* configure.ac: Don't check AC_LIBTOOL_DLOPEN if using newlib.
[official-gcc/alias-decl.git] / gcc / emit-rtl.c
blob45a256347c00419da5580abbeb50a6e3498dd2cd
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
78 rtx * regno_reg_rtx;
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num = 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
210 static hashval_t
211 const_int_htab_hash (const void *x)
213 return (hashval_t) INTVAL ((const_rtx) x);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
220 static int
221 const_int_htab_eq (const void *x, const void *y)
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
293 const mem_attrs *const p = (const mem_attrs *) x;
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
326 mem_attrs attrs;
327 void **slot;
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 return *slot;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
360 const reg_attrs *const p = (const reg_attrs *) x;
362 return ((p->offset * 1000) ^ (long) p->decl);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
375 return (p->decl == q->decl && p->offset == q->offset);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
384 reg_attrs attrs;
385 void **slot;
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
391 attrs.decl = decl;
392 attrs.offset = offset;
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 return *slot;
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
410 gen_blockage (void)
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
416 #endif
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode, int regno)
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
438 void **slot;
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
454 return (rtx) *slot;
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
460 return GEN_INT (trunc_int_for_mode (c, mode));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
477 return (rtx) *slot;
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
488 real->u.rv = value;
490 return lookup_const_double (real);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
497 static rtx
498 lookup_const_fixed (rtx fixed)
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
504 return (rtx) *slot;
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
516 fixed->u.fv = value;
518 return lookup_const_fixed (fixed);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
570 return lookup_const_double (value);
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode == Pmode && !reload_in_progress)
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
635 return gen_raw_REG (mode, regno);
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
647 return rt;
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode, rtx addr)
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
665 gen_frame_mem (enum machine_mode mode, rtx addr)
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
731 if (isize != osize)
732 return false;
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
745 unsigned int regno = REGNO (reg);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
755 return subreg_offset_representable_p (regno, imode, offset, omode);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
771 return true;
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
787 enum machine_mode inmode;
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
796 /* gen_rtvec (n, [rt1, ..., rtn])
798 ** This routine creates an rtvec and stores within it the
799 ** pointers to rtx's which are its arguments.
802 /*VARARGS1*/
803 rtvec
804 gen_rtvec (int n, ...)
806 int i, save_n;
807 rtx *vector;
808 va_list p;
810 va_start (p, n);
812 if (n == 0)
813 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
815 vector = alloca (n * sizeof (rtx));
817 for (i = 0; i < n; i++)
818 vector[i] = va_arg (p, rtx);
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
821 save_n = n;
822 va_end (p);
824 return gen_rtvec_v (save_n, vector);
827 rtvec
828 gen_rtvec_v (int n, rtx *argp)
830 int i;
831 rtvec rt_val;
833 if (n == 0)
834 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
836 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
838 for (i = 0; i < n; i++)
839 rt_val->elem[i] = *argp++;
841 return rt_val;
844 /* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
851 byte_lowpart_offset (enum machine_mode outer_mode,
852 enum machine_mode inner_mode)
854 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
855 return subreg_lowpart_offset (outer_mode, inner_mode);
856 else
857 return -subreg_lowpart_offset (inner_mode, outer_mode);
860 /* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
864 gen_reg_rtx (enum machine_mode mode)
866 rtx val;
868 gcc_assert (can_create_pseudo_p ());
870 if (generating_concat_p
871 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
872 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
874 /* For complex modes, don't make a single pseudo.
875 Instead, make a CONCAT of two pseudos.
876 This allows noncontiguous allocation of the real and imaginary parts,
877 which makes much better code. Besides, allocating DCmode
878 pseudos overstrains reload on some machines like the 386. */
879 rtx realpart, imagpart;
880 enum machine_mode partmode = GET_MODE_INNER (mode);
882 realpart = gen_reg_rtx (partmode);
883 imagpart = gen_reg_rtx (partmode);
884 return gen_rtx_CONCAT (mode, realpart, imagpart);
887 /* Make sure regno_pointer_align, and regno_reg_rtx are large
888 enough to have an element for this pseudo reg number. */
890 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
892 int old_size = crtl->emit.regno_pointer_align_length;
893 char *new;
894 rtx *new1;
896 new = xrealloc (crtl->emit.regno_pointer_align, old_size * 2);
897 memset (new + old_size, 0, old_size);
898 crtl->emit.regno_pointer_align = (unsigned char *) new;
900 new1 = ggc_realloc (regno_reg_rtx,
901 old_size * 2 * sizeof (rtx));
902 memset (new1 + old_size, 0, old_size * sizeof (rtx));
903 regno_reg_rtx = new1;
905 crtl->emit.regno_pointer_align_length = old_size * 2;
908 val = gen_raw_REG (mode, reg_rtx_no);
909 regno_reg_rtx[reg_rtx_no++] = val;
910 return val;
913 /* Update NEW with the same attributes as REG, but with OFFSET added
914 to the REG_OFFSET. */
916 static void
917 update_reg_offset (rtx new, rtx reg, int offset)
919 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
920 REG_OFFSET (reg) + offset);
923 /* Generate a register with same attributes as REG, but with OFFSET
924 added to the REG_OFFSET. */
927 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
928 int offset)
930 rtx new = gen_rtx_REG (mode, regno);
932 update_reg_offset (new, reg, offset);
933 return new;
936 /* Generate a new pseudo-register with the same attributes as REG, but
937 with OFFSET added to the REG_OFFSET. */
940 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
942 rtx new = gen_reg_rtx (mode);
944 update_reg_offset (new, reg, offset);
945 return new;
948 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
949 new register is a (possibly paradoxical) lowpart of the old one. */
951 void
952 adjust_reg_mode (rtx reg, enum machine_mode mode)
954 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
955 PUT_MODE (reg, mode);
958 /* Copy REG's attributes from X, if X has any attributes. If REG and X
959 have different modes, REG is a (possibly paradoxical) lowpart of X. */
961 void
962 set_reg_attrs_from_value (rtx reg, rtx x)
964 int offset;
966 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
967 if (MEM_P (x))
969 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
970 REG_ATTRS (reg)
971 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
972 if (MEM_POINTER (x))
973 mark_reg_pointer (reg, MEM_ALIGN (x));
975 else if (REG_P (x))
977 if (REG_ATTRS (x))
978 update_reg_offset (reg, x, offset);
979 if (REG_POINTER (x))
980 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
984 /* Generate a REG rtx for a new pseudo register, copying the mode
985 and attributes from X. */
988 gen_reg_rtx_and_attrs (rtx x)
990 rtx reg = gen_reg_rtx (GET_MODE (x));
991 set_reg_attrs_from_value (reg, x);
992 return reg;
995 /* Set the register attributes for registers contained in PARM_RTX.
996 Use needed values from memory attributes of MEM. */
998 void
999 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1001 if (REG_P (parm_rtx))
1002 set_reg_attrs_from_value (parm_rtx, mem);
1003 else if (GET_CODE (parm_rtx) == PARALLEL)
1005 /* Check for a NULL entry in the first slot, used to indicate that the
1006 parameter goes both on the stack and in registers. */
1007 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1008 for (; i < XVECLEN (parm_rtx, 0); i++)
1010 rtx x = XVECEXP (parm_rtx, 0, i);
1011 if (REG_P (XEXP (x, 0)))
1012 REG_ATTRS (XEXP (x, 0))
1013 = get_reg_attrs (MEM_EXPR (mem),
1014 INTVAL (XEXP (x, 1)));
1019 /* Set the REG_ATTRS for registers in value X, given that X represents
1020 decl T. */
1022 static void
1023 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1025 if (GET_CODE (x) == SUBREG)
1027 gcc_assert (subreg_lowpart_p (x));
1028 x = SUBREG_REG (x);
1030 if (REG_P (x))
1031 REG_ATTRS (x)
1032 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1033 DECL_MODE (t)));
1034 if (GET_CODE (x) == CONCAT)
1036 if (REG_P (XEXP (x, 0)))
1037 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1038 if (REG_P (XEXP (x, 1)))
1039 REG_ATTRS (XEXP (x, 1))
1040 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1042 if (GET_CODE (x) == PARALLEL)
1044 int i, start;
1046 /* Check for a NULL entry, used to indicate that the parameter goes
1047 both on the stack and in registers. */
1048 if (XEXP (XVECEXP (x, 0, 0), 0))
1049 start = 0;
1050 else
1051 start = 1;
1053 for (i = start; i < XVECLEN (x, 0); i++)
1055 rtx y = XVECEXP (x, 0, i);
1056 if (REG_P (XEXP (y, 0)))
1057 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1062 /* Assign the RTX X to declaration T. */
1064 void
1065 set_decl_rtl (tree t, rtx x)
1067 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1068 if (x)
1069 set_reg_attrs_for_decl_rtl (t, x);
1072 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1073 if the ABI requires the parameter to be passed by reference. */
1075 void
1076 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1078 DECL_INCOMING_RTL (t) = x;
1079 if (x && !by_reference_p)
1080 set_reg_attrs_for_decl_rtl (t, x);
1083 /* Identify REG (which may be a CONCAT) as a user register. */
1085 void
1086 mark_user_reg (rtx reg)
1088 if (GET_CODE (reg) == CONCAT)
1090 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1091 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1093 else
1095 gcc_assert (REG_P (reg));
1096 REG_USERVAR_P (reg) = 1;
1100 /* Identify REG as a probable pointer register and show its alignment
1101 as ALIGN, if nonzero. */
1103 void
1104 mark_reg_pointer (rtx reg, int align)
1106 if (! REG_POINTER (reg))
1108 REG_POINTER (reg) = 1;
1110 if (align)
1111 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1113 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1114 /* We can no-longer be sure just how aligned this pointer is. */
1115 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1118 /* Return 1 plus largest pseudo reg number used in the current function. */
1121 max_reg_num (void)
1123 return reg_rtx_no;
1126 /* Return 1 + the largest label number used so far in the current function. */
1129 max_label_num (void)
1131 return label_num;
1134 /* Return first label number used in this function (if any were used). */
1137 get_first_label_num (void)
1139 return first_label_num;
1142 /* If the rtx for label was created during the expansion of a nested
1143 function, then first_label_num won't include this label number.
1144 Fix this now so that array indicies work later. */
1146 void
1147 maybe_set_first_label_num (rtx x)
1149 if (CODE_LABEL_NUMBER (x) < first_label_num)
1150 first_label_num = CODE_LABEL_NUMBER (x);
1153 /* Return a value representing some low-order bits of X, where the number
1154 of low-order bits is given by MODE. Note that no conversion is done
1155 between floating-point and fixed-point values, rather, the bit
1156 representation is returned.
1158 This function handles the cases in common between gen_lowpart, below,
1159 and two variants in cse.c and combine.c. These are the cases that can
1160 be safely handled at all points in the compilation.
1162 If this is not a case we can handle, return 0. */
1165 gen_lowpart_common (enum machine_mode mode, rtx x)
1167 int msize = GET_MODE_SIZE (mode);
1168 int xsize;
1169 int offset = 0;
1170 enum machine_mode innermode;
1172 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1173 so we have to make one up. Yuk. */
1174 innermode = GET_MODE (x);
1175 if (GET_CODE (x) == CONST_INT
1176 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1177 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1178 else if (innermode == VOIDmode)
1179 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1181 xsize = GET_MODE_SIZE (innermode);
1183 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1185 if (innermode == mode)
1186 return x;
1188 /* MODE must occupy no more words than the mode of X. */
1189 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1190 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1191 return 0;
1193 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1194 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1195 return 0;
1197 offset = subreg_lowpart_offset (mode, innermode);
1199 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1200 && (GET_MODE_CLASS (mode) == MODE_INT
1201 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1203 /* If we are getting the low-order part of something that has been
1204 sign- or zero-extended, we can either just use the object being
1205 extended or make a narrower extension. If we want an even smaller
1206 piece than the size of the object being extended, call ourselves
1207 recursively.
1209 This case is used mostly by combine and cse. */
1211 if (GET_MODE (XEXP (x, 0)) == mode)
1212 return XEXP (x, 0);
1213 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1214 return gen_lowpart_common (mode, XEXP (x, 0));
1215 else if (msize < xsize)
1216 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1218 else if (GET_CODE (x) == SUBREG || REG_P (x)
1219 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1220 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1221 return simplify_gen_subreg (mode, x, innermode, offset);
1223 /* Otherwise, we can't do this. */
1224 return 0;
1228 gen_highpart (enum machine_mode mode, rtx x)
1230 unsigned int msize = GET_MODE_SIZE (mode);
1231 rtx result;
1233 /* This case loses if X is a subreg. To catch bugs early,
1234 complain if an invalid MODE is used even in other cases. */
1235 gcc_assert (msize <= UNITS_PER_WORD
1236 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1238 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1239 subreg_highpart_offset (mode, GET_MODE (x)));
1240 gcc_assert (result);
1242 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1243 the target if we have a MEM. gen_highpart must return a valid operand,
1244 emitting code if necessary to do so. */
1245 if (MEM_P (result))
1247 result = validize_mem (result);
1248 gcc_assert (result);
1251 return result;
1254 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1255 be VOIDmode constant. */
1257 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1259 if (GET_MODE (exp) != VOIDmode)
1261 gcc_assert (GET_MODE (exp) == innermode);
1262 return gen_highpart (outermode, exp);
1264 return simplify_gen_subreg (outermode, exp, innermode,
1265 subreg_highpart_offset (outermode, innermode));
1268 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1270 unsigned int
1271 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 unsigned int offset = 0;
1274 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276 if (difference > 0)
1278 if (WORDS_BIG_ENDIAN)
1279 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1280 if (BYTES_BIG_ENDIAN)
1281 offset += difference % UNITS_PER_WORD;
1284 return offset;
1287 /* Return offset in bytes to get OUTERMODE high part
1288 of the value in mode INNERMODE stored in memory in target format. */
1289 unsigned int
1290 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1292 unsigned int offset = 0;
1293 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1295 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1297 if (difference > 0)
1299 if (! WORDS_BIG_ENDIAN)
1300 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1301 if (! BYTES_BIG_ENDIAN)
1302 offset += difference % UNITS_PER_WORD;
1305 return offset;
1308 /* Return 1 iff X, assumed to be a SUBREG,
1309 refers to the least significant part of its containing reg.
1310 If X is not a SUBREG, always return 1 (it is its own low part!). */
1313 subreg_lowpart_p (const_rtx x)
1315 if (GET_CODE (x) != SUBREG)
1316 return 1;
1317 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1318 return 0;
1320 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1321 == SUBREG_BYTE (x));
1324 /* Return subword OFFSET of operand OP.
