Fix PR42930.
[official-gcc/constexpr.git] / gcc / graphite-scop-detection.c
blobd89f0f8153761e37076ea36c465e784af7545626
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
43 #include "gimple.h"
44 #include "sese.h"
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-ppl.h"
50 #include "graphite.h"
51 #include "graphite-poly.h"
52 #include "graphite-scop-detection.h"
54 /* The type of the analyzed basic block. */
56 typedef enum gbb_type {
57 GBB_UNKNOWN,
58 GBB_LOOP_SING_EXIT_HEADER,
59 GBB_LOOP_MULT_EXIT_HEADER,
60 GBB_LOOP_EXIT,
61 GBB_COND_HEADER,
62 GBB_SIMPLE,
63 GBB_LAST
64 } gbb_type;
66 /* Detect the type of BB. Loop headers are only marked, if they are
67 new. This means their loop_father is different to LAST_LOOP.
68 Otherwise they are treated like any other bb and their type can be
69 any other type. */
71 static gbb_type
72 get_bb_type (basic_block bb, struct loop *last_loop)
74 VEC (basic_block, heap) *dom;
75 int nb_dom, nb_suc;
76 struct loop *loop = bb->loop_father;
78 /* Check, if we entry into a new loop. */
79 if (loop != last_loop)
81 if (single_exit (loop) != NULL)
82 return GBB_LOOP_SING_EXIT_HEADER;
83 else if (loop->num != 0)
84 return GBB_LOOP_MULT_EXIT_HEADER;
85 else
86 return GBB_COND_HEADER;
89 dom = get_dominated_by (CDI_DOMINATORS, bb);
90 nb_dom = VEC_length (basic_block, dom);
91 VEC_free (basic_block, heap, dom);
93 if (nb_dom == 0)
94 return GBB_LAST;
96 nb_suc = VEC_length (edge, bb->succs);
98 if (nb_dom == 1 && nb_suc == 1)
99 return GBB_SIMPLE;
101 return GBB_COND_HEADER;
104 /* A SCoP detection region, defined using bbs as borders.
106 All control flow touching this region, comes in passing basic_block
107 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
108 edges for the borders we are able to represent also regions that do
109 not have a single entry or exit edge.
111 But as they have a single entry basic_block and a single exit
112 basic_block, we are able to generate for every sd_region a single
113 entry and exit edge.
117 3 <- entry
120 / \ This region contains: {3, 4, 5, 6, 7, 8}
125 9 <- exit */
128 typedef struct sd_region_p
130 /* The entry bb dominates all bbs in the sd_region. It is part of
131 the region. */
132 basic_block entry;
134 /* The exit bb postdominates all bbs in the sd_region, but is not
135 part of the region. */
136 basic_block exit;
137 } sd_region;
139 DEF_VEC_O(sd_region);
140 DEF_VEC_ALLOC_O(sd_region, heap);
143 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
145 static void
146 move_sd_regions (VEC (sd_region, heap) **source,
147 VEC (sd_region, heap) **target)
149 sd_region *s;
150 int i;
152 for (i = 0; VEC_iterate (sd_region, *source, i, s); i++)
153 VEC_safe_push (sd_region, heap, *target, s);
155 VEC_free (sd_region, heap, *source);
158 /* Something like "n * m" is not allowed. */
160 static bool
161 graphite_can_represent_init (tree e)
163 switch (TREE_CODE (e))
165 case POLYNOMIAL_CHREC:
166 return graphite_can_represent_init (CHREC_LEFT (e))
167 && graphite_can_represent_init (CHREC_RIGHT (e));
169 case MULT_EXPR:
170 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
171 return graphite_can_represent_init (TREE_OPERAND (e, 0))
172 && host_integerp (TREE_OPERAND (e, 1), 0);
173 else
174 return graphite_can_represent_init (TREE_OPERAND (e, 1))
175 && host_integerp (TREE_OPERAND (e, 0), 0);
177 case PLUS_EXPR:
178 case POINTER_PLUS_EXPR:
179 case MINUS_EXPR:
180 return graphite_can_represent_init (TREE_OPERAND (e, 0))
181 && graphite_can_represent_init (TREE_OPERAND (e, 1));
183 case NEGATE_EXPR:
184 case BIT_NOT_EXPR:
185 CASE_CONVERT:
186 case NON_LVALUE_EXPR:
187 return graphite_can_represent_init (TREE_OPERAND (e, 0));
189 default:
190 break;
193 return true;
196 /* Return true when SCEV can be represented in the polyhedral model.
