* cgraphunit.c (record_cdtor_fn): Declare all cdtors always inlined.
[official-gcc/constexpr.git] / gcc / reload.c
blobae913bf094ff38a21a94800bfa94b240f98539a9
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "reload.h"
104 #include "regs.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
107 #include "flags.h"
108 #include "real.h"
109 #include "output.h"
110 #include "function.h"
111 #include "toplev.h"
112 #include "params.h"
113 #include "target.h"
114 #include "df.h"
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124 #define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
129 /* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
131 int n_reloads;
132 struct reload rld[MAX_RELOADS];
134 /* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136 int n_earlyclobbers;
137 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 int reload_n_operands;
141 /* Replacing reloads.
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
148 /* Nonzero means record the places to replace. */
149 static int replace_reloads;
151 /* Each replacement is recorded with a structure like this. */
152 struct replacement
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
161 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 /* Number of replacements currently recorded. */
164 static int n_replacements;
166 /* Used to track what is modified by an operand. */
167 struct decomposition
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
173 HOST_WIDE_INT end; /* Ending offset or register number. */
176 #ifdef SECONDARY_MEMORY_NEEDED
178 /* Save MEMs needed to copy from one class of registers to another. One MEM
179 is used per mode, but normally only one or two modes are ever used.
181 We keep two versions, before and after register elimination. The one
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
186 static rtx secondary_memlocs[NUM_MACHINE_MODES];
187 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
188 static int secondary_memlocs_elim_used = 0;
189 #endif
191 /* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193 static rtx this_insn;
195 /* Nonzero if this instruction is a user-specified asm with operands. */
196 static int this_insn_is_asm;
198 /* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201 static int hard_regs_live_known;
203 /* Indexed by hard reg number,
204 element is nonnegative if hard reg has been spilled.
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207 static short *static_reload_reg_p;
209 /* Set to 1 in subst_reg_equivs if it changes anything. */
210 static int subst_reg_equivs_changed;
212 /* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214 static int output_reloadnum;
216 /* Compare two RTX's. */
217 #define MATCHES(x, y) \
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243 #define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
250 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
252 enum insn_code *, secondary_reload_info *);
253 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
255 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static int alternative_allows_memconst (const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
271 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
272 int, enum reload_type, int, rtx);
273 static rtx subst_reg_equivs (rtx, rtx);
274 static rtx subst_indexed_address (rtx);
275 static void update_auto_inc_notes (rtx, int, int);
276 static int find_reloads_address_1 (enum machine_mode, rtx, int,
277 enum rtx_code, enum rtx_code, rtx *,
278 int, enum reload_type,int, rtx);
279 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
280 enum machine_mode, int,
281 enum reload_type, int);
282 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
283 int, rtx);
284 static void copy_replacements_1 (rtx *, rtx *, int);
285 static int find_inc_amount (rtx, rtx);
286 static int refers_to_mem_for_reload_p (rtx);
287 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
288 rtx, rtx *);
290 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
291 list yet. */
293 static void
294 push_reg_equiv_alt_mem (int regno, rtx mem)
296 rtx it;
298 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
299 if (rtx_equal_p (XEXP (it, 0), mem))
300 return;
302 reg_equiv_alt_mem_list [regno]
303 = alloc_EXPR_LIST (REG_EQUIV, mem,
304 reg_equiv_alt_mem_list [regno]);
307 /* Determine if any secondary reloads are needed for loading (if IN_P is
308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
316 static int
317 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
318 enum reg_class reload_class,
319 enum machine_mode reload_mode, enum reload_type type,
320 enum insn_code *picode, secondary_reload_info *prev_sri)
322 enum reg_class class = NO_REGS;
323 enum reg_class scratch_class;
324 enum machine_mode mode = reload_mode;
325 enum insn_code icode = CODE_FOR_nothing;
326 enum insn_code t_icode = CODE_FOR_nothing;
327 enum reload_type secondary_type;
328 int s_reload, t_reload = -1;
329 const char *scratch_constraint;
330 char letter;
331 secondary_reload_info sri;
333 if (type == RELOAD_FOR_INPUT_ADDRESS
334 || type == RELOAD_FOR_OUTPUT_ADDRESS
335 || type == RELOAD_FOR_INPADDR_ADDRESS
336 || type == RELOAD_FOR_OUTADDR_ADDRESS)
337 secondary_type = type;
338 else
339 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
341 *picode = CODE_FOR_nothing;
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
349 x = SUBREG_REG (x);
350 reload_mode = GET_MODE (x);
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
359 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
360 && reg_equiv_mem[REGNO (x)] != 0)
361 x = reg_equiv_mem[REGNO (x)];
363 sri.icode = CODE_FOR_nothing;
364 sri.prev_sri = prev_sri;
365 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
366 icode = sri.icode;
368 /* If we don't need any secondary registers, done. */
369 if (class == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
372 if (class != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
374 reload_mode, type, &t_icode, &sri);
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
379 if (icode != CODE_FOR_nothing)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (class == NO_REGS);
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 scratch_constraint));
407 class = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (class, rld[s_reload].class)
432 || reg_class_subset_p (rld[s_reload].class, class))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
440 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
441 opnum, rld[s_reload].opnum))
443 if (in_p)
444 rld[s_reload].inmode = mode;
445 if (! in_p)
446 rld[s_reload].outmode = mode;
448 if (reg_class_subset_p (class, rld[s_reload].class))
449 rld[s_reload].class = class;
451 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
452 rld[s_reload].optional &= optional;
453 rld[s_reload].secondary_p = 1;
454 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
455 opnum, rld[s_reload].opnum))
456 rld[s_reload].when_needed = RELOAD_OTHER;
459 if (s_reload == n_reloads)
461 #ifdef SECONDARY_MEMORY_NEEDED
462 /* If we need a memory location to copy between the two reload regs,
463 set it up now. Note that we do the input case before making
464 the reload and the output case after. This is due to the
465 way reloads are output. */
467 if (in_p && icode == CODE_FOR_nothing
468 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
470 get_secondary_mem (x, reload_mode, opnum, type);
472 /* We may have just added new reloads. Make sure we add
473 the new reload at the end. */
474 s_reload = n_reloads;
476 #endif
478 /* We need to make a new secondary reload for this register class. */
479 rld[s_reload].in = rld[s_reload].out = 0;
480 rld[s_reload].class = class;
482 rld[s_reload].inmode = in_p ? mode : VOIDmode;
483 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
484 rld[s_reload].reg_rtx = 0;
485 rld[s_reload].optional = optional;
486 rld[s_reload].inc = 0;
487 /* Maybe we could combine these, but it seems too tricky. */
488 rld[s_reload].nocombine = 1;
489 rld[s_reload].in_reg = 0;
490 rld[s_reload].out_reg = 0;
491 rld[s_reload].opnum = opnum;
492 rld[s_reload].when_needed = secondary_type;
493 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
494 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
495 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
496 rld[s_reload].secondary_out_icode
497 = ! in_p ? t_icode : CODE_FOR_nothing;
498 rld[s_reload].secondary_p = 1;
500 n_reloads++;
502 #ifdef SECONDARY_MEMORY_NEEDED
503 if (! in_p && icode == CODE_FOR_nothing
504 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
505 get_secondary_mem (x, mode, opnum, type);
506 #endif
509 *picode = icode;
510 return s_reload;
513 /* If a secondary reload is needed, return its class. If both an intermediate
514 register and a scratch register is needed, we return the class of the
515 intermediate register. */
516 enum reg_class
517 secondary_reload_class (bool in_p, enum reg_class class,
518 enum machine_mode mode, rtx x)
520 enum insn_code icode;
521 secondary_reload_info sri;
523 sri.icode = CODE_FOR_nothing;
524 sri.prev_sri = NULL;
525 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
526 icode = sri.icode;
528 /* If there are no secondary reloads at all, we return NO_REGS.
529 If an intermediate register is needed, we return its class. */
530 if (icode == CODE_FOR_nothing || class != NO_REGS)
531 return class;
533 /* No intermediate register is needed, but we have a special reload
534 pattern, which we assume for now needs a scratch register. */
535 return scratch_reload_class (icode);
538 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
539 three operands, verify that operand 2 is an output operand, and return
540 its register class.
541 ??? We'd like to be able to handle any pattern with at least 2 operands,
542 for zero or more scratch registers, but that needs more infrastructure. */
543 enum reg_class
544 scratch_reload_class (enum insn_code icode)
546 const char *scratch_constraint;
547 char scratch_letter;
548 enum reg_class class;
550 gcc_assert (insn_data[(int) icode].n_operands == 3);
551 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
552 gcc_assert (*scratch_constraint == '=');
553 scratch_constraint++;
554 if (*scratch_constraint == '&')
555 scratch_constraint++;
556 scratch_letter = *scratch_constraint;
557 if (scratch_letter == 'r')
558 return GENERAL_REGS;
559 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
560 scratch_constraint);
561 gcc_assert (class != NO_REGS);
562 return class;
565 #ifdef SECONDARY_MEMORY_NEEDED
567 /* Return a memory location that will be used to copy X in mode MODE.
568 If we haven't already made a location for this mode in this insn,
569 call find_reloads_address on the location being returned. */
572 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
573 int opnum, enum reload_type type)
575 rtx loc;
576 int mem_valid;
578 /* By default, if MODE is narrower than a word, widen it to a word.
579 This is required because most machines that require these memory
580 locations do not support short load and stores from all registers
581 (e.g., FP registers). */
583 #ifdef SECONDARY_MEMORY_NEEDED_MODE
584 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
585 #else
586 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
587 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
588 #endif
590 /* If we already have made a MEM for this operand in MODE, return it. */
591 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
592 return secondary_memlocs_elim[(int) mode][opnum];
594 /* If this is the first time we've tried to get a MEM for this mode,
595 allocate a new one. `something_changed' in reload will get set
596 by noticing that the frame size has changed. */
598 if (secondary_memlocs[(int) mode] == 0)
600 #ifdef SECONDARY_MEMORY_NEEDED_RTX
601 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
602 #else
603 secondary_memlocs[(int) mode]
604 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
605 #endif
608 /* Get a version of the address doing any eliminations needed. If that
609 didn't give us a new MEM, make a new one if it isn't valid. */
611 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
612 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
614 if (! mem_valid && loc == secondary_memlocs[(int) mode])
615 loc = copy_rtx (loc);
617 /* The only time the call below will do anything is if the stack
618 offset is too large. In that case IND_LEVELS doesn't matter, so we
619 can just pass a zero. Adjust the type to be the address of the
620 corresponding object. If the address was valid, save the eliminated
621 address. If it wasn't valid, we need to make a reload each time, so
622 don't save it. */
624 if (! mem_valid)
626 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
627 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
628 : RELOAD_OTHER);
630 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
631 opnum, type, 0, 0);
634 secondary_memlocs_elim[(int) mode][opnum] = loc;
635 if (secondary_memlocs_elim_used <= (int)mode)
636 secondary_memlocs_elim_used = (int)mode + 1;
637 return loc;
640 /* Clear any secondary memory locations we've made. */
642 void
643 clear_secondary_mem (void)
645 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
647 #endif /* SECONDARY_MEMORY_NEEDED */
650 /* Find the largest class which has at least one register valid in
651 mode INNER, and which for every such register, that register number
652 plus N is also valid in OUTER (if in range) and is cheap to move
653 into REGNO. Such a class must exist. */
655 static enum reg_class
656 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
657 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
658 unsigned int dest_regno ATTRIBUTE_UNUSED)
660 int best_cost = -1;
661 int class;
662 int regno;
663 enum reg_class best_class = NO_REGS;
664 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
665 unsigned int best_size = 0;
666 int cost;
668 for (class = 1; class < N_REG_CLASSES; class++)
670 int bad = 0;
671 int good = 0;
672 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
673 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
675 if (HARD_REGNO_MODE_OK (regno, inner))
677 good = 1;
678 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
679 || ! HARD_REGNO_MODE_OK (regno + n, outer))
680 bad = 1;
684 if (bad || !good)
685 continue;
686 cost = REGISTER_MOVE_COST (outer, class, dest_class);
688 if ((reg_class_size[class] > best_size
689 && (best_cost < 0 || best_cost >= cost))
690 || best_cost > cost)
692 best_class = class;
693 best_size = reg_class_size[class];
694 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
698 gcc_assert (best_size != 0);
700 return best_class;
703 /* Return the number of a previously made reload that can be combined with
704 a new one, or n_reloads if none of the existing reloads can be used.
705 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
706 push_reload, they determine the kind of the new reload that we try to
707 combine. P_IN points to the corresponding value of IN, which can be
708 modified by this function.
709 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
711 static int
712 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
713 enum reload_type type, int opnum, int dont_share)
715 rtx in = *p_in;
716 int i;
717 /* We can't merge two reloads if the output of either one is
718 earlyclobbered. */
720 if (earlyclobber_operand_p (out))
721 return n_reloads;
723 /* We can use an existing reload if the class is right
724 and at least one of IN and OUT is a match
725 and the other is at worst neutral.
726 (A zero compared against anything is neutral.)
728 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
729 for the same thing since that can cause us to need more reload registers
730 than we otherwise would. */
732 for (i = 0; i < n_reloads; i++)
733 if ((reg_class_subset_p (class, rld[i].class)
734 || reg_class_subset_p (rld[i].class, class))
735 /* If the existing reload has a register, it must fit our class. */
736 && (rld[i].reg_rtx == 0
737 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
738 true_regnum (rld[i].reg_rtx)))
739 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
740 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
741 || (out != 0 && MATCHES (rld[i].out, out)
742 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
743 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
744 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
745 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
746 return i;
748 /* Reloading a plain reg for input can match a reload to postincrement
749 that reg, since the postincrement's value is the right value.
750 Likewise, it can match a preincrement reload, since we regard
751 the preincrementation as happening before any ref in this insn
752 to that register. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our
757 class. */
758 && (rld[i].reg_rtx == 0
759 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
760 true_regnum (rld[i].reg_rtx)))
761 && out == 0 && rld[i].out == 0 && rld[i].in != 0
762 && ((REG_P (in)
763 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
764 && MATCHES (XEXP (rld[i].in, 0), in))
765 || (REG_P (rld[i].in)
766 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
767 && MATCHES (XEXP (in, 0), rld[i].in)))
768 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
769 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
770 && MERGABLE_RELOADS (type, rld[i].when_needed,
771 opnum, rld[i].opnum))
773 /* Make sure reload_in ultimately has the increment,
774 not the plain register. */
775 if (REG_P (in))
776 *p_in = rld[i].in;
777 return i;
779 return n_reloads;
782 /* Return nonzero if X is a SUBREG which will require reloading of its
783 SUBREG_REG expression. */
785 static int
786 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
788 rtx inner;
790 /* Only SUBREGs are problematical. */
791 if (GET_CODE (x) != SUBREG)
792 return 0;
794 inner = SUBREG_REG (x);
796 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
797 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
798 return 1;
800 /* If INNER is not a hard register, then INNER will not need to
801 be reloaded. */
802 if (!REG_P (inner)
803 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
804 return 0;
806 /* If INNER is not ok for MODE, then INNER will need reloading. */
807 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
808 return 1;
810 /* If the outer part is a word or smaller, INNER larger than a
811 word and the number of regs for INNER is not the same as the
812 number of words in INNER, then INNER will need reloading. */
813 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
814 && output
815 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
816 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
817 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
820 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
821 requiring an extra reload register. The caller has already found that
822 IN contains some reference to REGNO, so check that we can produce the
823 new value in a single step. E.g. if we have
824 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
825 instruction that adds one to a register, this should succeed.
826 However, if we have something like
827 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
828 needs to be loaded into a register first, we need a separate reload
829 register.
830 Such PLUS reloads are generated by find_reload_address_part.
831 The out-of-range PLUS expressions are usually introduced in the instruction
832 patterns by register elimination and substituting pseudos without a home
833 by their function-invariant equivalences. */
834 static int
835 can_reload_into (rtx in, int regno, enum machine_mode mode)
837 rtx dst, test_insn;
838 int r = 0;
839 struct recog_data save_recog_data;
841 /* For matching constraints, we often get notional input reloads where
842 we want to use the original register as the reload register. I.e.
843 technically this is a non-optional input-output reload, but IN is
844 already a valid register, and has been chosen as the reload register.
845 Speed this up, since it trivially works. */
846 if (REG_P (in))
847 return 1;
849 /* To test MEMs properly, we'd have to take into account all the reloads
850 that are already scheduled, which can become quite complicated.
851 And since we've already handled address reloads for this MEM, it
852 should always succeed anyway. */
853 if (MEM_P (in))
854 return 1;
856 /* If we can make a simple SET insn that does the job, everything should
857 be fine. */
858 dst = gen_rtx_REG (mode, regno);
859 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
860 save_recog_data = recog_data;
861 if (recog_memoized (test_insn) >= 0)
863 extract_insn (test_insn);
864 r = constrain_operands (1);
866 recog_data = save_recog_data;
867 return r;
870 /* Record one reload that needs to be performed.
871 IN is an rtx saying where the data are to be found before this instruction.
872 OUT says where they must be stored after the instruction.
873 (IN is zero for data not read, and OUT is zero for data not written.)
874 INLOC and OUTLOC point to the places in the instructions where
875 IN and OUT were found.
876 If IN and OUT are both nonzero, it means the same register must be used
877 to reload both IN and OUT.
879 CLASS is a register class required for the reloaded data.
880 INMODE is the machine mode that the instruction requires
881 for the reg that replaces IN and OUTMODE is likewise for OUT.
883 If IN is zero, then OUT's location and mode should be passed as
884 INLOC and INMODE.
886 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
888 OPTIONAL nonzero means this reload does not need to be performed:
889 it can be discarded if that is more convenient.
891 OPNUM and TYPE say what the purpose of this reload is.
893 The return value is the reload-number for this reload.
895 If both IN and OUT are nonzero, in some rare cases we might
896 want to make two separate reloads. (Actually we never do this now.)
897 Therefore, the reload-number for OUT is stored in
898 output_reloadnum when we return; the return value applies to IN.
899 Usually (presently always), when IN and OUT are nonzero,
900 the two reload-numbers are equal, but the caller should be careful to
901 distinguish them. */
904 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
905 enum reg_class class, enum machine_mode inmode,
906 enum machine_mode outmode, int strict_low, int optional,
907 int opnum, enum reload_type type)
909 int i;
910 int dont_share = 0;
911 int dont_remove_subreg = 0;
912 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
913 int secondary_in_reload = -1, secondary_out_reload = -1;
914 enum insn_code secondary_in_icode = CODE_FOR_nothing;
915 enum insn_code secondary_out_icode = CODE_FOR_nothing;
917 /* INMODE and/or OUTMODE could be VOIDmode if no mode
918 has been specified for the operand. In that case,
919 use the operand's mode as the mode to reload. */
920 if (inmode == VOIDmode && in != 0)
921 inmode = GET_MODE (in);
922 if (outmode == VOIDmode && out != 0)
923 outmode = GET_MODE (out);
925 /* If IN is a pseudo register everywhere-equivalent to a constant, and
926 it is not in a hard register, reload straight from the constant,
927 since we want to get rid of such pseudo registers.
928 Often this is done earlier, but not always in find_reloads_address. */
929 if (in != 0 && REG_P (in))
931 int regno = REGNO (in);
933 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
934 && reg_equiv_constant[regno] != 0)
935 in = reg_equiv_constant[regno];
938 /* Likewise for OUT. Of course, OUT will never be equivalent to
939 an actual constant, but it might be equivalent to a memory location
940 (in the case of a parameter). */
941 if (out != 0 && REG_P (out))
943 int regno = REGNO (out);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 out = reg_equiv_constant[regno];
950 /* If we have a read-write operand with an address side-effect,
951 change either IN or OUT so the side-effect happens only once. */
952 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
953 switch (GET_CODE (XEXP (in, 0)))
955 case POST_INC: case POST_DEC: case POST_MODIFY:
956 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
957 break;
959 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
960 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
961 break;
963 default:
964 break;
967 /* If we are reloading a (SUBREG constant ...), really reload just the
968 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
969 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
970 a pseudo and hence will become a MEM) with M1 wider than M2 and the
971 register is a pseudo, also reload the inside expression.
972 For machines that extend byte loads, do this for any SUBREG of a pseudo
973 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
974 M2 is an integral mode that gets extended when loaded.
975 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
978 (However, if OUT is nonzero, we need to reload the reg *and*
979 the subreg, so do nothing here, and let following statement handle it.)
981 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
982 we can't handle it here because CONST_INT does not indicate a mode.
984 Similarly, we must reload the inside expression if we have a
985 STRICT_LOW_PART (presumably, in == out in the cas).
987 Also reload the inner expression if it does not require a secondary
988 reload but the SUBREG does.
990 Finally, reload the inner expression if it is a register that is in
991 the class whose registers cannot be referenced in a different size
992 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
993 cannot reload just the inside since we might end up with the wrong
994 register class. But if it is inside a STRICT_LOW_PART, we have
995 no choice, so we hope we do get the right register class there. */
997 if (in != 0 && GET_CODE (in) == SUBREG
998 && (subreg_lowpart_p (in) || strict_low)
999 #ifdef CANNOT_CHANGE_MODE_CLASS
1000 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1001 #endif
1002 && (CONSTANT_P (SUBREG_REG (in))
1003 || GET_CODE (SUBREG_REG (in)) == PLUS
1004 || strict_low
1005 || (((REG_P (SUBREG_REG (in))
1006 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1007 || MEM_P (SUBREG_REG (in)))
1008 && ((GET_MODE_SIZE (inmode)
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1010 #ifdef LOAD_EXTEND_OP
1011 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 <= UNITS_PER_WORD)
1014 && (GET_MODE_SIZE (inmode)
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1016 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1017 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1018 #endif
1019 #ifdef WORD_REGISTER_OPERATIONS
1020 || ((GET_MODE_SIZE (inmode)
1021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1023 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1024 / UNITS_PER_WORD)))
1025 #endif
1027 || (REG_P (SUBREG_REG (in))
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 /* The case where out is nonzero
1030 is handled differently in the following statement. */
1031 && (out == 0 || subreg_lowpart_p (in))
1032 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 > UNITS_PER_WORD)
1035 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1036 / UNITS_PER_WORD)
1037 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1038 [GET_MODE (SUBREG_REG (in))]))
1039 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1040 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1041 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1042 SUBREG_REG (in))
1043 == NO_REGS))
1044 #ifdef CANNOT_CHANGE_MODE_CLASS
1045 || (REG_P (SUBREG_REG (in))
1046 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1047 && REG_CANNOT_CHANGE_MODE_P
1048 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1049 #endif
1052 in_subreg_loc = inloc;
1053 inloc = &SUBREG_REG (in);
1054 in = *inloc;
1055 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1056 if (MEM_P (in))
1057 /* This is supposed to happen only for paradoxical subregs made by
1058 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1059 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1060 #endif
1061 inmode = GET_MODE (in);
1064 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1065 either M1 is not valid for R or M2 is wider than a word but we only
1066 need one word to store an M2-sized quantity in R.
1068 However, we must reload the inner reg *as well as* the subreg in
1069 that case. */
1071 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1072 code above. This can happen if SUBREG_BYTE != 0. */
1074 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1076 enum reg_class in_class = class;
1078 if (REG_P (SUBREG_REG (in)))
1079 in_class
1080 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1081 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1082 GET_MODE (SUBREG_REG (in)),
1083 SUBREG_BYTE (in),
1084 GET_MODE (in)),
1085 REGNO (SUBREG_REG (in)));
1087 /* This relies on the fact that emit_reload_insns outputs the
1088 instructions for input reloads of type RELOAD_OTHER in the same
1089 order as the reloads. Thus if the outer reload is also of type
1090 RELOAD_OTHER, we are guaranteed that this inner reload will be
1091 output before the outer reload. */
1092 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1093 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1094 dont_remove_subreg = 1;
1097 /* Similarly for paradoxical and problematical SUBREGs on the output.
1098 Note that there is no reason we need worry about the previous value
1099 of SUBREG_REG (out); even if wider than out,
1100 storing in a subreg is entitled to clobber it all
1101 (except in the case of STRICT_LOW_PART,
1102 and in that case the constraint should label it input-output.) */
1103 if (out != 0 && GET_CODE (out) == SUBREG
1104 && (subreg_lowpart_p (out) || strict_low)
1105 #ifdef CANNOT_CHANGE_MODE_CLASS
1106 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1107 #endif
1108 && (CONSTANT_P (SUBREG_REG (out))
1109 || strict_low
1110 || (((REG_P (SUBREG_REG (out))
1111 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1112 || MEM_P (SUBREG_REG (out)))
1113 && ((GET_MODE_SIZE (outmode)
1114 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1115 #ifdef WORD_REGISTER_OPERATIONS
1116 || ((GET_MODE_SIZE (outmode)
1117 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1118 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1119 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1120 / UNITS_PER_WORD)))
1121 #endif
1123 || (REG_P (SUBREG_REG (out))
1124 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1125 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1126 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1127 > UNITS_PER_WORD)
1128 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1129 / UNITS_PER_WORD)
1130 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1131 [GET_MODE (SUBREG_REG (out))]))
1132 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1133 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1134 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1135 SUBREG_REG (out))
1136 == NO_REGS))
1137 #ifdef CANNOT_CHANGE_MODE_CLASS
1138 || (REG_P (SUBREG_REG (out))
1139 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1140 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1141 GET_MODE (SUBREG_REG (out)),
1142 outmode))
1143 #endif
1146 out_subreg_loc = outloc;
1147 outloc = &SUBREG_REG (out);
1148 out = *outloc;
1149 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1150 gcc_assert (!MEM_P (out)
1151 || GET_MODE_SIZE (GET_MODE (out))
1152 <= GET_MODE_SIZE (outmode));
1153 #endif
1154 outmode = GET_MODE (out);
1157 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1158 either M1 is not valid for R or M2 is wider than a word but we only
1159 need one word to store an M2-sized quantity in R.
