1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "insn-config.h"
30 #include "hard-reg-set.h"
32 #include "basic-block.h"
38 #include "addresses.h"
43 /* Call used hard registers which can not be saved because there is no
45 HARD_REG_SET no_caller_save_reg_set
;
48 #define MAX_MOVE_MAX MOVE_MAX
51 #ifndef MIN_UNITS_PER_WORD
52 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
55 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
57 /* Modes for each hard register that we can save. The smallest mode is wide
58 enough to save the entire contents of the register. When saving the
59 register because it is live we first try to save in multi-register modes.
60 If that is not possible the save is done one register at a time. */
62 static enum machine_mode
63 regno_save_mode
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
65 /* For each hard register, a place on the stack where it can be saved,
69 regno_save_mem
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
71 /* The number of elements in the subsequent array. */
72 static int save_slots_num
;
74 /* Allocated slots so far. */
75 static rtx save_slots
[FIRST_PSEUDO_REGISTER
];
77 /* We will only make a register eligible for caller-save if it can be
78 saved in its widest mode with a simple SET insn as long as the memory
79 address is valid. We record the INSN_CODE is those insns here since
80 when we emit them, the addresses might not be valid, so they might not
84 cached_reg_save_code
[FIRST_PSEUDO_REGISTER
][MAX_MACHINE_MODE
];
86 cached_reg_restore_code
[FIRST_PSEUDO_REGISTER
][MAX_MACHINE_MODE
];
88 /* Set of hard regs currently residing in save area (during insn scan). */
90 static HARD_REG_SET hard_regs_saved
;
92 /* Number of registers currently in hard_regs_saved. */
94 static int n_regs_saved
;
96 /* Computed by mark_referenced_regs, all regs referenced in a given
98 static HARD_REG_SET referenced_regs
;
101 typedef void refmarker_fn (rtx
*loc
, enum machine_mode mode
, int hardregno
,
104 static int reg_save_code (int, enum machine_mode
);
105 static int reg_restore_code (int, enum machine_mode
);
107 struct saved_hard_reg
;
108 static void initiate_saved_hard_regs (void);
109 static struct saved_hard_reg
*new_saved_hard_reg (int, int);
110 static void finish_saved_hard_regs (void);
111 static int saved_hard_reg_compare_func (const void *, const void *);
113 static void mark_set_regs (rtx
, const_rtx
, void *);
114 static void mark_referenced_regs (rtx
*, refmarker_fn
*mark
, void *mark_arg
);
115 static refmarker_fn mark_reg_as_referenced
;
116 static refmarker_fn replace_reg_with_saved_mem
;
117 static int insert_save (struct insn_chain
*, int, int, HARD_REG_SET
*,
118 enum machine_mode
*);
119 static int insert_restore (struct insn_chain
*, int, int, int,
120 enum machine_mode
*);
121 static struct insn_chain
*insert_one_insn (struct insn_chain
*, int, int,
123 static void add_stored_regs (rtx
, const_rtx
, void *);
127 static GTY(()) rtx savepat
;
128 static GTY(()) rtx restpat
;
129 static GTY(()) rtx test_reg
;
130 static GTY(()) rtx test_mem
;
131 static GTY(()) rtx saveinsn
;
132 static GTY(()) rtx restinsn
;
134 /* Return the INSN_CODE used to save register REG in mode MODE. */
136 reg_save_code (int reg
, enum machine_mode mode
)
139 if (cached_reg_save_code
[reg
][mode
])
140 return cached_reg_save_code
[reg
][mode
];
141 if (!HARD_REGNO_MODE_OK (reg
, mode
))
143 cached_reg_save_code
[reg
][mode
] = -1;
144 cached_reg_restore_code
[reg
][mode
] = -1;
148 /* Update the register number and modes of the register
149 and memory operand. */
150 SET_REGNO (test_reg
, reg
);
151 PUT_MODE (test_reg
, mode
);
152 PUT_MODE (test_mem
, mode
);
154 /* Force re-recognition of the modified insns. */
155 INSN_CODE (saveinsn
) = -1;
156 INSN_CODE (restinsn
) = -1;
158 cached_reg_save_code
[reg
][mode
] = recog_memoized (saveinsn
);
159 cached_reg_restore_code
[reg
][mode
] = recog_memoized (restinsn
);
161 /* Now extract both insns and see if we can meet their
163 ok
= (cached_reg_save_code
[reg
][mode
] != -1
164 && cached_reg_restore_code
[reg
][mode
] != -1);
167 extract_insn (saveinsn
);
168 ok
= constrain_operands (1);
169 extract_insn (restinsn
);
170 ok
&= constrain_operands (1);
175 cached_reg_save_code
[reg
][mode
] = -1;
176 cached_reg_restore_code
[reg
][mode
] = -1;
178 gcc_assert (cached_reg_save_code
[reg
][mode
]);
179 return cached_reg_save_code
[reg
][mode
];
182 /* Return the INSN_CODE used to restore register REG in mode MODE. */
184 reg_restore_code (int reg
, enum machine_mode mode
)
186 if (cached_reg_restore_code
[reg
][mode
])
187 return cached_reg_restore_code
[reg
][mode
];
188 /* Populate our cache. */
189 reg_save_code (reg
, mode
);
190 return cached_reg_restore_code
[reg
][mode
];
193 /* Initialize for caller-save.
195 Look at all the hard registers that are used by a call and for which
196 reginfo.c has not already excluded from being used across a call.
