1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
28 #include "coretypes.h"
35 #include "hard-reg-set.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
43 #include "insn-config.h"
51 /* This file contains three techniques for performing Dead Store
54 * The first technique performs dse locally on any base address. It
55 is based on the cselib which is a local value numbering technique.
56 This technique is local to a basic block but deals with a fairly
59 * The second technique performs dse globally but is restricted to
60 base addresses that are either constant or are relative to the
63 * The third technique, (which is only done after register allocation)
64 processes the spill spill slots. This differs from the second
65 technique because it takes advantage of the fact that spilling is
66 completely free from the effects of aliasing.
68 Logically, dse is a backwards dataflow problem. A store can be
69 deleted if it if cannot be reached in the backward direction by any
70 use of the value being stored. However, the local technique uses a
71 forwards scan of the basic block because cselib requires that the
72 block be processed in that order.
74 The pass is logically broken into 7 steps:
78 1) The local algorithm, as well as scanning the insns for the two
81 2) Analysis to see if the global algs are necessary. In the case
82 of stores base on a constant address, there must be at least two
83 stores to that address, to make it possible to delete some of the
84 stores. In the case of stores off of the frame or spill related
85 stores, only one store to an address is necessary because those
86 stores die at the end of the function.
88 3) Set up the global dataflow equations based on processing the
89 info parsed in the first step.
91 4) Solve the dataflow equations.
93 5) Delete the insns that the global analysis has indicated are
96 6) Delete insns that store the same value as preceeding store
97 where the earlier store couldn't be eliminated.
101 This step uses cselib and canon_rtx to build the largest expression
102 possible for each address. This pass is a forwards pass through
103 each basic block. From the point of view of the global technique,
104 the first pass could examine a block in either direction. The
105 forwards ordering is to accommodate cselib.
107 We a simplifying assumption: addresses fall into four broad
110 1) base has rtx_varies_p == false, offset is constant.
111 2) base has rtx_varies_p == false, offset variable.
112 3) base has rtx_varies_p == true, offset constant.
113 4) base has rtx_varies_p == true, offset variable.
115 The local passes are able to process all 4 kinds of addresses. The
116 global pass only handles (1).
118 The global problem is formulated as follows:
120 A store, S1, to address A, where A is not relative to the stack
121 frame, can be eliminated if all paths from S1 to the end of the
122 of the function contain another store to A before a read to A.
124 If the address A is relative to the stack frame, a store S2 to A
125 can be eliminated if there are no paths from S1 that reach the
126 end of the function that read A before another store to A. In
127 this case S2 can be deleted if there are paths to from S2 to the
128 end of the function that have no reads or writes to A. This
129 second case allows stores to the stack frame to be deleted that
130 would otherwise die when the function returns. This cannot be
131 done if stores_off_frame_dead_at_return is not true. See the doc
132 for that variable for when this variable is false.
134 The global problem is formulated as a backwards set union
135 dataflow problem where the stores are the gens and reads are the
136 kills. Set union problems are rare and require some special
137 handling given our representation of bitmaps. A straightforward
138 implementation of requires a lot of bitmaps filled with 1s.
139 These are expensive and cumbersome in our bitmap formulation so
140 care has been taken to avoid large vectors filled with 1s. See
141 the comments in bb_info and in the dataflow confluence functions
144 There are two places for further enhancements to this algorithm:
146 1) The original dse which was embedded in a pass called flow also
147 did local address forwarding. For example in
152 flow would replace the right hand side of the second insn with a
153 reference to r100. Most of the information is available to add this
154 to this pass. It has not done it because it is a lot of work in
155 the case that either r100 is assigned to between the first and
156 second insn and/or the second insn is a load of part of the value
157 stored by the first insn.
159 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
160 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
161 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
162 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
164 2) The cleaning up of spill code is quite profitable. It currently
165 depends on reading tea leaves and chicken entrails left by reload.
166 This pass depends on reload creating a singleton alias set for each
167 spill slot and telling the next dse pass which of these alias sets
168 are the singletons. Rather than analyze the addresses of the
169 spills, dse's spill processing just does analysis of the loads and
170 stores that use those alias sets. There are three cases where this
173 a) Reload sometimes creates the slot for one mode of access, and
174 then inserts loads and/or stores for a smaller mode. In this
175 case, the current code just punts on the slot. The proper thing
176 to do is to back out and use one bit vector position for each
177 byte of the entity associated with the slot. This depends on
178 KNOWING that reload always generates the accesses for each of the
179 bytes in some canonical (read that easy to understand several
180 passes after reload happens) way.
182 b) Reload sometimes decides that spill slot it allocated was not
183 large enough for the mode and goes back and allocates more slots
184 with the same mode and alias set. The backout in this case is a
185 little more graceful than (a). In this case the slot is unmarked
186 as being a spill slot and if final address comes out to be based
187 off the frame pointer, the global algorithm handles this slot.
189 c) For any pass that may prespill, there is currently no
190 mechanism to tell the dse pass that the slot being used has the
191 special properties that reload uses. It may be that all that is
192 required is to have those passes make the same calls that reload
193 does, assuming that the alias sets can be manipulated in the same
196 /* There are limits to the size of constant offsets we model for the
197 global problem. There are certainly test cases, that exceed this
198 limit, however, it is unlikely that there are important programs
199 that really have constant offsets this size. */
200 #define MAX_OFFSET (64 * 1024)
203 static bitmap scratch
= NULL
;
206 /* This structure holds information about a candidate store. */
210 /* False means this is a clobber. */
213 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
216 /* The id of the mem group of the base address. If rtx_varies_p is
217 true, this is -1. Otherwise, it is the index into the group
221 /* This is the cselib value. */
222 cselib_val
*cse_base
;
224 /* This canonized mem. */
227 /* Canonized MEM address for use by canon_true_dependence. */
230 /* If this is non-zero, it is the alias set of a spill location. */
231 alias_set_type alias_set
;
233 /* The offset of the first and byte before the last byte associated
234 with the operation. */
235 HOST_WIDE_INT begin
, end
;
239 /* A bitmask as wide as the number of bytes in the word that
240 contains a 1 if the byte may be needed. The store is unused if
241 all of the bits are 0. This is used if IS_LARGE is false. */
242 unsigned HOST_WIDE_INT small_bitmask
;
246 /* A bitmap with one bit per byte. Cleared bit means the position
247 is needed. Used if IS_LARGE is false. */
250 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
251 equal to END - BEGIN, the whole store is unused. */
256 /* The next store info for this insn. */
257 struct store_info
*next
;
259 /* The right hand side of the store. This is used if there is a
260 subsequent reload of the mems address somewhere later in the
264 /* If rhs is or holds a constant, this contains that constant,
268 /* Set if this store stores the same constant value as REDUNDANT_REASON
269 insn stored. These aren't eliminated early, because doing that
270 might prevent the earlier larger store to be eliminated. */
271 struct insn_info
*redundant_reason
;
274 /* Return a bitmask with the first N low bits set. */
276 static unsigned HOST_WIDE_INT
277 lowpart_bitmask (int n
)
279 unsigned HOST_WIDE_INT mask
= ~(unsigned HOST_WIDE_INT
) 0;
280 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
283 typedef struct store_info
*store_info_t
;
284 static alloc_pool cse_store_info_pool
;
285 static alloc_pool rtx_store_info_pool
;
287 /* This structure holds information about a load. These are only
288 built for rtx bases. */
291 /* The id of the mem group of the base address. */
294 /* If this is non-zero, it is the alias set of a spill location. */
295 alias_set_type alias_set
;
297 /* The offset of the first and byte after the last byte associated
298 with the operation. If begin == end == 0, the read did not have
299 a constant offset. */
302 /* The mem being read. */
305 /* The next read_info for this insn. */
306 struct read_info
*next
;
308 typedef struct read_info
*read_info_t
;
309 static alloc_pool read_info_pool
;
312 /* One of these records is created for each insn. */
316 /* Set true if the insn contains a store but the insn itself cannot
317 be deleted. This is set if the insn is a parallel and there is
318 more than one non dead output or if the insn is in some way
322 /* This field is only used by the global algorithm. It is set true
323 if the insn contains any read of mem except for a (1). This is
324 also set if the insn is a call or has a clobber mem. If the insn
325 contains a wild read, the use_rec will be null. */
328 /* This field is only used for the processing of const functions.
329 These functions cannot read memory, but they can read the stack
330 because that is where they may get their parms. We need to be
331 this conservative because, like the store motion pass, we don't
332 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
333 Moreover, we need to distinguish two cases:
334 1. Before reload (register elimination), the stores related to
335 outgoing arguments are stack pointer based and thus deemed
336 of non-constant base in this pass. This requires special
337 handling but also means that the frame pointer based stores
338 need not be killed upon encountering a const function call.
339 2. After reload, the stores related to outgoing arguments can be
340 either stack pointer or hard frame pointer based. This means
341 that we have no other choice than also killing all the frame
342 pointer based stores upon encountering a const function call.
343 This field is set after reload for const function calls. Having
344 this set is less severe than a wild read, it just means that all
345 the frame related stores are killed rather than all the stores. */
348 /* This field is only used for the processing of const functions.
349 It is set if the insn may contain a stack pointer based store. */
350 bool stack_pointer_based
;
352 /* This is true if any of the sets within the store contains a
353 cselib base. Such stores can only be deleted by the local
355 bool contains_cselib_groups
;
360 /* The list of mem sets or mem clobbers that are contained in this
361 insn. If the insn is deletable, it contains only one mem set.
362 But it could also contain clobbers. Insns that contain more than
363 one mem set are not deletable, but each of those mems are here in
364 order to provide info to delete other insns. */
365 store_info_t store_rec
;
367 /* The linked list of mem uses in this insn. Only the reads from
368 rtx bases are listed here. The reads to cselib bases are
369 completely processed during the first scan and so are never
371 read_info_t read_rec
;
373 /* The prev insn in the basic block. */
374 struct insn_info
* prev_insn
;
376 /* The linked list of insns that are in consideration for removal in
377 the forwards pass thru the basic block. This pointer may be
378 trash as it is not cleared when a wild read occurs. The only
379 time it is guaranteed to be correct is when the traversal starts
380 at active_local_stores. */
381 struct insn_info
* next_local_store
;
384 typedef struct insn_info
*insn_info_t
;
385 static alloc_pool insn_info_pool
;
387 /* The linked list of stores that are under consideration in this
389 static insn_info_t active_local_stores
;
394 /* Pointer to the insn info for the last insn in the block. These
395 are linked so this is how all of the insns are reached. During
396 scanning this is the current insn being scanned. */
397 insn_info_t last_insn
;
399 /* The info for the global dataflow problem. */
402 /* This is set if the transfer function should and in the wild_read
403 bitmap before applying the kill and gen sets. That vector knocks
404 out most of the bits in the bitmap and thus speeds up the
406 bool apply_wild_read
;
408 /* The following 4 bitvectors hold information about which positions
409 of which stores are live or dead. They are indexed by
412 /* The set of store positions that exist in this block before a wild read. */
415 /* The set of load positions that exist in this block above the
416 same position of a store. */
419 /* The set of stores that reach the top of the block without being
422 Do not represent the in if it is all ones. Note that this is
423 what the bitvector should logically be initialized to for a set
424 intersection problem. However, like the kill set, this is too
425 expensive. So initially, the in set will only be created for the
426 exit block and any block that contains a wild read. */
429 /* The set of stores that reach the bottom of the block from it's
432 Do not represent the in if it is all ones. Note that this is
433 what the bitvector should logically be initialized to for a set
434 intersection problem. However, like the kill and in set, this is
435 too expensive. So what is done is that the confluence operator
436 just initializes the vector from one of the out sets of the
437 successors of the block. */
440 /* The following bitvector is indexed by the reg number. It
441 contains the set of regs that are live at the current instruction
442 being processed. While it contains info for all of the
443 registers, only the pseudos are actually examined. It is used to
444 assure that shift sequences that are inserted do not accidently
445 clobber live hard regs. */
449 typedef struct bb_info
*bb_info_t
;
450 static alloc_pool bb_info_pool
;
452 /* Table to hold all bb_infos. */
453 static bb_info_t
*bb_table
;
455 /* There is a group_info for each rtx base that is used to reference
456 memory. There are also not many of the rtx bases because they are
457 very limited in scope. */
461 /* The actual base of the address. */
464 /* The sequential id of the base. This allows us to have a
465 canonical ordering of these that is not based on addresses. */
468 /* True if there are any positions that are to be processed
470 bool process_globally
;
472 /* True if the base of this group is either the frame_pointer or
473 hard_frame_pointer. */
476 /* A mem wrapped around the base pointer for the group in order to
477 do read dependency. */
480 /* Canonized version of base_mem's address. */
483 /* These two sets of two bitmaps are used to keep track of how many
484 stores are actually referencing that position from this base. We
485 only do this for rtx bases as this will be used to assign
486 positions in the bitmaps for the global problem. Bit N is set in
487 store1 on the first store for offset N. Bit N is set in store2
488 for the second store to offset N. This is all we need since we
489 only care about offsets that have two or more stores for them.
