1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "alloc-pool.h"
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
36 /* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51 /* All natural loops. */
52 extern struct loops ira_loops
;
54 /* A modified value of flag `-fira-verbose' used internally. */
55 extern int internal_flag_ira_verbose
;
57 /* Dump file of the allocator if it is not NULL. */
58 extern FILE *ira_dump_file
;
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
62 typedef struct ira_allocno_live_range
*allocno_live_range_t
;
63 typedef struct ira_allocno
*ira_allocno_t
;
64 typedef struct ira_allocno_copy
*ira_copy_t
;
66 /* Definition of vector of allocnos and copies. */
67 DEF_VEC_P(ira_allocno_t
);
68 DEF_VEC_ALLOC_P(ira_allocno_t
, heap
);
69 DEF_VEC_P(ira_copy_t
);
70 DEF_VEC_ALLOC_P(ira_copy_t
, heap
);
72 /* Typedef for pointer to the subsequent structure. */
73 typedef struct ira_loop_tree_node
*ira_loop_tree_node_t
;
75 /* In general case, IRA is a regional allocator. The regions are
76 nested and form a tree. Currently regions are natural loops. The
77 following structure describes loop tree node (representing basic
78 block or loop). We need such tree because the loop tree from
79 cfgloop.h is not convenient for the optimization: basic blocks are
80 not a part of the tree from cfgloop.h. We also use the nodes for
81 storing additional information about basic blocks/loops for the
82 register allocation purposes. */
83 struct ira_loop_tree_node
85 /* The node represents basic block if children == NULL. */
86 basic_block bb
; /* NULL for loop. */
87 struct loop
*loop
; /* NULL for BB. */
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
90 ira_loop_tree_node_t subloop_next
, next
;
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
93 ira_loop_tree_node_t subloops
, children
;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent
;
97 /* Loop level in range [0, ira_loop_tree_height). */
100 /* All the following members are defined only for nodes representing
103 /* True if the loop was marked for removal from the register
107 /* Allocnos in the loop corresponding to their regnos. If it is
108 NULL the loop does not form a separate register allocation region
109 (e.g. because it has abnormal enter/exit edges and we can not put
110 code for register shuffling on the edges if a different
111 allocation is used for a pseudo-register on different sides of
112 the edges). Caps are not in the map (remember we can have more
113 one cap with the same regno in a region). */
114 ira_allocno_t
*regno_allocno_map
;
116 /* True if there is an entry to given loop not from its parent (or
117 grandparent) basic block. For example, it is possible for two
118 adjacent loops inside another loop. */
119 bool entered_from_non_parent_p
;
121 /* Maximal register pressure inside loop for given register class
122 (defined only for the cover classes). */
123 int reg_pressure
[N_REG_CLASSES
];
125 /* Numbers of allocnos referred or living in the loop node (except
126 for its subloops). */
129 /* Numbers of allocnos living at the loop borders. */
130 bitmap border_allocnos
;
132 /* Regnos of pseudos modified in the loop node (including its
134 bitmap modified_regnos
;
136 /* Numbers of copies referred in the corresponding loop. */
140 /* The root of the loop tree corresponding to the all function. */
141 extern ira_loop_tree_node_t ira_loop_tree_root
;
143 /* Height of the loop tree. */
144 extern int ira_loop_tree_height
;
146 /* All nodes representing basic blocks are referred through the
147 following array. We can not use basic block member `aux' for this
148 because it is used for insertion of insns on edges. */
149 extern ira_loop_tree_node_t ira_bb_nodes
;
151 /* Two access macros to the nodes representing basic blocks. */
152 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
153 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
154 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
155 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
158 "\n%s: %d: error in %s: it is not a block node\n", \
159 __FILE__, __LINE__, __FUNCTION__); \
160 gcc_unreachable (); \
164 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
167 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
169 /* All nodes representing loops are referred through the following
171 extern ira_loop_tree_node_t ira_loop_nodes
;
173 /* Two access macros to the nodes representing loops. */
174 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
175 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
176 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
177 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
180 "\n%s: %d: error in %s: it is not a loop node\n", \
181 __FILE__, __LINE__, __FUNCTION__); \
182 gcc_unreachable (); \
186 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
189 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193 /* The structure describes program points where a given allocno lives.