198 Ensure that we can find a mode to save the register and that there is a
199 simple insn to save and restore the register. This latter check avoids
200 problems that would occur if we tried to save the MQ register of some
201 machines directly into memory. */
204 init_caller_save (void)
211 CLEAR_HARD_REG_SET (no_caller_save_reg_set
);
212 /* First find all the registers that we need to deal with and all
213 the modes that they can have. If we can't find a mode to use,
214 we can't have the register live over calls. */
216 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
218 if (call_used_regs
[i
]
219 && !TEST_HARD_REG_BIT (call_fixed_reg_set
, i
))
221 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
223 regno_save_mode
[i
][j
] = HARD_REGNO_CALLER_SAVE_MODE (i
, j
,
225 if (regno_save_mode
[i
][j
] == VOIDmode
&& j
== 1)
227 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
232 regno_save_mode
[i
][1] = VOIDmode
;
235 /* The following code tries to approximate the conditions under which
236 we can easily save and restore a register without scratch registers or
237 other complexities. It will usually work, except under conditions where
238 the validity of an insn operand is dependent on the address offset.
239 No such cases are currently known.
241 We first find a typical offset from some BASE_REG_CLASS register.
242 This address is chosen by finding the first register in the class
243 and by finding the smallest power of two that is a valid offset from
244 that register in every mode we will use to save registers. */
246 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
247 if (TEST_HARD_REG_BIT
249 [(int) base_reg_class (regno_save_mode
[i
][1], PLUS
, CONST_INT
)], i
))
252 gcc_assert (i
< FIRST_PSEUDO_REGISTER
);
254 addr_reg
= gen_rtx_REG (Pmode
, i
);
256 for (offset
= 1 << (HOST_BITS_PER_INT
/ 2); offset
; offset
>>= 1)
258 address
= gen_rtx_PLUS (Pmode
, addr_reg
, GEN_INT (offset
));
260 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
261 if (regno_save_mode
[i
][1] != VOIDmode
262 && ! strict_memory_address_p (regno_save_mode
[i
][1], address
))
265 if (i
== FIRST_PSEUDO_REGISTER
)
269 /* If we didn't find a valid address, we must use register indirect. */
273 /* Next we try to form an insn to save and restore the register. We
274 see if such an insn is recognized and meets its constraints.
276 To avoid lots of unnecessary RTL allocation, we construct all the RTL
277 once, then modify the memory and register operands in-place. */
279 test_reg
= gen_rtx_REG (VOIDmode
, 0);
280 test_mem
= gen_rtx_MEM (VOIDmode
, address
);
281 savepat
= gen_rtx_SET (VOIDmode
, test_mem
, test_reg
);
282 restpat
= gen_rtx_SET (VOIDmode
, test_reg
, test_mem
);
284 saveinsn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, 0, savepat
, -1, 0);
285 restinsn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, 0, restpat
, -1, 0);
287 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
288 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
289 if (reg_save_code (i
,regno_save_mode
[i
][j
]) == -1)
291 regno_save_mode
[i
][j
] = VOIDmode
;
294 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
295 if (call_used_regs
[i
])
296 SET_HARD_REG_BIT (no_caller_save_reg_set
, i
);
303 /* Initialize save areas by showing that we haven't allocated any yet. */
306 init_save_areas (void)
310 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
311 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
312 regno_save_mem
[i
][j
] = 0;
317 /* The structure represents a hard register which should be saved
318 through the call. It is used when the integrated register
319 allocator (IRA) is used and sharing save slots is on. */
320 struct saved_hard_reg
322 /* Order number starting with 0. */
324 /* The hard regno. */
326 /* Execution frequency of all calls through which given hard
327 register should be saved. */
329 /* Stack slot reserved to save the hard register through calls. */
331 /* True if it is first hard register in the chain of hard registers
332 sharing the same stack slot. */
334 /* Order number of the next hard register structure with the same
335 slot in the chain. -1 represents end of the chain. */
339 /* Map: hard register number to the corresponding structure. */
340 static struct saved_hard_reg
*hard_reg_map
[FIRST_PSEUDO_REGISTER
];
342 /* The number of all structures representing hard registers should be
343 saved, in order words, the number of used elements in the following
345 static int saved_regs_num
;
347 /* Pointers to all the structures. Index is the order number of the
348 corresponding structure. */
349 static struct saved_hard_reg
*all_saved_regs
[FIRST_PSEUDO_REGISTER
];
351 /* First called function for work with saved hard registers. */
353 initiate_saved_hard_regs (void)
358 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
359 hard_reg_map
[i
] = NULL
;
362 /* Allocate and return new saved hard register with given REGNO and
364 static struct saved_hard_reg
*
365 new_saved_hard_reg (int regno
, int call_freq
)
367 struct saved_hard_reg
*saved_reg
;
370 = (struct saved_hard_reg
*) xmalloc (sizeof (struct saved_hard_reg
));
371 hard_reg_map
[regno
] = all_saved_regs
[saved_regs_num
] = saved_reg
;
372 saved_reg
->num
= saved_regs_num
++;
373 saved_reg
->hard_regno
= regno
;
374 saved_reg
->call_freq
= call_freq
;
375 saved_reg
->first_p
= FALSE
;
376 saved_reg
->next
= -1;
380 /* Free memory allocated for the saved hard registers. */
382 finish_saved_hard_regs (void)
386 for (i
= 0; i
< saved_regs_num
; i
++)
387 free (all_saved_regs
[i
]);
390 /* The function is used to sort the saved hard register structures
391 according their frequency. */
393 saved_hard_reg_compare_func (const void *v1p
, const void *v2p
)
395 const struct saved_hard_reg
*p1
= *(struct saved_hard_reg
* const *) v1p
;
396 const struct saved_hard_reg
*p2
= *(struct saved_hard_reg
* const *) v2p
;
398 if (flag_omit_frame_pointer
)
400 if (p1
->call_freq
- p2
->call_freq
!= 0)
401 return p1
->call_freq
- p2
->call_freq
;
403 else if (p2
->call_freq
- p1
->call_freq
!= 0)
404 return p2
->call_freq
- p1
->call_freq
;
406 return p1
->num
- p2
->num
;
409 /* Allocate save areas for any hard registers that might need saving.
