* loop-iv.c (determine_max_iter): New arg OLD_NITER. All callers
[official-gcc/alias-decl.git] / gcc / lower-subreg.c
blobea9c6a0d3477914b711df46eeac5f6a4cee0ff18
1 /* Decompose multiword subregs.
2 Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "machmode.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "timevar.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "obstack.h"
33 #include "basic-block.h"
34 #include "recog.h"
35 #include "bitmap.h"
36 #include "expr.h"
37 #include "except.h"
38 #include "regs.h"
39 #include "tree-pass.h"
40 #include "df.h"
42 #ifdef STACK_GROWS_DOWNWARD
43 # undef STACK_GROWS_DOWNWARD
44 # define STACK_GROWS_DOWNWARD 1
45 #else
46 # define STACK_GROWS_DOWNWARD 0
47 #endif
49 DEF_VEC_P (bitmap);
50 DEF_VEC_ALLOC_P (bitmap,heap);
52 /* Decompose multi-word pseudo-registers into individual
53 pseudo-registers when possible. This is possible when all the uses
54 of a multi-word register are via SUBREG, or are copies of the
55 register to another location. Breaking apart the register permits
56 more CSE and permits better register allocation. */
58 /* Bit N in this bitmap is set if regno N is used in a context in
59 which we can decompose it. */
60 static bitmap decomposable_context;
62 /* Bit N in this bitmap is set if regno N is used in a context in
63 which it can not be decomposed. */
64 static bitmap non_decomposable_context;
66 /* Bit N in the bitmap in element M of this array is set if there is a
67 copy from reg M to reg N. */
68 static VEC(bitmap,heap) *reg_copy_graph;
70 /* Return whether X is a simple object which we can take a word_mode
71 subreg of. */
73 static bool
74 simple_move_operand (rtx x)
76 if (GET_CODE (x) == SUBREG)
77 x = SUBREG_REG (x);
79 if (!OBJECT_P (x))
80 return false;
82 if (GET_CODE (x) == LABEL_REF
83 || GET_CODE (x) == SYMBOL_REF
84 || GET_CODE (x) == HIGH
85 || GET_CODE (x) == CONST)
86 return false;
88 if (MEM_P (x)
89 && (MEM_VOLATILE_P (x)
90 || mode_dependent_address_p (XEXP (x, 0))))
91 return false;
93 return true;
96 /* If INSN is a single set between two objects, return the single set.
97 Such an insn can always be decomposed. INSN should have been
98 passed to recog and extract_insn before this is called. */
100 static rtx
101 simple_move (rtx insn)
103 rtx x;
104 rtx set;
105 enum machine_mode mode;
107 if (recog_data.n_operands != 2)
108 return NULL_RTX;
110 set = single_set (insn);
111 if (!set)
112 return NULL_RTX;
114 x = SET_DEST (set);
115 if (x != recog_data.operand[0] && x != recog_data.operand[1])
116 return NULL_RTX;
117 if (!simple_move_operand (x))
118 return NULL_RTX;
120 x = SET_SRC (set);
121 if (x != recog_data.operand[0] && x != recog_data.operand[1])
122 return NULL_RTX;
123 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
124 things like x86 rdtsc which returns a DImode value. */
125 if (GET_CODE (x) != ASM_OPERANDS
126 && !simple_move_operand (x))
127 return NULL_RTX;
129 /* We try to decompose in integer modes, to avoid generating
130 inefficient code copying between integer and floating point
131 registers. That means that we can't decompose if this is a
132 non-integer mode for which there is no integer mode of the same
133 size. */
134 mode = GET_MODE (SET_SRC (set));
135 if (!SCALAR_INT_MODE_P (mode)
136 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
137 == BLKmode))
138 return NULL_RTX;
140 /* Reject PARTIAL_INT modes. They are used for processor specific
141 purposes and it's probably best not to tamper with them. */
142 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
143 return NULL_RTX;
145 return set;
148 /* If SET is a copy from one multi-word pseudo-register to another,
149 record that in reg_copy_graph. Return whether it is such a
150 copy. */
152 static bool
153 find_pseudo_copy (rtx set)
155 rtx dest = SET_DEST (set);
156 rtx src = SET_SRC (set);
157 unsigned int rd, rs;
158 bitmap b;
160 if (!REG_P (dest) || !REG_P (src))
161 return false;
163 rd = REGNO (dest);
164 rs = REGNO (src);
165 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
166 return false;
168 if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
