1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 /* A Single Entry, Single Exit region is a part of the CFG delimited
29 /* Single ENTRY and single EXIT from the SESE region. */
32 /* Parameters used within the SCOP. */
33 VEC (tree
, heap
) *params
;
35 /* Loops completely contained in the SCOP. */
37 VEC (loop_p
, heap
) *loop_nest
;
39 /* Are we allowed to add more params? This is for debugging purpose. We
40 can only add new params before generating the bb domains, otherwise they
45 #define SESE_ENTRY(S) (S->entry)
46 #define SESE_ENTRY_BB(S) (S->entry->dest)
47 #define SESE_EXIT(S) (S->exit)
48 #define SESE_EXIT_BB(S) (S->exit->dest)
49 #define SESE_PARAMS(S) (S->params)
50 #define SESE_LOOPS(S) (S->loops)
51 #define SESE_LOOP_NEST(S) (S->loop_nest)
52 #define SESE_ADD_PARAMS(S) (S->add_params)
54 extern sese
new_sese (edge
, edge
);
55 extern void free_sese (sese
);
56 extern void sese_insert_phis_for_liveouts (sese
, basic_block
, edge
, edge
);
57 extern void sese_adjust_liveout_phis (sese
, htab_t
, basic_block
, edge
, edge
);
58 extern void build_sese_loop_nests (sese
);
59 extern edge
copy_bb_and_scalar_dependences (basic_block
, sese
, edge
, htab_t
);
60 extern struct loop
*outermost_loop_in_sese (sese
, basic_block
);
61 extern void insert_loop_close_phis (htab_t
, loop_p
);
62 extern void insert_guard_phis (basic_block
, edge
, edge
, htab_t
, htab_t
);
63 extern tree
scalar_evolution_in_region (sese
, loop_p
, tree
);
65 /* Check that SESE contains LOOP. */
68 sese_contains_loop (sese sese
, struct loop
*loop
)
70 return bitmap_bit_p (SESE_LOOPS (sese
), loop
->num
);
73 /* The number of parameters in REGION. */
75 static inline unsigned
76 sese_nb_params (sese region
)
78 return VEC_length (tree
, SESE_PARAMS (region
));
81 /* Checks whether BB is contained in the region delimited by ENTRY and
85 bb_in_region (basic_block bb
, basic_block entry
, basic_block exit
)
87 #ifdef ENABLE_CHECKING
92 /* Check that there are no edges coming in the region: all the
93 predecessors of EXIT are dominated by ENTRY. */
94 FOR_EACH_EDGE (e
, ei
, exit
->preds
)
95 dominated_by_p (CDI_DOMINATORS
, e
->src
, entry
);
97 /* Check that there are no edges going out of the region: the
98 entry is post-dominated by the exit. FIXME: This cannot be
99 checked right now as the CDI_POST_DOMINATORS are needed. */
103 return dominated_by_p (CDI_DOMINATORS
, bb
, entry
)
104 && !(dominated_by_p (CDI_DOMINATORS
, bb
, exit
)
105 && !dominated_by_p (CDI_DOMINATORS
, entry
, exit
));
108 /* Checks whether BB is contained in the region delimited by ENTRY and
112 bb_in_sese_p (basic_block bb
, sese region
)
114 basic_block entry
= SESE_ENTRY_BB (region
);
115 basic_block exit
= SESE_EXIT_BB (region
);
117 return bb_in_region (bb
, entry
, exit
);
120 /* Returns true when NAME is defined in REGION. */
123 defined_in_sese_p (tree name
, sese region
)
125 gimple stmt
= SSA_NAME_DEF_STMT (name
);
126 basic_block bb
= gimple_bb (stmt
);
128 return bb
&& bb_in_sese_p (bb
, region
);
131 /* Returns true when LOOP is in REGION. */
134 loop_in_sese_p (struct loop
*loop
, sese region
)
136 return (bb_in_sese_p (loop
->header
, region
)
137 && bb_in_sese_p (loop
->latch
, region
));
140 /* Returns the loop depth of LOOP in REGION. The loop depth
141 is the same as the normal loop depth, but limited by a region.
