* cgraphunit.c (record_cdtor_fn): Declare all cdtors always inlined.
[official-gcc/constexpr.git] / gcc / tree-ssa-propagate.c
blob1c42da071cfa4fc44c023a366cf066ee75311a90
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "varray.h"
42 #include "vec.h"
44 /* This file implements a generic value propagation engine based on
45 the same propagation used by the SSA-CCP algorithm [1].
47 Propagation is performed by simulating the execution of every
48 statement that produces the value being propagated. Simulation
49 proceeds as follows:
51 1- Initially, all edges of the CFG are marked not executable and
52 the CFG worklist is seeded with all the statements in the entry
53 basic block (block 0).
55 2- Every statement S is simulated with a call to the call-back
56 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
57 results:
59 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
60 interest and does not affect any of the work lists.
62 SSA_PROP_VARYING: The value produced by S cannot be determined
63 at compile time. Further simulation of S is not required.
64 If S is a conditional jump, all the outgoing edges for the
65 block are considered executable and added to the work
66 list.
68 SSA_PROP_INTERESTING: S produces a value that can be computed
69 at compile time. Its result can be propagated into the
70 statements that feed from S. Furthermore, if S is a
71 conditional jump, only the edge known to be taken is added
72 to the work list. Edges that are known not to execute are
73 never simulated.
75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
76 return value from SSA_PROP_VISIT_PHI has the same semantics as
77 described in #2.
79 4- Three work lists are kept. Statements are only added to these
80 lists if they produce one of SSA_PROP_INTERESTING or
81 SSA_PROP_VARYING.
83 CFG_BLOCKS contains the list of blocks to be simulated.
84 Blocks are added to this list if their incoming edges are
85 found executable.
87 VARYING_SSA_EDGES contains the list of statements that feed
88 from statements that produce an SSA_PROP_VARYING result.
89 These are simulated first to speed up processing.
91 INTERESTING_SSA_EDGES contains the list of statements that
92 feed from statements that produce an SSA_PROP_INTERESTING
93 result.
95 5- Simulation terminates when all three work lists are drained.
97 Before calling ssa_propagate, it is important to clear
98 DONT_SIMULATE_AGAIN for all the statements in the program that
99 should be simulated. This initialization allows an implementation
100 to specify which statements should never be simulated.
102 It is also important to compute def-use information before calling
103 ssa_propagate.
105 References:
107 [1] Constant propagation with conditional branches,
108 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110 [2] Building an Optimizing Compiler,
111 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113 [3] Advanced Compiler Design and Implementation,
114 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
116 /* Function pointers used to parameterize the propagation engine. */
117 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
118 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
121 added to one of the SSA edges worklists. This flag is used to
122 avoid visiting statements unnecessarily when draining an SSA edge
123 worklist. If while simulating a basic block, we find a statement with
124 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
125 processing from visiting it again. */
126 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
128 /* A bitmap to keep track of executable blocks in the CFG. */
129 static sbitmap executable_blocks;
131 /* Array of control flow edges on the worklist. */
132 static VEC(basic_block,heap) *cfg_blocks;
134 static unsigned int cfg_blocks_num = 0;
135 static int cfg_blocks_tail;
136 static int cfg_blocks_head;
138 static sbitmap bb_in_list;
140 /* Worklist of SSA edges which will need reexamination as their
141 definition has changed. SSA edges are def-use edges in the SSA
142 web. For each D-U edge, we store the target statement or PHI node
143 U. */
144 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
147 list of SSA edges is split into two. One contains all SSA edges
148 who need to be reexamined because their lattice value changed to
149 varying (this worklist), and the other contains all other SSA edges
150 to be reexamined (INTERESTING_SSA_EDGES).
152 Since most values in the program are VARYING, the ideal situation
153 is to move them to that lattice value as quickly as possible.
