2009-10-01 Tobias Burnus <burnus@net-b.de>
[official-gcc/alias-decl.git] / gcc / ada / s-taprop-vxworks.adb
blob622e3b532309f4aede44c291b70cd2a2196b997d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is the VxWorks version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Conversion;
42 with Ada.Unchecked_Deallocation;
44 with Interfaces.C;
46 with System.Tasking.Debug;
47 with System.Interrupt_Management;
49 with System.Soft_Links;
50 -- We use System.Soft_Links instead of System.Tasking.Initialization
51 -- because the later is a higher level package that we shouldn't depend
52 -- on. For example when using the restricted run time, it is replaced by
53 -- System.Tasking.Restricted.Stages.
55 with System.Task_Info;
56 with System.VxWorks.Ext;
58 package body System.Task_Primitives.Operations is
60 package SSL renames System.Soft_Links;
62 use System.Tasking.Debug;
63 use System.Tasking;
64 use System.OS_Interface;
65 use System.Parameters;
66 use type System.VxWorks.Ext.t_id;
67 use type Interfaces.C.int;
69 subtype int is System.OS_Interface.int;
71 Relative : constant := 0;
73 ----------------
74 -- Local Data --
75 ----------------
77 -- The followings are logically constants, but need to be initialized at
78 -- run time.
80 Single_RTS_Lock : aliased RTS_Lock;
81 -- This is a lock to allow only one thread of control in the RTS at a
82 -- time; it is used to execute in mutual exclusion from all other tasks.
83 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
85 Environment_Task_Id : Task_Id;
86 -- A variable to hold Task_Id for the environment task
88 Unblocked_Signal_Mask : aliased sigset_t;
89 -- The set of signals that should unblocked in all tasks
91 -- The followings are internal configuration constants needed
93 Time_Slice_Val : Integer;
94 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
96 Locking_Policy : Character;
97 pragma Import (C, Locking_Policy, "__gl_locking_policy");
99 Dispatching_Policy : Character;
100 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
102 function Get_Policy (Prio : System.Any_Priority) return Character;
103 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
104 -- Get priority specific dispatching policy
106 Mutex_Protocol : Priority_Type;
108 Foreign_Task_Elaborated : aliased Boolean := True;
109 -- Used to identified fake tasks (i.e., non-Ada Threads)
111 type Set_Stack_Limit_Proc_Acc is access procedure;
112 pragma Convention (C, Set_Stack_Limit_Proc_Acc);
114 Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
115 pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
116 -- Procedure to be called when a task is created to set stack
117 -- limit.
119 --------------------
120 -- Local Packages --
121 --------------------
123 package Specific is
125 procedure Initialize;
126 pragma Inline (Initialize);
127 -- Initialize task specific data
129 function Is_Valid_Task return Boolean;
130 pragma Inline (Is_Valid_Task);
131 -- Does executing thread have a TCB?
133 procedure Set (Self_Id : Task_Id);
134 pragma Inline (Set);
135 -- Set the self id for the current task
137 procedure Delete;
138 pragma Inline (Delete);
139 -- Delete the task specific data associated with the current task
141 function Self return Task_Id;
142 pragma Inline (Self);
143 -- Return a pointer to the Ada Task Control Block of the calling task
145 end Specific;
147 package body Specific is separate;
148 -- The body of this package is target specific
150 ---------------------------------
151 -- Support for foreign threads --
152 ---------------------------------
154 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
155 -- Allocate and Initialize a new ATCB for the current Thread
157 function Register_Foreign_Thread
158 (Thread : Thread_Id) return Task_Id is separate;
160 -----------------------
161 -- Local Subprograms --
162 -----------------------
164 procedure Abort_Handler (signo : Signal);
165 -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
167 procedure Install_Signal_Handlers;
168 -- Install the default signal handlers for the current task
170 function To_Address is
171 new Ada.Unchecked_Conversion (Task_Id, System.Address);
173 -------------------
174 -- Abort_Handler --
175 -------------------
177 procedure Abort_Handler (signo : Signal) is
178 pragma Unreferenced (signo);
180 Self_ID : constant Task_Id := Self;
181 Old_Set : aliased sigset_t;
183 Result : int;
184 pragma Warnings (Off, Result);
186 begin
187 -- It is not safe to raise an exception when using ZCX and the GCC
188 -- exception handling mechanism.