491 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
492 for 0 and greater offsets.
494 There is one special case here, for stores into the stack frame,
495 we will or store1 into store2 before deciding which stores look
496 at globally. This is because stores to the stack frame that have
497 no other reads before the end of the function can also be
499 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
501 /* The positions in this bitmap have the same assignments as the in,
502 out, gen and kill bitmaps. This bitmap is all zeros except for
503 the positions that are occupied by stores for this group. */
506 /* The offset_map is used to map the offsets from this base into
507 positions in the global bitmaps. It is only created after all of
508 the all of stores have been scanned and we know which ones we
510 int *offset_map_n
, *offset_map_p
;
511 int offset_map_size_n
, offset_map_size_p
;
513 typedef struct group_info
*group_info_t
;
514 typedef const struct group_info
*const_group_info_t
;
515 static alloc_pool rtx_group_info_pool
;
517 /* Tables of group_info structures, hashed by base value. */
518 static htab_t rtx_group_table
;
520 /* Index into the rtx_group_vec. */
521 static int rtx_group_next_id
;
523 DEF_VEC_P(group_info_t
);
524 DEF_VEC_ALLOC_P(group_info_t
,heap
);
526 static VEC(group_info_t
,heap
) *rtx_group_vec
;
529 /* This structure holds the set of changes that are being deferred
530 when removing read operation. See replace_read. */
531 struct deferred_change
534 /* The mem that is being replaced. */
537 /* The reg it is being replaced with. */
540 struct deferred_change
*next
;
543 typedef struct deferred_change
*deferred_change_t
;
544 static alloc_pool deferred_change_pool
;
546 static deferred_change_t deferred_change_list
= NULL
;
548 /* This are used to hold the alias sets of spill variables. Since
549 these are never aliased and there may be a lot of them, it makes
550 sense to treat them specially. This bitvector is only allocated in
551 calls from dse_record_singleton_alias_set which currently is only
552 made during reload1. So when dse is called before reload this
553 mechanism does nothing. */
555 static bitmap clear_alias_sets
= NULL
;
557 /* The set of clear_alias_sets that have been disqualified because
558 there are loads or stores using a different mode than the alias set
559 was registered with. */
560 static bitmap disqualified_clear_alias_sets
= NULL
;
562 /* The group that holds all of the clear_alias_sets. */
563 static group_info_t clear_alias_group
;
565 /* The modes of the clear_alias_sets. */
566 static htab_t clear_alias_mode_table
;
568 /* Hash table element to look up the mode for an alias set. */
569 struct clear_alias_mode_holder
571 alias_set_type alias_set
;
572 enum machine_mode mode
;
575 static alloc_pool clear_alias_mode_pool
;
577 /* This is true except if cfun->stdarg -- i.e. we cannot do
578 this for vararg functions because they play games with the frame. */
579 static bool stores_off_frame_dead_at_return
;
581 /* Counter for stats. */
582 static int globally_deleted
;
583 static int locally_deleted
;
584 static int spill_deleted
;
586 static bitmap all_blocks
;
588 /* The number of bits used in the global bitmaps. */
589 static unsigned int current_position
;
592 static bool gate_dse (void);
593 static bool gate_dse1 (void);
594 static bool gate_dse2 (void);
597 /*----------------------------------------------------------------------------
601 ----------------------------------------------------------------------------*/
603 /* Hashtable callbacks for maintaining the "bases" field of
604 store_group_info, given that the addresses are function invariants. */
607 clear_alias_mode_eq (const void *p1
, const void *p2
)
609 const struct clear_alias_mode_holder
* h1
610 = (const struct clear_alias_mode_holder
*) p1
;
611 const struct clear_alias_mode_holder
* h2
612 = (const struct clear_alias_mode_holder
*) p2
;
613 return h1
->alias_set
== h2
->alias_set
;
618 clear_alias_mode_hash (const void *p
)
620 const struct clear_alias_mode_holder
*holder
621 = (const struct clear_alias_mode_holder
*) p
;
622 return holder
->alias_set
;
626 /* Find the entry associated with ALIAS_SET. */
628 static struct clear_alias_mode_holder
*
629 clear_alias_set_lookup (alias_set_type alias_set
)
631 struct clear_alias_mode_holder tmp_holder
;
634 tmp_holder
.alias_set
= alias_set
;
635 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, NO_INSERT
);
638 return (struct clear_alias_mode_holder
*) *slot
;
642 /* Hashtable callbacks for maintaining the "bases" field of
643 store_group_info, given that the addresses are function invariants. */
646 invariant_group_base_eq (const void *p1
, const void *p2
)
648 const_group_info_t gi1
= (const_group_info_t
) p1
;
649 const_group_info_t gi2
= (const_group_info_t
) p2
;
650 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
655 invariant_group_base_hash (const void *p
)
657 const_group_info_t gi
= (const_group_info_t
) p
;
659 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
663 /* Get the GROUP for BASE. Add a new group if it is not there. */
666 get_group_info (rtx base
)
668 struct group_info tmp_gi
;
674 /* Find the store_base_info structure for BASE, creating a new one
676 tmp_gi
.rtx_base
= base
;
677 slot
= htab_find_slot (rtx_group_table
, &tmp_gi
, INSERT
);
678 gi
= (group_info_t
) *slot
;
682 if (!clear_alias_group
)
684 clear_alias_group
= gi
=
685 (group_info_t
) pool_alloc (rtx_group_info_pool
);
686 memset (gi
, 0, sizeof (struct group_info
));
687 gi
->id
= rtx_group_next_id
++;
688 gi
->store1_n
= BITMAP_ALLOC (NULL
);
689 gi
->store1_p
= BITMAP_ALLOC (NULL
);
690 gi
->store2_n
= BITMAP_ALLOC (NULL
);
691 gi
->store2_p
= BITMAP_ALLOC (NULL
);
692 gi
->group_kill
= BITMAP_ALLOC (NULL
);
693 gi
->process_globally
= false;
694 gi
->offset_map_size_n
= 0;
695 gi
->offset_map_size_p
= 0;
696 gi
->offset_map_n
= NULL
;
697 gi
->offset_map_p
= NULL
;
698 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
700 return clear_alias_group
;
705 *slot
= gi
= (group_info_t
) pool_alloc (rtx_group_info_pool
);
707 gi
->id
= rtx_group_next_id
++;
708 gi
->base_mem
= gen_rtx_MEM (QImode
, base
);
709 gi
->canon_base_addr
= canon_rtx (base
);
710 gi
->store1_n
= BITMAP_ALLOC (NULL
);
711 gi
->store1_p
= BITMAP_ALLOC (NULL
);
712 gi
->store2_n
= BITMAP_ALLOC (NULL
);
713 gi
->store2_p
= BITMAP_ALLOC (NULL
);
714 gi
->group_kill
= BITMAP_ALLOC (NULL
);
715 gi
->process_globally
= false;
717 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
);
718 gi
->offset_map_size_n
= 0;
719 gi
->offset_map_size_p
= 0;
720 gi
->offset_map_n
= NULL
;
721 gi
->offset_map_p
= NULL
;
722 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
729 /* Initialization of data structures. */
735 globally_deleted
= 0;
738 scratch
= BITMAP_ALLOC (NULL
);
741 = create_alloc_pool ("rtx_store_info_pool",
742 sizeof (struct store_info
), 100);
744 = create_alloc_pool ("read_info_pool",
745 sizeof (struct read_info
), 100);
747 = create_alloc_pool ("insn_info_pool",
748 sizeof (struct insn_info
), 100);
750 = create_alloc_pool ("bb_info_pool",
751 sizeof (struct bb_info
), 100);
753 = create_alloc_pool ("rtx_group_info_pool",
754 sizeof (struct group_info
), 100);
756 = create_alloc_pool ("deferred_change_pool",
757 sizeof (struct deferred_change
), 10);
759 rtx_group_table
= htab_create (11, invariant_group_base_hash
,
760 invariant_group_base_eq
, NULL
);
762 bb_table
= XCNEWVEC (bb_info_t
, last_basic_block
);
763 rtx_group_next_id
= 0;
765 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
767 init_alias_analysis ();
769 if (clear_alias_sets
)
770 clear_alias_group
= get_group_info (NULL
);
772 clear_alias_group
= NULL
;
777 /*----------------------------------------------------------------------------
780 Scan all of the insns. Any random ordering of the blocks is fine.
781 Each block is scanned in forward order to accommodate cselib which
782 is used to remove stores with non-constant bases.
783 ----------------------------------------------------------------------------*/
785 /* Delete all of the store_info recs from INSN_INFO. */
788 free_store_info (insn_info_t insn_info
)
790 store_info_t store_info
= insn_info
->store_rec
;
793 store_info_t next
= store_info
->next
;
794 if (store_info
->is_large
)
795 BITMAP_FREE (store_info
->positions_needed
.large
.bmap
);
796 if (store_info
->cse_base
)
797 pool_free (cse_store_info_pool
, store_info
);
799 pool_free (rtx_store_info_pool
, store_info
);
803 insn_info
->cannot_delete
= true;
804 insn_info
->contains_cselib_groups
= false;
805 insn_info
->store_rec
= NULL
;
815 /* Add an insn to do the add inside a x if it is a
816 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
817 the size of the mode of the MEM that this is inside of. */
820 replace_inc_dec (rtx
*r
, void *d
)
823 struct insn_size
*data
= (struct insn_size
*)d
;
824 switch (GET_CODE (x
))
829 rtx r1
= XEXP (x
, 0);
830 rtx c
= gen_int_mode (data
->size
, GET_MODE (r1
));
831 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
,
832 gen_rtx_PLUS (GET_MODE (r1
), r1
, c
)),
840 rtx r1
= XEXP (x
, 0);
841 rtx c
= gen_int_mode (-data
->size
, GET_MODE (r1
));
842 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
,
843 gen_rtx_PLUS (GET_MODE (r1
), r1
, c
)),
851 /* We can reuse the add because we are about to delete the
852 insn that contained it. */
853 rtx add
= XEXP (x
, 0);
854 rtx r1
= XEXP (add
, 0);
855 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
, add
), data
->insn
);
865 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
866 and generate an add to replace that. */
869 replace_inc_dec_mem (rtx
*r
, void *d
)
872 if (x
!= NULL_RTX
&& MEM_P (x
))
874 struct insn_size data
;
876 data
.size
= GET_MODE_SIZE (GET_MODE (x
));
879 for_each_rtx (&XEXP (x
, 0), replace_inc_dec
, &data
);
886 /* Before we delete INSN, make sure that the auto inc/dec, if it is
887 there, is split into a separate insn. */
890 check_for_inc_dec (rtx insn
)
892 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
894 for_each_rtx (&insn
, replace_inc_dec_mem
, insn
);
898 /* Delete the insn and free all of the fields inside INSN_INFO. */
901 delete_dead_store_insn (insn_info_t insn_info
)
903 read_info_t read_info
;
908 check_for_inc_dec (insn_info
->insn
);
911 fprintf (dump_file
, "Locally deleting insn %d ",
912 INSN_UID (insn_info
->insn
));
913 if (insn_info
->store_rec
->alias_set
)
914 fprintf (dump_file
, "alias set %d\n",
915 (int) insn_info
->store_rec
->alias_set
);
917 fprintf (dump_file
, "\n");
920 free_store_info (insn_info
);
921 read_info
= insn_info
->read_rec
;
925 read_info_t next
= read_info
->next
;
926 pool_free (read_info_pool
, read_info
);
929 insn_info
->read_rec
= NULL
;
931 delete_insn (insn_info
->insn
);
933 insn_info
->insn
= NULL
;
935 insn_info
->wild_read
= false;
939 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
943 set_usage_bits (group_info_t group
, HOST_WIDE_INT offset
, HOST_WIDE_INT width
)
947 if (offset
> -MAX_OFFSET
&& offset
+ width
< MAX_OFFSET
)
948 for (i
=offset
; i
<offset
+width
; i
++)
955 store1
= group
->store1_n
;
956 store2
= group
->store2_n
;
961 store1
= group
->store1_p
;
962 store2
= group
->store2_p
;
966 if (bitmap_bit_p (store1
, ai
))
967 bitmap_set_bit (store2
, ai
);
970 bitmap_set_bit (store1
, ai
);
973 if (group
->offset_map_size_n
< ai
)
974 group
->offset_map_size_n
= ai
;
978 if (group
->offset_map_size_p
< ai
)
979 group
->offset_map_size_p
= ai
;
986 /* Set the BB_INFO so that the last insn is marked as a wild read. */
989 add_wild_read (bb_info_t bb_info
)
991 insn_info_t insn_info
= bb_info
->last_insn
;
992 read_info_t
*ptr
= &insn_info
->read_rec
;
996 read_info_t next
= (*ptr
)->next
;
997 if ((*ptr
)->alias_set
== 0)
999 pool_free (read_info_pool
, *ptr
);
1003 ptr
= &(*ptr
)->next
;
1005 insn_info
->wild_read
= true;
1006 active_local_stores
= NULL
;
1010 /* Return true if X is a constant or one of the registers that behave
1011 as a constant over the life of a function. This is equivalent to
1012 !rtx_varies_p for memory addresses. */
1015 const_or_frame_p (rtx x
)
1017 switch (GET_CODE (x
))
1028 /* Note that we have to test for the actual rtx used for the frame
1029 and arg pointers and not just the register number in case we have
1030 eliminated the frame and/or arg pointer and are using it
1032 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1033 /* The arg pointer varies if it is not a fixed register. */
1034 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1035 || x
== pic_offset_table_rtx
)
1044 /* Take all reasonable action to put the address of MEM into the form
1045 that we can do analysis on.