154 Thus, it doesn't make sense to process any other type of lattice
155 value until all VARYING values are propagated fully, which is one
156 thing using the VARYING worklist achieves. In addition, if we
157 don't use a separate worklist for VARYING edges, we end up with
158 situations where lattice values move from
159 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
160 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
163 /* Return true if the block worklist empty. */
165 static inline bool
166 cfg_blocks_empty_p (void)
168 return (cfg_blocks_num == 0);
172 /* Add a basic block to the worklist. The block must not be already
173 in the worklist, and it must not be the ENTRY or EXIT block. */
175 static void
176 cfg_blocks_add (basic_block bb)
178 bool head = false;
180 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
181 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
183 if (cfg_blocks_empty_p ())
185 cfg_blocks_tail = cfg_blocks_head = 0;
186 cfg_blocks_num = 1;
188 else
190 cfg_blocks_num++;
191 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
193 /* We have to grow the array now. Adjust to queue to occupy
194 the full space of the original array. We do not need to
195 initialize the newly allocated portion of the array
196 because we keep track of CFG_BLOCKS_HEAD and
197 CFG_BLOCKS_HEAD. */
198 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
199 cfg_blocks_head = 0;
200 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
202 /* Minor optimization: we prefer to see blocks with more
203 predecessors later, because there is more of a chance that
204 the incoming edges will be executable. */
205 else if (EDGE_COUNT (bb->preds)
206 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
207 cfg_blocks_head)->preds))
208 cfg_blocks_tail = ((cfg_blocks_tail + 1)
209 % VEC_length (basic_block, cfg_blocks));
210 else
212 if (cfg_blocks_head == 0)
213 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
214 --cfg_blocks_head;
215 head = true;
219 VEC_replace (basic_block, cfg_blocks,
220 head ? cfg_blocks_head : cfg_blocks_tail,
221 bb);
222 SET_BIT (bb_in_list, bb->index);
226 /* Remove a block from the worklist. */
228 static basic_block
229 cfg_blocks_get (void)
231 basic_block bb;
233 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
235 gcc_assert (!cfg_blocks_empty_p ());
236 gcc_assert (bb);
238 cfg_blocks_head = ((cfg_blocks_head + 1)
239 % VEC_length (basic_block, cfg_blocks));
240 --cfg_blocks_num;
241 RESET_BIT (bb_in_list, bb->index);
243 return bb;
247 /* We have just defined a new value for VAR. If IS_VARYING is true,
248 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
249 them to INTERESTING_SSA_EDGES. */
251 static void
252 add_ssa_edge (tree var, bool is_varying)
254 imm_use_iterator iter;
255 use_operand_p use_p;
257 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
259 tree use_stmt = USE_STMT (use_p);
261 if (!DONT_SIMULATE_AGAIN (use_stmt)
262 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
264 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
265 if (is_varying)
266 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
267 else
268 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
274 /* Add edge E to the control flow worklist. */
276 static void
277 add_control_edge (edge e)
279 basic_block bb = e->dest;
280 if (bb == EXIT_BLOCK_PTR)
281 return;
283 /* If the edge had already been executed, skip it. */
284 if (e->flags & EDGE_EXECUTABLE)
285 return;
287 e->flags |= EDGE_EXECUTABLE;
289 /* If the block is already in the list, we're done. */
290 if (TEST_BIT (bb_in_list, bb->index))
291 return;
293 cfg_blocks_add (bb);
295 if (dump_file && (dump_flags & TDF_DETAILS))
296 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
297 e->src->index, e->dest->index);
301 /* Simulate the execution of STMT and update the work lists accordingly. */
303 static void
304 simulate_stmt (tree stmt)
306 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
307 edge taken_edge = NULL;
308 tree output_name = NULL_TREE;
310 /* Don't bother visiting statements that are already
311 considered varying by the propagator. */
312 if (DONT_SIMULATE_AGAIN (stmt))
313 return;
315 if (TREE_CODE (stmt) == PHI_NODE)
317 val = ssa_prop_visit_phi (stmt);
318 output_name = PHI_RESULT (stmt);
320 else
321 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
323 if (val == SSA_PROP_VARYING)
325 DONT_SIMULATE_AGAIN (stmt) = 1;
327 /* If the statement produced a new varying value, add the SSA
328 edges coming out of OUTPUT_NAME. */
329 if (output_name)
330 add_ssa_edge (output_name, true);
332 /* If STMT transfers control out of its basic block, add
333 all outgoing edges to the work list. */
334 if (stmt_ends_bb_p (stmt))
336 edge e;
337 edge_iterator ei;
338 basic_block bb = bb_for_stmt (stmt);
339 FOR_EACH_EDGE (e, ei, bb->succs)
340 add_control_edge (e);
343 else if (val == SSA_PROP_INTERESTING)
345 /* If the statement produced new value, add the SSA edges coming
346 out of OUTPUT_NAME. */
347 if (output_name)
348 add_ssa_edge (output_name, false);
350 /* If we know which edge is going to be taken out of this block,
351 add it to the CFG work list. */
352 if (taken_edge)
353 add_control_edge (taken_edge);
357 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
358 drain. This pops statements off the given WORKLIST and processes
359 them until there are no more statements on WORKLIST.
