE_RETURN:
3793 return verify_gimple_return (stmt);
3795 case GIMPLE_ASM:
3796 return false;
3798 case GIMPLE_PHI:
3799 return verify_gimple_phi (stmt);
3801 /* Tuples that do not have tree operands. */
3802 case GIMPLE_NOP:
3803 case GIMPLE_PREDICT:
3804 case GIMPLE_RESX:
3805 case GIMPLE_EH_DISPATCH:
3806 case GIMPLE_EH_MUST_NOT_THROW:
3807 return false;
3809 CASE_GIMPLE_OMP:
3810 /* OpenMP directives are validated by the FE and never operated
3811 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3812 non-gimple expressions when the main index variable has had
3813 its address taken. This does not affect the loop itself
3814 because the header of an GIMPLE_OMP_FOR is merely used to determine
3815 how to setup the parallel iteration. */
3816 return false;
3818 case GIMPLE_DEBUG:
3819 return verify_gimple_debug (stmt);
3821 default:
3822 gcc_unreachable ();
3826 /* Verify the GIMPLE statements inside the sequence STMTS. */
3828 static bool
3829 verify_types_in_gimple_seq_2 (gimple_seq stmts)
3831 gimple_stmt_iterator ittr;
3832 bool err = false;
3834 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
3836 gimple stmt = gsi_stmt (ittr);
3838 switch (gimple_code (stmt))
3840 case GIMPLE_BIND:
3841 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
3842 break;
3844 case GIMPLE_TRY:
3845 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
3846 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
3847 break;
3849 case GIMPLE_EH_FILTER:
3850 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
3851 break;
3853 case GIMPLE_CATCH:
3854 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
3855 break;
3857 default:
3859 bool err2 = verify_types_in_gimple_stmt (stmt);
3860 if (err2)
3861 debug_gimple_stmt (stmt);
3862 err |= err2;
3867 return err;
3871 /* Verify the GIMPLE statements inside the statement list STMTS. */
3873 void
3874 verify_types_in_gimple_seq (gimple_seq stmts)
3876 if (verify_types_in_gimple_seq_2 (stmts))
3877 internal_error ("verify_gimple failed");
3881 /* Verify STMT, return true if STMT is not in GIMPLE form.
3882 TODO: Implement type checking. */
3884 static bool
3885 verify_stmt (gimple_stmt_iterator *gsi)
3887 tree addr;
3888 struct walk_stmt_info wi;
3889 bool last_in_block = gsi_one_before_end_p (*gsi);
3890 gimple stmt = gsi_stmt (*gsi);
3891 int lp_nr;
3893 if (is_gimple_omp (stmt))
3895 /* OpenMP directives are validated by the FE and never operated
3896 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3897 non-gimple expressions when the main index variable has had
3898 its address taken. This does not affect the loop itself
3899 because the header of an GIMPLE_OMP_FOR is merely used to determine
3900 how to setup the parallel iteration. */
3901 return false;
3904 /* FIXME. The C frontend passes unpromoted arguments in case it
3905 didn't see a function declaration before the call. */
3906 if (is_gimple_call (stmt))
3908 tree decl;
3910 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
3912 error ("invalid function in call statement");
3913 return true;
3916 decl = gimple_call_fndecl (stmt);
3917 if (decl
3918 && TREE_CODE (decl) == FUNCTION_DECL
3919 && DECL_LOOPING_CONST_OR_PURE_P (decl)
3920 && (!DECL_PURE_P (decl))
3921 && (!TREE_READONLY (decl)))
3923 error ("invalid pure const state for function");
3924 return true;
3928 if (is_gimple_debug (stmt))
3929 return false;
3931 memset (&wi, 0, sizeof (wi));
3932 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
3933 if (addr)
3935 debug_generic_expr (addr);
3936 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
3937 debug_gimple_stmt (stmt);
3938 return true;
3941 /* If the statement is marked as part of an EH region, then it is
3942 expected that the statement could throw. Verify that when we
3943 have optimizations that simplify statements such that we prove
3944 that they cannot throw, that we update other data structures
3945 to match. */
3946 lp_nr = lookup_stmt_eh_lp (stmt);
3947 if (lp_nr != 0)
3949 if (!stmt_could_throw_p (stmt))
3951 /* During IPA passes, ipa-pure-const sets nothrow flags on calls
3952 and they are updated on statements only after fixup_cfg
3953 is executed at beggining of expansion stage. */
3954 if (cgraph_state != CGRAPH_STATE_IPA_SSA)
3956 error ("statement marked for throw, but doesn%'t");
3957 goto fail;
3960 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
3962 error ("statement marked for throw in middle of block");
3963 goto fail;
3967 return false;
3969 fail:
3970 debug_gimple_stmt (stmt);
3971 return true;
3975 /* Return true when the T can be shared. */
3977 bool
3978 tree_node_can_be_shared (tree t)
3980 if (IS_TYPE_OR_DECL_P (t)
3981 || is_gimple_min_invariant (t)
3982 || TREE_CODE (t) == SSA_NAME
3983 || t == error_mark_node
3984 || TREE_CODE (t) == IDENTIFIER_NODE)
3985 return true;
3987 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3988 return true;
3990 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3991 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
3992 || TREE_CODE (t) == COMPONENT_REF
3993 || TREE_CODE (t) == REALPART_EXPR
3994 || TREE_CODE (t) == IMAGPART_EXPR)
3995 t = TREE_OPERAND (t, 0);
3997 if (DECL_P (t))
3998 return true;
4000 return false;
4004 /* Called via walk_gimple_stmt. Verify tree sharing. */
4006 static tree
4007 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4009 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4010 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4012 if (tree_node_can_be_shared (*tp))
4014 *walk_subtrees = false;
4015 return NULL;
4018 if (pointer_set_insert (visited, *tp))
4019 return *tp;
4021 return NULL;
4025 static bool eh_error_found;
4026 static int
4027 verify_eh_throw_stmt_node (void **slot, void *data)
4029 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4030 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4032 if (!pointer_set_contains (visited, node->stmt))
4034 error ("Dead STMT in EH table");
4035 debug_gimple_stmt (node->stmt);
4036 eh_error_found = true;
4038 return 1;
4042 /* Verify the GIMPLE statements in every basic block. */
4044 void
4045 verify_stmts (void)
4047 basic_block bb;
4048 gimple_stmt_iterator gsi;
4049 bool err = false;
4050 struct pointer_set_t *visited, *visited_stmts;
4051 tree addr;
4052 struct walk_stmt_info wi;
4054 timevar_push (TV_TREE_STMT_VERIFY);
4055 visited = pointer_set_create ();
4056 visited_stmts = pointer_set_create ();
4058 memset (&wi, 0, sizeof (wi));
4059 wi.info = (void *) visited;
4061 FOR_EACH_BB (bb)
4063 gimple phi;
4064 size_t i;
4066 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4068 phi = gsi_stmt (gsi);
4069 pointer_set_insert (visited_stmts, phi);
4070 if (gimple_bb (phi) != bb)
4072 error ("gimple_bb (phi) is set to a wrong basic block");
4073 err |= true;
4076 for (i = 0; i < gimple_phi_num_args (phi); i++)
4078 tree t = gimple_phi_arg_def (phi, i);
4079 tree addr;
4081 if (!t)
4083 error ("missing PHI def");
4084 debug_gimple_stmt (phi);
4085 err |= true;
4086 continue;
4088 /* Addressable variables do have SSA_NAMEs but they
4089 are not considered gimple values. */
4090 else if (TREE_CODE (t) != SSA_NAME
4091 && TREE_CODE (t) != FUNCTION_DECL
4092 && !is_gimple_min_invariant (t))
4094 error ("PHI argument is not a GIMPLE value");
4095 debug_gimple_stmt (phi);
4096 debug_generic_expr (t);
4097 err |= true;
4100 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4101 if (addr)
4103 error ("incorrect sharing of tree nodes");
4104 debug_gimple_stmt (phi);
4105 debug_generic_expr (addr);
4106 err |= true;
4110 #ifdef ENABLE_TYPES_CHECKING
4111 if (verify_gimple_phi (phi))
4113 debug_gimple_stmt (phi);
4114 err |= true;
4116 #endif
4119 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4121 gimple stmt = gsi_stmt (gsi);
4123 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4124 || gimple_code (stmt) == GIMPLE_BIND)
4126 error ("invalid GIMPLE statement");
4127 debug_gimple_stmt (stmt);
4128 err |= true;
4131 pointer_set_insert (visited_stmts, stmt);
4133 if (gimple_bb (stmt) != bb)
4135 error ("gimple_bb (stmt) is set to a wrong basic block");
4136 debug_gimple_stmt (stmt);
4137 err |= true;
4140 if (gimple_code (stmt) == GIMPLE_LABEL)
4142 tree decl = gimple_label_label (stmt);
4143 int uid = LABEL_DECL_UID (decl);
4145 if (uid == -1
4146 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4148 error ("incorrect entry in label_to_block_map");
4149 err |= true;
4152 uid = EH_LANDING_PAD_NR (decl);
4153 if (uid)
4155 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4156 if (decl != lp->post_landing_pad)
4158 error ("incorrect setting of landing pad number");
4159 err |= true;
4164 err |= verify_stmt (&gsi);
4166 #ifdef ENABLE_TYPES_CHECKING
4167 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4169 debug_gimple_stmt (stmt);
4170 err |= true;
4172 #endif
4173 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4174 if (addr)
4176 error ("incorrect sharing of tree nodes");
4177 debug_gimple_stmt (stmt);
4178 debug_generic_expr (addr);
4179 err |= true;
4181 gsi_next (&gsi);
4185 eh_error_found = false;
4186 if (get_eh_throw_stmt_table (cfun))
4187 htab_traverse (get_eh_throw_stmt_table (cfun),
4188 verify_eh_throw_stmt_node,
4189 visited_stmts);
4191 if (err | eh_error_found)
4192 internal_error ("verify_stmts failed");
4194 pointer_set_destroy (visited);
4195 pointer_set_destroy (visited_stmts);
4196 verify_histograms ();
4197 timevar_pop (TV_TREE_STMT_VERIFY);
4201 /* Verifies that the flow information is OK. */
4203 static int
4204 gimple_verify_flow_info (void)
4206 int err = 0;
4207 basic_block bb;
4208 gimple_stmt_iterator gsi;
4209 gimple stmt;
4210 edge e;
4211 edge_iterator ei;
4213 if (ENTRY_BLOCK_PTR->il.gimple)
4215 error ("ENTRY_BLOCK has IL associated with it");
4216 err = 1;
4219 if (EXIT_BLOCK_PTR->il.gimple)
4221 error ("EXIT_BLOCK has IL associated with it");
4222 err = 1;
4225 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4226 if (e->flags & EDGE_FALLTHRU)
4228 error ("fallthru to exit from bb %d", e->src->index);
4229 err = 1;
4232 FOR_EACH_BB (bb)
4234 bool found_ctrl_stmt = false;
4236 stmt = NULL;
4238 /* Skip labels on the start of basic block. */
4239 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4241 tree label;
4242 gimple prev_stmt = stmt;
4244 stmt = gsi_stmt (gsi);
4246 if (gimple_code (stmt) != GIMPLE_LABEL)
4247 break;
4249 label = gimple_label_label (stmt);
4250 if (prev_stmt && DECL_NONLOCAL (label))
4252 error ("nonlocal label ");
4253 print_generic_expr (stderr, label, 0);
4254 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4255 bb->index);
4256 err = 1;
4259 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4261 error ("EH landing pad label ");
4262 print_generic_expr (stderr, label, 0);
4263 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4264 bb->index);
4265 err = 1;
4268 if (label_to_block (label) != bb)
4270 error ("label ");
4271 print_generic_expr (stderr, label, 0);
4272 fprintf (stderr, " to block does not match in bb %d",
4273 bb->index);
4274 err = 1;
4277 if (decl_function_context (label) != current_function_decl)
4279 error ("label ");
4280 print_generic_expr (stderr, label, 0);
4281 fprintf (stderr, " has incorrect context in bb %d",
4282 bb->index);
4283 err = 1;
4287 /* Verify that body of basic block BB is free of control flow. */
4288 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4290 gimple stmt = gsi_stmt (gsi);
4292 if (found_ctrl_stmt)
4294 error ("control flow in the middle of basic block %d",
4295 bb->index);
4296 err = 1;
4299 if (stmt_ends_bb_p (stmt))
4300 found_ctrl_stmt = true;
4302 if (gimple_code (stmt) == GIMPLE_LABEL)
4304 error ("label ");
4305 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4306 fprintf (stderr, " in the middle of basic block %d", bb->index);
4307 err = 1;
4311 gsi = gsi_last_bb (bb);
4312 if (gsi_end_p (gsi))
4313 continue;
4315 stmt = gsi_stmt (gsi);