1047 The gold standard is to get the address into the form: address +
1048 OFFSET where address is something that rtx_varies_p considers a
1049 constant. When we can get the address in this form, we can do
1050 global analysis on it. Note that for constant bases, address is
1051 not actually returned, only the group_id. The address can be
1054 If that fails, we try cselib to get a value we can at least use
1055 locally. If that fails we return false.
1057 The GROUP_ID is set to -1 for cselib bases and the index of the
1058 group for non_varying bases.
1060 FOR_READ is true if this is a mem read and false if not. */
1063 canon_address (rtx mem
,
1064 alias_set_type
*alias_set_out
,
1066 HOST_WIDE_INT
*offset
,
1069 enum machine_mode address_mode
1070 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
1071 rtx mem_address
= XEXP (mem
, 0);
1072 rtx expanded_address
, address
;
1075 /* Make sure that cselib is has initialized all of the operands of
1076 the address before asking it to do the subst. */
1078 if (clear_alias_sets
)
1080 /* If this is a spill, do not do any further processing. */
1081 alias_set_type alias_set
= MEM_ALIAS_SET (mem
);
1083 fprintf (dump_file
, "found alias set %d\n", (int) alias_set
);
1084 if (bitmap_bit_p (clear_alias_sets
, alias_set
))
1086 struct clear_alias_mode_holder
*entry
1087 = clear_alias_set_lookup (alias_set
);
1089 /* If the modes do not match, we cannot process this set. */
1090 if (entry
->mode
!= GET_MODE (mem
))
1094 "disqualifying alias set %d, (%s) != (%s)\n",
1095 (int) alias_set
, GET_MODE_NAME (entry
->mode
),
1096 GET_MODE_NAME (GET_MODE (mem
)));
1098 bitmap_set_bit (disqualified_clear_alias_sets
, alias_set
);
1102 *alias_set_out
= alias_set
;
1103 *group_id
= clear_alias_group
->id
;
1110 cselib_lookup (mem_address
, address_mode
, 1);
1114 fprintf (dump_file
, " mem: ");
1115 print_inline_rtx (dump_file
, mem_address
, 0);
1116 fprintf (dump_file
, "\n");
1119 /* First see if just canon_rtx (mem_address) is const or frame,
1120 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1122 for (expanded
= 0; expanded
< 2; expanded
++)
1126 /* Use cselib to replace all of the reg references with the full
1127 expression. This will take care of the case where we have
1129 r_x = base + offset;
1134 val = *(base + offset); */
1136 expanded_address
= cselib_expand_value_rtx (mem_address
,
1139 /* If this fails, just go with the address from first
1141 if (!expanded_address
)
1145 expanded_address
= mem_address
;
1147 /* Split the address into canonical BASE + OFFSET terms. */
1148 address
= canon_rtx (expanded_address
);
1156 fprintf (dump_file
, "\n after cselib_expand address: ");
1157 print_inline_rtx (dump_file
, expanded_address
, 0);
1158 fprintf (dump_file
, "\n");
1161 fprintf (dump_file
, "\n after canon_rtx address: ");
1162 print_inline_rtx (dump_file
, address
, 0);
1163 fprintf (dump_file
, "\n");
1166 if (GET_CODE (address
) == CONST
)
1167 address
= XEXP (address
, 0);
1169 if (GET_CODE (address
) == PLUS
1170 && CONST_INT_P (XEXP (address
, 1)))
1172 *offset
= INTVAL (XEXP (address
, 1));
1173 address
= XEXP (address
, 0);
1176 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1177 && const_or_frame_p (address
))
1179 group_info_t group
= get_group_info (address
);
1182 fprintf (dump_file
, " gid=%d offset=%d \n",
1183 group
->id
, (int)*offset
);
1185 *group_id
= group
->id
;
1190 *base
= cselib_lookup (address
, address_mode
, true);
1196 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1200 fprintf (dump_file
, " varying cselib base=%u:%u offset = %d\n",
1201 (*base
)->uid
, (*base
)->hash
, (int)*offset
);
1206 /* Clear the rhs field from the active_local_stores array. */
1209 clear_rhs_from_active_local_stores (void)
1211 insn_info_t ptr
= active_local_stores
;
1215 store_info_t store_info
= ptr
->store_rec
;
1216 /* Skip the clobbers. */
1217 while (!store_info
->is_set
)
1218 store_info
= store_info
->next
;
1220 store_info
->rhs
= NULL
;
1221 store_info
->const_rhs
= NULL
;
1223 ptr
= ptr
->next_local_store
;
1228 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1231 set_position_unneeded (store_info_t s_info
, int pos
)
1233 if (__builtin_expect (s_info
->is_large
, false))
1235 if (!bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, pos
))
1237 s_info
->positions_needed
.large
.count
++;
1238 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1242 s_info
->positions_needed
.small_bitmask
1243 &= ~(((unsigned HOST_WIDE_INT
) 1) << pos
);
1246 /* Mark the whole store S_INFO as unneeded. */
1249 set_all_positions_unneeded (store_info_t s_info
)
1251 if (__builtin_expect (s_info
->is_large
, false))
1253 int pos
, end
= s_info
->end
- s_info
->begin
;
1254 for (pos
= 0; pos
< end
; pos
++)
1255 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1256 s_info
->positions_needed
.large
.count
= end
;
1259 s_info
->positions_needed
.small_bitmask
= (unsigned HOST_WIDE_INT
) 0;
1262 /* Return TRUE if any bytes from S_INFO store are needed. */
1265 any_positions_needed_p (store_info_t s_info
)
1267 if (__builtin_expect (s_info
->is_large
, false))
1268 return (s_info
->positions_needed
.large
.count
1269 < s_info
->end
- s_info
->begin
);
1271 return (s_info
->positions_needed
.small_bitmask
1272 != (unsigned HOST_WIDE_INT
) 0);
1275 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1276 store are needed. */
1279 all_positions_needed_p (store_info_t s_info
, int start
, int width
)
1281 if (__builtin_expect (s_info
->is_large
, false))
1283 int end
= start
+ width
;
1285 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, start
++))
1291 unsigned HOST_WIDE_INT mask
= lowpart_bitmask (width
) << start
;
1292 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1297 static rtx
get_stored_val (store_info_t
, enum machine_mode
, HOST_WIDE_INT
,
1298 HOST_WIDE_INT
, basic_block
, bool);
1301 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1302 there is a candidate store, after adding it to the appropriate
1303 local store group if so. */
1306 record_store (rtx body
, bb_info_t bb_info
)
1308 rtx mem
, rhs
, const_rhs
, mem_addr
;
1309 HOST_WIDE_INT offset
= 0;
1310 HOST_WIDE_INT width
= 0;
1311 alias_set_type spill_alias_set
;
1312 insn_info_t insn_info
= bb_info
->last_insn
;
1313 store_info_t store_info
= NULL
;
1315 cselib_val
*base
= NULL
;
1316 insn_info_t ptr
, last
, redundant_reason
;
1317 bool store_is_unused
;
1319 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1322 mem
= SET_DEST (body
);
1324 /* If this is not used, then this cannot be used to keep the insn
1325 from being deleted. On the other hand, it does provide something
1326 that can be used to prove that another store is dead. */
1328 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1330 /* Check whether that value is a suitable memory location. */
1333 /* If the set or clobber is unused, then it does not effect our
1334 ability to get rid of the entire insn. */
1335 if (!store_is_unused
)
1336 insn_info
->cannot_delete
= true;
1340 /* At this point we know mem is a mem. */
1341 if (GET_MODE (mem
) == BLKmode
)
1343 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1346 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1347 add_wild_read (bb_info
);
1348 insn_info
->cannot_delete
= true;
1351 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1352 as memset (addr, 0, 36); */
1353 else if (!MEM_SIZE (mem
)
1354 || !CONST_INT_P (MEM_SIZE (mem
))
1355 || GET_CODE (body
) != SET
1356 || INTVAL (MEM_SIZE (mem
)) <= 0
1357 || INTVAL (MEM_SIZE (mem
)) > MAX_OFFSET
1358 || !CONST_INT_P (SET_SRC (body
)))
1360 if (!store_is_unused
)
1362 /* If the set or clobber is unused, then it does not effect our
1363 ability to get rid of the entire insn. */
1364 insn_info
->cannot_delete
= true;
1365 clear_rhs_from_active_local_stores ();
1371 /* We can still process a volatile mem, we just cannot delete it. */
1372 if (MEM_VOLATILE_P (mem
))
1373 insn_info
->cannot_delete
= true;
1375 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
1377 clear_rhs_from_active_local_stores ();
1381 if (GET_MODE (mem
) == BLKmode
)
1382 width
= INTVAL (MEM_SIZE (mem
));
1385 width
= GET_MODE_SIZE (GET_MODE (mem
));
1386 gcc_assert ((unsigned) width
<= HOST_BITS_PER_WIDE_INT
);
1389 if (spill_alias_set
)
1391 bitmap store1
= clear_alias_group
->store1_p
;
1392 bitmap store2
= clear_alias_group
->store2_p
;
1394 gcc_assert (GET_MODE (mem
) != BLKmode
);
1396 if (bitmap_bit_p (store1
, spill_alias_set
))
1397 bitmap_set_bit (store2
, spill_alias_set
);
1399 bitmap_set_bit (store1
, spill_alias_set
);
1401 if (clear_alias_group
->offset_map_size_p
< spill_alias_set
)
1402 clear_alias_group
->offset_map_size_p
= spill_alias_set
;
1404 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1407 fprintf (dump_file
, " processing spill store %d(%s)\n",
1408 (int) spill_alias_set
, GET_MODE_NAME (GET_MODE (mem
)));
1410 else if (group_id
>= 0)
1412 /* In the restrictive case where the base is a constant or the
1413 frame pointer we can do global analysis. */
1416 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1418 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1419 set_usage_bits (group
, offset
, width
);
1422 fprintf (dump_file
, " processing const base store gid=%d[%d..%d)\n",
1423 group_id
, (int)offset
, (int)(offset
+width
));
1427 rtx base_term
= find_base_term (XEXP (mem
, 0));
1429 || (GET_CODE (base_term
) == ADDRESS
1430 && GET_MODE (base_term
) == Pmode
1431 && XEXP (base_term
, 0) == stack_pointer_rtx
))
1432 insn_info
->stack_pointer_based
= true;
1433 insn_info
->contains_cselib_groups
= true;
1435 store_info
= (store_info_t
) pool_alloc (cse_store_info_pool
);
1439 fprintf (dump_file
, " processing cselib store [%d..%d)\n",
1440 (int)offset
, (int)(offset
+width
));
1443 const_rhs
= rhs
= NULL_RTX
;
1444 if (GET_CODE (body
) == SET