190 if ZCX_By_Default and then GCC_ZCX_Support then
191 return;
192 end if;
194 if Self_ID.Deferral_Level = 0
195 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
196 and then not Self_ID.Aborting
197 then
198 Self_ID.Aborting := True;
200 -- Make sure signals used for RTS internal purpose are unmasked
202 Result :=
203 pthread_sigmask
204 (SIG_UNBLOCK,
205 Unblocked_Signal_Mask'Access,
206 Old_Set'Access);
207 pragma Assert (Result = 0);
209 raise Standard'Abort_Signal;
210 end if;
211 end Abort_Handler;
213 -----------------
214 -- Stack_Guard --
215 -----------------
217 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
218 pragma Unreferenced (T);
219 pragma Unreferenced (On);
221 begin
222 -- Nothing needed (why not???)
224 null;
225 end Stack_Guard;
227 -------------------
228 -- Get_Thread_Id --
229 -------------------
231 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
232 begin
233 return T.Common.LL.Thread;
234 end Get_Thread_Id;
236 ----------
237 -- Self --
238 ----------
240 function Self return Task_Id renames Specific.Self;
242 -----------------------------
243 -- Install_Signal_Handlers --
244 -----------------------------
246 procedure Install_Signal_Handlers is
247 act : aliased struct_sigaction;
248 old_act : aliased struct_sigaction;
249 Tmp_Set : aliased sigset_t;
250 Result : int;
252 begin
253 act.sa_flags := 0;
254 act.sa_handler := Abort_Handler'Address;
256 Result := sigemptyset (Tmp_Set'Access);
257 pragma Assert (Result = 0);
258 act.sa_mask := Tmp_Set;
260 Result :=
261 sigaction
262 (Signal (Interrupt_Management.Abort_Task_Interrupt),
263 act'Unchecked_Access,
264 old_act'Unchecked_Access);
265 pragma Assert (Result = 0);
267 Interrupt_Management.Initialize_Interrupts;
268 end Install_Signal_Handlers;
270 ---------------------
271 -- Initialize_Lock --
272 ---------------------
274 procedure Initialize_Lock
275 (Prio : System.Any_Priority;
276 L : not null access Lock)
278 begin
279 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
280 L.Prio_Ceiling := int (Prio);
281 L.Protocol := Mutex_Protocol;
282 pragma Assert (L.Mutex /= 0);
283 end Initialize_Lock;
285 procedure Initialize_Lock
286 (L : not null access RTS_Lock;
287 Level : Lock_Level)
289 pragma Unreferenced (Level);
290 begin
291 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
292 L.Prio_Ceiling := int (System.Any_Priority'Last);
293 L.Protocol := Mutex_Protocol;
294 pragma Assert (L.Mutex /= 0);
295 end Initialize_Lock;
297 -------------------
298 -- Finalize_Lock --
299 -------------------
301 procedure Finalize_Lock (L : not null access Lock) is
302 Result : int;
303 begin
304 Result := semDelete (L.Mutex);
305 pragma Assert (Result = 0);
306 end Finalize_Lock;
308 procedure Finalize_Lock (L : not null access RTS_Lock) is
309 Result : int;
310 begin
311 Result := semDelete (L.Mutex);
312 pragma Assert (Result = 0);
313 end Finalize_Lock;
315 ----------------
316 -- Write_Lock --
317 ----------------
319 procedure Write_Lock
320 (L : not null access Lock;
321 Ceiling_Violation : out Boolean)
323 Result : int;
325 begin
326 if L.Protocol = Prio_Protect
327 and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
328 then
329 Ceiling_Violation := True;
330 return;
331 else
332 Ceiling_Violation := False;
333 end if;
335 Result := semTake (L.Mutex, WAIT_FOREVER);
336 pragma Assert (Result = 0);
337 end Write_Lock;
339 procedure Write_Lock
340 (L : not null access RTS_Lock;
341 Global_Lock : Boolean := False)
343 Result : int;
344 begin
345 if not Single_Lock or else Global_Lock then
346 Result := semTake (L.Mutex, WAIT_FOREVER);
347 pragma Assert (Result = 0);
348 end if;
349 end Write_Lock;
351 procedure Write_Lock (T : Task_Id) is
352 Result : int;
353 begin
354 if not Single_Lock then
355 Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
356 pragma Assert (Result = 0);
357 end if;
358 end Write_Lock;
360 ---------------
361 -- Read_Lock --
362 ---------------
364 procedure Read_Lock
365 (L : not null access Lock;