1325 The word number, OFFSET, is interpreted as the word number starting
1326 at the low-order address. OFFSET 0 is the low-order word if not
1327 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1329 If we cannot extract the required word, we return zero. Otherwise,
1330 an rtx corresponding to the requested word will be returned.
1332 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1333 reload has completed, a valid address will always be returned. After
1334 reload, if a valid address cannot be returned, we return zero.
1336 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1337 it is the responsibility of the caller.
1339 MODE is the mode of OP in case it is a CONST_INT.
1341 ??? This is still rather broken for some cases. The problem for the
1342 moment is that all callers of this thing provide no 'goal mode' to
1343 tell us to work with. This exists because all callers were written
1344 in a word based SUBREG world.
1345 Now use of this function can be deprecated by simplify_subreg in most
1346 cases.
1350 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1352 if (mode == VOIDmode)
1353 mode = GET_MODE (op);
1355 gcc_assert (mode != VOIDmode);
1357 /* If OP is narrower than a word, fail. */
1358 if (mode != BLKmode
1359 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1360 return 0;
1362 /* If we want a word outside OP, return zero. */
1363 if (mode != BLKmode
1364 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1365 return const0_rtx;
1367 /* Form a new MEM at the requested address. */
1368 if (MEM_P (op))
1370 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1372 if (! validate_address)
1373 return new;
1375 else if (reload_completed)
1377 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1378 return 0;
1380 else
1381 return replace_equiv_address (new, XEXP (new, 0));
1384 /* Rest can be handled by simplify_subreg. */
1385 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1388 /* Similar to `operand_subword', but never return 0. If we can't
1389 extract the required subword, put OP into a register and try again.
1390 The second attempt must succeed. We always validate the address in
1391 this case.
1393 MODE is the mode of OP, in case it is CONST_INT. */
1396 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1398 rtx result = operand_subword (op, offset, 1, mode);
1400 if (result)
1401 return result;
1403 if (mode != BLKmode && mode != VOIDmode)
1405 /* If this is a register which can not be accessed by words, copy it
1406 to a pseudo register. */
1407 if (REG_P (op))
1408 op = copy_to_reg (op);
1409 else
1410 op = force_reg (mode, op);
1413 result = operand_subword (op, offset, 1, mode);
1414 gcc_assert (result);
1416 return result;
1419 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1420 or (2) a component ref of something variable. Represent the later with
1421 a NULL expression. */
1423 static tree
1424 component_ref_for_mem_expr (tree ref)
1426 tree inner = TREE_OPERAND (ref, 0);
1428 if (TREE_CODE (inner) == COMPONENT_REF)
1429 inner = component_ref_for_mem_expr (inner);
1430 else
1432 /* Now remove any conversions: they don't change what the underlying
1433 object is. Likewise for SAVE_EXPR. */
1434 while (CONVERT_EXPR_P (inner)
1435 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1436 || TREE_CODE (inner) == SAVE_EXPR)
1437 inner = TREE_OPERAND (inner, 0);
1439 if (! DECL_P (inner))
1440 inner = NULL_TREE;
1443 if (inner == TREE_OPERAND (ref, 0))
1444 return ref;
1445 else
1446 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1447 TREE_OPERAND (ref, 1), NULL_TREE);
1450 /* Returns 1 if both MEM_EXPR can be considered equal
1451 and 0 otherwise. */
1454 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1456 if (expr1 == expr2)
1457 return 1;
1459 if (! expr1 || ! expr2)
1460 return 0;
1462 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1463 return 0;
1465 if (TREE_CODE (expr1) == COMPONENT_REF)
1466 return
1467 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1468 TREE_OPERAND (expr2, 0))
1469 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1470 TREE_OPERAND (expr2, 1));
1472 if (INDIRECT_REF_P (expr1))
1473 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1474 TREE_OPERAND (expr2, 0));
1476 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1477 have been resolved here. */
1478 gcc_assert (DECL_P (expr1));
1480 /* Decls with different pointers can't be equal. */
1481 return 0;
1484 /* Given REF, a MEM, and T, either the type of X or the expression
1485 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1486 if we are making a new object of this type. BITPOS is nonzero if
1487 there is an offset outstanding on T that will be applied later. */
1489 void
1490 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1491 HOST_WIDE_INT bitpos)
1493 alias_set_type alias = MEM_ALIAS_SET (ref);
1494 tree expr = MEM_EXPR (ref);
1495 rtx offset = MEM_OFFSET (ref);
1496 rtx size = MEM_SIZE (ref);
1497 unsigned int align = MEM_ALIGN (ref);
1498 HOST_WIDE_INT apply_bitpos = 0;
1499 tree type;
1501 /* It can happen that type_for_mode was given a mode for which there
1502 is no language-level type. In which case it returns NULL, which
1503 we can see here. */
1504 if (t == NULL_TREE)
1505 return;
1507 type = TYPE_P (t) ? t : TREE_TYPE (t);
1508 if (type == error_mark_node)
1509 return;
1511 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1512 wrong answer, as it assumes that DECL_RTL already has the right alias
1513 info. Callers should not set DECL_RTL until after the call to
1514 set_mem_attributes. */
1515 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1517 /* Get the alias set from the expression or type (perhaps using a
1518 front-end routine) and use it. */
1519 alias = get_alias_set (t);
1521 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1522 MEM_IN_STRUCT_P (ref)
1523 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1524 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1526 /* If we are making an object of this type, or if this is a DECL, we know
1527 that it is a scalar if the type is not an aggregate. */
1528 if ((objectp || DECL_P (t))
1529 && ! AGGREGATE_TYPE_P (type)
1530 && TREE_CODE (type) != COMPLEX_TYPE)
1531 MEM_SCALAR_P (ref) = 1;
1533 /* We can set the alignment from the type if we are making an object,
1534 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1535 if (objectp || TREE_CODE (t) == INDIRECT_REF
1536 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1537 || TYPE_ALIGN_OK (type))
1538 align = MAX (align, TYPE_ALIGN (type));
1539 else
1540 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1542 if (integer_zerop (TREE_OPERAND (t, 1)))
1543 /* We don't know anything about the alignment. */
1544 align = BITS_PER_UNIT;
1545 else
1546 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1549 /* If the size is known, we can set that. */
1550 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1551 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1553 /* If T is not a type, we may be able to deduce some more information about
1554 the expression. */
1555 if (! TYPE_P (t))
1557 tree base;
1559 if (TREE_THIS_VOLATILE (t))
1560 MEM_VOLATILE_P (ref) = 1;
1562 /* Now remove any conversions: they don't change what the underlying
1563 object is. Likewise for SAVE_EXPR. */
1564 while (CONVERT_EXPR_P (t)
1565 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1566 || TREE_CODE (t) == SAVE_EXPR)
1567 t = TREE_OPERAND (t, 0);
1569 /* We may look through structure-like accesses for the purposes of
1570 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1571 base = t;
1572 while (TREE_CODE (base) == COMPONENT_REF
1573 || TREE_CODE (base) == REALPART_EXPR
1574 || TREE_CODE (base) == IMAGPART_EXPR
1575 || TREE_CODE (base) == BIT_FIELD_REF)
1576 base = TREE_OPERAND (base, 0);
1578 if (DECL_P (base))
1580 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1581 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1582 else
1583 MEM_NOTRAP_P (ref) = 1;
1585 else
1586 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1588 base = get_base_address (base);
1589 if (base && DECL_P (base)
1590 && TREE_READONLY (base)
1591 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1593 tree base_type = TREE_TYPE (base);
1594 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1595 || DECL_ARTIFICIAL (base));
1596 MEM_READONLY_P (ref) = 1;
1599 /* If this expression uses it's parent's alias set, mark it such
1600 that we won't change it. */
1601 if (component_uses_parent_alias_set (t))
1602 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1604 /* If this is a decl, set the attributes of the MEM from it. */
1605 if (DECL_P (t))
1607 expr = t;
1608 offset = const0_rtx;
1609 apply_bitpos = bitpos;
1610 size = (DECL_SIZE_UNIT (t)
1611 && host_integerp (DECL_SIZE_UNIT (t), 1)
1612 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1613 align = DECL_ALIGN (t);
1616 /* If this is a constant, we know the alignment. */
1617 else if (CONSTANT_CLASS_P (t))
1619 align = TYPE_ALIGN (type);
1620 #ifdef CONSTANT_ALIGNMENT
1621 align = CONSTANT_ALIGNMENT (t, align);
1622 #endif
1625 /* If this is a field reference and not a bit-field, record it. */
1626 /* ??? There is some information that can be gleened from bit-fields,
1627 such as the word offset in the structure that might be modified.
1628 But skip it for now. */
1629 else if (TREE_CODE (t) == COMPONENT_REF
1630 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1632 expr = component_ref_for_mem_expr (t);
1633 offset = const0_rtx;
1634 apply_bitpos = bitpos;
1635 /* ??? Any reason the field size would be different than
1636 the size we got from the type? */
1639 /* If this is an array reference, look for an outer field reference. */
1640 else if (TREE_CODE (t) == ARRAY_REF)
1642 tree off_tree = size_zero_node;
1643 /* We can't modify t, because we use it at the end of the
1644 function. */
1645 tree t2 = t;
1649 tree index = TREE_OPERAND (t2, 1);
1650 tree low_bound = array_ref_low_bound (t2);
1651 tree unit_size = array_ref_element_size (t2);
1653 /* We assume all arrays have sizes that are a multiple of a byte.
1654 First subtract the lower bound, if any, in the type of the
1655 index, then convert to sizetype and multiply by the size of
1656 the array element. */
1657 if (! integer_zerop (low_bound))
1658 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1659 index, low_bound);
1661 off_tree = size_binop (PLUS_EXPR,
1662 size_binop (MULT_EXPR,
1663 fold_convert (sizetype,
1664 index),
1665 unit_size),
1666 off_tree);
1667 t2 = TREE_OPERAND (t2, 0);
1669 while (TREE_CODE (t2) == ARRAY_REF);
1671 if (DECL_P (t2))
1673 expr = t2;
1674 offset = NULL;
1675 if (host_integerp (off_tree, 1))
1677 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1678 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1679 align = DECL_ALIGN (t2);
1680 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1681 align = aoff;
1682 offset = GEN_INT (ioff);
1683 apply_bitpos = bitpos;
1686 else if (TREE_CODE (t2) == COMPONENT_REF)
1688 expr = component_ref_for_mem_expr (t2);
1689 if (host_integerp (off_tree, 1))
1691 offset = GEN_INT (tree_low_cst (off_tree, 1));
1692 apply_bitpos = bitpos;
1694 /* ??? Any reason the field size would be different than
1695 the size we got from the type? */
1697 else if (flag_argument_noalias > 1
1698 && (INDIRECT_REF_P (t2))
1699 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1701 expr = t2;
1702 offset = NULL;
1706 /* If this is a Fortran indirect argument reference, record the
1707 parameter decl. */
1708 else if (flag_argument_noalias > 1
1709 && (INDIRECT_REF_P (t))
1710 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1712 expr = t;
1713 offset = NULL;
1717 /* If we modified OFFSET based on T, then subtract the outstanding
1718 bit position offset. Similarly, increase the size of the accessed
1719 object to contain the negative offset. */
1720 if (apply_bitpos)
1722 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1723 if (size)
1724 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1727 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1729 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1730 we're overlapping. */
1731 offset = NULL;
1732 expr = NULL;
1735 /* Now set the attributes we computed above. */
1736 MEM_ATTRS (ref)
1737 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1739 /* If this is already known to be a scalar or aggregate, we are done. */
1740 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1741 return;
1743 /* If it is a reference into an aggregate, this is part of an aggregate.
1744 Otherwise we don't know. */
1745 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1746 || TREE_CODE (t) == ARRAY_RANGE_REF
1747 || TREE_CODE (t) == BIT_FIELD_REF)
1748 MEM_IN_STRUCT_P (ref) = 1;
1751 void
1752 set_mem_attributes (rtx ref, tree t, int objectp)
1754 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1757 /* Set MEM to the decl that REG refers to. */
1759 void
1760 set_mem_attrs_from_reg (rtx mem, rtx reg)
1762 MEM_ATTRS (mem)
1763 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1764 GEN_INT (REG_OFFSET (reg)),
1765 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1768 /* Set the alias set of MEM to SET. */
1770 void
1771 set_mem_alias_set (rtx mem, alias_set_type set)
1773 #ifdef ENABLE_CHECKING
1774 /* If the new and old alias sets don't conflict, something is wrong. */
1775 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1776 #endif
1778 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1779 MEM_SIZE (mem), MEM_ALIGN (mem),
1780 GET_MODE (mem));
1783 /* Set the alignment of MEM to ALIGN bits. */
1785 void
1786 set_mem_align (rtx mem, unsigned int align)
1788 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1789 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1790 GET_MODE (mem));
1793 /* Set the expr for MEM to EXPR. */
1795 void
1796 set_mem_expr (rtx mem, tree expr)
1798 MEM_ATTRS (mem)
1799 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1800 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1803 /* Set the offset of MEM to OFFSET. */
1805 void
1806 set_mem_offset (rtx mem, rtx offset)
1808 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1809 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1810 GET_MODE (mem));
1813 /* Set the size of MEM to SIZE. */
1815 void
1816 set_mem_size (rtx mem, rtx size)
1818 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1819 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1820 GET_MODE (mem));
1823 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1824 and its address changed to ADDR. (VOIDmode means don't change the mode.
1825 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1826 returned memory location is required to be valid. The memory
1827 attributes are not changed. */
1829 static rtx
1830 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1832 rtx new;
1834 gcc_assert (MEM_P (memref));
1835 if (mode == VOIDmode)
1836 mode = GET_MODE (memref);
1837 if (addr == 0)
1838 addr = XEXP (memref, 0);
1839 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1840 && (!validate || memory_address_p (mode, addr)))
1841 return memref;
1843 if (validate)
1845 if (reload_in_progress || reload_completed)
1846 gcc_assert (memory_address_p (mode, addr));
1847 else
1848 addr = memory_address (mode, addr);
1851 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1852 return memref;
1854 new = gen_rtx_MEM (mode, addr);
1855 MEM_COPY_ATTRIBUTES (new, memref);
1856 return new;
1859 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1860 way we are changing MEMREF, so we only preserve the alias set. */
1863 change_address (rtx memref, enum machine_mode mode, rtx addr)
1865 rtx new = change_address_1 (memref, mode, addr, 1), size;
1866 enum machine_mode mmode = GET_MODE (new);
1867 unsigned int align;
1869 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1870 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1872 /* If there are no changes, just return the original memory reference. */
1873 if (new == memref)
1875 if (MEM_ATTRS (memref) == 0
1876 || (MEM_EXPR (memref) == NULL
1877 && MEM_OFFSET (memref) == NULL
1878 && MEM_SIZE (memref) == size
1879 && MEM_ALIGN (memref) == align))
1880 return new;
1882 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1883 MEM_COPY_ATTRIBUTES (new, memref);
1886 MEM_ATTRS (new)
1887 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1889 return new;
1892 /* Return a memory reference like MEMREF, but with its mode changed
1893 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1894 nonzero, the memory address is forced to be valid.