194 To save memory we store allocno conflicts only for the same cover
195 class allocnos which is enough to assign hard registers. To find
196 conflicts for other allocnos (e.g. to assign stack memory slot) we
197 use the live ranges. If the live ranges of two allocnos are
198 intersected, the allocnos are in conflict. */
199 struct ira_allocno_live_range
201 /* Allocno whose live range is described by given structure. */
202 ira_allocno_t allocno
;
203 /* Program point range. */
205 /* Next structure describing program points where the allocno
207 allocno_live_range_t next
;
208 /* Pointer to structures with the same start/finish. */
209 allocno_live_range_t start_next
, finish_next
;
212 /* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219 extern int ira_max_point
;
221 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
223 extern allocno_live_range_t
*ira_start_point_ranges
, *ira_finish_point_ranges
;
225 /* A structure representing an allocno (allocation entity). Allocno
226 represents a pseudo-register in an allocation region. If
227 pseudo-register does not live in a region but it lives in the
228 nested regions, it is represented in the region by special allocno
229 called *cap*. There may be more one cap representing the same
230 pseudo-register in region. It means that the corresponding
231 pseudo-register lives in more one non-intersected subregion. */
234 /* The allocno order number starting with 0. Each allocno has an
235 unique number and the number is never changed for the
238 /* Regno for allocno or cap. */
240 /* Mode of the allocno which is the mode of the corresponding
242 enum machine_mode mode
;
243 /* Hard register assigned to given allocno. Negative value means
244 that memory was allocated to the allocno. During the reload,
245 spilled allocno has value equal to the corresponding stack slot
246 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
247 reload (at this point pseudo-register has only one allocno) which
248 did not get stack slot yet. */
250 /* Final rtx representation of the allocno. */
252 /* Allocnos with the same regno are linked by the following member.
253 Allocnos corresponding to inner loops are first in the list (it
254 corresponds to depth-first traverse of the loops). */
255 ira_allocno_t next_regno_allocno
;
256 /* There may be different allocnos with the same regno in different
257 regions. Allocnos are bound to the corresponding loop tree node.
258 Pseudo-register may have only one regular allocno with given loop
259 tree node but more than one cap (see comments above). */
260 ira_loop_tree_node_t loop_tree_node
;
261 /* Accumulated usage references of the allocno. Here and below,
262 word 'accumulated' means info for given region and all nested
263 subregions. In this case, 'accumulated' means sum of references
264 of the corresponding pseudo-register in this region and in all
265 nested subregions recursively. */
267 /* Accumulated frequency of usage of the allocno. */
269 /* Register class which should be used for allocation for given
270 allocno. NO_REGS means that we should use memory. */
271 enum reg_class cover_class
;
272 /* Minimal accumulated and updated costs of usage register of the
273 cover class for the allocno. */
274 int cover_class_cost
, updated_cover_class_cost
;
275 /* Minimal accumulated, and updated costs of memory for the allocno.
276 At the allocation start, the original and updated costs are
277 equal. The updated cost may be changed after finishing
278 allocation in a region and starting allocation in a subregion.
279 The change reflects the cost of spill/restore code on the
280 subregion border if we assign memory to the pseudo in the
282 int memory_cost
, updated_memory_cost
;
283 /* Accumulated number of points where the allocno lives and there is
284 excess pressure for its class. Excess pressure for a register
285 class at some point means that there are more allocnos of given
286 register class living at the point than number of hard-registers
287 of the class available for the allocation. */
288 int excess_pressure_points_num
;
289 /* Copies to other non-conflicting allocnos. The copies can
290 represent move insn or potential move insn usually because of two
291 operand insn constraints. */
292 ira_copy_t allocno_copies
;
293 /* It is a allocno (cap) representing given allocno on upper loop tree
296 /* It is a link to allocno (cap) on lower loop level represented by
297 given cap. Null if given allocno is not a cap. */
298 ira_allocno_t cap_member
;
299 /* Coalesced allocnos form a cyclic list. One allocno given by
300 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
301 list is chained by NEXT_COALESCED_ALLOCNO. */
302 ira_allocno_t first_coalesced_allocno
;
303 ira_allocno_t next_coalesced_allocno
;
304 /* Pointer to structures describing at what program point the
305 allocno lives. We always maintain the list in such way that *the
306 ranges in the list are not intersected and ordered by decreasing
307 their program points*. */
308 allocno_live_range_t live_ranges
;
309 /* Before building conflicts the two member values are
310 correspondingly minimal and maximal points of the accumulated
311 allocno live ranges. After building conflicts the values are
312 correspondingly minimal and maximal conflict ids of allocnos with
313 which given allocno can conflict. */
315 /* Vector of accumulated conflicting allocnos with NULL end marker
316 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
317 Only allocnos with the same cover class are in the vector or in
319 void *conflict_allocno_array
;
320 /* The unique member value represents given allocno in conflict bit
323 /* Allocated size of the previous array. */
324 unsigned int conflict_allocno_array_size
;
325 /* Initial and accumulated hard registers conflicting with this
326 allocno and as a consequences can not be assigned to the allocno.