1161 However, we must reload the inner reg *as well as* the subreg in
1162 that case. In this case, the inner reg is an in-out reload. */
1164 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1166 /* This relies on the fact that emit_reload_insns outputs the
1167 instructions for output reloads of type RELOAD_OTHER in reverse
1168 order of the reloads. Thus if the outer reload is also of type
1169 RELOAD_OTHER, we are guaranteed that this inner reload will be
1170 output after the outer reload. */
1171 dont_remove_subreg = 1;
1172 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1173 &SUBREG_REG (out),
1174 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1175 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1176 GET_MODE (SUBREG_REG (out)),
1177 SUBREG_BYTE (out),
1178 GET_MODE (out)),
1179 REGNO (SUBREG_REG (out))),
1180 VOIDmode, VOIDmode, 0, 0,
1181 opnum, RELOAD_OTHER);
1184 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1185 if (in != 0 && out != 0 && MEM_P (out)
1186 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1187 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1188 dont_share = 1;
1190 /* If IN is a SUBREG of a hard register, make a new REG. This
1191 simplifies some of the cases below. */
1193 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1194 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1195 && ! dont_remove_subreg)
1196 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1198 /* Similarly for OUT. */
1199 if (out != 0 && GET_CODE (out) == SUBREG
1200 && REG_P (SUBREG_REG (out))
1201 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
1203 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1205 /* Narrow down the class of register wanted if that is
1206 desirable on this machine for efficiency. */
1208 enum reg_class preferred_class = class;
1210 if (in != 0)
1211 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1213 /* Output reloads may need analogous treatment, different in detail. */
1214 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1215 if (out != 0)
1216 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1217 #endif
1219 /* Discard what the target said if we cannot do it. */
1220 if (preferred_class != NO_REGS
1221 || (optional && type == RELOAD_FOR_OUTPUT))
1222 class = preferred_class;
1225 /* Make sure we use a class that can handle the actual pseudo
1226 inside any subreg. For example, on the 386, QImode regs
1227 can appear within SImode subregs. Although GENERAL_REGS
1228 can handle SImode, QImode needs a smaller class. */
1229 #ifdef LIMIT_RELOAD_CLASS
1230 if (in_subreg_loc)
1231 class = LIMIT_RELOAD_CLASS (inmode, class);
1232 else if (in != 0 && GET_CODE (in) == SUBREG)
1233 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1235 if (out_subreg_loc)
1236 class = LIMIT_RELOAD_CLASS (outmode, class);
1237 if (out != 0 && GET_CODE (out) == SUBREG)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1239 #endif
1241 /* Verify that this class is at least possible for the mode that
1242 is specified. */
1243 if (this_insn_is_asm)
1245 enum machine_mode mode;
1246 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1247 mode = inmode;
1248 else
1249 mode = outmode;
1250 if (mode == VOIDmode)
1252 error_for_asm (this_insn, "cannot reload integer constant "
1253 "operand in %<asm%>");
1254 mode = word_mode;
1255 if (in != 0)
1256 inmode = word_mode;
1257 if (out != 0)
1258 outmode = word_mode;
1260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1261 if (HARD_REGNO_MODE_OK (i, mode)
1262 && in_hard_reg_set_p (reg_class_contents[(int) class], mode, i))
1263 break;
1264 if (i == FIRST_PSEUDO_REGISTER)
1266 error_for_asm (this_insn, "impossible register constraint "
1267 "in %<asm%>");
1268 /* Avoid further trouble with this insn. */
1269 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1270 /* We used to continue here setting class to ALL_REGS, but it triggers
1271 sanity check on i386 for:
1272 void foo(long double d)
1274 asm("" :: "a" (d));
1276 Returning zero here ought to be safe as we take care in
1277 find_reloads to not process the reloads when instruction was
1278 replaced by USE. */
1280 return 0;
1284 /* Optional output reloads are always OK even if we have no register class,
1285 since the function of these reloads is only to have spill_reg_store etc.
1286 set, so that the storing insn can be deleted later. */
1287 gcc_assert (class != NO_REGS
1288 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1290 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1292 if (i == n_reloads)
1294 /* See if we need a secondary reload register to move between CLASS
1295 and IN or CLASS and OUT. Get the icode and push any required reloads
1296 needed for each of them if so. */
1298 if (in != 0)
1299 secondary_in_reload
1300 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1301 &secondary_in_icode, NULL);
1302 if (out != 0 && GET_CODE (out) != SCRATCH)
1303 secondary_out_reload
1304 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1305 type, &secondary_out_icode, NULL);
1307 /* We found no existing reload suitable for re-use.
1308 So add an additional reload. */
1310 #ifdef SECONDARY_MEMORY_NEEDED
1311 /* If a memory location is needed for the copy, make one. */
1312 if (in != 0
1313 && (REG_P (in)
1314 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1315 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1316 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1317 class, inmode))
1318 get_secondary_mem (in, inmode, opnum, type);
1319 #endif
1321 i = n_reloads;
1322 rld[i].in = in;
1323 rld[i].out = out;
1324 rld[i].class = class;
1325 rld[i].inmode = inmode;
1326 rld[i].outmode = outmode;
1327 rld[i].reg_rtx = 0;
1328 rld[i].optional = optional;
1329 rld[i].inc = 0;
1330 rld[i].nocombine = 0;
1331 rld[i].in_reg = inloc ? *inloc : 0;
1332 rld[i].out_reg = outloc ? *outloc : 0;
1333 rld[i].opnum = opnum;
1334 rld[i].when_needed = type;
1335 rld[i].secondary_in_reload = secondary_in_reload;
1336 rld[i].secondary_out_reload = secondary_out_reload;
1337 rld[i].secondary_in_icode = secondary_in_icode;
1338 rld[i].secondary_out_icode = secondary_out_icode;
1339 rld[i].secondary_p = 0;
1341 n_reloads++;
1343 #ifdef SECONDARY_MEMORY_NEEDED
1344 if (out != 0
1345 && (REG_P (out)
1346 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1347 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1348 && SECONDARY_MEMORY_NEEDED (class,
1349 REGNO_REG_CLASS (reg_or_subregno (out)),
1350 outmode))
1351 get_secondary_mem (out, outmode, opnum, type);
1352 #endif
1354 else
1356 /* We are reusing an existing reload,
1357 but we may have additional information for it.
1358 For example, we may now have both IN and OUT
1359 while the old one may have just one of them. */
1361 /* The modes can be different. If they are, we want to reload in
1362 the larger mode, so that the value is valid for both modes. */
1363 if (inmode != VOIDmode
1364 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1365 rld[i].inmode = inmode;
1366 if (outmode != VOIDmode
1367 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1368 rld[i].outmode = outmode;
1369 if (in != 0)
1371 rtx in_reg = inloc ? *inloc : 0;
1372 /* If we merge reloads for two distinct rtl expressions that
1373 are identical in content, there might be duplicate address
1374 reloads. Remove the extra set now, so that if we later find
1375 that we can inherit this reload, we can get rid of the
1376 address reloads altogether.
1378 Do not do this if both reloads are optional since the result
1379 would be an optional reload which could potentially leave
1380 unresolved address replacements.
1382 It is not sufficient to call transfer_replacements since
1383 choose_reload_regs will remove the replacements for address
1384 reloads of inherited reloads which results in the same
1385 problem. */
1386 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1387 && ! (rld[i].optional && optional))
1389 /* We must keep the address reload with the lower operand
1390 number alive. */
1391 if (opnum > rld[i].opnum)
1393 remove_address_replacements (in);
1394 in = rld[i].in;
1395 in_reg = rld[i].in_reg;
1397 else
1398 remove_address_replacements (rld[i].in);
1400 rld[i].in = in;
1401 rld[i].in_reg = in_reg;
1403 if (out != 0)
1405 rld[i].out = out;
1406 rld[i].out_reg = outloc ? *outloc : 0;
1408 if (reg_class_subset_p (class, rld[i].class))
1409 rld[i].class = class;
1410 rld[i].optional &= optional;
1411 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1412 opnum, rld[i].opnum))
1413 rld[i].when_needed = RELOAD_OTHER;
1414 rld[i].opnum = MIN (rld[i].opnum, opnum);
1417 /* If the ostensible rtx being reloaded differs from the rtx found
1418 in the location to substitute, this reload is not safe to combine
1419 because we cannot reliably tell whether it appears in the insn. */
1421 if (in != 0 && in != *inloc)
1422 rld[i].nocombine = 1;
1424 #if 0
1425 /* This was replaced by changes in find_reloads_address_1 and the new
1426 function inc_for_reload, which go with a new meaning of reload_inc. */
1428 /* If this is an IN/OUT reload in an insn that sets the CC,
1429 it must be for an autoincrement. It doesn't work to store
1430 the incremented value after the insn because that would clobber the CC.
1431 So we must do the increment of the value reloaded from,
1432 increment it, store it back, then decrement again. */
1433 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1435 out = 0;
1436 rld[i].out = 0;
1437 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1438 /* If we did not find a nonzero amount-to-increment-by,
1439 that contradicts the belief that IN is being incremented
1440 in an address in this insn. */
1441 gcc_assert (rld[i].inc != 0);
1443 #endif
1445 /* If we will replace IN and OUT with the reload-reg,
1446 record where they are located so that substitution need
1447 not do a tree walk. */
1449 if (replace_reloads)
1451 if (inloc != 0)
1453 struct replacement *r = &replacements[n_replacements++];
1454 r->what = i;
1455 r->subreg_loc = in_subreg_loc;
1456 r->where = inloc;
1457 r->mode = inmode;
1459 if (outloc != 0 && outloc != inloc)
1461 struct replacement *r = &replacements[n_replacements++];
1462 r->what = i;
1463 r->where = outloc;
1464 r->subreg_loc = out_subreg_loc;
1465 r->mode = outmode;
1469 /* If this reload is just being introduced and it has both
1470 an incoming quantity and an outgoing quantity that are
1471 supposed to be made to match, see if either one of the two
1472 can serve as the place to reload into.
1474 If one of them is acceptable, set rld[i].reg_rtx
1475 to that one. */
1477 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1479 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1480 inmode, outmode,
1481 rld[i].class, i,
1482 earlyclobber_operand_p (out));
1484 /* If the outgoing register already contains the same value
1485 as the incoming one, we can dispense with loading it.
1486 The easiest way to tell the caller that is to give a phony
1487 value for the incoming operand (same as outgoing one). */
1488 if (rld[i].reg_rtx == out
1489 && (REG_P (in) || CONSTANT_P (in))
1490 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1491 static_reload_reg_p, i, inmode))
1492 rld[i].in = out;
1495 /* If this is an input reload and the operand contains a register that
1496 dies in this insn and is used nowhere else, see if it is the right class
1497 to be used for this reload. Use it if so. (This occurs most commonly
1498 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1499 this if it is also an output reload that mentions the register unless
1500 the output is a SUBREG that clobbers an entire register.
1502 Note that the operand might be one of the spill regs, if it is a
1503 pseudo reg and we are in a block where spilling has not taken place.
1504 But if there is no spilling in this block, that is OK.
1505 An explicitly used hard reg cannot be a spill reg. */
1507 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1509 rtx note;
1510 int regno;
1511 enum machine_mode rel_mode = inmode;
1513 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1514 rel_mode = outmode;
1516 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1517 if (REG_NOTE_KIND (note) == REG_DEAD
1518 && REG_P (XEXP (note, 0))
1519 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1520 && reg_mentioned_p (XEXP (note, 0), in)
1521 /* Check that we don't use a hardreg for an uninitialized
1522 pseudo. See also find_dummy_reload(). */
1523 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1524 || ! bitmap_bit_p (DF_RA_LIVE_OUT (ENTRY_BLOCK_PTR),
1525 ORIGINAL_REGNO (XEXP (note, 0))))
1526 && ! refers_to_regno_for_reload_p (regno,
1527 end_hard_regno (rel_mode,
1528 regno),
1529 PATTERN (this_insn), inloc)
1530 /* If this is also an output reload, IN cannot be used as
1531 the reload register if it is set in this insn unless IN
1532 is also OUT. */
1533 && (out == 0 || in == out
1534 || ! hard_reg_set_here_p (regno,
1535 end_hard_regno (rel_mode, regno),
1536 PATTERN (this_insn)))
1537 /* ??? Why is this code so different from the previous?
1538 Is there any simple coherent way to describe the two together?
1539 What's going on here. */
1540 && (in != out
1541 || (GET_CODE (in) == SUBREG
1542 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1543 / UNITS_PER_WORD)
1544 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1545 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1546 /* Make sure the operand fits in the reg that dies. */
1547 && (GET_MODE_SIZE (rel_mode)
1548 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1549 && HARD_REGNO_MODE_OK (regno, inmode)
1550 && HARD_REGNO_MODE_OK (regno, outmode))
1552 unsigned int offs;
1553 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1554 hard_regno_nregs[regno][outmode]);
1556 for (offs = 0; offs < nregs; offs++)
1557 if (fixed_regs[regno + offs]
1558 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1559 regno + offs))
1560 break;
1562 if (offs == nregs
1563 && (! (refers_to_regno_for_reload_p
1564 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1565 || can_reload_into (in, regno, inmode)))
1567 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1568 break;
1573 if (out)
1574 output_reloadnum = i;
1576 return i;
1579 /* Record an additional place we must replace a value
1580 for which we have already recorded a reload.
1581 RELOADNUM is the value returned by push_reload
1582 when the reload was recorded.
1583 This is used in insn patterns that use match_dup. */
1585 static void
1586 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1588 if (replace_reloads)
1590 struct replacement *r = &replacements[n_replacements++];
1591 r->what = reloadnum;
1592 r->where = loc;
1593 r->subreg_loc = 0;
1594 r->mode = mode;
1598 /* Duplicate any replacement we have recorded to apply at
1599 location ORIG_LOC to also be performed at DUP_LOC.
1600 This is used in insn patterns that use match_dup. */
1602 static void
1603 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1605 int i, n = n_replacements;
1607 for (i = 0; i < n; i++)
1609 struct replacement *r = &replacements[i];
1610 if (r->where == orig_loc)
1611 push_replacement (dup_loc, r->what, r->mode);
1615 /* Transfer all replacements that used to be in reload FROM to be in
1616 reload TO. */
1618 void
1619 transfer_replacements (int to, int from)
1621 int i;
1623 for (i = 0; i < n_replacements; i++)
1624 if (replacements[i].what == from)
1625 replacements[i].what = to;
1628 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1629 or a subpart of it. If we have any replacements registered for IN_RTX,
1630 cancel the reloads that were supposed to load them.
1631 Return nonzero if we canceled any reloads. */
1633 remove_address_replacements (rtx in_rtx)
1635 int i, j;
1636 char reload_flags[MAX_RELOADS];
1637 int something_changed = 0;
1639 memset (reload_flags, 0, sizeof reload_flags);
1640 for (i = 0, j = 0; i < n_replacements; i++)
1642 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1643 reload_flags[replacements[i].what] |= 1;
1644 else
1646 replacements[j++] = replacements[i];
1647 reload_flags[replacements[i].what] |= 2;
1650 /* Note that the following store must be done before the recursive calls. */
1651 n_replacements = j;
1653 for (i = n_reloads - 1; i >= 0; i--)
1655 if (reload_flags[i] == 1)
1657 deallocate_reload_reg (i);
1658 remove_address_replacements (rld[i].in);
1659 rld[i].in = 0;
1660 something_changed = 1;
1663 return something_changed;
1666 /* If there is only one output reload, and it is not for an earlyclobber
1667 operand, try to combine it with a (logically unrelated) input reload
1668 to reduce the number of reload registers needed.
1670 This is safe if the input reload does not appear in
1671 the value being output-reloaded, because this implies
1672 it is not needed any more once the original insn completes.
1674 If that doesn't work, see we can use any of the registers that
1675 die in this insn as a reload register. We can if it is of the right
1676 class and does not appear in the value being output-reloaded. */
1678 static void
1679 combine_reloads (void)
1681 int i;
1682 int output_reload = -1;
1683 int secondary_out = -1;
1684 rtx note;
1686 /* Find the output reload; return unless there is exactly one
1687 and that one is mandatory. */
1689 for (i = 0; i < n_reloads; i++)
1690 if (rld[i].out != 0)
1692 if (output_reload >= 0)
1693 return;
1694 output_reload = i;
1697 if (output_reload < 0 || rld[output_reload].optional)
1698 return;
1700 /* An input-output reload isn't combinable. */
1702 if (rld[output_reload].in != 0)
1703 return;
1705 /* If this reload is for an earlyclobber operand, we can't do anything. */
1706 if (earlyclobber_operand_p (rld[output_reload].out))
1707 return;
1709 /* If there is a reload for part of the address of this operand, we would
1710 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1711 its life to the point where doing this combine would not lower the
1712 number of spill registers needed. */
1713 for (i = 0; i < n_reloads; i++)
1714 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1715 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1716 && rld[i].opnum == rld[output_reload].opnum)
1717 return;
1719 /* Check each input reload; can we combine it? */
1721 for (i = 0; i < n_reloads; i++)
1722 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1723 /* Life span of this reload must not extend past main insn. */
1724 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1725 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1726 && rld[i].when_needed != RELOAD_OTHER
1727 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1728 == CLASS_MAX_NREGS (rld[output_reload].class,
1729 rld[output_reload].outmode))
1730 && rld[i].inc == 0
1731 && rld[i].reg_rtx == 0
1732 #ifdef SECONDARY_MEMORY_NEEDED
1733 /* Don't combine two reloads with different secondary
1734 memory locations. */
1735 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1736 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1737 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1738 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1739 #endif
1740 && (SMALL_REGISTER_CLASSES
1741 ? (rld[i].class == rld[output_reload].class)
1742 : (reg_class_subset_p (rld[i].class,
1743 rld[output_reload].class)
1744 || reg_class_subset_p (rld[output_reload].class,
1745 rld[i].class)))
1746 && (MATCHES (rld[i].in, rld[output_reload].out)
1747 /* Args reversed because the first arg seems to be
1748 the one that we imagine being modified
1749 while the second is the one that might be affected. */
1750 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1751 rld[i].in)
1752 /* However, if the input is a register that appears inside
1753 the output, then we also can't share.
1754 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1755 If the same reload reg is used for both reg 69 and the
1756 result to be stored in memory, then that result
1757 will clobber the address of the memory ref. */
1758 && ! (REG_P (rld[i].in)
1759 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1760 rld[output_reload].out))))
1761 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1762 rld[i].when_needed != RELOAD_FOR_INPUT)
1763 && (reg_class_size[(int) rld[i].class]
1764 || SMALL_REGISTER_CLASSES)
1765 /* We will allow making things slightly worse by combining an
1766 input and an output, but no worse than that. */
1767 && (rld[i].when_needed == RELOAD_FOR_INPUT
1768 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1770 int j;
1772 /* We have found a reload to combine with! */
1773 rld[i].out = rld[output_reload].out;
1774 rld[i].out_reg = rld[output_reload].out_reg;
1775 rld[i].outmode = rld[output_reload].outmode;
1776 /* Mark the old output reload as inoperative. */
1777 rld[output_reload].out = 0;
1778 /* The combined reload is needed for the entire insn. */
1779 rld[i].when_needed = RELOAD_OTHER;
1780 /* If the output reload had a secondary reload, copy it. */
1781 if (rld[output_reload].secondary_out_reload != -1)
1783 rld[i].secondary_out_reload
1784 = rld[output_reload].secondary_out_reload;
1785 rld[i].secondary_out_icode
1786 = rld[output_reload].secondary_out_icode;
1789 #ifdef SECONDARY_MEMORY_NEEDED
1790 /* Copy any secondary MEM. */
1791 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1792 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1793 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1794 #endif
1795 /* If required, minimize the register class. */
1796 if (reg_class_subset_p (rld[output_reload].class,
1797 rld[i].class))
1798 rld[i].class = rld[output_reload].class;
1800 /* Transfer all replacements from the old reload to the combined. */
1801 for (j = 0; j < n_replacements; j++)
1802 if (replacements[j].what == output_reload)
1803 replacements[j].what = i;
1805 return;
1808 /* If this insn has only one operand that is modified or written (assumed
1809 to be the first), it must be the one corresponding to this reload. It
1810 is safe to use anything that dies in this insn for that output provided
1811 that it does not occur in the output (we already know it isn't an
1812 earlyclobber. If this is an asm insn, give up. */
1814 if (INSN_CODE (this_insn) == -1)
1815 return;
1817 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1818 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1819 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1820 return;
1822 /* See if some hard register that dies in this insn and is not used in
1823 the output is the right class. Only works if the register we pick
1824 up can fully hold our output reload. */
1825 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1826 if (REG_NOTE_KIND (note) == REG_DEAD
1827 && REG_P (XEXP (note, 0))
1828 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1829 rld[output_reload].out)
1830 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1831 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1832 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1833 REGNO (XEXP (note, 0)))
1834 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1835 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1836 /* Ensure that a secondary or tertiary reload for this output
1837 won't want this register. */
1838 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1839 || (! (TEST_HARD_REG_BIT
1840 (reg_class_contents[(int) rld[secondary_out].class],
1841 REGNO (XEXP (note, 0))))
1842 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1843 || ! (TEST_HARD_REG_BIT
1844 (reg_class_contents[(int) rld[secondary_out].class],
1845 REGNO (XEXP (note, 0)))))))
1846 && ! fixed_regs[REGNO (XEXP (note, 0))]
1847 /* Check that we don't use a hardreg for an uninitialized
1848 pseudo. See also find_dummy_reload(). */
1849 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1850 || ! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1851 ORIGINAL_REGNO (XEXP (note, 0)))))
1853 rld[output_reload].reg_rtx
1854 = gen_rtx_REG (rld[output_reload].outmode,
1855 REGNO (XEXP (note, 0)));
1856 return;
1860 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1861 See if one of IN and OUT is a register that may be used;
1862 this is desirable since a spill-register won't be needed.
1863 If so, return the register rtx that proves acceptable.
1865 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1866 CLASS is the register class required for the reload.
1868 If FOR_REAL is >= 0, it is the number of the reload,
1869 and in some cases when it can be discovered that OUT doesn't need
1870 to be computed, clear out rld[FOR_REAL].out.
1872 If FOR_REAL is -1, this should not be done, because this call
1873 is just to see if a register can be found, not to find and install it.
1875 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1876 puts an additional constraint on being able to use IN for OUT since
1877 IN must not appear elsewhere in the insn (it is assumed that IN itself
1878 is safe from the earlyclobber). */
1880 static rtx
1881 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1882 enum machine_mode inmode, enum machine_mode outmode,
1883 enum reg_class class, int for_real, int earlyclobber)
1885 rtx in = real_in;
1886 rtx out = real_out;
1887 int in_offset = 0;
1888 int out_offset = 0;
1889 rtx value = 0;
1891 /* If operands exceed a word, we can't use either of them
1892 unless they have the same size. */
1893 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1894 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1895 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1896 return 0;
1898 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1899 respectively refers to a hard register. */
1901 /* Find the inside of any subregs. */
1902 while (GET_CODE (out) == SUBREG)
1904 if (REG_P (SUBREG_REG (out))
1905 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1906 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1907 GET_MODE (SUBREG_REG (out)),
1908 SUBREG_BYTE (out),
1909 GET_MODE (out));
1910 out = SUBREG_REG (out);
1912 while (GET_CODE (in) == SUBREG)
1914 if (REG_P (SUBREG_REG (in))
1915 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1916 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1917 GET_MODE (SUBREG_REG (in)),
1918 SUBREG_BYTE (in),
1919 GET_MODE (in));
1920 in = SUBREG_REG (in);
1923 /* Narrow down the reg class, the same way push_reload will;
1924 otherwise we might find a dummy now, but push_reload won't. */
1926 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1927 if (preferred_class != NO_REGS)
1928 class = preferred_class;
1931 /* See if OUT will do. */
1932 if (REG_P (out)
1933 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1935 unsigned int regno = REGNO (out) + out_offset;
1936 unsigned int nwords = hard_regno_nregs[regno][outmode];
1937 rtx saved_rtx;
1939 /* When we consider whether the insn uses OUT,
1940 ignore references within IN. They don't prevent us
1941 from copying IN into OUT, because those refs would
1942 move into the insn that reloads IN.
1944 However, we only ignore IN in its role as this reload.
1945 If the insn uses IN elsewhere and it contains OUT,
1946 that counts. We can't be sure it's the "same" operand
1947 so it might not go through this reload. */
1948 saved_rtx = *inloc;
1949 *inloc = const0_rtx;
1951 if (regno < FIRST_PSEUDO_REGISTER
1952 && HARD_REGNO_MODE_OK (regno, outmode)
1953 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1954 PATTERN (this_insn), outloc))
1956 unsigned int i;
1958 for (i = 0; i < nwords; i++)
1959 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1960 regno + i))
1961 break;
1963 if (i == nwords)
1965 if (REG_P (real_out))
1966 value = real_out;
1967 else
1968 value = gen_rtx_REG (outmode, regno);
1972 *inloc = saved_rtx;
1975 /* Consider using IN if OUT was not acceptable
1976 or if OUT dies in this insn (like the quotient in a divmod insn).
1977 We can't use IN unless it is dies in this insn,
1978 which means we must know accurately which hard regs are live.
1979 Also, the result can't go in IN if IN is used within OUT,
1980 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1981 if (hard_regs_live_known
1982 && REG_P (in)
1983 && REGNO (in) < FIRST_PSEUDO_REGISTER
1984 && (value == 0
1985 || find_reg_note (this_insn, REG_UNUSED, real_out))
1986 && find_reg_note (this_insn, REG_DEAD, real_in)
1987 && !fixed_regs[REGNO (in)]
1988 && HARD_REGNO_MODE_OK (REGNO (in),
1989 /* The only case where out and real_out might
1990 have different modes is where real_out
1991 is a subreg, and in that case, out
1992 has a real mode. */
1993 (GET_MODE (out) != VOIDmode
1994 ? GET_MODE (out) : outmode))
1995 /* But only do all this if we can be sure, that this input
1996 operand doesn't correspond with an uninitialized pseudoreg.
