* cgraphunit.c (record_cdtor_fn): Declare all cdtors always inlined.
[official-gcc/constexpr.git] / gcc / basic-block.h
blobf8920b9e45a8c1e0d8168b4b5f51adf52e65ae87
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
90 typedef bitmap_iterator reg_set_iterator;
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
116 /* Control flow edge information. */
117 struct edge_def GTY(())
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 tree GTY ((tag ("true"))) t;
126 rtx GTY ((tag ("false"))) r;
127 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 source_locus goto_locus;
135 int flags; /* see EDGE_* below */
136 int probability; /* biased by REG_BR_PROB_BASE */
137 gcov_type count; /* Expected number of executions calculated
138 in profile.c */
140 /* The index number corresponding to this edge in the edge vector
141 dest->preds. */
142 unsigned int dest_idx;
145 typedef struct edge_def *edge;
146 DEF_VEC_P(edge);
147 DEF_VEC_ALLOC_P(edge,gc);
148 DEF_VEC_ALLOC_P(edge,heap);
150 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
151 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
152 label, or eh */
153 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
154 like an exception, or sibcall */
155 #define EDGE_EH 8 /* Exception throw */
156 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
157 #define EDGE_DFS_BACK 32 /* A backwards edge */
158 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
159 flow. */
160 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
161 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
162 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
163 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
164 predicate is nonzero. */
165 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
166 predicate is zero. */
167 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
168 valid during SSA-CCP. */
169 #define EDGE_CROSSING 8192 /* Edge crosses between hot
170 and cold sections, when we
171 do partitioning. */
172 #define EDGE_ALL_FLAGS 16383
174 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176 /* Counter summary from the last set of coverage counts read by
177 profile.c. */
178 extern const struct gcov_ctr_summary *profile_info;
180 /* Declared in cfgloop.h. */
181 struct loop;
183 /* Declared in tree-flow.h. */
184 struct edge_prediction;
185 struct rtl_bb_info;
187 /* A basic block is a sequence of instructions with only entry and
188 only one exit. If any one of the instructions are executed, they
189 will all be executed, and in sequence from first to last.
191 There may be COND_EXEC instructions in the basic block. The
192 COND_EXEC *instructions* will be executed -- but if the condition
193 is false the conditionally executed *expressions* will of course
194 not be executed. We don't consider the conditionally executed
195 expression (which might have side-effects) to be in a separate
196 basic block because the program counter will always be at the same
197 location after the COND_EXEC instruction, regardless of whether the
198 condition is true or not.
200 Basic blocks need not start with a label nor end with a jump insn.
201 For example, a previous basic block may just "conditionally fall"
202 into the succeeding basic block, and the last basic block need not
203 end with a jump insn. Block 0 is a descendant of the entry block.
205 A basic block beginning with two labels cannot have notes between
206 the labels.
208 Data for jump tables are stored in jump_insns that occur in no
209 basic block even though these insns can follow or precede insns in
210 basic blocks. */
212 /* Basic block information indexed by block number. */
213 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
215 /* The edges into and out of the block. */
216 VEC(edge,gc) *preds;
217 VEC(edge,gc) *succs;
219 /* Auxiliary info specific to a pass. */
220 PTR GTY ((skip (""))) aux;
222 /* Innermost loop containing the block. */
223 struct loop *loop_father;
225 /* The dominance and postdominance information node. */
226 struct et_node * GTY ((skip (""))) dom[2];
228 /* Previous and next blocks in the chain. */
229 struct basic_block_def *prev_bb;
230 struct basic_block_def *next_bb;
232 union basic_block_il_dependent {
233 struct tree_bb_info * GTY ((tag ("0"))) tree;
234 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
235 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
237 /* Expected number of executions: calculated in profile.c. */
238 gcov_type count;
240 /* The index of this block. */
241 int index;
243 /* The loop depth of this block. */
244 int loop_depth;
246 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
247 int frequency;
249 /* Various flags. See BB_* below. */
250 int flags;
253 struct rtl_bb_info GTY(())
255 /* The first and last insns of the block. */
256 rtx head_;
257 rtx end_;
259 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
260 and after the block. */
261 rtx header;
262 rtx footer;
264 /* This field is used by the bb-reorder and tracer passes. */
265 int visited;
268 struct tree_bb_info GTY(())
270 /* Pointers to the first and last trees of the block. */
271 tree stmt_list;
273 /* Chain of PHI nodes for this block. */
274 tree phi_nodes;
277 typedef struct basic_block_def *basic_block;
279 DEF_VEC_P(basic_block);
280 DEF_VEC_ALLOC_P(basic_block,gc);
281 DEF_VEC_ALLOC_P(basic_block,heap);
283 #define BB_FREQ_MAX 10000
285 /* Masks for basic_block.flags.