327 All non-allocatable hard regs and hard regs of cover classes
328 different from given allocno one are included in the sets. */
329 HARD_REG_SET conflict_hard_regs
, total_conflict_hard_regs
;
330 /* Number of accumulated conflicts in the vector of conflicting
332 int conflict_allocnos_num
;
333 /* Accumulated frequency of calls which given allocno
336 /* Accumulated number of the intersected calls. */
337 int calls_crossed_num
;
338 /* TRUE if the allocno assigned to memory was a destination of
339 removed move (see ira-emit.c) at loop exit because the value of
340 the corresponding pseudo-register is not changed inside the
342 unsigned int mem_optimized_dest_p
: 1;
343 /* TRUE if the corresponding pseudo-register has disjoint live
344 ranges and the other allocnos of the pseudo-register except this
346 unsigned int somewhere_renamed_p
: 1;
347 /* TRUE if allocno with the same REGNO in a subregion has been
348 renamed, in other words, got a new pseudo-register. */
349 unsigned int child_renamed_p
: 1;
350 /* During the reload, value TRUE means that we should not reassign a
351 hard register to the allocno got memory earlier. It is set up
352 when we removed memory-memory move insn before each iteration of
354 unsigned int dont_reassign_p
: 1;
356 /* Set to TRUE if allocno can't be assigned to the stack hard
357 register correspondingly in this region and area including the
358 region and all its subregions recursively. */
359 unsigned int no_stack_reg_p
: 1, total_no_stack_reg_p
: 1;
361 /* TRUE value means that there is no sense to spill the allocno
362 during coloring because the spill will result in additional
363 reloads in reload pass. */
364 unsigned int bad_spill_p
: 1;
365 /* TRUE value means that the allocno was not removed yet from the
366 conflicting graph during colouring. */
367 unsigned int in_graph_p
: 1;
368 /* TRUE if a hard register or memory has been assigned to the
370 unsigned int assigned_p
: 1;
371 /* TRUE if it is put on the stack to make other allocnos
373 unsigned int may_be_spilled_p
: 1;
374 /* TRUE if the allocno was removed from the splay tree used to
375 choose allocn for spilling (see ira-color.c::. */
376 unsigned int splay_removed_p
: 1;
377 /* TRUE if conflicts for given allocno are represented by vector of
378 pointers to the conflicting allocnos. Otherwise, we use a bit
379 vector where a bit with given index represents allocno with the
381 unsigned int conflict_vec_p
: 1;
382 /* Non NULL if we remove restoring value from given allocno to
383 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
384 allocno value is not changed inside the loop. */
385 ira_allocno_t mem_optimized_dest
;
386 /* Array of usage costs (accumulated and the one updated during
387 coloring) for each hard register of the allocno cover class. The
388 member value can be NULL if all costs are the same and equal to
389 COVER_CLASS_COST. For example, the costs of two different hard
390 registers can be different if one hard register is callee-saved
391 and another one is callee-used and the allocno lives through
392 calls. Another example can be case when for some insn the
393 corresponding pseudo-register value should be put in specific
394 register class (e.g. AREG for x86) which is a strict subset of
395 the allocno cover class (GENERAL_REGS for x86). We have updated
396 costs to reflect the situation when the usage cost of a hard
397 register is decreased because the allocno is connected to another
398 allocno by a copy and the another allocno has been assigned to
399 the hard register. */
400 int *hard_reg_costs
, *updated_hard_reg_costs
;
401 /* Array of decreasing costs (accumulated and the one updated during
402 coloring) for allocnos conflicting with given allocno for hard
403 regno of the allocno cover class. The member value can be NULL
404 if all costs are the same. These costs are used to reflect
405 preferences of other allocnos not assigned yet during assigning
407 int *conflict_hard_reg_costs
, *updated_conflict_hard_reg_costs
;
408 /* Size (in hard registers) of the same cover class allocnos with
409 TRUE in_graph_p value and conflicting with given allocno during
410 each point of graph coloring. */
411 int left_conflicts_size
;
412 /* Number of hard registers of the allocno cover class really
413 available for the allocno allocation. */
414 int available_regs_num
;
415 /* Allocnos in a bucket (used in coloring) chained by the following
417 ira_allocno_t next_bucket_allocno
;
418 ira_allocno_t prev_bucket_allocno
;
419 /* Used for temporary purposes. */
423 /* All members of the allocno structures should be accessed only
424 through the following macros. */
425 #define ALLOCNO_NUM(A) ((A)->num)
426 #define ALLOCNO_REGNO(A) ((A)->regno)
427 #define ALLOCNO_REG(A) ((A)->reg)
428 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
429 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
430 #define ALLOCNO_CAP(A) ((A)->cap)
431 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
432 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
433 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
434 ((A)->conflict_allocno_array_size)
435 #define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
436 ((A)->conflict_allocnos_num)
437 #define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
438 #define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
439 #define ALLOCNO_NREFS(A) ((A)->nrefs)
440 #define ALLOCNO_FREQ(A) ((A)->freq)
441 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
442 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
443 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
444 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
445 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
446 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
447 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
448 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
450 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
451 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
453 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
454 #define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
455 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
456 #define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
457 #define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