1997 global can assign some hardreg to it, which is the same as
1998 a different pseudo also currently live (as it can ignore the
1999 conflict). So we never must introduce writes to such hardregs,
2000 as they would clobber the other live pseudo using the same.
2001 See also PR20973. */
2002 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2003 || ! bitmap_bit_p (DF_RA_LIVE_OUT (ENTRY_BLOCK_PTR),
2004 ORIGINAL_REGNO (in))))
2006 unsigned int regno = REGNO (in) + in_offset;
2007 unsigned int nwords = hard_regno_nregs[regno][inmode];
2009 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2010 && ! hard_reg_set_here_p (regno, regno + nwords,
2011 PATTERN (this_insn))
2012 && (! earlyclobber
2013 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2014 PATTERN (this_insn), inloc)))
2016 unsigned int i;
2018 for (i = 0; i < nwords; i++)
2019 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2020 regno + i))
2021 break;
2023 if (i == nwords)
2025 /* If we were going to use OUT as the reload reg
2026 and changed our mind, it means OUT is a dummy that
2027 dies here. So don't bother copying value to it. */
2028 if (for_real >= 0 && value == real_out)
2029 rld[for_real].out = 0;
2030 if (REG_P (real_in))
2031 value = real_in;
2032 else
2033 value = gen_rtx_REG (inmode, regno);
2038 return value;
2041 /* This page contains subroutines used mainly for determining
2042 whether the IN or an OUT of a reload can serve as the
2043 reload register. */
2045 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2048 earlyclobber_operand_p (rtx x)
2050 int i;
2052 for (i = 0; i < n_earlyclobbers; i++)
2053 if (reload_earlyclobbers[i] == x)
2054 return 1;
2056 return 0;
2059 /* Return 1 if expression X alters a hard reg in the range
2060 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2061 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2062 X should be the body of an instruction. */
2064 static int
2065 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2067 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2069 rtx op0 = SET_DEST (x);
2071 while (GET_CODE (op0) == SUBREG)
2072 op0 = SUBREG_REG (op0);
2073 if (REG_P (op0))
2075 unsigned int r = REGNO (op0);
2077 /* See if this reg overlaps range under consideration. */
2078 if (r < end_regno
2079 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2080 return 1;
2083 else if (GET_CODE (x) == PARALLEL)
2085 int i = XVECLEN (x, 0) - 1;
2087 for (; i >= 0; i--)
2088 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2089 return 1;
2092 return 0;
2095 /* Return 1 if ADDR is a valid memory address for mode MODE,
2096 and check that each pseudo reg has the proper kind of
2097 hard reg. */
2100 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2102 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2103 return 0;
2105 win:
2106 return 1;
2109 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2110 if they are the same hard reg, and has special hacks for
2111 autoincrement and autodecrement.
2112 This is specifically intended for find_reloads to use
2113 in determining whether two operands match.
2114 X is the operand whose number is the lower of the two.
2116 The value is 2 if Y contains a pre-increment that matches
2117 a non-incrementing address in X. */
2119 /* ??? To be completely correct, we should arrange to pass
2120 for X the output operand and for Y the input operand.
2121 For now, we assume that the output operand has the lower number
2122 because that is natural in (SET output (... input ...)). */
2125 operands_match_p (rtx x, rtx y)
2127 int i;
2128 RTX_CODE code = GET_CODE (x);
2129 const char *fmt;
2130 int success_2;
2132 if (x == y)
2133 return 1;
2134 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2135 && (REG_P (y) || (GET_CODE (y) == SUBREG
2136 && REG_P (SUBREG_REG (y)))))
2138 int j;
2140 if (code == SUBREG)
2142 i = REGNO (SUBREG_REG (x));
2143 if (i >= FIRST_PSEUDO_REGISTER)
2144 goto slow;
2145 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2146 GET_MODE (SUBREG_REG (x)),
2147 SUBREG_BYTE (x),
2148 GET_MODE (x));
2150 else
2151 i = REGNO (x);
2153 if (GET_CODE (y) == SUBREG)
2155 j = REGNO (SUBREG_REG (y));
2156 if (j >= FIRST_PSEUDO_REGISTER)
2157 goto slow;
2158 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2159 GET_MODE (SUBREG_REG (y)),
2160 SUBREG_BYTE (y),
2161 GET_MODE (y));
2163 else
2164 j = REGNO (y);
2166 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2167 multiple hard register group of scalar integer registers, so that
2168 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2169 register. */
2170 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2171 && SCALAR_INT_MODE_P (GET_MODE (x))
2172 && i < FIRST_PSEUDO_REGISTER)
2173 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2174 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2175 && SCALAR_INT_MODE_P (GET_MODE (y))
2176 && j < FIRST_PSEUDO_REGISTER)
2177 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2179 return i == j;
2181 /* If two operands must match, because they are really a single
2182 operand of an assembler insn, then two postincrements are invalid
2183 because the assembler insn would increment only once.
2184 On the other hand, a postincrement matches ordinary indexing
2185 if the postincrement is the output operand. */
2186 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2187 return operands_match_p (XEXP (x, 0), y);
2188 /* Two preincrements are invalid
2189 because the assembler insn would increment only once.
2190 On the other hand, a preincrement matches ordinary indexing
2191 if the preincrement is the input operand.
2192 In this case, return 2, since some callers need to do special
2193 things when this happens. */
2194 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2195 || GET_CODE (y) == PRE_MODIFY)
2196 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2198 slow:
2200 /* Now we have disposed of all the cases in which different rtx codes
2201 can match. */
2202 if (code != GET_CODE (y))
2203 return 0;
2205 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2206 if (GET_MODE (x) != GET_MODE (y))
2207 return 0;
2209 switch (code)
2211 case CONST_INT:
2212 case CONST_DOUBLE:
2213 return 0;
2215 case LABEL_REF:
2216 return XEXP (x, 0) == XEXP (y, 0);
2217 case SYMBOL_REF:
2218 return XSTR (x, 0) == XSTR (y, 0);
2220 default:
2221 break;
2224 /* Compare the elements. If any pair of corresponding elements
2225 fail to match, return 0 for the whole things. */
2227 success_2 = 0;
2228 fmt = GET_RTX_FORMAT (code);
2229 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2231 int val, j;
2232 switch (fmt[i])
2234 case 'w':
2235 if (XWINT (x, i) != XWINT (y, i))
2236 return 0;
2237 break;
2239 case 'i':
2240 if (XINT (x, i) != XINT (y, i))
2241 return 0;
2242 break;
2244 case 'e':
2245 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2246 if (val == 0)
2247 return 0;
2248 /* If any subexpression returns 2,
2249 we should return 2 if we are successful. */
2250 if (val == 2)
2251 success_2 = 1;
2252 break;
2254 case '0':
2255 break;
2257 case 'E':
2258 if (XVECLEN (x, i) != XVECLEN (y, i))
2259 return 0;
2260 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2262 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2263 if (val == 0)
2264 return 0;
2265 if (val == 2)
2266 success_2 = 1;
2268 break;
2270 /* It is believed that rtx's at this level will never
2271 contain anything but integers and other rtx's,
2272 except for within LABEL_REFs and SYMBOL_REFs. */
2273 default:
2274 gcc_unreachable ();
2277 return 1 + success_2;
2280 /* Describe the range of registers or memory referenced by X.
2281 If X is a register, set REG_FLAG and put the first register
2282 number into START and the last plus one into END.
2283 If X is a memory reference, put a base address into BASE
2284 and a range of integer offsets into START and END.
2285 If X is pushing on the stack, we can assume it causes no trouble,
2286 so we set the SAFE field. */
2288 static struct decomposition
2289 decompose (rtx x)
2291 struct decomposition val;
2292 int all_const = 0;
2294 memset (&val, 0, sizeof (val));
2296 switch (GET_CODE (x))
2298 case MEM:
2300 rtx base = NULL_RTX, offset = 0;
2301 rtx addr = XEXP (x, 0);
2303 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2304 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2306 val.base = XEXP (addr, 0);
2307 val.start = -GET_MODE_SIZE (GET_MODE (x));
2308 val.end = GET_MODE_SIZE (GET_MODE (x));
2309 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2310 return val;
2313 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2315 if (GET_CODE (XEXP (addr, 1)) == PLUS
2316 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2317 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2319 val.base = XEXP (addr, 0);
2320 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2321 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2322 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2323 return val;
2327 if (GET_CODE (addr) == CONST)
2329 addr = XEXP (addr, 0);
2330 all_const = 1;
2332 if (GET_CODE (addr) == PLUS)
2334 if (CONSTANT_P (XEXP (addr, 0)))
2336 base = XEXP (addr, 1);
2337 offset = XEXP (addr, 0);
2339 else if (CONSTANT_P (XEXP (addr, 1)))
2341 base = XEXP (addr, 0);
2342 offset = XEXP (addr, 1);
2346 if (offset == 0)
2348 base = addr;
2349 offset = const0_rtx;
2351 if (GET_CODE (offset) == CONST)
2352 offset = XEXP (offset, 0);
2353 if (GET_CODE (offset) == PLUS)
2355 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2357 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2358 offset = XEXP (offset, 0);
2360 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2362 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2363 offset = XEXP (offset, 1);
2365 else
2367 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2368 offset = const0_rtx;
2371 else if (GET_CODE (offset) != CONST_INT)
2373 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2374 offset = const0_rtx;
2377 if (all_const && GET_CODE (base) == PLUS)
2378 base = gen_rtx_CONST (GET_MODE (base), base);
2380 gcc_assert (GET_CODE (offset) == CONST_INT);
2382 val.start = INTVAL (offset);
2383 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2384 val.base = base;
2386 break;
2388 case REG:
2389 val.reg_flag = 1;
2390 val.start = true_regnum (x);
2391 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2393 /* A pseudo with no hard reg. */
2394 val.start = REGNO (x);
2395 val.end = val.start + 1;
2397 else
2398 /* A hard reg. */
2399 val.end = end_hard_regno (GET_MODE (x), val.start);
2400 break;
2402 case SUBREG:
2403 if (!REG_P (SUBREG_REG (x)))
2404 /* This could be more precise, but it's good enough. */
2405 return decompose (SUBREG_REG (x));
2406 val.reg_flag = 1;
2407 val.start = true_regnum (x);
2408 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2409 return decompose (SUBREG_REG (x));
2410 else
2411 /* A hard reg. */
2412 val.end = val.start + subreg_nregs (x);
2413 break;
2415 case SCRATCH:
2416 /* This hasn't been assigned yet, so it can't conflict yet. */
2417 val.safe = 1;
2418 break;
2420 default:
2421 gcc_assert (CONSTANT_P (x));
2422 val.safe = 1;
2423 break;
2425 return val;
2428 /* Return 1 if altering Y will not modify the value of X.
2429 Y is also described by YDATA, which should be decompose (Y). */
2431 static int
2432 immune_p (rtx x, rtx y, struct decomposition ydata)
2434 struct decomposition xdata;
2436 if (ydata.reg_flag)
2437 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2438 if (ydata.safe)
2439 return 1;
2441 gcc_assert (MEM_P (y));
2442 /* If Y is memory and X is not, Y can't affect X. */
2443 if (!MEM_P (x))
2444 return 1;
2446 xdata = decompose (x);
2448 if (! rtx_equal_p (xdata.base, ydata.base))
2450 /* If bases are distinct symbolic constants, there is no overlap. */
2451 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2452 return 1;
2453 /* Constants and stack slots never overlap. */
2454 if (CONSTANT_P (xdata.base)
2455 && (ydata.base == frame_pointer_rtx
2456 || ydata.base == hard_frame_pointer_rtx
2457 || ydata.base == stack_pointer_rtx))
2458 return 1;
2459 if (CONSTANT_P (ydata.base)
2460 && (xdata.base == frame_pointer_rtx
2461 || xdata.base == hard_frame_pointer_rtx
2462 || xdata.base == stack_pointer_rtx))
2463 return 1;
2464 /* If either base is variable, we don't know anything. */
2465 return 0;
2468 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2471 /* Similar, but calls decompose. */
2474 safe_from_earlyclobber (rtx op, rtx clobber)
2476 struct decomposition early_data;
2478 early_data = decompose (clobber);
2479 return immune_p (op, clobber, early_data);
2482 /* Main entry point of this file: search the body of INSN
2483 for values that need reloading and record them with push_reload.
2484 REPLACE nonzero means record also where the values occur
2485 so that subst_reloads can be used.
2487 IND_LEVELS says how many levels of indirection are supported by this
2488 machine; a value of zero means that a memory reference is not a valid
2489 memory address.
2491 LIVE_KNOWN says we have valid information about which hard
2492 regs are live at each point in the program; this is true when
2493 we are called from global_alloc but false when stupid register
2494 allocation has been done.
2496 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2497 which is nonnegative if the reg has been commandeered for reloading into.
2498 It is copied into STATIC_RELOAD_REG_P and referenced from there
2499 by various subroutines.
2501 Return TRUE if some operands need to be changed, because of swapping
2502 commutative operands, reg_equiv_address substitution, or whatever. */
2505 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2506 short *reload_reg_p)
2508 int insn_code_number;
2509 int i, j;
2510 int noperands;
2511 /* These start out as the constraints for the insn
2512 and they are chewed up as we consider alternatives. */
2513 char *constraints[MAX_RECOG_OPERANDS];
2514 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2515 a register. */
2516 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2517 char pref_or_nothing[MAX_RECOG_OPERANDS];
2518 /* Nonzero for a MEM operand whose entire address needs a reload.
2519 May be -1 to indicate the entire address may or may not need a reload. */
2520 int address_reloaded[MAX_RECOG_OPERANDS];
2521 /* Nonzero for an address operand that needs to be completely reloaded.
2522 May be -1 to indicate the entire operand may or may not need a reload. */
2523 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2524 /* Value of enum reload_type to use for operand. */
2525 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2526 /* Value of enum reload_type to use within address of operand. */
2527 enum reload_type address_type[MAX_RECOG_OPERANDS];
2528 /* Save the usage of each operand. */
2529 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2530 int no_input_reloads = 0, no_output_reloads = 0;
2531 int n_alternatives;
2532 int this_alternative[MAX_RECOG_OPERANDS];
2533 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2534 char this_alternative_win[MAX_RECOG_OPERANDS];
2535 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2536 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2537 int this_alternative_matches[MAX_RECOG_OPERANDS];
2538 int swapped;
2539 int goal_alternative[MAX_RECOG_OPERANDS];
2540 int this_alternative_number;
2541 int goal_alternative_number = 0;
2542 int operand_reloadnum[MAX_RECOG_OPERANDS];
2543 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2544 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2545 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2546 char goal_alternative_win[MAX_RECOG_OPERANDS];
2547 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2548 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2549 int goal_alternative_swapped;
2550 int best;
2551 int commutative;
2552 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2553 rtx substed_operand[MAX_RECOG_OPERANDS];
2554 rtx body = PATTERN (insn);
2555 rtx set = single_set (insn);
2556 int goal_earlyclobber = 0, this_earlyclobber;
2557 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2558 int retval = 0;
2560 this_insn = insn;
2561 n_reloads = 0;
2562 n_replacements = 0;
2563 n_earlyclobbers = 0;
2564 replace_reloads = replace;
2565 hard_regs_live_known = live_known;
2566 static_reload_reg_p = reload_reg_p;
2568 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2569 neither are insns that SET cc0. Insns that use CC0 are not allowed
2570 to have any input reloads. */
2571 if (JUMP_P (insn) || CALL_P (insn))
2572 no_output_reloads = 1;
2574 #ifdef HAVE_cc0
2575 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2576 no_input_reloads = 1;
2577 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2578 no_output_reloads = 1;
2579 #endif
2581 #ifdef SECONDARY_MEMORY_NEEDED
2582 /* The eliminated forms of any secondary memory locations are per-insn, so
2583 clear them out here. */
2585 if (secondary_memlocs_elim_used)
2587 memset (secondary_memlocs_elim, 0,
2588 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2589 secondary_memlocs_elim_used = 0;
2591 #endif
2593 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2594 is cheap to move between them. If it is not, there may not be an insn
2595 to do the copy, so we may need a reload. */
2596 if (GET_CODE (body) == SET
2597 && REG_P (SET_DEST (body))
2598 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2599 && REG_P (SET_SRC (body))
2600 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2601 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2602 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2603 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2604 return 0;
2606 extract_insn (insn);
2608 noperands = reload_n_operands = recog_data.n_operands;
2609 n_alternatives = recog_data.n_alternatives;
2611 /* Just return "no reloads" if insn has no operands with constraints. */
2612 if (noperands == 0 || n_alternatives == 0)
2613 return 0;
2615 insn_code_number = INSN_CODE (insn);
2616 this_insn_is_asm = insn_code_number < 0;
2618 memcpy (operand_mode, recog_data.operand_mode,
2619 noperands * sizeof (enum machine_mode));
2620 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2622 commutative = -1;
2624 /* If we will need to know, later, whether some pair of operands
2625 are the same, we must compare them now and save the result.
2626 Reloading the base and index registers will clobber them
2627 and afterward they will fail to match. */
2629 for (i = 0; i < noperands; i++)
2631 char *p;
2632 int c;
2634 substed_operand[i] = recog_data.operand[i];
2635 p = constraints[i];
2637 modified[i] = RELOAD_READ;
2639 /* Scan this operand's constraint to see if it is an output operand,
2640 an in-out operand, is commutative, or should match another. */
2642 while ((c = *p))
2644 p += CONSTRAINT_LEN (c, p);
2645 switch (c)
2647 case '=':
2648 modified[i] = RELOAD_WRITE;
2649 break;
2650 case '+':
2651 modified[i] = RELOAD_READ_WRITE;
2652 break;
2653 case '%':
2655 /* The last operand should not be marked commutative. */
2656 gcc_assert (i != noperands - 1);
2658 /* We currently only support one commutative pair of
2659 operands. Some existing asm code currently uses more
2660 than one pair. Previously, that would usually work,
2661 but sometimes it would crash the compiler. We
2662 continue supporting that case as well as we can by
2663 silently ignoring all but the first pair. In the
2664 future we may handle it correctly. */
2665 if (commutative < 0)
2666 commutative = i;
2667 else
2668 gcc_assert (this_insn_is_asm);
2670 break;
2671 /* Use of ISDIGIT is tempting here, but it may get expensive because
2672 of locale support we don't want. */
2673 case '0': case '1': case '2': case '3': case '4':
2674 case '5': case '6': case '7': case '8': case '9':
2676 c = strtoul (p - 1, &p, 10);
2678 operands_match[c][i]
2679 = operands_match_p (recog_data.operand[c],
2680 recog_data.operand[i]);
2682 /* An operand may not match itself. */
2683 gcc_assert (c != i);
2685 /* If C can be commuted with C+1, and C might need to match I,
2686 then C+1 might also need to match I. */
2687 if (commutative >= 0)
2689 if (c == commutative || c == commutative + 1)
2691 int other = c + (c == commutative ? 1 : -1);
2692 operands_match[other][i]
2693 = operands_match_p (recog_data.operand[other],
2694 recog_data.operand[i]);
2696 if (i == commutative || i == commutative + 1)
2698 int other = i + (i == commutative ? 1 : -1);
2699 operands_match[c][other]
2700 = operands_match_p (recog_data.operand[c],
2701 recog_data.operand[other]);
2703 /* Note that C is supposed to be less than I.
2704 No need to consider altering both C and I because in
2705 that case we would alter one into the other. */
2712 /* Examine each operand that is a memory reference or memory address
2713 and reload parts of the addresses into index registers.
2714 Also here any references to pseudo regs that didn't get hard regs
2715 but are equivalent to constants get replaced in the insn itself
2716 with those constants. Nobody will ever see them again.
2718 Finally, set up the preferred classes of each operand. */
2720 for (i = 0; i < noperands; i++)
2722 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2724 address_reloaded[i] = 0;
2725 address_operand_reloaded[i] = 0;
2726 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2727 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2728 : RELOAD_OTHER);
2729 address_type[i]
2730 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2731 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2732 : RELOAD_OTHER);
2734 if (*constraints[i] == 0)
2735 /* Ignore things like match_operator operands. */
2737 else if (constraints[i][0] == 'p'
2738 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2740 address_operand_reloaded[i]
2741 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2742 recog_data.operand[i],
2743 recog_data.operand_loc[i],
2744 i, operand_type[i], ind_levels, insn);
2746 /* If we now have a simple operand where we used to have a
2747 PLUS or MULT, re-recognize and try again. */
2748 if ((OBJECT_P (*recog_data.operand_loc[i])
2749 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2750 && (GET_CODE (recog_data.operand[i]) == MULT
2751 || GET_CODE (recog_data.operand[i]) == PLUS))
2753 INSN_CODE (insn) = -1;
2754 retval = find_reloads (insn, replace, ind_levels, live_known,
2755 reload_reg_p);
2756 return retval;
2759 recog_data.operand[i] = *recog_data.operand_loc[i];
2760 substed_operand[i] = recog_data.operand[i];
2762 /* Address operands are reloaded in their existing mode,
2763 no matter what is specified in the machine description. */
2764 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2766 else if (code == MEM)
2768 address_reloaded[i]
2769 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2770 recog_data.operand_loc[i],
2771 XEXP (recog_data.operand[i], 0),
2772 &XEXP (recog_data.operand[i], 0),
2773 i, address_type[i], ind_levels, insn);
2774 recog_data.operand[i] = *recog_data.operand_loc[i];
2775 substed_operand[i] = recog_data.operand[i];
2777 else if (code == SUBREG)
2779 rtx reg = SUBREG_REG (recog_data.operand[i]);
2780 rtx op
2781 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2782 ind_levels,
2783 set != 0
2784 && &SET_DEST (set) == recog_data.operand_loc[i],
2785 insn,
2786 &address_reloaded[i]);
2788 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2789 that didn't get a hard register, emit a USE with a REG_EQUAL
2790 note in front so that we might inherit a previous, possibly
2791 wider reload. */
2793 if (replace
2794 && MEM_P (op)
2795 && REG_P (reg)
2796 && (GET_MODE_SIZE (GET_MODE (reg))
2797 >= GET_MODE_SIZE (GET_MODE (op))))
2798 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2799 insn),
2800 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2802 substed_operand[i] = recog_data.operand[i] = op;
2804 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2805 /* We can get a PLUS as an "operand" as a result of register
2806 elimination. See eliminate_regs and gen_reload. We handle
2807 a unary operator by reloading the operand. */
2808 substed_operand[i] = recog_data.operand[i]
2809 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2810 ind_levels, 0, insn,
2811 &address_reloaded[i]);
2812 else if (code == REG)
2814 /* This is equivalent to calling find_reloads_toplev.
2815 The code is duplicated for speed.
2816 When we find a pseudo always equivalent to a constant,
2817 we replace it by the constant. We must be sure, however,
2818 that we don't try to replace it in the insn in which it
2819 is being set. */
2820 int regno = REGNO (recog_data.operand[i]);
2821 if (reg_equiv_constant[regno] != 0
2822 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2824 /* Record the existing mode so that the check if constants are
2825 allowed will work when operand_mode isn't specified. */
2827 if (operand_mode[i] == VOIDmode)
2828 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2830 substed_operand[i] = recog_data.operand[i]
2831 = reg_equiv_constant[regno];
2833 if (reg_equiv_memory_loc[regno] != 0
2834 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2835 /* We need not give a valid is_set_dest argument since the case
2836 of a constant equivalence was checked above. */
2837 substed_operand[i] = recog_data.operand[i]
2838 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2839 ind_levels, 0, insn,
2840 &address_reloaded[i]);
2842 /* If the operand is still a register (we didn't replace it with an
2843 equivalent), get the preferred class to reload it into. */
2844 code = GET_CODE (recog_data.operand[i]);
2845 preferred_class[i]
2846 = ((code == REG && REGNO (recog_data.operand[i])
2847 >= FIRST_PSEUDO_REGISTER)
2848 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2849 : NO_REGS);
2850 pref_or_nothing[i]
2851 = (code == REG
2852 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2853 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2856 /* If this is simply a copy from operand 1 to operand 0, merge the
2857 preferred classes for the operands. */
2858 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2859 && recog_data.operand[1] == SET_SRC (set))
2861 preferred_class[0] = preferred_class[1]
2862 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2863 pref_or_nothing[0] |= pref_or_nothing[1];
2864 pref_or_nothing[1] |= pref_or_nothing[0];
2867 /* Now see what we need for pseudo-regs that didn't get hard regs
2868 or got the wrong kind of hard reg. For this, we must consider
2869 all the operands together against the register constraints. */
2871 best = MAX_RECOG_OPERANDS * 2 + 600;
2873 swapped = 0;
2874 goal_alternative_swapped = 0;
2875 try_swapped:
2877 /* The constraints are made of several alternatives.
2878 Each operand's constraint looks like foo,bar,... with commas
2879 separating the alternatives. The first alternatives for all
2880 operands go together, the second alternatives go together, etc.
2882 First loop over alternatives. */
2884 for (this_alternative_number = 0;
2885 this_alternative_number < n_alternatives;
2886 this_alternative_number++)
2888 /* Loop over operands for one constraint alternative. */
2889 /* LOSERS counts those that don't fit this alternative
2890 and would require loading. */
2891 int losers = 0;
2892 /* BAD is set to 1 if it some operand can't fit this alternative
2893 even after reloading. */
2894 int bad = 0;
2895 /* REJECT is a count of how undesirable this alternative says it is
2896 if any reloading is required. If the alternative matches exactly
2897 then REJECT is ignored, but otherwise it gets this much
2898 counted against it in addition to the reloading needed. Each
2899 ? counts three times here since we want the disparaging caused by
2900 a bad register class to only count 1/3 as much. */
2901 int reject = 0;
2903 this_earlyclobber = 0;
2905 for (i = 0; i < noperands; i++)
2907 char *p = constraints[i];
2908 char *end;
2909 int len;
2910 int win = 0;
2911 int did_match = 0;
2912 /* 0 => this operand can be reloaded somehow for this alternative. */
2913 int badop = 1;
2914 /* 0 => this operand can be reloaded if the alternative allows regs. */
2915 int winreg = 0;
2916 int c;
2917 int m;
2918 rtx operand = recog_data.operand[i];
2919 int offset = 0;
2920 /* Nonzero means this is a MEM that must be reloaded into a reg
2921 regardless of what the constraint says. */
2922 int force_reload = 0;
2923 int offmemok = 0;
2924 /* Nonzero if a constant forced into memory would be OK for this
2925 operand. */
2926 int constmemok = 0;
2927 int earlyclobber = 0;
2929 /* If the predicate accepts a unary operator, it means that
2930 we need to reload the operand, but do not do this for
2931 match_operator and friends. */
2932 if (UNARY_P (operand) && *p != 0)
2933 operand = XEXP (operand, 0);
2935 /* If the operand is a SUBREG, extract
2936 the REG or MEM (or maybe even a constant) within.