287 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
288 the compilation, so they are never cleared.
290 All other flags may be cleared by clear_bb_flags(). It is generally
291 a bad idea to rely on any flags being up-to-date. */
293 enum bb_flags
295 /* Only set on blocks that have just been created by create_bb. */
296 BB_NEW = 1 << 0,
298 /* Set by find_unreachable_blocks. Do not rely on this being set in any
299 pass. */
300 BB_REACHABLE = 1 << 1,
302 /* Set for blocks in an irreducible loop by loop analysis. */
303 BB_IRREDUCIBLE_LOOP = 1 << 2,
305 /* Set on blocks that may actually not be single-entry single-exit block. */
306 BB_SUPERBLOCK = 1 << 3,
308 /* Set on basic blocks that the scheduler should not touch. This is used
309 by SMS to prevent other schedulers from messing with the loop schedule. */
310 BB_DISABLE_SCHEDULE = 1 << 4,
312 /* Set on blocks that should be put in a hot section. */
313 BB_HOT_PARTITION = 1 << 5,
315 /* Set on blocks that should be put in a cold section. */
316 BB_COLD_PARTITION = 1 << 6,
318 /* Set on block that was duplicated. */
319 BB_DUPLICATED = 1 << 7,
321 /* Set if the label at the top of this block is the target of a non-local goto. */
322 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
324 /* Set on blocks that are in RTL format. */
325 BB_RTL = 1 << 9 ,
327 /* Set on blocks that are forwarder blocks.
328 Only used in cfgcleanup.c. */
329 BB_FORWARDER_BLOCK = 1 << 10,
331 /* Set on blocks that cannot be threaded through.
332 Only used in cfgcleanup.c. */
333 BB_NONTHREADABLE_BLOCK = 1 << 11
336 /* Dummy flag for convenience in the hot/cold partitioning code. */
337 #define BB_UNPARTITIONED 0
339 /* Partitions, to be used when partitioning hot and cold basic blocks into
340 separate sections. */
341 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
342 #define BB_SET_PARTITION(bb, part) do { \
343 basic_block bb_ = (bb); \
344 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
345 | (part)); \
346 } while (0)
348 #define BB_COPY_PARTITION(dstbb, srcbb) \
349 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
351 /* State of dominance information. */
353 enum dom_state
355 DOM_NONE, /* Not computed at all. */
356 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
357 DOM_OK /* Everything is ok. */
360 /* A structure to group all the per-function control flow graph data.
361 The x_* prefixing is necessary because otherwise references to the
362 fields of this struct are interpreted as the defines for backward
363 source compatibility following the definition of this struct. */
364 struct control_flow_graph GTY(())
366 /* Block pointers for the exit and entry of a function.