458 #define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
459 #define ALLOCNO_MODE(A) ((A)->mode)
460 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
461 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
462 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
463 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
464 ((A)->conflict_hard_reg_costs)
465 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
466 ((A)->updated_conflict_hard_reg_costs)
467 #define ALLOCNO_LEFT_CONFLICTS_SIZE(A) ((A)->left_conflicts_size)
468 #define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
469 #define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
470 #define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
471 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
472 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
473 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
474 #define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
475 #define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
476 #define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
477 #define ALLOCNO_TEMP(A) ((A)->temp)
478 #define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
479 #define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
480 #define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
481 #define ALLOCNO_MIN(A) ((A)->min)
482 #define ALLOCNO_MAX(A) ((A)->max)
483 #define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
485 /* Map regno -> allocnos with given regno (see comments for
486 allocno member `next_regno_allocno'). */
487 extern ira_allocno_t
*ira_regno_allocno_map
;
489 /* Array of references to all allocnos. The order number of the
490 allocno corresponds to the index in the array. Removed allocnos
491 have NULL element value. */
492 extern ira_allocno_t
*ira_allocnos
;
494 /* Sizes of the previous array. */
495 extern int ira_allocnos_num
;
497 /* Map conflict id -> allocno with given conflict id (see comments for
498 allocno member `conflict_id'). */
499 extern ira_allocno_t
*ira_conflict_id_allocno_map
;
501 /* The following structure represents a copy of two allocnos. The
502 copies represent move insns or potential move insns usually because
503 of two operand insn constraints. To remove register shuffle, we
504 also create copies between allocno which is output of an insn and
505 allocno becoming dead in the insn. */
506 struct ira_allocno_copy
508 /* The unique order number of the copy node starting with 0. */
510 /* Allocnos connected by the copy. The first allocno should have
511 smaller order number than the second one. */
512 ira_allocno_t first
, second
;
513 /* Execution frequency of the copy. */
516 /* It is a move insn which is an origin of the copy. The member
517 value for the copy representing two operand insn constraints or
518 for the copy created to remove register shuffle is NULL. In last
519 case the copy frequency is smaller than the corresponding insn
520 execution frequency. */
522 /* All copies with the same allocno as FIRST are linked by the two
523 following members. */
524 ira_copy_t prev_first_allocno_copy
, next_first_allocno_copy
;
525 /* All copies with the same allocno as SECOND are linked by the two
526 following members. */
527 ira_copy_t prev_second_allocno_copy
, next_second_allocno_copy
;
528 /* Region from which given copy is originated. */
529 ira_loop_tree_node_t loop_tree_node
;
532 /* Array of references to all copies. The order number of the copy
533 corresponds to the index in the array. Removed copies have NULL
535 extern ira_copy_t
*ira_copies
;
537 /* Size of the previous array. */
538 extern int ira_copies_num
;
540 /* The following structure describes a stack slot used for spilled
542 struct ira_spilled_reg_stack_slot
544 /* pseudo-registers assigned to the stack slot. */
545 regset_head spilled_regs
;
546 /* RTL representation of the stack slot. */
548 /* Size of the stack slot. */
552 /* The number of elements in the following array. */
553 extern int ira_spilled_reg_stack_slots_num
;
555 /* The following array contains info about spilled pseudo-registers
556 stack slots used in current function so far. */
557 extern struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
559 /* Correspondingly overall cost of the allocation, cost of the
560 allocnos assigned to hard-registers, cost of the allocnos assigned
561 to memory, cost of loads, stores and register move insns generated
562 for pseudo-register live range splitting (see ira-emit.c). */
563 extern int ira_overall_cost
;
564 extern int ira_reg_cost
, ira_mem_cost
;
565 extern int ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
566 extern int ira_move_loops_num
, ira_additional_jumps_num
;
568 /* Maximal value of element of array ira_reg_class_nregs. */
569 extern int ira_max_nregs
;
571 /* The number of bits in each element of array used to implement a bit
572 vector of allocnos and what type that element has. We use the
573 largest integer format on the host machine. */
574 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
575 #define IRA_INT_TYPE HOST_WIDE_INT
577 /* Set, clear or test bit number I in R, a bit vector of elements with
578 minimal index and maximal index equal correspondingly to MIN and
580 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
582 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
583 (({ int _min = (MIN), _max = (MAX), _i = (I); \
584 if (_i < _min || _i > _max) \
587 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
588 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
589 gcc_unreachable (); \
591 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
592 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
595 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
596 (({ int _min = (MIN), _max = (MAX), _i = (I); \
597 if (_i < _min || _i > _max) \
600 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
601 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
602 gcc_unreachable (); \
604 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
605 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
607 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
608 (({ int _min = (MIN), _max = (MAX), _i = (I); \
609 if (_i < _min || _i > _max) \