4317 if (gimple_code (stmt) == GIMPLE_LABEL)
4318 continue;
4320 err |= verify_eh_edges (stmt);
4322 if (is_ctrl_stmt (stmt))
4324 FOR_EACH_EDGE (e, ei, bb->succs)
4325 if (e->flags & EDGE_FALLTHRU)
4327 error ("fallthru edge after a control statement in bb %d",
4328 bb->index);
4329 err = 1;
4333 if (gimple_code (stmt) != GIMPLE_COND)
4335 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4336 after anything else but if statement. */
4337 FOR_EACH_EDGE (e, ei, bb->succs)
4338 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4340 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4341 bb->index);
4342 err = 1;
4346 switch (gimple_code (stmt))
4348 case GIMPLE_COND:
4350 edge true_edge;
4351 edge false_edge;
4353 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4355 if (!true_edge
4356 || !false_edge
4357 || !(true_edge->flags & EDGE_TRUE_VALUE)
4358 || !(false_edge->flags & EDGE_FALSE_VALUE)
4359 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4360 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4361 || EDGE_COUNT (bb->succs) >= 3)
4363 error ("wrong outgoing edge flags at end of bb %d",
4364 bb->index);
4365 err = 1;
4368 break;
4370 case GIMPLE_GOTO:
4371 if (simple_goto_p (stmt))
4373 error ("explicit goto at end of bb %d", bb->index);
4374 err = 1;
4376 else
4378 /* FIXME. We should double check that the labels in the
4379 destination blocks have their address taken. */
4380 FOR_EACH_EDGE (e, ei, bb->succs)
4381 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4382 | EDGE_FALSE_VALUE))
4383 || !(e->flags & EDGE_ABNORMAL))
4385 error ("wrong outgoing edge flags at end of bb %d",
4386 bb->index);
4387 err = 1;
4390 break;
4392 case GIMPLE_RETURN:
4393 if (!single_succ_p (bb)
4394 || (single_succ_edge (bb)->flags
4395 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4396 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4398 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4399 err = 1;
4401 if (single_succ (bb) != EXIT_BLOCK_PTR)
4403 error ("return edge does not point to exit in bb %d",
4404 bb->index);
4405 err = 1;
4407 break;
4409 case GIMPLE_SWITCH:
4411 tree prev;
4412 edge e;
4413 size_t i, n;
4415 n = gimple_switch_num_labels (stmt);
4417 /* Mark all the destination basic blocks. */
4418 for (i = 0; i < n; ++i)
4420 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4421 basic_block label_bb = label_to_block (lab);
4422 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4423 label_bb->aux = (void *)1;
4426 /* Verify that the case labels are sorted. */
4427 prev = gimple_switch_label (stmt, 0);
4428 for (i = 1; i < n; ++i)
4430 tree c = gimple_switch_label (stmt, i);
4431 if (!CASE_LOW (c))
4433 error ("found default case not at the start of "
4434 "case vector");
4435 err = 1;
4436 continue;
4438 if (CASE_LOW (prev)
4439 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4441 error ("case labels not sorted: ");
4442 print_generic_expr (stderr, prev, 0);
4443 fprintf (stderr," is greater than ");
4444 print_generic_expr (stderr, c, 0);
4445 fprintf (stderr," but comes before it.\n");
4446 err = 1;
4448 prev = c;
4450 /* VRP will remove the default case if it can prove it will
4451 never be executed. So do not verify there always exists
4452 a default case here. */
4454 FOR_EACH_EDGE (e, ei, bb->succs)
4456 if (!e->dest->aux)
4458 error ("extra outgoing edge %d->%d",
4459 bb->index, e->dest->index);
4460 err = 1;
4463 e->dest->aux = (void *)2;
4464 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4465 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4467 error ("wrong outgoing edge flags at end of bb %d",
4468 bb->index);
4469 err = 1;
4473 /* Check that we have all of them. */
4474 for (i = 0; i < n; ++i)
4476 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4477 basic_block label_bb = label_to_block (lab);
4479 if (label_bb->aux != (void *)2)
4481 error ("missing edge %i->%i", bb->index, label_bb->index);
4482 err = 1;
4486 FOR_EACH_EDGE (e, ei, bb->succs)
4487 e->dest->aux = (void *)0;
4489 break;
4491 case GIMPLE_EH_DISPATCH:
4492 err |= verify_eh_dispatch_edge (stmt);
4493 break;
4495 default:
4496 break;
4500 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4501 verify_dominators (CDI_DOMINATORS);
4503 return err;
4507 /* Updates phi nodes after creating a forwarder block joined
4508 by edge FALLTHRU. */
4510 static void
4511 gimple_make_forwarder_block (edge fallthru)
4513 edge e;
4514 edge_iterator ei;
4515 basic_block dummy, bb;
4516 tree var;
4517 gimple_stmt_iterator gsi;
4519 dummy = fallthru->src;
4520 bb = fallthru->dest;
4522 if (single_pred_p (bb))
4523 return;
4525 /* If we redirected a branch we must create new PHI nodes at the
4526 start of BB. */
4527 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4529 gimple phi, new_phi;
4531 phi = gsi_stmt (gsi);
4532 var = gimple_phi_result (phi);
4533 new_phi = create_phi_node (var, bb);
4534 SSA_NAME_DEF_STMT (var) = new_phi;
4535 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4536 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4537 UNKNOWN_LOCATION);
4540 /* Add the arguments we have stored on edges. */
4541 FOR_EACH_EDGE (e, ei, bb->preds)
4543 if (e == fallthru)
4544 continue;
4546 flush_pending_stmts (e);
4551 /* Return a non-special label in the head of basic block BLOCK.
4552 Create one if it doesn't exist. */
4554 tree
4555 gimple_block_label (basic_block bb)
4557 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4558 bool first = true;
4559 tree label;
4560 gimple stmt;
4562 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4564 stmt = gsi_stmt (i);
4565 if (gimple_code (stmt) != GIMPLE_LABEL)
4566 break;
4567 label = gimple_label_label (stmt);
4568 if (!DECL_NONLOCAL (label))
4570 if (!first)
4571 gsi_move_before (&i, &s);
4572 return label;
4576 label = create_artificial_label (UNKNOWN_LOCATION);
4577 stmt = gimple_build_label (label);
4578 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4579 return label;
4583 /* Attempt to perform edge redirection by replacing a possibly complex
4584 jump instruction by a goto or by removing the jump completely.
4585 This can apply only if all edges now point to the same block. The
4586 parameters and return values are equivalent to
4587 redirect_edge_and_branch. */
4589 static edge
4590 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4592 basic_block src = e->src;
4593 gimple_stmt_iterator i;
4594 gimple stmt;
4596 /* We can replace or remove a complex jump only when we have exactly
4597 two edges. */
4598 if (EDGE_COUNT (src->succs) != 2
4599 /* Verify that all targets will be TARGET. Specifically, the
4600 edge that is not E must also go to TARGET. */
4601 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4602 return NULL;
4604 i = gsi_last_bb (src);
4605 if (gsi_end_p (i))
4606 return NULL;
4608 stmt = gsi_stmt (i);
4610 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4612 gsi_remove (&i, true);
4613 e = ssa_redirect_edge (e, target);
4614 e->flags = EDGE_FALLTHRU;
4615 return e;
4618 return NULL;
4622 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4623 edge representing the redirected branch. */
4625 static edge
4626 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4628 basic_block bb = e->src;
4629 gimple_stmt_iterator gsi;
4630 edge ret;
4631 gimple stmt;
4633 if (e->flags & EDGE_ABNORMAL)
4634 return NULL;
4636 if (e->dest == dest)
4637 return NULL;
4639 if (e->flags & EDGE_EH)
4640 return redirect_eh_edge (e, dest);
4642 if (e->src != ENTRY_BLOCK_PTR)
4644 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4645 if (ret)
4646 return ret;
4649 gsi = gsi_last_bb (bb);
4650 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4652 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4654 case GIMPLE_COND:
4655 /* For COND_EXPR, we only need to redirect the edge. */
4656 break;
4658 case GIMPLE_GOTO:
4659 /* No non-abnormal edges should lead from a non-simple goto, and
4660 simple ones should be represented implicitly. */
4661 gcc_unreachable ();
4663 case GIMPLE_SWITCH:
4665 tree label = gimple_block_label (dest);
4666 tree cases = get_cases_for_edge (e, stmt);
4668 /* If we have a list of cases associated with E, then use it
4669 as it's a lot faster than walking the entire case vector. */
4670 if (cases)
4672 edge e2 = find_edge (e->src, dest);
4673 tree last, first;
4675 first = cases;
4676 while (cases)
4678 last = cases;
4679 CASE_LABEL (cases) = label;
4680 cases = TREE_CHAIN (cases);
4683 /* If there was already an edge in the CFG, then we need
4684 to move all the cases associated with E to E2. */
4685 if (e2)
4687 tree cases2 = get_cases_for_edge (e2, stmt);
4689 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4690 TREE_CHAIN (cases2) = first;
4693 else
4695 size_t i, n = gimple_switch_num_labels (stmt);
4697 for (i = 0; i < n; i++)
4699 tree elt = gimple_switch_label (stmt, i);
4700 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4701 CASE_LABEL (elt) = label;
4705 break;
4707 case GIMPLE_ASM:
4709 int i, n = gimple_asm_nlabels (stmt);
4710 tree label = NULL;
4712 for (i = 0; i < n; ++i)
4714 tree cons = gimple_asm_label_op (stmt, i);
4715 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4717 if (!label)
4718 label = gimple_block_label (dest);
4719 TREE_VALUE (cons) = label;
4723 /* If we didn't find any label matching the former edge in the
4724 asm labels, we must be redirecting the fallthrough
4725 edge. */
4726 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4728 break;
4730 case GIMPLE_RETURN:
4731 gsi_remove (&gsi, true);
4732 e->flags |= EDGE_FALLTHRU;
4733 break;
4735 case GIMPLE_OMP_RETURN:
4736 case GIMPLE_OMP_CONTINUE:
4737 case GIMPLE_OMP_SECTIONS_SWITCH:
4738 case GIMPLE_OMP_FOR:
4739 /* The edges from OMP constructs can be simply redirected. */
4740 break;
4742 case GIMPLE_EH_DISPATCH:
4743 if (!(e->flags & EDGE_FALLTHRU))
4744 redirect_eh_dispatch_edge (stmt, e, dest);
4745 break;
4747 default:
4748 /* Otherwise it must be a fallthru edge, and we don't need to
4749 do anything besides redirecting it. */
4750 gcc_assert (e->flags & EDGE_FALLTHRU);
4751 break;
4754 /* Update/insert PHI nodes as necessary. */
4756 /* Now update the edges in the CFG. */
4757 e = ssa_redirect_edge (e, dest);
4759 return e;
4762 /* Returns true if it is possible to remove edge E by redirecting
4763 it to the destination of the other edge from E->src. */
4765 static bool
4766 gimple_can_remove_branch_p (const_edge e)
4768 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4769 return false;
4771 return true;
4774 /* Simple wrapper, as we can always redirect fallthru edges. */
4776 static basic_block
4777 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4779 e = gimple_redirect_edge_and_branch (e, dest);
4780 gcc_assert (e);
4782 return NULL;
4786 /* Splits basic block BB after statement STMT (but at least after the
4787 labels). If STMT is NULL, BB is split just after the labels. */
4789 static basic_block
4790 gimple_split_block (basic_block bb, void *stmt)
4792 gimple_stmt_iterator gsi;
4793 gimple_stmt_iterator gsi_tgt;
4794 gimple act;
4795 gimple_seq list;
4796 basic_block new_bb;
4797 edge e;
4798 edge_iterator ei;
4800 new_bb = create_empty_bb (bb);
4802 /* Redirect the outgoing edges. */
4803 new_bb->succs = bb->succs;
4804 bb->succs = NULL;
4805 FOR_EACH_EDGE (e, ei, new_bb->succs)
4806 e->src = new_bb;
4808 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4809 stmt = NULL;
4811 /* Move everything from GSI to the new basic block. */
4812 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4814 act = gsi_stmt (gsi);
4815 if (gimple_code (act) == GIMPLE_LABEL)
4816 continue;
4818 if (!stmt)
4819 break;
4821 if (stmt == act)
4823 gsi_next (&gsi);
4824 break;
4828 if (gsi_end_p (gsi))
4829 return new_bb;
4831 /* Split the statement list - avoid re-creating new containers as this
4832 brings ugly quadratic memory consumption in the inliner.