367 These are always the head and tail of the basic block list. */
368 basic_block x_entry_block_ptr;
369 basic_block x_exit_block_ptr;
371 /* Index by basic block number, get basic block struct info. */
372 VEC(basic_block,gc) *x_basic_block_info;
374 /* Number of basic blocks in this flow graph. */
375 int x_n_basic_blocks;
377 /* Number of edges in this flow graph. */
378 int x_n_edges;
380 /* The first free basic block number. */
381 int x_last_basic_block;
383 /* Mapping of labels to their associated blocks. At present
384 only used for the tree CFG. */
385 VEC(basic_block,gc) *x_label_to_block_map;
387 enum profile_status {
388 PROFILE_ABSENT,
389 PROFILE_GUESSED,
390 PROFILE_READ
391 } x_profile_status;
393 /* Whether the dominators and the postdominators are available. */
394 enum dom_state x_dom_computed[2];
396 /* Number of basic blocks in the dominance tree. */
397 unsigned x_n_bbs_in_dom_tree[2];
400 /* Defines for accessing the fields of the CFG structure for function FN. */
401 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
402 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
403 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
404 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
405 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
406 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
407 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
409 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
410 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
412 /* Defines for textual backward source compatibility. */
413 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
414 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
415 #define basic_block_info (cfun->cfg->x_basic_block_info)
416 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
417 #define n_edges (cfun->cfg->x_n_edges)
418 #define last_basic_block (cfun->cfg->x_last_basic_block)
419 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
420 #define profile_status (cfun->cfg->x_profile_status)
422 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
423 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
425 /* For iterating over basic blocks. */
426 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
427 for (BB = FROM; BB != TO; BB = BB->DIR)
429 #define FOR_EACH_BB_FN(BB, FN) \
430 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
432 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
434 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
435 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
437 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
439 /* For iterating over insns in basic block. */
440 #define FOR_BB_INSNS(BB, INSN) \
441 for ((INSN) = BB_HEAD (BB); \
442 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
443 (INSN) = NEXT_INSN (INSN))
445 /* For iterating over insns in basic block when we might remove the
446 current insn. */
447 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
448 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
449 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
450 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
452 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
453 for ((INSN) = BB_END (BB); \
454 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
455 (INSN) = PREV_INSN (INSN))
457 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
458 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
459 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
460 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
462 /* Cycles through _all_ basic blocks, even the fake ones (entry and
463 exit block). */
465 #define FOR_ALL_BB(BB) \
466 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
468 #define FOR_ALL_BB_FN(BB, FN) \
469 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
471 extern bitmap_obstack reg_obstack;
474 /* Stuff for recording basic block info. */
476 #define BB_HEAD(B) (B)->il.rtl->head_
477 #define BB_END(B) (B)->il.rtl->end_
479 /* Special block numbers [markers] for entry and exit. */
480 #define ENTRY_BLOCK (0)
481 #define EXIT_BLOCK (1)
483 /* The two blocks that are always in the cfg. */
484 #define NUM_FIXED_BLOCKS (2)
487 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
488 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
490 extern void compute_bb_for_insn (void);
491 extern unsigned int free_bb_for_insn (void);
492 extern void update_bb_for_insn (basic_block);
494 extern void insert_insn_on_edge (rtx, edge);
495 basic_block split_edge_and_insert (edge, rtx);
497 extern void commit_edge_insertions (void);
499 extern void remove_fake_edges (void);