612 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
613 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
614 gcc_unreachable (); \
616 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
617 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
621 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
622 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
623 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
625 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
626 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
627 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
629 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
630 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
631 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
635 /* The iterator for allocno set implemented ed as allocno bit
639 /* Array containing the allocno bit vector. */
642 /* The number of the current element in the vector. */
643 unsigned int word_num
;
645 /* The number of bits in the bit vector. */
648 /* The current bit index of the bit vector. */
649 unsigned int bit_num
;
651 /* Index corresponding to the 1st bit of the bit vector. */
654 /* The word of the bit vector currently visited. */
655 unsigned IRA_INT_TYPE word
;
656 } ira_allocno_set_iterator
;
658 /* Initialize the iterator I for allocnos bit vector VEC containing
659 minimal and maximal values MIN and MAX. */
661 ira_allocno_set_iter_init (ira_allocno_set_iterator
*i
,
662 IRA_INT_TYPE
*vec
, int min
, int max
)
666 i
->nel
= max
< min
? 0 : max
- min
+ 1;
669 i
->word
= i
->nel
== 0 ? 0 : vec
[0];
672 /* Return TRUE if we have more allocnos to visit, in which case *N is
673 set to the allocno number to be visited. Otherwise, return
676 ira_allocno_set_iter_cond (ira_allocno_set_iterator
*i
, int *n
)
678 /* Skip words that are zeros. */
679 for (; i
->word
== 0; i
->word
= i
->vec
[i
->word_num
])
682 i
->bit_num
= i
->word_num
* IRA_INT_BITS
;
684 /* If we have reached the end, break. */
685 if (i
->bit_num
>= i
->nel
)
689 /* Skip bits that are zero. */
690 for (; (i
->word
& 1) == 0; i
->word
>>= 1)
693 *n
= (int) i
->bit_num
+ i
->start_val
;
698 /* Advance to the next allocno in the set. */
700 ira_allocno_set_iter_next (ira_allocno_set_iterator
*i
)
706 /* Loop over all elements of allocno set given by bit vector VEC and
707 their minimal and maximal values MIN and MAX. In each iteration, N
708 is set to the number of next allocno. ITER is an instance of
709 ira_allocno_set_iterator used to iterate the allocnos in the set. */
710 #define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
711 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
712 ira_allocno_set_iter_cond (&(ITER), &(N)); \
713 ira_allocno_set_iter_next (&(ITER)))
717 /* Map: hard regs X modes -> set of hard registers for storing value
718 of given mode starting with given hard register. */
719 extern HARD_REG_SET ira_reg_mode_hard_regset
720 [FIRST_PSEUDO_REGISTER
][NUM_MACHINE_MODES
];
722 /* Array analogous to macro REGISTER_MOVE_COST. Don't use
723 ira_register_move_cost directly. Use function of
724 ira_get_may_move_cost instead. */
725 extern move_table
*ira_register_move_cost
[MAX_MACHINE_MODE
];
727 /* Similar to may_move_in_cost but it is calculated in IRA instead of
728 regclass. Another difference we take only available hard registers
729 into account to figure out that one register class is a subset of
730 the another one. Don't use it directly. Use function of
731 ira_get_may_move_cost instead. */
732 extern move_table
*ira_may_move_in_cost
[MAX_MACHINE_MODE
];
734 /* Similar to may_move_out_cost but it is calculated in IRA instead of
735 regclass. Another difference we take only available hard registers
736 into account to figure out that one register class is a subset of
737 the another one. Don't use it directly. Use function of
738 ira_get_may_move_cost instead. */
739 extern move_table
*ira_may_move_out_cost
[MAX_MACHINE_MODE
];
741 /* Register class subset relation: TRUE if the first class is a subset
742 of the second one considering only hard registers available for the
744 extern int ira_class_subset_p
[N_REG_CLASSES
][N_REG_CLASSES
];
746 /* Index (in ira_class_hard_regs) for given register class and hard
747 register (in general case a hard register can belong to several
748 register classes). The index is negative for hard registers
749 unavailable for the allocation. */
750 extern short ira_class_hard_reg_index
[N_REG_CLASSES
][FIRST_PSEUDO_REGISTER
];
752 /* Array whose values are hard regset of hard registers available for
753 the allocation of given register class whose HARD_REGNO_MODE_OK
754 values for given mode are zero. */
755 extern HARD_REG_SET prohibited_class_mode_regs
756 [N_REG_CLASSES
][NUM_MACHINE_MODES
];
758 /* Array whose values are hard regset of hard registers for which
759 move of the hard register in given mode into itself is
761 extern HARD_REG_SET ira_prohibited_mode_move_regs
[NUM_MACHINE_MODES
];
763 /* The value is number of elements in the subsequent array. */
764 extern int ira_important_classes_num
;
766 /* The array containing non-empty classes (including non-empty cover
767 classes) which are subclasses of cover classes. Such classes is
768 important for calculation of the hard register usage costs. */
769 extern enum reg_class ira_important_classes
[N_REG_CLASSES
];
771 /* The array containing indexes of important classes in the previous
772 array. The array elements are defined only for important
774 extern int ira_important_class_nums
[N_REG_CLASSES
];
776 /* The biggest important class inside of intersection of the two
777 classes (that is calculated taking only hard registers available
778 for allocation into account). If the both classes contain no hard
779 registers available for allocation, the value is calculated with
780 taking all hard-registers including fixed ones into account. */
781 extern enum reg_class ira_reg_class_intersect
[N_REG_CLASSES
][N_REG_CLASSES
];
783 /* True if the two classes (that is calculated taking only hard
784 registers available for allocation into account) are
786 extern bool ira_reg_classes_intersect_p
[N_REG_CLASSES
][N_REG_CLASSES
];
788 /* Classes with end marker LIM_REG_CLASSES which are intersected with
789 given class (the first index). That includes given class itself.