198 An expression can be represented, if it can be expressed as an
199 affine expression. For loops (i, j) and parameters (m, n) all
200 affine expressions are of the form:
202 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
204 1 i + 20 j + (-2) m + 25
206 Something like "i * n" or "n * m" is not allowed.
208 OUTERMOST_LOOP defines the outermost loop that can variate. */
210 static bool
211 graphite_can_represent_scev (tree scev, int outermost_loop)
213 if (chrec_contains_undetermined (scev))
214 return false;
216 switch (TREE_CODE (scev))
218 case PLUS_EXPR:
219 case MINUS_EXPR:
220 return graphite_can_represent_scev (TREE_OPERAND (scev, 0), outermost_loop)
221 && graphite_can_represent_scev (TREE_OPERAND (scev, 1), outermost_loop);
223 case MULT_EXPR:
224 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
225 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
226 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
227 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
228 && graphite_can_represent_init (scev)
229 && graphite_can_represent_scev (TREE_OPERAND (scev, 0), outermost_loop)
230 && graphite_can_represent_scev (TREE_OPERAND (scev, 1), outermost_loop);
232 case POLYNOMIAL_CHREC:
233 /* Check for constant strides. With a non constant stride of
234 'n' we would have a value of 'iv * n'. Also check that the
235 initial value can represented: for example 'n * m' cannot be
236 represented. */
237 if (!evolution_function_right_is_integer_cst (scev)
238 || !graphite_can_represent_init (scev))
239 return false;
241 default:
242 break;
245 /* Only affine functions can be represented. */
246 if (!scev_is_linear_expression (scev))
247 return false;
249 return evolution_function_is_invariant_p (scev, outermost_loop)
250 || evolution_function_is_affine_multivariate_p (scev, outermost_loop);
254 /* Return true when EXPR can be represented in the polyhedral model.
256 This means an expression can be represented, if it is linear with
257 respect to the loops and the strides are non parametric.
258 LOOP is the place where the expr will be evaluated and OUTERMOST_LOOP
259 defindes the outermost loop that can variate. SCOP_ENTRY defines the
260 entry of the region we analyse. */
262 static bool
263 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
264 loop_p outermost_loop, tree expr)
266 tree scev = analyze_scalar_evolution (loop, expr);
268 scev = instantiate_scev (scop_entry, loop, scev);
270 return graphite_can_represent_scev (scev, outermost_loop->num);
273 /* Return true if the data references of STMT can be represented by
274 Graphite. */
276 static bool
277 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
279 data_reference_p dr;
280 unsigned i;
281 int j;
282 bool res = true;
283 int loop = outermost_loop->num;
284 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
286 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
288 for (j = 0; VEC_iterate (data_reference_p, drs, j, dr); j++)
289 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
290 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i), loop))
292 res = false;
293 goto done;
296 done:
297 free_data_refs (drs);
298 return res;
301 /* Return true only when STMT is simple enough for being handled by
302 Graphite. This depends on SCOP_ENTRY, as the parameters are
303 initialized relatively to this basic block, the linear functions
304 are initialized to OUTERMOST_LOOP and BB is the place where we try
305 to evaluate the STMT. */
307 static bool
308 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
309 gimple stmt, basic_block bb)
311 loop_p loop = bb->loop_father;
313 gcc_assert (scop_entry);
315 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
316 Calls have side-effects, except those to const or pure
317 functions. */
318 if (gimple_has_volatile_ops (stmt)
319 || (gimple_code (stmt) == GIMPLE_CALL
320 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
321 || (gimple_code (stmt) == GIMPLE_ASM))
322 return false;
324 if (is_gimple_debug (stmt))
325 return true;
327 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
328 return false;
330 switch (gimple_code (stmt))
332 case GIMPLE_RETURN:
333 case GIMPLE_LABEL:
334 return true;
336 case GIMPLE_COND:
338 tree op;
339 ssa_op_iter op_iter;
340 enum tree_code code = gimple_cond_code (stmt);
342 /* We can handle all binary comparisons. Inequalities are
343 also supported as they can be represented with union of
344 polyhedra. */
345 if (!(code == LT_EXPR
346 || code == GT_EXPR
347 || code == LE_EXPR
348 || code == GE_EXPR
349 || code == EQ_EXPR
350 || code == NE_EXPR))
351 return false;
353 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
354 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop,
356 /* We can not handle REAL_TYPE. Failed for pr39260. */
357 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
358 return false;
360 return true;
363 case GIMPLE_ASSIGN:
364 case GIMPLE_CALL:
365 return true;
367 default:
368 /* These nodes cut a new scope. */
369 return false;
372 return false;