410 We take a conservative approach here and look for call-clobbered hard
411 registers that are assigned to pseudos that cross calls. This may
412 overestimate slightly (especially if some of these registers are later
413 used as spill registers), but it should not be significant.
415 For IRA we use priority coloring to decrease stack slots needed for
416 saving hard registers through calls. We build conflicts for them
421 In the fallback case we should iterate backwards across all possible
422 modes for the save, choosing the largest available one instead of
423 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
425 We do not try to use "move multiple" instructions that exist
426 on some machines (such as the 68k moveml). It could be a win to try
427 and use them when possible. The hard part is doing it in a way that is
428 machine independent since they might be saving non-consecutive
429 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
432 setup_save_areas (void)
436 HARD_REG_SET hard_regs_used
;
438 /* Allocate space in the save area for the largest multi-register
439 pseudos first, then work backwards to single register
442 /* Find and record all call-used hard-registers in this function. */
443 CLEAR_HARD_REG_SET (hard_regs_used
);
444 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
445 if (reg_renumber
[i
] >= 0 && REG_N_CALLS_CROSSED (i
) > 0)
447 unsigned int regno
= reg_renumber
[i
];
448 unsigned int endregno
449 = end_hard_regno (GET_MODE (regno_reg_rtx
[i
]), regno
);
450 for (r
= regno
; r
< endregno
; r
++)
451 if (call_used_regs
[r
])
452 SET_HARD_REG_BIT (hard_regs_used
, r
);
455 if (optimize
&& flag_ira_share_save_slots
)
458 struct insn_chain
*chain
, *next
;
459 char *saved_reg_conflicts
;
462 struct saved_hard_reg
*saved_reg
, *saved_reg2
, *saved_reg3
;
463 int call_saved_regs_num
;
464 struct saved_hard_reg
*call_saved_regs
[FIRST_PSEUDO_REGISTER
];
465 HARD_REG_SET hard_regs_to_save
, used_regs
, this_insn_sets
;
466 reg_set_iterator rsi
;
468 int prev_save_slots_num
;
469 rtx prev_save_slots
[FIRST_PSEUDO_REGISTER
];
471 initiate_saved_hard_regs ();
472 /* Create hard reg saved regs. */
473 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
478 || find_reg_note (insn
, REG_NORETURN
, NULL
))
480 freq
= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn
));
481 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
482 &chain
->live_throughout
);
483 COPY_HARD_REG_SET (used_regs
, call_used_reg_set
);
485 /* Record all registers set in this call insn. These don't
486 need to be saved. N.B. the call insn might set a subreg
487 of a multi-hard-reg pseudo; then the pseudo is considered
488 live during the call, but the subreg that is set
490 CLEAR_HARD_REG_SET (this_insn_sets
);
491 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
492 /* Sibcalls are considered to set the return value. */
493 if (SIBLING_CALL_P (insn
) && crtl
->return_rtx
)
494 mark_set_regs (crtl
->return_rtx
, NULL_RTX
, &this_insn_sets
);
496 AND_COMPL_HARD_REG_SET (used_regs
, call_fixed_reg_set
);
497 AND_COMPL_HARD_REG_SET (used_regs
, this_insn_sets
);
498 AND_HARD_REG_SET (hard_regs_to_save
, used_regs
);
499 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
500 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
502 if (hard_reg_map
[regno
] != NULL
)
503 hard_reg_map
[regno
]->call_freq
+= freq
;
505 saved_reg
= new_saved_hard_reg (regno
, freq
);
507 /* Look through all live pseudos, mark their hard registers. */
508 EXECUTE_IF_SET_IN_REG_SET
509 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
511 int r
= reg_renumber
[regno
];
517 bound
= r
+ hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
518 for (; r
< bound
; r
++)
519 if (TEST_HARD_REG_BIT (used_regs
, r
))
521 if (hard_reg_map
[r
] != NULL
)
522 hard_reg_map
[r
]->call_freq
+= freq
;
524 saved_reg
= new_saved_hard_reg (r
, freq
);
525 SET_HARD_REG_BIT (hard_regs_to_save
, r
);
529 /* Find saved hard register conflicts. */
530 saved_reg_conflicts
= (char *) xmalloc (saved_regs_num
* saved_regs_num
);
531 memset (saved_reg_conflicts
, 0, saved_regs_num
* saved_regs_num
);
532 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
534 call_saved_regs_num
= 0;
538 || find_reg_note (insn
, REG_NORETURN
, NULL
))
540 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
541 &chain
->live_throughout
);
542 COPY_HARD_REG_SET (used_regs
, call_used_reg_set
);
544 /* Record all registers set in this call insn. These don't
545 need to be saved. N.B. the call insn might set a subreg
546 of a multi-hard-reg pseudo; then the pseudo is considered
547 live during the call, but the subreg that is set
549 CLEAR_HARD_REG_SET (this_insn_sets
);
550 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
551 /* Sibcalls are considered to set the return value,
552 compare flow.c:propagate_one_insn. */