360 We take a pointer to WORKLIST because it may be reallocated when an
361 SSA edge is added to it in simulate_stmt. */
363 static void
364 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
366 /* Drain the entire worklist. */
367 while (VEC_length (tree, *worklist) > 0)
369 basic_block bb;
371 /* Pull the statement to simulate off the worklist. */
372 tree stmt = VEC_pop (tree, *worklist);
374 /* If this statement was already visited by simulate_block, then
375 we don't need to visit it again here. */
376 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
377 continue;
379 /* STMT is no longer in a worklist. */
380 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
382 if (dump_file && (dump_flags & TDF_DETAILS))
384 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
385 print_generic_stmt (dump_file, stmt, dump_flags);
388 bb = bb_for_stmt (stmt);
390 /* PHI nodes are always visited, regardless of whether or not
391 the destination block is executable. Otherwise, visit the
392 statement only if its block is marked executable. */
393 if (TREE_CODE (stmt) == PHI_NODE
394 || TEST_BIT (executable_blocks, bb->index))
395 simulate_stmt (stmt);
400 /* Simulate the execution of BLOCK. Evaluate the statement associated
401 with each variable reference inside the block. */
403 static void
404 simulate_block (basic_block block)
406 tree phi;
408 /* There is nothing to do for the exit block. */
409 if (block == EXIT_BLOCK_PTR)
410 return;
412 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "\nSimulating block %d\n", block->index);
415 /* Always simulate PHI nodes, even if we have simulated this block
416 before. */
417 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
418 simulate_stmt (phi);
420 /* If this is the first time we've simulated this block, then we
421 must simulate each of its statements. */
422 if (!TEST_BIT (executable_blocks, block->index))
424 block_stmt_iterator j;
425 unsigned int normal_edge_count;
426 edge e, normal_edge;
427 edge_iterator ei;
429 /* Note that we have simulated this block. */
430 SET_BIT (executable_blocks, block->index);
432 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
434 tree stmt = bsi_stmt (j);
436 /* If this statement is already in the worklist then
437 "cancel" it. The reevaluation implied by the worklist
438 entry will produce the same value we generate here and
439 thus reevaluating it again from the worklist is
440 pointless. */
441 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
442 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
444 simulate_stmt (stmt);
447 /* We can not predict when abnormal edges will be executed, so
448 once a block is considered executable, we consider any
449 outgoing abnormal edges as executable.
451 At the same time, if this block has only one successor that is
452 reached by non-abnormal edges, then add that successor to the
453 worklist. */
454 normal_edge_count = 0;
455 normal_edge = NULL;
456 FOR_EACH_EDGE (e, ei, block->succs)
458 if (e->flags & EDGE_ABNORMAL)
459 add_control_edge (e);
460 else
462 normal_edge_count++;
463 normal_edge = e;
467 if (normal_edge_count == 1)
468 add_control_edge (normal_edge);
473 /* Initialize local data structures and work lists. */
475 static void
476 ssa_prop_init (void)
478 edge e;
479 edge_iterator ei;
480 basic_block bb;
481 size_t i;
483 /* Worklists of SSA edges. */
484 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
485 varying_ssa_edges = VEC_alloc (tree, gc, 20);
487 executable_blocks = sbitmap_alloc (last_basic_block);
488 sbitmap_zero (executable_blocks);
490 bb_in_list = sbitmap_alloc (last_basic_block);
491 sbitmap_zero (bb_in_list);
493 if (dump_file && (dump_flags & TDF_DETAILS))
494 dump_immediate_uses (dump_file);
496 cfg_blocks = VEC_alloc (basic_block, heap, 20);
497 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
499 /* Initialize the values for every SSA_NAME. */
500 for (i = 1; i < num_ssa_names; i++)
501 if (ssa_name (i))
502 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
504 /* Initially assume that every edge in the CFG is not executable.