4833 (We are still quadratic since we need to update stmt BB pointers,
4834 sadly.) */
4835 list = gsi_split_seq_before (&gsi);
4836 set_bb_seq (new_bb, list);
4837 for (gsi_tgt = gsi_start (list);
4838 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4839 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
4841 return new_bb;
4845 /* Moves basic block BB after block AFTER. */
4847 static bool
4848 gimple_move_block_after (basic_block bb, basic_block after)
4850 if (bb->prev_bb == after)
4851 return true;
4853 unlink_block (bb);
4854 link_block (bb, after);
4856 return true;
4860 /* Return true if basic_block can be duplicated. */
4862 static bool
4863 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
4865 return true;
4868 /* Create a duplicate of the basic block BB. NOTE: This does not
4869 preserve SSA form. */
4871 static basic_block
4872 gimple_duplicate_bb (basic_block bb)
4874 basic_block new_bb;
4875 gimple_stmt_iterator gsi, gsi_tgt;
4876 gimple_seq phis = phi_nodes (bb);
4877 gimple phi, stmt, copy;
4879 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4881 /* Copy the PHI nodes. We ignore PHI node arguments here because
4882 the incoming edges have not been setup yet. */
4883 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
4885 phi = gsi_stmt (gsi);
4886 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4887 create_new_def_for (gimple_phi_result (copy), copy,
4888 gimple_phi_result_ptr (copy));
4891 gsi_tgt = gsi_start_bb (new_bb);
4892 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4894 def_operand_p def_p;
4895 ssa_op_iter op_iter;
4897 stmt = gsi_stmt (gsi);
4898 if (gimple_code (stmt) == GIMPLE_LABEL)
4899 continue;
4901 /* Create a new copy of STMT and duplicate STMT's virtual
4902 operands. */
4903 copy = gimple_copy (stmt);
4904 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
4906 maybe_duplicate_eh_stmt (copy, stmt);
4907 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4909 /* Create new names for all the definitions created by COPY and
4910 add replacement mappings for each new name. */
4911 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4912 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4915 return new_bb;
4918 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4920 static void
4921 add_phi_args_after_copy_edge (edge e_copy)
4923 basic_block bb, bb_copy = e_copy->src, dest;
4924 edge e;
4925 edge_iterator ei;
4926 gimple phi, phi_copy;
4927 tree def;
4928 gimple_stmt_iterator psi, psi_copy;
4930 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
4931 return;
4933 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
4935 if (e_copy->dest->flags & BB_DUPLICATED)
4936 dest = get_bb_original (e_copy->dest);
4937 else
4938 dest = e_copy->dest;
4940 e = find_edge (bb, dest);
4941 if (!e)
4943 /* During loop unrolling the target of the latch edge is copied.
4944 In this case we are not looking for edge to dest, but to
4945 duplicated block whose original was dest. */
4946 FOR_EACH_EDGE (e, ei, bb->succs)
4948 if ((e->dest->flags & BB_DUPLICATED)
4949 && get_bb_original (e->dest) == dest)
4950 break;
4953 gcc_assert (e != NULL);
4956 for (psi = gsi_start_phis (e->dest),
4957 psi_copy = gsi_start_phis (e_copy->dest);
4958 !gsi_end_p (psi);
4959 gsi_next (&psi), gsi_next (&psi_copy))
4961 phi = gsi_stmt (psi);
4962 phi_copy = gsi_stmt (psi_copy);
4963 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4964 add_phi_arg (phi_copy, def, e_copy,
4965 gimple_phi_arg_location_from_edge (phi, e));
4970 /* Basic block BB_COPY was created by code duplication. Add phi node
4971 arguments for edges going out of BB_COPY. The blocks that were
4972 duplicated have BB_DUPLICATED set. */
4974 void
4975 add_phi_args_after_copy_bb (basic_block bb_copy)
4977 edge e_copy;
4978 edge_iterator ei;
4980 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4982 add_phi_args_after_copy_edge (e_copy);
4986 /* Blocks in REGION_COPY array of length N_REGION were created by
4987 duplication of basic blocks. Add phi node arguments for edges
4988 going from these blocks. If E_COPY is not NULL, also add
4989 phi node arguments for its destination.*/
4991 void
4992 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
4993 edge e_copy)
4995 unsigned i;
4997 for (i = 0; i < n_region; i++)
4998 region_copy[i]->flags |= BB_DUPLICATED;
5000 for (i = 0; i < n_region; i++)
5001 add_phi_args_after_copy_bb (region_copy[i]);
5002 if (e_copy)
5003 add_phi_args_after_copy_edge (e_copy);
5005 for (i = 0; i < n_region; i++)
5006 region_copy[i]->flags &= ~BB_DUPLICATED;
5009 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5010 important exit edge EXIT. By important we mean that no SSA name defined
5011 inside region is live over the other exit edges of the region. All entry
5012 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5013 to the duplicate of the region. SSA form, dominance and loop information
5014 is updated. The new basic blocks are stored to REGION_COPY in the same
5015 order as they had in REGION, provided that REGION_COPY is not NULL.
5016 The function returns false if it is unable to copy the region,
5017 true otherwise. */
5019 bool
5020 gimple_duplicate_sese_region (edge entry, edge exit,
5021 basic_block *region, unsigned n_region,
5022 basic_block *region_copy)
5024 unsigned i;
5025 bool free_region_copy = false, copying_header = false;
5026 struct loop *loop = entry->dest->loop_father;
5027 edge exit_copy;
5028 VEC (basic_block, heap) *doms;
5029 edge redirected;
5030 int total_freq = 0, entry_freq = 0;
5031 gcov_type total_count = 0, entry_count = 0;
5033 if (!can_copy_bbs_p (region, n_region))
5034 return false;
5036 /* Some sanity checking. Note that we do not check for all possible
5037 missuses of the functions. I.e. if you ask to copy something weird,
5038 it will work, but the state of structures probably will not be
5039 correct. */
5040 for (i = 0; i < n_region; i++)
5042 /* We do not handle subloops, i.e. all the blocks must belong to the
5043 same loop. */
5044 if (region[i]->loop_father != loop)
5045 return false;
5047 if (region[i] != entry->dest
5048 && region[i] == loop->header)
5049 return false;
5052 set_loop_copy (loop, loop);
5054 /* In case the function is used for loop header copying (which is the primary
5055 use), ensure that EXIT and its copy will be new latch and entry edges. */
5056 if (loop->header == entry->dest)
5058 copying_header = true;
5059 set_loop_copy (loop, loop_outer (loop));
5061 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5062 return false;
5064 for (i = 0; i < n_region; i++)
5065 if (region[i] != exit->src
5066 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5067 return false;
5070 if (!region_copy)
5072 region_copy = XNEWVEC (basic_block, n_region);
5073 free_region_copy = true;
5076 gcc_assert (!need_ssa_update_p (cfun));
5078 /* Record blocks outside the region that are dominated by something
5079 inside. */
5080 doms = NULL;
5081 initialize_original_copy_tables ();
5083 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5085 if (entry->dest->count)
5087 total_count = entry->dest->count;
5088 entry_count = entry->count;
5089 /* Fix up corner cases, to avoid division by zero or creation of negative
5090 frequencies. */
5091 if (entry_count > total_count)
5092 entry_count = total_count;
5094 else
5096 total_freq = entry->dest->frequency;
5097 entry_freq = EDGE_FREQUENCY (entry);
5098 /* Fix up corner cases, to avoid division by zero or creation of negative
5099 frequencies. */
5100 if (total_freq == 0)
5101 total_freq = 1;
5102 else if (entry_freq > total_freq)
5103 entry_freq = total_freq;
5106 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5107 split_edge_bb_loc (entry));
5108 if (total_count)
5110 scale_bbs_frequencies_gcov_type (region, n_region,
5111 total_count - entry_count,
5112 total_count);
5113 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5114 total_count);
5116 else
5118 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5119 total_freq);
5120 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5123 if (copying_header)
5125 loop->header = exit->dest;
5126 loop->latch = exit->src;
5129 /* Redirect the entry and add the phi node arguments. */
5130 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5131 gcc_assert (redirected != NULL);
5132 flush_pending_stmts (entry);
5134 /* Concerning updating of dominators: We must recount dominators
5135 for entry block and its copy. Anything that is outside of the
5136 region, but was dominated by something inside needs recounting as
5137 well. */
5138 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5139 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5140 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5141 VEC_free (basic_block, heap, doms);
5143 /* Add the other PHI node arguments. */
5144 add_phi_args_after_copy (region_copy, n_region, NULL);
5146 /* Update the SSA web. */
5147 update_ssa (TODO_update_ssa);
5149 if (free_region_copy)
5150 free (region_copy);
5152 free_original_copy_tables ();
5153 return true;
5156 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5157 are stored to REGION_COPY in the same order in that they appear
5158 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5159 the region, EXIT an exit from it. The condition guarding EXIT
5160 is moved to ENTRY. Returns true if duplication succeeds, false
5161 otherwise.