366 Ceiling_Violation : out Boolean)
368 begin
369 Write_Lock (L, Ceiling_Violation);
370 end Read_Lock;
372 ------------
373 -- Unlock --
374 ------------
376 procedure Unlock (L : not null access Lock) is
377 Result : int;
378 begin
379 Result := semGive (L.Mutex);
380 pragma Assert (Result = 0);
381 end Unlock;
383 procedure Unlock
384 (L : not null access RTS_Lock;
385 Global_Lock : Boolean := False)
387 Result : int;
388 begin
389 if not Single_Lock or else Global_Lock then
390 Result := semGive (L.Mutex);
391 pragma Assert (Result = 0);
392 end if;
393 end Unlock;
395 procedure Unlock (T : Task_Id) is
396 Result : int;
397 begin
398 if not Single_Lock then
399 Result := semGive (T.Common.LL.L.Mutex);
400 pragma Assert (Result = 0);
401 end if;
402 end Unlock;
404 -----------------
405 -- Set_Ceiling --
406 -----------------
408 -- Dynamic priority ceilings are not supported by the underlying system
410 procedure Set_Ceiling
411 (L : not null access Lock;
412 Prio : System.Any_Priority)
414 pragma Unreferenced (L, Prio);
415 begin
416 null;
417 end Set_Ceiling;
419 -----------
420 -- Sleep --
421 -----------
423 procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
424 pragma Unreferenced (Reason);
426 Result : int;
428 begin
429 pragma Assert (Self_ID = Self);
431 -- Release the mutex before sleeping
433 if Single_Lock then
434 Result := semGive (Single_RTS_Lock.Mutex);
435 else
436 Result := semGive (Self_ID.Common.LL.L.Mutex);
437 end if;
439 pragma Assert (Result = 0);
441 -- Perform a blocking operation to take the CV semaphore. Note that a
442 -- blocking operation in VxWorks will reenable task scheduling. When we
443 -- are no longer blocked and control is returned, task scheduling will
444 -- again be disabled.
446 Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
447 pragma Assert (Result = 0);
449 -- Take the mutex back
451 if Single_Lock then
452 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
453 else
454 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
455 end if;
457 pragma Assert (Result = 0);
458 end Sleep;
460 -----------------
461 -- Timed_Sleep --
462 -----------------
464 -- This is for use within the run-time system, so abort is assumed to be
465 -- already deferred, and the caller should be holding its own ATCB lock.
467 procedure Timed_Sleep
468 (Self_ID : Task_Id;
469 Time : Duration;
470 Mode : ST.Delay_Modes;
471 Reason : System.Tasking.Task_States;
472 Timedout : out Boolean;
473 Yielded : out Boolean)
475 pragma Unreferenced (Reason);
477 Orig : constant Duration := Monotonic_Clock;
478 Absolute : Duration;
479 Ticks : int;
480 Result : int;
481 Wakeup : Boolean := False;
483 begin
484 Timedout := False;
485 Yielded := True;
487 if Mode = Relative then
488 Absolute := Orig + Time;
490 -- Systematically add one since the first tick will delay *at most*
491 -- 1 / Rate_Duration seconds, so we need to add one to be on the
492 -- safe side.
494 Ticks := To_Clock_Ticks (Time);
496 if Ticks > 0 and then Ticks < int'Last then
497 Ticks := Ticks + 1;
498 end if;
500 else
501 Absolute := Time;
502 Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
503 end if;
505 if Ticks > 0 then
506 loop
507 -- Release the mutex before sleeping
509 if Single_Lock then
510 Result := semGive (Single_RTS_Lock.Mutex);
511 else
512 Result := semGive (Self_ID.Common.LL.L.Mutex);
513 end if;
515 pragma Assert (Result = 0);
517 -- Perform a blocking operation to take the CV semaphore. Note
518 -- that a blocking operation in VxWorks will reenable task
519 -- scheduling. When we are no longer blocked and control is
520 -- returned, task scheduling will again be disabled.
522 Result := semTake (Self_ID.Common.LL.CV, Ticks);
524 if Result = 0 then
526 -- Somebody may have called Wakeup for us
528 Wakeup := True;
530 else
531 if errno /= S_objLib_OBJ_TIMEOUT then
532 Wakeup := True;
534 else
535 -- If Ticks = int'last, it was most probably truncated so
536 -- let's make another round after recomputing Ticks from
537 -- the absolute time.