169 return false;
171 b = VEC_index (bitmap, reg_copy_graph, rs);
172 if (b == NULL)
174 b = BITMAP_ALLOC (NULL);
175 VEC_replace (bitmap, reg_copy_graph, rs, b);
178 bitmap_set_bit (b, rd);
180 return true;
183 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
184 where they are copied to another register, add the register to
185 which they are copied to DECOMPOSABLE_CONTEXT. Use
186 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
187 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
189 static void
190 propagate_pseudo_copies (void)
192 bitmap queue, propagate;
194 queue = BITMAP_ALLOC (NULL);
195 propagate = BITMAP_ALLOC (NULL);
197 bitmap_copy (queue, decomposable_context);
200 bitmap_iterator iter;
201 unsigned int i;
203 bitmap_clear (propagate);
205 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
207 bitmap b = VEC_index (bitmap, reg_copy_graph, i);
208 if (b)
209 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
212 bitmap_and_compl (queue, propagate, decomposable_context);
213 bitmap_ior_into (decomposable_context, propagate);
215 while (!bitmap_empty_p (queue));
217 BITMAP_FREE (queue);
218 BITMAP_FREE (propagate);
221 /* A pointer to one of these values is passed to
222 find_decomposable_subregs via for_each_rtx. */
224 enum classify_move_insn
226 /* Not a simple move from one location to another. */
227 NOT_SIMPLE_MOVE,
228 /* A simple move from one pseudo-register to another. */
229 SIMPLE_PSEUDO_REG_MOVE,
230 /* A simple move involving a non-pseudo-register. */
231 SIMPLE_MOVE
234 /* This is called via for_each_rtx. If we find a SUBREG which we
235 could use to decompose a pseudo-register, set a bit in
236 DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
237 not a simple pseudo-register copy, DATA will point at the type of
238 move, and we set a bit in DECOMPOSABLE_CONTEXT or
239 NON_DECOMPOSABLE_CONTEXT as appropriate. */
241 static int
242 find_decomposable_subregs (rtx *px, void *data)
244 enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
245 rtx x = *px;
247 if (x == NULL_RTX)
248 return 0;
250 if (GET_CODE (x) == SUBREG)
252 rtx inner = SUBREG_REG (x);
253 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
255 if (!REG_P (inner))
256 return 0;
258 regno = REGNO (inner);
259 if (HARD_REGISTER_NUM_P (regno))
260 return -1;
262 outer_size = GET_MODE_SIZE (GET_MODE (x));
263 inner_size = GET_MODE_SIZE (GET_MODE (inner));
264 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
265 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
267 /* We only try to decompose single word subregs of multi-word
268 registers. When we find one, we return -1 to avoid iterating
269 over the inner register.
271 ??? This doesn't allow, e.g., DImode subregs of TImode values
272 on 32-bit targets. We would need to record the way the
273 pseudo-register was used, and only decompose if all the uses
274 were the same number and size of pieces. Hopefully this
275 doesn't happen much. */
277 if (outer_words == 1 && inner_words > 1)
279 bitmap_set_bit (decomposable_context, regno);
280 return -1;
283 /* If this is a cast from one mode to another, where the modes
284 have the same size, and they are not tieable, then mark this
285 register as non-decomposable. If we decompose it we are
286 likely to mess up whatever the backend is trying to do. */
287 if (outer_words > 1
288 && outer_size == inner_size
289 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
291 bitmap_set_bit (non_decomposable_context, regno);
292 return -1;
295 else if (REG_P (x))
297 unsigned int regno;
299 /* We will see an outer SUBREG before we see the inner REG, so
300 when we see a plain REG here it means a direct reference to
301 the register.
303 If this is not a simple copy from one location to another,
304 then we can not decompose this register. If this is a simple
305 copy from one pseudo-register to another, and the mode is right
306 then we mark the register as decomposable.
307 Otherwise we don't say anything about this register --
308 it could be decomposed, but whether that would be
309 profitable depends upon how it is used elsewhere.