2937 (Constants can occur as a result of reg_equiv_constant.) */
2939 while (GET_CODE (operand) == SUBREG)
2941 /* Offset only matters when operand is a REG and
2942 it is a hard reg. This is because it is passed
2943 to reg_fits_class_p if it is a REG and all pseudos
2944 return 0 from that function. */
2945 if (REG_P (SUBREG_REG (operand))
2946 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2948 if (!subreg_offset_representable_p
2949 (REGNO (SUBREG_REG (operand)),
2950 GET_MODE (SUBREG_REG (operand)),
2951 SUBREG_BYTE (operand),
2952 GET_MODE (operand)))
2953 force_reload = 1;
2954 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2955 GET_MODE (SUBREG_REG (operand)),
2956 SUBREG_BYTE (operand),
2957 GET_MODE (operand));
2959 operand = SUBREG_REG (operand);
2960 /* Force reload if this is a constant or PLUS or if there may
2961 be a problem accessing OPERAND in the outer mode. */
2962 if (CONSTANT_P (operand)
2963 || GET_CODE (operand) == PLUS
2964 /* We must force a reload of paradoxical SUBREGs
2965 of a MEM because the alignment of the inner value
2966 may not be enough to do the outer reference. On
2967 big-endian machines, it may also reference outside
2968 the object.
2970 On machines that extend byte operations and we have a
2971 SUBREG where both the inner and outer modes are no wider
2972 than a word and the inner mode is narrower, is integral,
2973 and gets extended when loaded from memory, combine.c has
2974 made assumptions about the behavior of the machine in such
2975 register access. If the data is, in fact, in memory we
2976 must always load using the size assumed to be in the
2977 register and let the insn do the different-sized
2978 accesses.
2980 This is doubly true if WORD_REGISTER_OPERATIONS. In
2981 this case eliminate_regs has left non-paradoxical
2982 subregs for push_reload to see. Make sure it does
2983 by forcing the reload.
2985 ??? When is it right at this stage to have a subreg
2986 of a mem that is _not_ to be handled specially? IMO
2987 those should have been reduced to just a mem. */
2988 || ((MEM_P (operand)
2989 || (REG_P (operand)
2990 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2991 #ifndef WORD_REGISTER_OPERATIONS
2992 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2993 < BIGGEST_ALIGNMENT)
2994 && (GET_MODE_SIZE (operand_mode[i])
2995 > GET_MODE_SIZE (GET_MODE (operand))))
2996 || BYTES_BIG_ENDIAN
2997 #ifdef LOAD_EXTEND_OP
2998 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2999 && (GET_MODE_SIZE (GET_MODE (operand))
3000 <= UNITS_PER_WORD)
3001 && (GET_MODE_SIZE (operand_mode[i])
3002 > GET_MODE_SIZE (GET_MODE (operand)))
3003 && INTEGRAL_MODE_P (GET_MODE (operand))
3004 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3005 #endif
3007 #endif
3010 force_reload = 1;
3013 this_alternative[i] = (int) NO_REGS;
3014 this_alternative_win[i] = 0;
3015 this_alternative_match_win[i] = 0;
3016 this_alternative_offmemok[i] = 0;
3017 this_alternative_earlyclobber[i] = 0;
3018 this_alternative_matches[i] = -1;
3020 /* An empty constraint or empty alternative
3021 allows anything which matched the pattern. */
3022 if (*p == 0 || *p == ',')
3023 win = 1, badop = 0;
3025 /* Scan this alternative's specs for this operand;
3026 set WIN if the operand fits any letter in this alternative.
3027 Otherwise, clear BADOP if this operand could
3028 fit some letter after reloads,
3029 or set WINREG if this operand could fit after reloads
3030 provided the constraint allows some registers. */
3033 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3035 case '\0':
3036 len = 0;
3037 break;
3038 case ',':
3039 c = '\0';
3040 break;
3042 case '=': case '+': case '*':
3043 break;
3045 case '%':
3046 /* We only support one commutative marker, the first
3047 one. We already set commutative above. */
3048 break;
3050 case '?':
3051 reject += 6;
3052 break;
3054 case '!':
3055 reject = 600;
3056 break;
3058 case '#':
3059 /* Ignore rest of this alternative as far as
3060 reloading is concerned. */
3062 p++;
3063 while (*p && *p != ',');
3064 len = 0;
3065 break;
3067 case '0': case '1': case '2': case '3': case '4':
3068 case '5': case '6': case '7': case '8': case '9':
3069 m = strtoul (p, &end, 10);
3070 p = end;
3071 len = 0;
3073 this_alternative_matches[i] = m;
3074 /* We are supposed to match a previous operand.
3075 If we do, we win if that one did.
3076 If we do not, count both of the operands as losers.
3077 (This is too conservative, since most of the time
3078 only a single reload insn will be needed to make
3079 the two operands win. As a result, this alternative
3080 may be rejected when it is actually desirable.) */
3081 if ((swapped && (m != commutative || i != commutative + 1))
3082 /* If we are matching as if two operands were swapped,
3083 also pretend that operands_match had been computed
3084 with swapped.
3085 But if I is the second of those and C is the first,
3086 don't exchange them, because operands_match is valid
3087 only on one side of its diagonal. */
3088 ? (operands_match
3089 [(m == commutative || m == commutative + 1)
3090 ? 2 * commutative + 1 - m : m]
3091 [(i == commutative || i == commutative + 1)
3092 ? 2 * commutative + 1 - i : i])
3093 : operands_match[m][i])
3095 /* If we are matching a non-offsettable address where an
3096 offsettable address was expected, then we must reject
3097 this combination, because we can't reload it. */
3098 if (this_alternative_offmemok[m]
3099 && MEM_P (recog_data.operand[m])
3100 && this_alternative[m] == (int) NO_REGS
3101 && ! this_alternative_win[m])
3102 bad = 1;
3104 did_match = this_alternative_win[m];
3106 else
3108 /* Operands don't match. */
3109 rtx value;
3110 int loc1, loc2;
3111 /* Retroactively mark the operand we had to match
3112 as a loser, if it wasn't already. */
3113 if (this_alternative_win[m])
3114 losers++;
3115 this_alternative_win[m] = 0;
3116 if (this_alternative[m] == (int) NO_REGS)
3117 bad = 1;
3118 /* But count the pair only once in the total badness of
3119 this alternative, if the pair can be a dummy reload.
3120 The pointers in operand_loc are not swapped; swap
3121 them by hand if necessary. */
3122 if (swapped && i == commutative)
3123 loc1 = commutative + 1;
3124 else if (swapped && i == commutative + 1)
3125 loc1 = commutative;
3126 else
3127 loc1 = i;
3128 if (swapped && m == commutative)
3129 loc2 = commutative + 1;
3130 else if (swapped && m == commutative + 1)
3131 loc2 = commutative;
3132 else
3133 loc2 = m;
3134 value
3135 = find_dummy_reload (recog_data.operand[i],
3136 recog_data.operand[m],
3137 recog_data.operand_loc[loc1],
3138 recog_data.operand_loc[loc2],
3139 operand_mode[i], operand_mode[m],
3140 this_alternative[m], -1,
3141 this_alternative_earlyclobber[m]);
3143 if (value != 0)
3144 losers--;
3146 /* This can be fixed with reloads if the operand
3147 we are supposed to match can be fixed with reloads. */
3148 badop = 0;
3149 this_alternative[i] = this_alternative[m];
3151 /* If we have to reload this operand and some previous
3152 operand also had to match the same thing as this
3153 operand, we don't know how to do that. So reject this
3154 alternative. */
3155 if (! did_match || force_reload)
3156 for (j = 0; j < i; j++)
3157 if (this_alternative_matches[j]
3158 == this_alternative_matches[i])
3159 badop = 1;
3160 break;
3162 case 'p':
3163 /* All necessary reloads for an address_operand
3164 were handled in find_reloads_address. */
3165 this_alternative[i]
3166 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3167 win = 1;
3168 badop = 0;
3169 break;
3171 case 'm':
3172 if (force_reload)
3173 break;
3174 if (MEM_P (operand)
3175 || (REG_P (operand)
3176 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3177 && reg_renumber[REGNO (operand)] < 0))
3178 win = 1;
3179 if (CONST_POOL_OK_P (operand))
3180 badop = 0;
3181 constmemok = 1;
3182 break;
3184 case '<':
3185 if (MEM_P (operand)
3186 && ! address_reloaded[i]
3187 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3188 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3189 win = 1;
3190 break;
3192 case '>':
3193 if (MEM_P (operand)
3194 && ! address_reloaded[i]
3195 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3196 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3197 win = 1;
3198 break;
3200 /* Memory operand whose address is not offsettable. */
3201 case 'V':
3202 if (force_reload)
3203 break;
3204 if (MEM_P (operand)
3205 && ! (ind_levels ? offsettable_memref_p (operand)
3206 : offsettable_nonstrict_memref_p (operand))
3207 /* Certain mem addresses will become offsettable
3208 after they themselves are reloaded. This is important;
3209 we don't want our own handling of unoffsettables
3210 to override the handling of reg_equiv_address. */
3211 && !(REG_P (XEXP (operand, 0))
3212 && (ind_levels == 0
3213 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3214 win = 1;
3215 break;
3217 /* Memory operand whose address is offsettable. */
3218 case 'o':
3219 if (force_reload)
3220 break;
3221 if ((MEM_P (operand)
3222 /* If IND_LEVELS, find_reloads_address won't reload a
3223 pseudo that didn't get a hard reg, so we have to
3224 reject that case. */
3225 && ((ind_levels ? offsettable_memref_p (operand)
3226 : offsettable_nonstrict_memref_p (operand))
3227 /* A reloaded address is offsettable because it is now
3228 just a simple register indirect. */
3229 || address_reloaded[i] == 1))
3230 || (REG_P (operand)
3231 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3232 && reg_renumber[REGNO (operand)] < 0
3233 /* If reg_equiv_address is nonzero, we will be
3234 loading it into a register; hence it will be
3235 offsettable, but we cannot say that reg_equiv_mem
3236 is offsettable without checking. */
3237 && ((reg_equiv_mem[REGNO (operand)] != 0
3238 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3239 || (reg_equiv_address[REGNO (operand)] != 0))))
3240 win = 1;
3241 if (CONST_POOL_OK_P (operand)
3242 || MEM_P (operand))
3243 badop = 0;
3244 constmemok = 1;
3245 offmemok = 1;
3246 break;
3248 case '&':
3249 /* Output operand that is stored before the need for the
3250 input operands (and their index registers) is over. */
3251 earlyclobber = 1, this_earlyclobber = 1;
3252 break;
3254 case 'E':
3255 case 'F':
3256 if (GET_CODE (operand) == CONST_DOUBLE
3257 || (GET_CODE (operand) == CONST_VECTOR
3258 && (GET_MODE_CLASS (GET_MODE (operand))
3259 == MODE_VECTOR_FLOAT)))
3260 win = 1;
3261 break;
3263 case 'G':
3264 case 'H':
3265 if (GET_CODE (operand) == CONST_DOUBLE
3266 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3267 win = 1;
3268 break;
3270 case 's':
3271 if (GET_CODE (operand) == CONST_INT
3272 || (GET_CODE (operand) == CONST_DOUBLE
3273 && GET_MODE (operand) == VOIDmode))
3274 break;
3275 case 'i':
3276 if (CONSTANT_P (operand)
3277 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3278 win = 1;
3279 break;
3281 case 'n':
3282 if (GET_CODE (operand) == CONST_INT
3283 || (GET_CODE (operand) == CONST_DOUBLE
3284 && GET_MODE (operand) == VOIDmode))
3285 win = 1;
3286 break;
3288 case 'I':
3289 case 'J':
3290 case 'K':
3291 case 'L':
3292 case 'M':
3293 case 'N':
3294 case 'O':
3295 case 'P':
3296 if (GET_CODE (operand) == CONST_INT
3297 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3298 win = 1;
3299 break;
3301 case 'X':
3302 force_reload = 0;
3303 win = 1;
3304 break;
3306 case 'g':
3307 if (! force_reload
3308 /* A PLUS is never a valid operand, but reload can make
3309 it from a register when eliminating registers. */
3310 && GET_CODE (operand) != PLUS
3311 /* A SCRATCH is not a valid operand. */
3312 && GET_CODE (operand) != SCRATCH
3313 && (! CONSTANT_P (operand)
3314 || ! flag_pic
3315 || LEGITIMATE_PIC_OPERAND_P (operand))
3316 && (GENERAL_REGS == ALL_REGS
3317 || !REG_P (operand)
3318 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3319 && reg_renumber[REGNO (operand)] < 0)))
3320 win = 1;
3321 /* Drop through into 'r' case. */
3323 case 'r':
3324 this_alternative[i]
3325 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3326 goto reg;
3328 default:
3329 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3331 #ifdef EXTRA_CONSTRAINT_STR
3332 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3334 if (force_reload)
3335 break;
3336 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3337 win = 1;
3338 /* If the address was already reloaded,
3339 we win as well. */
3340 else if (MEM_P (operand)
3341 && address_reloaded[i] == 1)
3342 win = 1;
3343 /* Likewise if the address will be reloaded because
3344 reg_equiv_address is nonzero. For reg_equiv_mem
3345 we have to check. */
3346 else if (REG_P (operand)
3347 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3348 && reg_renumber[REGNO (operand)] < 0
3349 && ((reg_equiv_mem[REGNO (operand)] != 0
3350 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3351 || (reg_equiv_address[REGNO (operand)] != 0)))
3352 win = 1;
3354 /* If we didn't already win, we can reload
3355 constants via force_const_mem, and other
3356 MEMs by reloading the address like for 'o'. */
3357 if (CONST_POOL_OK_P (operand)
3358 || MEM_P (operand))
3359 badop = 0;
3360 constmemok = 1;
3361 offmemok = 1;
3362 break;
3364 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3366 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3367 win = 1;
3369 /* If we didn't already win, we can reload
3370 the address into a base register. */
3371 this_alternative[i]
3372 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3373 badop = 0;
3374 break;
3377 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3378 win = 1;
3379 #endif
3380 break;
3383 this_alternative[i]
3384 = (int) (reg_class_subunion
3385 [this_alternative[i]]
3386 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3387 reg:
3388 if (GET_MODE (operand) == BLKmode)
3389 break;
3390 winreg = 1;
3391 if (REG_P (operand)
3392 && reg_fits_class_p (operand, this_alternative[i],
3393 offset, GET_MODE (recog_data.operand[i])))
3394 win = 1;
3395 break;
3397 while ((p += len), c);
3399 constraints[i] = p;
3401 /* If this operand could be handled with a reg,
3402 and some reg is allowed, then this operand can be handled. */
3403 if (winreg && this_alternative[i] != (int) NO_REGS)
3404 badop = 0;
3406 /* Record which operands fit this alternative. */
3407 this_alternative_earlyclobber[i] = earlyclobber;
3408 if (win && ! force_reload)
3409 this_alternative_win[i] = 1;
3410 else if (did_match && ! force_reload)
3411 this_alternative_match_win[i] = 1;
3412 else
3414 int const_to_mem = 0;
3416 this_alternative_offmemok[i] = offmemok;
3417 losers++;
3418 if (badop)
3419 bad = 1;
3420 /* Alternative loses if it has no regs for a reg operand. */
3421 if (REG_P (operand)
3422 && this_alternative[i] == (int) NO_REGS
3423 && this_alternative_matches[i] < 0)
3424 bad = 1;
3426 /* If this is a constant that is reloaded into the desired
3427 class by copying it to memory first, count that as another
3428 reload. This is consistent with other code and is
3429 required to avoid choosing another alternative when
3430 the constant is moved into memory by this function on
3431 an early reload pass. Note that the test here is
3432 precisely the same as in the code below that calls
3433 force_const_mem. */
3434 if (CONST_POOL_OK_P (operand)
3435 && ((PREFERRED_RELOAD_CLASS (operand,
3436 (enum reg_class) this_alternative[i])
3437 == NO_REGS)
3438 || no_input_reloads)
3439 && operand_mode[i] != VOIDmode)
3441 const_to_mem = 1;
3442 if (this_alternative[i] != (int) NO_REGS)
3443 losers++;
3446 /* Alternative loses if it requires a type of reload not
3447 permitted for this insn. We can always reload SCRATCH
3448 and objects with a REG_UNUSED note. */
3449 if (GET_CODE (operand) != SCRATCH
3450 && modified[i] != RELOAD_READ && no_output_reloads
3451 && ! find_reg_note (insn, REG_UNUSED, operand))
3452 bad = 1;
3453 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3454 && ! const_to_mem)
3455 bad = 1;
3457 /* If we can't reload this value at all, reject this
3458 alternative. Note that we could also lose due to
3459 LIMIT_RELOAD_CLASS, but we don't check that
3460 here. */
3462 if (! CONSTANT_P (operand)
3463 && (enum reg_class) this_alternative[i] != NO_REGS)
3465 if (PREFERRED_RELOAD_CLASS
3466 (operand, (enum reg_class) this_alternative[i])
3467 == NO_REGS)
3468 reject = 600;
3470 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3471 if (operand_type[i] == RELOAD_FOR_OUTPUT
3472 && PREFERRED_OUTPUT_RELOAD_CLASS
3473 (operand, (enum reg_class) this_alternative[i])
3474 == NO_REGS)
3475 reject = 600;
3476 #endif
3479 /* We prefer to reload pseudos over reloading other things,
3480 since such reloads may be able to be eliminated later.
3481 If we are reloading a SCRATCH, we won't be generating any
3482 insns, just using a register, so it is also preferred.
3483 So bump REJECT in other cases. Don't do this in the
3484 case where we are forcing a constant into memory and
3485 it will then win since we don't want to have a different
3486 alternative match then. */
3487 if (! (REG_P (operand)
3488 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3489 && GET_CODE (operand) != SCRATCH
3490 && ! (const_to_mem && constmemok))
3491 reject += 2;
3493 /* Input reloads can be inherited more often than output
3494 reloads can be removed, so penalize output reloads. */
3495 if (operand_type[i] != RELOAD_FOR_INPUT
3496 && GET_CODE (operand) != SCRATCH)
3497 reject++;
3500 /* If this operand is a pseudo register that didn't get a hard
3501 reg and this alternative accepts some register, see if the
3502 class that we want is a subset of the preferred class for this
3503 register. If not, but it intersects that class, use the
3504 preferred class instead. If it does not intersect the preferred
3505 class, show that usage of this alternative should be discouraged;
3506 it will be discouraged more still if the register is `preferred
3507 or nothing'. We do this because it increases the chance of
3508 reusing our spill register in a later insn and avoiding a pair
3509 of memory stores and loads.
3511 Don't bother with this if this alternative will accept this
3512 operand.
3514 Don't do this for a multiword operand, since it is only a
3515 small win and has the risk of requiring more spill registers,
3516 which could cause a large loss.
3518 Don't do this if the preferred class has only one register
3519 because we might otherwise exhaust the class. */
3521 if (! win && ! did_match
3522 && this_alternative[i] != (int) NO_REGS
3523 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3524 && reg_class_size [(int) preferred_class[i]] > 0
3525 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3527 if (! reg_class_subset_p (this_alternative[i],
3528 preferred_class[i]))
3530 /* Since we don't have a way of forming the intersection,
3531 we just do something special if the preferred class
3532 is a subset of the class we have; that's the most
3533 common case anyway. */
3534 if (reg_class_subset_p (preferred_class[i],
3535 this_alternative[i]))
3536 this_alternative[i] = (int) preferred_class[i];
3537 else
3538 reject += (2 + 2 * pref_or_nothing[i]);
3543 /* Now see if any output operands that are marked "earlyclobber"
3544 in this alternative conflict with any input operands
3545 or any memory addresses. */
3547 for (i = 0; i < noperands; i++)
3548 if (this_alternative_earlyclobber[i]
3549 && (this_alternative_win[i] || this_alternative_match_win[i]))
3551 struct decomposition early_data;
3553 early_data = decompose (recog_data.operand[i]);
3555 gcc_assert (modified[i] != RELOAD_READ);
3557 if (this_alternative[i] == NO_REGS)
3559 this_alternative_earlyclobber[i] = 0;
3560 gcc_assert (this_insn_is_asm);
3561 error_for_asm (this_insn,
3562 "%<&%> constraint used with no register class");
3565 for (j = 0; j < noperands; j++)
3566 /* Is this an input operand or a memory ref? */
3567 if ((MEM_P (recog_data.operand[j])
3568 || modified[j] != RELOAD_WRITE)
3569 && j != i
3570 /* Ignore things like match_operator operands. */
3571 && *recog_data.constraints[j] != 0
3572 /* Don't count an input operand that is constrained to match
3573 the early clobber operand. */
3574 && ! (this_alternative_matches[j] == i
3575 && rtx_equal_p (recog_data.operand[i],
3576 recog_data.operand[j]))
3577 /* Is it altered by storing the earlyclobber operand? */
3578 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3579 early_data))
3581 /* If the output is in a non-empty few-regs class,
3582 it's costly to reload it, so reload the input instead. */
3583 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3584 && (REG_P (recog_data.operand[j])
3585 || GET_CODE (recog_data.operand[j]) == SUBREG))
3587 losers++;
3588 this_alternative_win[j] = 0;
3589 this_alternative_match_win[j] = 0;
3591 else
3592 break;
3594 /* If an earlyclobber operand conflicts with something,
3595 it must be reloaded, so request this and count the cost. */
3596 if (j != noperands)
3598 losers++;
3599 this_alternative_win[i] = 0;
3600 this_alternative_match_win[j] = 0;
3601 for (j = 0; j < noperands; j++)
3602 if (this_alternative_matches[j] == i
3603 && this_alternative_match_win[j])
3605 this_alternative_win[j] = 0;
3606 this_alternative_match_win[j] = 0;
3607 losers++;
3612 /* If one alternative accepts all the operands, no reload required,
3613 choose that alternative; don't consider the remaining ones. */
3614 if (losers == 0)
3616 /* Unswap these so that they are never swapped at `finish'. */
3617 if (commutative >= 0)
3619 recog_data.operand[commutative] = substed_operand[commutative];
3620 recog_data.operand[commutative + 1]
3621 = substed_operand[commutative + 1];
3623 for (i = 0; i < noperands; i++)
3625 goal_alternative_win[i] = this_alternative_win[i];
3626 goal_alternative_match_win[i] = this_alternative_match_win[i];
3627 goal_alternative[i] = this_alternative[i];
3628 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3629 goal_alternative_matches[i] = this_alternative_matches[i];
3630 goal_alternative_earlyclobber[i]
3631 = this_alternative_earlyclobber[i];
3633 goal_alternative_number = this_alternative_number;
3634 goal_alternative_swapped = swapped;
3635 goal_earlyclobber = this_earlyclobber;
3636 goto finish;
3639 /* REJECT, set by the ! and ? constraint characters and when a register
3640 would be reloaded into a non-preferred class, discourages the use of
3641 this alternative for a reload goal. REJECT is incremented by six
3642 for each ? and two for each non-preferred class. */
3643 losers = losers * 6 + reject;
3645 /* If this alternative can be made to work by reloading,
3646 and it needs less reloading than the others checked so far,
3647 record it as the chosen goal for reloading. */
3648 if (! bad && best > losers)
3650 for (i = 0; i < noperands; i++)
3652 goal_alternative[i] = this_alternative[i];
3653 goal_alternative_win[i] = this_alternative_win[i];
3654 goal_alternative_match_win[i] = this_alternative_match_win[i];
3655 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3656 goal_alternative_matches[i] = this_alternative_matches[i];
3657 goal_alternative_earlyclobber[i]
3658 = this_alternative_earlyclobber[i];
3660 goal_alternative_swapped = swapped;
3661 best = losers;
3662 goal_alternative_number = this_alternative_number;
3663 goal_earlyclobber = this_earlyclobber;
3667 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3668 then we need to try each alternative twice,
3669 the second time matching those two operands
3670 as if we had exchanged them.
3671 To do this, really exchange them in operands.
3673 If we have just tried the alternatives the second time,
3674 return operands to normal and drop through. */
3676 if (commutative >= 0)
3678 swapped = !swapped;
3679 if (swapped)
3681 enum reg_class tclass;
3682 int t;
3684 recog_data.operand[commutative] = substed_operand[commutative + 1];
3685 recog_data.operand[commutative + 1] = substed_operand[commutative];
3686 /* Swap the duplicates too. */
3687 for (i = 0; i < recog_data.n_dups; i++)
3688 if (recog_data.dup_num[i] == commutative
3689 || recog_data.dup_num[i] == commutative + 1)
3690 *recog_data.dup_loc[i]
3691 = recog_data.operand[(int) recog_data.dup_num[i]];
3693 tclass = preferred_class[commutative];
3694 preferred_class[commutative] = preferred_class[commutative + 1];
3695 preferred_class[commutative + 1] = tclass;
3697 t = pref_or_nothing[commutative];
3698 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3699 pref_or_nothing[commutative + 1] = t;
3701 t = address_reloaded[commutative];
3702 address_reloaded[commutative] = address_reloaded[commutative + 1];
3703 address_reloaded[commutative + 1] = t;
3705 memcpy (constraints, recog_data.constraints,
3706 noperands * sizeof (char *));
3707 goto try_swapped;
3709 else
3711 recog_data.operand[commutative] = substed_operand[commutative];
3712 recog_data.operand[commutative + 1]
3713 = substed_operand[commutative + 1];
3714 /* Unswap the duplicates too. */
3715 for (i = 0; i < recog_data.n_dups; i++)
3716 if (recog_data.dup_num[i] == commutative
3717 || recog_data.dup_num[i] == commutative + 1)
3718 *recog_data.dup_loc[i]
3719 = recog_data.operand[(int) recog_data.dup_num[i]];
3723 /* The operands don't meet the constraints.