553 if (SIBLING_CALL_P (insn
) && crtl
->return_rtx
)
554 mark_set_regs (crtl
->return_rtx
, NULL_RTX
, &this_insn_sets
);
556 AND_COMPL_HARD_REG_SET (used_regs
, call_fixed_reg_set
);
557 AND_COMPL_HARD_REG_SET (used_regs
, this_insn_sets
);
558 AND_HARD_REG_SET (hard_regs_to_save
, used_regs
);
559 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
560 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
562 gcc_assert (hard_reg_map
[regno
] != NULL
);
563 call_saved_regs
[call_saved_regs_num
++] = hard_reg_map
[regno
];
565 /* Look through all live pseudos, mark their hard registers. */
566 EXECUTE_IF_SET_IN_REG_SET
567 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
569 int r
= reg_renumber
[regno
];
575 bound
= r
+ hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
576 for (; r
< bound
; r
++)
577 if (TEST_HARD_REG_BIT (used_regs
, r
))
578 call_saved_regs
[call_saved_regs_num
++] = hard_reg_map
[r
];
580 for (i
= 0; i
< call_saved_regs_num
; i
++)
582 saved_reg
= call_saved_regs
[i
];
583 for (j
= 0; j
< call_saved_regs_num
; j
++)
586 saved_reg2
= call_saved_regs
[j
];
587 saved_reg_conflicts
[saved_reg
->num
* saved_regs_num
589 = saved_reg_conflicts
[saved_reg2
->num
* saved_regs_num
595 /* Sort saved hard regs. */
596 qsort (all_saved_regs
, saved_regs_num
, sizeof (struct saved_hard_reg
*),
597 saved_hard_reg_compare_func
);
598 /* Initiate slots available from the previous reload
600 prev_save_slots_num
= save_slots_num
;
601 memcpy (prev_save_slots
, save_slots
, save_slots_num
* sizeof (rtx
));
603 /* Allocate stack slots for the saved hard registers. */
604 for (i
= 0; i
< saved_regs_num
; i
++)
606 saved_reg
= all_saved_regs
[i
];
607 regno
= saved_reg
->hard_regno
;
608 for (j
= 0; j
< i
; j
++)
610 saved_reg2
= all_saved_regs
[j
];
611 if (! saved_reg2
->first_p
)
613 slot
= saved_reg2
->slot
;
614 for (k
= j
; k
>= 0; k
= next_k
)
616 saved_reg3
= all_saved_regs
[k
];
617 next_k
= saved_reg3
->next
;
618 if (saved_reg_conflicts
[saved_reg
->num
* saved_regs_num
623 && (GET_MODE_SIZE (regno_save_mode
[regno
][1])
624 <= GET_MODE_SIZE (regno_save_mode
625 [saved_reg2
->hard_regno
][1])))
629 (slot
, regno_save_mode
[saved_reg
->hard_regno
][1], 0);
630 regno_save_mem
[regno
][1] = saved_reg
->slot
;
631 saved_reg
->next
= saved_reg2
->next
;
632 saved_reg2
->next
= i
;
633 if (dump_file
!= NULL
)
634 fprintf (dump_file
, "%d uses slot of %d\n",
635 regno
, saved_reg2
->hard_regno
);
641 saved_reg
->first_p
= TRUE
;
642 for (best_slot_num
= -1, j
= 0; j
< prev_save_slots_num
; j
++)
644 slot
= prev_save_slots
[j
];
645 if (slot
== NULL_RTX
)
647 if (GET_MODE_SIZE (regno_save_mode
[regno
][1])
648 <= GET_MODE_SIZE (GET_MODE (slot
))
649 && best_slot_num
< 0)
651 if (GET_MODE (slot
) == regno_save_mode
[regno
][1])
654 if (best_slot_num
>= 0)
656 saved_reg
->slot
= prev_save_slots
[best_slot_num
];
660 regno_save_mode
[saved_reg
->hard_regno
][1], 0);
661 if (dump_file
!= NULL
)
663 "%d uses a slot from prev iteration\n", regno
);
664 prev_save_slots
[best_slot_num
] = NULL_RTX
;
665 if (best_slot_num
+ 1 == prev_save_slots_num
)
666 prev_save_slots_num
--;
671 = assign_stack_local_1
672 (regno_save_mode
[regno
][1],
673 GET_MODE_SIZE (regno_save_mode
[regno
][1]), 0, true);
674 if (dump_file
!= NULL
)
675 fprintf (dump_file
, "%d uses a new slot\n", regno
);
677 regno_save_mem
[regno
][1] = saved_reg
->slot
;
678 save_slots
[save_slots_num
++] = saved_reg
->slot
;
681 free (saved_reg_conflicts
);
682 finish_saved_hard_regs ();
686 /* Now run through all the call-used hard-registers and allocate
687 space for them in the caller-save area. Try to allocate space
688 in a manner which allows multi-register saves/restores to be done. */
690 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
691 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
695 /* If no mode exists for this size, try another. Also break out
696 if we have already saved this hard register. */
697 if (regno_save_mode
[i
][j
] == VOIDmode
|| regno_save_mem
[i
][1] != 0)
700 /* See if any register in this group has been saved. */
701 for (k
= 0; k
< j
; k
++)
702 if (regno_save_mem
[i
+ k
][1])
710 for (k
= 0; k
< j
; k
++)
711 if (! TEST_HARD_REG_BIT (hard_regs_used
, i
+ k
))
719 /* We have found an acceptable mode to store in. Since
720 hard register is always saved in the widest mode
721 available, the mode may be wider than necessary, it is
722 OK to reduce the alignment of spill space. We will
723 verify that it is equal to or greater than required
724 when we restore and save the hard register in
725 insert_restore and insert_save. */
727 = assign_stack_local_1 (regno_save_mode
[i
][j
],
728 GET_MODE_SIZE (regno_save_mode
[i
][j
]),
731 /* Setup single word save area just in case... */
732 for (k
= 0; k
< j
; k
++)
733 /* This should not depend on WORDS_BIG_ENDIAN.