5163 For example,
5165 some_code;
5166 if (cond)
5168 else
5171 is transformed to
5173 if (cond)
5175 some_code;
5178 else
5180 some_code;
5185 bool
5186 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5187 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5188 basic_block *region_copy ATTRIBUTE_UNUSED)
5190 unsigned i;
5191 bool free_region_copy = false;
5192 struct loop *loop = exit->dest->loop_father;
5193 struct loop *orig_loop = entry->dest->loop_father;
5194 basic_block switch_bb, entry_bb, nentry_bb;
5195 VEC (basic_block, heap) *doms;
5196 int total_freq = 0, exit_freq = 0;
5197 gcov_type total_count = 0, exit_count = 0;
5198 edge exits[2], nexits[2], e;
5199 gimple_stmt_iterator gsi,gsi1;
5200 gimple cond_stmt;
5201 edge sorig, snew;
5202 basic_block exit_bb;
5203 basic_block iters_bb;
5204 tree new_rhs;
5205 gimple_stmt_iterator psi;
5206 gimple phi;
5207 tree def;
5209 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5210 exits[0] = exit;
5211 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5213 if (!can_copy_bbs_p (region, n_region))
5214 return false;
5216 initialize_original_copy_tables ();
5217 set_loop_copy (orig_loop, loop);
5218 duplicate_subloops (orig_loop, loop);
5220 if (!region_copy)
5222 region_copy = XNEWVEC (basic_block, n_region);
5223 free_region_copy = true;
5226 gcc_assert (!need_ssa_update_p (cfun));
5228 /* Record blocks outside the region that are dominated by something
5229 inside. */
5230 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5232 if (exit->src->count)
5234 total_count = exit->src->count;
5235 exit_count = exit->count;
5236 /* Fix up corner cases, to avoid division by zero or creation of negative
5237 frequencies. */
5238 if (exit_count > total_count)
5239 exit_count = total_count;
5241 else
5243 total_freq = exit->src->frequency;
5244 exit_freq = EDGE_FREQUENCY (exit);
5245 /* Fix up corner cases, to avoid division by zero or creation of negative
5246 frequencies. */
5247 if (total_freq == 0)
5248 total_freq = 1;
5249 if (exit_freq > total_freq)
5250 exit_freq = total_freq;
5253 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5254 split_edge_bb_loc (exit));
5255 if (total_count)
5257 scale_bbs_frequencies_gcov_type (region, n_region,
5258 total_count - exit_count,
5259 total_count);
5260 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5261 total_count);
5263 else
5265 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5266 total_freq);
5267 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5270 /* Create the switch block, and put the exit condition to it. */
5271 entry_bb = entry->dest;
5272 nentry_bb = get_bb_copy (entry_bb);
5273 if (!last_stmt (entry->src)
5274 || !stmt_ends_bb_p (last_stmt (entry->src)))
5275 switch_bb = entry->src;
5276 else
5277 switch_bb = split_edge (entry);
5278 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5280 gsi = gsi_last_bb (switch_bb);
5281 cond_stmt = last_stmt (exit->src);
5282 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5283 cond_stmt = gimple_copy (cond_stmt);
5285 /* If the block consisting of the exit condition has the latch as
5286 successor, then the body of the loop is executed before
5287 the exit condition is tested. In such case, moving the
5288 condition to the entry, causes that the loop will iterate
5289 one less iteration (which is the wanted outcome, since we
5290 peel out the last iteration). If the body is executed after
5291 the condition, moving the condition to the entry requires
5292 decrementing one iteration. */
5293 if (exits[1]->dest == orig_loop->latch)
5294 new_rhs = gimple_cond_rhs (cond_stmt);
5295 else
5297 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5298 gimple_cond_rhs (cond_stmt),
5299 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5301 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5303 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5304 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5305 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5306 break;
5308 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5309 NULL_TREE,false,GSI_CONTINUE_LINKING);
5312 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5313 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5314 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5316 sorig = single_succ_edge (switch_bb);
5317 sorig->flags = exits[1]->flags;
5318 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5320 /* Register the new edge from SWITCH_BB in loop exit lists. */
5321 rescan_loop_exit (snew, true, false);
5323 /* Add the PHI node arguments. */
5324 add_phi_args_after_copy (region_copy, n_region, snew);
5326 /* Get rid of now superfluous conditions and associated edges (and phi node
5327 arguments). */
5328 exit_bb = exit->dest;
5330 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5331 PENDING_STMT (e) = NULL;
5333 /* The latch of ORIG_LOOP was copied, and so was the backedge
5334 to the original header. We redirect this backedge to EXIT_BB. */
5335 for (i = 0; i < n_region; i++)
5336 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5338 gcc_assert (single_succ_edge (region_copy[i]));
5339 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5340 PENDING_STMT (e) = NULL;
5341 for (psi = gsi_start_phis (exit_bb);
5342 !gsi_end_p (psi);
5343 gsi_next (&psi))
5345 phi = gsi_stmt (psi);
5346 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5347 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5350 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5351 PENDING_STMT (e) = NULL;
5353 /* Anything that is outside of the region, but was dominated by something
5354 inside needs to update dominance info. */
5355 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5356 VEC_free (basic_block, heap, doms);
5357 /* Update the SSA web. */
5358 update_ssa (TODO_update_ssa);
5360 if (free_region_copy)
5361 free (region_copy);
5363 free_original_copy_tables ();
5364 return true;
5367 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5368 adding blocks when the dominator traversal reaches EXIT. This
5369 function silently assumes that ENTRY strictly dominates EXIT. */
5371 void
5372 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5373 VEC(basic_block,heap) **bbs_p)
5375 basic_block son;
5377 for (son = first_dom_son (CDI_DOMINATORS, entry);
5378 son;
5379 son = next_dom_son (CDI_DOMINATORS, son))
5381 VEC_safe_push (basic_block, heap, *bbs_p, son);
5382 if (son != exit)
5383 gather_blocks_in_sese_region (son, exit, bbs_p);
5387 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5388 The duplicates are recorded in VARS_MAP. */
5390 static void
5391 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5392 tree to_context)
5394 tree t = *tp, new_t;
5395 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5396 void **loc;
5398 if (DECL_CONTEXT (t) == to_context)
5399 return;
5401 loc = pointer_map_contains (vars_map, t);
5403 if (!loc)
5405 loc = pointer_map_insert (vars_map, t);
5407 if (SSA_VAR_P (t))
5409 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5410 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5412 else
5414 gcc_assert (TREE_CODE (t) == CONST_DECL);
5415 new_t = copy_node (t);
5417 DECL_CONTEXT (new_t) = to_context;
5419 *loc = new_t;
5421 else
5422 new_t = (tree) *loc;
5424 *tp = new_t;
5428 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5429 VARS_MAP maps old ssa names and var_decls to the new ones. */
5431 static tree
5432 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5433 tree to_context)
5435 void **loc;
5436 tree new_name, decl = SSA_NAME_VAR (name);
5438 gcc_assert (is_gimple_reg (name));
5440 loc = pointer_map_contains (vars_map, name);
5442 if (!loc)
5444 replace_by_duplicate_decl (&decl, vars_map, to_context);
5446 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5447 if (gimple_in_ssa_p (cfun))
5448 add_referenced_var (decl);
5450 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5451 if (SSA_NAME_IS_DEFAULT_DEF (name))
5452 set_default_def (decl, new_name);
5453 pop_cfun ();
5455 loc = pointer_map_insert (vars_map, name);
5456 *loc = new_name;
5458 else
5459 new_name = (tree) *loc;
5461 return new_name;
5464 struct move_stmt_d
5466 tree orig_block;
5467 tree new_block;
5468 tree from_context;
5469 tree to_context;
5470 struct pointer_map_t *vars_map;
5471 htab_t new_label_map;
5472 struct pointer_map_t *eh_map;
5473 bool remap_decls_p;
5476 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5477 contained in *TP if it has been ORIG_BLOCK previously and change the
5478 DECL_CONTEXT of every local variable referenced in *TP. */
5480 static tree
5481 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5483 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5484 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5485 tree t = *tp;
5487 if (EXPR_P (t))
5488 /* We should never have TREE_BLOCK set on non-statements. */
5489 gcc_assert (!TREE_BLOCK (t));
5491 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5493 if (TREE_CODE (t) == SSA_NAME)
5494 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5495 else if (TREE_CODE (t) == LABEL_DECL)
5497 if (p->new_label_map)
5499 struct tree_map in, *out;
5500 in.base.from = t;
5501 out = (struct tree_map *)
5502 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5503 if (out)
5504 *tp = t = out->to;
5507 DECL_CONTEXT (t) = p->to_context;
5509 else if (p->remap_decls_p)
5511 /* Replace T with its duplicate. T should no longer appear in the
5512 parent function, so this looks wasteful; however, it may appear
5513 in referenced_vars, and more importantly, as virtual operands of
5514 statements, and in alias lists of other variables. It would be
5515 quite difficult to expunge it from all those places. ??? It might
5516 suffice to do this for addressable variables. */
5517 if ((TREE_CODE (t) == VAR_DECL
5518 && !is_global_var (t))
5519 || TREE_CODE (t) == CONST_DECL)
5520 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5522 if (SSA_VAR_P (t)
5523 && gimple_in_ssa_p (cfun))
5525 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5526 add_referenced_var (*tp);
5527 pop_cfun ();
5530 *walk_subtrees = 0;
5532 else if (TYPE_P (t))
5533 *walk_subtrees = 0;
5535 return NULL_TREE;
5538 /* Helper for move_stmt_r. Given an EH region number for the source
5539 function, map that to the duplicate EH regio number in the dest. */
5541 static int
5542 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5544 eh_region old_r, new_r;
5545 void **slot;
5547 old_r = get_eh_region_from_number (old_nr);
5548 slot = pointer_map_contains (p->eh_map, old_r);
5549 new_r = (eh_region) *slot;
5551 return new_r->index;
5554 /* Similar, but operate on INTEGER_CSTs. */
5556 static tree
5557 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5559 int old_nr, new_nr;
5561 old_nr = tree_low_cst (old_t_nr, 0);
5562 new_nr = move_stmt_eh_region_nr (old_nr, p);
5564 return build_int_cst (NULL, new_nr);
5567 /* Like move_stmt_op, but for gimple statements.