505 (including the edges coming out of ENTRY_BLOCK_PTR). */
506 FOR_ALL_BB (bb)
508 block_stmt_iterator si;
510 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
511 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
513 FOR_EACH_EDGE (e, ei, bb->succs)
514 e->flags &= ~EDGE_EXECUTABLE;
517 /* Seed the algorithm by adding the successors of the entry block to the
518 edge worklist. */
519 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
520 add_control_edge (e);
524 /* Free allocated storage. */
526 static void
527 ssa_prop_fini (void)
529 VEC_free (tree, gc, interesting_ssa_edges);
530 VEC_free (tree, gc, varying_ssa_edges);
531 VEC_free (basic_block, heap, cfg_blocks);
532 cfg_blocks = NULL;
533 sbitmap_free (bb_in_list);
534 sbitmap_free (executable_blocks);
538 /* Get the main expression from statement STMT. */
540 tree
541 get_rhs (tree stmt)
543 enum tree_code code = TREE_CODE (stmt);
545 switch (code)
547 case RETURN_EXPR:
548 stmt = TREE_OPERAND (stmt, 0);
549 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
550 return stmt;
551 /* FALLTHRU */
553 case GIMPLE_MODIFY_STMT:
554 stmt = GENERIC_TREE_OPERAND (stmt, 1);
555 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
556 return TREE_OPERAND (stmt, 0);
557 else
558 return stmt;
560 case COND_EXPR:
561 return COND_EXPR_COND (stmt);
562 case SWITCH_EXPR:
563 return SWITCH_COND (stmt);
564 case GOTO_EXPR:
565 return GOTO_DESTINATION (stmt);
566 case LABEL_EXPR:
567 return LABEL_EXPR_LABEL (stmt);
569 default:
570 return stmt;
575 /* Return true if EXPR is a valid GIMPLE expression. */
577 bool
578 valid_gimple_expression_p (tree expr)
580 enum tree_code code = TREE_CODE (expr);
582 switch (TREE_CODE_CLASS (code))
584 case tcc_declaration:
585 if (!is_gimple_variable (expr))
586 return false;
587 break;
589 case tcc_constant:
590 break;
592 case tcc_binary:
593 case tcc_comparison:
594 if (!is_gimple_val (TREE_OPERAND (expr, 0))
595 || !is_gimple_val (TREE_OPERAND (expr, 1)))
596 return false;
597 break;
599 case tcc_unary:
600 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
601 return false;
602 break;
604 case tcc_expression:
605 switch (code)
607 case ADDR_EXPR:
609 tree t = TREE_OPERAND (expr, 0);
610 while (handled_component_p (t))
612 /* ??? More checks needed, see the GIMPLE verifier. */
613 if ((TREE_CODE (t) == ARRAY_REF
614 || TREE_CODE (t) == ARRAY_RANGE_REF)
615 && !is_gimple_val (TREE_OPERAND (t, 1)))
616 return false;
617 t = TREE_OPERAND (t, 0);
619 if (!is_gimple_id (t))
620 return false;
621 break;
624 case TRUTH_NOT_EXPR:
625 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
626 return false;
627 break;
629 case TRUTH_AND_EXPR:
630 case TRUTH_XOR_EXPR:
631 case TRUTH_OR_EXPR:
632 if (!is_gimple_val (TREE_OPERAND (expr, 0))
633 || !is_gimple_val (TREE_OPERAND (expr, 1)))
634 return false;
635 break;
637 case EXC_PTR_EXPR:
638 case FILTER_EXPR:
639 break;
641 default:
642 return false;
644 break;
646 case tcc_vl_exp:
647 switch (code)
649 case CALL_EXPR:
650 break;
651 default:
652 return false;
654 break;
656 case tcc_exceptional:
657 switch (code)
659 case SSA_NAME:
660 break;
662 default:
663 return false;
665 break;
667 default:
668 return false;
671 return true;
675 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
676 GIMPLE expression no changes are done and the function returns
677 false. */
679 bool
680 set_rhs (tree *stmt_p, tree expr)
682 tree stmt = *stmt_p, op;
683 stmt_ann_t ann;
684 tree var;
685 ssa_op_iter iter;
687 if (!valid_gimple_expression_p (expr))
688 return false;
690 if (EXPR_HAS_LOCATION (stmt)
691 && (EXPR_P (expr)
692 || GIMPLE_STMT_P (expr))
693 && ! EXPR_HAS_LOCATION (expr)
694 && TREE_SIDE_EFFECTS (expr)
695 && TREE_CODE (expr) != LABEL_EXPR)