375 /* Returns the statement of BB that contains a harmful operation: that
376 can be a function call with side effects, the induction variables
377 are not linear with respect to SCOP_ENTRY, etc. The current open
378 scop should end before this statement. The evaluation is limited using
379 OUTERMOST_LOOP as outermost loop that may change. */
381 static gimple
382 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
384 gimple_stmt_iterator gsi;
386 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
387 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
388 return gsi_stmt (gsi);
390 return NULL;
393 /* Return true when it is not possible to represent LOOP in the
394 polyhedral representation. This is evaluated taking SCOP_ENTRY and
395 OUTERMOST_LOOP in mind. */
397 static bool
398 graphite_can_represent_loop (basic_block scop_entry, loop_p outermost_loop,
399 loop_p loop)
401 tree niter = number_of_latch_executions (loop);
403 /* Number of iterations unknown. */
404 if (chrec_contains_undetermined (niter))
405 return false;
407 /* Number of iterations not affine. */
408 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop, niter))
409 return false;
411 return true;
414 /* Store information needed by scopdet_* functions. */
416 struct scopdet_info
418 /* Exit of the open scop would stop if the current BB is harmful. */
419 basic_block exit;
421 /* Where the next scop would start if the current BB is harmful. */
422 basic_block next;
424 /* The bb or one of its children contains open loop exits. That means
425 loop exit nodes that are not surrounded by a loop dominated by bb. */
426 bool exits;
428 /* The bb or one of its children contains only structures we can handle. */
429 bool difficult;
432 static struct scopdet_info build_scops_1 (basic_block, loop_p,
433 VEC (sd_region, heap) **, loop_p);
435 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
436 to SCOPS. TYPE is the gbb_type of BB. */
438 static struct scopdet_info
439 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
440 VEC (sd_region, heap) **scops, gbb_type type)
442 loop_p loop = bb->loop_father;
443 struct scopdet_info result;
444 gimple stmt;
446 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
447 basic_block entry_block = ENTRY_BLOCK_PTR;
448 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
449 result.difficult = (stmt != NULL);
450 result.exit = NULL;
452 switch (type)
454 case GBB_LAST:
455 result.next = NULL;
456 result.exits = false;
458 /* Mark bbs terminating a SESE region difficult, if they start
459 a condition. */
460 if (!single_succ_p (bb))
461 result.difficult = true;
462 else
463 result.exit = single_succ (bb);
465 break;
467 case GBB_SIMPLE:
468 result.next = single_succ (bb);
469 result.exits = false;
470 result.exit = single_succ (bb);
471 break;
473 case GBB_LOOP_SING_EXIT_HEADER:
475 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
476 struct scopdet_info sinfo;
477 edge exit_e = single_exit (loop);
479 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
481 if (!graphite_can_represent_loop (entry_block, outermost_loop, loop))
482 result.difficult = true;
484 result.difficult |= sinfo.difficult;
486 /* Try again with another loop level. */
487 if (result.difficult
488 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
490 outermost_loop = loop;
492 VEC_free (sd_region, heap, regions);
493 regions = VEC_alloc (sd_region, heap, 3);
495 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
497 result = sinfo;
498 result.difficult = true;
500 if (sinfo.difficult)
501 move_sd_regions (&regions, scops);
502 else
504 sd_region open_scop;
505 open_scop.entry = bb;
506 open_scop.exit = exit_e->dest;
507 VEC_safe_push (sd_region, heap, *scops, &open_scop);
508 VEC_free (sd_region, heap, regions);
511 else
513 result.exit = exit_e->dest;
514 result.next = exit_e->dest;
516 /* If we do not dominate result.next, remove it. It's either
517 the EXIT_BLOCK_PTR, or another bb dominates it and will
518 call the scop detection for this bb. */
519 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
520 result.next = NULL;
522 if (exit_e->src->loop_father != loop)
523 result.next = NULL;
525 result.exits = false;
527 if (result.difficult)
528 move_sd_regions (&regions, scops);
529 else
530 VEC_free (sd_region, heap, regions);
533 break;
536 case GBB_LOOP_MULT_EXIT_HEADER:
538 /* XXX: For now we just do not join loops with multiple exits. If the
539 exits lead to the same bb it may be possible to join the loop. */
540 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
541 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
542 edge e;
543 int i;
544 build_scops_1 (bb, loop, &regions, loop);
546 /* Scan the code dominated by this loop. This means all bbs, that are
547 are dominated by a bb in this loop, but are not part of this loop.
549 The easiest case:
550 - The loop exit destination is dominated by the exit sources.
552 TODO: We miss here the more complex cases:
553 - The exit destinations are dominated by another bb inside
554 the loop.