734 The order of words in regs is the same as in memory. */
735 regno_save_mem
[i
+ k
][1]
736 = adjust_address_nv (regno_save_mem
[i
][j
],
737 regno_save_mode
[i
+ k
][1],
742 /* Now loop again and set the alias set of any save areas we made to
743 the alias set used to represent frame objects. */
744 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
745 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
746 if (regno_save_mem
[i
][j
] != 0)
747 set_mem_alias_set (regno_save_mem
[i
][j
], get_frame_alias_set ());
752 /* Find the places where hard regs are live across calls and save them. */
755 save_call_clobbered_regs (void)
757 struct insn_chain
*chain
, *next
;
758 enum machine_mode save_mode
[FIRST_PSEUDO_REGISTER
];
760 /* Computed in mark_set_regs, holds all registers set by the current
762 HARD_REG_SET this_insn_sets
;
764 CLEAR_HARD_REG_SET (hard_regs_saved
);
767 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
769 rtx insn
= chain
->insn
;
770 enum rtx_code code
= GET_CODE (insn
);
774 gcc_assert (!chain
->is_caller_save_insn
);
776 if (NONDEBUG_INSN_P (insn
))
778 /* If some registers have been saved, see if INSN references
779 any of them. We must restore them before the insn if so. */
785 if (code
== JUMP_INSN
)
786 /* Restore all registers if this is a JUMP_INSN. */
787 COPY_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
790 CLEAR_HARD_REG_SET (referenced_regs
);
791 mark_referenced_regs (&PATTERN (insn
),
792 mark_reg_as_referenced
, NULL
);
793 AND_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
796 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
797 if (TEST_HARD_REG_BIT (referenced_regs
, regno
))
798 regno
+= insert_restore (chain
, 1, regno
, MOVE_MAX_WORDS
, save_mode
);
801 if (code
== CALL_INSN
802 && ! SIBLING_CALL_P (insn
)
803 && ! find_reg_note (insn
, REG_NORETURN
, NULL
))
806 HARD_REG_SET hard_regs_to_save
;
807 reg_set_iterator rsi
;
809 /* Use the register life information in CHAIN to compute which
810 regs are live during the call. */
811 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
812 &chain
->live_throughout
);
813 /* Save hard registers always in the widest mode available. */
814 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
815 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
816 save_mode
[regno
] = regno_save_mode
[regno
][1];
818 save_mode
[regno
] = VOIDmode
;
820 /* Look through all live pseudos, mark their hard registers
821 and choose proper mode for saving. */
822 EXECUTE_IF_SET_IN_REG_SET
823 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
825 int r
= reg_renumber
[regno
];
827 enum machine_mode mode
;
831 nregs
= hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
832 mode
= HARD_REGNO_CALLER_SAVE_MODE
833 (r
, nregs
, PSEUDO_REGNO_MODE (regno
));
834 if (GET_MODE_BITSIZE (mode
)
835 > GET_MODE_BITSIZE (save_mode
[r
]))
838 SET_HARD_REG_BIT (hard_regs_to_save
, r
+ nregs
);
841 /* Record all registers set in this call insn. These don't need
842 to be saved. N.B. the call insn might set a subreg of a
843 multi-hard-reg pseudo; then the pseudo is considered live
844 during the call, but the subreg that is set isn't. */
845 CLEAR_HARD_REG_SET (this_insn_sets
);
846 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
848 /* Compute which hard regs must be saved before this call. */
849 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, call_fixed_reg_set
);
850 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, this_insn_sets
);
851 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, hard_regs_saved
);
852 AND_HARD_REG_SET (hard_regs_to_save
, call_used_reg_set
);
854 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
855 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
856 regno
+= insert_save (chain
, 1, regno
, &hard_regs_to_save
, save_mode
);
858 /* Must recompute n_regs_saved. */
860 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
861 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
865 else if (DEBUG_INSN_P (insn
) && n_regs_saved
)
866 mark_referenced_regs (&PATTERN (insn
),
867 replace_reg_with_saved_mem
,
870 if (chain
->next
== 0 || chain
->next
->block
!= chain
->block
)
873 /* At the end of the basic block, we must restore any registers that
874 remain saved. If the last insn in the block is a JUMP_INSN, put
875 the restore before the insn, otherwise, put it after the insn. */
878 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
879 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
880 regno
+= insert_restore (chain
, JUMP_P (insn
),
881 regno
, MOVE_MAX_WORDS
, save_mode
);
886 /* Here from note_stores, or directly from save_call_clobbered_regs, when
887 an insn stores a value in a register.