696 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
698 switch (TREE_CODE (stmt))
700 case RETURN_EXPR:
701 op = TREE_OPERAND (stmt, 0);
702 if (TREE_CODE (op) != GIMPLE_MODIFY_STMT)
704 GIMPLE_STMT_OPERAND (stmt, 0) = expr;
705 break;
707 stmt = op;
708 /* FALLTHRU */
710 case GIMPLE_MODIFY_STMT:
711 op = GIMPLE_STMT_OPERAND (stmt, 1);
712 if (TREE_CODE (op) == WITH_SIZE_EXPR)
714 stmt = op;
715 TREE_OPERAND (stmt, 1) = expr;
717 else
718 GIMPLE_STMT_OPERAND (stmt, 1) = expr;
719 break;
721 case COND_EXPR:
722 if (!is_gimple_condexpr (expr))
723 return false;
724 COND_EXPR_COND (stmt) = expr;
725 break;
726 case SWITCH_EXPR:
727 SWITCH_COND (stmt) = expr;
728 break;
729 case GOTO_EXPR:
730 GOTO_DESTINATION (stmt) = expr;
731 break;
732 case LABEL_EXPR:
733 LABEL_EXPR_LABEL (stmt) = expr;
734 break;
736 default:
737 /* Replace the whole statement with EXPR. If EXPR has no side
738 effects, then replace *STMT_P with an empty statement. */
739 ann = stmt_ann (stmt);
740 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
741 (*stmt_p)->base.ann = (tree_ann_t) ann;
743 if (gimple_in_ssa_p (cfun)
744 && TREE_SIDE_EFFECTS (expr))
746 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
747 replacement. */
748 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
750 if (TREE_CODE (var) == SSA_NAME)
751 SSA_NAME_DEF_STMT (var) = *stmt_p;
754 break;
757 return true;
761 /* Entry point to the propagation engine.
763 VISIT_STMT is called for every statement visited.
764 VISIT_PHI is called for every PHI node visited. */
766 void
767 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
768 ssa_prop_visit_phi_fn visit_phi)
770 ssa_prop_visit_stmt = visit_stmt;
771 ssa_prop_visit_phi = visit_phi;
773 ssa_prop_init ();
775 /* Iterate until the worklists are empty. */
776 while (!cfg_blocks_empty_p ()
777 || VEC_length (tree, interesting_ssa_edges) > 0
778 || VEC_length (tree, varying_ssa_edges) > 0)
780 if (!cfg_blocks_empty_p ())
782 /* Pull the next block to simulate off the worklist. */
783 basic_block dest_block = cfg_blocks_get ();
784 simulate_block (dest_block);
787 /* In order to move things to varying as quickly as
788 possible,process the VARYING_SSA_EDGES worklist first. */
789 process_ssa_edge_worklist (&varying_ssa_edges);
791 /* Now process the INTERESTING_SSA_EDGES worklist. */
792 process_ssa_edge_worklist (&interesting_ssa_edges);
795 ssa_prop_fini ();
799 /* Return the first VDEF operand for STMT. */
801 tree
802 first_vdef (tree stmt)
804 ssa_op_iter iter;
805 tree op;
807 /* Simply return the first operand we arrive at. */
808 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
809 return (op);
811 gcc_unreachable ();
815 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
816 is a non-volatile pointer dereference, a structure reference or a
817 reference to a single _DECL. Ignore volatile memory references
818 because they are not interesting for the optimizers. */
820 bool
821 stmt_makes_single_load (tree stmt)
823 tree rhs;
825 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
826 return false;
828 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
829 return false;
831 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
832 STRIP_NOPS (rhs);
834 return (!TREE_THIS_VOLATILE (rhs)
835 && (DECL_P (rhs)
836 || REFERENCE_CLASS_P (rhs)));
840 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
841 is a non-volatile pointer dereference, a structure reference or a
842 reference to a single _DECL. Ignore volatile memory references
843 because they are not interesting for the optimizers. */
845 bool
846 stmt_makes_single_store (tree stmt)
848 tree lhs;
850 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
851 return false;
853 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