1445 /* No place to keep the value after ra. */
1446 && !reload_completed
1447 && (REG_P (SET_SRC (body
))
1448 || GET_CODE (SET_SRC (body
)) == SUBREG
1449 || CONSTANT_P (SET_SRC (body
)))
1450 && !MEM_VOLATILE_P (mem
)
1451 /* Sometimes the store and reload is used for truncation and
1453 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1455 rhs
= SET_SRC (body
);
1456 if (CONSTANT_P (rhs
))
1458 else if (body
== PATTERN (insn_info
->insn
))
1460 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1461 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1462 const_rhs
= XEXP (tem
, 0);
1464 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1466 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1468 if (tem
&& CONSTANT_P (tem
))
1473 /* Check to see if this stores causes some other stores to be
1475 ptr
= active_local_stores
;
1477 redundant_reason
= NULL
;
1478 mem
= canon_rtx (mem
);
1479 /* For alias_set != 0 canon_true_dependence should be never called. */
1480 if (spill_alias_set
)
1481 mem_addr
= NULL_RTX
;
1485 mem_addr
= base
->val_rtx
;
1489 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1490 mem_addr
= group
->canon_base_addr
;
1493 mem_addr
= plus_constant (mem_addr
, offset
);
1498 insn_info_t next
= ptr
->next_local_store
;
1499 store_info_t s_info
= ptr
->store_rec
;
1502 /* Skip the clobbers. We delete the active insn if this insn
1503 shadows the set. To have been put on the active list, it
1504 has exactly on set. */
1505 while (!s_info
->is_set
)
1506 s_info
= s_info
->next
;
1508 if (s_info
->alias_set
!= spill_alias_set
)
1510 else if (s_info
->alias_set
)
1512 struct clear_alias_mode_holder
*entry
1513 = clear_alias_set_lookup (s_info
->alias_set
);
1514 /* Generally, spills cannot be processed if and of the
1515 references to the slot have a different mode. But if
1516 we are in the same block and mode is exactly the same
1517 between this store and one before in the same block,
1518 we can still delete it. */
1519 if ((GET_MODE (mem
) == GET_MODE (s_info
->mem
))
1520 && (GET_MODE (mem
) == entry
->mode
))
1523 set_all_positions_unneeded (s_info
);
1526 fprintf (dump_file
, " trying spill store in insn=%d alias_set=%d\n",
1527 INSN_UID (ptr
->insn
), (int) s_info
->alias_set
);
1529 else if ((s_info
->group_id
== group_id
)
1530 && (s_info
->cse_base
== base
))
1534 fprintf (dump_file
, " trying store in insn=%d gid=%d[%d..%d)\n",
1535 INSN_UID (ptr
->insn
), s_info
->group_id
,
1536 (int)s_info
->begin
, (int)s_info
->end
);
1538 /* Even if PTR won't be eliminated as unneeded, if both
1539 PTR and this insn store the same constant value, we might
1540 eliminate this insn instead. */
1541 if (s_info
->const_rhs
1543 && offset
>= s_info
->begin
1544 && offset
+ width
<= s_info
->end
1545 && all_positions_needed_p (s_info
, offset
- s_info
->begin
,
1548 if (GET_MODE (mem
) == BLKmode
)
1550 if (GET_MODE (s_info
->mem
) == BLKmode
1551 && s_info
->const_rhs
== const_rhs
)
1552 redundant_reason
= ptr
;
1554 else if (s_info
->const_rhs
== const0_rtx
1555 && const_rhs
== const0_rtx
)
1556 redundant_reason
= ptr
;
1561 val
= get_stored_val (s_info
, GET_MODE (mem
),
1562 offset
, offset
+ width
,
1563 BLOCK_FOR_INSN (insn_info
->insn
),
1565 if (get_insns () != NULL
)
1568 if (val
&& rtx_equal_p (val
, const_rhs
))
1569 redundant_reason
= ptr
;
1573 for (i
= MAX (offset
, s_info
->begin
);
1574 i
< offset
+ width
&& i
< s_info
->end
;
1576 set_position_unneeded (s_info
, i
- s_info
->begin
);
1578 else if (s_info
->rhs
)
1579 /* Need to see if it is possible for this store to overwrite
1580 the value of store_info. If it is, set the rhs to NULL to
1581 keep it from being used to remove a load. */
1583 if (canon_true_dependence (s_info
->mem
,
1584 GET_MODE (s_info
->mem
),
1586 mem
, mem_addr
, rtx_varies_p
))
1589 s_info
->const_rhs
= NULL
;
1593 /* An insn can be deleted if every position of every one of
1594 its s_infos is zero. */
1595 if (any_positions_needed_p (s_info
)
1596 || ptr
->cannot_delete
)
1601 insn_info_t insn_to_delete
= ptr
;
1604 last
->next_local_store
= ptr
->next_local_store
;
1606 active_local_stores
= ptr
->next_local_store
;
1608 delete_dead_store_insn (insn_to_delete
);
1616 /* Finish filling in the store_info. */
1617 store_info
->next
= insn_info
->store_rec
;
1618 insn_info
->store_rec
= store_info
;
1619 store_info
->mem
= mem
;
1620 store_info
->alias_set
= spill_alias_set
;
1621 store_info
->mem_addr
= mem_addr
;
1622 store_info
->cse_base
= base
;
1623 if (width
> HOST_BITS_PER_WIDE_INT
)
1625 store_info
->is_large
= true;
1626 store_info
->positions_needed
.large
.count
= 0;
1627 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (NULL
);
1631 store_info
->is_large
= false;
1632 store_info
->positions_needed
.small_bitmask
= lowpart_bitmask (width
);
1634 store_info
->group_id
= group_id
;
1635 store_info
->begin
= offset
;
1636 store_info
->end
= offset
+ width
;
1637 store_info
->is_set
= GET_CODE (body
) == SET
;
1638 store_info
->rhs
= rhs
;
1639 store_info
->const_rhs
= const_rhs
;
1640 store_info
->redundant_reason
= redundant_reason
;
1642 /* If this is a clobber, we return 0. We will only be able to
1643 delete this insn if there is only one store USED store, but we
1644 can use the clobber to delete other stores earlier. */
1645 return store_info
->is_set
? 1 : 0;
1650 dump_insn_info (const char * start
, insn_info_t insn_info
)
1652 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1653 INSN_UID (insn_info
->insn
),
1654 insn_info
->store_rec
? "has store" : "naked");
1658 /* If the modes are different and the value's source and target do not
1659 line up, we need to extract the value from lower part of the rhs of
1660 the store, shift it, and then put it into a form that can be shoved
1661 into the read_insn. This function generates a right SHIFT of a
1662 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1663 shift sequence is returned or NULL if we failed to find a
1667 find_shift_sequence (int access_size
,
1668 store_info_t store_info
,
1669 enum machine_mode read_mode
,
1670 int shift
, bool speed
, bool require_cst
)
1672 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1673 enum machine_mode new_mode
;
1674 rtx read_reg
= NULL
;
1676 /* Some machines like the x86 have shift insns for each size of
1677 operand. Other machines like the ppc or the ia-64 may only have
1678 shift insns that shift values within 32 or 64 bit registers.
1679 This loop tries to find the smallest shift insn that will right
1680 justify the value we want to read but is available in one insn on
1683 for (new_mode
= smallest_mode_for_size (access_size
* BITS_PER_UNIT
,
1685 GET_MODE_BITSIZE (new_mode
) <= BITS_PER_WORD
;
1686 new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1688 rtx target
, new_reg
, shift_seq
, insn
, new_lhs
;
1691 /* If a constant was stored into memory, try to simplify it here,
1692 otherwise the cost of the shift might preclude this optimization
1693 e.g. at -Os, even when no actual shift will be needed. */
1694 if (store_info
->const_rhs
)
1696 unsigned int byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1697 rtx ret
= simplify_subreg (new_mode
, store_info
->const_rhs
,
1699 if (ret
&& CONSTANT_P (ret
))
1701 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
,
1702 ret
, GEN_INT (shift
));
1703 if (ret
&& CONSTANT_P (ret
))
1705 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1706 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1707 if (ret
&& CONSTANT_P (ret
)
1708 && rtx_cost (ret
, SET
, speed
) <= COSTS_N_INSNS (1))
1717 /* Try a wider mode if truncating the store mode to NEW_MODE
1718 requires a real instruction. */
1719 if (GET_MODE_BITSIZE (new_mode
) < GET_MODE_BITSIZE (store_mode
)
1720 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode
),
1721 GET_MODE_BITSIZE (store_mode
)))
1724 /* Also try a wider mode if the necessary punning is either not
1725 desirable or not possible. */
1726 if (!CONSTANT_P (store_info
->rhs
)
1727 && !MODES_TIEABLE_P (new_mode
, store_mode
))
1730 new_reg
= gen_reg_rtx (new_mode
);
1734 /* In theory we could also check for an ashr. Ian Taylor knows
1735 of one dsp where the cost of these two was not the same. But
1736 this really is a rare case anyway. */
1737 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1738 GEN_INT (shift
), new_reg
, 1, OPTAB_DIRECT
);
1740 shift_seq
= get_insns ();
1743 if (target
!= new_reg
|| shift_seq
== NULL
)
1747 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1749 cost
+= insn_rtx_cost (PATTERN (insn
), speed
);
1751 /* The computation up to here is essentially independent
1752 of the arguments and could be precomputed. It may
1753 not be worth doing so. We could precompute if
1754 worthwhile or at least cache the results. The result
1755 technically depends on both SHIFT and ACCESS_SIZE,
1756 but in practice the answer will depend only on ACCESS_SIZE. */
1758 if (cost
> COSTS_N_INSNS (1))
1761 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1762 copy_rtx (store_info
->rhs
));
1763 if (new_lhs
== NULL_RTX
)
1766 /* We found an acceptable shift. Generate a move to
1767 take the value from the store and put it into the
1768 shift pseudo, then shift it, then generate another
1769 move to put in into the target of the read. */
1770 emit_move_insn (new_reg
, new_lhs
);
1771 emit_insn (shift_seq
);
1772 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1780 /* Call back for note_stores to find the hard regs set or clobbered by
1781 insn. Data is a bitmap of the hardregs set so far. */
1784 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1786 bitmap regs_set
= (bitmap
) data
;
1789 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1791 int regno
= REGNO (x
);
1792 int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1794 bitmap_set_bit (regs_set
, regno
+ n
);
1798 /* Helper function for replace_read and record_store.