3724 goal_alternative describes the alternative
3725 that we could reach by reloading the fewest operands.
3726 Reload so as to fit it. */
3728 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3730 /* No alternative works with reloads?? */
3731 if (insn_code_number >= 0)
3732 fatal_insn ("unable to generate reloads for:", insn);
3733 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3734 /* Avoid further trouble with this insn. */
3735 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3736 n_reloads = 0;
3737 return 0;
3740 /* Jump to `finish' from above if all operands are valid already.
3741 In that case, goal_alternative_win is all 1. */
3742 finish:
3744 /* Right now, for any pair of operands I and J that are required to match,
3745 with I < J,
3746 goal_alternative_matches[J] is I.
3747 Set up goal_alternative_matched as the inverse function:
3748 goal_alternative_matched[I] = J. */
3750 for (i = 0; i < noperands; i++)
3751 goal_alternative_matched[i] = -1;
3753 for (i = 0; i < noperands; i++)
3754 if (! goal_alternative_win[i]
3755 && goal_alternative_matches[i] >= 0)
3756 goal_alternative_matched[goal_alternative_matches[i]] = i;
3758 for (i = 0; i < noperands; i++)
3759 goal_alternative_win[i] |= goal_alternative_match_win[i];
3761 /* If the best alternative is with operands 1 and 2 swapped,
3762 consider them swapped before reporting the reloads. Update the
3763 operand numbers of any reloads already pushed. */
3765 if (goal_alternative_swapped)
3767 rtx tem;
3769 tem = substed_operand[commutative];
3770 substed_operand[commutative] = substed_operand[commutative + 1];
3771 substed_operand[commutative + 1] = tem;
3772 tem = recog_data.operand[commutative];
3773 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3774 recog_data.operand[commutative + 1] = tem;
3775 tem = *recog_data.operand_loc[commutative];
3776 *recog_data.operand_loc[commutative]
3777 = *recog_data.operand_loc[commutative + 1];
3778 *recog_data.operand_loc[commutative + 1] = tem;
3780 for (i = 0; i < n_reloads; i++)
3782 if (rld[i].opnum == commutative)
3783 rld[i].opnum = commutative + 1;
3784 else if (rld[i].opnum == commutative + 1)
3785 rld[i].opnum = commutative;
3789 for (i = 0; i < noperands; i++)
3791 operand_reloadnum[i] = -1;
3793 /* If this is an earlyclobber operand, we need to widen the scope.
3794 The reload must remain valid from the start of the insn being
3795 reloaded until after the operand is stored into its destination.
3796 We approximate this with RELOAD_OTHER even though we know that we
3797 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3799 One special case that is worth checking is when we have an
3800 output that is earlyclobber but isn't used past the insn (typically
3801 a SCRATCH). In this case, we only need have the reload live
3802 through the insn itself, but not for any of our input or output
3803 reloads.
3804 But we must not accidentally narrow the scope of an existing
3805 RELOAD_OTHER reload - leave these alone.
3807 In any case, anything needed to address this operand can remain
3808 however they were previously categorized. */
3810 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3811 operand_type[i]
3812 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3813 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3816 /* Any constants that aren't allowed and can't be reloaded
3817 into registers are here changed into memory references. */
3818 for (i = 0; i < noperands; i++)
3819 if (! goal_alternative_win[i]
3820 && CONST_POOL_OK_P (recog_data.operand[i])
3821 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3822 (enum reg_class) goal_alternative[i])
3823 == NO_REGS)
3824 || no_input_reloads)
3825 && operand_mode[i] != VOIDmode)
3827 substed_operand[i] = recog_data.operand[i]
3828 = find_reloads_toplev (force_const_mem (operand_mode[i],
3829 recog_data.operand[i]),
3830 i, address_type[i], ind_levels, 0, insn,
3831 NULL);
3832 if (alternative_allows_memconst (recog_data.constraints[i],
3833 goal_alternative_number))
3834 goal_alternative_win[i] = 1;
3837 /* Likewise any invalid constants appearing as operand of a PLUS
3838 that is to be reloaded. */
3839 for (i = 0; i < noperands; i++)
3840 if (! goal_alternative_win[i]
3841 && GET_CODE (recog_data.operand[i]) == PLUS
3842 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3843 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3844 (enum reg_class) goal_alternative[i])
3845 == NO_REGS)
3846 && operand_mode[i] != VOIDmode)
3848 rtx tem = force_const_mem (operand_mode[i],
3849 XEXP (recog_data.operand[i], 1));
3850 tem = gen_rtx_PLUS (operand_mode[i],
3851 XEXP (recog_data.operand[i], 0), tem);
3853 substed_operand[i] = recog_data.operand[i]
3854 = find_reloads_toplev (tem, i, address_type[i],
3855 ind_levels, 0, insn, NULL);
3858 /* Record the values of the earlyclobber operands for the caller. */
3859 if (goal_earlyclobber)
3860 for (i = 0; i < noperands; i++)
3861 if (goal_alternative_earlyclobber[i])
3862 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3864 /* Now record reloads for all the operands that need them. */
3865 for (i = 0; i < noperands; i++)
3866 if (! goal_alternative_win[i])
3868 /* Operands that match previous ones have already been handled. */
3869 if (goal_alternative_matches[i] >= 0)
3871 /* Handle an operand with a nonoffsettable address
3872 appearing where an offsettable address will do
3873 by reloading the address into a base register.
3875 ??? We can also do this when the operand is a register and
3876 reg_equiv_mem is not offsettable, but this is a bit tricky,
3877 so we don't bother with it. It may not be worth doing. */
3878 else if (goal_alternative_matched[i] == -1
3879 && goal_alternative_offmemok[i]
3880 && MEM_P (recog_data.operand[i]))
3882 /* If the address to be reloaded is a VOIDmode constant,
3883 use Pmode as mode of the reload register, as would have
3884 been done by find_reloads_address. */
3885 enum machine_mode address_mode;
3886 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3887 if (address_mode == VOIDmode)
3888 address_mode = Pmode;
3890 operand_reloadnum[i]
3891 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3892 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3893 base_reg_class (VOIDmode, MEM, SCRATCH),
3894 address_mode,
3895 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3896 rld[operand_reloadnum[i]].inc
3897 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3899 /* If this operand is an output, we will have made any
3900 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3901 now we are treating part of the operand as an input, so
3902 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3904 if (modified[i] == RELOAD_WRITE)
3906 for (j = 0; j < n_reloads; j++)
3908 if (rld[j].opnum == i)
3910 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3911 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3912 else if (rld[j].when_needed
3913 == RELOAD_FOR_OUTADDR_ADDRESS)
3914 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3919 else if (goal_alternative_matched[i] == -1)
3921 operand_reloadnum[i]
3922 = push_reload ((modified[i] != RELOAD_WRITE
3923 ? recog_data.operand[i] : 0),
3924 (modified[i] != RELOAD_READ
3925 ? recog_data.operand[i] : 0),
3926 (modified[i] != RELOAD_WRITE
3927 ? recog_data.operand_loc[i] : 0),
3928 (modified[i] != RELOAD_READ
3929 ? recog_data.operand_loc[i] : 0),
3930 (enum reg_class) goal_alternative[i],
3931 (modified[i] == RELOAD_WRITE
3932 ? VOIDmode : operand_mode[i]),
3933 (modified[i] == RELOAD_READ
3934 ? VOIDmode : operand_mode[i]),
3935 (insn_code_number < 0 ? 0
3936 : insn_data[insn_code_number].operand[i].strict_low),
3937 0, i, operand_type[i]);
3939 /* In a matching pair of operands, one must be input only
3940 and the other must be output only.
3941 Pass the input operand as IN and the other as OUT. */
3942 else if (modified[i] == RELOAD_READ
3943 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3945 operand_reloadnum[i]
3946 = push_reload (recog_data.operand[i],
3947 recog_data.operand[goal_alternative_matched[i]],
3948 recog_data.operand_loc[i],
3949 recog_data.operand_loc[goal_alternative_matched[i]],
3950 (enum reg_class) goal_alternative[i],
3951 operand_mode[i],
3952 operand_mode[goal_alternative_matched[i]],
3953 0, 0, i, RELOAD_OTHER);
3954 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3956 else if (modified[i] == RELOAD_WRITE
3957 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3959 operand_reloadnum[goal_alternative_matched[i]]
3960 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3961 recog_data.operand[i],
3962 recog_data.operand_loc[goal_alternative_matched[i]],
3963 recog_data.operand_loc[i],
3964 (enum reg_class) goal_alternative[i],
3965 operand_mode[goal_alternative_matched[i]],
3966 operand_mode[i],
3967 0, 0, i, RELOAD_OTHER);
3968 operand_reloadnum[i] = output_reloadnum;
3970 else
3972 gcc_assert (insn_code_number < 0);
3973 error_for_asm (insn, "inconsistent operand constraints "
3974 "in an %<asm%>");
3975 /* Avoid further trouble with this insn. */
3976 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3977 n_reloads = 0;
3978 return 0;
3981 else if (goal_alternative_matched[i] < 0
3982 && goal_alternative_matches[i] < 0
3983 && address_operand_reloaded[i] != 1
3984 && optimize)
3986 /* For each non-matching operand that's a MEM or a pseudo-register
3987 that didn't get a hard register, make an optional reload.
3988 This may get done even if the insn needs no reloads otherwise. */
3990 rtx operand = recog_data.operand[i];
3992 while (GET_CODE (operand) == SUBREG)
3993 operand = SUBREG_REG (operand);
3994 if ((MEM_P (operand)
3995 || (REG_P (operand)
3996 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3997 /* If this is only for an output, the optional reload would not
3998 actually cause us to use a register now, just note that
3999 something is stored here. */
4000 && ((enum reg_class) goal_alternative[i] != NO_REGS
4001 || modified[i] == RELOAD_WRITE)
4002 && ! no_input_reloads
4003 /* An optional output reload might allow to delete INSN later.
4004 We mustn't make in-out reloads on insns that are not permitted
4005 output reloads.
4006 If this is an asm, we can't delete it; we must not even call
4007 push_reload for an optional output reload in this case,
4008 because we can't be sure that the constraint allows a register,
4009 and push_reload verifies the constraints for asms. */
4010 && (modified[i] == RELOAD_READ
4011 || (! no_output_reloads && ! this_insn_is_asm)))
4012 operand_reloadnum[i]
4013 = push_reload ((modified[i] != RELOAD_WRITE
4014 ? recog_data.operand[i] : 0),
4015 (modified[i] != RELOAD_READ
4016 ? recog_data.operand[i] : 0),
4017 (modified[i] != RELOAD_WRITE
4018 ? recog_data.operand_loc[i] : 0),
4019 (modified[i] != RELOAD_READ
4020 ? recog_data.operand_loc[i] : 0),
4021 (enum reg_class) goal_alternative[i],
4022 (modified[i] == RELOAD_WRITE
4023 ? VOIDmode : operand_mode[i]),
4024 (modified[i] == RELOAD_READ
4025 ? VOIDmode : operand_mode[i]),
4026 (insn_code_number < 0 ? 0
4027 : insn_data[insn_code_number].operand[i].strict_low),
4028 1, i, operand_type[i]);
4029 /* If a memory reference remains (either as a MEM or a pseudo that
4030 did not get a hard register), yet we can't make an optional
4031 reload, check if this is actually a pseudo register reference;
4032 we then need to emit a USE and/or a CLOBBER so that reload
4033 inheritance will do the right thing. */
4034 else if (replace
4035 && (MEM_P (operand)
4036 || (REG_P (operand)
4037 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4038 && reg_renumber [REGNO (operand)] < 0)))
4040 operand = *recog_data.operand_loc[i];
4042 while (GET_CODE (operand) == SUBREG)
4043 operand = SUBREG_REG (operand);
4044 if (REG_P (operand))
4046 if (modified[i] != RELOAD_WRITE)
4047 /* We mark the USE with QImode so that we recognize
4048 it as one that can be safely deleted at the end
4049 of reload. */
4050 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4051 insn), QImode);
4052 if (modified[i] != RELOAD_READ)
4053 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4057 else if (goal_alternative_matches[i] >= 0
4058 && goal_alternative_win[goal_alternative_matches[i]]
4059 && modified[i] == RELOAD_READ
4060 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4061 && ! no_input_reloads && ! no_output_reloads
4062 && optimize)
4064 /* Similarly, make an optional reload for a pair of matching
4065 objects that are in MEM or a pseudo that didn't get a hard reg. */
4067 rtx operand = recog_data.operand[i];
4069 while (GET_CODE (operand) == SUBREG)
4070 operand = SUBREG_REG (operand);
4071 if ((MEM_P (operand)
4072 || (REG_P (operand)
4073 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4074 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4075 != NO_REGS))
4076 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4077 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4078 recog_data.operand[i],
4079 recog_data.operand_loc[goal_alternative_matches[i]],
4080 recog_data.operand_loc[i],
4081 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4082 operand_mode[goal_alternative_matches[i]],
4083 operand_mode[i],
4084 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4087 /* Perform whatever substitutions on the operands we are supposed
4088 to make due to commutativity or replacement of registers
4089 with equivalent constants or memory slots. */
4091 for (i = 0; i < noperands; i++)
4093 /* We only do this on the last pass through reload, because it is
4094 possible for some data (like reg_equiv_address) to be changed during
4095 later passes. Moreover, we lose the opportunity to get a useful
4096 reload_{in,out}_reg when we do these replacements. */
4098 if (replace)
4100 rtx substitution = substed_operand[i];
4102 *recog_data.operand_loc[i] = substitution;
4104 /* If we're replacing an operand with a LABEL_REF, we need
4105 to make sure that there's a REG_LABEL note attached to
4106 this instruction. */
4107 if (!JUMP_P (insn)
4108 && GET_CODE (substitution) == LABEL_REF
4109 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4110 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4111 XEXP (substitution, 0),
4112 REG_NOTES (insn));
4114 else
4115 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4118 /* If this insn pattern contains any MATCH_DUP's, make sure that
4119 they will be substituted if the operands they match are substituted.
4120 Also do now any substitutions we already did on the operands.
4122 Don't do this if we aren't making replacements because we might be
4123 propagating things allocated by frame pointer elimination into places
4124 it doesn't expect. */
4126 if (insn_code_number >= 0 && replace)
4127 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4129 int opno = recog_data.dup_num[i];
4130 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4131 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4134 #if 0
4135 /* This loses because reloading of prior insns can invalidate the equivalence
4136 (or at least find_equiv_reg isn't smart enough to find it any more),
4137 causing this insn to need more reload regs than it needed before.
4138 It may be too late to make the reload regs available.
4139 Now this optimization is done safely in choose_reload_regs. */
4141 /* For each reload of a reg into some other class of reg,
4142 search for an existing equivalent reg (same value now) in the right class.
4143 We can use it as long as we don't need to change its contents. */
4144 for (i = 0; i < n_reloads; i++)
4145 if (rld[i].reg_rtx == 0
4146 && rld[i].in != 0
4147 && REG_P (rld[i].in)
4148 && rld[i].out == 0)
4150 rld[i].reg_rtx
4151 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4152 static_reload_reg_p, 0, rld[i].inmode);
4153 /* Prevent generation of insn to load the value
4154 because the one we found already has the value. */
4155 if (rld[i].reg_rtx)
4156 rld[i].in = rld[i].reg_rtx;
4158 #endif
4160 /* If we detected error and replaced asm instruction by USE, forget about the
4161 reloads. */
4162 if (GET_CODE (PATTERN (insn)) == USE
4163 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4164 n_reloads = 0;
4166 /* Perhaps an output reload can be combined with another
4167 to reduce needs by one. */
4168 if (!goal_earlyclobber)
4169 combine_reloads ();
4171 /* If we have a pair of reloads for parts of an address, they are reloading
4172 the same object, the operands themselves were not reloaded, and they
4173 are for two operands that are supposed to match, merge the reloads and
4174 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4176 for (i = 0; i < n_reloads; i++)
4178 int k;
4180 for (j = i + 1; j < n_reloads; j++)
4181 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4182 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4183 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4184 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4185 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4186 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4187 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4188 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4189 && rtx_equal_p (rld[i].in, rld[j].in)
4190 && (operand_reloadnum[rld[i].opnum] < 0
4191 || rld[operand_reloadnum[rld[i].opnum]].optional)
4192 && (operand_reloadnum[rld[j].opnum] < 0
4193 || rld[operand_reloadnum[rld[j].opnum]].optional)
4194 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4195 || (goal_alternative_matches[rld[j].opnum]
4196 == rld[i].opnum)))
4198 for (k = 0; k < n_replacements; k++)
4199 if (replacements[k].what == j)
4200 replacements[k].what = i;
4202 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4203 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4204 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4205 else
4206 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4207 rld[j].in = 0;
4211 /* Scan all the reloads and update their type.
4212 If a reload is for the address of an operand and we didn't reload
4213 that operand, change the type. Similarly, change the operand number
4214 of a reload when two operands match. If a reload is optional, treat it
4215 as though the operand isn't reloaded.
4217 ??? This latter case is somewhat odd because if we do the optional
4218 reload, it means the object is hanging around. Thus we need only
4219 do the address reload if the optional reload was NOT done.
4221 Change secondary reloads to be the address type of their operand, not
4222 the normal type.
4224 If an operand's reload is now RELOAD_OTHER, change any
4225 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4226 RELOAD_FOR_OTHER_ADDRESS. */
4228 for (i = 0; i < n_reloads; i++)
4230 if (rld[i].secondary_p
4231 && rld[i].when_needed == operand_type[rld[i].opnum])
4232 rld[i].when_needed = address_type[rld[i].opnum];
4234 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4235 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4236 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4237 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4238 && (operand_reloadnum[rld[i].opnum] < 0
4239 || rld[operand_reloadnum[rld[i].opnum]].optional))
4241 /* If we have a secondary reload to go along with this reload,
4242 change its type to RELOAD_FOR_OPADDR_ADDR. */
4244 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4245 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4246 && rld[i].secondary_in_reload != -1)
4248 int secondary_in_reload = rld[i].secondary_in_reload;
4250 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4252 /* If there's a tertiary reload we have to change it also. */
4253 if (secondary_in_reload > 0
4254 && rld[secondary_in_reload].secondary_in_reload != -1)
4255 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4256 = RELOAD_FOR_OPADDR_ADDR;
4259 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4260 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4261 && rld[i].secondary_out_reload != -1)
4263 int secondary_out_reload = rld[i].secondary_out_reload;
4265 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4267 /* If there's a tertiary reload we have to change it also. */
4268 if (secondary_out_reload
4269 && rld[secondary_out_reload].secondary_out_reload != -1)
4270 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4271 = RELOAD_FOR_OPADDR_ADDR;
4274 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4275 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4276 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4277 else
4278 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4281 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4282 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4283 && operand_reloadnum[rld[i].opnum] >= 0
4284 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4285 == RELOAD_OTHER))
4286 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4288 if (goal_alternative_matches[rld[i].opnum] >= 0)
4289 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4292 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4293 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4294 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4296 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4297 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4298 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4299 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4300 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4301 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4302 This is complicated by the fact that a single operand can have more
4303 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4304 choose_reload_regs without affecting code quality, and cases that
4305 actually fail are extremely rare, so it turns out to be better to fix
4306 the problem here by not generating cases that choose_reload_regs will
4307 fail for. */
4308 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4309 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4310 a single operand.
4311 We can reduce the register pressure by exploiting that a
4312 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4313 does not conflict with any of them, if it is only used for the first of
4314 the RELOAD_FOR_X_ADDRESS reloads. */
4316 int first_op_addr_num = -2;
4317 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4318 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4319 int need_change = 0;
4320 /* We use last_op_addr_reload and the contents of the above arrays
4321 first as flags - -2 means no instance encountered, -1 means exactly
4322 one instance encountered.
4323 If more than one instance has been encountered, we store the reload
4324 number of the first reload of the kind in question; reload numbers
4325 are known to be non-negative. */
4326 for (i = 0; i < noperands; i++)
4327 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4328 for (i = n_reloads - 1; i >= 0; i--)
4330 switch (rld[i].when_needed)
4332 case RELOAD_FOR_OPERAND_ADDRESS:
4333 if (++first_op_addr_num >= 0)
4335 first_op_addr_num = i;
4336 need_change = 1;
4338 break;
4339 case RELOAD_FOR_INPUT_ADDRESS:
4340 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4342 first_inpaddr_num[rld[i].opnum] = i;
4343 need_change = 1;
4345 break;
4346 case RELOAD_FOR_OUTPUT_ADDRESS:
4347 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4349 first_outpaddr_num[rld[i].opnum] = i;
4350 need_change = 1;
4352 break;
4353 default:
4354 break;
4358 if (need_change)
4360 for (i = 0; i < n_reloads; i++)
4362 int first_num;
4363 enum reload_type type;
4365 switch (rld[i].when_needed)
4367 case RELOAD_FOR_OPADDR_ADDR:
4368 first_num = first_op_addr_num;
4369 type = RELOAD_FOR_OPERAND_ADDRESS;
4370 break;
4371 case RELOAD_FOR_INPADDR_ADDRESS:
4372 first_num = first_inpaddr_num[rld[i].opnum];
4373 type = RELOAD_FOR_INPUT_ADDRESS;
4374 break;
4375 case RELOAD_FOR_OUTADDR_ADDRESS:
4376 first_num = first_outpaddr_num[rld[i].opnum];
4377 type = RELOAD_FOR_OUTPUT_ADDRESS;
4378 break;
4379 default:
4380 continue;
4382 if (first_num < 0)
4383 continue;
4384 else if (i > first_num)
4385 rld[i].when_needed = type;
4386 else
4388 /* Check if the only TYPE reload that uses reload I is
4389 reload FIRST_NUM. */
4390 for (j = n_reloads - 1; j > first_num; j--)
4392 if (rld[j].when_needed == type
4393 && (rld[i].secondary_p
4394 ? rld[j].secondary_in_reload == i
4395 : reg_mentioned_p (rld[i].in, rld[j].in)))
4397 rld[i].when_needed = type;
4398 break;
4406 /* See if we have any reloads that are now allowed to be merged
4407 because we've changed when the reload is needed to
4408 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4409 check for the most common cases. */
4411 for (i = 0; i < n_reloads; i++)
4412 if (rld[i].in != 0 && rld[i].out == 0
4413 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4414 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4415 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4416 for (j = 0; j < n_reloads; j++)
4417 if (i != j && rld[j].in != 0 && rld[j].out == 0
4418 && rld[j].when_needed == rld[i].when_needed
4419 && MATCHES (rld[i].in, rld[j].in)
4420 && rld[i].class == rld[j].class
4421 && !rld[i].nocombine && !rld[j].nocombine
4422 && rld[i].reg_rtx == rld[j].reg_rtx)
4424 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4425 transfer_replacements (i, j);
4426 rld[j].in = 0;
4429 #ifdef HAVE_cc0
4430 /* If we made any reloads for addresses, see if they violate a
4431 "no input reloads" requirement for this insn. But loads that we
4432 do after the insn (such as for output addresses) are fine. */
4433 if (no_input_reloads)
4434 for (i = 0; i < n_reloads; i++)
4435 gcc_assert (rld[i].in == 0
4436 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4437 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4438 #endif
4440 /* Compute reload_mode and reload_nregs. */
4441 for (i = 0; i < n_reloads; i++)
4443 rld[i].mode
4444 = (rld[i].inmode == VOIDmode
4445 || (GET_MODE_SIZE (rld[i].outmode)
4446 > GET_MODE_SIZE (rld[i].inmode)))
4447 ? rld[i].outmode : rld[i].inmode;
4449 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4452 /* Special case a simple move with an input reload and a
4453 destination of a hard reg, if the hard reg is ok, use it. */
4454 for (i = 0; i < n_reloads; i++)
4455 if (rld[i].when_needed == RELOAD_FOR_INPUT
4456 && GET_CODE (PATTERN (insn)) == SET
4457 && REG_P (SET_DEST (PATTERN (insn)))
4458 && SET_SRC (PATTERN (insn)) == rld[i].in
4459 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4461 rtx dest = SET_DEST (PATTERN (insn));
4462 unsigned int regno = REGNO (dest);
4464 if (regno < FIRST_PSEUDO_REGISTER
4465 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4466 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4468 int nr = hard_regno_nregs[regno][rld[i].mode];
4469 int ok = 1, nri;
4471 for (nri = 1; nri < nr; nri ++)
4472 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4473 ok = 0;
4475 if (ok)
4476 rld[i].reg_rtx = dest;
4480 return retval;
4483 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4484 accepts a memory operand with constant address. */
4486 static int
4487 alternative_allows_memconst (const char *constraint, int altnum)
4489 int c;
4490 /* Skip alternatives before the one requested. */
4491 while (altnum > 0)
4493 while (*constraint++ != ',');
4494 altnum--;
4496 /* Scan the requested alternative for 'm' or 'o'.
4497 If one of them is present, this alternative accepts memory constants. */
4498 for (; (c = *constraint) && c != ',' && c != '#';
4499 constraint += CONSTRAINT_LEN (c, constraint))
4500 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4501 return 1;
4502 return 0;
4505 /* Scan X for memory references and scan the addresses for reloading.
4506 Also checks for references to "constant" regs that we want to eliminate
4507 and replaces them with the values they stand for.
4508 We may alter X destructively if it contains a reference to such.
4509 If X is just a constant reg, we return the equivalent value
4510 instead of X.