1895 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1896 and caller is responsible for adjusting MEMREF base register. */
1899 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1900 int validate, int adjust)
1902 rtx addr = XEXP (memref, 0);
1903 rtx new;
1904 rtx memoffset = MEM_OFFSET (memref);
1905 rtx size = 0;
1906 unsigned int memalign = MEM_ALIGN (memref);
1908 /* If there are no changes, just return the original memory reference. */
1909 if (mode == GET_MODE (memref) && !offset
1910 && (!validate || memory_address_p (mode, addr)))
1911 return memref;
1913 /* ??? Prefer to create garbage instead of creating shared rtl.
1914 This may happen even if offset is nonzero -- consider
1915 (plus (plus reg reg) const_int) -- so do this always. */
1916 addr = copy_rtx (addr);
1918 if (adjust)
1920 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1921 object, we can merge it into the LO_SUM. */
1922 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1923 && offset >= 0
1924 && (unsigned HOST_WIDE_INT) offset
1925 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1926 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1927 plus_constant (XEXP (addr, 1), offset));
1928 else
1929 addr = plus_constant (addr, offset);
1932 new = change_address_1 (memref, mode, addr, validate);
1934 /* Compute the new values of the memory attributes due to this adjustment.
1935 We add the offsets and update the alignment. */
1936 if (memoffset)
1937 memoffset = GEN_INT (offset + INTVAL (memoffset));
1939 /* Compute the new alignment by taking the MIN of the alignment and the
1940 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1941 if zero. */
1942 if (offset != 0)
1943 memalign
1944 = MIN (memalign,
1945 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1947 /* We can compute the size in a number of ways. */
1948 if (GET_MODE (new) != BLKmode)
1949 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1950 else if (MEM_SIZE (memref))
1951 size = plus_constant (MEM_SIZE (memref), -offset);
1953 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1954 memoffset, size, memalign, GET_MODE (new));
1956 /* At some point, we should validate that this offset is within the object,
1957 if all the appropriate values are known. */
1958 return new;
1961 /* Return a memory reference like MEMREF, but with its mode changed
1962 to MODE and its address changed to ADDR, which is assumed to be
1963 MEMREF offseted by OFFSET bytes. If VALIDATE is
1964 nonzero, the memory address is forced to be valid. */
1967 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1968 HOST_WIDE_INT offset, int validate)
1970 memref = change_address_1 (memref, VOIDmode, addr, validate);
1971 return adjust_address_1 (memref, mode, offset, validate, 0);
1974 /* Return a memory reference like MEMREF, but whose address is changed by
1975 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1976 known to be in OFFSET (possibly 1). */
1979 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1981 rtx new, addr = XEXP (memref, 0);
1983 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1985 /* At this point we don't know _why_ the address is invalid. It
1986 could have secondary memory references, multiplies or anything.
1988 However, if we did go and rearrange things, we can wind up not
1989 being able to recognize the magic around pic_offset_table_rtx.
1990 This stuff is fragile, and is yet another example of why it is
1991 bad to expose PIC machinery too early. */
1992 if (! memory_address_p (GET_MODE (memref), new)
1993 && GET_CODE (addr) == PLUS
1994 && XEXP (addr, 0) == pic_offset_table_rtx)
1996 addr = force_reg (GET_MODE (addr), addr);
1997 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2000 update_temp_slot_address (XEXP (memref, 0), new);
2001 new = change_address_1 (memref, VOIDmode, new, 1);
2003 /* If there are no changes, just return the original memory reference. */
2004 if (new == memref)
2005 return new;
2007 /* Update the alignment to reflect the offset. Reset the offset, which
2008 we don't know. */
2009 MEM_ATTRS (new)
2010 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2011 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2012 GET_MODE (new));
2013 return new;
2016 /* Return a memory reference like MEMREF, but with its address changed to
2017 ADDR. The caller is asserting that the actual piece of memory pointed
2018 to is the same, just the form of the address is being changed, such as
2019 by putting something into a register. */
2022 replace_equiv_address (rtx memref, rtx addr)
2024 /* change_address_1 copies the memory attribute structure without change
2025 and that's exactly what we want here. */
2026 update_temp_slot_address (XEXP (memref, 0), addr);
2027 return change_address_1 (memref, VOIDmode, addr, 1);
2030 /* Likewise, but the reference is not required to be valid. */
2033 replace_equiv_address_nv (rtx memref, rtx addr)
2035 return change_address_1 (memref, VOIDmode, addr, 0);
2038 /* Return a memory reference like MEMREF, but with its mode widened to
2039 MODE and offset by OFFSET. This would be used by targets that e.g.
2040 cannot issue QImode memory operations and have to use SImode memory
2041 operations plus masking logic. */
2044 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2046 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2047 tree expr = MEM_EXPR (new);
2048 rtx memoffset = MEM_OFFSET (new);
2049 unsigned int size = GET_MODE_SIZE (mode);
2051 /* If there are no changes, just return the original memory reference. */
2052 if (new == memref)
2053 return new;
2055 /* If we don't know what offset we were at within the expression, then
2056 we can't know if we've overstepped the bounds. */
2057 if (! memoffset)
2058 expr = NULL_TREE;
2060 while (expr)
2062 if (TREE_CODE (expr) == COMPONENT_REF)
2064 tree field = TREE_OPERAND (expr, 1);
2065 tree offset = component_ref_field_offset (expr);
2067 if (! DECL_SIZE_UNIT (field))
2069 expr = NULL_TREE;
2070 break;
2073 /* Is the field at least as large as the access? If so, ok,
2074 otherwise strip back to the containing structure. */
2075 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2076 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2077 && INTVAL (memoffset) >= 0)
2078 break;
2080 if (! host_integerp (offset, 1))
2082 expr = NULL_TREE;
2083 break;
2086 expr = TREE_OPERAND (expr, 0);
2087 memoffset
2088 = (GEN_INT (INTVAL (memoffset)
2089 + tree_low_cst (offset, 1)
2090 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2091 / BITS_PER_UNIT)));
2093 /* Similarly for the decl. */
2094 else if (DECL_P (expr)
2095 && DECL_SIZE_UNIT (expr)
2096 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2097 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2098 && (! memoffset || INTVAL (memoffset) >= 0))
2099 break;
2100 else
2102 /* The widened memory access overflows the expression, which means
2103 that it could alias another expression. Zap it. */
2104 expr = NULL_TREE;
2105 break;
2109 if (! expr)
2110 memoffset = NULL_RTX;
2112 /* The widened memory may alias other stuff, so zap the alias set. */
2113 /* ??? Maybe use get_alias_set on any remaining expression. */
2115 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2116 MEM_ALIGN (new), mode);
2118 return new;
2121 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2124 gen_label_rtx (void)
2126 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2127 NULL, label_num++, NULL);
2130 /* For procedure integration. */
2132 /* Install new pointers to the first and last insns in the chain.
2133 Also, set cur_insn_uid to one higher than the last in use.
2134 Used for an inline-procedure after copying the insn chain. */
2136 void
2137 set_new_first_and_last_insn (rtx first, rtx last)
2139 rtx insn;
2141 first_insn = first;
2142 last_insn = last;
2143 cur_insn_uid = 0;
2145 for (insn = first; insn; insn = NEXT_INSN (insn))
2146 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2148 cur_insn_uid++;
2151 /* Go through all the RTL insn bodies and copy any invalid shared
2152 structure. This routine should only be called once. */
2154 static void
2155 unshare_all_rtl_1 (rtx insn)
2157 /* Unshare just about everything else. */
2158 unshare_all_rtl_in_chain (insn);
2160 /* Make sure the addresses of stack slots found outside the insn chain
2161 (such as, in DECL_RTL of a variable) are not shared
2162 with the insn chain.
2164 This special care is necessary when the stack slot MEM does not
2165 actually appear in the insn chain. If it does appear, its address
2166 is unshared from all else at that point. */
2167 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2170 /* Go through all the RTL insn bodies and copy any invalid shared
2171 structure, again. This is a fairly expensive thing to do so it
2172 should be done sparingly. */
2174 void
2175 unshare_all_rtl_again (rtx insn)
2177 rtx p;
2178 tree decl;
2180 for (p = insn; p; p = NEXT_INSN (p))
2181 if (INSN_P (p))
2183 reset_used_flags (PATTERN (p));
2184 reset_used_flags (REG_NOTES (p));
2187 /* Make sure that virtual stack slots are not shared. */
2188 set_used_decls (DECL_INITIAL (cfun->decl));
2190 /* Make sure that virtual parameters are not shared. */
2191 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2192 set_used_flags (DECL_RTL (decl));
2194 reset_used_flags (stack_slot_list);
2196 unshare_all_rtl_1 (insn);
2199 unsigned int
2200 unshare_all_rtl (void)
2202 unshare_all_rtl_1 (get_insns ());
2203 return 0;
2206 struct rtl_opt_pass pass_unshare_all_rtl =
2209 RTL_PASS,
2210 "unshare", /* name */
2211 NULL, /* gate */
2212 unshare_all_rtl, /* execute */
2213 NULL, /* sub */
2214 NULL, /* next */
2215 0, /* static_pass_number */
2216 0, /* tv_id */
2217 0, /* properties_required */
2218 0, /* properties_provided */
2219 0, /* properties_destroyed */
2220 0, /* todo_flags_start */
2221 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2226 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2227 Recursively does the same for subexpressions. */
2229 static void
2230 verify_rtx_sharing (rtx orig, rtx insn)
2232 rtx x = orig;
2233 int i;
2234 enum rtx_code code;
2235 const char *format_ptr;
2237 if (x == 0)
2238 return;
2240 code = GET_CODE (x);
2242 /* These types may be freely shared. */
2244 switch (code)
2246 case REG:
2247 case CONST_INT:
2248 case CONST_DOUBLE:
2249 case CONST_FIXED:
2250 case CONST_VECTOR:
2251 case SYMBOL_REF:
2252 case LABEL_REF:
2253 case CODE_LABEL:
2254 case PC:
2255 case CC0:
2256 case SCRATCH:
2257 return;
2258 /* SCRATCH must be shared because they represent distinct values. */
2259 case CLOBBER:
2260 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2261 return;
2262 break;
2264 case CONST:
2265 if (shared_const_p (orig))
2266 return;
2267 break;
2269 case MEM:
2270 /* A MEM is allowed to be shared if its address is constant. */
2271 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2272 || reload_completed || reload_in_progress)
2273 return;
2275 break;
2277 default:
2278 break;
2281 /* This rtx may not be shared. If it has already been seen,
2282 replace it with a copy of itself. */
2283 #ifdef ENABLE_CHECKING
2284 if (RTX_FLAG (x, used))
2286 error ("invalid rtl sharing found in the insn");
2287 debug_rtx (insn);
2288 error ("shared rtx");
2289 debug_rtx (x);
2290 internal_error ("internal consistency failure");
2292 #endif
2293 gcc_assert (!RTX_FLAG (x, used));
2295 RTX_FLAG (x, used) = 1;
2297 /* Now scan the subexpressions recursively. */
2299 format_ptr = GET_RTX_FORMAT (code);
2301 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2303 switch (*format_ptr++)
2305 case 'e':
2306 verify_rtx_sharing (XEXP (x, i), insn);
2307 break;
2309 case 'E':
2310 if (XVEC (x, i) != NULL)
2312 int j;
2313 int len = XVECLEN (x, i);
2315 for (j = 0; j < len; j++)
2317 /* We allow sharing of ASM_OPERANDS inside single
2318 instruction. */
2319 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2320 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2321 == ASM_OPERANDS))
2322 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2323 else
2324 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2327 break;
2330 return;
2333 /* Go through all the RTL insn bodies and check that there is no unexpected
2334 sharing in between the subexpressions. */
2336 void
2337 verify_rtl_sharing (void)
2339 rtx p;
2341 for (p = get_insns (); p; p = NEXT_INSN (p))
2342 if (INSN_P (p))
2344 reset_used_flags (PATTERN (p));
2345 reset_used_flags (REG_NOTES (p));
2346 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2348 int i;
2349 rtx q, sequence = PATTERN (p);
2351 for (i = 0; i < XVECLEN (sequence, 0); i++)
2353 q = XVECEXP (sequence, 0, i);
2354 gcc_assert (INSN_P (q));
2355 reset_used_flags (PATTERN (q));
2356 reset_used_flags (REG_NOTES (q));
2361 for (p = get_insns (); p; p = NEXT_INSN (p))
2362 if (INSN_P (p))
2364 verify_rtx_sharing (PATTERN (p), p);
2365 verify_rtx_sharing (REG_NOTES (p), p);
2369 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2370 Assumes the mark bits are cleared at entry. */
2372 void
2373 unshare_all_rtl_in_chain (rtx insn)
2375 for (; insn; insn = NEXT_INSN (insn))
2376 if (INSN_P (insn))
2378 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2379 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2383 /* Go through all virtual stack slots of a function and mark them as
2384 shared. We never replace the DECL_RTLs themselves with a copy,
2385 but expressions mentioned into a DECL_RTL cannot be shared with
2386 expressions in the instruction stream.