5569 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5570 contained in the current statement in *GSI_P and change the
5571 DECL_CONTEXT of every local variable referenced in the current
5572 statement. */
5574 static tree
5575 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5576 struct walk_stmt_info *wi)
5578 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5579 gimple stmt = gsi_stmt (*gsi_p);
5580 tree block = gimple_block (stmt);
5582 if (p->orig_block == NULL_TREE
5583 || block == p->orig_block
5584 || block == NULL_TREE)
5585 gimple_set_block (stmt, p->new_block);
5586 #ifdef ENABLE_CHECKING
5587 else if (block != p->new_block)
5589 while (block && block != p->orig_block)
5590 block = BLOCK_SUPERCONTEXT (block);
5591 gcc_assert (block);
5593 #endif
5595 switch (gimple_code (stmt))
5597 case GIMPLE_CALL:
5598 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5600 tree r, fndecl = gimple_call_fndecl (stmt);
5601 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5602 switch (DECL_FUNCTION_CODE (fndecl))
5604 case BUILT_IN_EH_COPY_VALUES:
5605 r = gimple_call_arg (stmt, 1);
5606 r = move_stmt_eh_region_tree_nr (r, p);
5607 gimple_call_set_arg (stmt, 1, r);
5608 /* FALLTHRU */
5610 case BUILT_IN_EH_POINTER:
5611 case BUILT_IN_EH_FILTER:
5612 r = gimple_call_arg (stmt, 0);
5613 r = move_stmt_eh_region_tree_nr (r, p);
5614 gimple_call_set_arg (stmt, 0, r);
5615 break;
5617 default:
5618 break;
5621 break;
5623 case GIMPLE_RESX:
5625 int r = gimple_resx_region (stmt);
5626 r = move_stmt_eh_region_nr (r, p);
5627 gimple_resx_set_region (stmt, r);
5629 break;
5631 case GIMPLE_EH_DISPATCH:
5633 int r = gimple_eh_dispatch_region (stmt);
5634 r = move_stmt_eh_region_nr (r, p);
5635 gimple_eh_dispatch_set_region (stmt, r);
5637 break;
5639 case GIMPLE_OMP_RETURN:
5640 case GIMPLE_OMP_CONTINUE:
5641 break;
5642 default:
5643 if (is_gimple_omp (stmt))
5645 /* Do not remap variables inside OMP directives. Variables
5646 referenced in clauses and directive header belong to the
5647 parent function and should not be moved into the child
5648 function. */
5649 bool save_remap_decls_p = p->remap_decls_p;
5650 p->remap_decls_p = false;
5651 *handled_ops_p = true;
5653 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5654 move_stmt_op, wi);
5656 p->remap_decls_p = save_remap_decls_p;
5658 break;
5661 return NULL_TREE;
5664 /* Marks virtual operands of all statements in basic blocks BBS for
5665 renaming. */
5667 void
5668 mark_virtual_ops_in_bb (basic_block bb)
5670 gimple_stmt_iterator gsi;
5672 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5673 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5675 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5676 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5679 /* Move basic block BB from function CFUN to function DEST_FN. The
5680 block is moved out of the original linked list and placed after
5681 block AFTER in the new list. Also, the block is removed from the
5682 original array of blocks and placed in DEST_FN's array of blocks.
5683 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5684 updated to reflect the moved edges.
5686 The local variables are remapped to new instances, VARS_MAP is used
5687 to record the mapping. */
5689 static void
5690 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5691 basic_block after, bool update_edge_count_p,
5692 struct move_stmt_d *d)
5694 struct control_flow_graph *cfg;
5695 edge_iterator ei;
5696 edge e;
5697 gimple_stmt_iterator si;
5698 unsigned old_len, new_len;
5700 /* Remove BB from dominance structures. */
5701 delete_from_dominance_info (CDI_DOMINATORS, bb);
5702 if (current_loops)
5703 remove_bb_from_loops (bb);
5705 /* Link BB to the new linked list. */
5706 move_block_after (bb, after);
5708 /* Update the edge count in the corresponding flowgraphs. */
5709 if (update_edge_count_p)
5710 FOR_EACH_EDGE (e, ei, bb->succs)
5712 cfun->cfg->x_n_edges--;
5713 dest_cfun->cfg->x_n_edges++;
5716 /* Remove BB from the original basic block array. */
5717 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5718 cfun->cfg->x_n_basic_blocks--;
5720 /* Grow DEST_CFUN's basic block array if needed. */
5721 cfg = dest_cfun->cfg;
5722 cfg->x_n_basic_blocks++;
5723 if (bb->index >= cfg->x_last_basic_block)
5724 cfg->x_last_basic_block = bb->index + 1;
5726 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5727 if ((unsigned) cfg->x_last_basic_block >= old_len)
5729 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5730 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5731 new_len);
5734 VEC_replace (basic_block, cfg->x_basic_block_info,
5735 bb->index, bb);
5737 /* Remap the variables in phi nodes. */
5738 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5740 gimple phi = gsi_stmt (si);
5741 use_operand_p use;
5742 tree op = PHI_RESULT (phi);
5743 ssa_op_iter oi;
5745 if (!is_gimple_reg (op))
5747 /* Remove the phi nodes for virtual operands (alias analysis will be
5748 run for the new function, anyway). */
5749 remove_phi_node (&si, true);
5750 continue;
5753 SET_PHI_RESULT (phi,
5754 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5755 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5757 op = USE_FROM_PTR (use);
5758 if (TREE_CODE (op) == SSA_NAME)
5759 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5762 gsi_next (&si);
5765 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5767 gimple stmt = gsi_stmt (si);
5768 struct walk_stmt_info wi;
5770 memset (&wi, 0, sizeof (wi));
5771 wi.info = d;
5772 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5774 if (gimple_code (stmt) == GIMPLE_LABEL)
5776 tree label = gimple_label_label (stmt);
5777 int uid = LABEL_DECL_UID (label);
5779 gcc_assert (uid > -1);
5781 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5782 if (old_len <= (unsigned) uid)
5784 new_len = 3 * uid / 2 + 1;
5785 VEC_safe_grow_cleared (basic_block, gc,
5786 cfg->x_label_to_block_map, new_len);
5789 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5790 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5792 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5794 if (uid >= dest_cfun->cfg->last_label_uid)
5795 dest_cfun->cfg->last_label_uid = uid + 1;
5798 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5799 remove_stmt_from_eh_lp_fn (cfun, stmt);
5801 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5802 gimple_remove_stmt_histograms (cfun, stmt);
5804 /* We cannot leave any operands allocated from the operand caches of
5805 the current function. */
5806 free_stmt_operands (stmt);
5807 push_cfun (dest_cfun);
5808 update_stmt (stmt);
5809 pop_cfun ();
5812 FOR_EACH_EDGE (e, ei, bb->succs)
5813 if (e->goto_locus)
5815 tree block = e->goto_block;
5816 if (d->orig_block == NULL_TREE
5817 || block == d->orig_block)
5818 e->goto_block = d->new_block;
5819 #ifdef ENABLE_CHECKING
5820 else if (block != d->new_block)
5822 while (block && block != d->orig_block)
5823 block = BLOCK_SUPERCONTEXT (block);
5824 gcc_assert (block);
5826 #endif
5830 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5831 the outermost EH region. Use REGION as the incoming base EH region. */
5833 static eh_region
5834 find_outermost_region_in_block (struct function *src_cfun,
5835 basic_block bb, eh_region region)
5837 gimple_stmt_iterator si;
5839 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5841 gimple stmt = gsi_stmt (si);
5842 eh_region stmt_region;
5843 int lp_nr;
5845 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
5846 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
5847 if (stmt_region)
5849 if (region == NULL)
5850 region = stmt_region;
5851 else if (stmt_region != region)
5853 region = eh_region_outermost (src_cfun, stmt_region, region);
5854 gcc_assert (region != NULL);
5859 return region;
5862 static tree
5863 new_label_mapper (tree decl, void *data)
5865 htab_t hash = (htab_t) data;
5866 struct tree_map *m;
5867 void **slot;
5869 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5871 m = XNEW (struct tree_map);
5872 m->hash = DECL_UID (decl);
5873 m->base.from = decl;
5874 m->to = create_artificial_label (UNKNOWN_LOCATION);
5875 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
5876 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5877 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
5879 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5880 gcc_assert (*slot == NULL);
5882 *slot = m;
5884 return m->to;
5887 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5888 subblocks. */
5890 static void
5891 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5892 tree to_context)
5894 tree *tp, t;
5896 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5898 t = *tp;
5899 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
5900 continue;
5901 replace_by_duplicate_decl (&t, vars_map, to_context);
5902 if (t != *tp)
5904 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5906 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5907 DECL_HAS_VALUE_EXPR_P (t) = 1;
5909 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5910 *tp = t;
5914 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5915 replace_block_vars_by_duplicates (block, vars_map, to_context);
5918 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5919 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5920 single basic block in the original CFG and the new basic block is
5921 returned. DEST_CFUN must not have a CFG yet.
5923 Note that the region need not be a pure SESE region. Blocks inside
5924 the region may contain calls to abort/exit. The only restriction
5925 is that ENTRY_BB should be the only entry point and it must
5926 dominate EXIT_BB.
5928 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5929 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5930 to the new function.
5932 All local variables referenced in the region are assumed to be in
5933 the corresponding BLOCK_VARS and unexpanded variable lists
5934 associated with DEST_CFUN. */
5936 basic_block
5937 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
5938 basic_block exit_bb, tree orig_block)
5940 VEC(basic_block,heap) *bbs, *dom_bbs;
5941 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5942 basic_block after, bb, *entry_pred, *exit_succ, abb;
5943 struct function *saved_cfun = cfun;
5944 int *entry_flag, *exit_flag;
5945 unsigned *entry_prob, *exit_prob;
5946 unsigned i, num_entry_edges, num_exit_edges;
5947 edge e;
5948 edge_iterator ei;
5949 htab_t new_label_map;
5950 struct pointer_map_t *vars_map, *eh_map;
5951 struct loop *loop = entry_bb->loop_father;
5952 struct move_stmt_d d;
5954 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5955 region. */
5956 gcc_assert (entry_bb != exit_bb
5957 && (!exit_bb
5958 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
5960 /* Collect all the blocks in the region. Manually add ENTRY_BB
5961 because it won't be added by dfs_enumerate_from. */
5962 bbs = NULL;
5963 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5964 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
5966 /* The blocks that used to be dominated by something in BBS will now be
5967 dominated by the new block. */
5968 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
5969 VEC_address (basic_block, bbs),
5970 VEC_length (basic_block, bbs));
5972 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5973 the predecessor edges to ENTRY_BB and the successor edges to
5974 EXIT_BB so that we can re-attach them to the new basic block that
5975 will replace the region. */
5976 num_entry_edges = EDGE_COUNT (entry_bb->preds);
5977 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
5978 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
5979 entry_prob = XNEWVEC (unsigned, num_entry_edges);
5980 i = 0;
5981 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
5983 entry_prob[i] = e->probability;
5984 entry_flag[i] = e->flags;
5985 entry_pred[i++] = e->src;
5986 remove_edge (e);
5989 if (exit_bb)
5991 num_exit_edges = EDGE_COUNT (exit_bb->succs);
5992 exit_succ = (basic_block *) xcalloc (num_exit_edges,
5993 sizeof (basic_block));
5994 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
5995 exit_prob = XNEWVEC (unsigned, num_exit_edges);
5996 i = 0;
5997 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
5999 exit_prob[i] = e->probability;
6000 exit_flag[i] = e->flags;
6001 exit_succ[i++] = e->dest;
6002 remove_edge (e);
6005 else
6007 num_exit_edges = 0;
6008 exit_succ = NULL;
6009 exit_flag = NULL;
6010 exit_prob = NULL;
6013 /* Switch context to the child function to initialize DEST_FN's CFG. */
6014 gcc_assert (dest_cfun->cfg == NULL);
6015 push_cfun (dest_cfun);
6017 init_empty_tree_cfg ();
6019 /* Initialize EH information for the new function. */
6020 eh_map = NULL;
6021 new_label_map = NULL;
6022 if (saved_cfun->eh)
6024 eh_region region = NULL;
6026 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6027 region = find_outermost_region_in_block (saved_cfun, bb, region);
6029 init_eh_for_function ();
6030 if (region != NULL)
6032 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6033 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6034 new_label_mapper, new_label_map);
6038 pop_cfun ();
6040 /* Move blocks from BBS into DEST_CFUN. */
6041 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6042 after = dest_cfun->cfg->x_entry_block_ptr;
6043 vars_map = pointer_map_create ();
6045 memset (&d, 0, sizeof (d));
6046 d.orig_block = orig_block;
6047 d.new_block = DECL_INITIAL (dest_cfun->decl);
6048 d.from_context = cfun->decl;
6049 d.to_context = dest_cfun->decl;
6050 d.vars_map = vars_map;
6051 d.new_label_map = new_label_map;
6052 d.eh_map = eh_map;
6053 d.remap_decls_p = true;
6055 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6057 /* No need to update edge counts on the last block. It has
6058 already been updated earlier when we detached the region from
6059 the original CFG. */
6060 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6061 after = bb;
6064 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6065 if (orig_block)
6067 tree block;
6068 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6069 == NULL_TREE);
6070 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6071 = BLOCK_SUBBLOCKS (orig_block);
6072 for (block = BLOCK_SUBBLOCKS (orig_block);
6073 block; block = BLOCK_CHAIN (block))
6074 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6075 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6078 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6079 vars_map, dest_cfun->decl);
6081 if (new_label_map)
6082 htab_delete (new_label_map);
6083 if (eh_map)
6084 pointer_map_destroy (eh_map);
6085 pointer_map_destroy (vars_map);
6087 /* Rewire the entry and exit blocks. The successor to the entry
6088 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6089 the child function. Similarly, the predecessor of DEST_FN's
6090 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6091 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6092 various CFG manipulation function get to the right CFG.