500 extern void remove_fake_exit_edges (void);
501 extern void add_noreturn_fake_exit_edges (void);
502 extern void connect_infinite_loops_to_exit (void);
503 extern edge unchecked_make_edge (basic_block, basic_block, int);
504 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
505 extern edge make_edge (basic_block, basic_block, int);
506 extern edge make_single_succ_edge (basic_block, basic_block, int);
507 extern void remove_edge_raw (edge);
508 extern void redirect_edge_succ (edge, basic_block);
509 extern edge redirect_edge_succ_nodup (edge, basic_block);
510 extern void redirect_edge_pred (edge, basic_block);
511 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
512 extern void clear_bb_flags (void);
513 extern int post_order_compute (int *, bool, bool);
514 extern int inverted_post_order_compute (int *);
515 extern int pre_and_rev_post_order_compute (int *, int *, bool);
516 extern int dfs_enumerate_from (basic_block, int,
517 bool (*)(basic_block, void *),
518 basic_block *, int, void *);
519 extern void compute_dominance_frontiers (bitmap *);
520 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
521 extern void dump_edge_info (FILE *, edge, int);
522 extern void brief_dump_cfg (FILE *);
523 extern void clear_edges (void);
524 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
525 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
526 gcov_type);
528 /* Structure to group all of the information to process IF-THEN and
529 IF-THEN-ELSE blocks for the conditional execution support. This
530 needs to be in a public file in case the IFCVT macros call
531 functions passing the ce_if_block data structure. */
533 typedef struct ce_if_block
535 basic_block test_bb; /* First test block. */
536 basic_block then_bb; /* THEN block. */
537 basic_block else_bb; /* ELSE block or NULL. */
538 basic_block join_bb; /* Join THEN/ELSE blocks. */
539 basic_block last_test_bb; /* Last bb to hold && or || tests. */
540 int num_multiple_test_blocks; /* # of && and || basic blocks. */
541 int num_and_and_blocks; /* # of && blocks. */
542 int num_or_or_blocks; /* # of || blocks. */
543 int num_multiple_test_insns; /* # of insns in && and || blocks. */
544 int and_and_p; /* Complex test is &&. */
545 int num_then_insns; /* # of insns in THEN block. */
546 int num_else_insns; /* # of insns in ELSE block. */
547 int pass; /* Pass number. */
549 #ifdef IFCVT_EXTRA_FIELDS
550 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
551 #endif
553 } ce_if_block_t;
555 /* This structure maintains an edge list vector. */
556 struct edge_list
558 int num_blocks;
559 int num_edges;
560 edge *index_to_edge;
563 /* The base value for branch probability notes and edge probabilities. */
564 #define REG_BR_PROB_BASE 10000
566 /* This is the value which indicates no edge is present. */
567 #define EDGE_INDEX_NO_EDGE -1
569 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
570 if there is no edge between the 2 basic blocks. */
571 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
573 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
574 block which is either the pred or succ end of the indexed edge. */
575 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
576 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
578 /* INDEX_EDGE returns a pointer to the edge. */
579 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
581 /* Number of edges in the compressed edge list. */
582 #define NUM_EDGES(el) ((el)->num_edges)
584 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
585 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
586 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
588 /* BB is assumed to contain conditional jump. Return the branch edge. */
589 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
590 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
592 /* Return expected execution frequency of the edge E. */
593 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
594 * (e)->probability \
595 + REG_BR_PROB_BASE / 2) \
596 / REG_BR_PROB_BASE)
598 /* Return nonzero if edge is critical. */
599 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
600 && EDGE_COUNT ((e)->dest->preds) >= 2)
602 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
603 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
604 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
605 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
607 /* Returns true if BB has precisely one successor. */
609 static inline bool
610 single_succ_p (basic_block bb)
612 return EDGE_COUNT (bb->succs) == 1;
615 /* Returns true if BB has precisely one predecessor. */
617 static inline bool