2388 Note that reload may convert pseudo registers into memories in-place.
2389 Pseudo registers are always shared, but MEMs never are. Thus if we
2390 reset the used flags on MEMs in the instruction stream, we must set
2391 them again on MEMs that appear in DECL_RTLs. */
2393 static void
2394 set_used_decls (tree blk)
2396 tree t;
2398 /* Mark decls. */
2399 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2400 if (DECL_RTL_SET_P (t))
2401 set_used_flags (DECL_RTL (t));
2403 /* Now process sub-blocks. */
2404 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2405 set_used_decls (t);
2408 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2409 Recursively does the same for subexpressions. Uses
2410 copy_rtx_if_shared_1 to reduce stack space. */
2413 copy_rtx_if_shared (rtx orig)
2415 copy_rtx_if_shared_1 (&orig);
2416 return orig;
2419 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2420 use. Recursively does the same for subexpressions. */
2422 static void
2423 copy_rtx_if_shared_1 (rtx *orig1)
2425 rtx x;
2426 int i;
2427 enum rtx_code code;
2428 rtx *last_ptr;
2429 const char *format_ptr;
2430 int copied = 0;
2431 int length;
2433 /* Repeat is used to turn tail-recursion into iteration. */
2434 repeat:
2435 x = *orig1;
2437 if (x == 0)
2438 return;
2440 code = GET_CODE (x);
2442 /* These types may be freely shared. */
2444 switch (code)
2446 case REG:
2447 case CONST_INT:
2448 case CONST_DOUBLE:
2449 case CONST_FIXED:
2450 case CONST_VECTOR:
2451 case SYMBOL_REF:
2452 case LABEL_REF:
2453 case CODE_LABEL:
2454 case PC:
2455 case CC0:
2456 case SCRATCH:
2457 /* SCRATCH must be shared because they represent distinct values. */
2458 return;
2459 case CLOBBER:
2460 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2461 return;
2462 break;
2464 case CONST:
2465 if (shared_const_p (x))
2466 return;
2467 break;
2469 case INSN:
2470 case JUMP_INSN:
2471 case CALL_INSN:
2472 case NOTE:
2473 case BARRIER:
2474 /* The chain of insns is not being copied. */
2475 return;
2477 default:
2478 break;
2481 /* This rtx may not be shared. If it has already been seen,
2482 replace it with a copy of itself. */
2484 if (RTX_FLAG (x, used))
2486 x = shallow_copy_rtx (x);
2487 copied = 1;
2489 RTX_FLAG (x, used) = 1;
2491 /* Now scan the subexpressions recursively.
2492 We can store any replaced subexpressions directly into X
2493 since we know X is not shared! Any vectors in X
2494 must be copied if X was copied. */
2496 format_ptr = GET_RTX_FORMAT (code);
2497 length = GET_RTX_LENGTH (code);
2498 last_ptr = NULL;
2500 for (i = 0; i < length; i++)
2502 switch (*format_ptr++)
2504 case 'e':
2505 if (last_ptr)
2506 copy_rtx_if_shared_1 (last_ptr);
2507 last_ptr = &XEXP (x, i);
2508 break;
2510 case 'E':
2511 if (XVEC (x, i) != NULL)
2513 int j;
2514 int len = XVECLEN (x, i);
2516 /* Copy the vector iff I copied the rtx and the length
2517 is nonzero. */
2518 if (copied && len > 0)
2519 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2521 /* Call recursively on all inside the vector. */
2522 for (j = 0; j < len; j++)
2524 if (last_ptr)
2525 copy_rtx_if_shared_1 (last_ptr);
2526 last_ptr = &XVECEXP (x, i, j);
2529 break;
2532 *orig1 = x;
2533 if (last_ptr)
2535 orig1 = last_ptr;
2536 goto repeat;
2538 return;
2541 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2542 to look for shared sub-parts. */
2544 void
2545 reset_used_flags (rtx x)
2547 int i, j;
2548 enum rtx_code code;
2549 const char *format_ptr;
2550 int length;
2552 /* Repeat is used to turn tail-recursion into iteration. */
2553 repeat:
2554 if (x == 0)
2555 return;
2557 code = GET_CODE (x);
2559 /* These types may be freely shared so we needn't do any resetting
2560 for them. */
2562 switch (code)
2564 case REG:
2565 case CONST_INT:
2566 case CONST_DOUBLE:
2567 case CONST_FIXED:
2568 case CONST_VECTOR:
2569 case SYMBOL_REF:
2570 case CODE_LABEL:
2571 case PC:
2572 case CC0:
2573 return;
2575 case INSN:
2576 case JUMP_INSN:
2577 case CALL_INSN:
2578 case NOTE:
2579 case LABEL_REF:
2580 case BARRIER:
2581 /* The chain of insns is not being copied. */
2582 return;
2584 default:
2585 break;
2588 RTX_FLAG (x, used) = 0;
2590 format_ptr = GET_RTX_FORMAT (code);
2591 length = GET_RTX_LENGTH (code);
2593 for (i = 0; i < length; i++)
2595 switch (*format_ptr++)
2597 case 'e':
2598 if (i == length-1)
2600 x = XEXP (x, i);
2601 goto repeat;
2603 reset_used_flags (XEXP (x, i));
2604 break;
2606 case 'E':
2607 for (j = 0; j < XVECLEN (x, i); j++)
2608 reset_used_flags (XVECEXP (x, i, j));
2609 break;
2614 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2615 to look for shared sub-parts. */
2617 void
2618 set_used_flags (rtx x)
2620 int i, j;
2621 enum rtx_code code;
2622 const char *format_ptr;
2624 if (x == 0)
2625 return;
2627 code = GET_CODE (x);
2629 /* These types may be freely shared so we needn't do any resetting
2630 for them. */
2632 switch (code)
2634 case REG:
2635 case CONST_INT:
2636 case CONST_DOUBLE:
2637 case CONST_FIXED:
2638 case CONST_VECTOR:
2639 case SYMBOL_REF:
2640 case CODE_LABEL:
2641 case PC:
2642 case CC0:
2643 return;
2645 case INSN:
2646 case JUMP_INSN:
2647 case CALL_INSN:
2648 case NOTE:
2649 case LABEL_REF:
2650 case BARRIER:
2651 /* The chain of insns is not being copied. */
2652 return;
2654 default:
2655 break;
2658 RTX_FLAG (x, used) = 1;
2660 format_ptr = GET_RTX_FORMAT (code);
2661 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2663 switch (*format_ptr++)
2665 case 'e':
2666 set_used_flags (XEXP (x, i));
2667 break;
2669 case 'E':
2670 for (j = 0; j < XVECLEN (x, i); j++)
2671 set_used_flags (XVECEXP (x, i, j));
2672 break;
2677 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2678 Return X or the rtx for the pseudo reg the value of X was copied into.
2679 OTHER must be valid as a SET_DEST. */
2682 make_safe_from (rtx x, rtx other)
2684 while (1)
2685 switch (GET_CODE (other))
2687 case SUBREG:
2688 other = SUBREG_REG (other);
2689 break;
2690 case STRICT_LOW_PART:
2691 case SIGN_EXTEND:
2692 case ZERO_EXTEND:
2693 other = XEXP (other, 0);
2694 break;
2695 default:
2696 goto done;
2698 done:
2699 if ((MEM_P (other)
2700 && ! CONSTANT_P (x)
2701 && !REG_P (x)
2702 && GET_CODE (x) != SUBREG)
2703 || (REG_P (other)
2704 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2705 || reg_mentioned_p (other, x))))
2707 rtx temp = gen_reg_rtx (GET_MODE (x));
2708 emit_move_insn (temp, x);
2709 return temp;
2711 return x;
2714 /* Emission of insns (adding them to the doubly-linked list). */
2716 /* Return the first insn of the current sequence or current function. */
2719 get_insns (void)
2721 return first_insn;
2724 /* Specify a new insn as the first in the chain. */
2726 void
2727 set_first_insn (rtx insn)
2729 gcc_assert (!PREV_INSN (insn));
2730 first_insn = insn;
2733 /* Return the last insn emitted in current sequence or current function. */
2736 get_last_insn (void)
2738 return last_insn;
2741 /* Specify a new insn as the last in the chain. */
2743 void
2744 set_last_insn (rtx insn)
2746 gcc_assert (!NEXT_INSN (insn));
2747 last_insn = insn;
2750 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2753 get_last_insn_anywhere (void)
2755 struct sequence_stack *stack;
2756 if (last_insn)
2757 return last_insn;
2758 for (stack = seq_stack; stack; stack = stack->next)
2759 if (stack->last != 0)
2760 return stack->last;
2761 return 0;
2764 /* Return the first nonnote insn emitted in current sequence or current
2765 function. This routine looks inside SEQUENCEs. */
2768 get_first_nonnote_insn (void)
2770 rtx insn = first_insn;
2772 if (insn)
2774 if (NOTE_P (insn))
2775 for (insn = next_insn (insn);
2776 insn && NOTE_P (insn);
2777 insn = next_insn (insn))
2778 continue;
2779 else
2781 if (NONJUMP_INSN_P (insn)
2782 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2783 insn = XVECEXP (PATTERN (insn), 0, 0);
2787 return insn;
2790 /* Return the last nonnote insn emitted in current sequence or current
2791 function. This routine looks inside SEQUENCEs. */
2794 get_last_nonnote_insn (void)
2796 rtx insn = last_insn;
2798 if (insn)
2800 if (NOTE_P (insn))
2801 for (insn = previous_insn (insn);
2802 insn && NOTE_P (insn);
2803 insn = previous_insn (insn))
2804 continue;
2805 else
2807 if (NONJUMP_INSN_P (insn)
2808 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2809 insn = XVECEXP (PATTERN (insn), 0,
2810 XVECLEN (PATTERN (insn), 0) - 1);
2814 return insn;
2817 /* Return a number larger than any instruction's uid in this function. */
2820 get_max_uid (void)
2822 return cur_insn_uid;
2825 /* Return the next insn. If it is a SEQUENCE, return the first insn
2826 of the sequence. */
2829 next_insn (rtx insn)
2831 if (insn)
2833 insn = NEXT_INSN (insn);
2834 if (insn && NONJUMP_INSN_P (insn)
2835 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2836 insn = XVECEXP (PATTERN (insn), 0, 0);
2839 return insn;
2842 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2843 of the sequence. */
2846 previous_insn (rtx insn)
2848 if (insn)
2850 insn = PREV_INSN (insn);
2851 if (insn && NONJUMP_INSN_P (insn)
2852 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2853 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2856 return insn;
2859 /* Return the next insn after INSN that is not a NOTE. This routine does not
2860 look inside SEQUENCEs. */
2863 next_nonnote_insn (rtx insn)
2865 while (insn)
2867 insn = NEXT_INSN (insn);
2868 if (insn == 0 || !NOTE_P (insn))
2869 break;
2872 return insn;
2875 /* Return the previous insn before INSN that is not a NOTE. This routine does
2876 not look inside SEQUENCEs. */
2879 prev_nonnote_insn (rtx insn)
2881 while (insn)
2883 insn = PREV_INSN (insn);
2884 if (insn == 0 || !NOTE_P (insn))
2885 break;
2888 return insn;
2891 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2892 or 0, if there is none. This routine does not look inside
2893 SEQUENCEs. */
2896 next_real_insn (rtx insn)
2898 while (insn)
2900 insn = NEXT_INSN (insn);
2901 if (insn == 0 || INSN_P (insn))
2902 break;
2905 return insn;
2908 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2909 or 0, if there is none. This routine does not look inside
2910 SEQUENCEs. */
2913 prev_real_insn (rtx insn)
2915 while (insn)
2917 insn = PREV_INSN (insn);
2918 if (insn == 0 || INSN_P (insn))
2919 break;
2922 return insn;
2925 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2926 This routine does not look inside SEQUENCEs. */
2929 last_call_insn (void)
2931 rtx insn;
2933 for (insn = get_last_insn ();
2934 insn && !CALL_P (insn);
2935 insn = PREV_INSN (insn))
2938 return insn;
2941 /* Find the next insn after INSN that really does something. This routine
2942 does not look inside SEQUENCEs. Until reload has completed, this is the
2943 same as next_real_insn. */
2946 active_insn_p (const_rtx insn)
2948 return (CALL_P (insn) || JUMP_P (insn)
2949 || (NONJUMP_INSN_P (insn)
2950 && (! reload_completed
2951 || (GET_CODE (PATTERN (insn)) != USE
2952 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2956 next_active_insn (rtx insn)
2958 while (insn)
2960 insn = NEXT_INSN (insn);
2961 if (insn == 0 || active_insn_p (insn))
2962 break;
2965 return insn;
2968 /* Find the last insn before INSN that really does something. This routine
2969 does not look inside SEQUENCEs. Until reload has completed, this is the
2970 same as prev_real_insn. */
2973 prev_active_insn (rtx insn)
2975 while (insn)
2977 insn = PREV_INSN (insn);
2978 if (insn == 0 || active_insn_p (insn))
2979 break;
2982 return insn;
2985 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2988 next_label (rtx insn)
2990 while (insn)
2992 insn = NEXT_INSN (insn);
2993 if (insn == 0 || LABEL_P (insn))
2994 break;
2997 return insn;
3000 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3003 prev_label (rtx insn)
3005 while (insn)
3007 insn = PREV_INSN (insn);
3008 if (insn == 0 || LABEL_P (insn))
3009 break;
3012 return insn;
3015 /* Return the last label to mark the same position as LABEL. Return null
3016 if LABEL itself is null. */
3019 skip_consecutive_labels (rtx label)
3021 rtx insn;
3023 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3024 if (LABEL_P (insn))
3025 label = insn;
3027 return label;
3030 #ifdef HAVE_cc0
3031 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3032 and REG_CC_USER notes so we can find it. */
3034 void
3035 link_cc0_insns (rtx insn)
3037 rtx user = next_nonnote_insn (insn);
3039 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3040 user = XVECEXP (PATTERN (user), 0, 0);
3042 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3043 REG_NOTES (user));
3044 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3047 /* Return the next insn that uses CC0 after INSN, which is assumed to
3048 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3049 applied to the result of this function should yield INSN).
3051 Normally, this is simply the next insn. However, if a REG_CC_USER note
3052 is present, it contains the insn that uses CC0.