4512 IND_LEVELS says how many levels of indirect addressing this machine
4513 supports.
4515 OPNUM and TYPE identify the purpose of the reload.
4517 IS_SET_DEST is true if X is the destination of a SET, which is not
4518 appropriate to be replaced by a constant.
4520 INSN, if nonzero, is the insn in which we do the reload. It is used
4521 to determine if we may generate output reloads, and where to put USEs
4522 for pseudos that we have to replace with stack slots.
4524 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4525 result of find_reloads_address. */
4527 static rtx
4528 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4529 int ind_levels, int is_set_dest, rtx insn,
4530 int *address_reloaded)
4532 RTX_CODE code = GET_CODE (x);
4534 const char *fmt = GET_RTX_FORMAT (code);
4535 int i;
4536 int copied;
4538 if (code == REG)
4540 /* This code is duplicated for speed in find_reloads. */
4541 int regno = REGNO (x);
4542 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4543 x = reg_equiv_constant[regno];
4544 #if 0
4545 /* This creates (subreg (mem...)) which would cause an unnecessary
4546 reload of the mem. */
4547 else if (reg_equiv_mem[regno] != 0)
4548 x = reg_equiv_mem[regno];
4549 #endif
4550 else if (reg_equiv_memory_loc[regno]
4551 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4553 rtx mem = make_memloc (x, regno);
4554 if (reg_equiv_address[regno]
4555 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4557 /* If this is not a toplevel operand, find_reloads doesn't see
4558 this substitution. We have to emit a USE of the pseudo so
4559 that delete_output_reload can see it. */
4560 if (replace_reloads && recog_data.operand[opnum] != x)
4561 /* We mark the USE with QImode so that we recognize it
4562 as one that can be safely deleted at the end of
4563 reload. */
4564 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4565 QImode);
4566 x = mem;
4567 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4568 opnum, type, ind_levels, insn);
4569 if (!rtx_equal_p (x, mem))
4570 push_reg_equiv_alt_mem (regno, x);
4571 if (address_reloaded)
4572 *address_reloaded = i;
4575 return x;
4577 if (code == MEM)
4579 rtx tem = x;
4581 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4582 opnum, type, ind_levels, insn);
4583 if (address_reloaded)
4584 *address_reloaded = i;
4586 return tem;
4589 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4591 /* Check for SUBREG containing a REG that's equivalent to a
4592 constant. If the constant has a known value, truncate it
4593 right now. Similarly if we are extracting a single-word of a
4594 multi-word constant. If the constant is symbolic, allow it
4595 to be substituted normally. push_reload will strip the
4596 subreg later. The constant must not be VOIDmode, because we
4597 will lose the mode of the register (this should never happen
4598 because one of the cases above should handle it). */
4600 int regno = REGNO (SUBREG_REG (x));
4601 rtx tem;
4603 if (subreg_lowpart_p (x)
4604 && regno >= FIRST_PSEUDO_REGISTER
4605 && reg_renumber[regno] < 0
4606 && reg_equiv_constant[regno] != 0
4607 && (tem = gen_lowpart_common (GET_MODE (x),
4608 reg_equiv_constant[regno])) != 0)
4609 return tem;
4611 if (regno >= FIRST_PSEUDO_REGISTER
4612 && reg_renumber[regno] < 0
4613 && reg_equiv_constant[regno] != 0)
4615 tem =
4616 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4617 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4618 gcc_assert (tem);
4619 return tem;
4622 /* If the subreg contains a reg that will be converted to a mem,
4623 convert the subreg to a narrower memref now.
4624 Otherwise, we would get (subreg (mem ...) ...),
4625 which would force reload of the mem.
4627 We also need to do this if there is an equivalent MEM that is
4628 not offsettable. In that case, alter_subreg would produce an
4629 invalid address on big-endian machines.
4631 For machines that extend byte loads, we must not reload using
4632 a wider mode if we have a paradoxical SUBREG. find_reloads will
4633 force a reload in that case. So we should not do anything here. */
4635 if (regno >= FIRST_PSEUDO_REGISTER
4636 #ifdef LOAD_EXTEND_OP
4637 && (GET_MODE_SIZE (GET_MODE (x))
4638 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4639 #endif
4640 && (reg_equiv_address[regno] != 0
4641 || (reg_equiv_mem[regno] != 0
4642 && (! strict_memory_address_p (GET_MODE (x),
4643 XEXP (reg_equiv_mem[regno], 0))
4644 || ! offsettable_memref_p (reg_equiv_mem[regno])
4645 || num_not_at_initial_offset))))
4646 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4647 insn);
4650 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4652 if (fmt[i] == 'e')
4654 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4655 ind_levels, is_set_dest, insn,
4656 address_reloaded);
4657 /* If we have replaced a reg with it's equivalent memory loc -
4658 that can still be handled here e.g. if it's in a paradoxical
4659 subreg - we must make the change in a copy, rather than using
4660 a destructive change. This way, find_reloads can still elect
4661 not to do the change. */
4662 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4664 x = shallow_copy_rtx (x);
4665 copied = 1;
4667 XEXP (x, i) = new_part;
4670 return x;
4673 /* Return a mem ref for the memory equivalent of reg REGNO.
4674 This mem ref is not shared with anything. */
4676 static rtx
4677 make_memloc (rtx ad, int regno)
4679 /* We must rerun eliminate_regs, in case the elimination
4680 offsets have changed. */
4681 rtx tem
4682 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4684 /* If TEM might contain a pseudo, we must copy it to avoid
4685 modifying it when we do the substitution for the reload. */
4686 if (rtx_varies_p (tem, 0))
4687 tem = copy_rtx (tem);
4689 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4690 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4692 /* Copy the result if it's still the same as the equivalence, to avoid
4693 modifying it when we do the substitution for the reload. */
4694 if (tem == reg_equiv_memory_loc[regno])
4695 tem = copy_rtx (tem);
4696 return tem;
4699 /* Returns true if AD could be turned into a valid memory reference
4700 to mode MODE by reloading the part pointed to by PART into a
4701 register. */
4703 static int
4704 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4706 int retv;
4707 rtx tem = *part;
4708 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4710 *part = reg;
4711 retv = memory_address_p (mode, ad);
4712 *part = tem;
4714 return retv;
4717 /* Record all reloads needed for handling memory address AD
4718 which appears in *LOC in a memory reference to mode MODE
4719 which itself is found in location *MEMREFLOC.
4720 Note that we take shortcuts assuming that no multi-reg machine mode
4721 occurs as part of an address.
4723 OPNUM and TYPE specify the purpose of this reload.
4725 IND_LEVELS says how many levels of indirect addressing this machine
4726 supports.
4728 INSN, if nonzero, is the insn in which we do the reload. It is used
4729 to determine if we may generate output reloads, and where to put USEs
4730 for pseudos that we have to replace with stack slots.
4732 Value is one if this address is reloaded or replaced as a whole; it is
4733 zero if the top level of this address was not reloaded or replaced, and
4734 it is -1 if it may or may not have been reloaded or replaced.
4736 Note that there is no verification that the address will be valid after
4737 this routine does its work. Instead, we rely on the fact that the address
4738 was valid when reload started. So we need only undo things that reload
4739 could have broken. These are wrong register types, pseudos not allocated
4740 to a hard register, and frame pointer elimination. */
4742 static int
4743 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4744 rtx *loc, int opnum, enum reload_type type,
4745 int ind_levels, rtx insn)
4747 int regno;
4748 int removed_and = 0;
4749 int op_index;
4750 rtx tem;
4752 /* If the address is a register, see if it is a legitimate address and
4753 reload if not. We first handle the cases where we need not reload
4754 or where we must reload in a non-standard way. */
4756 if (REG_P (ad))
4758 regno = REGNO (ad);
4760 /* If the register is equivalent to an invariant expression, substitute
4761 the invariant, and eliminate any eliminable register references. */
4762 tem = reg_equiv_constant[regno];
4763 if (tem != 0
4764 && (tem = eliminate_regs (tem, mode, insn))
4765 && strict_memory_address_p (mode, tem))
4767 *loc = ad = tem;
4768 return 0;
4771 tem = reg_equiv_memory_loc[regno];
4772 if (tem != 0)
4774 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4776 tem = make_memloc (ad, regno);
4777 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4779 rtx orig = tem;
4781 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4782 &XEXP (tem, 0), opnum,
4783 ADDR_TYPE (type), ind_levels, insn);
4784 if (!rtx_equal_p (tem, orig))
4785 push_reg_equiv_alt_mem (regno, tem);
4787 /* We can avoid a reload if the register's equivalent memory
4788 expression is valid as an indirect memory address.
4789 But not all addresses are valid in a mem used as an indirect
4790 address: only reg or reg+constant. */
4792 if (ind_levels > 0
4793 && strict_memory_address_p (mode, tem)
4794 && (REG_P (XEXP (tem, 0))
4795 || (GET_CODE (XEXP (tem, 0)) == PLUS
4796 && REG_P (XEXP (XEXP (tem, 0), 0))
4797 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4799 /* TEM is not the same as what we'll be replacing the
4800 pseudo with after reload, put a USE in front of INSN
4801 in the final reload pass. */
4802 if (replace_reloads
4803 && num_not_at_initial_offset
4804 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4806 *loc = tem;
4807 /* We mark the USE with QImode so that we
4808 recognize it as one that can be safely
4809 deleted at the end of reload. */
4810 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4811 insn), QImode);
4813 /* This doesn't really count as replacing the address
4814 as a whole, since it is still a memory access. */
4816 return 0;
4818 ad = tem;
4822 /* The only remaining case where we can avoid a reload is if this is a
4823 hard register that is valid as a base register and which is not the
4824 subject of a CLOBBER in this insn. */
4826 else if (regno < FIRST_PSEUDO_REGISTER
4827 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4828 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4829 return 0;
4831 /* If we do not have one of the cases above, we must do the reload. */
4832 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4833 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4834 return 1;
4837 if (strict_memory_address_p (mode, ad))
4839 /* The address appears valid, so reloads are not needed.
4840 But the address may contain an eliminable register.
4841 This can happen because a machine with indirect addressing
4842 may consider a pseudo register by itself a valid address even when
4843 it has failed to get a hard reg.
4844 So do a tree-walk to find and eliminate all such regs. */
4846 /* But first quickly dispose of a common case. */
4847 if (GET_CODE (ad) == PLUS
4848 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4849 && REG_P (XEXP (ad, 0))
4850 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4851 return 0;
4853 subst_reg_equivs_changed = 0;
4854 *loc = subst_reg_equivs (ad, insn);
4856 if (! subst_reg_equivs_changed)
4857 return 0;
4859 /* Check result for validity after substitution. */
4860 if (strict_memory_address_p (mode, ad))
4861 return 0;
4864 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4867 if (memrefloc)
4869 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4870 ind_levels, win);
4872 break;
4873 win:
4874 *memrefloc = copy_rtx (*memrefloc);
4875 XEXP (*memrefloc, 0) = ad;
4876 move_replacements (&ad, &XEXP (*memrefloc, 0));
4877 return -1;
4879 while (0);
4880 #endif
4882 /* The address is not valid. We have to figure out why. First see if
4883 we have an outer AND and remove it if so. Then analyze what's inside. */
4885 if (GET_CODE (ad) == AND)
4887 removed_and = 1;
4888 loc = &XEXP (ad, 0);
4889 ad = *loc;
4892 /* One possibility for why the address is invalid is that it is itself
4893 a MEM. This can happen when the frame pointer is being eliminated, a
4894 pseudo is not allocated to a hard register, and the offset between the
4895 frame and stack pointers is not its initial value. In that case the
4896 pseudo will have been replaced by a MEM referring to the
4897 stack pointer. */
4898 if (MEM_P (ad))
4900 /* First ensure that the address in this MEM is valid. Then, unless
4901 indirect addresses are valid, reload the MEM into a register. */
4902 tem = ad;
4903 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4904 opnum, ADDR_TYPE (type),
4905 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4907 /* If tem was changed, then we must create a new memory reference to
4908 hold it and store it back into memrefloc. */
4909 if (tem != ad && memrefloc)
4911 *memrefloc = copy_rtx (*memrefloc);
4912 copy_replacements (tem, XEXP (*memrefloc, 0));
4913 loc = &XEXP (*memrefloc, 0);
4914 if (removed_and)
4915 loc = &XEXP (*loc, 0);
4918 /* Check similar cases as for indirect addresses as above except
4919 that we can allow pseudos and a MEM since they should have been
4920 taken care of above. */
4922 if (ind_levels == 0
4923 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4924 || MEM_P (XEXP (tem, 0))
4925 || ! (REG_P (XEXP (tem, 0))
4926 || (GET_CODE (XEXP (tem, 0)) == PLUS
4927 && REG_P (XEXP (XEXP (tem, 0), 0))
4928 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4930 /* Must use TEM here, not AD, since it is the one that will
4931 have any subexpressions reloaded, if needed. */
4932 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4933 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4934 VOIDmode, 0,
4935 0, opnum, type);
4936 return ! removed_and;
4938 else
4939 return 0;
4942 /* If we have address of a stack slot but it's not valid because the
4943 displacement is too large, compute the sum in a register.
4944 Handle all base registers here, not just fp/ap/sp, because on some
4945 targets (namely SH) we can also get too large displacements from
4946 big-endian corrections. */
4947 else if (GET_CODE (ad) == PLUS
4948 && REG_P (XEXP (ad, 0))
4949 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4950 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4951 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4952 CONST_INT))
4955 /* Unshare the MEM rtx so we can safely alter it. */
4956 if (memrefloc)
4958 *memrefloc = copy_rtx (*memrefloc);
4959 loc = &XEXP (*memrefloc, 0);
4960 if (removed_and)
4961 loc = &XEXP (*loc, 0);
4964 if (double_reg_address_ok)
4966 /* Unshare the sum as well. */
4967 *loc = ad = copy_rtx (ad);
4969 /* Reload the displacement into an index reg.
4970 We assume the frame pointer or arg pointer is a base reg. */
4971 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4972 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4973 type, ind_levels);
4974 return 0;
4976 else
4978 /* If the sum of two regs is not necessarily valid,
4979 reload the sum into a base reg.
4980 That will at least work. */
4981 find_reloads_address_part (ad, loc,
4982 base_reg_class (mode, MEM, SCRATCH),
4983 Pmode, opnum, type, ind_levels);
4985 return ! removed_and;
4988 /* If we have an indexed stack slot, there are three possible reasons why
4989 it might be invalid: The index might need to be reloaded, the address
4990 might have been made by frame pointer elimination and hence have a
4991 constant out of range, or both reasons might apply.
4993 We can easily check for an index needing reload, but even if that is the
4994 case, we might also have an invalid constant. To avoid making the
4995 conservative assumption and requiring two reloads, we see if this address
4996 is valid when not interpreted strictly. If it is, the only problem is
4997 that the index needs a reload and find_reloads_address_1 will take care
4998 of it.
5000 Handle all base registers here, not just fp/ap/sp, because on some
5001 targets (namely SPARC) we can also get invalid addresses from preventive
5002 subreg big-endian corrections made by find_reloads_toplev. We
5003 can also get expressions involving LO_SUM (rather than PLUS) from
5004 find_reloads_subreg_address.
5006 If we decide to do something, it must be that `double_reg_address_ok'
5007 is true. We generate a reload of the base register + constant and
5008 rework the sum so that the reload register will be added to the index.
5009 This is safe because we know the address isn't shared.
5011 We check for the base register as both the first and second operand of
5012 the innermost PLUS and/or LO_SUM. */
5014 for (op_index = 0; op_index < 2; ++op_index)
5016 rtx operand, addend;
5017 enum rtx_code inner_code;
5019 if (GET_CODE (ad) != PLUS)
5020 continue;
5022 inner_code = GET_CODE (XEXP (ad, 0));
5023 if (!(GET_CODE (ad) == PLUS
5024 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5025 && (inner_code == PLUS || inner_code == LO_SUM)))
5026 continue;
5028 operand = XEXP (XEXP (ad, 0), op_index);
5029 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5030 continue;
5032 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5034 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5035 GET_CODE (addend))
5036 || operand == frame_pointer_rtx
5037 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5038 || operand == hard_frame_pointer_rtx
5039 #endif
5040 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5041 || operand == arg_pointer_rtx
5042 #endif
5043 || operand == stack_pointer_rtx)
5044 && ! maybe_memory_address_p (mode, ad,
5045 &XEXP (XEXP (ad, 0), 1 - op_index)))
5047 rtx offset_reg;
5048 enum reg_class cls;
5050 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5052 /* Form the adjusted address. */
5053 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5054 ad = gen_rtx_PLUS (GET_MODE (ad),
5055 op_index == 0 ? offset_reg : addend,
5056 op_index == 0 ? addend : offset_reg);
5057 else
5058 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5059 op_index == 0 ? offset_reg : addend,
5060 op_index == 0 ? addend : offset_reg);
5061 *loc = ad;
5063 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5064 find_reloads_address_part (XEXP (ad, op_index),
5065 &XEXP (ad, op_index), cls,
5066 GET_MODE (ad), opnum, type, ind_levels);
5067 find_reloads_address_1 (mode,
5068 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5069 GET_CODE (XEXP (ad, op_index)),
5070 &XEXP (ad, 1 - op_index), opnum,
5071 type, 0, insn);
5073 return 0;
5077 /* See if address becomes valid when an eliminable register
5078 in a sum is replaced. */
5080 tem = ad;
5081 if (GET_CODE (ad) == PLUS)
5082 tem = subst_indexed_address (ad);
5083 if (tem != ad && strict_memory_address_p (mode, tem))
5085 /* Ok, we win that way. Replace any additional eliminable
5086 registers. */
5088 subst_reg_equivs_changed = 0;
5089 tem = subst_reg_equivs (tem, insn);
5091 /* Make sure that didn't make the address invalid again. */
5093 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5095 *loc = tem;
5096 return 0;
5100 /* If constants aren't valid addresses, reload the constant address
5101 into a register. */
5102 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5104 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5105 Unshare it so we can safely alter it. */
5106 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5107 && CONSTANT_POOL_ADDRESS_P (ad))
5109 *memrefloc = copy_rtx (*memrefloc);
5110 loc = &XEXP (*memrefloc, 0);
5111 if (removed_and)
5112 loc = &XEXP (*loc, 0);
5115 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5116 Pmode, opnum, type, ind_levels);
5117 return ! removed_and;
5120 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5121 ind_levels, insn);
5124 /* Find all pseudo regs appearing in AD
5125 that are eliminable in favor of equivalent values
5126 and do not have hard regs; replace them by their equivalents.
5127 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5128 front of it for pseudos that we have to replace with stack slots. */
5130 static rtx
5131 subst_reg_equivs (rtx ad, rtx insn)
5133 RTX_CODE code = GET_CODE (ad);
5134 int i;
5135 const char *fmt;
5137 switch (code)
5139 case HIGH:
5140 case CONST_INT:
5141 case CONST:
5142 case CONST_DOUBLE:
5143 case CONST_VECTOR:
5144 case SYMBOL_REF:
5145 case LABEL_REF:
5146 case PC:
5147 case CC0:
5148 return ad;
5150 case REG:
5152 int regno = REGNO (ad);
5154 if (reg_equiv_constant[regno] != 0)
5156 subst_reg_equivs_changed = 1;
5157 return reg_equiv_constant[regno];
5159 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5161 rtx mem = make_memloc (ad, regno);
5162 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5164 subst_reg_equivs_changed = 1;
5165 /* We mark the USE with QImode so that we recognize it
5166 as one that can be safely deleted at the end of
5167 reload. */
5168 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5169 QImode);
5170 return mem;
5174 return ad;
5176 case PLUS:
5177 /* Quickly dispose of a common case. */
5178 if (XEXP (ad, 0) == frame_pointer_rtx
5179 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5180 return ad;
5181 break;
5183 default:
5184 break;
5187 fmt = GET_RTX_FORMAT (code);
5188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5189 if (fmt[i] == 'e')
5190 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5191 return ad;
5194 /* Compute the sum of X and Y, making canonicalizations assumed in an
5195 address, namely: sum constant integers, surround the sum of two
5196 constants with a CONST, put the constant as the second operand, and
5197 group the constant on the outermost sum.
5199 This routine assumes both inputs are already in canonical form. */
5202 form_sum (rtx x, rtx y)
5204 rtx tem;
5205 enum machine_mode mode = GET_MODE (x);
5207 if (mode == VOIDmode)
5208 mode = GET_MODE (y);
5210 if (mode == VOIDmode)
5211 mode = Pmode;
5213 if (GET_CODE (x) == CONST_INT)
5214 return plus_constant (y, INTVAL (x));
5215 else if (GET_CODE (y) == CONST_INT)
5216 return plus_constant (x, INTVAL (y));
5217 else if (CONSTANT_P (x))
5218 tem = x, x = y, y = tem;
5220 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5221 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5223 /* Note that if the operands of Y are specified in the opposite
5224 order in the recursive calls below, infinite recursion will occur. */
5225 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5226 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5228 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5229 constant will have been placed second. */
5230 if (CONSTANT_P (x) && CONSTANT_P (y))
5232 if (GET_CODE (x) == CONST)
5233 x = XEXP (x, 0);
5234 if (GET_CODE (y) == CONST)
5235 y = XEXP (y, 0);
5237 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5240 return gen_rtx_PLUS (mode, x, y);
5243 /* If ADDR is a sum containing a pseudo register that should be
5244 replaced with a constant (from reg_equiv_constant),
5245 return the result of doing so, and also apply the associative
5246 law so that the result is more likely to be a valid address.
5247 (But it is not guaranteed to be one.)
5249 Note that at most one register is replaced, even if more are
5250 replaceable. Also, we try to put the result into a canonical form
5251 so it is more likely to be a valid address.
5253 In all other cases, return ADDR. */
5255 static rtx
5256 subst_indexed_address (rtx addr)
5258 rtx op0 = 0, op1 = 0, op2 = 0;
5259 rtx tem;
5260 int regno;
5262 if (GET_CODE (addr) == PLUS)
5264 /* Try to find a register to replace. */
5265 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5266 if (REG_P (op0)
5267 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5268 && reg_renumber[regno] < 0
5269 && reg_equiv_constant[regno] != 0)
5270 op0 = reg_equiv_constant[regno];
5271 else if (REG_P (op1)
5272 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5273 && reg_renumber[regno] < 0
5274 && reg_equiv_constant[regno] != 0)
5275 op1 = reg_equiv_constant[regno];
5276 else if (GET_CODE (op0) == PLUS
5277 && (tem = subst_indexed_address (op0)) != op0)
5278 op0 = tem;
5279 else if (GET_CODE (op1) == PLUS
5280 && (tem = subst_indexed_address (op1)) != op1)
5281 op1 = tem;
5282 else
5283 return addr;
5285 /* Pick out up to three things to add. */
5286 if (GET_CODE (op1) == PLUS)
5287 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5288 else if (GET_CODE (op0) == PLUS)
5289 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5291 /* Compute the sum. */
5292 if (op2 != 0)
5293 op1 = form_sum (op1, op2);
5294 if (op1 != 0)
5295 op0 = form_sum (op0, op1);
5297 return op0;
5299 return addr;
5302 /* Update the REG_INC notes for an insn. It updates all REG_INC
5303 notes for the instruction which refer to REGNO the to refer
5304 to the reload number.
5306 INSN is the insn for which any REG_INC notes need updating.
5308 REGNO is the register number which has been reloaded.
5310 RELOADNUM is the reload number. */
5312 static void
5313 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5314 int reloadnum ATTRIBUTE_UNUSED)
5316 #ifdef AUTO_INC_DEC
5317 rtx link;
5319 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5320 if (REG_NOTE_KIND (link) == REG_INC
5321 && (int) REGNO (XEXP (link, 0)) == regno)
5322 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5323 #endif
5326 /* Record the pseudo registers we must reload into hard registers in a
5327 subexpression of a would-be memory address, X referring to a value
5328 in mode MODE. (This function is not called if the address we find
5329 is strictly valid.)
5331 CONTEXT = 1 means we are considering regs as index regs,
5332 = 0 means we are considering them as base regs.
5333 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5334 or an autoinc code.
5335 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5336 is the code of the index part of the address. Otherwise, pass SCRATCH
5337 for this argument.
5338 OPNUM and TYPE specify the purpose of any reloads made.
5340 IND_LEVELS says how many levels of indirect addressing are
5341 supported at this point in the address.
5343 INSN, if nonzero, is the insn in which we do the reload. It is used
5344 to determine if we may generate output reloads.
5346 We return nonzero if X, as a whole, is reloaded or replaced. */
5348 /* Note that we take shortcuts assuming that no multi-reg machine mode
5349 occurs as part of an address.
5350 Also, this is not fully machine-customizable; it works for machines
5351 such as VAXen and 68000's and 32000's, but other possible machines
5352 could have addressing modes that this does not handle right.
5353 If you add push_reload calls here, you need to make sure gen_reload
5354 handles those cases gracefully. */
5356 static int
5357 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5358 enum rtx_code outer_code, enum rtx_code index_code,
5359 rtx *loc, int opnum, enum reload_type type,
5360 int ind_levels, rtx insn)
5362 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5363 ((CONTEXT) == 0 \
5364 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5365 : REGNO_OK_FOR_INDEX_P (REGNO))
5367 enum reg_class context_reg_class;
5368 RTX_CODE code = GET_CODE (x);
5370 if (context == 1)
5371 context_reg_class = INDEX_REG_CLASS;
5372 else
5373 context_reg_class = base_reg_class (mode, outer_code, index_code);
5375 switch (code)
5377 case PLUS:
5379 rtx orig_op0 = XEXP (x, 0);
5380 rtx orig_op1 = XEXP (x, 1);
5381 RTX_CODE code0 = GET_CODE (orig_op0);
5382 RTX_CODE code1 = GET_CODE (orig_op1);
5383 rtx op0 = orig_op0;
5384 rtx op1 = orig_op1;
5386 if (GET_CODE (op0) == SUBREG)
5388 op0 = SUBREG_REG (op0);
5389 code0 = GET_CODE (op0);
5390 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5391 op0 = gen_rtx_REG (word_mode,
5392 (REGNO (op0) +
5393 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5394 GET_MODE (SUBREG_REG (orig_op0)),
5395 SUBREG_BYTE (orig_op0),
5396 GET_MODE (orig_op0))));
5399 if (GET_CODE (op1) == SUBREG)
5401 op1 = SUBREG_REG (op1);
5402 code1 = GET_CODE (op1);
5403 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5404 /* ??? Why is this given op1's mode and above for
5405 ??? op0 SUBREGs we use word_mode? */
5406 op1 = gen_rtx_REG (GET_MODE (op1),
5407 (REGNO (op1) +
5408 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5409 GET_MODE (SUBREG_REG (orig_op1)),
5410 SUBREG_BYTE (orig_op1),
5411 GET_MODE (orig_op1))));
5413 /* Plus in the index register may be created only as a result of
5414 register rematerialization for expression like &localvar*4. Reload it.