311 We only set bits in the bitmap for multi-word
312 pseudo-registers, since those are the only ones we care about
313 and it keeps the size of the bitmaps down. */
315 regno = REGNO (x);
316 if (!HARD_REGISTER_NUM_P (regno)
317 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
319 switch (*pcmi)
321 case NOT_SIMPLE_MOVE:
322 bitmap_set_bit (non_decomposable_context, regno);
323 break;
324 case SIMPLE_PSEUDO_REG_MOVE:
325 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
326 bitmap_set_bit (decomposable_context, regno);
327 break;
328 case SIMPLE_MOVE:
329 break;
330 default:
331 gcc_unreachable ();
335 else if (MEM_P (x))
337 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
339 /* Any registers used in a MEM do not participate in a
340 SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion
341 here, and return -1 to block the parent's recursion. */
342 for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
343 return -1;
346 return 0;
349 /* Decompose REGNO into word-sized components. We smash the REG node
350 in place. This ensures that (1) something goes wrong quickly if we
351 fail to make some replacement, and (2) the debug information inside
352 the symbol table is automatically kept up to date. */
354 static void
355 decompose_register (unsigned int regno)
357 rtx reg;
358 unsigned int words, i;
359 rtvec v;
361 reg = regno_reg_rtx[regno];
363 regno_reg_rtx[regno] = NULL_RTX;
365 words = GET_MODE_SIZE (GET_MODE (reg));
366 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
368 v = rtvec_alloc (words);
369 for (i = 0; i < words; ++i)
370 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
372 PUT_CODE (reg, CONCATN);
373 XVEC (reg, 0) = v;
375 if (dump_file)
377 fprintf (dump_file, "; Splitting reg %u ->", regno);
378 for (i = 0; i < words; ++i)
379 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
380 fputc ('\n', dump_file);
384 /* Get a SUBREG of a CONCATN. */
386 static rtx
387 simplify_subreg_concatn (enum machine_mode outermode, rtx op,
388 unsigned int byte)
390 unsigned int inner_size;
391 enum machine_mode innermode;
392 rtx part;
393 unsigned int final_offset;
395 gcc_assert (GET_CODE (op) == CONCATN);
396 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
398 innermode = GET_MODE (op);
399 gcc_assert (byte < GET_MODE_SIZE (innermode));
400 gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
402 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
403 part = XVECEXP (op, 0, byte / inner_size);
404 final_offset = byte % inner_size;
405 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
406 return NULL_RTX;
408 return simplify_gen_subreg (outermode, part, GET_MODE (part), final_offset);
411 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
413 static rtx
414 simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
415 enum machine_mode innermode, unsigned int byte)
417 rtx ret;
419 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
420 If OP is a SUBREG of a CONCATN, then it must be a simple mode
421 change with the same size and offset 0, or it must extract a
422 part. We shouldn't see anything else here. */
423 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
425 rtx op2;
427 if ((GET_MODE_SIZE (GET_MODE (op))
428 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
429 && SUBREG_BYTE (op) == 0)
430 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
431 GET_MODE (SUBREG_REG (op)), byte);
433 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
434 SUBREG_BYTE (op));
435 if (op2 == NULL_RTX)
437 /* We don't handle paradoxical subregs here. */
438 gcc_assert (GET_MODE_SIZE (outermode)
439 <= GET_MODE_SIZE (GET_MODE (op)));
440 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
441 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
442 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
443 byte + SUBREG_BYTE (op));
444 gcc_assert (op2 != NULL_RTX);
445 return op2;
448 op = op2;
449 gcc_assert (op != NULL_RTX);
450 gcc_assert (innermode == GET_MODE (op));
453 if (GET_CODE (op) == CONCATN)
454 return simplify_subreg_concatn (outermode, op, byte);
456 ret = simplify_gen_subreg (outermode, op, innermode, byte);
458 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
459 resolve_simple_move will ask for the high part of the paradoxical
460 subreg, which does not have a value. Just return a zero. */