6094 FIXME, this is silly. The CFG ought to become a parameter to
6095 these helpers. */
6096 push_cfun (dest_cfun);
6097 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6098 if (exit_bb)
6099 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6100 pop_cfun ();
6102 /* Back in the original function, the SESE region has disappeared,
6103 create a new basic block in its place. */
6104 bb = create_empty_bb (entry_pred[0]);
6105 if (current_loops)
6106 add_bb_to_loop (bb, loop);
6107 for (i = 0; i < num_entry_edges; i++)
6109 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6110 e->probability = entry_prob[i];
6113 for (i = 0; i < num_exit_edges; i++)
6115 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6116 e->probability = exit_prob[i];
6119 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6120 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6121 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6122 VEC_free (basic_block, heap, dom_bbs);
6124 if (exit_bb)
6126 free (exit_prob);
6127 free (exit_flag);
6128 free (exit_succ);
6130 free (entry_prob);
6131 free (entry_flag);
6132 free (entry_pred);
6133 VEC_free (basic_block, heap, bbs);
6135 return bb;
6139 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6142 void
6143 dump_function_to_file (tree fn, FILE *file, int flags)
6145 tree arg, vars, var;
6146 struct function *dsf;
6147 bool ignore_topmost_bind = false, any_var = false;
6148 basic_block bb;
6149 tree chain;
6151 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6153 arg = DECL_ARGUMENTS (fn);
6154 while (arg)
6156 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6157 fprintf (file, " ");
6158 print_generic_expr (file, arg, dump_flags);
6159 if (flags & TDF_VERBOSE)
6160 print_node (file, "", arg, 4);
6161 if (TREE_CHAIN (arg))
6162 fprintf (file, ", ");
6163 arg = TREE_CHAIN (arg);
6165 fprintf (file, ")\n");
6167 if (flags & TDF_VERBOSE)
6168 print_node (file, "", fn, 2);
6170 dsf = DECL_STRUCT_FUNCTION (fn);
6171 if (dsf && (flags & TDF_EH))
6172 dump_eh_tree (file, dsf);
6174 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6176 dump_node (fn, TDF_SLIM | flags, file);
6177 return;
6180 /* Switch CFUN to point to FN. */
6181 push_cfun (DECL_STRUCT_FUNCTION (fn));
6183 /* When GIMPLE is lowered, the variables are no longer available in
6184 BIND_EXPRs, so display them separately. */
6185 if (cfun && cfun->decl == fn && cfun->local_decls)
6187 ignore_topmost_bind = true;
6189 fprintf (file, "{\n");
6190 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6192 var = TREE_VALUE (vars);
6194 print_generic_decl (file, var, flags);
6195 if (flags & TDF_VERBOSE)
6196 print_node (file, "", var, 4);
6197 fprintf (file, "\n");
6199 any_var = true;
6203 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6205 /* If the CFG has been built, emit a CFG-based dump. */
6206 check_bb_profile (ENTRY_BLOCK_PTR, file);
6207 if (!ignore_topmost_bind)
6208 fprintf (file, "{\n");
6210 if (any_var && n_basic_blocks)
6211 fprintf (file, "\n");
6213 FOR_EACH_BB (bb)
6214 gimple_dump_bb (bb, file, 2, flags);
6216 fprintf (file, "}\n");
6217 check_bb_profile (EXIT_BLOCK_PTR, file);
6219 else if (DECL_SAVED_TREE (fn) == NULL)
6221 /* The function is now in GIMPLE form but the CFG has not been
6222 built yet. Emit the single sequence of GIMPLE statements
6223 that make up its body. */
6224 gimple_seq body = gimple_body (fn);
6226 if (gimple_seq_first_stmt (body)
6227 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6228 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6229 print_gimple_seq (file, body, 0, flags);
6230 else
6232 if (!ignore_topmost_bind)
6233 fprintf (file, "{\n");
6235 if (any_var)
6236 fprintf (file, "\n");
6238 print_gimple_seq (file, body, 2, flags);
6239 fprintf (file, "}\n");
6242 else
6244 int indent;
6246 /* Make a tree based dump. */
6247 chain = DECL_SAVED_TREE (fn);
6249 if (chain && TREE_CODE (chain) == BIND_EXPR)
6251 if (ignore_topmost_bind)
6253 chain = BIND_EXPR_BODY (chain);
6254 indent = 2;
6256 else
6257 indent = 0;
6259 else
6261 if (!ignore_topmost_bind)
6262 fprintf (file, "{\n");
6263 indent = 2;
6266 if (any_var)
6267 fprintf (file, "\n");
6269 print_generic_stmt_indented (file, chain, flags, indent);
6270 if (ignore_topmost_bind)
6271 fprintf (file, "}\n");
6274 fprintf (file, "\n\n");
6276 /* Restore CFUN. */
6277 pop_cfun ();
6281 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6283 void
6284 debug_function (tree fn, int flags)
6286 dump_function_to_file (fn, stderr, flags);
6290 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6292 static void
6293 print_pred_bbs (FILE *file, basic_block bb)
6295 edge e;
6296 edge_iterator ei;
6298 FOR_EACH_EDGE (e, ei, bb->preds)
6299 fprintf (file, "bb_%d ", e->src->index);
6303 /* Print on FILE the indexes for the successors of basic_block BB. */
6305 static void
6306 print_succ_bbs (FILE *file, basic_block bb)
6308 edge e;
6309 edge_iterator ei;
6311 FOR_EACH_EDGE (e, ei, bb->succs)
6312 fprintf (file, "bb_%d ", e->dest->index);
6315 /* Print to FILE the basic block BB following the VERBOSITY level. */
6317 void
6318 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6320 char *s_indent = (char *) alloca ((size_t) indent + 1);
6321 memset ((void *) s_indent, ' ', (size_t) indent);
6322 s_indent[indent] = '\0';
6324 /* Print basic_block's header. */
6325 if (verbosity >= 2)
6327 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6328 print_pred_bbs (file, bb);
6329 fprintf (file, "}, succs = {");
6330 print_succ_bbs (file, bb);
6331 fprintf (file, "})\n");
6334 /* Print basic_block's body. */
6335 if (verbosity >= 3)
6337 fprintf (file, "%s {\n", s_indent);
6338 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6339 fprintf (file, "%s }\n", s_indent);
6343 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6345 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6346 VERBOSITY level this outputs the contents of the loop, or just its
6347 structure. */
6349 static void
6350 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6352 char *s_indent;
6353 basic_block bb;
6355 if (loop == NULL)
6356 return;
6358 s_indent = (char *) alloca ((size_t) indent + 1);
6359 memset ((void *) s_indent, ' ', (size_t) indent);
6360 s_indent[indent] = '\0';
6362 /* Print loop's header. */
6363 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6364 loop->num, loop->header->index, loop->latch->index);
6365 fprintf (file, ", niter = ");
6366 print_generic_expr (file, loop->nb_iterations, 0);
6368 if (loop->any_upper_bound)
6370 fprintf (file, ", upper_bound = ");
6371 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6374 if (loop->any_estimate)
6376 fprintf (file, ", estimate = ");
6377 dump_double_int (file, loop->nb_iterations_estimate, true);
6379 fprintf (file, ")\n");
6381 /* Print loop's body. */
6382 if (verbosity >= 1)
6384 fprintf (file, "%s{\n", s_indent);
6385 FOR_EACH_BB (bb)
6386 if (bb->loop_father == loop)
6387 print_loops_bb (file, bb, indent, verbosity);
6389 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6390 fprintf (file, "%s}\n", s_indent);
6394 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6395 spaces. Following VERBOSITY level this outputs the contents of the
6396 loop, or just its structure. */
6398 static void
6399 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6401 if (loop == NULL)
6402 return;
6404 print_loop (file, loop, indent, verbosity);
6405 print_loop_and_siblings (file, loop->next, indent, verbosity);
6408 /* Follow a CFG edge from the entry point of the program, and on entry
6409 of a loop, pretty print the loop structure on FILE. */
6411 void
6412 print_loops (FILE *file, int verbosity)
6414 basic_block bb;
6416 bb = ENTRY_BLOCK_PTR;
6417 if (bb && bb->loop_father)
6418 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6422 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6424 void
6425 debug_loops (int verbosity)
6427 print_loops (stderr, verbosity);
6430 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6432 void
6433 debug_loop (struct loop *loop, int verbosity)
6435 print_loop (stderr, loop, 0, verbosity);
6438 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6439 level. */
6441 void
6442 debug_loop_num (unsigned num, int verbosity)
6444 debug_loop (get_loop (num), verbosity);
6447 /* Return true if BB ends with a call, possibly followed by some
6448 instructions that must stay with the call. Return false,
6449 otherwise. */
6451 static bool
6452 gimple_block_ends_with_call_p (basic_block bb)
6454 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6455 return is_gimple_call (gsi_stmt (gsi));
6459 /* Return true if BB ends with a conditional branch. Return false,
6460 otherwise. */
6462 static bool
6463 gimple_block_ends_with_condjump_p (const_basic_block bb)
6465 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6466 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6470 /* Return true if we need to add fake edge to exit at statement T.