618 single_pred_p (basic_block bb)
620 return EDGE_COUNT (bb->preds) == 1;
623 /* Returns the single successor edge of basic block BB. Aborts if
624 BB does not have exactly one successor. */
626 static inline edge
627 single_succ_edge (basic_block bb)
629 gcc_assert (single_succ_p (bb));
630 return EDGE_SUCC (bb, 0);
633 /* Returns the single predecessor edge of basic block BB. Aborts
634 if BB does not have exactly one predecessor. */
636 static inline edge
637 single_pred_edge (basic_block bb)
639 gcc_assert (single_pred_p (bb));
640 return EDGE_PRED (bb, 0);
643 /* Returns the single successor block of basic block BB. Aborts
644 if BB does not have exactly one successor. */
646 static inline basic_block
647 single_succ (basic_block bb)
649 return single_succ_edge (bb)->dest;
652 /* Returns the single predecessor block of basic block BB. Aborts
653 if BB does not have exactly one predecessor.*/
655 static inline basic_block
656 single_pred (basic_block bb)
658 return single_pred_edge (bb)->src;
661 /* Iterator object for edges. */
663 typedef struct {
664 unsigned index;
665 VEC(edge,gc) **container;
666 } edge_iterator;
668 static inline VEC(edge,gc) *
669 ei_container (edge_iterator i)
671 gcc_assert (i.container);
672 return *i.container;
675 #define ei_start(iter) ei_start_1 (&(iter))
676 #define ei_last(iter) ei_last_1 (&(iter))
678 /* Return an iterator pointing to the start of an edge vector. */
679 static inline edge_iterator
680 ei_start_1 (VEC(edge,gc) **ev)
682 edge_iterator i;
684 i.index = 0;
685 i.container = ev;
687 return i;
690 /* Return an iterator pointing to the last element of an edge
691 vector. */
692 static inline edge_iterator
693 ei_last_1 (VEC(edge,gc) **ev)
695 edge_iterator i;
697 i.index = EDGE_COUNT (*ev) - 1;
698 i.container = ev;
700 return i;
703 /* Is the iterator `i' at the end of the sequence? */
704 static inline bool
705 ei_end_p (edge_iterator i)
707 return (i.index == EDGE_COUNT (ei_container (i)));
710 /* Is the iterator `i' at one position before the end of the
711 sequence? */
712 static inline bool
713 ei_one_before_end_p (edge_iterator i)
715 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
718 /* Advance the iterator to the next element. */
719 static inline void
720 ei_next (edge_iterator *i)
722 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
723 i->index++;
726 /* Move the iterator to the previous element. */
727 static inline void
728 ei_prev (edge_iterator *i)
730 gcc_assert (i->index > 0);
731 i->index--;
734 /* Return the edge pointed to by the iterator `i'. */
735 static inline edge
736 ei_edge (edge_iterator i)
738 return EDGE_I (ei_container (i), i.index);
741 /* Return an edge pointed to by the iterator. Do it safely so that
742 NULL is returned when the iterator is pointing at the end of the
743 sequence. */
744 static inline edge
745 ei_safe_edge (edge_iterator i)
747 return !ei_end_p (i) ? ei_edge (i) : NULL;
750 /* Return 1 if we should continue to iterate. Return 0 otherwise.
751 *Edge P is set to the next edge if we are to continue to iterate
752 and NULL otherwise. */
754 static inline bool
755 ei_cond (edge_iterator ei, edge *p)
757 if (!ei_end_p (ei))
759 *p = ei_edge (ei);
760 return 1;
762 else
764 *p = NULL;
765 return 0;
769 /* This macro serves as a convenient way to iterate each edge in a
770 vector of predecessor or successor edges. It must not be used when
771 an element might be removed during the traversal, otherwise
772 elements will be missed. Instead, use a for-loop like that shown
773 in the following pseudo-code:
775 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
777 IF (e != taken_edge)
778 remove_edge (e);
779 ELSE
780 ei_next (&ei);
784 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
785 for ((ITER) = ei_start ((EDGE_VEC)); \
786 ei_cond ((ITER), &(EDGE)); \
787 ei_next (&(ITER)))
789 struct edge_list * create_edge_list (void);
790 void free_edge_list (struct edge_list *);
791 void print_edge_list (FILE *, struct edge_list *);
792 void verify_edge_list (FILE *, struct edge_list *);
793 int find_edge_index (struct edge_list *, basic_block, basic_block);
794 edge find_edge (basic_block, basic_block);
796 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
797 except for edge forwarding */
798 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
799 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
800 to care REG_DEAD notes. */
801 #define CLEANUP_THREADING 8 /* Do jump threading. */
802 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
803 insns. */
804 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
806 /* The following are ORed in on top of the CLEANUP* flags in calls to