539 if Ticks /= int'Last then
540 Timedout := True;
542 else
543 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
545 if Ticks < 0 then
546 Timedout := True;
547 end if;
548 end if;
549 end if;
550 end if;
552 -- Take the mutex back
554 if Single_Lock then
555 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
556 else
557 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
558 end if;
560 pragma Assert (Result = 0);
562 exit when Timedout or Wakeup;
563 end loop;
565 else
566 Timedout := True;
568 -- Should never hold a lock while yielding
570 if Single_Lock then
571 Result := semGive (Single_RTS_Lock.Mutex);
572 taskDelay (0);
573 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
575 else
576 Result := semGive (Self_ID.Common.LL.L.Mutex);
577 taskDelay (0);
578 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
579 end if;
580 end if;
581 end Timed_Sleep;
583 -----------------
584 -- Timed_Delay --
585 -----------------
587 -- This is for use in implementing delay statements, so we assume the
588 -- caller is holding no locks.
590 procedure Timed_Delay
591 (Self_ID : Task_Id;
592 Time : Duration;
593 Mode : ST.Delay_Modes)
595 Orig : constant Duration := Monotonic_Clock;
596 Absolute : Duration;
597 Ticks : int;
598 Timedout : Boolean;
599 Aborted : Boolean := False;
601 Result : int;
602 pragma Warnings (Off, Result);
604 begin
605 if Mode = Relative then
606 Absolute := Orig + Time;
607 Ticks := To_Clock_Ticks (Time);
609 if Ticks > 0 and then Ticks < int'Last then
611 -- First tick will delay anytime between 0 and 1 / sysClkRateGet
612 -- seconds, so we need to add one to be on the safe side.
614 Ticks := Ticks + 1;
615 end if;
617 else
618 Absolute := Time;
619 Ticks := To_Clock_Ticks (Time - Orig);
620 end if;
622 if Ticks > 0 then
624 -- Modifying State, locking the TCB
626 if Single_Lock then
627 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
628 else
629 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
630 end if;
632 pragma Assert (Result = 0);
634 Self_ID.Common.State := Delay_Sleep;
635 Timedout := False;
637 loop
638 Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
640 -- Release the TCB before sleeping
642 if Single_Lock then
643 Result := semGive (Single_RTS_Lock.Mutex);
644 else
645 Result := semGive (Self_ID.Common.LL.L.Mutex);
646 end if;
647 pragma Assert (Result = 0);
649 exit when Aborted;
651 Result := semTake (Self_ID.Common.LL.CV, Ticks);
653 if Result /= 0 then
655 -- If Ticks = int'last, it was most probably truncated
656 -- so let's make another round after recomputing Ticks
657 -- from the absolute time.
659 if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
660 Timedout := True;
661 else
662 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
664 if Ticks < 0 then
665 Timedout := True;
666 end if;
667 end if;
668 end if;
670 -- Take back the lock after having slept, to protect further
671 -- access to Self_ID.
673 if Single_Lock then
674 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
675 else
676 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
677 end if;
679 pragma Assert (Result = 0);
681 exit when Timedout;
682 end loop;
684 Self_ID.Common.State := Runnable;
686 if Single_Lock then
687 Result := semGive (Single_RTS_Lock.Mutex);
688 else
689 Result := semGive (Self_ID.Common.LL.L.Mutex);
690 end if;
692 else
693 taskDelay (0);
694 end if;
695 end Timed_Delay;
697 ---------------------
698 -- Monotonic_Clock --
699 ---------------------
701 function Monotonic_Clock return Duration is
702 TS : aliased timespec;
703 Result : int;
704 begin
705 Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
706 pragma Assert (Result = 0);
707 return To_Duration (TS);
708 end Monotonic_Clock;
710 -------------------
711 -- RT_Resolution --
712 -------------------
714 function RT_Resolution return Duration is
715 begin
716 return 1.0 / Duration (sysClkRateGet);
717 end RT_Resolution;
719 ------------
720 -- Wakeup --
721 ------------
723 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
724 pragma Unreferenced (Reason);
725 Result : int;
726 begin
727 Result := semGive (T.Common.LL.CV);
728 pragma Assert (Result = 0);
729 end Wakeup;
731 -----------
732 -- Yield --
733 -----------
735 procedure Yield (Do_Yield : Boolean := True) is
736 pragma Unreferenced (Do_Yield);
737 Result : int;
738 pragma Unreferenced (Result);
739 begin
740 Result := taskDelay (0);
741 end Yield;
743 ------------------
744 -- Set_Priority --
745 ------------------
747 type Prio_Array_Type is array (System.Any_Priority) of Integer;
748 pragma Atomic_Components (Prio_Array_Type);
750 Prio_Array : Prio_Array_Type;
751 -- Global array containing the id of the currently running task for each
752 -- priority. Note that we assume that we are on a single processor with
753 -- run-till-blocked scheduling.