854 return false;
856 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
857 STRIP_NOPS (lhs);
859 return (!TREE_THIS_VOLATILE (lhs)
860 && (DECL_P (lhs)
861 || REFERENCE_CLASS_P (lhs)));
865 /* If STMT makes a single memory load and all the virtual use operands
866 have the same value in array VALUES, return it. Otherwise, return
867 NULL. */
869 prop_value_t *
870 get_value_loaded_by (tree stmt, prop_value_t *values)
872 ssa_op_iter i;
873 tree vuse;
874 prop_value_t *prev_val = NULL;
875 prop_value_t *val = NULL;
877 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
879 val = &values[SSA_NAME_VERSION (vuse)];
880 if (prev_val && prev_val->value != val->value)
881 return NULL;
882 prev_val = val;
885 return val;
889 /* Propagation statistics. */
890 struct prop_stats_d
892 long num_const_prop;
893 long num_copy_prop;
894 long num_pred_folded;
897 static struct prop_stats_d prop_stats;
899 /* Replace USE references in statement STMT with the values stored in
900 PROP_VALUE. Return true if at least one reference was replaced. If
901 REPLACED_ADDRESSES_P is given, it will be set to true if an address
902 constant was replaced. */
904 bool
905 replace_uses_in (tree stmt, bool *replaced_addresses_p,
906 prop_value_t *prop_value)
908 bool replaced = false;
909 use_operand_p use;
910 ssa_op_iter iter;
912 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
914 tree tuse = USE_FROM_PTR (use);
915 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
917 if (val == tuse || val == NULL_TREE)
918 continue;
920 if (TREE_CODE (stmt) == ASM_EXPR
921 && !may_propagate_copy_into_asm (tuse))
922 continue;
924 if (!may_propagate_copy (tuse, val))
925 continue;
927 if (TREE_CODE (val) != SSA_NAME)
928 prop_stats.num_const_prop++;
929 else
930 prop_stats.num_copy_prop++;
932 propagate_value (use, val);
934 replaced = true;
935 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
936 *replaced_addresses_p = true;
939 return replaced;
943 /* Replace the VUSE references in statement STMT with the values
944 stored in PROP_VALUE. Return true if a reference was replaced. If
945 REPLACED_ADDRESSES_P is given, it will be set to true if an address
946 constant was replaced.
948 Replacing VUSE operands is slightly more complex than replacing
949 regular USEs. We are only interested in two types of replacements
950 here:
952 1- If the value to be replaced is a constant or an SSA name for a
953 GIMPLE register, then we are making a copy/constant propagation
954 from a memory store. For instance,
956 # a_3 = VDEF <a_2>
957 a.b = x_1;
959 # VUSE <a_3>
960 y_4 = a.b;
962 This replacement is only possible iff STMT is an assignment
963 whose RHS is identical to the LHS of the statement that created
964 the VUSE(s) that we are replacing. Otherwise, we may do the
965 wrong replacement:
967 # a_3 = VDEF <a_2>
968 # b_5 = VDEF <b_4>
969 *p = 10;
971 # VUSE <b_5>
972 x_8 = b;
974 Even though 'b_5' acquires the value '10' during propagation,
975 there is no way for the propagator to tell whether the
976 replacement is correct in every reached use, because values are
977 computed at definition sites. Therefore, when doing final
978 substitution of propagated values, we have to check each use
979 site. Since the RHS of STMT ('b') is different from the LHS of
980 the originating statement ('*p'), we cannot replace 'b' with
981 '10'.
983 Similarly, when merging values from PHI node arguments,
984 propagators need to take care not to merge the same values
985 stored in different locations:
987 if (...)
988 # a_3 = VDEF <a_2>
989 a.b = 3;
990 else
991 # a_4 = VDEF <a_2>
992 a.c = 3;
993 # a_5 = PHI <a_3, a_4>
995 It would be wrong to propagate '3' into 'a_5' because that
996 operation merges two stores to different memory locations.