807 struct_equiv_block_eq. */
808 #define STRUCT_EQUIV_START 64 /* Initializes the search range. */
809 #define STRUCT_EQUIV_RERUN 128 /* Rerun to find register use in
810 found equivalence. */
811 #define STRUCT_EQUIV_FINAL 256 /* Make any changes necessary to get
812 actual equivalence. */
813 #define STRUCT_EQUIV_NEED_FULL_BLOCK 512 /* struct_equiv_block_eq is required
814 to match only full blocks */
815 #define STRUCT_EQUIV_MATCH_JUMPS 1024 /* Also include the jumps at the end of the block in the comparison. */
817 /* In lcm.c */
818 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
819 sbitmap *, sbitmap *, sbitmap **,
820 sbitmap **);
821 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
822 sbitmap *, sbitmap *,
823 sbitmap *, sbitmap **,
824 sbitmap **);
825 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
827 /* In predict.c */
828 extern bool maybe_hot_bb_p (basic_block);
829 extern bool probably_cold_bb_p (basic_block);
830 extern bool probably_never_executed_bb_p (basic_block);
831 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
832 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
833 extern void tree_predict_edge (edge, enum br_predictor, int);
834 extern void rtl_predict_edge (edge, enum br_predictor, int);
835 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
836 extern void guess_outgoing_edge_probabilities (basic_block);
837 extern void remove_predictions_associated_with_edge (edge);
838 extern bool edge_probability_reliable_p (edge);
839 extern bool br_prob_note_reliable_p (rtx);
841 /* In cfg.c */
842 extern void dump_regset (regset, FILE *);
843 extern void debug_regset (regset);
844 extern void init_flow (void);
845 extern void debug_bb (basic_block);
846 extern basic_block debug_bb_n (int);
847 extern void dump_regset (regset, FILE *);
848 extern void debug_regset (regset);
849 extern void expunge_block (basic_block);
850 extern void link_block (basic_block, basic_block);
851 extern void unlink_block (basic_block);
852 extern void compact_blocks (void);
853 extern basic_block alloc_block (void);
854 extern void alloc_aux_for_block (basic_block, int);
855 extern void alloc_aux_for_blocks (int);
856 extern void clear_aux_for_blocks (void);
857 extern void free_aux_for_blocks (void);
858 extern void alloc_aux_for_edge (edge, int);
859 extern void alloc_aux_for_edges (int);
860 extern void clear_aux_for_edges (void);
861 extern void free_aux_for_edges (void);
863 /* In cfganal.c */
864 extern void find_unreachable_blocks (void);
865 extern bool forwarder_block_p (basic_block);
866 extern bool can_fallthru (basic_block, basic_block);
867 extern bool could_fall_through (basic_block, basic_block);
868 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
869 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
871 /* In cfgrtl.c */
872 extern basic_block force_nonfallthru (edge);
873 extern rtx block_label (basic_block);
874 extern bool purge_all_dead_edges (void);
875 extern bool purge_dead_edges (basic_block);
877 /* In cfgbuild.c. */
878 extern void find_many_sub_basic_blocks (sbitmap);
879 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
880 extern void find_basic_blocks (rtx);
882 /* In cfgcleanup.c. */
883 extern bool cleanup_cfg (int);
884 extern bool delete_unreachable_blocks (void);
886 extern bool mark_dfs_back_edges (void);
887 extern void set_edge_can_fallthru_flag (void);
888 extern void update_br_prob_note (basic_block);
889 extern void fixup_abnormal_edges (void);
890 extern bool inside_basic_block_p (rtx);
891 extern bool control_flow_insn_p (rtx);
892 extern rtx get_last_bb_insn (basic_block);
894 /* In bb-reorder.c */
895 extern void reorder_basic_blocks (void);
897 /* In dominance.c */
899 enum cdi_direction
901 CDI_DOMINATORS = 1,
902 CDI_POST_DOMINATORS = 2
905 extern enum dom_state dom_info_state (enum cdi_direction);
906 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
907 extern bool dom_info_available_p (enum cdi_direction);
908 extern void calculate_dominance_info (enum cdi_direction);
909 extern void free_dominance_info (enum cdi_direction);
910 extern basic_block nearest_common_dominator (enum cdi_direction,
911 basic_block, basic_block);
912 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
913 bitmap);
914 extern void set_immediate_dominator (enum cdi_direction, basic_block,
915 basic_block);
916 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
917 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
918 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
919 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
920 basic_block *,
921 unsigned);
922 extern void add_to_dominance_info (enum cdi_direction, basic_block);