755 procedure Set_Priority
756 (T : Task_Id;
757 Prio : System.Any_Priority;
758 Loss_Of_Inheritance : Boolean := False)
760 Array_Item : Integer;
761 Result : int;
763 begin
764 Result :=
765 taskPrioritySet
766 (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
767 pragma Assert (Result = 0);
769 if (Dispatching_Policy = 'F' or else Get_Policy (Prio) = 'F')
770 and then Loss_Of_Inheritance
771 and then Prio < T.Common.Current_Priority
772 then
773 -- Annex D requirement (RM D.2.2(9)):
775 -- If the task drops its priority due to the loss of inherited
776 -- priority, it is added at the head of the ready queue for its
777 -- new active priority.
779 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
780 Prio_Array (T.Common.Base_Priority) := Array_Item;
782 loop
783 -- Give some processes a chance to arrive
785 taskDelay (0);
787 -- Then wait for our turn to proceed
789 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
790 or else Prio_Array (T.Common.Base_Priority) = 1;
791 end loop;
793 Prio_Array (T.Common.Base_Priority) :=
794 Prio_Array (T.Common.Base_Priority) - 1;
795 end if;
797 T.Common.Current_Priority := Prio;
798 end Set_Priority;
800 ------------------
801 -- Get_Priority --
802 ------------------
804 function Get_Priority (T : Task_Id) return System.Any_Priority is
805 begin
806 return T.Common.Current_Priority;
807 end Get_Priority;
809 ----------------
810 -- Enter_Task --
811 ----------------
813 procedure Enter_Task (Self_ID : Task_Id) is
814 procedure Init_Float;
815 pragma Import (C, Init_Float, "__gnat_init_float");
816 -- Properly initializes the FPU for PPC/MIPS systems
818 begin
819 -- Store the user-level task id in the Thread field (to be used
820 -- internally by the run-time system) and the kernel-level task id in
821 -- the LWP field (to be used by the debugger).
823 Self_ID.Common.LL.Thread := taskIdSelf;
824 Self_ID.Common.LL.LWP := getpid;
826 Specific.Set (Self_ID);
828 Init_Float;
830 -- Install the signal handlers
832 -- This is called for each task since there is no signal inheritance
833 -- between VxWorks tasks.
835 Install_Signal_Handlers;
837 -- If stack checking is enabled, set the stack limit for this task
839 if Set_Stack_Limit_Hook /= null then
840 Set_Stack_Limit_Hook.all;
841 end if;
842 end Enter_Task;
844 --------------
845 -- New_ATCB --
846 --------------
848 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
849 begin
850 return new Ada_Task_Control_Block (Entry_Num);
851 end New_ATCB;
853 -------------------
854 -- Is_Valid_Task --
855 -------------------
857 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
859 -----------------------------
860 -- Register_Foreign_Thread --
861 -----------------------------
863 function Register_Foreign_Thread return Task_Id is
864 begin
865 if Is_Valid_Task then
866 return Self;
867 else
868 return Register_Foreign_Thread (taskIdSelf);
869 end if;
870 end Register_Foreign_Thread;
872 --------------------
873 -- Initialize_TCB --
874 --------------------
876 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
877 begin
878 Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
879 Self_ID.Common.LL.Thread := 0;
881 if Self_ID.Common.LL.CV = 0 then
882 Succeeded := False;
884 else
885 Succeeded := True;
887 if not Single_Lock then
888 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
889 end if;
890 end if;
891 end Initialize_TCB;
893 -----------------
894 -- Create_Task --
895 -----------------
897 procedure Create_Task
898 (T : Task_Id;
899 Wrapper : System.Address;
900 Stack_Size : System.Parameters.Size_Type;
901 Priority : System.Any_Priority;
902 Succeeded : out Boolean)
904 Adjusted_Stack_Size : size_t;
905 Result : int;
907 use System.Task_Info;
909 begin
910 -- Ask for four extra bytes of stack space so that the ATCB pointer can
911 -- be stored below the stack limit, plus extra space for the frame of
912 -- Task_Wrapper. This is so the user gets the amount of stack requested
913 -- exclusive of the needs.