461 if (ret == NULL_RTX
462 && GET_CODE (op) == SUBREG
463 && SUBREG_BYTE (op) == 0
464 && (GET_MODE_SIZE (innermode)
465 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
466 return CONST0_RTX (outermode);
468 gcc_assert (ret != NULL_RTX);
469 return ret;
472 /* Return whether we should resolve X into the registers into which it
473 was decomposed. */
475 static bool
476 resolve_reg_p (rtx x)
478 return GET_CODE (x) == CONCATN;
481 /* Return whether X is a SUBREG of a register which we need to
482 resolve. */
484 static bool
485 resolve_subreg_p (rtx x)
487 if (GET_CODE (x) != SUBREG)
488 return false;
489 return resolve_reg_p (SUBREG_REG (x));
492 /* This is called via for_each_rtx. Look for SUBREGs which need to be
493 decomposed. */
495 static int
496 resolve_subreg_use (rtx *px, void *data)
498 rtx insn = (rtx) data;
499 rtx x = *px;
501 if (x == NULL_RTX)
502 return 0;
504 if (resolve_subreg_p (x))
506 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
507 SUBREG_BYTE (x));
509 /* It is possible for a note to contain a reference which we can
510 decompose. In this case, return 1 to the caller to indicate
511 that the note must be removed. */
512 if (!x)
514 gcc_assert (!insn);
515 return 1;
518 validate_change (insn, px, x, 1);
519 return -1;
522 if (resolve_reg_p (x))
524 /* Return 1 to the caller to indicate that we found a direct
525 reference to a register which is being decomposed. This can
526 happen inside notes, multiword shift or zero-extend
527 instructions. */
528 return 1;
531 return 0;
534 /* We are deleting INSN. Move any EH_REGION notes to INSNS. */
536 static void
537 move_eh_region_note (rtx insn, rtx insns)
539 rtx note, p;
541 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
542 if (note == NULL_RTX)
543 return;
545 gcc_assert (CALL_P (insn)
546 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn))));
548 for (p = insns; p != NULL_RTX; p = NEXT_INSN (p))
550 if (CALL_P (p)
551 || (flag_non_call_exceptions
552 && INSN_P (p)
553 && may_trap_p (PATTERN (p))))
554 add_reg_note (p, REG_EH_REGION, XEXP (note, 0));
558 /* Resolve any decomposed registers which appear in register notes on
559 INSN. */
561 static void
562 resolve_reg_notes (rtx insn)
564 rtx *pnote, note;
566 note = find_reg_equal_equiv_note (insn);
567 if (note)
569 int old_count = num_validated_changes ();
570 if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
571 remove_note (insn, note);
572 else
573 if (old_count != num_validated_changes ())
574 df_notes_rescan (insn);
577 pnote = &REG_NOTES (insn);
578 while (*pnote != NULL_RTX)
580 bool del = false;
582 note = *pnote;
583 switch (REG_NOTE_KIND (note))
585 case REG_DEAD:
586 case REG_UNUSED:
587 if (resolve_reg_p (XEXP (note, 0)))
588 del = true;
589 break;
591 default:
592 break;
595 if (del)
596 *pnote = XEXP (note, 1);
597 else
598 pnote = &XEXP (note, 1);
602 /* Return whether X can be decomposed into subwords. */
604 static bool
605 can_decompose_p (rtx x)
607 if (REG_P (x))
609 unsigned int regno = REGNO (x);
611 if (HARD_REGISTER_NUM_P (regno))
612 return (validate_subreg (word_mode, GET_MODE (x), x, UNITS_PER_WORD)
613 && HARD_REGNO_MODE_OK (regno, word_mode));
614 else
615 return !bitmap_bit_p (non_decomposable_context, regno);
618 return true;
621 /* Decompose the registers used in a simple move SET within INSN. If
622 we don't change anything, return INSN, otherwise return the start
623 of the sequence of moves. */
625 static rtx
626 resolve_simple_move (rtx set, rtx insn)
628 rtx src, dest, real_dest, insns;
629 enum machine_mode orig_mode, dest_mode;
630 unsigned int words;
631 bool pushing;
633 src = SET_SRC (set);
634 dest = SET_DEST (set);
635 orig_mode = GET_MODE (dest);
637 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
638 if (words <= 1)
639 return insn;
641 start_sequence ();
643 /* We have to handle copying from a SUBREG of a decomposed reg where
644 the SUBREG is larger than word size. Rather than assume that we
645 can take a word_mode SUBREG of the destination, we copy to a new
646 register and then copy that to the destination. */
648 real_dest = NULL_RTX;
650 if (GET_CODE (src) == SUBREG
651 && resolve_reg_p (SUBREG_REG (src))
652 && (SUBREG_BYTE (src) != 0
653 || (GET_MODE_SIZE (orig_mode)
654 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
656 real_dest = dest;