3054 Return 0 if we can't find the insn. */
3057 next_cc0_user (rtx insn)
3059 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3061 if (note)
3062 return XEXP (note, 0);
3064 insn = next_nonnote_insn (insn);
3065 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3066 insn = XVECEXP (PATTERN (insn), 0, 0);
3068 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3069 return insn;
3071 return 0;
3074 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3075 note, it is the previous insn. */
3078 prev_cc0_setter (rtx insn)
3080 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3082 if (note)
3083 return XEXP (note, 0);
3085 insn = prev_nonnote_insn (insn);
3086 gcc_assert (sets_cc0_p (PATTERN (insn)));
3088 return insn;
3090 #endif
3092 #ifdef AUTO_INC_DEC
3093 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3095 static int
3096 find_auto_inc (rtx *xp, void *data)
3098 rtx x = *xp;
3099 rtx reg = data;
3101 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3102 return 0;
3104 switch (GET_CODE (x))
3106 case PRE_DEC:
3107 case PRE_INC:
3108 case POST_DEC:
3109 case POST_INC:
3110 case PRE_MODIFY:
3111 case POST_MODIFY:
3112 if (rtx_equal_p (reg, XEXP (x, 0)))
3113 return 1;
3114 break;
3116 default:
3117 gcc_unreachable ();
3119 return -1;
3121 #endif
3123 /* Increment the label uses for all labels present in rtx. */
3125 static void
3126 mark_label_nuses (rtx x)
3128 enum rtx_code code;
3129 int i, j;
3130 const char *fmt;
3132 code = GET_CODE (x);
3133 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3134 LABEL_NUSES (XEXP (x, 0))++;
3136 fmt = GET_RTX_FORMAT (code);
3137 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3139 if (fmt[i] == 'e')
3140 mark_label_nuses (XEXP (x, i));
3141 else if (fmt[i] == 'E')
3142 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3143 mark_label_nuses (XVECEXP (x, i, j));
3148 /* Try splitting insns that can be split for better scheduling.
3149 PAT is the pattern which might split.
3150 TRIAL is the insn providing PAT.
3151 LAST is nonzero if we should return the last insn of the sequence produced.
3153 If this routine succeeds in splitting, it returns the first or last
3154 replacement insn depending on the value of LAST. Otherwise, it
3155 returns TRIAL. If the insn to be returned can be split, it will be. */
3158 try_split (rtx pat, rtx trial, int last)
3160 rtx before = PREV_INSN (trial);
3161 rtx after = NEXT_INSN (trial);
3162 int has_barrier = 0;
3163 rtx tem, note_retval, note_libcall;
3164 rtx note, seq;
3165 int probability;
3166 rtx insn_last, insn;
3167 int njumps = 0;
3169 if (any_condjump_p (trial)
3170 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3171 split_branch_probability = INTVAL (XEXP (note, 0));
3172 probability = split_branch_probability;
3174 seq = split_insns (pat, trial);
3176 split_branch_probability = -1;
3178 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3179 We may need to handle this specially. */
3180 if (after && BARRIER_P (after))
3182 has_barrier = 1;
3183 after = NEXT_INSN (after);
3186 if (!seq)
3187 return trial;
3189 /* Avoid infinite loop if any insn of the result matches
3190 the original pattern. */
3191 insn_last = seq;
3192 while (1)
3194 if (INSN_P (insn_last)
3195 && rtx_equal_p (PATTERN (insn_last), pat))
3196 return trial;
3197 if (!NEXT_INSN (insn_last))
3198 break;
3199 insn_last = NEXT_INSN (insn_last);
3202 /* We will be adding the new sequence to the function. The splitters
3203 may have introduced invalid RTL sharing, so unshare the sequence now. */
3204 unshare_all_rtl_in_chain (seq);
3206 /* Mark labels. */
3207 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3209 if (JUMP_P (insn))
3211 mark_jump_label (PATTERN (insn), insn, 0);
3212 njumps++;
3213 if (probability != -1
3214 && any_condjump_p (insn)
3215 && !find_reg_note (insn, REG_BR_PROB, 0))
3217 /* We can preserve the REG_BR_PROB notes only if exactly
3218 one jump is created, otherwise the machine description
3219 is responsible for this step using
3220 split_branch_probability variable. */
3221 gcc_assert (njumps == 1);
3222 REG_NOTES (insn)
3223 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3224 GEN_INT (probability),
3225 REG_NOTES (insn));
3230 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3231 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3232 if (CALL_P (trial))
3234 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3235 if (CALL_P (insn))
3237 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3238 while (*p)
3239 p = &XEXP (*p, 1);
3240 *p = CALL_INSN_FUNCTION_USAGE (trial);
3241 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3245 /* Copy notes, particularly those related to the CFG. */
3246 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3248 switch (REG_NOTE_KIND (note))
3250 case REG_EH_REGION:
3251 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3253 if (CALL_P (insn)
3254 || (flag_non_call_exceptions && INSN_P (insn)
3255 && may_trap_p (PATTERN (insn))))
3256 REG_NOTES (insn)
3257 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3258 XEXP (note, 0),
3259 REG_NOTES (insn));
3261 break;
3263 case REG_NORETURN:
3264 case REG_SETJMP:
3265 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3267 if (CALL_P (insn))
3268 REG_NOTES (insn)
3269 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3270 XEXP (note, 0),
3271 REG_NOTES (insn));
3273 break;
3275 case REG_NON_LOCAL_GOTO:
3276 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3278 if (JUMP_P (insn))
3279 REG_NOTES (insn)
3280 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3281 XEXP (note, 0),
3282 REG_NOTES (insn));
3284 break;
3286 #ifdef AUTO_INC_DEC
3287 case REG_INC:
3288 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3290 rtx reg = XEXP (note, 0);
3291 if (!FIND_REG_INC_NOTE (insn, reg)
3292 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3293 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3294 REG_NOTES (insn));
3296 break;
3297 #endif
3299 case REG_LIBCALL:
3300 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3301 after split. */
3302 REG_NOTES (insn_last)
3303 = gen_rtx_INSN_LIST (REG_LIBCALL,
3304 XEXP (note, 0),
3305 REG_NOTES (insn_last));
3307 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3308 XEXP (note_retval, 0) = insn_last;
3309 break;
3311 case REG_RETVAL:
3312 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3313 after split. */
3314 REG_NOTES (insn_last)
3315 = gen_rtx_INSN_LIST (REG_RETVAL,
3316 XEXP (note, 0),
3317 REG_NOTES (insn_last));
3319 note_libcall = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL);
3320 XEXP (note_libcall, 0) = insn_last;
3321 break;
3323 default:
3324 break;
3328 /* If there are LABELS inside the split insns increment the
3329 usage count so we don't delete the label. */
3330 if (INSN_P (trial))
3332 insn = insn_last;
3333 while (insn != NULL_RTX)
3335 /* JUMP_P insns have already been "marked" above. */
3336 if (NONJUMP_INSN_P (insn))
3337 mark_label_nuses (PATTERN (insn));
3339 insn = PREV_INSN (insn);
3343 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3345 delete_insn (trial);
3346 if (has_barrier)
3347 emit_barrier_after (tem);
3349 /* Recursively call try_split for each new insn created; by the
3350 time control returns here that insn will be fully split, so
3351 set LAST and continue from the insn after the one returned.
3352 We can't use next_active_insn here since AFTER may be a note.
3353 Ignore deleted insns, which can be occur if not optimizing. */
3354 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3355 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3356 tem = try_split (PATTERN (tem), tem, 1);
3358 /* Return either the first or the last insn, depending on which was
3359 requested. */
3360 return last
3361 ? (after ? PREV_INSN (after) : last_insn)
3362 : NEXT_INSN (before);
3365 /* Make and return an INSN rtx, initializing all its slots.
3366 Store PATTERN in the pattern slots. */
3369 make_insn_raw (rtx pattern)
3371 rtx insn;
3373 insn = rtx_alloc (INSN);
3375 INSN_UID (insn) = cur_insn_uid++;
3376 PATTERN (insn) = pattern;
3377 INSN_CODE (insn) = -1;
3378 REG_NOTES (insn) = NULL;
3379 INSN_LOCATOR (insn) = curr_insn_locator ();
3380 BLOCK_FOR_INSN (insn) = NULL;
3382 #ifdef ENABLE_RTL_CHECKING
3383 if (insn
3384 && INSN_P (insn)
3385 && (returnjump_p (insn)
3386 || (GET_CODE (insn) == SET
3387 && SET_DEST (insn) == pc_rtx)))
3389 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3390 debug_rtx (insn);
3392 #endif
3394 return insn;
3397 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3400 make_jump_insn_raw (rtx pattern)
3402 rtx insn;
3404 insn = rtx_alloc (JUMP_INSN);
3405 INSN_UID (insn) = cur_insn_uid++;
3407 PATTERN (insn) = pattern;
3408 INSN_CODE (insn) = -1;
3409 REG_NOTES (insn) = NULL;
3410 JUMP_LABEL (insn) = NULL;
3411 INSN_LOCATOR (insn) = curr_insn_locator ();
3412 BLOCK_FOR_INSN (insn) = NULL;
3414 return insn;
3417 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3419 static rtx
3420 make_call_insn_raw (rtx pattern)
3422 rtx insn;
3424 insn = rtx_alloc (CALL_INSN);
3425 INSN_UID (insn) = cur_insn_uid++;
3427 PATTERN (insn) = pattern;
3428 INSN_CODE (insn) = -1;
3429 REG_NOTES (insn) = NULL;
3430 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3431 INSN_LOCATOR (insn) = curr_insn_locator ();
3432 BLOCK_FOR_INSN (insn) = NULL;
3434 return insn;
3437 /* Add INSN to the end of the doubly-linked list.
3438 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3440 void
3441 add_insn (rtx insn)
3443 PREV_INSN (insn) = last_insn;
3444 NEXT_INSN (insn) = 0;
3446 if (NULL != last_insn)
3447 NEXT_INSN (last_insn) = insn;
3449 if (NULL == first_insn)
3450 first_insn = insn;
3452 last_insn = insn;
3455 /* Add INSN into the doubly-linked list after insn AFTER. This and
3456 the next should be the only functions called to insert an insn once
3457 delay slots have been filled since only they know how to update a
3458 SEQUENCE. */
3460 void
3461 add_insn_after (rtx insn, rtx after, basic_block bb)
3463 rtx next = NEXT_INSN (after);
3465 gcc_assert (!optimize || !INSN_DELETED_P (after));
3467 NEXT_INSN (insn) = next;
3468 PREV_INSN (insn) = after;
3470 if (next)
3472 PREV_INSN (next) = insn;
3473 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3474 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3476 else if (last_insn == after)
3477 last_insn = insn;
3478 else
3480 struct sequence_stack *stack = seq_stack;
3481 /* Scan all pending sequences too. */
3482 for (; stack; stack = stack->next)
3483 if (after == stack->last)
3485 stack->last = insn;
3486 break;
3489 gcc_assert (stack);
3492 if (!BARRIER_P (after)
3493 && !BARRIER_P (insn)
3494 && (bb = BLOCK_FOR_INSN (after)))
3496 set_block_for_insn (insn, bb);
3497 if (INSN_P (insn))
3498 df_insn_rescan (insn);
3499 /* Should not happen as first in the BB is always
3500 either NOTE or LABEL. */
3501 if (BB_END (bb) == after
3502 /* Avoid clobbering of structure when creating new BB. */
3503 && !BARRIER_P (insn)
3504 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3505 BB_END (bb) = insn;
3508 NEXT_INSN (after) = insn;
3509 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3511 rtx sequence = PATTERN (after);
3512 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3516 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3517 the previous should be the only functions called to insert an insn
3518 once delay slots have been filled since only they know how to
3519 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3520 bb from before. */
3522 void
3523 add_insn_before (rtx insn, rtx before, basic_block bb)
3525 rtx prev = PREV_INSN (before);
3527 gcc_assert (!optimize || !INSN_DELETED_P (before));
3529 PREV_INSN (insn) = prev;
3530 NEXT_INSN (insn) = before;
3532 if (prev)
3534 NEXT_INSN (prev) = insn;
3535 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3537 rtx sequence = PATTERN (prev);
3538 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3541 else if (first_insn == before)
3542 first_insn = insn;
3543 else
3545 struct sequence_stack *stack = seq_stack;
3546 /* Scan all pending sequences too. */
3547 for (; stack; stack = stack->next)
3548 if (before == stack->first)
3550 stack->first = insn;
3551 break;
3554 gcc_assert (stack);
3557 if (!bb
3558 && !BARRIER_P (before)
3559 && !BARRIER_P (insn))
3560 bb = BLOCK_FOR_INSN (before);
3562 if (bb)
3564 set_block_for_insn (insn, bb);
3565 if (INSN_P (insn))
3566 df_insn_rescan (insn);
3567 /* Should not happen as first in the BB is always either NOTE or
3568 LABEL. */
3569 gcc_assert (BB_HEAD (bb) != insn
3570 /* Avoid clobbering of structure when creating new BB. */
3571 || BARRIER_P (insn)
3572 || NOTE_INSN_BASIC_BLOCK_P (insn));
3575 PREV_INSN (before) = insn;
3576 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3577 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3581 /* Replace insn with an deleted instruction note. */
3583 void set_insn_deleted (rtx insn)
3585 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3586 PUT_CODE (insn, NOTE);
3587 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3591 /* Remove an insn from its doubly-linked list. This function knows how
3592 to handle sequences. */
3593 void
3594 remove_insn (rtx insn)
3596 rtx next = NEXT_INSN (insn);
3597 rtx prev = PREV_INSN (insn);
3598 basic_block bb;
3600 /* Later in the code, the block will be marked dirty. */
3601 df_insn_delete (NULL, INSN_UID (insn));
3603 if (prev)
3605 NEXT_INSN (prev) = next;
3606 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3608 rtx sequence = PATTERN (prev);
3609 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3612 else if (first_insn == insn)
3613 first_insn = next;
3614 else
3616 struct sequence_stack *stack = seq_stack;
3617 /* Scan all pending sequences too. */
3618 for (; stack; stack = stack->next)
3619 if (insn == stack->first)
3621 stack->first = next;
3622 break;
3625 gcc_assert (stack);
3628 if (next)
3630 PREV_INSN (next) = prev;
3631 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3632 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3634 else if (last_insn == insn)
3635 last_insn = prev;
3636 else
3638 struct sequence_stack *stack = seq_stack;
3639 /* Scan all pending sequences too. */
3640 for (; stack; stack = stack->next)
3641 if (insn == stack->last)
3643 stack->last = prev;
3644 break;
3647 gcc_assert (stack);
3649 if (!BARRIER_P (insn)
3650 && (bb = BLOCK_FOR_INSN (insn)))
3652 if (INSN_P (insn))
3653 df_set_bb_dirty (bb);
3654 if (BB_HEAD (bb) == insn)
3656 /* Never ever delete the basic block note without deleting whole
3657 basic block. */
3658 gcc_assert (!NOTE_P (insn));
3659 BB_HEAD (bb) = next;
3661 if (BB_END (bb) == insn)
3662 BB_END (bb) = prev;
3666 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3668 void
3669 add_function_usage_to (rtx call_insn, rtx call_fusage)
3671 gcc_assert (call_insn && CALL_P (call_insn));
3673 /* Put the register usage information on the CALL. If there is already
3674 some usage information, put ours at the end. */
3675 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3677 rtx link;
3679 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3680 link = XEXP (link, 1))
3683 XEXP (link, 1) = call_fusage;
3685 else
3686 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3689 /* Delete all insns made since FROM.