790 This is calculated taking only hard registers available for
791 allocation into account. */
792 extern enum reg_class ira_reg_class_super_classes
[N_REG_CLASSES
][N_REG_CLASSES
];
793 /* The biggest important class inside of union of the two classes
794 (that is calculated taking only hard registers available for
795 allocation into account). If the both classes contain no hard
796 registers available for allocation, the value is calculated with
797 taking all hard-registers including fixed ones into account. In
798 other words, the value is the corresponding reg_class_subunion
800 extern enum reg_class ira_reg_class_union
[N_REG_CLASSES
][N_REG_CLASSES
];
802 extern void *ira_allocate (size_t);
803 extern void *ira_reallocate (void *, size_t);
804 extern void ira_free (void *addr
);
805 extern bitmap
ira_allocate_bitmap (void);
806 extern void ira_free_bitmap (bitmap
);
807 extern void ira_print_disposition (FILE *);
808 extern void ira_debug_disposition (void);
809 extern void ira_debug_class_cover (void);
810 extern void ira_init_register_move_cost (enum machine_mode
);
812 /* The length of the two following arrays. */
813 extern int ira_reg_equiv_len
;
815 /* The element value is TRUE if the corresponding regno value is
817 extern bool *ira_reg_equiv_invariant_p
;
819 /* The element value is equiv constant of given pseudo-register or
821 extern rtx
*ira_reg_equiv_const
;
825 /* The current loop tree node and its regno allocno map. */
826 extern ira_loop_tree_node_t ira_curr_loop_tree_node
;
827 extern ira_allocno_t
*ira_curr_regno_allocno_map
;
829 extern void ira_debug_copy (ira_copy_t
);
830 extern void ira_debug_copies (void);
831 extern void ira_debug_allocno_copies (ira_allocno_t
);
833 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t
,
834 void (*) (ira_loop_tree_node_t
),
835 void (*) (ira_loop_tree_node_t
));
836 extern ira_allocno_t
ira_create_allocno (int, bool, ira_loop_tree_node_t
);
837 extern void ira_set_allocno_cover_class (ira_allocno_t
, enum reg_class
);
838 extern bool ira_conflict_vector_profitable_p (ira_allocno_t
, int);
839 extern void ira_allocate_allocno_conflict_vec (ira_allocno_t
, int);
840 extern void ira_allocate_allocno_conflicts (ira_allocno_t
, int);
841 extern void ira_add_allocno_conflict (ira_allocno_t
, ira_allocno_t
);
842 extern void ira_print_expanded_allocno (ira_allocno_t
);
843 extern allocno_live_range_t ira_create_allocno_live_range
844 (ira_allocno_t
, int, int, allocno_live_range_t
);
845 extern allocno_live_range_t ira_copy_allocno_live_range_list
846 (allocno_live_range_t
);
847 extern allocno_live_range_t ira_merge_allocno_live_ranges
848 (allocno_live_range_t
, allocno_live_range_t
);
849 extern bool ira_allocno_live_ranges_intersect_p (allocno_live_range_t
,
850 allocno_live_range_t
);
851 extern void ira_finish_allocno_live_range (allocno_live_range_t
);
852 extern void ira_finish_allocno_live_range_list (allocno_live_range_t
);
853 extern void ira_free_allocno_updated_costs (ira_allocno_t
);
854 extern ira_copy_t
ira_create_copy (ira_allocno_t
, ira_allocno_t
,
855 int, bool, rtx
, ira_loop_tree_node_t
);
856 extern void ira_add_allocno_copy_to_list (ira_copy_t
);
857 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t
);
858 extern void ira_remove_allocno_copy_from_list (ira_copy_t
);
859 extern ira_copy_t
ira_add_allocno_copy (ira_allocno_t
, ira_allocno_t
, int,
860 bool, rtx
, ira_loop_tree_node_t
);
862 extern int *ira_allocate_cost_vector (enum reg_class
);
863 extern void ira_free_cost_vector (int *, enum reg_class
);
865 extern void ira_flattening (int, int);
866 extern bool ira_build (bool);
867 extern void ira_destroy (void);
870 extern void ira_init_costs_once (void);
871 extern void ira_init_costs (void);
872 extern void ira_finish_costs_once (void);
873 extern void ira_costs (void);
874 extern void ira_tune_allocno_costs_and_cover_classes (void);
878 extern void ira_rebuild_start_finish_chains (void);
879 extern void ira_print_live_range_list (FILE *, allocno_live_range_t
);
880 extern void ira_debug_live_range_list (allocno_live_range_t
);
881 extern void ira_debug_allocno_live_ranges (ira_allocno_t