888 Set the proper bit or bits in this_insn_sets. All pseudos that have
889 been assigned hard regs have had their register number changed already,
890 so we can ignore pseudos. */
892 mark_set_regs (rtx reg
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
894 int regno
, endregno
, i
;
895 HARD_REG_SET
*this_insn_sets
= (HARD_REG_SET
*) data
;
897 if (GET_CODE (reg
) == SUBREG
)
899 rtx inner
= SUBREG_REG (reg
);
900 if (!REG_P (inner
) || REGNO (inner
) >= FIRST_PSEUDO_REGISTER
)
902 regno
= subreg_regno (reg
);
903 endregno
= regno
+ subreg_nregs (reg
);
906 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
909 endregno
= END_HARD_REGNO (reg
);
914 for (i
= regno
; i
< endregno
; i
++)
915 SET_HARD_REG_BIT (*this_insn_sets
, i
);
918 /* Here from note_stores when an insn stores a value in a register.
919 Set the proper bit or bits in the passed regset. All pseudos that have
920 been assigned hard regs have had their register number changed already,
921 so we can ignore pseudos. */
923 add_stored_regs (rtx reg
, const_rtx setter
, void *data
)
925 int regno
, endregno
, i
;
926 enum machine_mode mode
= GET_MODE (reg
);
929 if (GET_CODE (setter
) == CLOBBER
)
932 if (GET_CODE (reg
) == SUBREG
933 && REG_P (SUBREG_REG (reg
))
934 && REGNO (SUBREG_REG (reg
)) < FIRST_PSEUDO_REGISTER
)
936 offset
= subreg_regno_offset (REGNO (SUBREG_REG (reg
)),
937 GET_MODE (SUBREG_REG (reg
)),
940 regno
= REGNO (SUBREG_REG (reg
)) + offset
;
941 endregno
= regno
+ subreg_nregs (reg
);
945 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
948 regno
= REGNO (reg
) + offset
;
949 endregno
= end_hard_regno (mode
, regno
);
952 for (i
= regno
; i
< endregno
; i
++)
953 SET_REGNO_REG_SET ((regset
) data
, i
);
956 /* Walk X and record all referenced registers in REFERENCED_REGS. */
958 mark_referenced_regs (rtx
*loc
, refmarker_fn
*mark
, void *arg
)
960 enum rtx_code code
= GET_CODE (*loc
);
965 mark_referenced_regs (&SET_SRC (*loc
), mark
, arg
);
966 if (code
== SET
|| code
== CLOBBER
)
968 loc
= &SET_DEST (*loc
);
969 code
= GET_CODE (*loc
);
970 if ((code
== REG
&& REGNO (*loc
) < FIRST_PSEUDO_REGISTER
)
971 || code
== PC
|| code
== CC0
972 || (code
== SUBREG
&& REG_P (SUBREG_REG (*loc
))
973 && REGNO (SUBREG_REG (*loc
)) < FIRST_PSEUDO_REGISTER
974 /* If we're setting only part of a multi-word register,
975 we shall mark it as referenced, because the words
976 that are not being set should be restored. */
977 && ((GET_MODE_SIZE (GET_MODE (*loc
))
978 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc
))))
979 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc
)))
980 <= UNITS_PER_WORD
))))
983 if (code
== MEM
|| code
== SUBREG
)
985 loc
= &XEXP (*loc
, 0);
986 code
= GET_CODE (*loc
);
991 int regno
= REGNO (*loc
);
992 int hardregno
= (regno
< FIRST_PSEUDO_REGISTER
? regno
993 : reg_renumber
[regno
]);
996 mark (loc
, GET_MODE (*loc
), hardregno
, arg
);
998 /* ??? Will we ever end up with an equiv expression in a debug
999 insn, that would have required restoring a reg, or will
1000 reload take care of it for us? */
1002 /* If this is a pseudo that did not get a hard register, scan its
1003 memory location, since it might involve the use of another
1004 register, which might be saved. */
1005 else if (reg_equiv_mem
[regno
] != 0)
1006 mark_referenced_regs (&XEXP (reg_equiv_mem
[regno
], 0), mark
, arg
);
1007 else if (reg_equiv_address
[regno
] != 0)
1008 mark_referenced_regs (®_equiv_address
[regno
], mark
, arg
);
1012 fmt
= GET_RTX_FORMAT (code
);
1013 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1016 mark_referenced_regs (&XEXP (*loc
, i
), mark
, arg
);
1017 else if (fmt
[i
] == 'E')
1018 for (j
= XVECLEN (*loc
, i
) - 1; j
>= 0; j
--)
1019 mark_referenced_regs (&XVECEXP (*loc
, i
, j
), mark
, arg
);
1023 /* Parameter function for mark_referenced_regs() that adds registers
1024 present in the insn and in equivalent mems and addresses to
1028 mark_reg_as_referenced (rtx
*loc ATTRIBUTE_UNUSED
,
1029 enum machine_mode mode
,
1031 void *arg ATTRIBUTE_UNUSED
)
1033 add_to_hard_reg_set (&referenced_regs
, mode
, hardregno
);
1036 /* Parameter function for mark_referenced_regs() that replaces
1037 registers referenced in a debug_insn that would have been restored,
1038 should it be a non-debug_insn, with their save locations. */
1041 replace_reg_with_saved_mem (rtx
*loc
,
1042 enum machine_mode mode
,
1046 unsigned int i
, nregs
= hard_regno_nregs
[regno
][mode
];
1048 enum machine_mode
*save_mode
= (enum machine_mode
*)arg
;
1050 for (i
= 0; i
< nregs
; i
++)
1051 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1054 /* If none of the registers in the range would need restoring, we're
1060 if (!TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1064 && regno_save_mem
[regno
][nregs
])
1066 mem
= copy_rtx (regno_save_mem
[regno
][nregs
]);
1068 if (nregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]])
1069 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1071 if (GET_MODE (mem
) != mode
)
1073 /* This is gen_lowpart_if_possible(), but without validating
1074 the newly-formed address. */
1077 if (WORDS_BIG_ENDIAN
)
1078 offset
= (MAX (GET_MODE_SIZE (GET_MODE (mem
)), UNITS_PER_WORD
)
1079 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1080 if (BYTES_BIG_ENDIAN
)
1081 /* Adjust the address so that the address-after-the-data is
1083 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1084 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (mem
))));
1086 mem
= adjust_address_nv (mem
, mode
, offset
);
1091 mem
= gen_rtx_CONCATN (mode
, rtvec_alloc (nregs
));
1092 for (i
= 0; i
< nregs
; i
++)
1093 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1095 gcc_assert (regno_save_mem
[regno
+ i
][1]);
1096 XVECEXP (mem
, 0, i
) = copy_rtx (regno_save_mem
[regno
+ i
][1]);
1100 gcc_assert (save_mode
[regno
] != VOIDmode
);
1101 XVECEXP (mem
, 0, i
) = gen_rtx_REG (save_mode
[regno
],
1106 gcc_assert (GET_MODE (mem
) == mode
);
1111 /* Insert a sequence of insns to restore. Place these insns in front of
1112 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1113 the maximum number of registers which should be restored during this call.