3690 FROM becomes the new last instruction. */
3692 void
3693 delete_insns_since (rtx from)
3695 if (from == 0)
3696 first_insn = 0;
3697 else
3698 NEXT_INSN (from) = 0;
3699 last_insn = from;
3702 /* This function is deprecated, please use sequences instead.
3704 Move a consecutive bunch of insns to a different place in the chain.
3705 The insns to be moved are those between FROM and TO.
3706 They are moved to a new position after the insn AFTER.
3707 AFTER must not be FROM or TO or any insn in between.
3709 This function does not know about SEQUENCEs and hence should not be
3710 called after delay-slot filling has been done. */
3712 void
3713 reorder_insns_nobb (rtx from, rtx to, rtx after)
3715 /* Splice this bunch out of where it is now. */
3716 if (PREV_INSN (from))
3717 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3718 if (NEXT_INSN (to))
3719 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3720 if (last_insn == to)
3721 last_insn = PREV_INSN (from);
3722 if (first_insn == from)
3723 first_insn = NEXT_INSN (to);
3725 /* Make the new neighbors point to it and it to them. */
3726 if (NEXT_INSN (after))
3727 PREV_INSN (NEXT_INSN (after)) = to;
3729 NEXT_INSN (to) = NEXT_INSN (after);
3730 PREV_INSN (from) = after;
3731 NEXT_INSN (after) = from;
3732 if (after == last_insn)
3733 last_insn = to;
3736 /* Same as function above, but take care to update BB boundaries. */
3737 void
3738 reorder_insns (rtx from, rtx to, rtx after)
3740 rtx prev = PREV_INSN (from);
3741 basic_block bb, bb2;
3743 reorder_insns_nobb (from, to, after);
3745 if (!BARRIER_P (after)
3746 && (bb = BLOCK_FOR_INSN (after)))
3748 rtx x;
3749 df_set_bb_dirty (bb);
3751 if (!BARRIER_P (from)
3752 && (bb2 = BLOCK_FOR_INSN (from)))
3754 if (BB_END (bb2) == to)
3755 BB_END (bb2) = prev;
3756 df_set_bb_dirty (bb2);
3759 if (BB_END (bb) == after)
3760 BB_END (bb) = to;
3762 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3763 if (!BARRIER_P (x))
3764 df_insn_change_bb (x, bb);
3769 /* Emit insn(s) of given code and pattern
3770 at a specified place within the doubly-linked list.
3772 All of the emit_foo global entry points accept an object
3773 X which is either an insn list or a PATTERN of a single
3774 instruction.
3776 There are thus a few canonical ways to generate code and
3777 emit it at a specific place in the instruction stream. For
3778 example, consider the instruction named SPOT and the fact that
3779 we would like to emit some instructions before SPOT. We might
3780 do it like this:
3782 start_sequence ();
3783 ... emit the new instructions ...
3784 insns_head = get_insns ();
3785 end_sequence ();
3787 emit_insn_before (insns_head, SPOT);
3789 It used to be common to generate SEQUENCE rtl instead, but that
3790 is a relic of the past which no longer occurs. The reason is that
3791 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3792 generated would almost certainly die right after it was created. */
3794 /* Make X be output before the instruction BEFORE. */
3797 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3799 rtx last = before;
3800 rtx insn;
3802 gcc_assert (before);
3804 if (x == NULL_RTX)
3805 return last;
3807 switch (GET_CODE (x))
3809 case INSN:
3810 case JUMP_INSN:
3811 case CALL_INSN:
3812 case CODE_LABEL:
3813 case BARRIER:
3814 case NOTE:
3815 insn = x;
3816 while (insn)
3818 rtx next = NEXT_INSN (insn);
3819 add_insn_before (insn, before, bb);
3820 last = insn;
3821 insn = next;
3823 break;
3825 #ifdef ENABLE_RTL_CHECKING
3826 case SEQUENCE:
3827 gcc_unreachable ();
3828 break;
3829 #endif
3831 default:
3832 last = make_insn_raw (x);
3833 add_insn_before (last, before, bb);
3834 break;
3837 return last;
3840 /* Make an instruction with body X and code JUMP_INSN
3841 and output it before the instruction BEFORE. */
3844 emit_jump_insn_before_noloc (rtx x, rtx before)
3846 rtx insn, last = NULL_RTX;
3848 gcc_assert (before);
3850 switch (GET_CODE (x))
3852 case INSN:
3853 case JUMP_INSN:
3854 case CALL_INSN:
3855 case CODE_LABEL:
3856 case BARRIER:
3857 case NOTE:
3858 insn = x;
3859 while (insn)
3861 rtx next = NEXT_INSN (insn);
3862 add_insn_before (insn, before, NULL);
3863 last = insn;
3864 insn = next;
3866 break;
3868 #ifdef ENABLE_RTL_CHECKING
3869 case SEQUENCE:
3870 gcc_unreachable ();
3871 break;
3872 #endif
3874 default:
3875 last = make_jump_insn_raw (x);
3876 add_insn_before (last, before, NULL);
3877 break;
3880 return last;
3883 /* Make an instruction with body X and code CALL_INSN
3884 and output it before the instruction BEFORE. */
3887 emit_call_insn_before_noloc (rtx x, rtx before)
3889 rtx last = NULL_RTX, insn;
3891 gcc_assert (before);
3893 switch (GET_CODE (x))
3895 case INSN:
3896 case JUMP_INSN:
3897 case CALL_INSN:
3898 case CODE_LABEL:
3899 case BARRIER:
3900 case NOTE:
3901 insn = x;
3902 while (insn)
3904 rtx next = NEXT_INSN (insn);
3905 add_insn_before (insn, before, NULL);
3906 last = insn;
3907 insn = next;
3909 break;
3911 #ifdef ENABLE_RTL_CHECKING
3912 case SEQUENCE:
3913 gcc_unreachable ();
3914 break;
3915 #endif
3917 default:
3918 last = make_call_insn_raw (x);
3919 add_insn_before (last, before, NULL);
3920 break;
3923 return last;
3926 /* Make an insn of code BARRIER
3927 and output it before the insn BEFORE. */
3930 emit_barrier_before (rtx before)
3932 rtx insn = rtx_alloc (BARRIER);
3934 INSN_UID (insn) = cur_insn_uid++;
3936 add_insn_before (insn, before, NULL);
3937 return insn;
3940 /* Emit the label LABEL before the insn BEFORE. */
3943 emit_label_before (rtx label, rtx before)
3945 /* This can be called twice for the same label as a result of the
3946 confusion that follows a syntax error! So make it harmless. */
3947 if (INSN_UID (label) == 0)
3949 INSN_UID (label) = cur_insn_uid++;
3950 add_insn_before (label, before, NULL);
3953 return label;
3956 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3959 emit_note_before (enum insn_note subtype, rtx before)
3961 rtx note = rtx_alloc (NOTE);
3962 INSN_UID (note) = cur_insn_uid++;
3963 NOTE_KIND (note) = subtype;
3964 BLOCK_FOR_INSN (note) = NULL;
3965 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3967 add_insn_before (note, before, NULL);
3968 return note;
3971 /* Helper for emit_insn_after, handles lists of instructions
3972 efficiently. */
3974 static rtx
3975 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
3977 rtx last;
3978 rtx after_after;
3979 if (!bb && !BARRIER_P (after))
3980 bb = BLOCK_FOR_INSN (after);
3982 if (bb)
3984 df_set_bb_dirty (bb);
3985 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3986 if (!BARRIER_P (last))
3988 set_block_for_insn (last, bb);
3989 df_insn_rescan (last);
3991 if (!BARRIER_P (last))
3993 set_block_for_insn (last, bb);
3994 df_insn_rescan (last);
3996 if (BB_END (bb) == after)
3997 BB_END (bb) = last;
3999 else
4000 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4001 continue;
4003 after_after = NEXT_INSN (after);
4005 NEXT_INSN (after) = first;
4006 PREV_INSN (first) = after;
4007 NEXT_INSN (last) = after_after;
4008 if (after_after)
4009 PREV_INSN (after_after) = last;
4011 if (after == last_insn)
4012 last_insn = last;
4013 return last;
4016 /* Make X be output after the insn AFTER and set the BB of insn. If
4017 BB is NULL, an attempt is made to infer the BB from AFTER. */
4020 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4022 rtx last = after;
4024 gcc_assert (after);
4026 if (x == NULL_RTX)
4027 return last;
4029 switch (GET_CODE (x))
4031 case INSN:
4032 case JUMP_INSN:
4033 case CALL_INSN:
4034 case CODE_LABEL:
4035 case BARRIER:
4036 case NOTE:
4037 last = emit_insn_after_1 (x, after, bb);
4038 break;
4040 #ifdef ENABLE_RTL_CHECKING
4041 case SEQUENCE:
4042 gcc_unreachable ();
4043 break;
4044 #endif
4046 default:
4047 last = make_insn_raw (x);
4048 add_insn_after (last, after, bb);
4049 break;
4052 return last;
4056 /* Make an insn of code JUMP_INSN with body X
4057 and output it after the insn AFTER. */
4060 emit_jump_insn_after_noloc (rtx x, rtx after)
4062 rtx last;
4064 gcc_assert (after);
4066 switch (GET_CODE (x))
4068 case INSN:
4069 case JUMP_INSN:
4070 case CALL_INSN:
4071 case CODE_LABEL:
4072 case BARRIER:
4073 case NOTE:
4074 last = emit_insn_after_1 (x, after, NULL);
4075 break;
4077 #ifdef ENABLE_RTL_CHECKING
4078 case SEQUENCE:
4079 gcc_unreachable ();
4080 break;
4081 #endif
4083 default:
4084 last = make_jump_insn_raw (x);
4085 add_insn_after (last, after, NULL);
4086 break;
4089 return last;
4092 /* Make an instruction with body X and code CALL_INSN
4093 and output it after the instruction AFTER. */
4096 emit_call_insn_after_noloc (rtx x, rtx after)
4098 rtx last;
4100 gcc_assert (after);
4102 switch (GET_CODE (x))
4104 case INSN:
4105 case JUMP_INSN:
4106 case CALL_INSN:
4107 case CODE_LABEL:
4108 case BARRIER:
4109 case NOTE:
4110 last = emit_insn_after_1 (x, after, NULL);
4111 break;
4113 #ifdef ENABLE_RTL_CHECKING
4114 case SEQUENCE:
4115 gcc_unreachable ();
4116 break;
4117 #endif
4119 default:
4120 last = make_call_insn_raw (x);
4121 add_insn_after (last, after, NULL);
4122 break;
4125 return last;
4128 /* Make an insn of code BARRIER
4129 and output it after the insn AFTER. */
4132 emit_barrier_after (rtx after)
4134 rtx insn = rtx_alloc (BARRIER);
4136 INSN_UID (insn) = cur_insn_uid++;
4138 add_insn_after (insn, after, NULL);
4139 return insn;
4142 /* Emit the label LABEL after the insn AFTER. */
4145 emit_label_after (rtx label, rtx after)
4147 /* This can be called twice for the same label
4148 as a result of the confusion that follows a syntax error!
4149 So make it harmless. */
4150 if (INSN_UID (label) == 0)
4152 INSN_UID (label) = cur_insn_uid++;
4153 add_insn_after (label, after, NULL);
4156 return label;
4159 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4162 emit_note_after (enum insn_note subtype, rtx after)
4164 rtx note = rtx_alloc (NOTE);
4165 INSN_UID (note) = cur_insn_uid++;
4166 NOTE_KIND (note) = subtype;
4167 BLOCK_FOR_INSN (note) = NULL;
4168 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4169 add_insn_after (note, after, NULL);
4170 return note;
4173 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4175 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4177 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4179 if (pattern == NULL_RTX || !loc)
4180 return last;
4182 after = NEXT_INSN (after);
4183 while (1)
4185 if (active_insn_p (after) && !INSN_LOCATOR (after))
4186 INSN_LOCATOR (after) = loc;
4187 if (after == last)
4188 break;
4189 after = NEXT_INSN (after);
4191 return last;
4194 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4196 emit_insn_after (rtx pattern, rtx after)
4198 if (INSN_P (after))
4199 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4200 else
4201 return emit_insn_after_noloc (pattern, after, NULL);
4204 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4206 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4208 rtx last = emit_jump_insn_after_noloc (pattern, after);
4210 if (pattern == NULL_RTX || !loc)
4211 return last;
4213 after = NEXT_INSN (after);
4214 while (1)
4216 if (active_insn_p (after) && !INSN_LOCATOR (after))
4217 INSN_LOCATOR (after) = loc;
4218 if (after == last)
4219 break;
4220 after = NEXT_INSN (after);
4222 return last;
4225 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4227 emit_jump_insn_after (rtx pattern, rtx after)
4229 if (INSN_P (after))
4230 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4231 else
4232 return emit_jump_insn_after_noloc (pattern, after);
4235 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4237 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4239 rtx last = emit_call_insn_after_noloc (pattern, after);
4241 if (pattern == NULL_RTX || !loc)
4242 return last;
4244 after = NEXT_INSN (after);
4245 while (1)
4247 if (active_insn_p (after) && !INSN_LOCATOR (after))
4248 INSN_LOCATOR (after) = loc;
4249 if (after == last)
4250 break;
4251 after = NEXT_INSN (after);
4253 return last;
4256 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4258 emit_call_insn_after (rtx pattern, rtx after)
4260 if (INSN_P (after))
4261 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4262 else
4263 return emit_call_insn_after_noloc (pattern, after);
4266 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4268 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4270 rtx first = PREV_INSN (before);
4271 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4273 if (pattern == NULL_RTX || !loc)
4274 return last;
4276 if (!first)
4277 first = get_insns ();
4278 else
4279 first = NEXT_INSN (first);
4280 while (1)
4282 if (active_insn_p (first) && !INSN_LOCATOR (first))
4283 INSN_LOCATOR (first) = loc;
4284 if (first == last)
4285 break;
4286 first = NEXT_INSN (first);
4288 return last;
4291 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4293 emit_insn_before (rtx pattern, rtx before)
4295 if (INSN_P (before))
4296 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4297 else
4298 return emit_insn_before_noloc (pattern, before, NULL);
4301 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4303 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4305 rtx first = PREV_INSN (before);
4306 rtx last = emit_jump_insn_before_noloc (pattern, before);
4308 if (pattern == NULL_RTX)
4309 return last;
4311 first = NEXT_INSN (first);
4312 while (1)
4314 if (active_insn_p (first) && !INSN_LOCATOR (first))
4315 INSN_LOCATOR (first) = loc;
4316 if (first == last)
4317 break;
4318 first = NEXT_INSN (first);
4320 return last;
4323 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4325 emit_jump_insn_before (rtx pattern, rtx before)
4327 if (INSN_P (before))
4328 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4329 else
4330 return emit_jump_insn_before_noloc (pattern, before);
4333 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4335 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4337 rtx first = PREV_INSN (before);
4338 rtx last = emit_call_insn_before_noloc (pattern, before);
4340 if (pattern == NULL_RTX)
4341 return last;
4343 first = NEXT_INSN (first);
4344 while (1)
4346 if (active_insn_p (first) && !INSN_LOCATOR (first))
4347 INSN_LOCATOR (first) = loc;
4348 if (first == last)
4349 break;
4350 first = NEXT_INSN (first);
4352 return last;
4355 /* like emit_call_insn_before_noloc,
4356 but set insn_locator according to before. */
4358 emit_call_insn_before (rtx pattern, rtx before)
4360 if (INSN_P (before))
4361 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4362 else
4363 return emit_call_insn_before_noloc (pattern, before);