1799 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1800 to one before READ_END bytes read in READ_MODE. Return NULL
1801 if not successful. If REQUIRE_CST is true, return always constant. */
1804 get_stored_val (store_info_t store_info
, enum machine_mode read_mode
,
1805 HOST_WIDE_INT read_begin
, HOST_WIDE_INT read_end
,
1806 basic_block bb
, bool require_cst
)
1808 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1810 int access_size
; /* In bytes. */
1813 /* To get here the read is within the boundaries of the write so
1814 shift will never be negative. Start out with the shift being in
1816 if (store_mode
== BLKmode
)
1818 else if (BYTES_BIG_ENDIAN
)
1819 shift
= store_info
->end
- read_end
;
1821 shift
= read_begin
- store_info
->begin
;
1823 access_size
= shift
+ GET_MODE_SIZE (read_mode
);
1825 /* From now on it is bits. */
1826 shift
*= BITS_PER_UNIT
;
1829 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
, shift
,
1830 optimize_bb_for_speed_p (bb
),
1832 else if (store_mode
== BLKmode
)
1834 /* The store is a memset (addr, const_val, const_size). */
1835 gcc_assert (CONST_INT_P (store_info
->rhs
));
1836 store_mode
= int_mode_for_mode (read_mode
);
1837 if (store_mode
== BLKmode
)
1838 read_reg
= NULL_RTX
;
1839 else if (store_info
->rhs
== const0_rtx
)
1840 read_reg
= extract_low_bits (read_mode
, store_mode
, const0_rtx
);
1841 else if (GET_MODE_BITSIZE (store_mode
) > HOST_BITS_PER_WIDE_INT
1842 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1843 read_reg
= NULL_RTX
;
1846 unsigned HOST_WIDE_INT c
1847 = INTVAL (store_info
->rhs
)
1848 & (((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
) - 1);
1849 int shift
= BITS_PER_UNIT
;
1850 while (shift
< HOST_BITS_PER_WIDE_INT
)
1855 read_reg
= GEN_INT (trunc_int_for_mode (c
, store_mode
));
1856 read_reg
= extract_low_bits (read_mode
, store_mode
, read_reg
);
1859 else if (store_info
->const_rhs
1861 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1862 read_reg
= extract_low_bits (read_mode
, store_mode
,
1863 copy_rtx (store_info
->const_rhs
));
1865 read_reg
= extract_low_bits (read_mode
, store_mode
,
1866 copy_rtx (store_info
->rhs
));
1867 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1868 read_reg
= NULL_RTX
;
1872 /* Take a sequence of:
1895 Depending on the alignment and the mode of the store and
1899 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1900 and READ_INSN are for the read. Return true if the replacement
1904 replace_read (store_info_t store_info
, insn_info_t store_insn
,
1905 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
,
1908 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1909 enum machine_mode read_mode
= GET_MODE (read_info
->mem
);
1910 rtx insns
, this_insn
, read_reg
;
1916 /* Create a sequence of instructions to set up the read register.
1917 This sequence goes immediately before the store and its result
1918 is read by the load.
1920 We need to keep this in perspective. We are replacing a read
1921 with a sequence of insns, but the read will almost certainly be
1922 in cache, so it is not going to be an expensive one. Thus, we
1923 are not willing to do a multi insn shift or worse a subroutine
1924 call to get rid of the read. */
1926 fprintf (dump_file
, "trying to replace %smode load in insn %d"
1927 " from %smode store in insn %d\n",
1928 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
1929 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
1931 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
1932 read_reg
= get_stored_val (store_info
,
1933 read_mode
, read_info
->begin
, read_info
->end
,
1935 if (read_reg
== NULL_RTX
)
1939 fprintf (dump_file
, " -- could not extract bits of stored value\n");
1942 /* Force the value into a new register so that it won't be clobbered
1943 between the store and the load. */
1944 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
1945 insns
= get_insns ();
1948 if (insns
!= NULL_RTX
)
1950 /* Now we have to scan the set of new instructions to see if the
1951 sequence contains and sets of hardregs that happened to be
1952 live at this point. For instance, this can happen if one of
1953 the insns sets the CC and the CC happened to be live at that
1954 point. This does occasionally happen, see PR 37922. */
1955 bitmap regs_set
= BITMAP_ALLOC (NULL
);
1957 for (this_insn
= insns
; this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
1958 note_stores (PATTERN (this_insn
), look_for_hardregs
, regs_set
);
1960 bitmap_and_into (regs_set
, regs_live
);
1961 if (!bitmap_empty_p (regs_set
))
1966 "abandoning replacement because sequence clobbers live hardregs:");
1967 df_print_regset (dump_file
, regs_set
);
1970 BITMAP_FREE (regs_set
);
1973 BITMAP_FREE (regs_set
);
1976 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
1978 deferred_change_t deferred_change
=
1979 (deferred_change_t
) pool_alloc (deferred_change_pool
);
1981 /* Insert this right before the store insn where it will be safe
1982 from later insns that might change it before the read. */
1983 emit_insn_before (insns
, store_insn
->insn
);
1985 /* And now for the kludge part: cselib croaks if you just
1986 return at this point. There are two reasons for this:
1988 1) Cselib has an idea of how many pseudos there are and
1989 that does not include the new ones we just added.
1991 2) Cselib does not know about the move insn we added
1992 above the store_info, and there is no way to tell it
1993 about it, because it has "moved on".
1995 Problem (1) is fixable with a certain amount of engineering.
1996 Problem (2) is requires starting the bb from scratch. This
1999 So we are just going to have to lie. The move/extraction
2000 insns are not really an issue, cselib did not see them. But
2001 the use of the new pseudo read_insn is a real problem because
2002 cselib has not scanned this insn. The way that we solve this
2003 problem is that we are just going to put the mem back for now
2004 and when we are finished with the block, we undo this. We
2005 keep a table of mems to get rid of. At the end of the basic
2006 block we can put them back. */
2008 *loc
= read_info
->mem
;
2009 deferred_change
->next
= deferred_change_list
;
2010 deferred_change_list
= deferred_change
;
2011 deferred_change
->loc
= loc
;
2012 deferred_change
->reg
= read_reg
;
2014 /* Get rid of the read_info, from the point of view of the
2015 rest of dse, play like this read never happened. */
2016 read_insn
->read_rec
= read_info
->next
;
2017 pool_free (read_info_pool
, read_info
);
2020 fprintf (dump_file
, " -- replaced the loaded MEM with ");
2021 print_simple_rtl (dump_file
, read_reg
);
2022 fprintf (dump_file
, "\n");
2030 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2031 print_simple_rtl (dump_file
, read_reg
);
2032 fprintf (dump_file
, " led to an invalid instruction\n");
2038 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2039 if LOC is a mem and if it is look at the address and kill any
2040 appropriate stores that may be active. */
2043 check_mem_read_rtx (rtx
*loc
, void *data
)
2045 rtx mem
= *loc
, mem_addr
;
2047 insn_info_t insn_info
;
2048 HOST_WIDE_INT offset
= 0;
2049 HOST_WIDE_INT width
= 0;
2050 alias_set_type spill_alias_set
= 0;
2051 cselib_val
*base
= NULL
;
2053 read_info_t read_info
;
2055 if (!mem
|| !MEM_P (mem
))
2058 bb_info
= (bb_info_t
) data
;
2059 insn_info
= bb_info
->last_insn
;
2061 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2062 || (MEM_VOLATILE_P (mem
)))
2065 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
2066 add_wild_read (bb_info
);
2067 insn_info
->cannot_delete
= true;
2071 /* If it is reading readonly mem, then there can be no conflict with
2073 if (MEM_READONLY_P (mem
))
2076 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
2079 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
2080 add_wild_read (bb_info
);
2084 if (GET_MODE (mem
) == BLKmode
)
2087 width
= GET_MODE_SIZE (GET_MODE (mem
));
2089 read_info
= (read_info_t
) pool_alloc (read_info_pool
);
2090 read_info
->group_id
= group_id
;
2091 read_info
->mem
= mem
;
2092 read_info
->alias_set
= spill_alias_set
;
2093 read_info
->begin
= offset
;
2094 read_info
->end
= offset
+ width
;
2095 read_info
->next
= insn_info
->read_rec
;
2096 insn_info
->read_rec
= read_info
;
2097 /* For alias_set != 0 canon_true_dependence should be never called. */
2098 if (spill_alias_set
)
2099 mem_addr
= NULL_RTX
;
2103 mem_addr
= base
->val_rtx
;
2107 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
2108 mem_addr
= group
->canon_base_addr
;
2111 mem_addr
= plus_constant (mem_addr
, offset
);
2114 /* We ignore the clobbers in store_info. The is mildly aggressive,
2115 but there really should not be a clobber followed by a read. */
2117 if (spill_alias_set
)
2119 insn_info_t i_ptr
= active_local_stores
;
2120 insn_info_t last
= NULL
;
2123 fprintf (dump_file
, " processing spill load %d\n",
2124 (int) spill_alias_set
);
2128 store_info_t store_info
= i_ptr
->store_rec
;
2130 /* Skip the clobbers. */
2131 while (!store_info
->is_set
)
2132 store_info
= store_info
->next
;
2134 if (store_info
->alias_set
== spill_alias_set
)
2137 dump_insn_info ("removing from active", i_ptr
);
2140 last
->next_local_store
= i_ptr
->next_local_store
;
2142 active_local_stores
= i_ptr
->next_local_store
;
2146 i_ptr
= i_ptr
->next_local_store
;
2149 else if (group_id
>= 0)
2151 /* This is the restricted case where the base is a constant or
2152 the frame pointer and offset is a constant. */
2153 insn_info_t i_ptr
= active_local_stores
;
2154 insn_info_t last
= NULL
;
2159 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2162 fprintf (dump_file
, " processing const load gid=%d[%d..%d)\n",
2163 group_id
, (int)offset
, (int)(offset
+width
));
2168 bool remove
= false;
2169 store_info_t store_info
= i_ptr
->store_rec
;
2171 /* Skip the clobbers. */
2172 while (!store_info
->is_set
)
2173 store_info
= store_info
->next
;
2175 /* There are three cases here. */
2176 if (store_info
->group_id
< 0)
2177 /* We have a cselib store followed by a read from a
2180 = canon_true_dependence (store_info
->mem
,
2181 GET_MODE (store_info
->mem
),
2182 store_info
->mem_addr
,
2183 mem
, mem_addr
, rtx_varies_p
);
2185 else if (group_id
== store_info
->group_id
)
2187 /* This is a block mode load. We may get lucky and
2188 canon_true_dependence may save the day. */
2191 = canon_true_dependence (store_info
->mem
,
2192 GET_MODE (store_info
->mem
),
2193 store_info
->mem_addr
,
2194 mem
, mem_addr
, rtx_varies_p
);
2196 /* If this read is just reading back something that we just
2197 stored, rewrite the read. */
2201 && offset
>= store_info
->begin
2202 && offset
+ width
<= store_info
->end
2203 && all_positions_needed_p (store_info
,
2204 offset
- store_info
->begin
,
2206 && replace_read (store_info
, i_ptr
, read_info
,
2207 insn_info
, loc
, bb_info
->regs_live
))
2210 /* The bases are the same, just see if the offsets
2212 if ((offset
< store_info
->end
)
2213 && (offset
+ width
> store_info
->begin
))
2219 The else case that is missing here is that the
2220 bases are constant but different. There is nothing
2221 to do here because there is no overlap. */
2226 dump_insn_info ("removing from active", i_ptr
);
2229 last
->next_local_store
= i_ptr
->next_local_store
;
2231 active_local_stores
= i_ptr
->next_local_store
;
2235 i_ptr
= i_ptr
->next_local_store
;
2240 insn_info_t i_ptr
= active_local_stores
;
2241 insn_info_t last
= NULL
;
2244 fprintf (dump_file
, " processing cselib load mem:");
2245 print_inline_rtx (dump_file
, mem
, 0);
2246 fprintf (dump_file
, "\n");
2251 bool remove
= false;
2252 store_info_t store_info
= i_ptr
->store_rec
;
2255 fprintf (dump_file
, " processing cselib load against insn %d\n",
2256 INSN_UID (i_ptr
->insn
));
2258 /* Skip the clobbers. */
2259 while (!store_info
->is_set
)
2260 store_info
= store_info
->next
;
2262 /* If this read is just reading back something that we just
2263 stored, rewrite the read. */
2265 && store_info
->group_id
== -1
2266 && store_info
->cse_base
== base
2268 && offset
>= store_info
->begin
2269 && offset
+ width
<= store_info
->end
2270 && all_positions_needed_p (store_info
,
2271 offset
- store_info
->begin
, width
)
2272 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
,
2273 bb_info
->regs_live
))
2276 if (!store_info
->alias_set
)
2277 remove
= canon_true_dependence (store_info
->mem
,
2278 GET_MODE (store_info
->mem
),
2279 store_info
->mem_addr
,
2280 mem
, mem_addr
, rtx_varies_p
);
2285 dump_insn_info ("removing from active", i_ptr
);
2288 last
->next_local_store
= i_ptr
->next_local_store
;
2290 active_local_stores
= i_ptr
->next_local_store
;
2294 i_ptr
= i_ptr
->next_local_store
;
2300 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2301 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2302 true for any part of *LOC. */
2305 check_mem_read_use (rtx
*loc
, void *data
)
2307 for_each_rtx (loc
, check_mem_read_rtx
, data
);
2311 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2312 So far it only handles arguments passed in registers. */
2315 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2317 CUMULATIVE_ARGS args_so_far
;
2321 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2323 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2325 arg
!= void_list_node
&& idx
< nargs
;
2326 arg
= TREE_CHAIN (arg
), idx
++)
2328 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2329 rtx reg
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1), link
, tmp
;
2330 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
2331 || GET_MODE_CLASS (mode
) != MODE_INT
)
2334 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2336 link
= XEXP (link
, 1))
2337 if (GET_CODE (XEXP (link
, 0)) == USE
)
2339 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2340 if (REG_P (args
[idx
])
2341 && REGNO (args
[idx
]) == REGNO (reg
)
2342 && (GET_MODE (args
[idx
]) == mode
2343 || (GET_MODE_CLASS (GET_MODE (args
[idx
])) == MODE_INT
2344 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2346 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2347 > GET_MODE_SIZE (mode
)))))
2353 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2354 if (GET_MODE (args
[idx
]) != mode
)
2356 if (!tmp
|| !CONST_INT_P (tmp
))
2358 tmp
= GEN_INT (trunc_int_for_mode (INTVAL (tmp
), mode
));
2363 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
2365 if (arg
!= void_list_node
|| idx
!= nargs
)
2371 /* Apply record_store to all candidate stores in INSN. Mark INSN
2372 if some part of it is not a candidate store and assigns to a
2373 non-register target. */
2376 scan_insn (bb_info_t bb_info
, rtx insn
)
2379 insn_info_t insn_info
= (insn_info_t
) pool_alloc (insn_info_pool
);
2381 memset (insn_info
, 0, sizeof (struct insn_info
));
2384 fprintf (dump_file
, "\n**scanning insn=%d\n",
2387 insn_info
->prev_insn
= bb_info
->last_insn
;
2388 insn_info
->insn
= insn
;
2389 bb_info
->last_insn
= insn_info
;
2391 if (DEBUG_INSN_P (insn
))
2393 insn_info
->cannot_delete
= true;
2397 /* Cselib clears the table for this case, so we have to essentially
2399 if (NONJUMP_INSN_P (insn
)
2400 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
2401 && MEM_VOLATILE_P (PATTERN (insn
)))
2403 add_wild_read (bb_info
);
2404 insn_info
->cannot_delete
= true;
2408 /* Look at all of the uses in the insn. */
2409 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2414 tree memset_call
= NULL_TREE
;
2416 insn_info
->cannot_delete
= true;
2418 /* Const functions cannot do anything bad i.e. read memory,
2419 however, they can read their parameters which may have
2420 been pushed onto the stack.