555 - The loop dominates bbs, that are not exit destinations. */
556 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
557 if (e->src->loop_father == loop
558 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
560 if (loop_outer (outermost_loop))
561 outermost_loop = loop_outer (outermost_loop);
563 /* Pass loop_outer to recognize e->dest as loop header in
564 build_scops_1. */
565 if (e->dest->loop_father->header == e->dest)
566 build_scops_1 (e->dest, outermost_loop, &regions,
567 loop_outer (e->dest->loop_father));
568 else
569 build_scops_1 (e->dest, outermost_loop, &regions,
570 e->dest->loop_father);
573 result.next = NULL;
574 result.exit = NULL;
575 result.difficult = true;
576 result.exits = false;
577 move_sd_regions (&regions, scops);
578 VEC_free (edge, heap, exits);
579 break;
581 case GBB_COND_HEADER:
583 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
584 struct scopdet_info sinfo;
585 VEC (basic_block, heap) *dominated;
586 int i;
587 basic_block dom_bb;
588 basic_block last_exit = NULL;
589 edge e;
590 result.exits = false;
592 /* First check the successors of BB, and check if it is
593 possible to join the different branches. */
594 for (i = 0; VEC_iterate (edge, bb->succs, i, e); i++)
596 /* Ignore loop exits. They will be handled after the loop
597 body. */
598 if (is_loop_exit (loop, e->dest))
600 result.exits = true;
601 continue;
604 /* Do not follow edges that lead to the end of the
605 conditions block. For example, in
608 | /|\
609 | 1 2 |
610 | | | |
611 | 3 4 |
612 | \|/
615 the edge from 0 => 6. Only check if all paths lead to
616 the same node 6. */
618 if (!single_pred_p (e->dest))
620 /* Check, if edge leads directly to the end of this
621 condition. */
622 if (!last_exit)
623 last_exit = e->dest;
625 if (e->dest != last_exit)
626 result.difficult = true;
628 continue;
631 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
633 result.difficult = true;
634 continue;
637 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
639 result.exits |= sinfo.exits;
640 result.difficult |= sinfo.difficult;
642 /* Checks, if all branches end at the same point.
643 If that is true, the condition stays joinable.
644 Have a look at the example above. */
645 if (sinfo.exit)
647 if (!last_exit)
648 last_exit = sinfo.exit;
650 if (sinfo.exit != last_exit)
651 result.difficult = true;
653 else
654 result.difficult = true;
657 if (!last_exit)
658 result.difficult = true;
660 /* Join the branches of the condition if possible. */
661 if (!result.exits && !result.difficult)
663 /* Only return a next pointer if we dominate this pointer.
664 Otherwise it will be handled by the bb dominating it. */
665 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
666 && last_exit != bb)
667 result.next = last_exit;
668 else
669 result.next = NULL;
671 result.exit = last_exit;
673 VEC_free (sd_region, heap, regions);
674 break;
677 /* Scan remaining bbs dominated by BB. */
678 dominated = get_dominated_by (CDI_DOMINATORS, bb);
680 for (i = 0; VEC_iterate (basic_block, dominated, i, dom_bb); i++)
682 /* Ignore loop exits: they will be handled after the loop body. */
683 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
684 < loop_depth (loop))
686 result.exits = true;
687 continue;
690 /* Ignore the bbs processed above. */
691 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
692 continue;
694 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
695 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
696 loop_outer (loop));
697 else
698 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
700 result.exits |= sinfo.exits;
701 result.difficult = true;
702 result.exit = NULL;
705 VEC_free (basic_block, heap, dominated);
707 result.next = NULL;
708 move_sd_regions (&regions, scops);
710 break;
713 default:
714 gcc_unreachable ();
717 return result;
720 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
721 SCOPS. The analyse if a sd_region can be handled is based on the value
722 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
723 is the loop in which CURRENT is handled.