923 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
924 basic_block recompute_dominator (enum cdi_direction, basic_block);
925 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
926 basic_block);
927 extern void iterate_fix_dominators (enum cdi_direction,
928 VEC (basic_block, heap) *, bool);
929 extern void verify_dominators (enum cdi_direction);
930 extern basic_block first_dom_son (enum cdi_direction, basic_block);
931 extern basic_block next_dom_son (enum cdi_direction, basic_block);
932 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
933 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
935 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
936 extern void break_superblocks (void);
937 extern void relink_block_chain (bool);
938 extern void check_bb_profile (basic_block, FILE *);
939 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
940 extern void init_rtl_bb_info (basic_block);
942 extern void initialize_original_copy_tables (void);
943 extern void free_original_copy_tables (void);
944 extern void set_bb_original (basic_block, basic_block);
945 extern basic_block get_bb_original (basic_block);
946 extern void set_bb_copy (basic_block, basic_block);
947 extern basic_block get_bb_copy (basic_block);
948 void set_loop_copy (struct loop *, struct loop *);
949 struct loop *get_loop_copy (struct loop *);
952 extern rtx insert_insn_end_bb_new (rtx, basic_block);
954 #include "cfghooks.h"
956 /* In struct-equiv.c */
958 /* Constants used to size arrays in struct equiv_info (currently only one).
959 When these limits are exceeded, struct_equiv returns zero.
960 The maximum number of pseudo registers that are different in the two blocks,
961 but appear in equivalent places and are dead at the end (or where one of
962 a pair is dead at the end). */
963 #define STRUCT_EQUIV_MAX_LOCAL 16
964 /* The maximum number of references to an input register that struct_equiv
965 can handle. */
967 /* Structure used to track state during struct_equiv that can be rolled
968 back when we find we can't match an insn, or if we want to match part
969 of it in a different way.
970 This information pertains to the pair of partial blocks that has been
971 matched so far. Since this pair is structurally equivalent, this is
972 conceptually just one partial block expressed in two potentially
973 different ways. */
974 struct struct_equiv_checkpoint
976 int ninsns; /* Insns are matched so far. */
977 int local_count; /* Number of block-local registers. */
978 int input_count; /* Number of inputs to the block. */
980 /* X_START and Y_START are the first insns (in insn stream order)
981 of the partial blocks that have been considered for matching so far.
982 Since we are scanning backwards, they are also the instructions that
983 are currently considered - or the last ones that have been considered -
984 for matching (Unless we tracked back to these because a preceding
985 instruction failed to match). */
986 rtx x_start, y_start;
988 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
989 during the current pass; we keep X_INPUT / Y_INPUT around between passes
990 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
991 bool input_valid;
993 /* Some information would be expensive to exactly checkpoint, so we
994 merely increment VERSION any time information about local
995 registers, inputs and/or register liveness changes. When backtracking,
996 it is decremented for changes that can be undone, and if a discrepancy
997 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
998 that a new pass should be made over the entire block match to get
999 accurate register information. */
1000 int version;
1003 /* A struct equiv_info is used to pass information to struct_equiv and
1004 to gather state while two basic blocks are checked for structural
1005 equivalence. */
1007 struct equiv_info
1009 /* Fields set up by the caller to struct_equiv_block_eq */
1011 basic_block x_block, y_block; /* The two blocks being matched. */
1013 /* MODE carries the mode bits from cleanup_cfg if we are called from
1014 try_crossjump_to_edge, and additionally it carries the
1015 STRUCT_EQUIV_* bits described above. */
1016 int mode;
1018 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1019 is supposed to have, and is taken into account when considering if the
1020 matched sequence should be extended backwards. input_cost < 0 means
1021 don't accept any inputs at all. */
1022 int input_cost;
1025 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1026 are also outputs. */
1028 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1029 is used as an input parameter, i.e. where different registers are used