5415 It may be possible to combine the displacement on the outer level,
5416 but it is probably not worthwhile to do so. */
5417 if (context == 1)
5419 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5420 opnum, ADDR_TYPE (type), ind_levels, insn);
5421 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5422 context_reg_class,
5423 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5424 return 1;
5427 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5428 || code0 == ZERO_EXTEND || code1 == MEM)
5430 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5431 &XEXP (x, 0), opnum, type, ind_levels,
5432 insn);
5433 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5434 &XEXP (x, 1), opnum, type, ind_levels,
5435 insn);
5438 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5439 || code1 == ZERO_EXTEND || code0 == MEM)
5441 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5442 &XEXP (x, 0), opnum, type, ind_levels,
5443 insn);
5444 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5445 &XEXP (x, 1), opnum, type, ind_levels,
5446 insn);
5449 else if (code0 == CONST_INT || code0 == CONST
5450 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5451 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5452 &XEXP (x, 1), opnum, type, ind_levels,
5453 insn);
5455 else if (code1 == CONST_INT || code1 == CONST
5456 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5457 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5458 &XEXP (x, 0), opnum, type, ind_levels,
5459 insn);
5461 else if (code0 == REG && code1 == REG)
5463 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5464 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5465 return 0;
5466 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5467 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5468 return 0;
5469 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5470 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5471 &XEXP (x, 0), opnum, type, ind_levels,
5472 insn);
5473 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5474 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5475 &XEXP (x, 1), opnum, type, ind_levels,
5476 insn);
5477 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5478 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5479 &XEXP (x, 0), opnum, type, ind_levels,
5480 insn);
5481 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5482 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5483 &XEXP (x, 1), opnum, type, ind_levels,
5484 insn);
5485 else
5487 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5488 &XEXP (x, 0), opnum, type, ind_levels,
5489 insn);
5490 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5491 &XEXP (x, 1), opnum, type, ind_levels,
5492 insn);
5496 else if (code0 == REG)
5498 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5499 &XEXP (x, 0), opnum, type, ind_levels,
5500 insn);
5501 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5502 &XEXP (x, 1), opnum, type, ind_levels,
5503 insn);
5506 else if (code1 == REG)
5508 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5509 &XEXP (x, 1), opnum, type, ind_levels,
5510 insn);
5511 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5512 &XEXP (x, 0), opnum, type, ind_levels,
5513 insn);
5517 return 0;
5519 case POST_MODIFY:
5520 case PRE_MODIFY:
5522 rtx op0 = XEXP (x, 0);
5523 rtx op1 = XEXP (x, 1);
5524 enum rtx_code index_code;
5525 int regno;
5526 int reloadnum;
5528 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5529 return 0;
5531 /* Currently, we only support {PRE,POST}_MODIFY constructs
5532 where a base register is {inc,dec}remented by the contents
5533 of another register or by a constant value. Thus, these
5534 operands must match. */
5535 gcc_assert (op0 == XEXP (op1, 0));
5537 /* Require index register (or constant). Let's just handle the
5538 register case in the meantime... If the target allows
5539 auto-modify by a constant then we could try replacing a pseudo
5540 register with its equivalent constant where applicable.
5542 We also handle the case where the register was eliminated
5543 resulting in a PLUS subexpression.
5545 If we later decide to reload the whole PRE_MODIFY or
5546 POST_MODIFY, inc_for_reload might clobber the reload register
5547 before reading the index. The index register might therefore
5548 need to live longer than a TYPE reload normally would, so be
5549 conservative and class it as RELOAD_OTHER. */
5550 if ((REG_P (XEXP (op1, 1))
5551 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5552 || GET_CODE (XEXP (op1, 1)) == PLUS)
5553 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5554 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5555 ind_levels, insn);
5557 gcc_assert (REG_P (XEXP (op1, 0)));
5559 regno = REGNO (XEXP (op1, 0));
5560 index_code = GET_CODE (XEXP (op1, 1));
5562 /* A register that is incremented cannot be constant! */
5563 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5564 || reg_equiv_constant[regno] == 0);
5566 /* Handle a register that is equivalent to a memory location
5567 which cannot be addressed directly. */
5568 if (reg_equiv_memory_loc[regno] != 0
5569 && (reg_equiv_address[regno] != 0
5570 || num_not_at_initial_offset))
5572 rtx tem = make_memloc (XEXP (x, 0), regno);
5574 if (reg_equiv_address[regno]
5575 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5577 rtx orig = tem;
5579 /* First reload the memory location's address.
5580 We can't use ADDR_TYPE (type) here, because we need to
5581 write back the value after reading it, hence we actually
5582 need two registers. */
5583 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5584 &XEXP (tem, 0), opnum,
5585 RELOAD_OTHER,
5586 ind_levels, insn);
5588 if (!rtx_equal_p (tem, orig))
5589 push_reg_equiv_alt_mem (regno, tem);
5591 /* Then reload the memory location into a base
5592 register. */
5593 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5594 &XEXP (op1, 0),
5595 base_reg_class (mode, code,
5596 index_code),
5597 GET_MODE (x), GET_MODE (x), 0,
5598 0, opnum, RELOAD_OTHER);
5600 update_auto_inc_notes (this_insn, regno, reloadnum);
5601 return 0;
5605 if (reg_renumber[regno] >= 0)
5606 regno = reg_renumber[regno];
5608 /* We require a base register here... */
5609 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5611 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5612 &XEXP (op1, 0), &XEXP (x, 0),
5613 base_reg_class (mode, code, index_code),
5614 GET_MODE (x), GET_MODE (x), 0, 0,
5615 opnum, RELOAD_OTHER);
5617 update_auto_inc_notes (this_insn, regno, reloadnum);
5618 return 0;
5621 return 0;
5623 case POST_INC:
5624 case POST_DEC:
5625 case PRE_INC:
5626 case PRE_DEC:
5627 if (REG_P (XEXP (x, 0)))
5629 int regno = REGNO (XEXP (x, 0));
5630 int value = 0;
5631 rtx x_orig = x;
5633 /* A register that is incremented cannot be constant! */
5634 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5635 || reg_equiv_constant[regno] == 0);
5637 /* Handle a register that is equivalent to a memory location
5638 which cannot be addressed directly. */
5639 if (reg_equiv_memory_loc[regno] != 0
5640 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5642 rtx tem = make_memloc (XEXP (x, 0), regno);
5643 if (reg_equiv_address[regno]
5644 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5646 rtx orig = tem;
5648 /* First reload the memory location's address.
5649 We can't use ADDR_TYPE (type) here, because we need to
5650 write back the value after reading it, hence we actually
5651 need two registers. */
5652 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5653 &XEXP (tem, 0), opnum, type,
5654 ind_levels, insn);
5655 if (!rtx_equal_p (tem, orig))
5656 push_reg_equiv_alt_mem (regno, tem);
5657 /* Put this inside a new increment-expression. */
5658 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5659 /* Proceed to reload that, as if it contained a register. */
5663 /* If we have a hard register that is ok as an index,
5664 don't make a reload. If an autoincrement of a nice register
5665 isn't "valid", it must be that no autoincrement is "valid".
5666 If that is true and something made an autoincrement anyway,
5667 this must be a special context where one is allowed.
5668 (For example, a "push" instruction.)
5669 We can't improve this address, so leave it alone. */
5671 /* Otherwise, reload the autoincrement into a suitable hard reg
5672 and record how much to increment by. */
5674 if (reg_renumber[regno] >= 0)
5675 regno = reg_renumber[regno];
5676 if (regno >= FIRST_PSEUDO_REGISTER
5677 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5678 index_code))
5680 int reloadnum;
5682 /* If we can output the register afterwards, do so, this
5683 saves the extra update.
5684 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5685 CALL_INSN - and it does not set CC0.
5686 But don't do this if we cannot directly address the
5687 memory location, since this will make it harder to
5688 reuse address reloads, and increases register pressure.
5689 Also don't do this if we can probably update x directly. */
5690 rtx equiv = (MEM_P (XEXP (x, 0))
5691 ? XEXP (x, 0)
5692 : reg_equiv_mem[regno]);
5693 int icode = (int) optab_handler (add_optab, Pmode)->insn_code;
5694 if (insn && NONJUMP_INSN_P (insn) && equiv
5695 && memory_operand (equiv, GET_MODE (equiv))
5696 #ifdef HAVE_cc0
5697 && ! sets_cc0_p (PATTERN (insn))
5698 #endif
5699 && ! (icode != CODE_FOR_nothing
5700 && ((*insn_data[icode].operand[0].predicate)
5701 (equiv, Pmode))
5702 && ((*insn_data[icode].operand[1].predicate)
5703 (equiv, Pmode))))
5705 /* We use the original pseudo for loc, so that
5706 emit_reload_insns() knows which pseudo this
5707 reload refers to and updates the pseudo rtx, not
5708 its equivalent memory location, as well as the
5709 corresponding entry in reg_last_reload_reg. */
5710 loc = &XEXP (x_orig, 0);
5711 x = XEXP (x, 0);
5712 reloadnum
5713 = push_reload (x, x, loc, loc,
5714 context_reg_class,
5715 GET_MODE (x), GET_MODE (x), 0, 0,
5716 opnum, RELOAD_OTHER);
5718 else
5720 reloadnum
5721 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5722 context_reg_class,
5723 GET_MODE (x), GET_MODE (x), 0, 0,
5724 opnum, type);
5725 rld[reloadnum].inc
5726 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5728 value = 1;
5731 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5732 reloadnum);
5734 return value;
5736 return 0;
5738 case TRUNCATE:
5739 case SIGN_EXTEND:
5740 case ZERO_EXTEND:
5741 /* Look for parts to reload in the inner expression and reload them
5742 too, in addition to this operation. Reloading all inner parts in
5743 addition to this one shouldn't be necessary, but at this point,
5744 we don't know if we can possibly omit any part that *can* be
5745 reloaded. Targets that are better off reloading just either part
5746 (or perhaps even a different part of an outer expression), should
5747 define LEGITIMIZE_RELOAD_ADDRESS. */
5748 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5749 context, code, SCRATCH, &XEXP (x, 0), opnum,
5750 type, ind_levels, insn);
5751 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5752 context_reg_class,
5753 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5754 return 1;
5756 case MEM:
5757 /* This is probably the result of a substitution, by eliminate_regs, of
5758 an equivalent address for a pseudo that was not allocated to a hard
5759 register. Verify that the specified address is valid and reload it
5760 into a register.
5762 Since we know we are going to reload this item, don't decrement for
5763 the indirection level.
5765 Note that this is actually conservative: it would be slightly more
5766 efficient to use the value of SPILL_INDIRECT_LEVELS from
5767 reload1.c here. */
5769 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5770 opnum, ADDR_TYPE (type), ind_levels, insn);
5771 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5772 context_reg_class,
5773 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5774 return 1;
5776 case REG:
5778 int regno = REGNO (x);
5780 if (reg_equiv_constant[regno] != 0)
5782 find_reloads_address_part (reg_equiv_constant[regno], loc,
5783 context_reg_class,
5784 GET_MODE (x), opnum, type, ind_levels);
5785 return 1;
5788 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5789 that feeds this insn. */
5790 if (reg_equiv_mem[regno] != 0)
5792 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5793 context_reg_class,
5794 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5795 return 1;
5797 #endif
5799 if (reg_equiv_memory_loc[regno]
5800 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5802 rtx tem = make_memloc (x, regno);
5803 if (reg_equiv_address[regno] != 0
5804 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5806 x = tem;
5807 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5808 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5809 ind_levels, insn);
5810 if (!rtx_equal_p (x, tem))
5811 push_reg_equiv_alt_mem (regno, x);
5815 if (reg_renumber[regno] >= 0)
5816 regno = reg_renumber[regno];
5818 if (regno >= FIRST_PSEUDO_REGISTER
5819 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5820 index_code))
5822 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5823 context_reg_class,
5824 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5825 return 1;
5828 /* If a register appearing in an address is the subject of a CLOBBER
5829 in this insn, reload it into some other register to be safe.
5830 The CLOBBER is supposed to make the register unavailable
5831 from before this insn to after it. */
5832 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5834 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5835 context_reg_class,
5836 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5837 return 1;
5840 return 0;
5842 case SUBREG:
5843 if (REG_P (SUBREG_REG (x)))
5845 /* If this is a SUBREG of a hard register and the resulting register
5846 is of the wrong class, reload the whole SUBREG. This avoids
5847 needless copies if SUBREG_REG is multi-word. */
5848 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5850 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5852 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5853 index_code))
5855 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5856 context_reg_class,
5857 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5858 return 1;
5861 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5862 is larger than the class size, then reload the whole SUBREG. */
5863 else
5865 enum reg_class class = context_reg_class;
5866 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5867 > reg_class_size[class])
5869 x = find_reloads_subreg_address (x, 0, opnum,
5870 ADDR_TYPE (type),
5871 ind_levels, insn);
5872 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5873 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5874 return 1;
5878 break;
5880 default:
5881 break;
5885 const char *fmt = GET_RTX_FORMAT (code);
5886 int i;
5888 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5890 if (fmt[i] == 'e')
5891 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5892 we get here. */
5893 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5894 &XEXP (x, i), opnum, type, ind_levels, insn);
5898 #undef REG_OK_FOR_CONTEXT
5899 return 0;
5902 /* X, which is found at *LOC, is a part of an address that needs to be
5903 reloaded into a register of class CLASS. If X is a constant, or if
5904 X is a PLUS that contains a constant, check that the constant is a
5905 legitimate operand and that we are supposed to be able to load
5906 it into the register.
5908 If not, force the constant into memory and reload the MEM instead.
5910 MODE is the mode to use, in case X is an integer constant.
5912 OPNUM and TYPE describe the purpose of any reloads made.
5914 IND_LEVELS says how many levels of indirect addressing this machine
5915 supports. */
5917 static void
5918 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5919 enum machine_mode mode, int opnum,
5920 enum reload_type type, int ind_levels)
5922 if (CONSTANT_P (x)
5923 && (! LEGITIMATE_CONSTANT_P (x)
5924 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5926 x = force_const_mem (mode, x);
5927 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
5928 opnum, type, ind_levels, 0);
5931 else if (GET_CODE (x) == PLUS
5932 && CONSTANT_P (XEXP (x, 1))
5933 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5934 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5936 rtx tem;
5938 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5939 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5940 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
5941 opnum, type, ind_levels, 0);
5944 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5945 mode, VOIDmode, 0, 0, opnum, type);
5948 /* X, a subreg of a pseudo, is a part of an address that needs to be
5949 reloaded.
5951 If the pseudo is equivalent to a memory location that cannot be directly
5952 addressed, make the necessary address reloads.
5954 If address reloads have been necessary, or if the address is changed
5955 by register elimination, return the rtx of the memory location;
5956 otherwise, return X.
5958 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5959 memory location.
5961 OPNUM and TYPE identify the purpose of the reload.
5963 IND_LEVELS says how many levels of indirect addressing are
5964 supported at this point in the address.
5966 INSN, if nonzero, is the insn in which we do the reload. It is used
5967 to determine where to put USEs for pseudos that we have to replace with
5968 stack slots. */
5970 static rtx
5971 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5972 enum reload_type type, int ind_levels, rtx insn)
5974 int regno = REGNO (SUBREG_REG (x));
5976 if (reg_equiv_memory_loc[regno])
5978 /* If the address is not directly addressable, or if the address is not
5979 offsettable, then it must be replaced. */
5980 if (! force_replace
5981 && (reg_equiv_address[regno]
5982 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5983 force_replace = 1;
5985 if (force_replace || num_not_at_initial_offset)
5987 rtx tem = make_memloc (SUBREG_REG (x), regno);
5989 /* If the address changes because of register elimination, then
5990 it must be replaced. */
5991 if (force_replace
5992 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5994 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5995 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5996 int offset;
5997 rtx orig = tem;
5998 enum machine_mode orig_mode = GET_MODE (orig);
5999 int reloaded;
6001 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6002 hold the correct (negative) byte offset. */
6003 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6004 offset = inner_size - outer_size;
6005 else
6006 offset = SUBREG_BYTE (x);
6008 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6009 PUT_MODE (tem, GET_MODE (x));
6011 /* If this was a paradoxical subreg that we replaced, the
6012 resulting memory must be sufficiently aligned to allow
6013 us to widen the mode of the memory. */
6014 if (outer_size > inner_size)
6016 rtx base;
6018 base = XEXP (tem, 0);
6019 if (GET_CODE (base) == PLUS)
6021 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6022 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6023 return x;
6024 base = XEXP (base, 0);
6026 if (!REG_P (base)
6027 || (REGNO_POINTER_ALIGN (REGNO (base))
6028 < outer_size * BITS_PER_UNIT))
6029 return x;
6032 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6033 XEXP (tem, 0), &XEXP (tem, 0),
6034 opnum, type, ind_levels, insn);
6035 /* ??? Do we need to handle nonzero offsets somehow? */
6036 if (!offset && !rtx_equal_p (tem, orig))
6037 push_reg_equiv_alt_mem (regno, tem);
6039 /* For some processors an address may be valid in the
6040 original mode but not in a smaller mode. For
6041 example, ARM accepts a scaled index register in
6042 SImode but not in HImode. find_reloads_address
6043 assumes that we pass it a valid address, and doesn't
6044 force a reload. This will probably be fine if
6045 find_reloads_address finds some reloads. But if it
6046 doesn't find any, then we may have just converted a
6047 valid address into an invalid one. Check for that
6048 here. */
6049 if (reloaded != 1
6050 && strict_memory_address_p (orig_mode, XEXP (tem, 0))
6051 && !strict_memory_address_p (GET_MODE (tem),
6052 XEXP (tem, 0)))
6053 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6054 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6055 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6056 opnum, type);
6058 /* If this is not a toplevel operand, find_reloads doesn't see
6059 this substitution. We have to emit a USE of the pseudo so
6060 that delete_output_reload can see it. */
6061 if (replace_reloads && recog_data.operand[opnum] != x)
6062 /* We mark the USE with QImode so that we recognize it
6063 as one that can be safely deleted at the end of
6064 reload. */
6065 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6066 SUBREG_REG (x)),
6067 insn), QImode);
6068 x = tem;
6072 return x;
6075 /* Substitute into the current INSN the registers into which we have reloaded
6076 the things that need reloading. The array `replacements'
6077 contains the locations of all pointers that must be changed
6078 and says what to replace them with.
6080 Return the rtx that X translates into; usually X, but modified. */
6082 void
6083 subst_reloads (rtx insn)
6085 int i;
6087 for (i = 0; i < n_replacements; i++)
6089 struct replacement *r = &replacements[i];
6090 rtx reloadreg = rld[r->what].reg_rtx;
6091 if (reloadreg)
6093 #ifdef DEBUG_RELOAD
6094 /* This checking takes a very long time on some platforms
6095 causing the gcc.c-torture/compile/limits-fnargs.c test
6096 to time out during testing. See PR 31850.
6098 Internal consistency test. Check that we don't modify
6099 anything in the equivalence arrays. Whenever something from
6100 those arrays needs to be reloaded, it must be unshared before
6101 being substituted into; the equivalence must not be modified.
6102 Otherwise, if the equivalence is used after that, it will
6103 have been modified, and the thing substituted (probably a
6104 register) is likely overwritten and not a usable equivalence. */
6105 int check_regno;
6107 for (check_regno = 0; check_regno < max_regno; check_regno++)
6109 #define CHECK_MODF(ARRAY) \
6110 gcc_assert (!ARRAY[check_regno] \
6111 || !loc_mentioned_in_p (r->where, \
6112 ARRAY[check_regno]))
6114 CHECK_MODF (reg_equiv_constant);
6115 CHECK_MODF (reg_equiv_memory_loc);
6116 CHECK_MODF (reg_equiv_address);
6117 CHECK_MODF (reg_equiv_mem);
6118 #undef CHECK_MODF
6120 #endif /* DEBUG_RELOAD */
6122 /* If we're replacing a LABEL_REF with a register, add a
6123 REG_LABEL note to indicate to flow which label this
6124 register refers to. */
6125 if (GET_CODE (*r->where) == LABEL_REF
6126 && JUMP_P (insn))
6128 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6129 XEXP (*r->where, 0),
6130 REG_NOTES (insn));
6131 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6134 /* Encapsulate RELOADREG so its machine mode matches what
6135 used to be there. Note that gen_lowpart_common will
6136 do the wrong thing if RELOADREG is multi-word. RELOADREG
6137 will always be a REG here. */
6138 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6139 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6141 /* If we are putting this into a SUBREG and RELOADREG is a
6142 SUBREG, we would be making nested SUBREGs, so we have to fix
6143 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6145 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6147 if (GET_MODE (*r->subreg_loc)
6148 == GET_MODE (SUBREG_REG (reloadreg)))
6149 *r->subreg_loc = SUBREG_REG (reloadreg);
6150 else
6152 int final_offset =
6153 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6155 /* When working with SUBREGs the rule is that the byte
6156 offset must be a multiple of the SUBREG's mode. */
6157 final_offset = (final_offset /
6158 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6159 final_offset = (final_offset *
6160 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6162 *r->where = SUBREG_REG (reloadreg);
6163 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6166 else
6167 *r->where = reloadreg;
6169 /* If reload got no reg and isn't optional, something's wrong. */
6170 else
6171 gcc_assert (rld[r->what].optional);
6175 /* Make a copy of any replacements being done into X and move those
6176 copies to locations in Y, a copy of X. */
6178 void
6179 copy_replacements (rtx x, rtx y)
6181 /* We can't support X being a SUBREG because we might then need to know its
6182 location if something inside it was replaced. */
6183 gcc_assert (GET_CODE (x) != SUBREG);
6185 copy_replacements_1 (&x, &y, n_replacements);
6188 static void
6189 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6191 int i, j;
6192 rtx x, y;
6193 struct replacement *r;
6194 enum rtx_code code;
6195 const char *fmt;
6197 for (j = 0; j < orig_replacements; j++)
6199 if (replacements[j].subreg_loc == px)
6201 r = &replacements[n_replacements++];
6202 r->where = replacements[j].where;
6203 r->subreg_loc = py;
6204 r->what = replacements[j].what;
6205 r->mode = replacements[j].mode;
6207 else if (replacements[j].where == px)
6209 r = &replacements[n_replacements++];
6210 r->where = py;
6211 r->subreg_loc = 0;
6212 r->what = replacements[j].what;
6213 r->mode = replacements[j].mode;
6217 x = *px;
6218 y = *py;
6219 code = GET_CODE (x);
6220 fmt = GET_RTX_FORMAT (code);
6222 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6224 if (fmt[i] == 'e')
6225 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6226 else if (fmt[i] == 'E')
6227 for (j = XVECLEN (x, i); --j >= 0; )
6228 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6229 orig_replacements);
6233 /* Change any replacements being done to *X to be done to *Y. */
6235 void
6236 move_replacements (rtx *x, rtx *y)
6238 int i;
6240 for (i = 0; i < n_replacements; i++)
6241 if (replacements[i].subreg_loc == x)
6242 replacements[i].subreg_loc = y;
6243 else if (replacements[i].where == x)
6245 replacements[i].where = y;
6246 replacements[i].subreg_loc = 0;
6250 /* If LOC was scheduled to be replaced by something, return the replacement.
6251 Otherwise, return *LOC. */
6254 find_replacement (rtx *loc)
6256 struct replacement *r;
6258 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6260 rtx reloadreg = rld[r->what].reg_rtx;
6262 if (reloadreg && r->where == loc)
6264 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6265 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6267 return reloadreg;
6269 else if (reloadreg && r->subreg_loc == loc)
6271 /* RELOADREG must be either a REG or a SUBREG.
6273 ??? Is it actually still ever a SUBREG? If so, why? */
6275 if (REG_P (reloadreg))
6276 return gen_rtx_REG (GET_MODE (*loc),
6277 (REGNO (reloadreg) +
6278 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6279 GET_MODE (SUBREG_REG (*loc)),
6280 SUBREG_BYTE (*loc),
6281 GET_MODE (*loc))));
6282 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6283 return reloadreg;
6284 else
6286 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6288 /* When working with SUBREGs the rule is that the byte
6289 offset must be a multiple of the SUBREG's mode. */
6290 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6291 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6292 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6293 final_offset);
6298 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6299 what's inside and make a new rtl if so. */
6300 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6301 || GET_CODE (*loc) == MULT)
6303 rtx x = find_replacement (&XEXP (*loc, 0));
6304 rtx y = find_replacement (&XEXP (*loc, 1));
6306 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6307 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6310 return *loc;
6313 /* Return nonzero if register in range [REGNO, ENDREGNO)
6314 appears either explicitly or implicitly in X
6315 other than being stored into (except for earlyclobber operands).
6317 References contained within the substructure at LOC do not count.
6318 LOC may be zero, meaning don't ignore anything.
6320 This is similar to refers_to_regno_p in rtlanal.c except that we
6321 look at equivalences for pseudos that didn't get hard registers. */
6323 static int
6324 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6325 rtx x, rtx *loc)
6327 int i;
6328 unsigned int r;
6329 RTX_CODE code;
6330 const char *fmt;
6332 if (x == 0)
6333 return 0;
6335 repeat:
6336 code = GET_CODE (x);
6338 switch (code)
6340 case REG:
6341 r = REGNO (x);
6343 /* If this is a pseudo, a hard register must not have been allocated.