999 2- If the value to be replaced is an SSA name for a virtual
1000 register, then we simply replace each VUSE operand with its
1001 value from PROP_VALUE. This is the same replacement done by
1002 replace_uses_in. */
1004 static bool
1005 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
1006 prop_value_t *prop_value)
1008 bool replaced = false;
1009 ssa_op_iter iter;
1010 use_operand_p vuse;
1012 if (stmt_makes_single_load (stmt))
1014 /* If STMT is an assignment whose RHS is a single memory load,
1015 see if we are trying to propagate a constant or a GIMPLE
1016 register (case #1 above). */
1017 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
1018 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1020 if (val
1021 && val->value
1022 && (is_gimple_reg (val->value)
1023 || is_gimple_min_invariant (val->value))
1024 && simple_cst_equal (rhs, val->mem_ref) == 1)
1027 /* If we are replacing a constant address, inform our
1028 caller. */
1029 if (TREE_CODE (val->value) != SSA_NAME
1030 && POINTER_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)))
1031 && replaced_addresses_p)
1032 *replaced_addresses_p = true;
1034 /* We can only perform the substitution if the load is done
1035 from the same memory location as the original store.
1036 Since we already know that there are no intervening
1037 stores between DEF_STMT and STMT, we only need to check
1038 that the RHS of STMT is the same as the memory reference
1039 propagated together with the value. */
1040 GIMPLE_STMT_OPERAND (stmt, 1) = val->value;
1042 if (TREE_CODE (val->value) != SSA_NAME)
1043 prop_stats.num_const_prop++;
1044 else
1045 prop_stats.num_copy_prop++;
1047 /* Since we have replaced the whole RHS of STMT, there
1048 is no point in checking the other VUSEs, as they will
1049 all have the same value. */
1050 return true;
1054 /* Otherwise, the values for every VUSE operand must be other
1055 SSA_NAMEs that can be propagated into STMT. */
1056 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1058 tree var = USE_FROM_PTR (vuse);
1059 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1061 if (val == NULL_TREE || var == val)
1062 continue;
1064 /* Constants and copies propagated between real and virtual
1065 operands are only possible in the cases handled above. They
1066 should be ignored in any other context. */
1067 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1068 continue;
1070 propagate_value (vuse, val);
1071 prop_stats.num_copy_prop++;
1072 replaced = true;
1075 return replaced;
1079 /* Replace propagated values into all the arguments for PHI using the
1080 values from PROP_VALUE. */
1082 static void
1083 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1085 int i;
1086 bool replaced = false;
1087 tree prev_phi = NULL;
1089 if (dump_file && (dump_flags & TDF_DETAILS))
1090 prev_phi = unshare_expr (phi);
1092 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1094 tree arg = PHI_ARG_DEF (phi, i);
1096 if (TREE_CODE (arg) == SSA_NAME)
1098 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1100 if (val && val != arg && may_propagate_copy (arg, val))
1102 if (TREE_CODE (val) != SSA_NAME)
1103 prop_stats.num_const_prop++;
1104 else
1105 prop_stats.num_copy_prop++;
1107 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1108 replaced = true;
1110 /* If we propagated a copy and this argument flows
1111 through an abnormal edge, update the replacement
1112 accordingly. */
1113 if (TREE_CODE (val) == SSA_NAME
1114 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1115 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1120 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1122 fprintf (dump_file, "Folded PHI node: ");
1123 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1124 fprintf (dump_file, " into: ");
1125 print_generic_stmt (dump_file, phi, TDF_SLIM);
1126 fprintf (dump_file, "\n");
1131 /* If STMT has a predicate whose value can be computed using the value
1132 range information computed by VRP, compute its value and return true.
1133 Otherwise, return false. */
1135 static bool
1136 fold_predicate_in (tree stmt)
1138 tree *pred_p = NULL;
1139 bool modify_stmt_p = false;
1140 tree val;
1142 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1143 && COMPARISON_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
1145 modify_stmt_p = true;
1146 pred_p = &GIMPLE_STMT_OPERAND (stmt, 1);
1148 else if (TREE_CODE (stmt) == COND_EXPR)
1149 pred_p = &COND_EXPR_COND (stmt);
1150 else
1151 return false;
1153 val = vrp_evaluate_conditional (*pred_p, stmt);
1154 if (val)
1156 if (modify_stmt_p)
1157 val = fold_convert (TREE_TYPE (*pred_p), val);
1159 if (dump_file)
1161 fprintf (dump_file, "Folding predicate ");
1162 print_generic_expr (dump_file, *pred_p, 0);
1163 fprintf (dump_file, " to ");
1164 print_generic_expr (dump_file, val, 0);
1165 fprintf (dump_file, "\n");
1168 prop_stats.num_pred_folded++;
1169 *pred_p = val;
1170 return true;
1173 return false;
1177 /* Perform final substitution and folding of propagated values.