6471 Helper function for gimple_flow_call_edges_add. */
6473 static bool
6474 need_fake_edge_p (gimple t)
6476 tree fndecl = NULL_TREE;
6477 int call_flags = 0;
6479 /* NORETURN and LONGJMP calls already have an edge to exit.
6480 CONST and PURE calls do not need one.
6481 We don't currently check for CONST and PURE here, although
6482 it would be a good idea, because those attributes are
6483 figured out from the RTL in mark_constant_function, and
6484 the counter incrementation code from -fprofile-arcs
6485 leads to different results from -fbranch-probabilities. */
6486 if (is_gimple_call (t))
6488 fndecl = gimple_call_fndecl (t);
6489 call_flags = gimple_call_flags (t);
6492 if (is_gimple_call (t)
6493 && fndecl
6494 && DECL_BUILT_IN (fndecl)
6495 && (call_flags & ECF_NOTHROW)
6496 && !(call_flags & ECF_RETURNS_TWICE)
6497 /* fork() doesn't really return twice, but the effect of
6498 wrapping it in __gcov_fork() which calls __gcov_flush()
6499 and clears the counters before forking has the same
6500 effect as returning twice. Force a fake edge. */
6501 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6502 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6503 return false;
6505 if (is_gimple_call (t)
6506 && !(call_flags & ECF_NORETURN))
6507 return true;
6509 if (gimple_code (t) == GIMPLE_ASM
6510 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6511 return true;
6513 return false;
6517 /* Add fake edges to the function exit for any non constant and non
6518 noreturn calls, volatile inline assembly in the bitmap of blocks
6519 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6520 the number of blocks that were split.
6522 The goal is to expose cases in which entering a basic block does
6523 not imply that all subsequent instructions must be executed. */
6525 static int
6526 gimple_flow_call_edges_add (sbitmap blocks)
6528 int i;
6529 int blocks_split = 0;
6530 int last_bb = last_basic_block;
6531 bool check_last_block = false;
6533 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6534 return 0;
6536 if (! blocks)
6537 check_last_block = true;
6538 else
6539 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6541 /* In the last basic block, before epilogue generation, there will be
6542 a fallthru edge to EXIT. Special care is required if the last insn
6543 of the last basic block is a call because make_edge folds duplicate
6544 edges, which would result in the fallthru edge also being marked
6545 fake, which would result in the fallthru edge being removed by
6546 remove_fake_edges, which would result in an invalid CFG.
6548 Moreover, we can't elide the outgoing fake edge, since the block
6549 profiler needs to take this into account in order to solve the minimal
6550 spanning tree in the case that the call doesn't return.
6552 Handle this by adding a dummy instruction in a new last basic block. */
6553 if (check_last_block)
6555 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6556 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6557 gimple t = NULL;
6559 if (!gsi_end_p (gsi))
6560 t = gsi_stmt (gsi);
6562 if (t && need_fake_edge_p (t))
6564 edge e;
6566 e = find_edge (bb, EXIT_BLOCK_PTR);
6567 if (e)
6569 gsi_insert_on_edge (e, gimple_build_nop ());
6570 gsi_commit_edge_inserts ();
6575 /* Now add fake edges to the function exit for any non constant
6576 calls since there is no way that we can determine if they will
6577 return or not... */
6578 for (i = 0; i < last_bb; i++)
6580 basic_block bb = BASIC_BLOCK (i);
6581 gimple_stmt_iterator gsi;
6582 gimple stmt, last_stmt;
6584 if (!bb)
6585 continue;
6587 if (blocks && !TEST_BIT (blocks, i))
6588 continue;
6590 gsi = gsi_last_bb (bb);
6591 if (!gsi_end_p (gsi))
6593 last_stmt = gsi_stmt (gsi);
6596 stmt = gsi_stmt (gsi);
6597 if (need_fake_edge_p (stmt))
6599 edge e;
6601 /* The handling above of the final block before the
6602 epilogue should be enough to verify that there is
6603 no edge to the exit block in CFG already.
6604 Calling make_edge in such case would cause us to
6605 mark that edge as fake and remove it later. */
6606 #ifdef ENABLE_CHECKING
6607 if (stmt == last_stmt)
6609 e = find_edge (bb, EXIT_BLOCK_PTR);
6610 gcc_assert (e == NULL);
6612 #endif
6614 /* Note that the following may create a new basic block
6615 and renumber the existing basic blocks. */
6616 if (stmt != last_stmt)
6618 e = split_block (bb, stmt);
6619 if (e)
6620 blocks_split++;
6622 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6624 gsi_prev (&gsi);
6626 while (!gsi_end_p (gsi));
6630 if (blocks_split)
6631 verify_flow_info ();
6633 return blocks_split;
6636 /* Purge dead abnormal call edges from basic block BB. */
6638 bool
6639 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6641 bool changed = gimple_purge_dead_eh_edges (bb);
6643 if (cfun->has_nonlocal_label)
6645 gimple stmt = last_stmt (bb);
6646 edge_iterator ei;
6647 edge e;
6649 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6650 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6652 if (e->flags & EDGE_ABNORMAL)
6654 remove_edge (e);
6655 changed = true;
6657 else
6658 ei_next (&ei);
6661 /* See gimple_purge_dead_eh_edges below. */
6662 if (changed)
6663 free_dominance_info (CDI_DOMINATORS);
6666 return changed;
6669 /* Removes edge E and all the blocks dominated by it, and updates dominance
6670 information. The IL in E->src needs to be updated separately.
6671 If dominance info is not available, only the edge E is removed.*/
6673 void
6674 remove_edge_and_dominated_blocks (edge e)
6676 VEC (basic_block, heap) *bbs_to_remove = NULL;
6677 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6678 bitmap df, df_idom;
6679 edge f;
6680 edge_iterator ei;
6681 bool none_removed = false;
6682 unsigned i;
6683 basic_block bb, dbb;
6684 bitmap_iterator bi;
6686 if (!dom_info_available_p (CDI_DOMINATORS))
6688 remove_edge (e);
6689 return;
6692 /* No updating is needed for edges to exit. */
6693 if (e->dest == EXIT_BLOCK_PTR)
6695 if (cfgcleanup_altered_bbs)
6696 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6697 remove_edge (e);
6698 return;
6701 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6702 that is not dominated by E->dest, then this set is empty. Otherwise,
6703 all the basic blocks dominated by E->dest are removed.
6705 Also, to DF_IDOM we store the immediate dominators of the blocks in
6706 the dominance frontier of E (i.e., of the successors of the
6707 removed blocks, if there are any, and of E->dest otherwise). */
6708 FOR_EACH_EDGE (f, ei, e->dest->preds)
6710 if (f == e)
6711 continue;
6713 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6715 none_removed = true;
6716 break;
6720 df = BITMAP_ALLOC (NULL);
6721 df_idom = BITMAP_ALLOC (NULL);
6723 if (none_removed)
6724 bitmap_set_bit (df_idom,
6725 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6726 else
6728 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6729 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6731 FOR_EACH_EDGE (f, ei, bb->succs)
6733 if (f->dest != EXIT_BLOCK_PTR)
6734 bitmap_set_bit (df, f->dest->index);
6737 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6738 bitmap_clear_bit (df, bb->index);
6740 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6742 bb = BASIC_BLOCK (i);
6743 bitmap_set_bit (df_idom,
6744 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6748 if (cfgcleanup_altered_bbs)
6750 /* Record the set of the altered basic blocks. */
6751 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6752 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6755 /* Remove E and the cancelled blocks. */
6756 if (none_removed)
6757 remove_edge (e);
6758 else
6760 /* Walk backwards so as to get a chance to substitute all
6761 released DEFs into debug stmts. See
6762 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6763 details. */
6764 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6765 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6768 /* Update the dominance information. The immediate dominator may change only
6769 for blocks whose immediate dominator belongs to DF_IDOM:
6771 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6772 removal. Let Z the arbitrary block such that idom(Z) = Y and
6773 Z dominates X after the removal. Before removal, there exists a path P
6774 from Y to X that avoids Z. Let F be the last edge on P that is
6775 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6776 dominates W, and because of P, Z does not dominate W), and W belongs to
6777 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6778 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6780 bb = BASIC_BLOCK (i);
6781 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6782 dbb;
6783 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6784 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6787 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6789 BITMAP_FREE (df);
6790 BITMAP_FREE (df_idom);
6791 VEC_free (basic_block, heap, bbs_to_remove);
6792 VEC_free (basic_block, heap, bbs_to_fix_dom);
6795 /* Purge dead EH edges from basic block BB. */
6797 bool
6798 gimple_purge_dead_eh_edges (basic_block bb)
6800 bool changed = false;
6801 edge e;
6802 edge_iterator ei;
6803 gimple stmt = last_stmt (bb);
6805 if (stmt && stmt_can_throw_internal (stmt))
6806 return false;
6808 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6810 if (e->flags & EDGE_EH)
6812 remove_edge_and_dominated_blocks (e);
6813 changed = true;
6815 else
6816 ei_next (&ei);
6819 return changed;
6822 bool
6823 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6825 bool changed = false;
6826 unsigned i;
6827 bitmap_iterator bi;
6829 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6831 basic_block bb = BASIC_BLOCK (i);
6833 /* Earlier gimple_purge_dead_eh_edges could have removed
6834 this basic block already. */
6835 gcc_assert (bb || changed);
6836 if (bb != NULL)
6837 changed |= gimple_purge_dead_eh_edges (bb);
6840 return changed;
6843 /* This function is called whenever a new edge is created or
6844 redirected. */
6846 static void
6847 gimple_execute_on_growing_pred (edge e)
6849 basic_block bb = e->dest;
6851 if (!gimple_seq_empty_p (phi_nodes (bb)))
6852 reserve_phi_args_for_new_edge (bb);
6855 /* This function is called immediately before edge E is removed from
6856 the edge vector E->dest->preds. */
6858 static void
6859 gimple_execute_on_shrinking_pred (edge e)
6861 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
6862 remove_phi_args (e);
6865 /*---------------------------------------------------------------------------
6866 Helper functions for Loop versioning
6867 ---------------------------------------------------------------------------*/
6869 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6870 of 'first'. Both of them are dominated by 'new_head' basic block. When
6871 'new_head' was created by 'second's incoming edge it received phi arguments
6872 on the edge by split_edge(). Later, additional edge 'e' was created to
6873 connect 'new_head' and 'first'. Now this routine adds phi args on this
6874 additional edge 'e' that new_head to second edge received as part of edge
6875 splitting. */
6877 static void
6878 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6879 basic_block new_head, edge e)
6881 gimple phi1, phi2;
6882 gimple_stmt_iterator psi1, psi2;
6883 tree def;
6884 edge e2 = find_edge (new_head, second);
6886 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6887 edge, we should always have an edge from NEW_HEAD to SECOND. */
6888 gcc_assert (e2 != NULL);
6890 /* Browse all 'second' basic block phi nodes and add phi args to
6891 edge 'e' for 'first' head. PHI args are always in correct order. */
6893 for (psi2 = gsi_start_phis (second),
6894 psi1 = gsi_start_phis (first);
6895 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6896 gsi_next (&psi2), gsi_next (&psi1))
6898 phi1 = gsi_stmt (psi1);
6899 phi2 = gsi_stmt (psi2);
6900 def = PHI_ARG_DEF (phi2, e2->dest_idx);
6901 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
6906 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6907 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6908 the destination of the ELSE part. */
6910 static void
6911 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6912 basic_block second_head ATTRIBUTE_UNUSED,
6913 basic_block cond_bb, void *cond_e)
6915 gimple_stmt_iterator gsi;
6916 gimple new_cond_expr;
6917 tree cond_expr = (tree) cond_e;
6918 edge e0;
6920 /* Build new conditional expr */
6921 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6922 NULL_TREE, NULL_TREE);
6924 /* Add new cond in cond_bb. */
6925 gsi = gsi_last_bb (cond_bb);
6926 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6928 /* Adjust edges appropriately to connect new head with first head
6929 as well as second head. */
6930 e0 = single_succ_edge (cond_bb);
6931 e0->flags &= ~EDGE_FALLTHRU;
6932 e0->flags |= EDGE_FALSE_VALUE;
6935 struct cfg_hooks gimple_cfg_hooks = {
6936 "gimple",
6937 gimple_verify_flow_info,
6938 gimple_dump_bb, /* dump_bb */
6939 create_bb, /* create_basic_block */
6940 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6941 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6942 gimple_can_remove_branch_p, /* can_remove_branch_p */
6943 remove_bb, /* delete_basic_block */
6944 gimple_split_block, /* split_block */
6945 gimple_move_block_after, /* move_block_after */
6946 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6947 gimple_merge_blocks, /* merge_blocks */
6948 gimple_predict_edge, /* predict_edge */
6949 gimple_predicted_by_p, /* predicted_by_p */
6950 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6951 gimple_duplicate_bb, /* duplicate_block */
6952 gimple_split_edge, /* split_edge */
6953 gimple_make_forwarder_block, /* make_forward_block */
6954 NULL, /* tidy_fallthru_edge */
6955 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6956 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6957 gimple_flow_call_edges_add, /* flow_call_edges_add */
6958 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6959 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6960 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6961 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6962 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
6963 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6964 flush_pending_stmts /* flush_pending_stmts */
6968 /* Split all critical edges. */
6970 static unsigned int
6971 split_critical_edges (void)
6973 basic_block bb;
6974 edge e;
6975 edge_iterator ei;
6977 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6978 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6979 mappings around the calls to split_edge. */
6980 start_recording_case_labels ();
6981 FOR_ALL_BB (bb)
6983 FOR_EACH_EDGE (e, ei, bb->succs)
6985 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6986 split_edge (e);
6987 /* PRE inserts statements to edges and expects that
6988 since split_critical_edges was done beforehand, committing edge
6989 insertions will not split more edges. In addition to critical
6990 edges we must split edges that have multiple successors and
6991 end by control flow statements, such as RESX.