);
882 extern void ira_debug_live_ranges (void);
883 extern void ira_create_allocno_live_ranges (void);
884 extern void ira_compress_allocno_live_ranges (void);
885 extern void ira_finish_allocno_live_ranges (void);
887 /* ira-conflicts.c */
888 extern void ira_debug_conflicts (bool);
889 extern void ira_build_conflicts (void);
892 extern int ira_loop_edge_freq (ira_loop_tree_node_t
, int, bool);
893 extern void ira_reassign_conflict_allocnos (int);
894 extern void ira_initiate_assign (void);
895 extern void ira_finish_assign (void);
896 extern void ira_color (void);
899 extern void ira_emit (bool);
903 /* Return cost of moving value of MODE from register of class FROM to
904 register of class TO. */
906 ira_get_register_move_cost (enum machine_mode mode
,
907 enum reg_class from
, enum reg_class to
)
909 if (ira_register_move_cost
[mode
] == NULL
)
910 ira_init_register_move_cost (mode
);
911 return ira_register_move_cost
[mode
][from
][to
];
914 /* Return cost of moving value of MODE from register of class FROM to
915 register of class TO. Return zero if IN_P is true and FROM is
916 subset of TO or if IN_P is false and FROM is superset of TO. */
918 ira_get_may_move_cost (enum machine_mode mode
,
919 enum reg_class from
, enum reg_class to
,
922 if (ira_register_move_cost
[mode
] == NULL
)
923 ira_init_register_move_cost (mode
);
925 ? ira_may_move_in_cost
[mode
][from
][to
]
926 : ira_may_move_out_cost
[mode
][from
][to
]);
931 /* The iterator for all allocnos. */
933 /* The number of the current element in IRA_ALLOCNOS. */
935 } ira_allocno_iterator
;
937 /* Initialize the iterator I. */
939 ira_allocno_iter_init (ira_allocno_iterator
*i
)
944 /* Return TRUE if we have more allocnos to visit, in which case *A is
945 set to the allocno to be visited. Otherwise, return FALSE. */
947 ira_allocno_iter_cond (ira_allocno_iterator
*i
, ira_allocno_t
*a
)
951 for (n
= i
->n
; n
< ira_allocnos_num
; n
++)
952 if (ira_allocnos
[n
] != NULL
)
954 *a
= ira_allocnos
[n
];
961 /* Loop over all allocnos. In each iteration, A is set to the next
962 allocno. ITER is an instance of ira_allocno_iterator used to iterate
964 #define FOR_EACH_ALLOCNO(A, ITER) \
965 for (ira_allocno_iter_init (&(ITER)); \
966 ira_allocno_iter_cond (&(ITER), &(A));)
971 /* The iterator for copies. */
973 /* The number of the current element in IRA_COPIES. */
977 /* Initialize the iterator I. */
979 ira_copy_iter_init (ira_copy_iterator
*i
)
984 /* Return TRUE if we have more copies to visit, in which case *CP is
985 set to the copy to be visited. Otherwise, return FALSE. */
987 ira_copy_iter_cond (ira_copy_iterator
*i
, ira_copy_t
*cp
)
991 for (n
= i
->n
; n
< ira_copies_num
; n
++)
992 if (ira_copies
[n
] != NULL
)
1001 /* Loop over all copies. In each iteration, C is set to the next
1002 copy. ITER is an instance of ira_copy_iterator used to iterate
1004 #define FOR_EACH_COPY(C, ITER) \
1005 for (ira_copy_iter_init (&(ITER)); \
1006 ira_copy_iter_cond (&(ITER), &(C));)
1011 /* The iterator for allocno conflicts. */
1014 /* TRUE if the conflicts are represented by vector of allocnos. */
1015 bool allocno_conflict_vec_p
;
1017 /* The conflict vector or conflict bit vector. */
1020 /* The number of the current element in the vector (of type
1021 ira_allocno_t or IRA_INT_TYPE). */
1022 unsigned int word_num
;
1024 /* The bit vector size. It is defined only if
1025 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1028 /* The current bit index of bit vector. It is defined only if
1029 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1030 unsigned int bit_num
;
1032 /* Allocno conflict id corresponding to the 1st bit of the bit
1033 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1035 int base_conflict_id
;
1037 /* The word of bit vector currently visited. It is defined only if
1038 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1039 unsigned IRA_INT_TYPE word
;
1040 } ira_allocno_conflict_iterator
;
1042 /* Initialize the iterator I with ALLOCNO conflicts. */
1044 ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator
*i
,
1045 ira_allocno_t allocno
)
1047 i