1030 as sources. This is only used for a register that is live at the end
1031 of the blocks, or in some identical code at the end of the blocks;
1032 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1033 rtx x_input, y_input;
1034 /* When a previous pass has identified a valid input, INPUT_REG is set
1035 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1036 for the input. */
1037 rtx input_reg;
1039 /* COMMON_LIVE keeps track of the registers which are currently live
1040 (as we scan backwards from the end) and have the same numbers in both
1041 blocks. N.B. a register that is in common_live is unsuitable to become
1042 a local reg. */
1043 regset common_live;
1044 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1045 local to one of the blocks; these registers must not be accepted as
1046 identical when encountered in both blocks. */
1047 regset x_local_live, y_local_live;
1049 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1050 being used, to avoid having to backtrack in the next pass, so that we
1051 get accurate life info for this insn then. For each such insn,
1052 the bit with the number corresponding to the CUR.NINSNS value at the
1053 time of scanning is set. */
1054 bitmap equiv_used;
1056 /* Current state that can be saved & restored easily. */
1057 struct struct_equiv_checkpoint cur;
1058 /* BEST_MATCH is used to store the best match so far, weighing the
1059 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1060 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1061 struct struct_equiv_checkpoint best_match;
1062 /* If a checkpoint restore failed, or an input conflict newly arises,
1063 NEED_RERUN is set. This has to be tested by the caller to re-run
1064 the comparison if the match appears otherwise sound. The state kept in
1065 x_start, y_start, equiv_used and check_input_conflict ensures that
1066 we won't loop indefinitely. */
1067 bool need_rerun;
1068 /* If there is indication of an input conflict at the end,
1069 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1070 for each insn in the next pass. This is needed so that we won't discard
1071 a partial match if there is a longer match that has to be abandoned due
1072 to an input conflict. */
1073 bool check_input_conflict;
1074 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1075 have passed a point where there were multiple dying inputs. This helps
1076 us decide if we should set check_input_conflict for the next pass. */
1077 bool had_input_conflict;
1079 /* LIVE_UPDATE controls if we want to change any life info at all. We
1080 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1081 pass so that we don't introduce new registers just for the note; if we
1082 can't match the notes without the current register information, we drop
1083 them. */
1084 bool live_update;
1086 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1087 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1088 to the next free entry. */
1089 rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1090 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1091 was a source operand (including STRICT_LOW_PART) for the last invocation
1092 of struct_equiv mentioning it, zero if it was a destination-only operand.
1093 Since we are scanning backwards, this means the register is input/local
1094 for the (partial) block scanned so far. */
1095 bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1098 /* Additional fields that are computed for the convenience of the caller. */
1100 /* DYING_INPUTS is set to the number of local registers that turn out
1101 to be inputs to the (possibly partial) block. */
1102 int dying_inputs;
1103 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1104 that are being compared. A final jump insn will not be included. */
1105 rtx x_end, y_end;
1107 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1108 Y_LABEL in Y_BLOCK. */
1109 rtx x_label, y_label;
1113 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1114 extern int struct_equiv_block_eq (int, struct equiv_info *);
1115 extern bool struct_equiv_init (int, struct equiv_info *);
1116 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1118 /* In cfgrtl.c */
1119 extern bool condjump_equiv_p (struct equiv_info *, bool);
1121 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
1122 static inline bool
1123 bb_has_eh_pred (basic_block bb)
1125 edge e;
1126 edge_iterator ei;
1128 FOR_EACH_EDGE (e, ei, bb->preds)
1130 if (e->flags & EDGE_EH)
1131 return true;
1133 return false;
1136 /* In cfgloopmanip.c. */
1137 extern edge mfb_kj_edge;
1138 bool mfb_keep_just (edge);
1140 #endif /* GCC_BASIC_BLOCK_H */