6992 Go ahead and split them too. This matches the logic in
6993 gimple_find_edge_insert_loc. */
6994 else if ((!single_pred_p (e->dest)
6995 || !gimple_seq_empty_p (phi_nodes (e->dest))
6996 || e->dest == EXIT_BLOCK_PTR)
6997 && e->src != ENTRY_BLOCK_PTR
6998 && !(e->flags & EDGE_ABNORMAL))
7000 gimple_stmt_iterator gsi;
7002 gsi = gsi_last_bb (e->src);
7003 if (!gsi_end_p (gsi)
7004 && stmt_ends_bb_p (gsi_stmt (gsi))
7005 && gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN)
7006 split_edge (e);
7010 end_recording_case_labels ();
7011 return 0;
7014 struct gimple_opt_pass pass_split_crit_edges =
7017 GIMPLE_PASS,
7018 "crited", /* name */
7019 NULL, /* gate */
7020 split_critical_edges, /* execute */
7021 NULL, /* sub */
7022 NULL, /* next */
7023 0, /* static_pass_number */
7024 TV_TREE_SPLIT_EDGES, /* tv_id */
7025 PROP_cfg, /* properties required */
7026 PROP_no_crit_edges, /* properties_provided */
7027 0, /* properties_destroyed */
7028 0, /* todo_flags_start */
7029 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7034 /* Build a ternary operation and gimplify it. Emit code before GSI.
7035 Return the gimple_val holding the result. */
7037 tree
7038 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7039 tree type, tree a, tree b, tree c)
7041 tree ret;
7042 location_t loc = gimple_location (gsi_stmt (*gsi));
7044 ret = fold_build3_loc (loc, code, type, a, b, c);
7045 STRIP_NOPS (ret);
7047 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7048 GSI_SAME_STMT);
7051 /* Build a binary operation and gimplify it. Emit code before GSI.
7052 Return the gimple_val holding the result. */
7054 tree
7055 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7056 tree type, tree a, tree b)
7058 tree ret;
7060 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7061 STRIP_NOPS (ret);
7063 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7064 GSI_SAME_STMT);
7067 /* Build a unary operation and gimplify it. Emit code before GSI.
7068 Return the gimple_val holding the result. */
7070 tree
7071 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7072 tree a)
7074 tree ret;
7076 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7077 STRIP_NOPS (ret);
7079 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7080 GSI_SAME_STMT);
7085 /* Emit return warnings. */
7087 static unsigned int
7088 execute_warn_function_return (void)
7090 source_location location;
7091 gimple last;
7092 edge e;
7093 edge_iterator ei;
7095 /* If we have a path to EXIT, then we do return. */
7096 if (TREE_THIS_VOLATILE (cfun->decl)
7097 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7099 location = UNKNOWN_LOCATION;
7100 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7102 last = last_stmt (e->src);
7103 if (gimple_code (last) == GIMPLE_RETURN
7104 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7105 break;
7107 if (location == UNKNOWN_LOCATION)
7108 location = cfun->function_end_locus;
7109 warning_at (location, 0, "%<noreturn%> function does return");
7112 /* If we see "return;" in some basic block, then we do reach the end
7113 without returning a value. */
7114 else if (warn_return_type
7115 && !TREE_NO_WARNING (cfun->decl)
7116 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7117 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7119 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7121 gimple last = last_stmt (e->src);
7122 if (gimple_code (last) == GIMPLE_RETURN
7123 && gimple_return_retval (last) == NULL
7124 && !gimple_no_warning_p (last))
7126 location = gimple_location (last);
7127 if (location == UNKNOWN_LOCATION)
7128 location = cfun->function_end_locus;
7129 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7130 TREE_NO_WARNING (cfun->decl) = 1;
7131 break;
7135 return 0;
7139 /* Given a basic block B which ends with a conditional and has
7140 precisely two successors, determine which of the edges is taken if
7141 the conditional is true and which is taken if the conditional is
7142 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7144 void
7145 extract_true_false_edges_from_block (basic_block b,
7146 edge *true_edge,
7147 edge *false_edge)
7149 edge e = EDGE_SUCC (b, 0);
7151 if (e->flags & EDGE_TRUE_VALUE)
7153 *true_edge = e;
7154 *false_edge = EDGE_SUCC (b, 1);
7156 else
7158 *false_edge = e;
7159 *true_edge = EDGE_SUCC (b, 1);
7163 struct gimple_opt_pass pass_warn_function_return =
7166 GIMPLE_PASS,
7167 "*warn_function_return", /* name */
7168 NULL, /* gate */
7169 execute_warn_function_return, /* execute */
7170 NULL, /* sub */
7171 NULL, /* next */
7172 0, /* static_pass_number */
7173 TV_NONE, /* tv_id */
7174 PROP_cfg, /* properties_required */
7175 0, /* properties_provided */
7176 0, /* properties_destroyed */
7177 0, /* todo_flags_start */
7178 0 /* todo_flags_finish */
7182 /* Emit noreturn warnings. */
7184 static unsigned int
7185 execute_warn_function_noreturn (void)
7187 if (warn_missing_noreturn
7188 && !TREE_THIS_VOLATILE (cfun->decl)
7189 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7190 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7191 warning_at (DECL_SOURCE_LOCATION (cfun->decl), OPT_Wmissing_noreturn,
7192 "function might be possible candidate "
7193 "for attribute %<noreturn%>");
7194 return 0;
7197 struct gimple_opt_pass pass_warn_function_noreturn =
7200 GIMPLE_PASS,
7201 "*warn_function_noreturn", /* name */
7202 NULL, /* gate */
7203 execute_warn_function_noreturn, /* execute */
7204 NULL, /* sub */
7205 NULL, /* next */
7206 0, /* static_pass_number */
7207 TV_NONE, /* tv_id */
7208 PROP_cfg, /* properties_required */
7209 0, /* properties_provided */
7210 0, /* properties_destroyed */
7211 0, /* todo_flags_start */
7212 0 /* todo_flags_finish */
7217 /* Walk a gimplified function and warn for functions whose return value is
7218 ignored and attribute((warn_unused_result)) is set. This is done before
7219 inlining, so we don't have to worry about that. */
7221 static void
7222 do_warn_unused_result (gimple_seq seq)
7224 tree fdecl, ftype;
7225 gimple_stmt_iterator i;
7227 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7229 gimple g = gsi_stmt (i);
7231 switch (gimple_code (g))
7233 case GIMPLE_BIND:
7234 do_warn_unused_result (gimple_bind_body (g));
7235 break;
7236 case GIMPLE_TRY:
7237 do_warn_unused_result (gimple_try_eval (g));
7238 do_warn_unused_result (gimple_try_cleanup (g));
7239 break;
7240 case GIMPLE_CATCH:
7241 do_warn_unused_result (gimple_catch_handler (g));
7242 break;
7243 case GIMPLE_EH_FILTER:
7244 do_warn_unused_result (gimple_eh_filter_failure (g));
7245 break;
7247 case GIMPLE_CALL:
7248 if (gimple_call_lhs (g))
7249 break;
7251 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7252 LHS. All calls whose value is ignored should be
7253 represented like this. Look for the attribute. */
7254 fdecl = gimple_call_fndecl (g);
7255 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7257 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7259 location_t loc = gimple_location (g);
7261 if (fdecl)
7262 warning_at (loc, OPT_Wunused_result,
7263 "ignoring return value of %qD, "
7264 "declared with attribute warn_unused_result",
7265 fdecl);
7266 else
7267 warning_at (loc, OPT_Wunused_result,
7268 "ignoring return value of function "
7269 "declared with attribute warn_unused_result");
7271 break;
7273 default:
7274 /* Not a container, not a call, or a call whose value is used. */
7275 break;
7280 static unsigned int
7281 run_warn_unused_result (void)
7283 do_warn_unused_result (gimple_body (current_function_decl));
7284 return 0;
7287 static bool
7288 gate_warn_unused_result (void)
7290 return flag_warn_unused_result;
7293 struct gimple_opt_pass pass_warn_unused_result =
7296 GIMPLE_PASS,
7297 "*warn_unused_result", /* name */
7298 gate_warn_unused_result, /* gate */
7299 run_warn_unused_result, /* execute */
7300 NULL, /* sub */
7301 NULL, /* next */
7302 0, /* static_pass_number */
7303 TV_NONE, /* tv_id */
7304 PROP_gimple_any, /* properties_required */
7305 0, /* properties_provided */
7306 0, /* properties_destroyed */
7307 0, /* todo_flags_start */
7308 0, /* todo_flags_finish */