657 dest = gen_reg_rtx (orig_mode);
658 if (REG_P (real_dest))
659 REG_ATTRS (dest) = REG_ATTRS (real_dest);
662 /* Similarly if we are copying to a SUBREG of a decomposed reg where
663 the SUBREG is larger than word size. */
665 if (GET_CODE (dest) == SUBREG
666 && resolve_reg_p (SUBREG_REG (dest))
667 && (SUBREG_BYTE (dest) != 0
668 || (GET_MODE_SIZE (orig_mode)
669 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
671 rtx reg, minsn, smove;
673 reg = gen_reg_rtx (orig_mode);
674 minsn = emit_move_insn (reg, src);
675 smove = single_set (minsn);
676 gcc_assert (smove != NULL_RTX);
677 resolve_simple_move (smove, minsn);
678 src = reg;
681 /* If we didn't have any big SUBREGS of decomposed registers, and
682 neither side of the move is a register we are decomposing, then
683 we don't have to do anything here. */
685 if (src == SET_SRC (set)
686 && dest == SET_DEST (set)
687 && !resolve_reg_p (src)
688 && !resolve_subreg_p (src)
689 && !resolve_reg_p (dest)
690 && !resolve_subreg_p (dest))
692 end_sequence ();
693 return insn;
696 /* It's possible for the code to use a subreg of a decomposed
697 register while forming an address. We need to handle that before
698 passing the address to emit_move_insn. We pass NULL_RTX as the
699 insn parameter to resolve_subreg_use because we can not validate
700 the insn yet. */
701 if (MEM_P (src) || MEM_P (dest))
703 int acg;
705 if (MEM_P (src))
706 for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
707 if (MEM_P (dest))
708 for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
709 acg = apply_change_group ();
710 gcc_assert (acg);
713 /* If SRC is a register which we can't decompose, or has side
714 effects, we need to move via a temporary register. */
716 if (!can_decompose_p (src)
717 || side_effects_p (src)
718 || GET_CODE (src) == ASM_OPERANDS)
720 rtx reg;
722 reg = gen_reg_rtx (orig_mode);
723 emit_move_insn (reg, src);
724 src = reg;
727 /* If DEST is a register which we can't decompose, or has side
728 effects, we need to first move to a temporary register. We
729 handle the common case of pushing an operand directly. We also
730 go through a temporary register if it holds a floating point
731 value. This gives us better code on systems which can't move
732 data easily between integer and floating point registers. */
734 dest_mode = orig_mode;
735 pushing = push_operand (dest, dest_mode);
736 if (!can_decompose_p (dest)
737 || (side_effects_p (dest) && !pushing)
738 || (!SCALAR_INT_MODE_P (dest_mode)
739 && !resolve_reg_p (dest)
740 && !resolve_subreg_p (dest)))
742 if (real_dest == NULL_RTX)
743 real_dest = dest;
744 if (!SCALAR_INT_MODE_P (dest_mode))
746 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
747 MODE_INT, 0);
748 gcc_assert (dest_mode != BLKmode);
750 dest = gen_reg_rtx (dest_mode);
751 if (REG_P (real_dest))
752 REG_ATTRS (dest) = REG_ATTRS (real_dest);
755 if (pushing)
757 unsigned int i, j, jinc;
759 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
760 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
761 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
763 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
765 j = 0;
766 jinc = 1;
768 else
770 j = words - 1;
771 jinc = -1;
774 for (i = 0; i < words; ++i, j += jinc)
776 rtx temp;
778 temp = copy_rtx (XEXP (dest, 0));
779 temp = adjust_automodify_address_nv (dest, word_mode, temp,
780 j * UNITS_PER_WORD);
781 emit_move_insn (temp,
782 simplify_gen_subreg_concatn (word_mode, src,
783 orig_mode,
784 j * UNITS_PER_WORD));
787 else
789 unsigned int i;
791 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
792 emit_clobber (dest);
794 for (i = 0; i < words; ++i)
795 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
796 dest_mode,
797 i * UNITS_PER_WORD),
798 simplify_gen_subreg_concatn (word_mode, src,
799 orig_mode,
800 i * UNITS_PER_WORD));
803 if (real_dest != NULL_RTX)
805 rtx mdest, minsn, smove;
807 if (dest_mode == orig_mode)
808 mdest = dest;
809 else
810 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
811 minsn = emit_move_insn (real_dest, mdest);
813 smove = single_set (minsn);
814 gcc_assert (smove != NULL_RTX);
816 resolve_simple_move (smove, minsn);
819 insns = get_insns ();
820 end_sequence ();
822 move_eh_region_note (insn, insns);
824 emit_insn_before (insns, insn);
826 delete_insn (insn);
828 return insns;