4366 /* Take X and emit it at the end of the doubly-linked
4367 INSN list.
4369 Returns the last insn emitted. */
4372 emit_insn (rtx x)
4374 rtx last = last_insn;
4375 rtx insn;
4377 if (x == NULL_RTX)
4378 return last;
4380 switch (GET_CODE (x))
4382 case INSN:
4383 case JUMP_INSN:
4384 case CALL_INSN:
4385 case CODE_LABEL:
4386 case BARRIER:
4387 case NOTE:
4388 insn = x;
4389 while (insn)
4391 rtx next = NEXT_INSN (insn);
4392 add_insn (insn);
4393 last = insn;
4394 insn = next;
4396 break;
4398 #ifdef ENABLE_RTL_CHECKING
4399 case SEQUENCE:
4400 gcc_unreachable ();
4401 break;
4402 #endif
4404 default:
4405 last = make_insn_raw (x);
4406 add_insn (last);
4407 break;
4410 return last;
4413 /* Make an insn of code JUMP_INSN with pattern X
4414 and add it to the end of the doubly-linked list. */
4417 emit_jump_insn (rtx x)
4419 rtx last = NULL_RTX, insn;
4421 switch (GET_CODE (x))
4423 case INSN:
4424 case JUMP_INSN:
4425 case CALL_INSN:
4426 case CODE_LABEL:
4427 case BARRIER:
4428 case NOTE:
4429 insn = x;
4430 while (insn)
4432 rtx next = NEXT_INSN (insn);
4433 add_insn (insn);
4434 last = insn;
4435 insn = next;
4437 break;
4439 #ifdef ENABLE_RTL_CHECKING
4440 case SEQUENCE:
4441 gcc_unreachable ();
4442 break;
4443 #endif
4445 default:
4446 last = make_jump_insn_raw (x);
4447 add_insn (last);
4448 break;
4451 return last;
4454 /* Make an insn of code CALL_INSN with pattern X
4455 and add it to the end of the doubly-linked list. */
4458 emit_call_insn (rtx x)
4460 rtx insn;
4462 switch (GET_CODE (x))
4464 case INSN:
4465 case JUMP_INSN:
4466 case CALL_INSN:
4467 case CODE_LABEL:
4468 case BARRIER:
4469 case NOTE:
4470 insn = emit_insn (x);
4471 break;
4473 #ifdef ENABLE_RTL_CHECKING
4474 case SEQUENCE:
4475 gcc_unreachable ();
4476 break;
4477 #endif
4479 default:
4480 insn = make_call_insn_raw (x);
4481 add_insn (insn);
4482 break;
4485 return insn;
4488 /* Add the label LABEL to the end of the doubly-linked list. */
4491 emit_label (rtx label)
4493 /* This can be called twice for the same label
4494 as a result of the confusion that follows a syntax error!
4495 So make it harmless. */
4496 if (INSN_UID (label) == 0)
4498 INSN_UID (label) = cur_insn_uid++;
4499 add_insn (label);
4501 return label;
4504 /* Make an insn of code BARRIER
4505 and add it to the end of the doubly-linked list. */
4508 emit_barrier (void)
4510 rtx barrier = rtx_alloc (BARRIER);
4511 INSN_UID (barrier) = cur_insn_uid++;
4512 add_insn (barrier);
4513 return barrier;
4516 /* Emit a copy of note ORIG. */
4519 emit_note_copy (rtx orig)
4521 rtx note;
4523 note = rtx_alloc (NOTE);
4525 INSN_UID (note) = cur_insn_uid++;
4526 NOTE_DATA (note) = NOTE_DATA (orig);
4527 NOTE_KIND (note) = NOTE_KIND (orig);
4528 BLOCK_FOR_INSN (note) = NULL;
4529 add_insn (note);
4531 return note;
4534 /* Make an insn of code NOTE or type NOTE_NO
4535 and add it to the end of the doubly-linked list. */
4538 emit_note (enum insn_note kind)
4540 rtx note;
4542 note = rtx_alloc (NOTE);
4543 INSN_UID (note) = cur_insn_uid++;
4544 NOTE_KIND (note) = kind;
4545 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4546 BLOCK_FOR_INSN (note) = NULL;
4547 add_insn (note);
4548 return note;
4551 /* Cause next statement to emit a line note even if the line number
4552 has not changed. */
4554 void
4555 force_next_line_note (void)
4557 last_location = -1;
4560 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4561 note of this type already exists, remove it first. */
4564 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4566 rtx note = find_reg_note (insn, kind, NULL_RTX);
4567 rtx new_note = NULL;
4569 switch (kind)
4571 case REG_EQUAL:
4572 case REG_EQUIV:
4573 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4574 has multiple sets (some callers assume single_set
4575 means the insn only has one set, when in fact it
4576 means the insn only has one * useful * set). */
4577 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4579 gcc_assert (!note);
4580 return NULL_RTX;
4583 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4584 It serves no useful purpose and breaks eliminate_regs. */
4585 if (GET_CODE (datum) == ASM_OPERANDS)
4586 return NULL_RTX;
4588 if (note)
4590 XEXP (note, 0) = datum;
4591 df_notes_rescan (insn);
4592 return note;
4594 break;
4596 default:
4597 if (note)
4599 XEXP (note, 0) = datum;
4600 return note;
4602 break;
4605 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4606 REG_NOTES (insn) = new_note;
4608 switch (kind)
4610 case REG_EQUAL:
4611 case REG_EQUIV:
4612 df_notes_rescan (insn);
4613 break;
4614 default:
4615 break;
4618 return REG_NOTES (insn);
4621 /* Return an indication of which type of insn should have X as a body.
4622 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4624 static enum rtx_code
4625 classify_insn (rtx x)
4627 if (LABEL_P (x))
4628 return CODE_LABEL;
4629 if (GET_CODE (x) == CALL)
4630 return CALL_INSN;
4631 if (GET_CODE (x) == RETURN)
4632 return JUMP_INSN;
4633 if (GET_CODE (x) == SET)
4635 if (SET_DEST (x) == pc_rtx)
4636 return JUMP_INSN;
4637 else if (GET_CODE (SET_SRC (x)) == CALL)
4638 return CALL_INSN;
4639 else
4640 return INSN;
4642 if (GET_CODE (x) == PARALLEL)
4644 int j;
4645 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4646 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4647 return CALL_INSN;
4648 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4649 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4650 return JUMP_INSN;
4651 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4652 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4653 return CALL_INSN;
4655 return INSN;
4658 /* Emit the rtl pattern X as an appropriate kind of insn.
4659 If X is a label, it is simply added into the insn chain. */
4662 emit (rtx x)
4664 enum rtx_code code = classify_insn (x);
4666 switch (code)
4668 case CODE_LABEL:
4669 return emit_label (x);
4670 case INSN:
4671 return emit_insn (x);
4672 case JUMP_INSN:
4674 rtx insn = emit_jump_insn (x);
4675 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4676 return emit_barrier ();
4677 return insn;
4679 case CALL_INSN:
4680 return emit_call_insn (x);
4681 default:
4682 gcc_unreachable ();
4686 /* Space for free sequence stack entries. */
4687 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4689 /* Begin emitting insns to a sequence. If this sequence will contain
4690 something that might cause the compiler to pop arguments to function
4691 calls (because those pops have previously been deferred; see
4692 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4693 before calling this function. That will ensure that the deferred
4694 pops are not accidentally emitted in the middle of this sequence. */
4696 void
4697 start_sequence (void)
4699 struct sequence_stack *tem;
4701 if (free_sequence_stack != NULL)
4703 tem = free_sequence_stack;
4704 free_sequence_stack = tem->next;
4706 else
4707 tem = ggc_alloc (sizeof (struct sequence_stack));
4709 tem->next = seq_stack;
4710 tem->first = first_insn;
4711 tem->last = last_insn;
4713 seq_stack = tem;
4715 first_insn = 0;
4716 last_insn = 0;
4719 /* Set up the insn chain starting with FIRST as the current sequence,
4720 saving the previously current one. See the documentation for
4721 start_sequence for more information about how to use this function. */
4723 void
4724 push_to_sequence (rtx first)
4726 rtx last;
4728 start_sequence ();
4730 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4732 first_insn = first;
4733 last_insn = last;
4736 /* Like push_to_sequence, but take the last insn as an argument to avoid
4737 looping through the list. */
4739 void
4740 push_to_sequence2 (rtx first, rtx last)
4742 start_sequence ();
4744 first_insn = first;
4745 last_insn = last;
4748 /* Set up the outer-level insn chain
4749 as the current sequence, saving the previously current one. */
4751 void
4752 push_topmost_sequence (void)
4754 struct sequence_stack *stack, *top = NULL;
4756 start_sequence ();
4758 for (stack = seq_stack; stack; stack = stack->next)
4759 top = stack;
4761 first_insn = top->first;
4762 last_insn = top->last;
4765 /* After emitting to the outer-level insn chain, update the outer-level
4766 insn chain, and restore the previous saved state. */
4768 void
4769 pop_topmost_sequence (void)
4771 struct sequence_stack *stack, *top = NULL;
4773 for (stack = seq_stack; stack; stack = stack->next)
4774 top = stack;
4776 top->first = first_insn;
4777 top->last = last_insn;
4779 end_sequence ();
4782 /* After emitting to a sequence, restore previous saved state.
4784 To get the contents of the sequence just made, you must call
4785 `get_insns' *before* calling here.
4787 If the compiler might have deferred popping arguments while
4788 generating this sequence, and this sequence will not be immediately
4789 inserted into the instruction stream, use do_pending_stack_adjust
4790 before calling get_insns. That will ensure that the deferred
4791 pops are inserted into this sequence, and not into some random
4792 location in the instruction stream. See INHIBIT_DEFER_POP for more
4793 information about deferred popping of arguments. */
4795 void
4796 end_sequence (void)
4798 struct sequence_stack *tem = seq_stack;
4800 first_insn = tem->first;
4801 last_insn = tem->last;
4802 seq_stack = tem->next;
4804 memset (tem, 0, sizeof (*tem));
4805 tem->next = free_sequence_stack;
4806 free_sequence_stack = tem;
4809 /* Return 1 if currently emitting into a sequence. */
4812 in_sequence_p (void)
4814 return seq_stack != 0;
4817 /* Put the various virtual registers into REGNO_REG_RTX. */
4819 static void
4820 init_virtual_regs (void)
4822 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4823 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4824 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4825 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4826 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4830 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4831 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4832 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4833 static int copy_insn_n_scratches;
4835 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4836 copied an ASM_OPERANDS.
4837 In that case, it is the original input-operand vector. */
4838 static rtvec orig_asm_operands_vector;
4840 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4841 copied an ASM_OPERANDS.
4842 In that case, it is the copied input-operand vector. */
4843 static rtvec copy_asm_operands_vector;
4845 /* Likewise for the constraints vector. */
4846 static rtvec orig_asm_constraints_vector;
4847 static rtvec copy_asm_constraints_vector;
4849 /* Recursively create a new copy of an rtx for copy_insn.
4850 This function differs from copy_rtx in that it handles SCRATCHes and
4851 ASM_OPERANDs properly.
4852 Normally, this function is not used directly; use copy_insn as front end.
4853 However, you could first copy an insn pattern with copy_insn and then use
4854 this function afterwards to properly copy any REG_NOTEs containing
4855 SCRATCHes. */
4858 copy_insn_1 (rtx orig)
4860 rtx copy;
4861 int i, j;
4862 RTX_CODE code;
4863 const char *format_ptr;
4865 code = GET_CODE (orig);
4867 switch (code)
4869 case REG:
4870 case CONST_INT:
4871 case CONST_DOUBLE:
4872 case CONST_FIXED:
4873 case CONST_VECTOR:
4874 case SYMBOL_REF:
4875 case CODE_LABEL:
4876 case PC:
4877 case CC0:
4878 return orig;
4879 case CLOBBER:
4880 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4881 return orig;
4882 break;
4884 case SCRATCH:
4885 for (i = 0; i < copy_insn_n_scratches; i++)
4886 if (copy_insn_scratch_in[i] == orig)
4887 return copy_insn_scratch_out[i];
4888 break;
4890 case CONST:
4891 if (shared_const_p (orig))
4892 return orig;
4893 break;
4895 /* A MEM with a constant address is not sharable. The problem is that
4896 the constant address may need to be reloaded. If the mem is shared,
4897 then reloading one copy of this mem will cause all copies to appear
4898 to have been reloaded. */
4900 default:
4901 break;
4904 /* Copy the various flags, fields, and other information. We assume
4905 that all fields need copying, and then clear the fields that should
4906 not be copied. That is the sensible default behavior, and forces
4907 us to explicitly document why we are *not* copying a flag. */
4908 copy = shallow_copy_rtx (orig);
4910 /* We do not copy the USED flag, which is used as a mark bit during
4911 walks over the RTL. */
4912 RTX_FLAG (copy, used) = 0;
4914 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4915 if (INSN_P (orig))
4917 RTX_FLAG (copy, jump) = 0;
4918 RTX_FLAG (copy, call) = 0;
4919 RTX_FLAG (copy, frame_related) = 0;
4922 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4924 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4925 switch (*format_ptr++)
4927 case 'e':
4928 if (XEXP (orig, i) != NULL)
4929 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4930 break;
4932 case 'E':
4933 case 'V':
4934 if (XVEC (orig, i) == orig_asm_constraints_vector)
4935 XVEC (copy, i) = copy_asm_constraints_vector;
4936 else if (XVEC (orig, i) == orig_asm_operands_vector)
4937 XVEC (copy, i) = copy_asm_operands_vector;
4938 else if (XVEC (orig, i) != NULL)
4940 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4941 for (j = 0; j < XVECLEN (copy, i); j++)
4942 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4944 break;
4946 case 't':
4947 case 'w':
4948 case 'i':
4949 case 's':
4950 case 'S':
4951 case 'u':
4952 case '0':
4953 /* These are left unchanged. */
4954 break;
4956 default:
4957 gcc_unreachable ();
4960 if (code == SCRATCH)
4962 i = copy_insn_n_scratches++;
4963 gcc_assert (i < MAX_RECOG_OPERANDS);
4964 copy_insn_scratch_in[i] = orig;
4965 copy_insn_scratch_out[i] = copy;
4967 else if (code == ASM_OPERANDS)
4969 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4970 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4971 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4972 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4975 return copy;
4978 /* Create a new copy of an rtx.