725 TODO: These functions got a little bit big. They definitely should be cleaned
726 up. */
728 static struct scopdet_info
729 build_scops_1 (basic_block current, loop_p outermost_loop,
730 VEC (sd_region, heap) **scops, loop_p loop)
732 bool in_scop = false;
733 sd_region open_scop;
734 struct scopdet_info sinfo;
736 /* Initialize result. */
737 struct scopdet_info result;
738 result.exits = false;
739 result.difficult = false;
740 result.next = NULL;
741 result.exit = NULL;
742 open_scop.entry = NULL;
743 open_scop.exit = NULL;
744 sinfo.exit = NULL;
746 /* Loop over the dominance tree. If we meet a difficult bb, close
747 the current SCoP. Loop and condition header start a new layer,
748 and can only be added if all bbs in deeper layers are simple. */
749 while (current != NULL)
751 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
752 get_bb_type (current, loop));
754 if (!in_scop && !(sinfo.exits || sinfo.difficult))
756 open_scop.entry = current;
757 open_scop.exit = NULL;
758 in_scop = true;
760 else if (in_scop && (sinfo.exits || sinfo.difficult))
762 open_scop.exit = current;
763 VEC_safe_push (sd_region, heap, *scops, &open_scop);
764 in_scop = false;
767 result.difficult |= sinfo.difficult;
768 result.exits |= sinfo.exits;
770 current = sinfo.next;
773 /* Try to close open_scop, if we are still in an open SCoP. */
774 if (in_scop)
776 open_scop.exit = sinfo.exit;
777 gcc_assert (open_scop.exit);
778 VEC_safe_push (sd_region, heap, *scops, &open_scop);
781 result.exit = sinfo.exit;
782 return result;
785 /* Checks if a bb is contained in REGION. */
787 static bool
788 bb_in_sd_region (basic_block bb, sd_region *region)
790 return bb_in_region (bb, region->entry, region->exit);
793 /* Returns the single entry edge of REGION, if it does not exits NULL. */
795 static edge
796 find_single_entry_edge (sd_region *region)
798 edge e;
799 edge_iterator ei;
800 edge entry = NULL;
802 FOR_EACH_EDGE (e, ei, region->entry->preds)
803 if (!bb_in_sd_region (e->src, region))
805 if (entry)
807 entry = NULL;
808 break;
811 else
812 entry = e;
815 return entry;
818 /* Returns the single exit edge of REGION, if it does not exits NULL. */
820 static edge
821 find_single_exit_edge (sd_region *region)
823 edge e;
824 edge_iterator ei;
825 edge exit = NULL;
827 FOR_EACH_EDGE (e, ei, region->exit->preds)
828 if (bb_in_sd_region (e->src, region))
830 if (exit)
832 exit = NULL;
833 break;
836 else
837 exit = e;
840 return exit;
843 /* Create a single entry edge for REGION. */
845 static void
846 create_single_entry_edge (sd_region *region)
848 if (find_single_entry_edge (region))
849 return;
851 /* There are multiple predecessors for bb_3
853 | 1 2
854 | | /
855 | |/
856 | 3 <- entry
857 | |\
858 | | |
859 | 4 ^
860 | | |
861 | |/
864 There are two edges (1->3, 2->3), that point from outside into the region,
865 and another one (5->3), a loop latch, lead to bb_3.
867 We split bb_3.
869 | 1 2
870 | | /
871 | |/
872 |3.0
873 | |\ (3.0 -> 3.1) = single entry edge
874 |3.1 | <- entry
875 | | |
876 | | |
877 | 4 ^
878 | | |
879 | |/
882 If the loop is part of the SCoP, we have to redirect the loop latches.
884 | 1 2
885 | | /
886 | |/
887 |3.0
888 | | (3.0 -> 3.1) = entry edge
889 |3.1 <- entry
890 | |\
891 | | |
892 | 4 ^
893 | | |
894 | |/
895 | 5 */
897 if (region->entry->loop_father->header != region->entry
898 || dominated_by_p (CDI_DOMINATORS,
899 loop_latch_edge (region->entry->loop_father)->src,
900 region->exit))
902 edge forwarder = split_block_after_labels (region->entry);
903 region->entry = forwarder->dest;
905 else
906 /* This case is never executed, as the loop headers seem always to have a
907 single edge pointing from outside into the loop. */
908 gcc_unreachable ();
910 #ifdef ENABLE_CHECKING
911 gcc_assert (find_single_entry_edge (region));
912 #endif
915 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
917 static bool
918 sd_region_without_exit (edge e)
920 sd_region *r = (sd_region *) e->aux;
922 if (r)
923 return r->exit == NULL;
924 else
925 return false;
928 /* Create a single exit edge for REGION. */
930 static void
931 create_single_exit_edge (sd_region *region)
933 edge e;
934 edge_iterator ei;
935 edge forwarder = NULL;
936 basic_block exit;
938 if (find_single_exit_edge (region))
939 return;
941 /* We create a forwarder bb (5) for all edges leaving this region
942 (3->5, 4->5). All other edges leading to the same bb, are moved
943 to a new bb (6). If these edges where part of another region (2->5)
944 we update the region->exit pointer, of this region.
946 To identify which edge belongs to which region we depend on the e->aux
947 pointer in every edge. It points to the region of the edge or to NULL,
948 if the edge is not part of any region.
950 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
951 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
952 5 <- exit
954 changes to
956 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
957 | | \/ 3->5 no region, 4->5 no region,
958 | | 5
959 \| / 5->6 region->exit = 6
962 Now there is only a single exit edge (5->6). */
963 exit = region->exit;
964 region->exit = NULL;
965 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
967 /* Unmark the edges, that are no longer exit edges. */
968 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
969 if (e->aux)
970 e->aux = NULL;
972 /* Mark the new exit edge. */
973 single_succ_edge (forwarder->src)->aux = region;
975 /* Update the exit bb of all regions, where exit edges lead to
976 forwarder->dest. */
977 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
978 if (e->aux)
979 ((sd_region *) e->aux)->exit = forwarder->dest;
981 #ifdef ENABLE_CHECKING
982 gcc_assert (find_single_exit_edge (region));
983 #endif
986 /* Unmark the exit edges of all REGIONS.