915 -- We also have to allocate n more bytes for the task name storage and
916 -- enough space for the Wind Task Control Block which is around 0x778
917 -- bytes. VxWorks also seems to carve out additional space, so use 2048
918 -- as a nice round number. We might want to increment to the nearest
919 -- page size in case we ever support VxVMI.
921 -- ??? - we should come back and visit this so we can set the task name
922 -- to something appropriate.
924 Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
926 -- Since the initial signal mask of a thread is inherited from the
927 -- creator, and the Environment task has all its signals masked, we do
928 -- not need to manipulate caller's signal mask at this point. All tasks
929 -- in RTS will have All_Tasks_Mask initially.
931 -- We now compute the VxWorks task name and options, then spawn ...
933 declare
934 Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
935 Name_Address : System.Address;
936 -- Task name we are going to hand down to VxWorks
938 function Get_Task_Options return int;
939 pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
940 -- Function that returns the options to be set for the task that we
941 -- are creating. We fetch the options assigned to the current task,
942 -- so offering some user level control over the options for a task
943 -- hierarchy, and force VX_FP_TASK because it is almost always
944 -- required.
946 begin
947 -- If there is no Ada task name handy, let VxWorks choose one.
948 -- Otherwise, tell VxWorks what the Ada task name is.
950 if T.Common.Task_Image_Len = 0 then
951 Name_Address := System.Null_Address;
952 else
953 Name (1 .. Name'Last - 1) :=
954 T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
955 Name (Name'Last) := ASCII.NUL;
956 Name_Address := Name'Address;
957 end if;
959 -- Now spawn the VxWorks task for real
961 T.Common.LL.Thread :=
962 taskSpawn
963 (Name_Address,
964 To_VxWorks_Priority (int (Priority)),
965 Get_Task_Options,
966 Adjusted_Stack_Size,
967 Wrapper,
968 To_Address (T));
969 end;
971 -- Set processor affinity
973 if T.Common.Task_Info /= Unspecified_Task_Info then
974 Result :=
975 taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
977 if Result = -1 then
978 taskDelete (T.Common.LL.Thread);
979 T.Common.LL.Thread := -1;
980 end if;
981 end if;
983 if T.Common.LL.Thread = -1 then
984 Succeeded := False;
985 else
986 Succeeded := True;
987 Task_Creation_Hook (T.Common.LL.Thread);
988 Set_Priority (T, Priority);
989 end if;
990 end Create_Task;
992 ------------------
993 -- Finalize_TCB --
994 ------------------
996 procedure Finalize_TCB (T : Task_Id) is
997 Result : int;
998 Tmp : Task_Id := T;
999 Is_Self : constant Boolean := (T = Self);
1001 procedure Free is new
1002 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
1004 begin
1005 if not Single_Lock then
1006 Result := semDelete (T.Common.LL.L.Mutex);
1007 pragma Assert (Result = 0);
1008 end if;
1010 T.Common.LL.Thread := 0;
1012 Result := semDelete (T.Common.LL.CV);
1013 pragma Assert (Result = 0);
1015 if T.Known_Tasks_Index /= -1 then
1016 Known_Tasks (T.Known_Tasks_Index) := null;
1017 end if;
1019 Free (Tmp);
1021 if Is_Self then
1022 Specific.Delete;
1023 end if;
1024 end Finalize_TCB;
1026 ---------------
1027 -- Exit_Task --
1028 ---------------
1030 procedure Exit_Task is
1031 begin
1032 Specific.Set (null);
1033 end Exit_Task;
1035 ----------------
1036 -- Abort_Task --
1037 ----------------
1039 procedure Abort_Task (T : Task_Id) is
1040 Result : int;
1041 begin
1042 Result :=
1043 kill
1044 (T.Common.LL.Thread,
1045 Signal (Interrupt_Management.Abort_Task_Interrupt));
1046 pragma Assert (Result = 0);
1047 end Abort_Task;
1049 ----------------
1050 -- Initialize --
1051 ----------------
1053 procedure Initialize (S : in out Suspension_Object) is
1054 begin
1055 -- Initialize internal state (always to False (RM D.10(6)))
1057 S.State := False;
1058 S.Waiting := False;
1060 -- Initialize internal mutex
1062 -- Use simpler binary semaphore instead of VxWorks
1063 -- mutual exclusion semaphore, because we don't need
1064 -- the fancier semantics and their overhead.