1179 PROP_VALUE[I] contains the single value that should be substituted
1180 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1181 substituted.
1183 If USE_RANGES_P is true, statements that contain predicate
1184 expressions are evaluated with a call to vrp_evaluate_conditional.
1185 This will only give meaningful results when called from tree-vrp.c
1186 (the information used by vrp_evaluate_conditional is built by the
1187 VRP pass).
1189 Return TRUE when something changed. */
1191 bool
1192 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1194 basic_block bb;
1195 bool something_changed = false;
1197 if (prop_value == NULL && !use_ranges_p)
1198 return false;
1200 if (dump_file && (dump_flags & TDF_DETAILS))
1201 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1203 memset (&prop_stats, 0, sizeof (prop_stats));
1205 /* Substitute values in every statement of every basic block. */
1206 FOR_EACH_BB (bb)
1208 block_stmt_iterator i;
1209 tree phi;
1211 /* Propagate known values into PHI nodes. */
1212 if (prop_value)
1213 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1214 replace_phi_args_in (phi, prop_value);
1216 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1218 bool replaced_address, did_replace;
1219 tree prev_stmt = NULL;
1220 tree stmt = bsi_stmt (i);
1222 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1223 range information for names and they are discarded
1224 afterwards. */
1225 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1226 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
1227 continue;
1229 /* Record the state of the statement before replacements. */
1230 push_stmt_changes (bsi_stmt_ptr (i));
1232 /* Replace the statement with its folded version and mark it
1233 folded. */
1234 did_replace = false;
1235 replaced_address = false;
1236 if (dump_file && (dump_flags & TDF_DETAILS))
1237 prev_stmt = unshare_expr (stmt);
1239 /* If we have range information, see if we can fold
1240 predicate expressions. */
1241 if (use_ranges_p)
1242 did_replace = fold_predicate_in (stmt);
1244 if (prop_value)
1246 /* Only replace real uses if we couldn't fold the
1247 statement using value range information (value range
1248 information is not collected on virtuals, so we only
1249 need to check this for real uses). */
1250 if (!did_replace)
1251 did_replace |= replace_uses_in (stmt, &replaced_address,
1252 prop_value);
1254 did_replace |= replace_vuses_in (stmt, &replaced_address,
1255 prop_value);
1258 /* If we made a replacement, fold and cleanup the statement. */
1259 if (did_replace)
1261 tree old_stmt = stmt;
1262 tree rhs;
1264 fold_stmt (bsi_stmt_ptr (i));
1265 stmt = bsi_stmt (i);
1267 /* If we cleaned up EH information from the statement,
1268 remove EH edges. */
1269 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1270 tree_purge_dead_eh_edges (bb);
1272 rhs = get_rhs (stmt);
1273 if (TREE_CODE (rhs) == ADDR_EXPR)
1274 recompute_tree_invariant_for_addr_expr (rhs);
1276 if (dump_file && (dump_flags & TDF_DETAILS))
1278 fprintf (dump_file, "Folded statement: ");
1279 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1280 fprintf (dump_file, " into: ");
1281 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1282 fprintf (dump_file, "\n");
1285 /* Determine what needs to be done to update the SSA form. */
1286 pop_stmt_changes (bsi_stmt_ptr (i));
1287 something_changed = true;
1289 else
1291 /* The statement was not modified, discard the change buffer. */
1292 discard_stmt_changes (bsi_stmt_ptr (i));
1295 /* Some statements may be simplified using ranges. For
1296 example, division may be replaced by shifts, modulo
1297 replaced with bitwise and, etc. Do this after
1298 substituting constants, folding, etc so that we're
1299 presented with a fully propagated, canonicalized
1300 statement. */
1301 if (use_ranges_p)
1302 simplify_stmt_using_ranges (stmt);
1306 if (dump_file && (dump_flags & TDF_STATS))
1308 fprintf (dump_file, "Constants propagated: %6ld\n",
1309 prop_stats.num_const_prop);
1310 fprintf (dump_file, "Copies propagated: %6ld\n",
1311 prop_stats.num_copy_prop);
1312 fprintf (dump_file, "Predicates folded: %6ld\n",
1313 prop_stats.num_pred_folded);
1315 return something_changed;
1318 #include "gt-tree-ssa-propagate.h"