987 See comment in "create_single_exit_edge". */
989 static void
990 unmark_exit_edges (VEC (sd_region, heap) *regions)
992 int i;
993 sd_region *s;
994 edge e;
995 edge_iterator ei;
997 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
998 FOR_EACH_EDGE (e, ei, s->exit->preds)
999 e->aux = NULL;
1003 /* Mark the exit edges of all REGIONS.
1004 See comment in "create_single_exit_edge". */
1006 static void
1007 mark_exit_edges (VEC (sd_region, heap) *regions)
1009 int i;
1010 sd_region *s;
1011 edge e;
1012 edge_iterator ei;
1014 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1015 FOR_EACH_EDGE (e, ei, s->exit->preds)
1016 if (bb_in_sd_region (e->src, s))
1017 e->aux = s;
1020 /* Create for all scop regions a single entry and a single exit edge. */
1022 static void
1023 create_sese_edges (VEC (sd_region, heap) *regions)
1025 int i;
1026 sd_region *s;
1028 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1029 create_single_entry_edge (s);
1031 mark_exit_edges (regions);
1033 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1034 create_single_exit_edge (s);
1036 unmark_exit_edges (regions);
1038 fix_loop_structure (NULL);
1040 #ifdef ENABLE_CHECKING
1041 verify_loop_structure ();
1042 verify_dominators (CDI_DOMINATORS);
1043 verify_ssa (false);
1044 #endif
1047 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1049 static void
1050 build_graphite_scops (VEC (sd_region, heap) *regions,
1051 VEC (scop_p, heap) **scops)
1053 int i;
1054 sd_region *s;
1056 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1058 edge entry = find_single_entry_edge (s);
1059 edge exit = find_single_exit_edge (s);
1060 scop_p scop = new_scop (new_sese (entry, exit));
1061 VEC_safe_push (scop_p, heap, *scops, scop);
1063 /* Are there overlapping SCoPs? */
1064 #ifdef ENABLE_CHECKING
1066 int j;
1067 sd_region *s2;
1069 for (j = 0; VEC_iterate (sd_region, regions, j, s2); j++)
1070 if (s != s2)
1071 gcc_assert (!bb_in_sd_region (s->entry, s2));
1073 #endif
1077 /* Returns true when BB contains only close phi nodes. */
1079 static bool
1080 contains_only_close_phi_nodes (basic_block bb)
1082 gimple_stmt_iterator gsi;
1084 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1085 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1086 return false;
1088 return true;
1091 /* Print statistics for SCOP to FILE. */
1093 static void
1094 print_graphite_scop_statistics (FILE* file, scop_p scop)
1096 long n_bbs = 0;
1097 long n_loops = 0;
1098 long n_stmts = 0;
1099 long n_conditions = 0;
1100 long n_p_bbs = 0;
1101 long n_p_loops = 0;
1102 long n_p_stmts = 0;
1103 long n_p_conditions = 0;
1105 basic_block bb;
1107 FOR_ALL_BB (bb)
1109 gimple_stmt_iterator psi;
1110 loop_p loop = bb->loop_father;
1112 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1113 continue;
1115 n_bbs++;
1116 n_p_bbs += bb->count;
1118 if (VEC_length (edge, bb->succs) > 1)
1120 n_conditions++;
1121 n_p_conditions += bb->count;
1124 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1126 n_stmts++;
1127 n_p_stmts += bb->count;
1130 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1132 n_loops++;
1133 n_p_loops += bb->count;
1138 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1139 fprintf (file, "BBS:%ld, ", n_bbs);
1140 fprintf (file, "LOOPS:%ld, ", n_loops);
1141 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1142 fprintf (file, "STMTS:%ld)\n", n_stmts);
1143 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1144 fprintf (file, "BBS:%ld, ", n_p_bbs);
1145 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1146 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1147 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1150 /* Print statistics for SCOPS to FILE. */
1152 static void
1153 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1155 int i;
1156 scop_p scop;
1158 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1159 print_graphite_scop_statistics (file, scop);
1162 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1164 Example:
1166 for (i |
1168 for (j | SCoP 1
1169 for (k |
1172 * SCoP frontier, as this line is not surrounded by any loop. *
1174 for (l | SCoP 2
1176 This is necessary as scalar evolution and parameter detection need a
1177 outermost loop to initialize parameters correctly.