831 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
832 component registers. Return whether we changed something. */
834 static bool
835 resolve_clobber (rtx pat, rtx insn)
837 rtx reg;
838 enum machine_mode orig_mode;
839 unsigned int words, i;
840 int ret;
842 reg = XEXP (pat, 0);
843 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
844 return false;
846 orig_mode = GET_MODE (reg);
847 words = GET_MODE_SIZE (orig_mode);
848 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
850 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
851 simplify_gen_subreg_concatn (word_mode, reg,
852 orig_mode, 0),
854 df_insn_rescan (insn);
855 gcc_assert (ret != 0);
857 for (i = words - 1; i > 0; --i)
859 rtx x;
861 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
862 i * UNITS_PER_WORD);
863 x = gen_rtx_CLOBBER (VOIDmode, x);
864 emit_insn_after (x, insn);
867 resolve_reg_notes (insn);
869 return true;
872 /* A USE of a decomposed register is no longer meaningful. Return
873 whether we changed something. */
875 static bool
876 resolve_use (rtx pat, rtx insn)
878 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
880 delete_insn (insn);
881 return true;
884 resolve_reg_notes (insn);
886 return false;
889 /* Checks if INSN is a decomposable multiword-shift or zero-extend and
890 sets the decomposable_context bitmap accordingly. A non-zero value
891 is returned if a decomposable insn has been found. */
893 static int
894 find_decomposable_shift_zext (rtx insn)
896 rtx set;
897 rtx op;
898 rtx op_operand;
900 set = single_set (insn);
901 if (!set)
902 return 0;
904 op = SET_SRC (set);
905 if (GET_CODE (op) != ASHIFT
906 && GET_CODE (op) != LSHIFTRT
907 && GET_CODE (op) != ZERO_EXTEND)
908 return 0;
910 op_operand = XEXP (op, 0);
911 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
912 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
913 || HARD_REGISTER_NUM_P (REGNO (op_operand))
914 || !SCALAR_INT_MODE_P (GET_MODE (op)))
915 return 0;
917 if (GET_CODE (op) == ZERO_EXTEND)
919 if (GET_MODE (op_operand) != word_mode
920 || GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
921 return 0;
923 else /* left or right shift */
925 if (GET_CODE (XEXP (op, 1)) != CONST_INT
926 || INTVAL (XEXP (op, 1)) < BITS_PER_WORD
927 || GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
928 return 0;
931 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
933 if (GET_CODE (op) != ZERO_EXTEND)
934 bitmap_set_bit (decomposable_context, REGNO (op_operand));
936 return 1;
939 /* Decompose a more than word wide shift (in INSN) of a multiword
940 pseudo or a multiword zero-extend of a wordmode pseudo into a move
941 and 'set to zero' insn. Return a pointer to the new insn when a
942 replacement was done. */
944 static rtx
945 resolve_shift_zext (rtx insn)
947 rtx set;
948 rtx op;
949 rtx op_operand;
950 rtx insns;
951 rtx src_reg, dest_reg, dest_zero;
952 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
954 set = single_set (insn);
955 if (!set)
956 return NULL_RTX;
958 op = SET_SRC (set);
959 if (GET_CODE (op) != ASHIFT
960 && GET_CODE (op) != LSHIFTRT
961 && GET_CODE (op) != ZERO_EXTEND)
962 return NULL_RTX;
964 op_operand = XEXP (op, 0);
966 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
967 return NULL_RTX;
969 /* src_reg_num is the number of the word mode register which we
970 are operating on. For a left shift and a zero_extend on little
971 endian machines this is register 0. */
972 src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0;
974 if (WORDS_BIG_ENDIAN
975 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
976 src_reg_num = 1 - src_reg_num;
978 if (GET_CODE (op) == ZERO_EXTEND)
979 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
980 else
981 dest_reg_num = 1 - src_reg_num;
983 offset1 = UNITS_PER_WORD * dest_reg_num;
984 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
985 src_offset = UNITS_PER_WORD * src_reg_num;
987 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
989 offset1 += UNITS_PER_WORD - 1;
990 offset2 += UNITS_PER_WORD - 1;
991 src_offset += UNITS_PER_WORD - 1;
994 start_sequence ();
996 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
997 GET_MODE (SET_DEST (set)),
998 offset1);
999 dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1000 GET_MODE (SET_DEST (set)),
1001 offset2);