1066 S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1068 -- Initialize internal condition variable
1070 S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1071 end Initialize;
1073 --------------
1074 -- Finalize --
1075 --------------
1077 procedure Finalize (S : in out Suspension_Object) is
1078 pragma Unmodified (S);
1079 -- S may be modified on other targets, but not on VxWorks
1081 Result : STATUS;
1083 begin
1084 -- Destroy internal mutex
1086 Result := semDelete (S.L);
1087 pragma Assert (Result = OK);
1089 -- Destroy internal condition variable
1091 Result := semDelete (S.CV);
1092 pragma Assert (Result = OK);
1093 end Finalize;
1095 -------------------
1096 -- Current_State --
1097 -------------------
1099 function Current_State (S : Suspension_Object) return Boolean is
1100 begin
1101 -- We do not want to use lock on this read operation. State is marked
1102 -- as Atomic so that we ensure that the value retrieved is correct.
1104 return S.State;
1105 end Current_State;
1107 ---------------
1108 -- Set_False --
1109 ---------------
1111 procedure Set_False (S : in out Suspension_Object) is
1112 Result : STATUS;
1114 begin
1115 SSL.Abort_Defer.all;
1117 Result := semTake (S.L, WAIT_FOREVER);
1118 pragma Assert (Result = OK);
1120 S.State := False;
1122 Result := semGive (S.L);
1123 pragma Assert (Result = OK);
1125 SSL.Abort_Undefer.all;
1126 end Set_False;
1128 --------------
1129 -- Set_True --
1130 --------------
1132 procedure Set_True (S : in out Suspension_Object) is
1133 Result : STATUS;
1135 begin
1136 SSL.Abort_Defer.all;
1138 Result := semTake (S.L, WAIT_FOREVER);
1139 pragma Assert (Result = OK);
1141 -- If there is already a task waiting on this suspension object then
1142 -- we resume it, leaving the state of the suspension object to False,
1143 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1144 -- the state to True.
1146 if S.Waiting then
1147 S.Waiting := False;
1148 S.State := False;
1150 Result := semGive (S.CV);
1151 pragma Assert (Result = OK);
1152 else
1153 S.State := True;
1154 end if;
1156 Result := semGive (S.L);
1157 pragma Assert (Result = OK);
1159 SSL.Abort_Undefer.all;
1160 end Set_True;
1162 ------------------------
1163 -- Suspend_Until_True --
1164 ------------------------
1166 procedure Suspend_Until_True (S : in out Suspension_Object) is
1167 Result : STATUS;
1169 begin
1170 SSL.Abort_Defer.all;
1172 Result := semTake (S.L, WAIT_FOREVER);
1174 if S.Waiting then
1176 -- Program_Error must be raised upon calling Suspend_Until_True
1177 -- if another task is already waiting on that suspension object
1178 -- (ARM D.10 par. 10).
1180 Result := semGive (S.L);
1181 pragma Assert (Result = OK);
1183 SSL.Abort_Undefer.all;
1185 raise Program_Error;
1187 else
1188 -- Suspend the task if the state is False. Otherwise, the task
1189 -- continues its execution, and the state of the suspension object
1190 -- is set to False (ARM D.10 par. 9).