->allocno_conflict_vec_p
= ALLOCNO_CONFLICT_VEC_P (allocno
);
1048 i
->vec
= ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno
);
1050 if (i
->allocno_conflict_vec_p
)
1051 i
->size
= i
->bit_num
= i
->base_conflict_id
= i
->word
= 0;
1054 if (ALLOCNO_MIN (allocno
) > ALLOCNO_MAX (allocno
))
1057 i
->size
= ((ALLOCNO_MAX (allocno
) - ALLOCNO_MIN (allocno
)
1059 / IRA_INT_BITS
) * sizeof (IRA_INT_TYPE
);
1061 i
->base_conflict_id
= ALLOCNO_MIN (allocno
);
1062 i
->word
= (i
->size
== 0 ? 0 : ((IRA_INT_TYPE
*) i
->vec
)[0]);
1066 /* Return TRUE if we have more conflicting allocnos to visit, in which
1067 case *A is set to the allocno to be visited. Otherwise, return
1070 ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator
*i
,
1073 ira_allocno_t conflict_allocno
;
1075 if (i
->allocno_conflict_vec_p
)
1077 conflict_allocno
= ((ira_allocno_t
*) i
->vec
)[i
->word_num
];
1078 if (conflict_allocno
== NULL
)
1080 *a
= conflict_allocno
;
1085 /* Skip words that are zeros. */
1086 for (; i
->word
== 0; i
->word
= ((IRA_INT_TYPE
*) i
->vec
)[i
->word_num
])
1090 /* If we have reached the end, break. */
1091 if (i
->word_num
* sizeof (IRA_INT_TYPE
) >= i
->size
)
1094 i
->bit_num
= i
->word_num
* IRA_INT_BITS
;
1097 /* Skip bits that are zero. */
1098 for (; (i
->word
& 1) == 0; i
->word
>>= 1)
1101 *a
= ira_conflict_id_allocno_map
[i
->bit_num
+ i
->base_conflict_id
];
1107 /* Advance to the next conflicting allocno. */
1109 ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator
*i
)
1111 if (i
->allocno_conflict_vec_p
)
1120 /* Loop over all allocnos conflicting with ALLOCNO. In each
1121 iteration, A is set to the next conflicting allocno. ITER is an
1122 instance of ira_allocno_conflict_iterator used to iterate the
1124 #define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1125 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1126 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1127 ira_allocno_conflict_iter_next (&(ITER)))
1131 /* The function returns TRUE if hard registers starting with
1132 HARD_REGNO and containing value of MODE are not in set
1135 ira_hard_reg_not_in_set_p (int hard_regno
, enum machine_mode mode
,
1136 HARD_REG_SET hard_regset
)
1140 ira_assert (hard_regno
>= 0);
1141 for (i
= hard_regno_nregs
[hard_regno
][mode
] - 1; i
>= 0; i
--)
1142 if (TEST_HARD_REG_BIT (hard_regset
, hard_regno
+ i
))
1149 /* To save memory we use a lazy approach for allocation and
1150 initialization of the cost vectors. We do this only when it is
1151 really necessary. */
1153 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1154 initialize the elements by VAL if it is necessary */
1156 ira_allocate_and_set_costs (int **vec
, enum reg_class cover_class
, int val
)
1163 *vec
= reg_costs
= ira_allocate_cost_vector (cover_class
);
1164 len
= ira_class_hard_regs_num
[cover_class
];
1165 for (i
= 0; i
< len
; i
++)
1169 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1170 copy values of vector SRC into the vector if it is necessary */
1172 ira_allocate_and_copy_costs (int **vec
, enum reg_class cover_class
, int *src
)
1176 if (*vec
!= NULL
|| src
== NULL
)
1178 *vec
= ira_allocate_cost_vector (cover_class
);
1179 len
= ira_class_hard_regs_num
[cover_class
];
1180 memcpy (*vec
, src
, sizeof (int) * len
);
1183 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1184 add values of vector SRC into the vector if it is necessary */
1186 ira_allocate_and_accumulate_costs (int **vec
, enum reg_class cover_class
,
1193 len
= ira_class_hard_regs_num
[cover_class
];
1196 *vec
= ira_allocate_cost_vector (cover_class
);
1197 memset (*vec
, 0, sizeof (int) * len
);
1199 for (i
= 0; i
< len
; i
++)
1200 (*vec
)[i
] += src
[i
];
1203 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1204 copy values of vector SRC into the vector or initialize it by VAL
1205 (if SRC is null). */
1207 ira_allocate_and_set_or_copy_costs (int **vec
, enum reg_class cover_class
,
1215 *vec
= reg_costs
= ira_allocate_cost_vector (cover_class
);
1216 len
= ira_class_hard_regs_num
[cover_class
];
1218 memcpy (reg_costs
, src
, sizeof (int) * len
);
1221 for (i
= 0; i
< len
; i
++)