1002 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1003 GET_MODE (op_operand),
1004 src_offset);
1005 if (GET_CODE (op) != ZERO_EXTEND)
1007 int shift_count = INTVAL (XEXP (op, 1));
1008 if (shift_count > BITS_PER_WORD)
1009 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1010 LSHIFT_EXPR : RSHIFT_EXPR,
1011 word_mode, src_reg,
1012 build_int_cst (NULL_TREE,
1013 shift_count - BITS_PER_WORD),
1014 dest_reg, 1);
1017 if (dest_reg != src_reg)
1018 emit_move_insn (dest_reg, src_reg);
1019 emit_move_insn (dest_zero, CONST0_RTX (word_mode));
1020 insns = get_insns ();
1022 end_sequence ();
1024 emit_insn_before (insns, insn);
1026 if (dump_file)
1028 rtx in;
1029 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1030 for (in = insns; in != insn; in = NEXT_INSN (in))
1031 fprintf (dump_file, "%d ", INSN_UID (in));
1032 fprintf (dump_file, "\n");
1035 delete_insn (insn);
1036 return insns;
1039 /* Look for registers which are always accessed via word-sized SUBREGs
1040 or via copies. Decompose these registers into several word-sized
1041 pseudo-registers. */
1043 static void
1044 decompose_multiword_subregs (void)
1046 unsigned int max;
1047 basic_block bb;
1049 if (df)
1050 df_set_flags (DF_DEFER_INSN_RESCAN);
1052 max = max_reg_num ();
1054 /* First see if there are any multi-word pseudo-registers. If there
1055 aren't, there is nothing we can do. This should speed up this
1056 pass in the normal case, since it should be faster than scanning
1057 all the insns. */
1059 unsigned int i;
1061 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1063 if (regno_reg_rtx[i] != NULL
1064 && GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
1065 break;
1067 if (i == max)
1068 return;
1071 /* FIXME: When the dataflow branch is merged, we can change this
1072 code to look for each multi-word pseudo-register and to find each
1073 insn which sets or uses that register. That should be faster
1074 than scanning all the insns. */
1076 decomposable_context = BITMAP_ALLOC (NULL);
1077 non_decomposable_context = BITMAP_ALLOC (NULL);
1079 reg_copy_graph = VEC_alloc (bitmap, heap, max);
1080 VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
1081 memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
1083 FOR_EACH_BB (bb)
1085 rtx insn;
1087 FOR_BB_INSNS (bb, insn)
1089 rtx set;
1090 enum classify_move_insn cmi;
1091 int i, n;
1093 if (!INSN_P (insn)
1094 || GET_CODE (PATTERN (insn)) == CLOBBER
1095 || GET_CODE (PATTERN (insn)) == USE)
1096 continue;
1098 if (find_decomposable_shift_zext (insn))
1099 continue;
1101 recog_memoized (insn);
1102 extract_insn (insn);
1104 set = simple_move (insn);
1106 if (!set)
1107 cmi = NOT_SIMPLE_MOVE;
1108 else
1110 if (find_pseudo_copy (set))
1111 cmi = SIMPLE_PSEUDO_REG_MOVE;
1112 else
1113 cmi = SIMPLE_MOVE;
1116 n = recog_data.n_operands;
1117 for (i = 0; i < n; ++i)
1119 for_each_rtx (&recog_data.operand[i],
1120 find_decomposable_subregs,
1121 &cmi);
1123 /* We handle ASM_OPERANDS as a special case to support
1124 things like x86 rdtsc which returns a DImode value.
1125 We can decompose the output, which will certainly be
1126 operand 0, but not the inputs. */
1128 if (cmi == SIMPLE_MOVE
1129 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1131 gcc_assert (i == 0);
1132 cmi = NOT_SIMPLE_MOVE;
1138 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1139 if (!bitmap_empty_p (decomposable_context))
1141 sbitmap sub_blocks;
1142 unsigned int i;
1143 sbitmap_iterator sbi;
1144 bitmap_iterator iter;
1145 unsigned int regno;
1147 propagate_pseudo_copies ();
1149 sub_blocks = sbitmap_alloc (last_basic_block);
1150 sbitmap_zero (sub_blocks);
1152 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1153 decompose_register (regno);
1155 FOR_EACH_BB (bb)
1157 rtx insn;
1159 FOR_BB_INSNS (bb, insn)
1161 rtx next, pat;
1163 if (!INSN_P (insn))
1164 continue;
1166 next = NEXT_INSN (insn);
1168 pat = PATTERN (insn);
1169 if (GET_CODE (pat) == CLOBBER)
1170 resolve_clobber (pat, insn);
1171 else if (GET_CODE (pat) == USE)
1172 resolve_use (pat, insn);
1173 else
1175 rtx set;
1176 int i;
1178 recog_memoized (insn);
1179 extract_insn (insn);
1181 set = simple_move (insn);
1182 if (set)
1184 rtx orig_insn = insn;
1185 bool cfi = control_flow_insn_p (insn);
1187 /* We can end up splitting loads to multi-word pseudos
1188 into separate loads to machine word size pseudos.