1114 It should never be less than 1 since we only work with entire registers.
1116 Note that we have verified in init_caller_save that we can do this
1117 with a simple SET, so use it. Set INSN_CODE to what we save there
1118 since the address might not be valid so the insn might not be recognized.
1119 These insns will be reloaded and have register elimination done by
1120 find_reload, so we need not worry about that here.
1122 Return the extra number of registers saved. */
1125 insert_restore (struct insn_chain
*chain
, int before_p
, int regno
,
1126 int maxrestore
, enum machine_mode
*save_mode
)
1131 unsigned int numregs
= 0;
1132 struct insn_chain
*new_chain
;
1135 /* A common failure mode if register status is not correct in the
1136 RTL is for this routine to be called with a REGNO we didn't
1137 expect to save. That will cause us to write an insn with a (nil)
1138 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1139 later, check for this common case here instead. This will remove
1140 one step in debugging such problems. */
1141 gcc_assert (regno_save_mem
[regno
][1]);
1143 /* Get the pattern to emit and update our status.
1145 See if we can restore `maxrestore' registers at once. Work
1146 backwards to the single register case. */
1147 for (i
= maxrestore
; i
> 0; i
--)
1152 if (regno_save_mem
[regno
][i
] == 0)
1155 for (j
= 0; j
< i
; j
++)
1156 if (! TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ j
))
1161 /* Must do this one restore at a time. */
1169 mem
= regno_save_mem
[regno
][numregs
];
1170 if (save_mode
[regno
] != VOIDmode
1171 && save_mode
[regno
] != GET_MODE (mem
)
1172 && numregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]]
1173 /* Check that insn to restore REGNO in save_mode[regno] is
1175 && reg_save_code (regno
, save_mode
[regno
]) >= 0)
1176 mem
= adjust_address (mem
, save_mode
[regno
], 0);
1178 mem
= copy_rtx (mem
);
1180 /* Verify that the alignment of spill space is equal to or greater
1182 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT
,
1183 GET_MODE_ALIGNMENT (GET_MODE (mem
))) <= MEM_ALIGN (mem
));
1185 pat
= gen_rtx_SET (VOIDmode
,
1186 gen_rtx_REG (GET_MODE (mem
),
1188 code
= reg_restore_code (regno
, GET_MODE (mem
));
1189 new_chain
= insert_one_insn (chain
, before_p
, code
, pat
);
1191 /* Clear status for all registers we restored. */
1192 for (k
= 0; k
< i
; k
++)
1194 CLEAR_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
1195 SET_REGNO_REG_SET (&new_chain
->dead_or_set
, regno
+ k
);
1199 /* Tell our callers how many extra registers we saved/restored. */
1203 /* Like insert_restore above, but save registers instead. */
1206 insert_save (struct insn_chain
*chain
, int before_p
, int regno
,
1207 HARD_REG_SET (*to_save
), enum machine_mode
*save_mode
)
1213 unsigned int numregs
= 0;
1214 struct insn_chain
*new_chain
;
1217 /* A common failure mode if register status is not correct in the
1218 RTL is for this routine to be called with a REGNO we didn't
1219 expect to save. That will cause us to write an insn with a (nil)
1220 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1221 later, check for this common case here. This will remove one
1222 step in debugging such problems. */
1223 gcc_assert (regno_save_mem
[regno
][1]);
1225 /* Get the pattern to emit and update our status.