2421 memset and bzero don't read memory either. */
2422 const_call
= RTL_CONST_CALL_P (insn
);
2425 rtx call
= PATTERN (insn
);
2426 if (GET_CODE (call
) == PARALLEL
)
2427 call
= XVECEXP (call
, 0, 0);
2428 if (GET_CODE (call
) == SET
)
2429 call
= SET_SRC (call
);
2430 if (GET_CODE (call
) == CALL
2431 && MEM_P (XEXP (call
, 0))
2432 && GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
2434 rtx symbol
= XEXP (XEXP (call
, 0), 0);
2435 if (SYMBOL_REF_DECL (symbol
)
2436 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
2438 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
2440 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
2441 == BUILT_IN_MEMSET
))
2442 || SYMBOL_REF_DECL (symbol
) == block_clear_fn
)
2443 memset_call
= SYMBOL_REF_DECL (symbol
);
2447 if (const_call
|| memset_call
)
2449 insn_info_t i_ptr
= active_local_stores
;
2450 insn_info_t last
= NULL
;
2453 fprintf (dump_file
, "%s call %d\n",
2454 const_call
? "const" : "memset", INSN_UID (insn
));
2456 /* See the head comment of the frame_read field. */
2457 if (reload_completed
)
2458 insn_info
->frame_read
= true;
2460 /* Loop over the active stores and remove those which are
2461 killed by the const function call. */
2464 bool remove_store
= false;
2466 /* The stack pointer based stores are always killed. */
2467 if (i_ptr
->stack_pointer_based
)
2468 remove_store
= true;
2470 /* If the frame is read, the frame related stores are killed. */
2471 else if (insn_info
->frame_read
)
2473 store_info_t store_info
= i_ptr
->store_rec
;
2475 /* Skip the clobbers. */
2476 while (!store_info
->is_set
)
2477 store_info
= store_info
->next
;
2479 if (store_info
->group_id
>= 0
2480 && VEC_index (group_info_t
, rtx_group_vec
,
2481 store_info
->group_id
)->frame_related
)
2482 remove_store
= true;
2488 dump_insn_info ("removing from active", i_ptr
);
2491 last
->next_local_store
= i_ptr
->next_local_store
;
2493 active_local_stores
= i_ptr
->next_local_store
;
2498 i_ptr
= i_ptr
->next_local_store
;
2504 if (get_call_args (insn
, memset_call
, args
, 3)
2505 && CONST_INT_P (args
[1])
2506 && CONST_INT_P (args
[2])
2507 && INTVAL (args
[2]) > 0)
2509 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2510 set_mem_size (mem
, args
[2]);
2511 body
= gen_rtx_SET (VOIDmode
, mem
, args
[1]);
2512 mems_found
+= record_store (body
, bb_info
);
2514 fprintf (dump_file
, "handling memset as BLKmode store\n");
2515 if (mems_found
== 1)
2517 insn_info
->next_local_store
= active_local_stores
;
2518 active_local_stores
= insn_info
;
2525 /* Every other call, including pure functions, may read memory. */
2526 add_wild_read (bb_info
);
2531 /* Assuming that there are sets in these insns, we cannot delete
2533 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2534 || volatile_refs_p (PATTERN (insn
))
2535 || insn_could_throw_p (insn
)
2536 || (RTX_FRAME_RELATED_P (insn
))
2537 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2538 insn_info
->cannot_delete
= true;
2540 body
= PATTERN (insn
);
2541 if (GET_CODE (body
) == PARALLEL
)
2544 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2545 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2548 mems_found
+= record_store (body
, bb_info
);
2551 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2552 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2554 /* If we found some sets of mems, add it into the active_local_stores so
2555 that it can be locally deleted if found dead or used for
2556 replace_read and redundant constant store elimination. Otherwise mark
2557 it as cannot delete. This simplifies the processing later. */
2558 if (mems_found
== 1)
2560 insn_info
->next_local_store
= active_local_stores
;
2561 active_local_stores
= insn_info
;
2564 insn_info
->cannot_delete
= true;
2568 /* Remove BASE from the set of active_local_stores. This is a
2569 callback from cselib that is used to get rid of the stores in
2570 active_local_stores. */
2573 remove_useless_values (cselib_val
*base
)
2575 insn_info_t insn_info
= active_local_stores
;
2576 insn_info_t last
= NULL
;
2580 store_info_t store_info
= insn_info
->store_rec
;
2583 /* If ANY of the store_infos match the cselib group that is
2584 being deleted, then the insn can not be deleted. */
2587 if ((store_info
->group_id
== -1)
2588 && (store_info
->cse_base
== base
))
2593 store_info
= store_info
->next
;
2599 last
->next_local_store
= insn_info
->next_local_store
;
2601 active_local_stores
= insn_info
->next_local_store
;
2602 free_store_info (insn_info
);
2607 insn_info
= insn_info
->next_local_store
;
2612 /* Do all of step 1. */
2618 bitmap regs_live
= BITMAP_ALLOC (NULL
);
2621 all_blocks
= BITMAP_ALLOC (NULL
);
2622 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2623 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2628 bb_info_t bb_info
= (bb_info_t
) pool_alloc (bb_info_pool
);
2630 memset (bb_info
, 0, sizeof (struct bb_info
));
2631 bitmap_set_bit (all_blocks
, bb
->index
);
2632 bb_info
->regs_live
= regs_live
;
2634 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2635 df_simulate_initialize_forwards (bb
, regs_live
);
2637 bb_table
[bb
->index
] = bb_info
;
2638 cselib_discard_hook
= remove_useless_values
;
2640 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2645 = create_alloc_pool ("cse_store_info_pool",
2646 sizeof (struct store_info
), 100);
2647 active_local_stores
= NULL
;
2648 cselib_clear_table ();
2650 /* Scan the insns. */
2651 FOR_BB_INSNS (bb
, insn
)
2654 scan_insn (bb_info
, insn
);
2655 cselib_process_insn (insn
);
2657 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2660 /* This is something of a hack, because the global algorithm
2661 is supposed to take care of the case where stores go dead
2662 at the end of the function. However, the global
2663 algorithm must take a more conservative view of block
2664 mode reads than the local alg does. So to get the case
2665 where you have a store to the frame followed by a non
2666 overlapping block more read, we look at the active local
2667 stores at the end of the function and delete all of the
2668 frame and spill based ones. */
2669 if (stores_off_frame_dead_at_return
2670 && (EDGE_COUNT (bb
->succs
) == 0
2671 || (single_succ_p (bb
)
2672 && single_succ (bb
) == EXIT_BLOCK_PTR
2673 && ! crtl
->calls_eh_return
)))
2675 insn_info_t i_ptr
= active_local_stores
;
2678 store_info_t store_info
= i_ptr
->store_rec
;
2680 /* Skip the clobbers. */
2681 while (!store_info
->is_set
)
2682 store_info
= store_info
->next
;
2683 if (store_info
->alias_set
&& !i_ptr
->cannot_delete
)
2684 delete_dead_store_insn (i_ptr
);
2686 if (store_info
->group_id
>= 0)
2689 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
2690 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2691 delete_dead_store_insn (i_ptr
);
2694 i_ptr
= i_ptr
->next_local_store
;
2698 /* Get rid of the loads that were discovered in
2699 replace_read. Cselib is finished with this block. */
2700 while (deferred_change_list
)
2702 deferred_change_t next
= deferred_change_list
->next
;
2704 /* There is no reason to validate this change. That was
2706 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2707 pool_free (deferred_change_pool
, deferred_change_list
);
2708 deferred_change_list
= next
;
2711 /* Get rid of all of the cselib based store_infos in this
2712 block and mark the containing insns as not being
2714 ptr
= bb_info
->last_insn
;
2717 if (ptr
->contains_cselib_groups
)
2719 store_info_t s_info
= ptr
->store_rec
;
2720 while (s_info
&& !s_info
->is_set
)
2721 s_info
= s_info
->next
;
2723 && s_info
->redundant_reason
2724 && s_info
->redundant_reason
->insn
2725 && !ptr
->cannot_delete
)
2728 fprintf (dump_file
, "Locally deleting insn %d "
2729 "because insn %d stores the "
2730 "same value and couldn't be "
2732 INSN_UID (ptr
->insn
),
2733 INSN_UID (s_info
->redundant_reason
->insn
));
2734 delete_dead_store_insn (ptr
);
2737 s_info
->redundant_reason
= NULL
;
2738 free_store_info (ptr
);
2742 store_info_t s_info
;
2744 /* Free at least positions_needed bitmaps. */
2745 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2746 if (s_info
->is_large
)
2748 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2749 s_info
->is_large
= false;
2752 ptr
= ptr
->prev_insn
;
2755 free_alloc_pool (cse_store_info_pool
);
2757 bb_info
->regs_live
= NULL
;
2760 BITMAP_FREE (regs_live
);
2762 htab_empty (rtx_group_table
);
2766 /*----------------------------------------------------------------------------
2769 Assign each byte position in the stores that we are going to
2770 analyze globally to a position in the bitmaps. Returns true if
2771 there are any bit positions assigned.
2772 ----------------------------------------------------------------------------*/
2775 dse_step2_init (void)
2780 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
2782 /* For all non stack related bases, we only consider a store to
2783 be deletable if there are two or more stores for that
2784 position. This is because it takes one store to make the
2785 other store redundant. However, for the stores that are
2786 stack related, we consider them if there is only one store
2787 for the position. We do this because the stack related
2788 stores can be deleted if their is no read between them and
2789 the end of the function.
2791 To make this work in the current framework, we take the stack
2792 related bases add all of the bits from store1 into store2.