1179 TODO: FIX scalar evolution and parameter detection to allow more flexible
1180 SCoP frontiers. */
1182 static void
1183 limit_scops (VEC (scop_p, heap) **scops)
1185 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1187 int i;
1188 scop_p scop;
1190 for (i = 0; VEC_iterate (scop_p, *scops, i, scop); i++)
1192 int j;
1193 loop_p loop;
1194 sese region = SCOP_REGION (scop);
1195 build_sese_loop_nests (region);
1197 for (j = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), j, loop); j++)
1198 if (!loop_in_sese_p (loop_outer (loop), region)
1199 && single_exit (loop))
1201 sd_region open_scop;
1202 open_scop.entry = loop->header;
1203 open_scop.exit = single_exit (loop)->dest;
1205 /* This is a hack on top of the limit_scops hack. The
1206 limit_scops hack should disappear all together. */
1207 if (single_succ_p (open_scop.exit)
1208 && contains_only_close_phi_nodes (open_scop.exit))
1209 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1211 VEC_safe_push (sd_region, heap, regions, &open_scop);
1215 free_scops (*scops);
1216 *scops = VEC_alloc (scop_p, heap, 3);
1218 create_sese_edges (regions);
1219 build_graphite_scops (regions, scops);
1220 VEC_free (sd_region, heap, regions);
1223 /* Transforms LOOP to the canonical loop closed SSA form. */
1225 static void
1226 canonicalize_loop_closed_ssa (loop_p loop)
1228 edge e = single_exit (loop);
1229 basic_block bb;
1231 if (!e || e->flags & EDGE_ABNORMAL)
1232 return;
1234 bb = e->dest;
1236 if (VEC_length (edge, bb->preds) == 1)
1237 split_block_after_labels (bb);
1238 else
1240 gimple_stmt_iterator psi;
1241 basic_block close = split_edge (e);
1243 e = single_succ_edge (close);
1245 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1247 gimple phi = gsi_stmt (psi);
1248 unsigned i;
1250 for (i = 0; i < gimple_phi_num_args (phi); i++)
1251 if (gimple_phi_arg_edge (phi, i) == e)
1253 tree res, arg = gimple_phi_arg_def (phi, i);
1254 use_operand_p use_p;
1255 gimple close_phi;
1257 if (TREE_CODE (arg) != SSA_NAME)
1258 continue;
1260 close_phi = create_phi_node (arg, close);
1261 res = create_new_def_for (gimple_phi_result (close_phi),
1262 close_phi,
1263 gimple_phi_result_ptr (close_phi));
1264 add_phi_arg (close_phi, arg,
1265 gimple_phi_arg_edge (close_phi, 0),
1266 UNKNOWN_LOCATION);
1267 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1268 replace_exp (use_p, res);
1269 update_stmt (phi);
1275 /* Converts the current loop closed SSA form to a canonical form
1276 expected by the Graphite code generation.
1278 The loop closed SSA form has the following invariant: a variable
1279 defined in a loop that is used outside the loop appears only in the
1280 phi nodes in the destination of the loop exit. These phi nodes are
1281 called close phi nodes.
1283 The canonical loop closed SSA form contains the extra invariants:
1285 - when the loop contains only one exit, the close phi nodes contain
1286 only one argument. That implies that the basic block that contains
1287 the close phi nodes has only one predecessor, that is a basic block
1288 in the loop.
1290 - the basic block containing the close phi nodes does not contain
1291 other statements.
1294 static void
1295 canonicalize_loop_closed_ssa_form (void)
1297 loop_iterator li;
1298 loop_p loop;
1300 #ifdef ENABLE_CHECKING
1301 verify_loop_closed_ssa ();
1302 #endif
1304 FOR_EACH_LOOP (li, loop, 0)
1305 canonicalize_loop_closed_ssa (loop);
1307 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1308 update_ssa (TODO_update_ssa);
1310 #ifdef ENABLE_CHECKING
1311 verify_loop_closed_ssa ();
1312 #endif
1315 /* Find Static Control Parts (SCoP) in the current function and pushes
1316 them to SCOPS. */
1318 void
1319 build_scops (VEC (scop_p, heap) **scops)
1321 struct loop *loop = current_loops->tree_root;
1322 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1324 canonicalize_loop_closed_ssa_form ();
1325 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1326 &regions, loop);
1327 create_sese_edges (regions);
1328 build_graphite_scops (regions, scops);
1330 if (dump_file && (dump_flags & TDF_DETAILS))
1331 print_graphite_statistics (dump_file, *scops);
1333 limit_scops (scops);
1334 VEC_free (sd_region, heap, regions);
1336 if (dump_file && (dump_flags & TDF_DETAILS))
1337 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1338 VEC_length (scop_p, *scops));
1341 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1342 different colors. If there are not enough colors, paint the
1343 remaining SCoPs in gray.