1189 When this happens, we first had one load that can
1190 throw, and after resolve_simple_move we'll have a
1191 bunch of loads (at least two). All those loads may
1192 trap if we can have non-call exceptions, so they
1193 all will end the current basic block. We split the
1194 block after the outer loop over all insns, but we
1195 make sure here that we will be able to split the
1196 basic block and still produce the correct control
1197 flow graph for it. */
1198 gcc_assert (!cfi
1199 || (flag_non_call_exceptions
1200 && can_throw_internal (insn)));
1202 insn = resolve_simple_move (set, insn);
1203 if (insn != orig_insn)
1205 recog_memoized (insn);
1206 extract_insn (insn);
1208 if (cfi)
1209 SET_BIT (sub_blocks, bb->index);
1212 else
1214 rtx decomposed_shift;
1216 decomposed_shift = resolve_shift_zext (insn);
1217 if (decomposed_shift != NULL_RTX)
1219 insn = decomposed_shift;
1220 recog_memoized (insn);
1221 extract_insn (insn);
1225 for (i = recog_data.n_operands - 1; i >= 0; --i)
1226 for_each_rtx (recog_data.operand_loc[i],
1227 resolve_subreg_use,
1228 insn);
1230 resolve_reg_notes (insn);
1232 if (num_validated_changes () > 0)
1234 for (i = recog_data.n_dups - 1; i >= 0; --i)
1236 rtx *pl = recog_data.dup_loc[i];
1237 int dup_num = recog_data.dup_num[i];
1238 rtx *px = recog_data.operand_loc[dup_num];
1240 validate_unshare_change (insn, pl, *px, 1);
1243 i = apply_change_group ();
1244 gcc_assert (i);
1250 /* If we had insns to split that caused control flow insns in the middle
1251 of a basic block, split those blocks now. Note that we only handle
1252 the case where splitting a load has caused multiple possibly trapping
1253 loads to appear. */
1254 EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi)
1256 rtx insn, end;
1257 edge fallthru;
1259 bb = BASIC_BLOCK (i);
1260 insn = BB_HEAD (bb);
1261 end = BB_END (bb);
1263 while (insn != end)
1265 if (control_flow_insn_p (insn))
1267 /* Split the block after insn. There will be a fallthru
1268 edge, which is OK so we keep it. We have to create the
1269 exception edges ourselves. */
1270 fallthru = split_block (bb, insn);
1271 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1272 bb = fallthru->dest;
1273 insn = BB_HEAD (bb);
1275 else
1276 insn = NEXT_INSN (insn);
1280 sbitmap_free (sub_blocks);
1284 unsigned int i;
1285 bitmap b;
1287 for (i = 0; VEC_iterate (bitmap, reg_copy_graph, i, b); ++i)
1288 if (b)
1289 BITMAP_FREE (b);
1292 VEC_free (bitmap, heap, reg_copy_graph);
1294 BITMAP_FREE (decomposable_context);
1295 BITMAP_FREE (non_decomposable_context);
1298 /* Gate function for lower subreg pass. */
1300 static bool
1301 gate_handle_lower_subreg (void)
1303 return flag_split_wide_types != 0;
1306 /* Implement first lower subreg pass. */
1308 static unsigned int
1309 rest_of_handle_lower_subreg (void)
1311 decompose_multiword_subregs ();
1312 return 0;
1315 /* Implement second lower subreg pass. */
1317 static unsigned int
1318 rest_of_handle_lower_subreg2 (void)
1320 decompose_multiword_subregs ();
1321 return 0;
1324 struct rtl_opt_pass pass_lower_subreg =
1327 RTL_PASS,
1328 "subreg1", /* name */
1329 gate_handle_lower_subreg, /* gate */
1330 rest_of_handle_lower_subreg, /* execute */
1331 NULL, /* sub */
1332 NULL, /* next */
1333 0, /* static_pass_number */
1334 TV_LOWER_SUBREG, /* tv_id */
1335 0, /* properties_required */
1336 0, /* properties_provided */
1337 0, /* properties_destroyed */
1338 0, /* todo_flags_start */
1339 TODO_dump_func |
1340 TODO_ggc_collect |
1341 TODO_verify_flow /* todo_flags_finish */
1345 struct rtl_opt_pass pass_lower_subreg2 =
1348 RTL_PASS,
1349 "subreg2", /* name */
1350 gate_handle_lower_subreg, /* gate */
1351 rest_of_handle_lower_subreg2, /* execute */
1352 NULL, /* sub */
1353 NULL, /* next */
1354 0, /* static_pass_number */
1355 TV_LOWER_SUBREG, /* tv_id */
1356 0, /* properties_required */
1357 0, /* properties_provided */
1358 0, /* properties_destroyed */
1359 0, /* todo_flags_start */
1360 TODO_df_finish | TODO_verify_rtl_sharing |
1361 TODO_dump_func |
1362 TODO_ggc_collect |
1363 TODO_verify_flow /* todo_flags_finish */