2793 This has the effect of making the eligible even if there is
2796 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2798 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2799 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2801 fprintf (dump_file
, "group %d is frame related ", i
);
2804 group
->offset_map_size_n
++;
2805 group
->offset_map_n
= XNEWVEC (int, group
->offset_map_size_n
);
2806 group
->offset_map_size_p
++;
2807 group
->offset_map_p
= XNEWVEC (int, group
->offset_map_size_p
);
2808 group
->process_globally
= false;
2811 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2812 (int)bitmap_count_bits (group
->store2_n
),
2813 (int)bitmap_count_bits (group
->store2_p
));
2814 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2815 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2821 /* Init the offset tables for the normal case. */
2824 dse_step2_nospill (void)
2828 /* Position 0 is unused because 0 is used in the maps to mean
2830 current_position
= 1;
2832 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
2837 if (group
== clear_alias_group
)
2840 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2841 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2842 bitmap_clear (group
->group_kill
);
2844 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2846 bitmap_set_bit (group
->group_kill
, current_position
);
2847 group
->offset_map_n
[j
] = current_position
++;
2848 group
->process_globally
= true;
2850 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2852 bitmap_set_bit (group
->group_kill
, current_position
);
2853 group
->offset_map_p
[j
] = current_position
++;
2854 group
->process_globally
= true;
2857 return current_position
!= 1;
2861 /* Init the offset tables for the spill case. */
2864 dse_step2_spill (void)
2867 group_info_t group
= clear_alias_group
;
2870 /* Position 0 is unused because 0 is used in the maps to mean
2872 current_position
= 1;
2876 bitmap_print (dump_file
, clear_alias_sets
,
2877 "clear alias sets ", "\n");
2878 bitmap_print (dump_file
, disqualified_clear_alias_sets
,
2879 "disqualified clear alias sets ", "\n");
2882 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2883 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2884 bitmap_clear (group
->group_kill
);
2886 /* Remove the disqualified positions from the store2_p set. */
2887 bitmap_and_compl_into (group
->store2_p
, disqualified_clear_alias_sets
);
2889 /* We do not need to process the store2_n set because
2890 alias_sets are always positive. */
2891 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2893 bitmap_set_bit (group
->group_kill
, current_position
);
2894 group
->offset_map_p
[j
] = current_position
++;
2895 group
->process_globally
= true;
2898 return current_position
!= 1;
2903 /*----------------------------------------------------------------------------
2906 Build the bit vectors for the transfer functions.
2907 ----------------------------------------------------------------------------*/
2910 /* Note that this is NOT a general purpose function. Any mem that has
2911 an alias set registered here expected to be COMPLETELY unaliased:
2912 i.e it's addresses are not and need not be examined.
2914 It is known that all references to this address will have this
2915 alias set and there are NO other references to this address in the
2918 Currently the only place that is known to be clean enough to use
2919 this interface is the code that assigns the spill locations.
2921 All of the mems that have alias_sets registered are subjected to a
2922 very powerful form of dse where function calls, volatile reads and
2923 writes, and reads from random location are not taken into account.
2925 It is also assumed that these locations go dead when the function
2926 returns. This assumption could be relaxed if there were found to
2927 be places that this assumption was not correct.
2929 The MODE is passed in and saved. The mode of each load or store to
2930 a mem with ALIAS_SET is checked against MEM. If the size of that
2931 load or store is different from MODE, processing is halted on this
2932 alias set. For the vast majority of aliases sets, all of the loads
2933 and stores will use the same mode. But vectors are treated
2934 differently: the alias set is established for the entire vector,
2935 but reload will insert loads and stores for individual elements and
2936 we do not necessarily have the information to track those separate
2937 elements. So when we see a mode mismatch, we just bail. */
2941 dse_record_singleton_alias_set (alias_set_type alias_set
,
2942 enum machine_mode mode
)
2944 struct clear_alias_mode_holder tmp_holder
;
2945 struct clear_alias_mode_holder
*entry
;
2948 /* If we are not going to run dse, we need to return now or there
2949 will be problems with allocating the bitmaps. */
2950 if ((!gate_dse()) || !alias_set
)
2953 if (!clear_alias_sets
)
2955 clear_alias_sets
= BITMAP_ALLOC (NULL
);
2956 disqualified_clear_alias_sets
= BITMAP_ALLOC (NULL
);
2957 clear_alias_mode_table
= htab_create (11, clear_alias_mode_hash
,
2958 clear_alias_mode_eq
, NULL
);
2959 clear_alias_mode_pool
= create_alloc_pool ("clear_alias_mode_pool",
2960 sizeof (struct clear_alias_mode_holder
), 100);
2963 bitmap_set_bit (clear_alias_sets
, alias_set
);
2965 tmp_holder
.alias_set
= alias_set
;
2967 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, INSERT
);
2968 gcc_assert (*slot
== NULL
);
2971 (struct clear_alias_mode_holder
*) pool_alloc (clear_alias_mode_pool
);
2972 entry
->alias_set
= alias_set
;
2977 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2980 dse_invalidate_singleton_alias_set (alias_set_type alias_set
)
2982 if ((!gate_dse()) || !alias_set
)
2985 bitmap_clear_bit (clear_alias_sets
, alias_set
);
2989 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2993 get_bitmap_index (group_info_t group_info
, HOST_WIDE_INT offset
)
2997 HOST_WIDE_INT offset_p
= -offset
;
2998 if (offset_p
>= group_info
->offset_map_size_n
)
3000 return group_info
->offset_map_n
[offset_p
];
3004 if (offset
>= group_info
->offset_map_size_p
)
3006 return group_info
->offset_map_p
[offset
];
3011 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3015 scan_stores_nospill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3020 group_info_t group_info
3021 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3022 if (group_info
->process_globally
)
3023 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3025 int index
= get_bitmap_index (group_info
, i
);
3028 bitmap_set_bit (gen
, index
);
3030 bitmap_clear_bit (kill
, index
);
3033 store_info
= store_info
->next
;
3038 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3042 scan_stores_spill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3046 if (store_info
->alias_set
)
3048 int index
= get_bitmap_index (clear_alias_group
,
3049 store_info
->alias_set
);
3052 bitmap_set_bit (gen
, index
);
3054 bitmap_clear_bit (kill
, index
);
3057 store_info
= store_info
->next
;
3062 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3066 scan_reads_nospill (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
3068 read_info_t read_info
= insn_info
->read_rec
;
3072 /* If this insn reads the frame, kill all the frame related stores. */
3073 if (insn_info
->frame_read
)
3075 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3076 if (group
->process_globally
&& group
->frame_related
)
3079 bitmap_ior_into (kill
, group
->group_kill
);
3080 bitmap_and_compl_into (gen
, group
->group_kill
);
3086 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3088 if (group
->process_globally
)
3090 if (i
== read_info
->group_id
)
3092 if (read_info
->begin
> read_info
->end
)
3094 /* Begin > end for block mode reads. */
3096 bitmap_ior_into (kill
, group
->group_kill
);
3097 bitmap_and_compl_into (gen
, group
->group_kill
);
3101 /* The groups are the same, just process the
3104 for (j
= read_info
->begin
; j
< read_info
->end
; j
++)
3106 int index
= get_bitmap_index (group
, j
);
3110 bitmap_set_bit (kill
, index
);
3111 bitmap_clear_bit (gen
, index
);
3118 /* The groups are different, if the alias sets
3119 conflict, clear the entire group. We only need
3120 to apply this test if the read_info is a cselib
3121 read. Anything with a constant base cannot alias
3122 something else with a different constant
3124 if ((read_info
->group_id
< 0)
3125 && canon_true_dependence (group
->base_mem
,
3127 group
->canon_base_addr
,
3128 read_info
->mem
, NULL_RTX
,
3132 bitmap_ior_into (kill
, group
->group_kill
);
3133 bitmap_and_compl_into (gen
, group
->group_kill
);
3139 read_info
= read_info
->next
;
3143 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3147 scan_reads_spill (read_info_t read_info
, bitmap gen
, bitmap kill
)
3151 if (read_info
->alias_set
)
3153 int index
= get_bitmap_index (clear_alias_group
,
3154 read_info
->alias_set
);
3158 bitmap_set_bit (kill
, index
);
3159 bitmap_clear_bit (gen
, index
);
3163 read_info
= read_info
->next
;
3168 /* Return the insn in BB_INFO before the first wild read or if there
3169 are no wild reads in the block, return the last insn. */
3172 find_insn_before_first_wild_read (bb_info_t bb_info
)
3174 insn_info_t insn_info
= bb_info
->last_insn
;
3175 insn_info_t last_wild_read
= NULL
;
3179 if (insn_info
->wild_read
)
3181 last_wild_read
= insn_info
->prev_insn
;
3182 /* Block starts with wild read. */
3183 if (!last_wild_read
)
3187 insn_info
= insn_info
->prev_insn
;
3191 return last_wild_read
;
3193 return bb_info
->last_insn
;
3197 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3198 the block in order to build the gen and kill sets for the block.
3199 We start at ptr which may be the last insn in the block or may be
3200 the first insn with a wild read. In the latter case we are able to
3201 skip the rest of the block because it just does not matter:
3202 anything that happens is hidden by the wild read. */
3205 dse_step3_scan (bool for_spills
, basic_block bb
)
3207 bb_info_t bb_info
= bb_table
[bb
->index
];
3208 insn_info_t insn_info
;
3211 /* There are no wild reads in the spill case. */
3212 insn_info
= bb_info
->last_insn
;
3214 insn_info
= find_insn_before_first_wild_read (bb_info
);
3216 /* In the spill case or in the no_spill case if there is no wild
3217 read in the block, we will need a kill set. */
3218 if (insn_info
== bb_info
->last_insn
)
3221 bitmap_clear (bb_info
->kill
);
3223 bb_info
->kill
= BITMAP_ALLOC (NULL
);
3227 BITMAP_FREE (bb_info
->kill
);
3231 /* There may have been code deleted by the dce pass run before
3233 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
3235 /* Process the read(s) last. */
3238 scan_stores_spill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3239 scan_reads_spill (insn_info
->read_rec
, bb_info
->gen
, bb_info
->kill
);
3243 scan_stores_nospill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3244 scan_reads_nospill (insn_info
, bb_info
->gen
, bb_info
->kill
);
3248 insn_info
= insn_info
->prev_insn
;
3253 /* Set the gen set of the exit block, and also any block with no
3254 successors that does not have a wild read. */
3257 dse_step3_exit_block_scan (bb_info_t bb_info
)
3259 /* The gen set is all 0's for the exit block except for the
3260 frame_pointer_group. */
3262 if (stores_off_frame_dead_at_return
)
3267 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3269 if (group
->process_globally
&& group
->frame_related
)
3270 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
3276 /* Find all of the blocks that are not backwards reachable from the
3277 exit block or any block with no successors (BB). These are the
3278 infinite loops or infinite self loops. These blocks will still
3279 have their bits set in UNREACHABLE_BLOCKS. */
3282 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
3287 if (TEST_BIT (unreachable_blocks
, bb
->index
))
3289 RESET_BIT (unreachable_blocks
, bb
->index
);
3290 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3292 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3297 /* Build the transfer functions for the function. */
3300 dse_step3 (bool for_spills
)
3303 sbitmap unreachable_blocks
= sbitmap_alloc (last_basic_block
);
3304 sbitmap_iterator sbi
;
3305 bitmap all_ones
= NULL
;
3308 sbitmap_ones (unreachable_blocks
);
3312 bb_info_t bb_info
= bb_table
[bb
->index
];
3314 bitmap_clear (bb_info
->gen
);
3316 bb_info
->gen
= BITMAP_ALLOC (NULL
);
3318 if (bb
->index
== ENTRY_BLOCK
)
3320 else if (bb
->index
== EXIT_BLOCK
)
3321 dse_step3_exit_block_scan (bb_info
);
3323 dse_step3_scan (for_spills
, bb
);
3324 if (EDGE_COUNT (bb
->succs
) == 0)
3325 mark_reachable_blocks (unreachable_blocks
, bb
);
3327 /* If this is the second time dataflow is run, delete the old
3330 BITMAP_FREE (bb_info
->in
);
3332 BITMAP_FREE (bb_info
->out
);
3335 /* For any block in an infinite loop, we must initialize the out set
3336 to all ones. This could be expensive, but almost never occurs in
3337 practice. However, it is common in regression tests. */
3338 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks
, 0, i
, sbi
)
3340 if (bitmap_bit_p (all_blocks
, i
))
3342 bb_info_t bb_info
= bb_table
[i
];
3348 all_ones
= BITMAP_ALLOC (NULL
);
3349 for (j
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, j
, group
); j
++)
3350 bitmap_ior_into (all_ones
, group
->group_kill
);
3354 bb_info
->out
= BITMAP_ALLOC (NULL
);
3355 bitmap_copy (bb_info
->out
, all_ones
);
3361 BITMAP_FREE (all_ones
);
3362 sbitmap_free (unreachable_blocks
);
3367 /*----------------------------------------------------------------------------