1192 if S.State then
1193 S.State := False;
1195 Result := semGive (S.L);
1196 pragma Assert (Result = 0);
1198 SSL.Abort_Undefer.all;
1200 else
1201 S.Waiting := True;
1203 -- Release the mutex before sleeping
1205 Result := semGive (S.L);
1206 pragma Assert (Result = OK);
1208 SSL.Abort_Undefer.all;
1210 Result := semTake (S.CV, WAIT_FOREVER);
1211 pragma Assert (Result = 0);
1212 end if;
1213 end if;
1214 end Suspend_Until_True;
1216 ----------------
1217 -- Check_Exit --
1218 ----------------
1220 -- Dummy version
1222 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1223 pragma Unreferenced (Self_ID);
1224 begin
1225 return True;
1226 end Check_Exit;
1228 --------------------
1229 -- Check_No_Locks --
1230 --------------------
1232 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1233 pragma Unreferenced (Self_ID);
1234 begin
1235 return True;
1236 end Check_No_Locks;
1238 ----------------------
1239 -- Environment_Task --
1240 ----------------------
1242 function Environment_Task return Task_Id is
1243 begin
1244 return Environment_Task_Id;
1245 end Environment_Task;
1247 --------------
1248 -- Lock_RTS --
1249 --------------
1251 procedure Lock_RTS is
1252 begin
1253 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1254 end Lock_RTS;
1256 ----------------
1257 -- Unlock_RTS --
1258 ----------------
1260 procedure Unlock_RTS is
1261 begin
1262 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1263 end Unlock_RTS;
1265 ------------------
1266 -- Suspend_Task --
1267 ------------------
1269 function Suspend_Task
1270 (T : ST.Task_Id;
1271 Thread_Self : Thread_Id) return Boolean
1273 begin
1274 if T.Common.LL.Thread /= 0
1275 and then T.Common.LL.Thread /= Thread_Self
1276 then
1277 return taskSuspend (T.Common.LL.Thread) = 0;
1278 else
1279 return True;
1280 end if;
1281 end Suspend_Task;
1283 -----------------
1284 -- Resume_Task --
1285 -----------------
1287 function Resume_Task
1288 (T : ST.Task_Id;
1289 Thread_Self : Thread_Id) return Boolean
1291 begin
1292 if T.Common.LL.Thread /= 0
1293 and then T.Common.LL.Thread /= Thread_Self
1294 then
1295 return taskResume (T.Common.LL.Thread) = 0;
1296 else
1297 return True;
1298 end if;
1299 end Resume_Task;
1301 --------------------
1302 -- Stop_All_Tasks --
1303 --------------------
1305 procedure Stop_All_Tasks
1307 Thread_Self : constant Thread_Id := taskIdSelf;
1308 C : Task_Id;
1310 Dummy : int;
1311 pragma Unreferenced (Dummy);
1313 begin
1314 Dummy := Int_Lock;
1316 C := All_Tasks_List;
1317 while C /= null loop
1318 if C.Common.LL.Thread /= 0
1319 and then C.Common.LL.Thread /= Thread_Self
1320 then
1321 Dummy := Task_Stop (C.Common.LL.Thread);
1322 end if;
1324 C := C.Common.All_Tasks_Link;
1325 end loop;
1327 Dummy := Int_Unlock;
1328 end Stop_All_Tasks;
1330 ---------------
1331 -- Stop_Task --
1332 ---------------
1334 function Stop_Task (T : ST.Task_Id) return Boolean is
1335 begin
1336 if T.Common.LL.Thread /= 0 then
1337 return Task_Stop (T.Common.LL.Thread) = 0;
1338 else
1339 return True;
1340 end if;
1341 end Stop_Task;
1343 -------------------
1344 -- Continue_Task --
1345 -------------------
1347 function Continue_Task (T : ST.Task_Id) return Boolean
1349 begin
1350 if T.Common.LL.Thread /= 0 then
1351 return Task_Cont (T.Common.LL.Thread) = 0;
1352 else
1353 return True;
1354 end if;
1355 end Continue_Task;
1357 ----------------
1358 -- Initialize --
1359 ----------------
1361 procedure Initialize (Environment_Task : Task_Id) is
1362 Result : int;
1364 begin
1365 Environment_Task_Id := Environment_Task;
1367 Interrupt_Management.Initialize;
1368 Specific.Initialize;
1370 if Locking_Policy = 'C' then
1371 Mutex_Protocol := Prio_Protect;
1372 elsif Locking_Policy = 'I' then
1373 Mutex_Protocol := Prio_Inherit;
1374 else
1375 Mutex_Protocol := Prio_None;
1376 end if;
1378 if Time_Slice_Val > 0 then
1379 Result :=
1380 Set_Time_Slice
1381 (To_Clock_Ticks
1382 (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1384 elsif Dispatching_Policy = 'R' then
1385 Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1387 end if;
1389 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1390 pragma Assert (Result = 0);
1392 for J in Interrupt_Management.Signal_ID loop
1393 if System.Interrupt_Management.Keep_Unmasked (J) then
1394 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1395 pragma Assert (Result = 0);
1396 end if;
1397 end loop;
1399 -- Initialize the lock used to synchronize chain of all ATCBs
1401 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1403 -- Make environment task known here because it doesn't go through
1404 -- Activate_Tasks, which does it for all other tasks.
1406 Known_Tasks (Known_Tasks'First) := Environment_Task;
1407 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1409 Enter_Task (Environment_Task);
1410 end Initialize;
1412 end System.Task_Primitives.Operations;