4979 This function differs from copy_rtx in that it handles SCRATCHes and
4980 ASM_OPERANDs properly.
4981 INSN doesn't really have to be a full INSN; it could be just the
4982 pattern. */
4984 copy_insn (rtx insn)
4986 copy_insn_n_scratches = 0;
4987 orig_asm_operands_vector = 0;
4988 orig_asm_constraints_vector = 0;
4989 copy_asm_operands_vector = 0;
4990 copy_asm_constraints_vector = 0;
4991 return copy_insn_1 (insn);
4994 /* Initialize data structures and variables in this file
4995 before generating rtl for each function. */
4997 void
4998 init_emit (void)
5000 first_insn = NULL;
5001 last_insn = NULL;
5002 cur_insn_uid = 1;
5003 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5004 last_location = UNKNOWN_LOCATION;
5005 first_label_num = label_num;
5006 seq_stack = NULL;
5008 /* Init the tables that describe all the pseudo regs. */
5010 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5012 crtl->emit.regno_pointer_align
5013 = xcalloc (crtl->emit.regno_pointer_align_length
5014 * sizeof (unsigned char), 1);
5016 regno_reg_rtx
5017 = ggc_alloc (crtl->emit.regno_pointer_align_length * sizeof (rtx));
5019 /* Put copies of all the hard registers into regno_reg_rtx. */
5020 memcpy (regno_reg_rtx,
5021 static_regno_reg_rtx,
5022 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5024 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5025 init_virtual_regs ();
5027 /* Indicate that the virtual registers and stack locations are
5028 all pointers. */
5029 REG_POINTER (stack_pointer_rtx) = 1;
5030 REG_POINTER (frame_pointer_rtx) = 1;
5031 REG_POINTER (hard_frame_pointer_rtx) = 1;
5032 REG_POINTER (arg_pointer_rtx) = 1;
5034 REG_POINTER (virtual_incoming_args_rtx) = 1;
5035 REG_POINTER (virtual_stack_vars_rtx) = 1;
5036 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5037 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5038 REG_POINTER (virtual_cfa_rtx) = 1;
5040 #ifdef STACK_BOUNDARY
5041 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5042 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5043 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5044 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5046 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5047 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5048 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5049 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5050 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5051 #endif
5053 #ifdef INIT_EXPANDERS
5054 INIT_EXPANDERS;
5055 #endif
5058 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5060 static rtx
5061 gen_const_vector (enum machine_mode mode, int constant)
5063 rtx tem;
5064 rtvec v;
5065 int units, i;
5066 enum machine_mode inner;
5068 units = GET_MODE_NUNITS (mode);
5069 inner = GET_MODE_INNER (mode);
5071 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5073 v = rtvec_alloc (units);
5075 /* We need to call this function after we set the scalar const_tiny_rtx
5076 entries. */
5077 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5079 for (i = 0; i < units; ++i)
5080 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5082 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5083 return tem;
5086 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5087 all elements are zero, and the one vector when all elements are one. */
5089 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5091 enum machine_mode inner = GET_MODE_INNER (mode);
5092 int nunits = GET_MODE_NUNITS (mode);
5093 rtx x;
5094 int i;
5096 /* Check to see if all of the elements have the same value. */
5097 x = RTVEC_ELT (v, nunits - 1);
5098 for (i = nunits - 2; i >= 0; i--)
5099 if (RTVEC_ELT (v, i) != x)
5100 break;
5102 /* If the values are all the same, check to see if we can use one of the
5103 standard constant vectors. */
5104 if (i == -1)
5106 if (x == CONST0_RTX (inner))
5107 return CONST0_RTX (mode);
5108 else if (x == CONST1_RTX (inner))
5109 return CONST1_RTX (mode);
5112 return gen_rtx_raw_CONST_VECTOR (mode, v);
5115 /* Initialise global register information required by all functions. */
5117 void
5118 init_emit_regs (void)
5120 int i;
5122 /* Reset register attributes */
5123 htab_empty (reg_attrs_htab);
5125 /* We need reg_raw_mode, so initialize the modes now. */
5126 init_reg_modes_target ();
5128 /* Assign register numbers to the globally defined register rtx. */
5129 pc_rtx = gen_rtx_PC (VOIDmode);
5130 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5131 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5132 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5133 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5134 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5135 virtual_incoming_args_rtx =
5136 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5137 virtual_stack_vars_rtx =
5138 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5139 virtual_stack_dynamic_rtx =
5140 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5141 virtual_outgoing_args_rtx =
5142 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5143 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5145 /* Initialize RTL for commonly used hard registers. These are
5146 copied into regno_reg_rtx as we begin to compile each function. */
5147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5148 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5150 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5151 return_address_pointer_rtx
5152 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5153 #endif
5155 #ifdef STATIC_CHAIN_REGNUM
5156 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5158 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5159 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5160 static_chain_incoming_rtx
5161 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5162 else
5163 #endif
5164 static_chain_incoming_rtx = static_chain_rtx;
5165 #endif
5167 #ifdef STATIC_CHAIN
5168 static_chain_rtx = STATIC_CHAIN;
5170 #ifdef STATIC_CHAIN_INCOMING
5171 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5172 #else
5173 static_chain_incoming_rtx = static_chain_rtx;
5174 #endif
5175 #endif
5177 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5178 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5179 else
5180 pic_offset_table_rtx = NULL_RTX;
5183 /* Create some permanent unique rtl objects shared between all functions.
5184 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5186 void
5187 init_emit_once (int line_numbers)
5189 int i;
5190 enum machine_mode mode;
5191 enum machine_mode double_mode;
5193 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5194 hash tables. */
5195 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5196 const_int_htab_eq, NULL);
5198 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5199 const_double_htab_eq, NULL);
5201 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5202 const_fixed_htab_eq, NULL);
5204 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5205 mem_attrs_htab_eq, NULL);
5206 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5207 reg_attrs_htab_eq, NULL);
5209 no_line_numbers = ! line_numbers;
5211 /* Compute the word and byte modes. */
5213 byte_mode = VOIDmode;
5214 word_mode = VOIDmode;
5215 double_mode = VOIDmode;
5217 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5218 mode != VOIDmode;
5219 mode = GET_MODE_WIDER_MODE (mode))
5221 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5222 && byte_mode == VOIDmode)
5223 byte_mode = mode;
5225 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5226 && word_mode == VOIDmode)
5227 word_mode = mode;
5230 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5231 mode != VOIDmode;
5232 mode = GET_MODE_WIDER_MODE (mode))
5234 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5235 && double_mode == VOIDmode)
5236 double_mode = mode;
5239 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5241 #ifdef INIT_EXPANDERS
5242 /* This is to initialize {init|mark|free}_machine_status before the first
5243 call to push_function_context_to. This is needed by the Chill front
5244 end which calls push_function_context_to before the first call to
5245 init_function_start. */
5246 INIT_EXPANDERS;
5247 #endif
5249 /* Create the unique rtx's for certain rtx codes and operand values. */
5251 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5252 tries to use these variables. */
5253 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5254 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5255 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5257 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5258 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5259 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5260 else
5261 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5263 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5264 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5265 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5267 dconstm1 = dconst1;
5268 dconstm1.sign = 1;
5270 dconsthalf = dconst1;
5271 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5273 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5275 const REAL_VALUE_TYPE *const r =
5276 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5279 mode != VOIDmode;
5280 mode = GET_MODE_WIDER_MODE (mode))
5281 const_tiny_rtx[i][(int) mode] =
5282 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5285 mode != VOIDmode;
5286 mode = GET_MODE_WIDER_MODE (mode))
5287 const_tiny_rtx[i][(int) mode] =
5288 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5290 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5292 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5293 mode != VOIDmode;
5294 mode = GET_MODE_WIDER_MODE (mode))
5295 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5297 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5298 mode != VOIDmode;
5299 mode = GET_MODE_WIDER_MODE (mode))
5300 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5303 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5304 mode != VOIDmode;
5305 mode = GET_MODE_WIDER_MODE (mode))
5307 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5308 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5312 mode != VOIDmode;
5313 mode = GET_MODE_WIDER_MODE (mode))
5315 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5316 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5320 mode != VOIDmode;
5321 mode = GET_MODE_WIDER_MODE (mode))
5323 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5324 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5327 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5328 mode != VOIDmode;
5329 mode = GET_MODE_WIDER_MODE (mode))
5331 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5332 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5335 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5336 mode != VOIDmode;
5337 mode = GET_MODE_WIDER_MODE (mode))
5339 FCONST0(mode).data.high = 0;
5340 FCONST0(mode).data.low = 0;
5341 FCONST0(mode).mode = mode;
5342 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5343 FCONST0 (mode), mode);
5346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5347 mode != VOIDmode;
5348 mode = GET_MODE_WIDER_MODE (mode))
5350 FCONST0(mode).data.high = 0;
5351 FCONST0(mode).data.low = 0;
5352 FCONST0(mode).mode = mode;
5353 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5354 FCONST0 (mode), mode);
5357 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5358 mode != VOIDmode;
5359 mode = GET_MODE_WIDER_MODE (mode))
5361 FCONST0(mode).data.high = 0;
5362 FCONST0(mode).data.low = 0;
5363 FCONST0(mode).mode = mode;
5364 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5365 FCONST0 (mode), mode);
5367 /* We store the value 1. */
5368 FCONST1(mode).data.high = 0;
5369 FCONST1(mode).data.low = 0;
5370 FCONST1(mode).mode = mode;
5371 lshift_double (1, 0, GET_MODE_FBIT (mode),
5372 2 * HOST_BITS_PER_WIDE_INT,
5373 &FCONST1(mode).data.low,
5374 &FCONST1(mode).data.high,
5375 SIGNED_FIXED_POINT_MODE_P (mode));
5376 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5377 FCONST1 (mode), mode);
5380 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5381 mode != VOIDmode;
5382 mode = GET_MODE_WIDER_MODE (mode))
5384 FCONST0(mode).data.high = 0;
5385 FCONST0(mode).data.low = 0;
5386 FCONST0(mode).mode = mode;
5387 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5388 FCONST0 (mode), mode);
5390 /* We store the value 1. */
5391 FCONST1(mode).data.high = 0;
5392 FCONST1(mode).data.low = 0;
5393 FCONST1(mode).mode = mode;
5394 lshift_double (1, 0, GET_MODE_FBIT (mode),
5395 2 * HOST_BITS_PER_WIDE_INT,
5396 &FCONST1(mode).data.low,
5397 &FCONST1(mode).data.high,
5398 SIGNED_FIXED_POINT_MODE_P (mode));
5399 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5400 FCONST1 (mode), mode);
5403 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5404 mode != VOIDmode;
5405 mode = GET_MODE_WIDER_MODE (mode))
5407 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5410 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5411 mode != VOIDmode;
5412 mode = GET_MODE_WIDER_MODE (mode))
5414 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5417 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5418 mode != VOIDmode;
5419 mode = GET_MODE_WIDER_MODE (mode))
5421 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5422 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5425 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5426 mode != VOIDmode;
5427 mode = GET_MODE_WIDER_MODE (mode))
5429 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5430 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5433 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5434 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5435 const_tiny_rtx[0][i] = const0_rtx;
5437 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5438 if (STORE_FLAG_VALUE == 1)
5439 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5442 /* Produce exact duplicate of insn INSN after AFTER.
5443 Care updating of libcall regions if present. */
5446 emit_copy_of_insn_after (rtx insn, rtx after)
5448 rtx new;
5449 rtx note1, note2, link;
5451 switch (GET_CODE (insn))
5453 case INSN:
5454 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5455 break;
5457 case JUMP_INSN:
5458 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5459 break;
5461 case CALL_INSN:
5462 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5463 if (CALL_INSN_FUNCTION_USAGE (insn))
5464 CALL_INSN_FUNCTION_USAGE (new)
5465 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5466 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5467 RTL_CONST_CALL_P (new) = RTL_CONST_CALL_P (insn);
5468 RTL_PURE_CALL_P (new) = RTL_PURE_CALL_P (insn);
5469 RTL_LOOPING_CONST_OR_PURE_CALL_P (new)
5470 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5471 break;
5473 default:
5474 gcc_unreachable ();
5477 /* Update LABEL_NUSES. */
5478 mark_jump_label (PATTERN (new), new, 0);
5480 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5482 /* If the old insn is frame related, then so is the new one. This is
5483 primarily needed for IA-64 unwind info which marks epilogue insns,
5484 which may be duplicated by the basic block reordering code. */
5485 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5487 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5488 will make them. REG_LABEL_TARGETs are created there too, but are
5489 supposed to be sticky, so we copy them. */
5490 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5491 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5493 if (GET_CODE (link) == EXPR_LIST)
5494 REG_NOTES (new)
5495 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5496 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5497 else
5498 REG_NOTES (new)
5499 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5500 XEXP (link, 0), REG_NOTES (new));
5503 /* Fix the libcall sequences. */
5504 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5506 rtx p = new;
5507 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5508 p = PREV_INSN (p);
5509 XEXP (note1, 0) = p;
5510 XEXP (note2, 0) = new;
5512 INSN_CODE (new) = INSN_CODE (insn);
5513 return new;
5516 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5518 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5520 if (hard_reg_clobbers[mode][regno])
5521 return hard_reg_clobbers[mode][regno];
5522 else
5523 return (hard_reg_clobbers[mode][regno] =
5524 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5527 #include "gt-emit-rtl.h"