3370 Solve the bitvector equations.
3371 ----------------------------------------------------------------------------*/
3374 /* Confluence function for blocks with no successors. Create an out
3375 set from the gen set of the exit block. This block logically has
3376 the exit block as a successor. */
3381 dse_confluence_0 (basic_block bb
)
3383 bb_info_t bb_info
= bb_table
[bb
->index
];
3385 if (bb
->index
== EXIT_BLOCK
)
3390 bb_info
->out
= BITMAP_ALLOC (NULL
);
3391 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3395 /* Propagate the information from the in set of the dest of E to the
3396 out set of the src of E. If the various in or out sets are not
3397 there, that means they are all ones. */
3400 dse_confluence_n (edge e
)
3402 bb_info_t src_info
= bb_table
[e
->src
->index
];
3403 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3408 bitmap_and_into (src_info
->out
, dest_info
->in
);
3411 src_info
->out
= BITMAP_ALLOC (NULL
);
3412 bitmap_copy (src_info
->out
, dest_info
->in
);
3418 /* Propagate the info from the out to the in set of BB_INDEX's basic
3419 block. There are three cases:
3421 1) The block has no kill set. In this case the kill set is all
3422 ones. It does not matter what the out set of the block is, none of
3423 the info can reach the top. The only thing that reaches the top is
3424 the gen set and we just copy the set.
3426 2) There is a kill set but no out set and bb has successors. In
3427 this case we just return. Eventually an out set will be created and
3428 it is better to wait than to create a set of ones.
3430 3) There is both a kill and out set. We apply the obvious transfer
3435 dse_transfer_function (int bb_index
)
3437 bb_info_t bb_info
= bb_table
[bb_index
];
3445 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3446 bb_info
->out
, bb_info
->kill
);
3449 bb_info
->in
= BITMAP_ALLOC (NULL
);
3450 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3451 bb_info
->out
, bb_info
->kill
);
3461 /* Case 1 above. If there is already an in set, nothing
3467 bb_info
->in
= BITMAP_ALLOC (NULL
);
3468 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3474 /* Solve the dataflow equations. */
3479 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3480 dse_confluence_n
, dse_transfer_function
,
3481 all_blocks
, df_get_postorder (DF_BACKWARD
),
3482 df_get_n_blocks (DF_BACKWARD
));
3487 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3490 bb_info_t bb_info
= bb_table
[bb
->index
];
3492 df_print_bb_index (bb
, dump_file
);
3494 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3496 fprintf (dump_file
, " in: *MISSING*\n");
3498 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3500 fprintf (dump_file
, " gen: *MISSING*\n");
3502 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3504 fprintf (dump_file
, " kill: *MISSING*\n");
3506 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3508 fprintf (dump_file
, " out: *MISSING*\n\n");
3515 /*----------------------------------------------------------------------------
3518 Delete the stores that can only be deleted using the global information.
3519 ----------------------------------------------------------------------------*/
3523 dse_step5_nospill (void)
3528 bb_info_t bb_info
= bb_table
[bb
->index
];
3529 insn_info_t insn_info
= bb_info
->last_insn
;
3530 bitmap v
= bb_info
->out
;
3534 bool deleted
= false;
3535 if (dump_file
&& insn_info
->insn
)
3537 fprintf (dump_file
, "starting to process insn %d\n",
3538 INSN_UID (insn_info
->insn
));
3539 bitmap_print (dump_file
, v
, " v: ", "\n");
3542 /* There may have been code deleted by the dce pass run before
3545 && INSN_P (insn_info
->insn
)
3546 && (!insn_info
->cannot_delete
)
3547 && (!bitmap_empty_p (v
)))
3549 store_info_t store_info
= insn_info
->store_rec
;
3551 /* Try to delete the current insn. */
3554 /* Skip the clobbers. */
3555 while (!store_info
->is_set
)
3556 store_info
= store_info
->next
;
3558 if (store_info
->alias_set
)
3563 group_info_t group_info
3564 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3566 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3568 int index
= get_bitmap_index (group_info
, i
);
3571 fprintf (dump_file
, "i = %d, index = %d\n", (int)i
, index
);
3572 if (index
== 0 || !bitmap_bit_p (v
, index
))
3575 fprintf (dump_file
, "failing at i = %d\n", (int)i
);
3585 check_for_inc_dec (insn_info
->insn
);
3586 delete_insn (insn_info
->insn
);
3587 insn_info
->insn
= NULL
;
3592 /* We do want to process the local info if the insn was
3593 deleted. For instance, if the insn did a wild read, we
3594 no longer need to trash the info. */
3596 && INSN_P (insn_info
->insn
)
3599 scan_stores_nospill (insn_info
->store_rec
, v
, NULL
);
3600 if (insn_info
->wild_read
)
3603 fprintf (dump_file
, "wild read\n");
3606 else if (insn_info
->read_rec
)
3609 fprintf (dump_file
, "regular read\n");
3610 scan_reads_nospill (insn_info
, v
, NULL
);
3614 insn_info
= insn_info
->prev_insn
;
3621 dse_step5_spill (void)
3626 bb_info_t bb_info
= bb_table
[bb
->index
];
3627 insn_info_t insn_info
= bb_info
->last_insn
;
3628 bitmap v
= bb_info
->out
;
3632 bool deleted
= false;
3633 /* There may have been code deleted by the dce pass run before
3636 && INSN_P (insn_info
->insn
)
3637 && (!insn_info
->cannot_delete
)
3638 && (!bitmap_empty_p (v
)))
3640 /* Try to delete the current insn. */
3641 store_info_t store_info
= insn_info
->store_rec
;
3646 if (store_info
->alias_set
)
3648 int index
= get_bitmap_index (clear_alias_group
,
3649 store_info
->alias_set
);
3650 if (index
== 0 || !bitmap_bit_p (v
, index
))
3658 store_info
= store_info
->next
;
3660 if (deleted
&& dbg_cnt (dse
))
3663 fprintf (dump_file
, "Spill deleting insn %d\n",
3664 INSN_UID (insn_info
->insn
));
3665 check_for_inc_dec (insn_info
->insn
);
3666 delete_insn (insn_info
->insn
);
3668 insn_info
->insn
= NULL
;
3673 && INSN_P (insn_info
->insn
)
3676 scan_stores_spill (insn_info
->store_rec
, v
, NULL
);
3677 scan_reads_spill (insn_info
->read_rec
, v
, NULL
);
3680 insn_info
= insn_info
->prev_insn
;
3687 /*----------------------------------------------------------------------------
3690 Delete stores made redundant by earlier stores (which store the same
3691 value) that couldn't be eliminated.
3692 ----------------------------------------------------------------------------*/
3701 bb_info_t bb_info
= bb_table
[bb
->index
];
3702 insn_info_t insn_info
= bb_info
->last_insn
;
3706 /* There may have been code deleted by the dce pass run before
3709 && INSN_P (insn_info
->insn
)
3710 && !insn_info
->cannot_delete
)
3712 store_info_t s_info
= insn_info
->store_rec
;
3714 while (s_info
&& !s_info
->is_set
)
3715 s_info
= s_info
->next
;
3717 && s_info
->redundant_reason
3718 && s_info
->redundant_reason
->insn
3719 && INSN_P (s_info
->redundant_reason
->insn
))
3721 rtx rinsn
= s_info
->redundant_reason
->insn
;
3723 fprintf (dump_file
, "Locally deleting insn %d "
3724 "because insn %d stores the "
3725 "same value and couldn't be "
3727 INSN_UID (insn_info
->insn
),
3729 delete_dead_store_insn (insn_info
);
3732 insn_info
= insn_info
->prev_insn
;
3737 /*----------------------------------------------------------------------------
3740 Destroy everything left standing.
3741 ----------------------------------------------------------------------------*/
3744 dse_step7 (bool global_done
)
3750 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3752 free (group
->offset_map_n
);
3753 free (group
->offset_map_p
);
3754 BITMAP_FREE (group
->store1_n
);
3755 BITMAP_FREE (group
->store1_p
);
3756 BITMAP_FREE (group
->store2_n
);
3757 BITMAP_FREE (group
->store2_p
);
3758 BITMAP_FREE (group
->group_kill
);
3764 bb_info_t bb_info
= bb_table
[bb
->index
];
3765 BITMAP_FREE (bb_info
->gen
);
3767 BITMAP_FREE (bb_info
->kill
);
3769 BITMAP_FREE (bb_info
->in
);
3771 BITMAP_FREE (bb_info
->out
);
3774 if (clear_alias_sets
)
3776 BITMAP_FREE (clear_alias_sets
);
3777 BITMAP_FREE (disqualified_clear_alias_sets
);
3778 free_alloc_pool (clear_alias_mode_pool
);
3779 htab_delete (clear_alias_mode_table
);
3782 end_alias_analysis ();
3784 htab_delete (rtx_group_table
);
3785 VEC_free (group_info_t
, heap
, rtx_group_vec
);
3786 BITMAP_FREE (all_blocks
);
3787 BITMAP_FREE (scratch
);
3789 free_alloc_pool (rtx_store_info_pool
);
3790 free_alloc_pool (read_info_pool
);
3791 free_alloc_pool (insn_info_pool
);
3792 free_alloc_pool (bb_info_pool
);
3793 free_alloc_pool (rtx_group_info_pool
);
3794 free_alloc_pool (deferred_change_pool
);
3798 /* -------------------------------------------------------------------------
3800 ------------------------------------------------------------------------- */
3802 /* Callback for running pass_rtl_dse. */
3805 rest_of_handle_dse (void)
3807 bool did_global
= false;
3809 df_set_flags (DF_DEFER_INSN_RESCAN
);
3811 /* Need the notes since we must track live hardregs in the forwards
3813 df_note_add_problem ();
3819 if (dse_step2_nospill ())
3821 df_set_flags (DF_LR_RUN_DCE
);
3825 fprintf (dump_file
, "doing global processing\n");
3828 dse_step5_nospill ();
3831 /* For the instance of dse that runs after reload, we make a special
3832 pass to process the spills. These are special in that they are
3833 totally transparent, i.e, there is no aliasing issues that need
3834 to be considered. This means that the wild reads that kill
3835 everything else do not apply here. */
3836 if (clear_alias_sets
&& dse_step2_spill ())
3840 df_set_flags (DF_LR_RUN_DCE
);
3845 fprintf (dump_file
, "doing global spill processing\n");
3852 dse_step7 (did_global
);
3855 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3856 locally_deleted
, globally_deleted
, spill_deleted
);
3863 return gate_dse1 () || gate_dse2 ();
3869 return optimize
> 0 && flag_dse
3876 return optimize
> 0 && flag_dse
3880 struct rtl_opt_pass pass_rtl_dse1
=
3885 gate_dse1
, /* gate */
3886 rest_of_handle_dse
, /* execute */
3889 0, /* static_pass_number */
3890 TV_DSE1
, /* tv_id */
3891 0, /* properties_required */
3892 0, /* properties_provided */
3893 0, /* properties_destroyed */
3894 0, /* todo_flags_start */
3896 TODO_df_finish
| TODO_verify_rtl_sharing
|
3897 TODO_ggc_collect
/* todo_flags_finish */
3901 struct rtl_opt_pass pass_rtl_dse2
=
3906 gate_dse2
, /* gate */
3907 rest_of_handle_dse
, /* execute */
3910 0, /* static_pass_number */
3911 TV_DSE2
, /* tv_id */
3912 0, /* properties_required */
3913 0, /* properties_provided */
3914 0, /* properties_destroyed */
3915 0, /* todo_flags_start */
3917 TODO_df_finish
| TODO_verify_rtl_sharing
|
3918 TODO_ggc_collect
/* todo_flags_finish */