1345 Special nodes:
1346 - "*" after the node number denotes the entry of a SCoP,
1347 - "#" after the node number denotes the exit of a SCoP,
1348 - "()" around the node number denotes the entry or the
1349 exit nodes of the SCOP. These are not part of SCoP. */
1351 static void
1352 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1354 basic_block bb;
1355 edge e;
1356 edge_iterator ei;
1357 scop_p scop;
1358 const char* color;
1359 int i;
1361 /* Disable debugging while printing graph. */
1362 int tmp_dump_flags = dump_flags;
1363 dump_flags = 0;
1365 fprintf (file, "digraph all {\n");
1367 FOR_ALL_BB (bb)
1369 int part_of_scop = false;
1371 /* Use HTML for every bb label. So we are able to print bbs
1372 which are part of two different SCoPs, with two different
1373 background colors. */
1374 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1375 bb->index);
1376 fprintf (file, "CELLSPACING=\"0\">\n");
1378 /* Select color for SCoP. */
1379 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1381 sese region = SCOP_REGION (scop);
1382 if (bb_in_sese_p (bb, region)
1383 || (SESE_EXIT_BB (region) == bb)
1384 || (SESE_ENTRY_BB (region) == bb))
1386 switch (i % 17)
1388 case 0: /* red */
1389 color = "#e41a1c";
1390 break;
1391 case 1: /* blue */
1392 color = "#377eb8";
1393 break;
1394 case 2: /* green */
1395 color = "#4daf4a";
1396 break;
1397 case 3: /* purple */
1398 color = "#984ea3";
1399 break;
1400 case 4: /* orange */
1401 color = "#ff7f00";
1402 break;
1403 case 5: /* yellow */
1404 color = "#ffff33";
1405 break;
1406 case 6: /* brown */
1407 color = "#a65628";
1408 break;
1409 case 7: /* rose */
1410 color = "#f781bf";
1411 break;
1412 case 8:
1413 color = "#8dd3c7";
1414 break;
1415 case 9:
1416 color = "#ffffb3";
1417 break;
1418 case 10:
1419 color = "#bebada";
1420 break;
1421 case 11:
1422 color = "#fb8072";
1423 break;
1424 case 12:
1425 color = "#80b1d3";
1426 break;
1427 case 13:
1428 color = "#fdb462";
1429 break;
1430 case 14:
1431 color = "#b3de69";
1432 break;
1433 case 15:
1434 color = "#fccde5";
1435 break;
1436 case 16:
1437 color = "#bc80bd";
1438 break;
1439 default: /* gray */
1440 color = "#999999";
1443 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1445 if (!bb_in_sese_p (bb, region))
1446 fprintf (file, " (");
1448 if (bb == SESE_ENTRY_BB (region)
1449 && bb == SESE_EXIT_BB (region))
1450 fprintf (file, " %d*# ", bb->index);
1451 else if (bb == SESE_ENTRY_BB (region))
1452 fprintf (file, " %d* ", bb->index);
1453 else if (bb == SESE_EXIT_BB (region))
1454 fprintf (file, " %d# ", bb->index);
1455 else
1456 fprintf (file, " %d ", bb->index);
1458 if (!bb_in_sese_p (bb,region))
1459 fprintf (file, ")");
1461 fprintf (file, "</TD></TR>\n");
1462 part_of_scop = true;
1466 if (!part_of_scop)
1468 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1469 fprintf (file, " %d </TD></TR>\n", bb->index);
1471 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1474 FOR_ALL_BB (bb)
1476 FOR_EACH_EDGE (e, ei, bb->succs)
1477 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1480 fputs ("}\n\n", file);
1482 /* Enable debugging again. */
1483 dump_flags = tmp_dump_flags;
1486 /* Display all SCoPs using dotty. */
1488 void
1489 dot_all_scops (VEC (scop_p, heap) *scops)
1491 /* When debugging, enable the following code. This cannot be used
1492 in production compilers because it calls "system". */
1493 #if 0
1494 int x;
1495 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1496 gcc_assert (stream);
1498 dot_all_scops_1 (stream, scops);
1499 fclose (stream);
1501 x = system ("dotty /tmp/allscops.dot &");
1502 #else
1503 dot_all_scops_1 (stderr, scops);
1504 #endif
1507 /* Display all SCoPs using dotty. */
1509 void
1510 dot_scop (scop_p scop)
1512 VEC (scop_p, heap) *scops = NULL;
1514 if (scop)
1515 VEC_safe_push (scop_p, heap, scops, scop);
1517 /* When debugging, enable the following code. This cannot be used
1518 in production compilers because it calls "system". */
1519 #if 0
1521 int x;
1522 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1523 gcc_assert (stream);
1525 dot_all_scops_1 (stream, scops);
1526 fclose (stream);
1527 x = system ("dotty /tmp/allscops.dot &");
1529 #else
1530 dot_all_scops_1 (stderr, scops);
1531 #endif
1533 VEC_free (scop_p, heap, scops);
1536 #endif