6344 X must therefore either be a constant or be in memory. */
6345 if (r >= FIRST_PSEUDO_REGISTER)
6347 if (reg_equiv_memory_loc[r])
6348 return refers_to_regno_for_reload_p (regno, endregno,
6349 reg_equiv_memory_loc[r],
6350 (rtx*) 0);
6352 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6353 return 0;
6356 return (endregno > r
6357 && regno < r + (r < FIRST_PSEUDO_REGISTER
6358 ? hard_regno_nregs[r][GET_MODE (x)]
6359 : 1));
6361 case SUBREG:
6362 /* If this is a SUBREG of a hard reg, we can see exactly which
6363 registers are being modified. Otherwise, handle normally. */
6364 if (REG_P (SUBREG_REG (x))
6365 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6367 unsigned int inner_regno = subreg_regno (x);
6368 unsigned int inner_endregno
6369 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6370 ? subreg_nregs (x) : 1);
6372 return endregno > inner_regno && regno < inner_endregno;
6374 break;
6376 case CLOBBER:
6377 case SET:
6378 if (&SET_DEST (x) != loc
6379 /* Note setting a SUBREG counts as referring to the REG it is in for
6380 a pseudo but not for hard registers since we can
6381 treat each word individually. */
6382 && ((GET_CODE (SET_DEST (x)) == SUBREG
6383 && loc != &SUBREG_REG (SET_DEST (x))
6384 && REG_P (SUBREG_REG (SET_DEST (x)))
6385 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6386 && refers_to_regno_for_reload_p (regno, endregno,
6387 SUBREG_REG (SET_DEST (x)),
6388 loc))
6389 /* If the output is an earlyclobber operand, this is
6390 a conflict. */
6391 || ((!REG_P (SET_DEST (x))
6392 || earlyclobber_operand_p (SET_DEST (x)))
6393 && refers_to_regno_for_reload_p (regno, endregno,
6394 SET_DEST (x), loc))))
6395 return 1;
6397 if (code == CLOBBER || loc == &SET_SRC (x))
6398 return 0;
6399 x = SET_SRC (x);
6400 goto repeat;
6402 default:
6403 break;
6406 /* X does not match, so try its subexpressions. */
6408 fmt = GET_RTX_FORMAT (code);
6409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6411 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6413 if (i == 0)
6415 x = XEXP (x, 0);
6416 goto repeat;
6418 else
6419 if (refers_to_regno_for_reload_p (regno, endregno,
6420 XEXP (x, i), loc))
6421 return 1;
6423 else if (fmt[i] == 'E')
6425 int j;
6426 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6427 if (loc != &XVECEXP (x, i, j)
6428 && refers_to_regno_for_reload_p (regno, endregno,
6429 XVECEXP (x, i, j), loc))
6430 return 1;
6433 return 0;
6436 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6437 we check if any register number in X conflicts with the relevant register
6438 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6439 contains a MEM (we don't bother checking for memory addresses that can't
6440 conflict because we expect this to be a rare case.
6442 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6443 that we look at equivalences for pseudos that didn't get hard registers. */
6446 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6448 int regno, endregno;
6450 /* Overly conservative. */
6451 if (GET_CODE (x) == STRICT_LOW_PART
6452 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6453 x = XEXP (x, 0);
6455 /* If either argument is a constant, then modifying X can not affect IN. */
6456 if (CONSTANT_P (x) || CONSTANT_P (in))
6457 return 0;
6458 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6459 return refers_to_mem_for_reload_p (in);
6460 else if (GET_CODE (x) == SUBREG)
6462 regno = REGNO (SUBREG_REG (x));
6463 if (regno < FIRST_PSEUDO_REGISTER)
6464 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6465 GET_MODE (SUBREG_REG (x)),
6466 SUBREG_BYTE (x),
6467 GET_MODE (x));
6468 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6469 ? subreg_nregs (x) : 1);
6471 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6473 else if (REG_P (x))
6475 regno = REGNO (x);
6477 /* If this is a pseudo, it must not have been assigned a hard register.
6478 Therefore, it must either be in memory or be a constant. */
6480 if (regno >= FIRST_PSEUDO_REGISTER)
6482 if (reg_equiv_memory_loc[regno])
6483 return refers_to_mem_for_reload_p (in);
6484 gcc_assert (reg_equiv_constant[regno]);
6485 return 0;
6488 endregno = END_HARD_REGNO (x);
6490 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6492 else if (MEM_P (x))
6493 return refers_to_mem_for_reload_p (in);
6494 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6495 || GET_CODE (x) == CC0)
6496 return reg_mentioned_p (x, in);
6497 else
6499 gcc_assert (GET_CODE (x) == PLUS);
6501 /* We actually want to know if X is mentioned somewhere inside IN.
6502 We must not say that (plus (sp) (const_int 124)) is in
6503 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6504 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6505 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6506 while (MEM_P (in))
6507 in = XEXP (in, 0);
6508 if (REG_P (in))
6509 return 0;
6510 else if (GET_CODE (in) == PLUS)
6511 return (rtx_equal_p (x, in)
6512 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6513 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6514 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6515 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6518 gcc_unreachable ();
6521 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6522 registers. */
6524 static int
6525 refers_to_mem_for_reload_p (rtx x)
6527 const char *fmt;
6528 int i;
6530 if (MEM_P (x))
6531 return 1;
6533 if (REG_P (x))
6534 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6535 && reg_equiv_memory_loc[REGNO (x)]);
6537 fmt = GET_RTX_FORMAT (GET_CODE (x));
6538 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6539 if (fmt[i] == 'e'
6540 && (MEM_P (XEXP (x, i))
6541 || refers_to_mem_for_reload_p (XEXP (x, i))))
6542 return 1;
6544 return 0;
6547 /* Check the insns before INSN to see if there is a suitable register
6548 containing the same value as GOAL.
6549 If OTHER is -1, look for a register in class CLASS.
6550 Otherwise, just see if register number OTHER shares GOAL's value.
6552 Return an rtx for the register found, or zero if none is found.
6554 If RELOAD_REG_P is (short *)1,
6555 we reject any hard reg that appears in reload_reg_rtx
6556 because such a hard reg is also needed coming into this insn.
6558 If RELOAD_REG_P is any other nonzero value,
6559 it is a vector indexed by hard reg number
6560 and we reject any hard reg whose element in the vector is nonnegative
6561 as well as any that appears in reload_reg_rtx.
6563 If GOAL is zero, then GOALREG is a register number; we look
6564 for an equivalent for that register.
6566 MODE is the machine mode of the value we want an equivalence for.
6567 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6569 This function is used by jump.c as well as in the reload pass.
6571 If GOAL is the sum of the stack pointer and a constant, we treat it
6572 as if it were a constant except that sp is required to be unchanging. */
6575 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6576 short *reload_reg_p, int goalreg, enum machine_mode mode)
6578 rtx p = insn;
6579 rtx goaltry, valtry, value, where;
6580 rtx pat;
6581 int regno = -1;
6582 int valueno;
6583 int goal_mem = 0;
6584 int goal_const = 0;
6585 int goal_mem_addr_varies = 0;
6586 int need_stable_sp = 0;
6587 int nregs;
6588 int valuenregs;
6589 int num = 0;
6591 if (goal == 0)
6592 regno = goalreg;
6593 else if (REG_P (goal))
6594 regno = REGNO (goal);
6595 else if (MEM_P (goal))
6597 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6598 if (MEM_VOLATILE_P (goal))
6599 return 0;
6600 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6601 return 0;
6602 /* An address with side effects must be reexecuted. */
6603 switch (code)
6605 case POST_INC:
6606 case PRE_INC:
6607 case POST_DEC:
6608 case PRE_DEC:
6609 case POST_MODIFY:
6610 case PRE_MODIFY:
6611 return 0;
6612 default:
6613 break;
6615 goal_mem = 1;
6617 else if (CONSTANT_P (goal))
6618 goal_const = 1;
6619 else if (GET_CODE (goal) == PLUS
6620 && XEXP (goal, 0) == stack_pointer_rtx
6621 && CONSTANT_P (XEXP (goal, 1)))
6622 goal_const = need_stable_sp = 1;
6623 else if (GET_CODE (goal) == PLUS
6624 && XEXP (goal, 0) == frame_pointer_rtx
6625 && CONSTANT_P (XEXP (goal, 1)))
6626 goal_const = 1;
6627 else
6628 return 0;
6630 num = 0;
6631 /* Scan insns back from INSN, looking for one that copies
6632 a value into or out of GOAL.
6633 Stop and give up if we reach a label. */
6635 while (1)
6637 p = PREV_INSN (p);
6638 num++;
6639 if (p == 0 || LABEL_P (p)
6640 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6641 return 0;
6643 if (NONJUMP_INSN_P (p)
6644 /* If we don't want spill regs ... */
6645 && (! (reload_reg_p != 0
6646 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6647 /* ... then ignore insns introduced by reload; they aren't
6648 useful and can cause results in reload_as_needed to be
6649 different from what they were when calculating the need for
6650 spills. If we notice an input-reload insn here, we will
6651 reject it below, but it might hide a usable equivalent.
6652 That makes bad code. It may even fail: perhaps no reg was
6653 spilled for this insn because it was assumed we would find
6654 that equivalent. */
6655 || INSN_UID (p) < reload_first_uid))
6657 rtx tem;
6658 pat = single_set (p);
6660 /* First check for something that sets some reg equal to GOAL. */
6661 if (pat != 0
6662 && ((regno >= 0
6663 && true_regnum (SET_SRC (pat)) == regno
6664 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6666 (regno >= 0
6667 && true_regnum (SET_DEST (pat)) == regno
6668 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6670 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6671 /* When looking for stack pointer + const,
6672 make sure we don't use a stack adjust. */
6673 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6674 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6675 || (goal_mem
6676 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6677 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6678 || (goal_mem
6679 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6680 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6681 /* If we are looking for a constant,
6682 and something equivalent to that constant was copied
6683 into a reg, we can use that reg. */
6684 || (goal_const && REG_NOTES (p) != 0
6685 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6686 && ((rtx_equal_p (XEXP (tem, 0), goal)
6687 && (valueno
6688 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6689 || (REG_P (SET_DEST (pat))
6690 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6691 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6692 && GET_CODE (goal) == CONST_INT
6693 && 0 != (goaltry
6694 = operand_subword (XEXP (tem, 0), 0, 0,
6695 VOIDmode))
6696 && rtx_equal_p (goal, goaltry)
6697 && (valtry
6698 = operand_subword (SET_DEST (pat), 0, 0,
6699 VOIDmode))
6700 && (valueno = true_regnum (valtry)) >= 0)))
6701 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6702 NULL_RTX))
6703 && REG_P (SET_DEST (pat))
6704 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6705 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6706 && GET_CODE (goal) == CONST_INT
6707 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6708 VOIDmode))
6709 && rtx_equal_p (goal, goaltry)
6710 && (valtry
6711 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6712 && (valueno = true_regnum (valtry)) >= 0)))
6714 if (other >= 0)
6716 if (valueno != other)
6717 continue;
6719 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6720 continue;
6721 else if (!in_hard_reg_set_p (reg_class_contents[(int) class],
6722 mode, valueno))
6723 continue;
6724 value = valtry;
6725 where = p;
6726 break;
6731 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6732 (or copying VALUE into GOAL, if GOAL is also a register).
6733 Now verify that VALUE is really valid. */
6735 /* VALUENO is the register number of VALUE; a hard register. */
6737 /* Don't try to re-use something that is killed in this insn. We want
6738 to be able to trust REG_UNUSED notes. */
6739 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6740 return 0;
6742 /* If we propose to get the value from the stack pointer or if GOAL is
6743 a MEM based on the stack pointer, we need a stable SP. */
6744 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6745 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6746 goal)))
6747 need_stable_sp = 1;
6749 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6750 if (GET_MODE (value) != mode)
6751 return 0;
6753 /* Reject VALUE if it was loaded from GOAL
6754 and is also a register that appears in the address of GOAL. */
6756 if (goal_mem && value == SET_DEST (single_set (where))
6757 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6758 goal, (rtx*) 0))
6759 return 0;
6761 /* Reject registers that overlap GOAL. */
6763 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6764 nregs = hard_regno_nregs[regno][mode];
6765 else
6766 nregs = 1;
6767 valuenregs = hard_regno_nregs[valueno][mode];
6769 if (!goal_mem && !goal_const
6770 && regno + nregs > valueno && regno < valueno + valuenregs)
6771 return 0;
6773 /* Reject VALUE if it is one of the regs reserved for reloads.
6774 Reload1 knows how to reuse them anyway, and it would get
6775 confused if we allocated one without its knowledge.
6776 (Now that insns introduced by reload are ignored above,
6777 this case shouldn't happen, but I'm not positive.) */
6779 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6781 int i;
6782 for (i = 0; i < valuenregs; ++i)
6783 if (reload_reg_p[valueno + i] >= 0)
6784 return 0;
6787 /* Reject VALUE if it is a register being used for an input reload
6788 even if it is not one of those reserved. */
6790 if (reload_reg_p != 0)
6792 int i;
6793 for (i = 0; i < n_reloads; i++)
6794 if (rld[i].reg_rtx != 0 && rld[i].in)
6796 int regno1 = REGNO (rld[i].reg_rtx);
6797 int nregs1 = hard_regno_nregs[regno1]
6798 [GET_MODE (rld[i].reg_rtx)];
6799 if (regno1 < valueno + valuenregs
6800 && regno1 + nregs1 > valueno)
6801 return 0;
6805 if (goal_mem)
6806 /* We must treat frame pointer as varying here,
6807 since it can vary--in a nonlocal goto as generated by expand_goto. */
6808 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6810 /* Now verify that the values of GOAL and VALUE remain unaltered
6811 until INSN is reached. */
6813 p = insn;
6814 while (1)
6816 p = PREV_INSN (p);
6817 if (p == where)
6818 return value;
6820 /* Don't trust the conversion past a function call
6821 if either of the two is in a call-clobbered register, or memory. */
6822 if (CALL_P (p))
6824 int i;
6826 if (goal_mem || need_stable_sp)
6827 return 0;
6829 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6830 for (i = 0; i < nregs; ++i)
6831 if (call_used_regs[regno + i]
6832 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6833 return 0;
6835 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6836 for (i = 0; i < valuenregs; ++i)
6837 if (call_used_regs[valueno + i]
6838 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6839 return 0;
6842 if (INSN_P (p))
6844 pat = PATTERN (p);
6846 /* Watch out for unspec_volatile, and volatile asms. */
6847 if (volatile_insn_p (pat))
6848 return 0;
6850 /* If this insn P stores in either GOAL or VALUE, return 0.
6851 If GOAL is a memory ref and this insn writes memory, return 0.
6852 If GOAL is a memory ref and its address is not constant,
6853 and this insn P changes a register used in GOAL, return 0. */
6855 if (GET_CODE (pat) == COND_EXEC)
6856 pat = COND_EXEC_CODE (pat);
6857 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6859 rtx dest = SET_DEST (pat);
6860 while (GET_CODE (dest) == SUBREG
6861 || GET_CODE (dest) == ZERO_EXTRACT
6862 || GET_CODE (dest) == STRICT_LOW_PART)
6863 dest = XEXP (dest, 0);
6864 if (REG_P (dest))
6866 int xregno = REGNO (dest);
6867 int xnregs;
6868 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6869 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6870 else
6871 xnregs = 1;
6872 if (xregno < regno + nregs && xregno + xnregs > regno)
6873 return 0;
6874 if (xregno < valueno + valuenregs
6875 && xregno + xnregs > valueno)
6876 return 0;
6877 if (goal_mem_addr_varies
6878 && reg_overlap_mentioned_for_reload_p (dest, goal))
6879 return 0;
6880 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6881 return 0;
6883 else if (goal_mem && MEM_P (dest)
6884 && ! push_operand (dest, GET_MODE (dest)))
6885 return 0;
6886 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6887 && reg_equiv_memory_loc[regno] != 0)
6888 return 0;
6889 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6890 return 0;
6892 else if (GET_CODE (pat) == PARALLEL)
6894 int i;
6895 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6897 rtx v1 = XVECEXP (pat, 0, i);
6898 if (GET_CODE (v1) == COND_EXEC)
6899 v1 = COND_EXEC_CODE (v1);
6900 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6902 rtx dest = SET_DEST (v1);
6903 while (GET_CODE (dest) == SUBREG
6904 || GET_CODE (dest) == ZERO_EXTRACT
6905 || GET_CODE (dest) == STRICT_LOW_PART)
6906 dest = XEXP (dest, 0);
6907 if (REG_P (dest))
6909 int xregno = REGNO (dest);
6910 int xnregs;
6911 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6912 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6913 else
6914 xnregs = 1;
6915 if (xregno < regno + nregs
6916 && xregno + xnregs > regno)
6917 return 0;
6918 if (xregno < valueno + valuenregs
6919 && xregno + xnregs > valueno)
6920 return 0;
6921 if (goal_mem_addr_varies
6922 && reg_overlap_mentioned_for_reload_p (dest,
6923 goal))
6924 return 0;
6925 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6926 return 0;
6928 else if (goal_mem && MEM_P (dest)
6929 && ! push_operand (dest, GET_MODE (dest)))
6930 return 0;
6931 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6932 && reg_equiv_memory_loc[regno] != 0)
6933 return 0;
6934 else if (need_stable_sp
6935 && push_operand (dest, GET_MODE (dest)))
6936 return 0;
6941 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6943 rtx link;
6945 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6946 link = XEXP (link, 1))
6948 pat = XEXP (link, 0);
6949 if (GET_CODE (pat) == CLOBBER)
6951 rtx dest = SET_DEST (pat);
6953 if (REG_P (dest))
6955 int xregno = REGNO (dest);
6956 int xnregs
6957 = hard_regno_nregs[xregno][GET_MODE (dest)];
6959 if (xregno < regno + nregs
6960 && xregno + xnregs > regno)
6961 return 0;
6962 else if (xregno < valueno + valuenregs
6963 && xregno + xnregs > valueno)
6964 return 0;
6965 else if (goal_mem_addr_varies
6966 && reg_overlap_mentioned_for_reload_p (dest,
6967 goal))
6968 return 0;
6971 else if (goal_mem && MEM_P (dest)
6972 && ! push_operand (dest, GET_MODE (dest)))
6973 return 0;
6974 else if (need_stable_sp
6975 && push_operand (dest, GET_MODE (dest)))
6976 return 0;
6981 #ifdef AUTO_INC_DEC
6982 /* If this insn auto-increments or auto-decrements
6983 either regno or valueno, return 0 now.
6984 If GOAL is a memory ref and its address is not constant,
6985 and this insn P increments a register used in GOAL, return 0. */
6987 rtx link;
6989 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6990 if (REG_NOTE_KIND (link) == REG_INC
6991 && REG_P (XEXP (link, 0)))
6993 int incno = REGNO (XEXP (link, 0));
6994 if (incno < regno + nregs && incno >= regno)
6995 return 0;
6996 if (incno < valueno + valuenregs && incno >= valueno)
6997 return 0;
6998 if (goal_mem_addr_varies
6999 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7000 goal))
7001 return 0;
7004 #endif
7009 /* Find a place where INCED appears in an increment or decrement operator
7010 within X, and return the amount INCED is incremented or decremented by.
7011 The value is always positive. */
7013 static int
7014 find_inc_amount (rtx x, rtx inced)
7016 enum rtx_code code = GET_CODE (x);
7017 const char *fmt;
7018 int i;
7020 if (code == MEM)
7022 rtx addr = XEXP (x, 0);
7023 if ((GET_CODE (addr) == PRE_DEC
7024 || GET_CODE (addr) == POST_DEC
7025 || GET_CODE (addr) == PRE_INC
7026 || GET_CODE (addr) == POST_INC)
7027 && XEXP (addr, 0) == inced)
7028 return GET_MODE_SIZE (GET_MODE (x));
7029 else if ((GET_CODE (addr) == PRE_MODIFY
7030 || GET_CODE (addr) == POST_MODIFY)
7031 && GET_CODE (XEXP (addr, 1)) == PLUS
7032 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7033 && XEXP (addr, 0) == inced
7034 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7036 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7037 return i < 0 ? -i : i;
7041 fmt = GET_RTX_FORMAT (code);
7042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7044 if (fmt[i] == 'e')
7046 int tem = find_inc_amount (XEXP (x, i), inced);
7047 if (tem != 0)
7048 return tem;
7050 if (fmt[i] == 'E')
7052 int j;
7053 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7055 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7056 if (tem != 0)
7057 return tem;
7062 return 0;
7065 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7066 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7068 #ifdef AUTO_INC_DEC
7069 static int
7070 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7071 rtx insn)
7073 rtx link;
7075 gcc_assert (insn);
7077 if (! INSN_P (insn))
7078 return 0;
7080 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7081 if (REG_NOTE_KIND (link) == REG_INC)
7083 unsigned int test = (int) REGNO (XEXP (link, 0));
7084 if (test >= regno && test < endregno)
7085 return 1;
7087 return 0;
7089 #else
7091 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7093 #endif
7095 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7096 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7097 REG_INC. REGNO must refer to a hard register. */
7100 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7101 int sets)
7103 unsigned int nregs, endregno;
7105 /* regno must be a hard register. */
7106 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7108 nregs = hard_regno_nregs[regno][mode];
7109 endregno = regno + nregs;
7111 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7112 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7113 && REG_P (XEXP (PATTERN (insn), 0)))
7115 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7117 return test >= regno && test < endregno;
7120 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7121 return 1;
7123 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7125 int i = XVECLEN (PATTERN (insn), 0) - 1;
7127 for (; i >= 0; i--)
7129 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7130 if ((GET_CODE (elt) == CLOBBER
7131 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7132 && REG_P (XEXP (elt, 0)))
7134 unsigned int test = REGNO (XEXP (elt, 0));
7136 if (test >= regno && test < endregno)
7137 return 1;
7139 if (sets == 2
7140 && reg_inc_found_and_valid_p (regno, endregno, elt))
7141 return 1;
7145 return 0;
7148 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7150 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7152 int regno;
7154 if (GET_MODE (reloadreg) == mode)
7155 return reloadreg;
7157 regno = REGNO (reloadreg);
7159 if (WORDS_BIG_ENDIAN)
7160 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7161 - (int) hard_regno_nregs[regno][mode];
7163 return gen_rtx_REG (mode, regno);
7166 static const char *const reload_when_needed_name[] =
7168 "RELOAD_FOR_INPUT",
7169 "RELOAD_FOR_OUTPUT",
7170 "RELOAD_FOR_INSN",
7171 "RELOAD_FOR_INPUT_ADDRESS",
7172 "RELOAD_FOR_INPADDR_ADDRESS",
7173 "RELOAD_FOR_OUTPUT_ADDRESS",
7174 "RELOAD_FOR_OUTADDR_ADDRESS",
7175 "RELOAD_FOR_OPERAND_ADDRESS",
7176 "RELOAD_FOR_OPADDR_ADDR",
7177 "RELOAD_OTHER",
7178 "RELOAD_FOR_OTHER_ADDRESS"
7181 /* These functions are used to print the variables set by 'find_reloads' */
7183 void
7184 debug_reload_to_stream (FILE *f)
7186 int r;
7187 const char *prefix;
7189 if (! f)
7190 f = stderr;
7191 for (r = 0; r < n_reloads; r++)
7193 fprintf (f, "Reload %d: ", r);
7195 if (rld[r].in != 0)
7197 fprintf (f, "reload_in (%s) = ",
7198 GET_MODE_NAME (rld[r].inmode));
7199 print_inline_rtx (f, rld[r].in, 24);
7200 fprintf (f, "\n\t");
7203 if (rld[r].out != 0)
7205 fprintf (f, "reload_out (%s) = ",
7206 GET_MODE_NAME (rld[r].outmode));
7207 print_inline_rtx (f, rld[r].out, 24);
7208 fprintf (f, "\n\t");
7211 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7213 fprintf (f, "%s (opnum = %d)",
7214 reload_when_needed_name[(int) rld[r].when_needed],
7215 rld[r].opnum);
7217 if (rld[r].optional)
7218 fprintf (f, ", optional");
7220 if (rld[r].nongroup)
7221 fprintf (f, ", nongroup");
7223 if (rld[r].inc != 0)
7224 fprintf (f, ", inc by %d", rld[r].inc);
7226 if (rld[r].nocombine)
7227 fprintf (f, ", can't combine");
7229 if (rld[r].secondary_p)
7230 fprintf (f, ", secondary_reload_p");
7232 if (rld[r].in_reg != 0)
7234 fprintf (f, "\n\treload_in_reg: ");
7235 print_inline_rtx (f, rld[r].in_reg, 24);
7238 if (rld[r].out_reg != 0)
7240 fprintf (f, "\n\treload_out_reg: ");
7241 print_inline_rtx (f, rld[r].out_reg, 24);
7244 if (rld[r].reg_rtx != 0)
7246 fprintf (f, "\n\treload_reg_rtx: ");
7247 print_inline_rtx (f, rld[r].reg_rtx, 24);
7250 prefix = "\n\t";
7251 if (rld[r].secondary_in_reload != -1)
7253 fprintf (f, "%ssecondary_in_reload = %d",
7254 prefix, rld[r].secondary_in_reload);
7255 prefix = ", ";
7258 if (rld[r].secondary_out_reload != -1)
7259 fprintf (f, "%ssecondary_out_reload = %d\n",
7260 prefix, rld[r].secondary_out_reload);
7262 prefix = "\n\t";
7263 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7265 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7266 insn_data[rld[r].secondary_in_icode].name);
7267 prefix = ", ";
7270 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7271 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7272 insn_data[rld[r].secondary_out_icode].name);
7274 fprintf (f, "\n");
7278 void
7279 debug_reload (void)
7281 debug_reload_to_stream (stderr);