159 loop_0 does not exist in the region -> invalid
160 loop_1 exists, but is not completely contained in the region -> depth 0
161 loop_2 is completely contained -> depth 1 */
163 static inline unsigned int
164 sese_loop_depth (sese region
, loop_p loop
)
166 unsigned int depth
= 0;
168 gcc_assert ((!loop_in_sese_p (loop
, region
)
169 && (SESE_ENTRY_BB (region
)->loop_father
== loop
170 || SESE_EXIT (region
)->src
->loop_father
== loop
))
171 || loop_in_sese_p (loop
, region
));
173 while (loop_in_sese_p (loop
, region
))
176 loop
= loop_outer (loop
);
182 /* Splits BB to make a single entry single exit region. */
185 split_region_for_bb (basic_block bb
)
189 if (single_pred_p (bb
))
190 entry
= single_pred_edge (bb
);
193 entry
= split_block_after_labels (bb
);
194 bb
= single_succ (bb
);
197 if (single_succ_p (bb
))
198 exit
= single_succ_edge (bb
);
201 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
203 exit
= split_block (bb
, gsi_stmt (gsi
));
206 return new_sese (entry
, exit
);
209 /* Returns the block preceding the entry of a SESE. */
211 static inline basic_block
212 block_before_sese (sese sese
)
214 return SESE_ENTRY (sese
)->src
;
219 /* A single entry single exit specialized for conditions. */
221 typedef struct ifsese_s
{
227 extern void if_region_set_false_region (ifsese
, sese
);
228 extern ifsese
create_if_region_on_edge (edge
, tree
);
229 extern ifsese
move_sese_in_condition (sese
);
230 extern edge
get_true_edge_from_guard_bb (basic_block
);
231 extern edge
get_false_edge_from_guard_bb (basic_block
);
232 extern void set_ifsese_condition (ifsese
, tree
);
235 if_region_entry (ifsese if_region
)
237 return SESE_ENTRY (if_region
->region
);
241 if_region_exit (ifsese if_region
)
243 return SESE_EXIT (if_region
->region
);
246 static inline basic_block
247 if_region_get_condition_block (ifsese if_region
)
249 return if_region_entry (if_region
)->dest
;
252 /* Structure containing the mapping between the old names and the new
253 names used after block copy in the new loop context. */
254 typedef struct rename_map_elt_s
259 DEF_VEC_P(rename_map_elt
);
260 DEF_VEC_ALLOC_P (rename_map_elt
, heap
);
262 extern void debug_rename_map (htab_t
);
263 extern hashval_t
rename_map_elt_info (const void *);
264 extern int eq_rename_map_elts (const void *, const void *);
265 extern void set_rename (htab_t
, tree
, tree
);
266 extern void rename_nb_iterations (htab_t
);
267 extern void rename_sese_parameters (htab_t
, sese
);
269 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
271 static inline rename_map_elt
272 new_rename_map_elt (tree old_name
, tree expr
)
276 res
= XNEW (struct rename_map_elt_s
);
277 res
->old_name
= old_name
;
283 /* Structure containing the mapping between the CLooG's induction
284 variable and the type of the old induction variable. */
285 typedef struct ivtype_map_elt_s
288 const char *cloog_iv
;
291 extern void debug_ivtype_map (htab_t
);
292 extern hashval_t
ivtype_map_elt_info (const void *);
293 extern int eq_ivtype_map_elts (const void *, const void *);
295 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
297 static inline ivtype_map_elt
298 new_ivtype_map_elt (const char *cloog_iv
, tree type
)
302 res
= XNEW (struct ivtype_map_elt_s
);
303 res
->cloog_iv
= cloog_iv
;
309 /* Free and compute again all the dominators information. */
312 recompute_all_dominators (void)
314 mark_irreducible_loops ();
315 free_dominance_info (CDI_DOMINATORS
);
316 free_dominance_info (CDI_POST_DOMINATORS
);
317 calculate_dominance_info (CDI_DOMINATORS
);
318 calculate_dominance_info (CDI_POST_DOMINATORS
);
321 typedef struct gimple_bb
325 /* Lists containing the restrictions of the conditional statements
326 dominating this bb. This bb can only be executed, if all conditions
331 for (i = 0; i <= 20; i++)
339 So for B there is an additional condition (2i <= 8).
341 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
342 corresponding element in CONDITION_CASES is not NULL_TREE. For a
343 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
345 VEC (gimple
, heap
) *conditions
;
346 VEC (gimple
, heap
) *condition_cases
;
347 VEC (data_reference_p
, heap
) *data_refs
;
348 htab_t cloog_iv_types
;
351 #define GBB_BB(GBB) GBB->bb
352 #define GBB_DATA_REFS(GBB) GBB->data_refs
353 #define GBB_CONDITIONS(GBB) GBB->conditions
354 #define GBB_CONDITION_CASES(GBB) GBB->condition_cases
355 #define GBB_CLOOG_IV_TYPES(GBB) GBB->cloog_iv_types
357 /* Return the innermost loop that contains the basic block GBB. */
359 static inline struct loop
*
360 gbb_loop (struct gimple_bb
*gbb
)
362 return GBB_BB (gbb
)->loop_father
;
365 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
366 If there is no corresponding gimple loop, we return NULL. */
369 gbb_loop_at_index (gimple_bb_p gbb
, sese region
, int index
)
371 loop_p loop
= gbb_loop (gbb
);
372 int depth
= sese_loop_depth (region
, loop
);
374 while (--depth
> index
)
375 loop
= loop_outer (loop
);
377 gcc_assert (sese_contains_loop (region
, loop
));
382 /* The number of common loops in REGION for GBB1 and GBB2. */
385 nb_common_loops (sese region
, gimple_bb_p gbb1
, gimple_bb_p gbb2
)
387 loop_p l1
= gbb_loop (gbb1
);
388 loop_p l2
= gbb_loop (gbb2
);
389 loop_p common
= find_common_loop (l1
, l2
);
391 return sese_loop_depth (region
, common
);