1227 See if we can save several registers with a single instruction.
1228 Work backwards to the single register case. */
1229 for (i
= MOVE_MAX_WORDS
; i
> 0; i
--)
1233 if (regno_save_mem
[regno
][i
] == 0)
1236 for (j
= 0; j
< i
; j
++)
1237 if (! TEST_HARD_REG_BIT (*to_save
, regno
+ j
))
1242 /* Must do this one save at a time. */
1250 mem
= regno_save_mem
[regno
][numregs
];
1251 if (save_mode
[regno
] != VOIDmode
1252 && save_mode
[regno
] != GET_MODE (mem
)
1253 && numregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]]
1254 /* Check that insn to save REGNO in save_mode[regno] is
1256 && reg_save_code (regno
, save_mode
[regno
]) >= 0)
1257 mem
= adjust_address (mem
, save_mode
[regno
], 0);
1259 mem
= copy_rtx (mem
);
1261 /* Verify that the alignment of spill space is equal to or greater
1263 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT
,
1264 GET_MODE_ALIGNMENT (GET_MODE (mem
))) <= MEM_ALIGN (mem
));
1266 pat
= gen_rtx_SET (VOIDmode
, mem
,
1267 gen_rtx_REG (GET_MODE (mem
),
1269 code
= reg_save_code (regno
, GET_MODE (mem
));
1270 new_chain
= insert_one_insn (chain
, before_p
, code
, pat
);
1272 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1273 for (k
= 0; k
< numregs
; k
++)
1275 SET_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
1276 SET_REGNO_REG_SET (&new_chain
->dead_or_set
, regno
+ k
);
1280 /* Tell our callers how many extra registers we saved/restored. */
1284 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1285 equivalent of each REG to regset DATA. */
1288 add_used_regs_1 (rtx
*loc
, void *data
)
1295 live
= (regset
) data
;
1299 if (!HARD_REGISTER_NUM_P (regno
))
1300 regno
= reg_renumber
[regno
];
1302 for (i
= hard_regno_nregs
[regno
][GET_MODE (x
)] - 1; i
>= 0; i
--)
1303 SET_REGNO_REG_SET (live
, regno
+ i
);
1308 /* A note_uses callback used by insert_one_insn. Add the hard-register
1309 equivalent of each REG to regset DATA. */
1312 add_used_regs (rtx
*loc
, void *data
)
1314 for_each_rtx (loc
, add_used_regs_1
, data
);
1317 /* Emit a new caller-save insn and set the code. */
1318 static struct insn_chain
*
1319 insert_one_insn (struct insn_chain
*chain
, int before_p
, int code
, rtx pat
)
1321 rtx insn
= chain
->insn
;
1322 struct insn_chain
*new_chain
;
1325 /* If INSN references CC0, put our insns in front of the insn that sets
1326 CC0. This is always safe, since the only way we could be passed an
1327 insn that references CC0 is for a restore, and doing a restore earlier
1328 isn't a problem. We do, however, assume here that CALL_INSNs don't
1329 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1331 if ((NONJUMP_INSN_P (insn
) || JUMP_P (insn
))
1333 && reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
1334 chain
= chain
->prev
, insn
= chain
->insn
;
1337 new_chain
= new_insn_chain ();
1342 new_chain
->prev
= chain
->prev
;
1343 if (new_chain
->prev
!= 0)
1344 new_chain
->prev
->next
= new_chain
;
1346 reload_insn_chain
= new_chain
;
1348 chain
->prev
= new_chain
;
1349 new_chain
->next
= chain
;
1350 new_chain
->insn
= emit_insn_before (pat
, insn
);
1351 /* ??? It would be nice if we could exclude the already / still saved
1352 registers from the live sets. */
1353 COPY_REG_SET (&new_chain
->live_throughout
, &chain
->live_throughout
);
1354 note_uses (&PATTERN (chain
->insn
), add_used_regs
,
1355 &new_chain
->live_throughout
);
1356 /* If CHAIN->INSN is a call, then the registers which contain
1357 the arguments to the function are live in the new insn. */
1358 if (CALL_P (chain
->insn
))
1359 for (link
= CALL_INSN_FUNCTION_USAGE (chain
->insn
);
1361 link
= XEXP (link
, 1))
1362 note_uses (&XEXP (link
, 0), add_used_regs
,
1363 &new_chain
->live_throughout
);
1365 CLEAR_REG_SET (&new_chain
->dead_or_set
);
1366 if (chain
->insn
== BB_HEAD (BASIC_BLOCK (chain
->block
)))
1367 BB_HEAD (BASIC_BLOCK (chain
->block
)) = new_chain
->insn
;
1371 new_chain
->next
= chain
->next
;
1372 if (new_chain
->next
!= 0)
1373 new_chain
->next
->prev
= new_chain
;
1374 chain
->next
= new_chain
;
1375 new_chain
->prev
= chain
;
1376 new_chain
->insn
= emit_insn_after (pat
, insn
);
1377 /* ??? It would be nice if we could exclude the already / still saved
1378 registers from the live sets, and observe REG_UNUSED notes. */
1379 COPY_REG_SET (&new_chain
->live_throughout
, &chain
->live_throughout
);
1380 /* Registers that are set in CHAIN->INSN live in the new insn.
1381 (Unless there is a REG_UNUSED note for them, but we don't
1382 look for them here.) */
1383 note_stores (PATTERN (chain
->insn
), add_stored_regs
,
1384 &new_chain
->live_throughout
);
1385 CLEAR_REG_SET (&new_chain
->dead_or_set
);
1386 if (chain
->insn
== BB_END (BASIC_BLOCK (chain
->block
)))
1387 BB_END (BASIC_BLOCK (chain
->block
)) = new_chain
->insn
;
1389 new_chain
->block
= chain
->block
;
1390 new_chain
->is_caller_save_insn
= 1;
1392 INSN_CODE (new_chain
->insn
) = code
;
1395 #include "gt-caller-save.h"